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Matrix Transformations and Factorizations

In most applications of linear algebra, problems are solved by transforma-
tions of matrices. A given matrix (which represents some transformation of
a vector) is itself transformed. The simplest example of this is in solving the
linear system Ax = b, where the matrix A represents a transformation of the
vector x to the vector b. The matrix A is transformed through a succession of
linear operations until x is determined easily by the transformed A and the
transformed b. Each operation in the transformation of A is a pre- or post-
multiplication by some other matrix. Each matrix formed as a product must
be equivalent to A; therefore, in order to ensure this in general, each trans-
formation matrix must be of full rank. In eigenproblems, we likewise perform
a sequence of pre- or postmultiplications. In this case, each matrix formed as
a product must be similar to A; therefore each transformation matrix must
be orthogonal. We develop transformations of matrices by transformations on
the individual rows or columns.

5.1 Factorizations

Given a matrix A, it is often useful to decompose A into the product of other
matrices; that is, to form a factorization A = BC, where B and C are ma-
trices. We refer to this as “matrix factorization”, or sometimes as “matrix
decomposition”, although this latter term includes more general representa-
tions of the matrix, such as the spectral decomposition (page 154).

Most methods for eigenanalysis and for solving linear systems proceed by
factoring the matrix, as we see in Chaps. 6 and 7.

In Chap. 3, we discussed some factorizations including

• the full rank factorization (equation (3.150)) of a general matrix,
• the equivalent canonical factorization (equation (3.155)) of a general ma-

trix,
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228 5 Transformations and Factorizations

• the Schur factorization (equation (3.244)) of a square matrix,
• the similar canonical factorization (equation (3.247)) or “diagonal factor-

ization” of a diagonalizable matrix (which is necessarily square),
• the orthogonally similar canonical factorization (equation (3.252)) of a

symmetric matrix (which is necessarily diagonalizable),
• the square root (equation (3.273)) of a nonnegative definite matrix (which

is necessarily symmetric), and
• the singular value factorization (equation (3.276)) of a general matrix.

In this chapter we describe three additional factorizations:

• the LU (and LR and LDU) factorization of a general matrix,
• the QR factorization of a general matrix, and
• the Cholesky factorization of a nonnegative definite matrix.

These factorizations are useful both in theory and in practice.

5.2 Computational Methods: Direct and Iterative

In our previous discussions of matrix factorizations and other operations, we
have shown derivations that may indicate computational methods, but we
have not specified the computational details. There are many important com-
putational issues, some of which we will discuss in Part III. At this point, again
without getting into the details, we want to note a fundamental difference in
the types of computational methods.

The developments of the full rank factorization (equation (3.150)) and the
equivalent canonical factorization (equation (3.155)) were constructive, and
indeed those factorizations could be computed following those constructions.
On the other hand, our developments of the diagonalizing transformations,
such as the orthogonally similar canonical factorization (equation (3.252)),
and other factorizations related to eigenvalues, such as the singular value
factorization (equation (3.276)), were not constructive.

As it turns out, the factorizations involving eigenvalues or singular values
cannot in general be computed using a finite set of arithmetic operations. If
they could be, then the characteristic polynomial equation could be solved
in a finite set of arithmetic operations, and the Abel-Ruffini theorem states
that such a solution does not exist for polynomials of degree five or higher.
For factorizations of this type we must use iterative methods, at least to get
the eigenvalues or singular values. We will describe some of those methods
in Chap. 7. (In this chapter I do one factorization based on an eigendecom-
position. It is the square root, described in Sect. 5.9.1. This is because it so
naturally goes with a Cholesky factorization of a nonnegative definite matrix.)

In this chapter we first discuss some transformations and important fac-
torizations that can be carried out in a finite number of arithmetic steps; that
is, by the use of direct methods. The factorizations themselves can be used it-
eratively; indeed, as we will discuss in Chap. 7, the QR is the most important
factorization used iteratively to obtain eigenvalues or singular values.
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A factorization of a given matrix A is generally effected by a series of
pre- or postmultiplications by transformation matrices with simple and desir-
able properties. One such transformation matrix is the Gaussian matrix, Gij

of equation (3.63) or ˜Gij of equation (3.65) on page 84. Another important
class of transformation matrices are orthogonal matrices. Orthogonal trans-
formation matrices have some desirable properties. In this chapter, before
discussing factorizations, we first consider some general properties of various
types of transformations, and then we describe two specific types of orthogo-
nal transformations, Householder reflections (Sect. 5.4) and Givens rotations
(Sect. 5.5). As we will see, the Householder reflections are very similar to the
Gram-Schmidt transformations that we discussed beginning on page 38.

5.3 Linear Geometric Transformations

In many important applications of linear algebra, a vector represents a point
in space, with each element of the vector corresponding to an element of a
coordinate system, usually a Cartesian system. A set of vectors describes a
geometric object, such as a polyhedron or a Lorentz cone, as on page 44. Alge-
braic operations can be thought of as geometric transformations that rotate,
deform, or translate the object. While these transformations are often used in
the two or three dimensions that correspond to the easily perceived physical
space, they have similar applications in higher dimensions. Thinking about
operations in linear algebra in terms of the associated geometric operations
often provides useful intuition.

A linear transformation of a vector x is effected by multiplication by a
matrix A. Any n×m matrix A is a function or transformation from V1 to V2,
where V1 is a vector space of order m and V2 is a vector space of order n.

5.3.1 Invariance Properties of Linear Transformations

An important characteristic of a transformation is what it leaves unchanged;
that is, its invariance properties (see Table 5.1). All of the transformations we
will discuss are linear transformations because they preserve straight lines. A
set of points that constitute a straight line is transformed into a set of points
that constitute a straight line.

As mentioned above, reflections and rotations are orthogonal transforma-
tions, and we have seen that an orthogonal transformation preserves lengths
of vectors (equation (3.286)). We will also see that an orthogonal transfor-
mation preserves angles between vectors (equation (5.1)). A transformation
that preserves lengths and angles is called an isometric transformation. Such
a transformation also preserves areas and volumes.

Another isometric transformation is a translation, which is essentially the
addition of another vector (see Sect. 5.3.5).
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Table 5.1. Invariance properties of transformations

Transformation Preserves

Linear Lines
Projective Lines
Affine Lines, Collinearity
Shearing Lines, Collinearity
Scaling Lines, Angles (and, hence, Collinearity)
Rotation Lines, Angles, Lengths
Reflection Lines, Angles, Lengths
Translation Lines, Angles, Lengths

A transformation that preserves angles is called an isotropic transforma-
tion. An example of an isotropic transformation that is not isometric is a
uniform scaling or dilation transformation, x̃ = ax, where a is a scalar.

The transformation x̃ = Ax, where A is a diagonal matrix with not all ele-
ments the same, does not preserve angles; it is an anisotropic scaling. Another
anisotropic transformation is a shearing transformation, x̃ = Ax, where A is
the same as an identity matrix, except for a single row or column that has
a one on the diagonal but nonzero, possibly constant, elements in the other
positions; for example,

⎡

⎣

1 0 a1
0 1 a1
0 0 1

⎤

⎦ .

Although they do not preserve angles, both anisotropic scaling and shear-
ing transformations preserve parallel lines. A transformation that preserves
parallel lines is called an affine transformation. Preservation of parallel lines
is equivalent to preservation of collinearity, and so an alternative character-
ization of an affine transformation is one that preserves collinearity. More
generally, we can combine nontrivial scaling and shearing transformations to
see that the transformation Ax for any nonsingular matrix A is affine. It is
easy to see that addition of a constant vector to all vectors in a set pre-
serves collinearity within the set, so a more general affine transformation is
x̃ = Ax+ t for a nonsingular matrix A and a vector t.

A projective transformation, which uses the homogeneous coordinate sys-
tem of the projective plane (see Sect. 5.3.5), preserves straight lines, but does
not preserve parallel lines. Projective transformations are very useful in com-
puter graphics. In those applications we do not always want parallel lines to
project onto the display plane as parallel lines.

5.3.2 Transformations by Orthogonal Matrices

We defined orthogonal matrices and considered some basic properties on
page 132. Orthogonal matrices are not necessarily square; they may have
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more rows than columns or may have fewer. In the following, we will consider
only orthogonal matrices with at least as many rows as columns; that is, if Q
is an orthogonal transformation matrix, then QTQ = I. This means that an
orthogonal matrix is of full rank. Of course, many useful orthogonal matrices
are square (and, obviously, nonsingular). There are many types of orthogo-
nal transformation matrices. As noted previously, permutation matrices are
square orthogonal matrices, and we have used them extensively in rearranging
the columns and/or rows of matrices.

As we stated, transformations by orthogonal matrices preserve lengths of
vectors. Orthogonal transformations also preserve angles between vectors, as
we can easily see. If Q is an orthogonal matrix, then, for vectors x and y, we
have

〈Qx,Qy〉 = (Qx)T(Qy) = xTQTQy = xTy = 〈x, y〉,
and hence,

arccos

( 〈Qx,Qy〉
‖Qx‖2 ‖Qy‖2

)

= arccos

( 〈x, y〉
‖x‖2 ‖y‖2

)

. (5.1)

Thus, orthogonal transformations preserve angles.
We have seen that if Q is an orthogonal matrix and

B = QTAQ,

then A and B have the same eigenvalues (and A and B are said to be or-
thogonally similar). By forming the transpose, we see immediately that the
transformation QTAQ preserves symmetry; that is, if A is symmetric, then B
is symmetric.

From equation (3.287), we see that ‖Q−1‖2 = 1. This has important im-
plications for the accuracy of numerical computations. (Using computations
with orthogonal matrices will not make problems more “ill-conditioned”.)

We often use orthogonal transformations that preserve lengths and an-
gles while rotating IRn or reflecting regions of IRn. The transformations are
appropriately called rotators and reflectors, respectively.

5.3.3 Rotations

The simplest rotation of a vector can be thought of as the rotation of a plane
defined by two coordinates about the other principal axes. Such a rotation
changes two elements of all vectors in that plane and leaves all the other
elements, representing the other coordinates, unchanged. This rotation can
be described in a two-dimensional space defined by the coordinates being
changed, without reference to the other coordinates.

Consider the rotation of the vector x through the angle θ into the vector
x̃. The length is preserved, so we have ‖x̃‖ = ‖x‖. Referring to Fig. 5.1, we
can write
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Figure 5.1. Rotation of x

x̃1 = ‖x‖ cos(φ+ θ),
x̃2 = ‖x‖ sin(φ+ θ).

Now, from elementary trigonometry, we know

cos(φ+ θ) = cosφ cos θ − sinφ sin θ,
sin(φ+ θ) = sinφ cos θ + cosφ sin θ.

Because cosφ = x1/‖x‖ and sinφ = x2/‖x‖, we can combine these equations
to get

x̃1 = x1 cos θ − x2 sin θ,
x̃2 = x1 sin θ + x2 cos θ.

(5.2)

Hence, multiplying x by the orthogonal matrix

[

cos θ − sin θ
sin θ cos θ

]

(5.3)

performs the rotation of x.
This idea easily extends to the rotation of a plane formed by two coordi-

nates about all of the other (orthogonal) principal axes. By convention, we
assume clockwise rotations for axes that increase in the direction from which
the system is viewed. For example, if there were an x3 axis in Fig. 5.1, it
would point toward the viewer. (This is called a “right-hand” coordinate sys-
tem, because if the viewer’s right-hand fingers point in the direction of the
rotation, the thumb points toward the viewer.)
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The rotation matrix about principal axes is the same as an identity ma-
trix with two diagonal elements changed to cos θ and the corresponding off-
diagonal elements changed to sin θ and − sin θ.

To rotate a 3-vector, x, about the x2 axis in a right-hand coordinate sys-
tem, we would use the rotation matrix

⎡

⎣

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤

⎦ .

A rotation of any hyperplane in n-space can be formed by n successive
rotations of hyperplanes formed by two principal axes. (In 3-space, this fact is
known as Euler’s rotation theorem. We can see this to be the case, in 3-space
or in general, by construction.)

A rotation of an arbitrary plane can be defined in terms of the direction
cosines of a vector in the plane before and after the rotation. In a coordinate
geometry, rotation of a plane can be viewed equivalently as a rotation of the
coordinate system in the opposite direction. This is accomplished by rotating
the unit vectors ei into ẽi.

A special type of transformation that rotates a vector to be perpendicular
to a principal axis is called a Givens rotation. We discuss the use of this type
of transformation in Sect. 5.5 on page 238. Another special rotation is the
“reflection” of a vector about another vector. We discuss this kind of rotation
next.

5.3.4 Reflections

Let u and v be orthonormal vectors, and let x be a vector in the space spanned
by u and v, so

x = c1u+ c2v

for some scalars c1 and c2. The vector

x̃ = −c1u+ c2v (5.4)

is a reflection of x through the line defined by the vector v, or u⊥. This
reflection is a rotation in the plane defined by u and v through an angle of
twice the size of the angle between x and v.

The form of x̃ of course depends on the vector v and its relationship to x.
In a common application of reflections in linear algebraic computations, we
wish to rotate a given vector into a vector collinear with a coordinate axis;
that is, we seek a reflection that transforms a vector

x = (x1, x2, . . . , xn)
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into a vector collinear with a unit vector,

x̃ = (0, . . . , 0, x̃i, 0, . . . , 0)

= ±‖x‖2ei. (5.5)

Geometrically, in two dimensions we have the picture shown in Fig. 5.2,
where i = 1. Which vector that x is rotated through (that is, which is u and
which is v) depends on the choice of the sign in ±‖x‖2. The choice that was
made yields the x̃ shown in the figure, and from the figure, this can be seen
to be correct. Note that

v =
1

|2c2| (x+ x̃)

If the opposite choice is made, we get the ˜̃x shown. In the simple two-
dimensional case, this is equivalent to reversing our choice of u and v.

x2

x1

x

u

v

~~x
~x

Figure 5.2. Reflections of x about v (or u⊥) and about u

To accomplish this special rotation of course, we first choose an appropriate
vector about which to reflect our given vector, and then perform the rotation.
We will describe this process in Sect. 5.4 below.

5.3.5 Translations: Homogeneous Coordinates

A translation of a vector is a relatively simple transformation in which the
vector is transformed into a parallel vector. It involves a type of addition of
vectors. Rotations, as we have seen, and other geometric transformations such
as shearing, as we have indicated, involve multiplication by an appropriate
matrix. In applications where several geometric transformations are to be
made, it would be convenient if translations could also be performed by matrix
multiplication. This can be done by using homogeneous coordinates.

Homogeneous coordinates, which form the natural coordinate system for
projective geometry, have a very simple relationship to Cartesian coordinates.
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The point with Cartesian coordinates (x1, x2, . . . , xd) is represented in homo-
geneous coordinates as (xh

0 , x
h
1 , . . . , x

h
d), where, for arbitrary xh

0 not equal to
zero, xh

1 = xh
0x1, and so on. Because the point is the same, the two different

symbols represent the same thing, and we have

(x1, . . . , xd) = (xh
0 , x

h
1 , . . . , x

h
d). (5.6a)

Alternatively, the hyperplane coordinate may be added at the end, and we
have

(x1, . . . , xd) = (xh
1 , . . . , x

h
d, x

h
0). (5.6b)

Each value of xh
0 corresponds to a hyperplane in the ordinary Cartesian co-

ordinate system. The most common choice is xh
0 = 1, and so xh

i = xi. The
special plane xh

0 = 0 does not have a meaning in the Cartesian system, but in
projective geometry it corresponds to a hyperplane at infinity.

We can easily effect the translation x̃ = x + t by first representing the
point x as (1, x1, . . . , xd) and then multiplying by the (d+1)× (d+1) matrix

T =

⎡

⎢

⎢

⎣

1 0 · · · 0
t1 1 · · · 0

· · ·
td 0 · · · 1

⎤

⎥

⎥

⎦

.

We will use the symbol xh to represent the vector of corresponding homoge-
neous coordinates:

xh = (1, x1, . . . , xd).

We must be careful to distinguish the point x from the vector that represents
the point. In Cartesian coordinates, there is a natural correspondence and
the symbol x representing a point may also represent the vector (x1, . . . , xd).
The vector of homogeneous coordinates of the result Txh corresponds to the
Cartesian coordinates of x̃, (x1 + t1, . . . , xd + td), which is the desired result.

Homogeneous coordinates are used extensively in computer graphics not
only for the ordinary geometric transformations but also for projective trans-
formations, which model visual properties. Hill and Kelley (2006) describe
many of these applications. See Exercise 5.2 for a simple example.

5.4 Householder Transformations (Reflections)

We have briefly discussed geometric transformations that reflect a vector
through another vector. We now consider some properties and uses of these
transformations.

Consider the problem of reflecting x through the vector v. As before, we
assume that u and v are orthonormal vectors and that x lies in a space spanned
by u and v, and x = c1u+ c2v. Form the matrix
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H = I − 2uuT, (5.7)

and note that

Hx = c1u+ c2v − 2c1uu
Tu− 2c2uu

Tv

= c1u+ c2v − 2c1u
Tuu− 2c2u

Tvu

= −c1u+ c2v

= x̃,

as in equation (5.4). The matrix H is a reflector; it has transformed x into its
reflection x̃ about v.

A reflection is also called a Householder reflection or a Householder trans-
formation, and the matrix H is called a Householder matrix or a Householder
reflector. The following properties of H are immediate:

• Hu = −u.
• Hv = v for any v orthogonal to u.
• H = HT (symmetric).
• HT = H−1 (orthogonal).

Because H is orthogonal, if Hx = x̃, then ‖x‖2 = ‖x̃‖2 (see equation (3.286)),
so x̃1 = ±‖x‖2.

The matrix uuT is symmetric, idempotent, and of rank 1. A transformation
by a matrix of the form A− vwT is often called a “rank-one” update, because
vwT is of rank 1. Thus, a Householder reflection is a special rank-one update.

5.4.1 Zeroing All Elements But One in a Vector

The usefulness of Householder reflections results from the fact that it is easy
to construct a reflection that will transform a vector x into a vector x̃ that has
zeros in all but one position, as in equation (5.5). To construct the reflector
of x into x̃, we first need to determine a vector v as in Fig. 5.2 about which
to reflect x. That vector is merely

x+ x̃.

Because ‖x̃‖2 = ‖x‖2, we know x̃ to within the sign; that is,

x̃ = (0, . . . , 0,±‖x‖2, 0, . . . , 0).
We choose the sign so as not to add quantities of different signs and possibly
similar magnitudes. (See the discussions of catastrophic cancellation below
and beginning on page 488, in Chap. 10.) Hence, we have

q = (x1, . . . , xi−1, xi + sign(xi)‖x‖2, xi+1, . . . , xn). (5.8)

We normalize this to obtain
u = q/‖q‖2, (5.9)
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and finally form
H = I − 2uuT. (5.10)

Consider, for example, the vector

x = (3, 1, 2, 1, 1),

which we wish to transform into

x̃ = (x̃1, 0, 0, 0, 0).

We have
‖x‖ = 4,

so we form the vector

u =
1√
56

(7, 1, 2, 1, 1)

and the Householder reflector

H = I − 2uuT

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

− 1

28

⎡

⎢

⎢

⎢

⎢

⎣

49 7 14 7 7
7 1 2 1 1

14 2 4 2 2
7 1 2 1 1
7 1 2 1 1

⎤

⎥

⎥

⎥

⎥

⎦

=
1

28

⎡

⎢

⎢

⎢

⎢

⎣

−21 −7 −14 −7 −7
−7 27 −2 −1 −1

−14 −2 24 −2 −2
−7 −1 −2 27 −1
−7 −1 −2 −1 27

⎤

⎥

⎥

⎥

⎥

⎦

to yield Hx = (−4, 0, 0, 0, 0).
The procedure described by equations (5.8), (5.9), and (5.10), zeroes out all

but the ith element of the given vector. We could of course modify the reflector
matrix so that certain elements of the reflected vector are unchanged.

We will consider these reflections further in Sect. 5.8.8, beginning on
page 252.

5.4.2 Computational Considerations

Notice that if we had chosen x̃ as (−4, 0, 0, 0, 0), then u would have been
(−1, 1, 2, 1, 1)/

√
8, and Hx would have been (4, 0, 0, 0, 0), and our objective

would also have been achieved. In this case, there would have been no nu-
merical rounding problems. If, however, x were such that x1 ≈ −‖x‖2 in



238 5 Transformations and Factorizations

the addition x1 + ‖x‖2, “catastrophic cancellation” would occur. For exam-
ple, if x1 = −3, and ‖x‖ is computed as 3.0000002, the computation of
x1 + ‖x‖2 would lose seven significant digits. Of course, it can be the case
that x1 ≈ −‖x‖2, only if x2 ≈ x3 ≈ · · · ≈ 0. Nevertheless, we should perform
computations in such a way as to protect against the worst cases, especially
if it is easy to do so.

Standard Householder computations are performed generally as indicated
above, but there may be minor variations in the order of performing the com-
putations that take advantage of specific computer architectures. There are
variants of the Householder transformations that are more efficient by taking
advantage of such architectures as a cache memory or a bank of floating-point
registers whose contents are immediately available to the computational unit.

5.5 Givens Transformations (Rotations)

We have briefly discussed geometric transformations that rotate a vector in
such a way that a specified element becomes 0 and only one other element in
the vector is changed. Such a method may be particularly useful if only part
of the matrix to be transformed is available. These transformations are called
Givens transformations, or Givens rotations, or sometimes Jacobi transforma-
tions.

The basic idea of the rotation, which is a special case of the rotations dis-
cussed on page 231, can be seen in the case of a vector of length 2. Given the
vector x = (x1, x2), we wish to rotate it to x̃ = (x̃1, 0). As with a reflection,
in the rotation we also have x̃1 = ‖x‖. Geometrically, we have the picture
shown in Fig. 5.3.

x2

x1

x

xθ ~

Figure 5.3. Rotation of x onto a coordinate axis

It is easy to see that the orthogonal matrix

Q =

[

cos θ sin θ
− sin θ cos θ

]

(5.11)

will perform this rotation of x if cos θ = x1/r and sin θ = x2/r, where r =
‖x‖ =

√

x2
1 + x2

2. (This is the same matrix as in equation (5.3), except that
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the rotation is in the opposite direction.) Notice that θ is not relevant; we
only need real numbers c and s such that c2 + s2 = 1.

We have

x̃1 =
x2
1

r
+

x2
2

r
= ‖x‖,

x̃2 = −x2x1

r
+

x1x2

r
= 0;

that is,

Q

(

x1

x2

)

=

( ‖x‖
0

)

.

5.5.1 Zeroing One Element in a Vector

As with the Householder reflection that transforms a vector

x = (x1, x2, x3, . . . , xn)

into a vector
x̃H = (x̃H1, 0, 0, . . . , 0),

it is easy to construct a Givens rotation that transforms x into

x̃G = (x̃G1, 0, x3, . . . , xn).

We can construct an orthogonal matrix Gpq similar to that shown in equa-
tion (5.11) that will transform the vector

x = (x1, . . . , xp, . . . , xq, . . . , xn)

into
x̃ = (x1, . . . , x̃p, . . . , 0, . . . , xn).

The orthogonal matrix that will do this is

Gpq(θ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 0 · · · 0

. . .

0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 c 0 · · · 0 s 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0

. . .

0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 −s 0 · · · 0 c 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0

. . .

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (5.12)
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where the entries in the pth and qth rows and columns are

c =
xp

r

and
s =

xq

r
,

where r =
√

x2
p + x2

q. A rotation matrix is the same as an identity matrix

with four elements changed.
Considering x to be the pth column in a matrix X, we can easily see that

GpqX results in a matrix with a zero as the qth element of the pth column,
and all except the pth and qth rows and columns of GpqX are the same as
those of X.

5.5.2 Givens Rotations That Preserve Symmetry

IfX is a symmetric matrix, we can preserve the symmetry by a transformation
of the form QTXQ, where Q is any orthogonal matrix. The elements of a
Givens rotation matrix that is used in this way and with the objective of
forming zeros in two positions in X simultaneously would be determined in
the same way as above, but the elements themselves would not be the same.
We illustrate that below, while at the same time considering the problem of
transforming a value into something other than zero.

5.5.3 Givens Rotations to Transform to Other Values

Consider a symmetric matrix X that we wish to transform to the symmetric
matrix ˜X that has all rows and columns except the pth and qth the same as
those in X, and we want a specified value in the (p, p)th position of ˜X, say

x̃pp = a. We seek a rotation matrix G such that ˜X = GTXG. We have

[

c s
−s c

]T [

xpp xpq

xpq xqq

] [

c s
−s c

]

=

[

a x̃pq

x̃pq x̃qq

]

(5.13)

and
c2 + s2 = 1.

Hence
a = c2xpp − 2csxpq + s2xqq. (5.14)

Writing t = s/c (the tangent), we have the quadratic

(xqq − a)t2 − 2xpqt+ xpp − a = 0 (5.15)
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with roots

t =
xpq ±

√

x2
pq − (xpp − a)(xqq − a)

(xqq − a)
. (5.16)

The roots are real if and only if

x2
pq ≥ (xpp − a)(xqq − a).

If the roots in equation (5.16) are real, we choose the nonnegative one. (See
the discussion of equation (10.3) on page 488.) We then form

c =
1√

1 + t2
(5.17)

and
s = ct. (5.18)

The rotation matrix G formed from c and s will transform X into ˜X.

5.5.4 Fast Givens Rotations

Often in applications we need to perform a succession of Givens transforma-
tions. The overall number of computations can be reduced using a succession
of “fast Givens rotations”. We write the matrix Q in equation (5.11) as CT ,

[

cos θ sin θ
− sin θ cos θ

]

=

[

cos θ 0
0 cos θ

] [

1 tan θ
− tan θ 1

]

, (5.19)

and instead of working with matrices such as Q, which require four multipli-
cations and two additions, we work with matrices such as T , involving the
tangents, which require only two multiplications and two additions. After a
number of computations with such matrices, the diagonal matrices of the form
of C are accumulated and multiplied together.

The diagonal elements in the accumulated C matrices in the fast Givens
rotations can become widely different in absolute values, so to avoid excessive
loss of accuracy, it is usually necessary to rescale the elements periodically.

5.6 Factorization of Matrices

It is often useful to represent a matrix A in a factored form,

A = BC,

where B and C have some specified desirable properties, such as being orthog-
onal or being triangular. We generally seek B and C such that B and C have
useful properties for some particular aspect of the problem being addressed.
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Most direct methods of solving linear systems (discussed in Chap. 6) are
based on factorizations (or, equivalently, “decompositions”) of the matrix of
coefficients. Matrix factorizations are also performed for reasons other than
to solve a linear system, such as in eigenanalysis (discussed in Chap. 7).

Notice an indeterminacy in the factorization A = BC; if B and C are
factors of A, then so are −B and −C. This indeterminacy includes not only
the negatives of the matrices themselves, but also the negatives of various
rows and columns properly chosen. More generally, if D and E are matrices
such that DE = Im, where m is the number of columns in B and rows in C,
then A = BDEC, and so A can be factored as the product of BD and EC.
Hence, in general, a factorization is not unique. If restrictions are placed on
certain properties of the factors, however, then under those restrictions, the
factorizations may be unique. Also, if one factor is given, the other factor may
be unique. (For example, in the case of nonsingular matrices, we can see this
by taking the inverse.)

Invertible transformations result in a factorization of a matrix. For an n×k
matrix B, if D is a k × n matrix such that BD = In, then a given n × m
matrix A can be factorized as A = BDA = BC, where C = DA.

Some important matrix factorizations were listed at the beginning of this
chapter. Of those, we have already discussed the full rank and the diagonal
canonical factorizations in Chap. 3. Also in Chap. 3, we have briefly described
the orthogonally similar canonical factorization and the SVD. We will discuss
these factorizations, which require iterative methods, further in Chap. 7. In
the next few sections we will introduce the LU, LDU, QR, and Cholesky
factorizations. We will also describe the square root factorization, even though
it uses eigenvalues, which require the iterative methods.

Matrix factorizations are generally performed by a sequence of full-rank
transformations and their inverses.

5.7 LU and LDU Factorizations

For any matrix (whether square or not) that can be expressed as LU, where L
is lower triangular (or lower trapezoidal) and U is upper triangular (or upper
trapezoidal), the product LU is called the LU factorization. We also generally
restrict either L or U to have 0s or 1s on the diagonal. If an LU factorization
exists, it is clear that either L or U (but not necessarily both) can be made
to have only 1s and 0s on its diagonal.

If an LU factorization exists, both the lower triangular matrix, L, and the
upper triangular matrix, U , can be made to have only 1s or 0s on their diag-
onals (that is, be made to be unit lower triangular or unit upper triangular)
by putting the products of any non-unit diagonal elements into a diagonal
matrix D and then writing the factorization as LDU, where now L and U are
unit triangular matrices (that is, matrices with 1s on the diagonal). This is
called the LDU factorization.
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If a matrix is not square, or if the matrix is not of full rank, in its LU
decomposition, L and/or U may have zero diagonal elements or will be of
trapezoidal form. An example of a singular matrix and its LU factorization is

A =

[

0 3 2
0 0 0

]

=

[

1 0
0 1

] [

0 3 2
0 0 0

]

= LU. (5.20)

In this case, U is an upper trapezoidal matrix.

5.7.1 Properties: Existence

Existence and uniqueness of an LU factorization (or LDU factorization) are
interesting questions. It is neither necessary nor sufficient that a matrix be
nonsingular for it to have an LU factorization. The example above shows the
LU factorization for a matrix not of full rank. Furthermore, a full rank matrix
does not necessarily have an LU factorization, as we see next.

An example of a nonsingular matrix that does not have an LU factorization
is an identity matrix with permuted rows or columns:

B =

[

0 1
1 0

]

. (5.21)

The conditions for the existence of an LU factorization are not so easy to state
(see Harville 1997, for example), but in practice, as we will see, the question is
not very relevant. First, however, we will consider a matrix that is guaranteed
to have an LU factorization, and show one method of obtaining it.

A sufficient condition for an n×m matrix A to have an LU factorization
is that for k = 1, 2, . . . ,min(n,m), each k × k principal submatrix of A be
nonsingular.

The proof is by construction. We assume that all principal submatrices
are nonsingular. This means that a11 �= 0, and so the Gaussian matrix G11

exists. (See equation (3.63) on page 84, where we also set the notation.) We
multiply A by G11, obtaining

G11A = A(1),

in which a
(1)
i1 = 0 for i = 2, . . . , n and a

(1)
22 �= 0 (otherwise the 2× 2 principal

submatrix would be singular, which by assumption it is not).

Since a
(1)
22 �= 0, the Gaussian matrix G22 exists, and now we multiply G11A

by G22, obtaining
G22G11A = A(2),

in which a
(2)
i2 = 0 for i = 3, . . . , n and a

(2)
33 �= 0 as before. (All a

(1)
i1 are

unchanged.)
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We continue in this way for k = min(n,m) steps, to obtain

Gkk · · ·G22G11A = A(k), (5.22)

in which A(k) is upper triangular, and the matrix Gkk · · ·G22G11 is lower
triangular because each matrix in the product is lower triangular. (Note that

if m > n, Gkk = En(1/a
(n−1)
nn ).)

Furthermore each matrix in the product Gkk · · ·G22G11 is nonsingular,
and the matrix G−1

11 G
−1
22 · · ·G−1

kk is lower triangular (see equation (3.64) on
page 84). We complete the factorization by multiplying both sides of equa-
tion (5.22) by G−1

11 G
−1
22 · · ·G−1

kk :

A = G−1
11 G

−1
22 · · ·G−1

kkA
(k)

= LA(k)

= LU. (5.23)

Hence, we see that an n × m matrix A has an LU factorization if for k =
1, 2, . . . ,min(n,m), each k × k principal submatrix of A is nonsingular.

The elements on the diagonal of A(k), that is, U , are all 1s; hence, we note
a useful property for square matrices. If the matrix is square (k = n), then

det(A) = det(L)det(U) = l11l22 · · · lnn. (5.24)

An alternate construction leaves 1s on the diagonal of L, and then the
determinant of A is the product of the diagonal elements of U . One way of
achieving this factorization, again in the case in which the principal subma-
trices are all nonsingular, is to form the matrices

Lj = En,j

(

−a
(j−1)
n,j /a

(j−1)
jj

)

· · ·Ej+1,j

(

−a
(j−1)
j+1,j/a

(j−1)
jj

)

; (5.25)

that is,

Lj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 · · · 0 0 · · · 0
. . .

0 · · · 1 0 · · · 0
0 · · · −a

(j−1)
j+1,j

a
(j−1)
jj

1 · · · 0
. . .

0 · · · −a
(j−1)
nj

a
(j−1)
jj

0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5.26)

(See page 86 for the notation “Epq(a)”, representing the elementary axpy
matrix.)

Each Lj is nonsingular, with a determinant of 1. The whole process of
forward reduction can be expressed as a matrix product,
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U = Lk−1Lk−2 . . . L2L1A, (5.27)

and by the way we have performed the forward reduction, U is an upper
triangular matrix. The matrix Lk−1Lk−2 . . . L2L1 is nonsingular and is unit
lower triangular (all 1s on the diagonal). Its inverse therefore is also unit lower
triangular. Call its inverse L; that is,

L = (Lk−1Lk−2 . . . L2L1)
−1. (5.28)

Thus, the forward reduction is equivalent to expressing A as LU ,

A = LU. (5.29)

In this case, the diagonal elements of the lower triangular matrix L in the LU
factorization are all 1s by the method of construction, and if A is square,

det(A) = u11u22 · · ·unn.

Even if the principal submatrices of a matrix are not nonsingular, the
matrix may have an LU decomposition, and it may be computable using a
sequence of Gaussian matrices as we did above. Consider, for example,

C =

⎡

⎣

2 1 0
1 0 0
1 1 1

⎤

⎦ , (5.30)

whose 0 in the (2, 2) position violates the nonsingularity condition. After three
Gaussian steps as above, we have

⎡

⎣

1
2 0 0
1 −2 0

−1 1 1

⎤

⎦C =

⎡

⎣

1 1
2 0

0 1 0
0 0 1

⎤

⎦ ,

from which we get

C =

⎡

⎣

2 0 0
1 − 1

2 0
1 1

2 1

⎤

⎦

⎡

⎣

1 1
2 0

0 1 0
0 0 1

⎤

⎦ = LU. (5.31)

We also note that

det(C) = 2 ·
(

−1

2

)

· 1 = −1.

The method of constructing the LU factorization described above is guar-
anteed to work in the case of matrices with all nonsingular principal subma-
trices and in some other cases, such as for C in equation (5.30). The fact that
C is nonsingular is not sufficient to ensure that the process works or even that
the factorization exists. (As we indicated above, the sufficient conditions are
rather complicated, but not very important in practice.)
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If the matrix is not of full rank, as the Gaussian matrices are being formed,

at some point the diagonal element a
(k)
ii will be zero, so the matrix Gkk cannot

be formed. For such cases, we merely form a row of zeros in the lower triangular
matrix, and proceed to the next diagonal element. Even if the matrix is of full
rank, but not all principal submatrices are of full rank, we would encounter
this same kind of problem. In applications, we may address these two problems
similarly, using a technique of pivoting.

5.7.2 Pivoting

As we have seen, the sufficient condition of nonsingularity of all principal
submatrices is not a necessary requirement for the existence of an LU factor-
ization. We have also seen that, at least in some cases, if it exists, the factor-
ization, can be performed using Gaussian steps. There are matrices such as
B in equation (5.21), however, for which no LU factorization exists.

Does this matter? Obviously, it depends on the application; that is, it
depends on the purpose of using an LU factorization.

One of the most common applications of an LU factorization is to solve a
system of linear equations Ax = b. In such applications, interchange of rows
or columns does not change the problem, so long as the interchanges are made
appropriately over the entire system. Such an interchange is called pivoting.

Pivoting is often done not just to yield a matrix with an LU decomposi-
tion, it is routinely done in computations to improve the numerical accuracy.
Pivoting is generally effected by premultiplication by an elementary permuta-
tion matrix Epq (see equation (3.66) on page 85 for notation and definitions).
Hence, instead of factoring A, we factor an equivalent matrix E(π)A:

E(π)A = LU,

where L and U are lower triangular or trapezoidal and upper triangular or
trapezoidal respectively, and satisfying other restrictions we wish to impose on
the LU factorization. In an LDU decomposition, we often choose a permuta-
tion matrix so that the diagonal elements of D are nonincreasing. Depending
on the shape and other considerations of numerical computations, we may
also permute the columns of the matrix, by postmultiplying by a permutation
matrix. In its most general form, we may express the LDU decomposition of
the matrix A as

E(π1)AE(π2) = LDU. (5.32)

We will discuss pivoting in more detail on page 277 in Chap. 6.
As we mentioned in Chap. 3, in actual computations, we do not form the

elementary transformation matrices or the Gaussian matrices explicitly, but
their formulation in the text allows us to discuss the operations in a systematic
way and better understand the properties of the operations.
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This is an instance of a principle that we will encounter repeatedly: the
form of a mathematical expression and the way the expression should
be evaluated in actual practice may be quite different.

5.7.3 Use of Inner Products

The use of the elementary matrices described above is effectively a series of
outer products (columns of the elementary matrices with rows of the matrices
being operated on).

The LU factorization can also be performed by using inner products. From
equation (5.29), we see

aij =

i−1
∑

k=1

likukj + uij ,

so

lij =
aij −

∑j−1
k=1 likukj

ujj
for i = j + 1, j + 2, . . . , n. (5.33)

The use of computations implied by equation (5.33) is called the Doolittle
method or the Crout method. (There is a slight difference between the Doolit-
tle method and the Crout method: the Crout method yields a decomposition
in which the 1s are on the diagonal of the U matrix rather than the L matrix.)
Whichever method is used to form the LU decomposition, n3/3 multiplications
and additions are required.

5.7.4 Properties: Uniqueness

There are clearly many ways indeterminacies can occur in L, D, or U in an LU
or LDU factorization in general. (Recall the simple replacement of L and U by
−L and −U .) In some cases, indeterminacies can be eliminated or reduced by
putting restrictions on the factors, but any uniqueness of an LU factorization
is rather limited.

If a nonsingular matrix has an LU factorization, the factorization itself in
general is not unique, but given either L or U , the other factor is unique, as
we can see by use of inverses. (Recall the form of the inverse of a triangular
matrix, page 120.)

For the LDU factorization of a general square matrix, if L and U are
restricted to be unit triangular matrices, then D is unique. To see this, let
A be an n × n matrix for which an LDU factorization, and let A = LDU ,
with L a lower unit triangular matrix and U an upper unit triangular matrix
and D a diagonal matrix. (All matrices are n× n.) Now, suppose A = ˜L ˜D ˜U ,

where ˜L, ˜D, and ˜U have the same patterns as L, D, and U . All of these unit
triangular matrices have inverses of the same type (see page 120). Now, since

LDU = ˜L ˜D ˜U , premultiplying by ˜L−1 and postmultiplying by U−1, we have

˜L−1LD = ˜D ˜UU−1;
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that is, the diagonal elements of ˜L−1LD and ˜D ˜UU−1 are the same. By the
properties of unit triangular matrices given on page 78, we see that those
diagonal elements are the diagonal elements of D and ˜D. Since, therefore,
D = ˜D, D in the LDU factorization of a general square matrix is unique.

5.7.5 Properties of the LDU Factorization of a Square Matrix

The uniqueness of D in the LDU factorization of a general square matrix is an
important fact. A related useful fact about the LDU factorization of a general
square matrix A is

det(A) =
∏

dii, (5.34)

which we see from equations (3.81) and (3.37) on pages 88 and 70 respectively.
There are other useful properties of the LDU factorization of square ma-

trices with special properties, such as positive definiteness, but we will not
pursue them here.

5.8 QR Factorization

A very useful factorization of a matrix is the product of an orthogonal matrix
and an upper triangular matrix with nonnegative diagonal elements. Depend-
ing on the shape of A, the shapes of the factors may vary, and even the
definition of the factors themselves may be stated differently.

Let A be an n×m matrix and suppose

A = QR, (5.35)

where Q is an orthogonal matrix and R is an upper triangular or trapezoidal
matrix with nonnegative diagonal elements. This is called the QR factorization
of A. In most applications, n ≥ m, but if this is not the case, we still have a
factorization into similar matrices.

The QR factorization is useful for many tasks in linear algebra. It can
be used to determine the rank of a matrix (see page 252 below), to extract
eigenvalues and eigenvectors (see page 318), to form the singular value decom-
position (see page 322), and to show various theoretical properties of matrices
(see, for example, Exercise 5.5 on page 262). The QR factorization is partic-
ularly useful in computations for overdetermined systems, as we will see in
Sect. 6.6 on page 289, and in other computations involving nonsquare matri-
ces.

If A is square, both factors are square, but when A is not square, there
are some variations in the form of the factorization. I will consider only the
case in which the number of rows in A is at least as great as the number of
columns. The other case is logically similar.

If n > m, there are two different forms of the QR factorization. In one
form Q is an n× n matrix and R is an n×m upper trapezoidal matrix with
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with zeroes in the lower rows. In the other form, Q is an n×m matrix with
orthonormal columns and R is an m×m upper triangular matrix. This latter
form is sometimes called a “skinny” QR factorization. When n > m, the
skinny QR factorization is more commonly used than one with a square Q.

The two factorizations are essentially the same. If R1 is the matrix in the
skinny factorization and R is the matrix in the full form, they are related as

R =

[

R1

0

]

. (5.36)

Likewise the square Q can be partitioned as [Q1 |Q2], and the skinny factor-
ization written as

A = Q1R1. (5.37)

In the full form QTQ = In and in the skinny form, QT
1 Q1 = Im.

The existence of the QR factorization can be shown by construction using,
for example, Householder reflections, as in Sect. 5.8.8 below.

5.8.1 Related Matrix Factorizations

For the n×m matrix, similar to the factorization in equation (5.35), we may
have

A = RQ,

where Q is an orthogonal matrix and R is an upper triangular or trapezoidal
matrix with nonnegative diagonal elements. This is called the RQ factorization
of A.

Two other related factorizations, with obvious names, are

A = QL,

and
A = LQ,

where Q is an orthogonal matrix and L is an lower triangular or trapezoidal
matrix with nonnegative diagonal elements.

5.8.2 Matrices of Full Column Rank

If the matrix A is of full column rank (meaning that there are at least as
many rows as columns and the columns are linearly independent), as in many
applications in statistics, the R matrix in the QR factorization is full rank.
Furthermore, in the skinny QR factorization A = Q1R1, R1 is nonsingular and
the factorization is unique. (Recall that the diagonal elements are required to
be nonnegative.)
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We see that the factorization is unique by forming A = Q1R1 and then
letting ˜Q1 and ˜R1 be the skinny QR factorization

A = ˜Q1
˜R1,

and showing that ˜Q1 = Q1 and ˜R1 = R1. Since Q1R1 = ˜Q1
˜R1, we have

Q1 = ˜Q1
˜R1R

−1
1 and so ˜R1R

−1
1 = ˜QT

1 Q1. As we saw on page 120, since R1 is

upper triangular, R−1
1 is upper triangular; and as we saw on page 78, since ˜R1

is upper triangular, ˜R1R
−1
1 is upper triangular. Let T be this upper triangular

matrix,
T = ˜R1R

−1
1 .

Now consider TTT . (This is a Cholesky factorization; see Sect. 5.9.2.)

Since ˜QT
1
˜Q1 = Im, we have TTT = TT

˜QT
1
˜Q1T . Now, because Q1 = ˜Q1T ,

we have
TTT = QT

1 Q1 = Im.

The only upper triangular matrix T such that TTT = I is the identity I itself.
(This is from the definition of matrix multiplication. First, we see that t11 = 1,
and since all off-diagonal elements in the first row of I are 0, all off-diagonal
elements in the first row of TT must be 0. Continuing in this way, we see that
T = I.) Hence,

˜R1R
−1
1 = I,

and so
˜R1 = R1.

Now,
˜Q1 = ˜Q1T = Q1;

hence, the factorization is unique.

5.8.3 Relation to the Moore-Penrose Inverse for Matrices of Full
Column Rank

If the matrix A is of full column rank, the Moore-Penrose inverse of A is
immediately available from the QR factorization:

A+ =
[

R−1
1 0

]

QT. (5.38)

(The four properties of a Moore-Penrose inverse listed on page 128 are easily
verified, and you are asked to do so in Exercise 5.8.)
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5.8.4 Nonfull Rank Matrices

If A is square but not of full rank, R has the form
⎡

⎣

X X X

0 X X

0 0 0

⎤

⎦ . (5.39)

In the common case in which A has more rows than columns, if A is
not of full (column) rank, R1 in equation (5.36) will have the form shown in
matrix (5.39).

If A is not of full rank, we apply permutations to the columns of A by
multiplying on the right by a permutation matrix. The permutations can be
taken out by a second multiplication on the right. If A is of rank r (≤ m),
the resulting decomposition consists of three matrices: an orthogonal Q, a T
with an r × r upper triangular submatrix, and a permutation matrix ET

(π),

A = QTET
(π). (5.40)

The matrix T has the form

T =

[

T1 T2

0 0

]

, (5.41)

where T1 is upper triangular and is r×r. The decomposition in equation (5.40)
is not unique because of the permutation matrix. The choice of the permuta-
tion matrix is the same as the pivoting that we discussed in connection with
Gaussian elimination. A generalized inverse of A is immediately available from
equation (5.40):

A− = P

[

T−1
1 0
0 0

]

QT. (5.42)

Additional orthogonal transformations can be applied from the right-hand
side of the n×m matrix A in the form of equation (5.40) to yield

A = QRUT, (5.43)

where R has the form

R =

[

R1 0
0 0

]

, (5.44)

where R1 is r× r upper triangular, Q is n× n and as in equation (5.40), and
UT is n ×m and orthogonal. (The permutation matrix in equation (5.40) is
also orthogonal, of course.)

5.8.5 Relation to the Moore-Penrose Inverse

The decomposition (5.43) is unique, and it provides the unique Moore-Penrose
generalized inverse of A:

A+ = U

[

R−1
1 0
0 0

]

QT. (5.45)
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5.8.6 Determining the Rank of a Matrix

It is often of interest to know the rank of a matrix. Given a decomposition
of the form of equation (5.40), the rank is obvious, and in practice, this QR
decomposition with pivoting is a good way to determine the rank of a matrix.
The QR decomposition is said to be “rank-revealing”.

For many matrices, the computations are quite sensitive to rounding. Piv-
oting is often required, and even so, the pivoting must be done with some
care (see Hong and Pan 1992; Section 2.7.3 of Björck 1996; and Bischof and
Quintana-Ort́ı 1998a,b). (As we pointed out on page 121, the problem itself is
ill-posed in Hadamard’s sense because the rank is not a continuous function
of any of the quantities that determine it. For a given matrix, the problem
can also be ill-conditioned in the computational sense. Ill-conditioning is a
major concern, and we will discuss it often in latter chapters of this book. We
introduce some of the concepts of ill-conditioning formally in Sect. 6.1.)

5.8.7 Formation of the QR Factorization

There are three good methods for obtaining the QR factorization: Householder
transformations or reflections; Givens transformations or rotations; and the
(modified) Gram-Schmidt procedure. Different situations may make one of
these procedures better than the two others. The Householder transforma-
tions described in the next section are probably the most commonly used.
If the data are available only one row at a time, the Givens transformations
discussed in Sect. 5.8.9 are very convenient. Whichever method is used to
compute the QR decomposition, at least 2n3/3 multiplications and additions
are required. The operation count is therefore about twice as great as that for
an LU decomposition.

5.8.8 Householder Reflections to Form the QR Factorization

To use reflectors to compute a QR factorization, we form in sequence the
reflector for the ith column that will produce 0s below the (i, i) element.

For a convenient example, consider the matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 − 98
28 X X X

1 122
28 X X X

2 − 8
28 X X X

1 66
28 X X X

1 10
28 X X X

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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The first transformation would be determined so as to transform (3, 1, 2, 1, 1)
to (X, 0, 0, 0, 0). We use equations (5.8) through (5.10) to do this. Call this
first Householder matrix P1. We have

P1A =

⎡

⎢

⎢

⎢

⎢

⎣

−4 1 X X X

0 5 X X X

0 1 X X X

0 3 X X X

0 1 X X X

⎤

⎥

⎥

⎥

⎥

⎦

.

We now choose a reflector to transform (5, 1, 3, 1) to (−6, 0, 0, 0). We do not
want to disturb the first column in P1A shown above, so we form P2 as

P2 =

⎡

⎢

⎢

⎢

⎣

1 0 . . . 0
0
... H2

0

⎤

⎥

⎥

⎥

⎦

.

Forming the vector (11, 1, 3, 1)/
√
132 and proceeding as before, we get the

reflector

H2 = I − 1

66
(11, 1, 3, 1)(11, 1, 3, 1)T

=
1

66

⎡

⎢

⎢

⎣

−55 −11 −33 −11
−11 65 −3 −1
−33 −3 57 −3
−11 −1 −3 65

⎤

⎥

⎥

⎦

.

Now we have

P2P1A =

⎡

⎢

⎢

⎢

⎢

⎣

−4 1 X X X

0 −6 X X X

0 0 X X X

0 0 X X X

0 0 X X X

⎤

⎥

⎥

⎥

⎥

⎦

.

Continuing in this way for three more steps, we would have the QR decom-
position of A with QT = P5P4P3P2P1.

The number of computations for the QR factorization of an n× n matrix
using Householder reflectors is 2n3/3 multiplications and 2n3/3 additions.

5.8.9 Givens Rotations to Form the QR Factorization

Just as we built the QR factorization by applying a succession of Householder
reflections, we can also apply a succession of Givens rotations to achieve the
factorization. If the Givens rotations are applied directly, the number of com-
putations is about twice as many as for the Householder reflections, but if
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fast Givens rotations are used and accumulated cleverly, the number of com-
putations for Givens rotations is not much greater than that for Householder
reflections. As mentioned on page 241, it is necessary to monitor the differ-
ences in the magnitudes of the elements in the C matrix and often necessary
to rescale the elements. This additional computational burden is excessive
unless done carefully (see Bindel et al. 2002, for a description of an efficient
method).

5.8.10 Gram-Schmidt Transformations to Form the
QR Factorization

Gram-Schmidt transformations yield a set of orthonormal vectors that span
the same space as a given set of linearly independent vectors, {x1, x2, . . . , xm}.
Application of these transformations is called Gram-Schmidt orthogonaliza-
tion. If the given linearly independent vectors are the columns of a matrix A,
the Gram-Schmidt transformations ultimately yield the QR factorization of
A. The basic Gram-Schmidt transformation is shown in equation (2.56) on
page 38.

The Gram-Schmidt algorithm for forming the QR factorization is just a
simple extension of equation (2.56); see Exercise 5.10 on page 263.

5.9 Factorizations of Nonnegative
Definite Matrices

There are factorizations that may not exist except for nonnegative definite
matrices, or may exist only for such matrices. The LU decomposition, for
example, exists and is unique for a nonnegative definite matrix; but may not
exist for general matrices (without permutations). In this section we discuss
two important factorizations for nonnegative definite matrices, the square root
and the Cholesky factorization.

5.9.1 Square Roots

On page 160, we defined the square root of a nonnegative definite matrix in
the natural way and introduced the notation A

1
2 as the square root of the

nonnegative definite n× n matrix A:

A =
(

A
1
2

)2

. (5.46)

Just as the computation of a square root of a general real number requires
iterative methods, the computation of the square root of a matrix requires
iterative methods. In this case, the iterative methods are required for the
evaluation of the eigenvalues (as we will describe in Chap. 7). Once the eigen-
values are available, the computations are simple, as we describe below.
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Because A is symmetric, it has a diagonal factorization, and because it
is nonnegative definite, the elements of the diagonal matrix are nonnegative.
In terms of the orthogonal diagonalization of A, as on page 160, we write
A

1
2 = VC

1
2V T.

We now show that this square root of a nonnegative definite matrix is
unique among nonnegative definite matrices. Let A be a (symmetric) nonneg-
ative definite matrix and A = VCV T, and let B be a symmetric nonnegative
definite matrix such that B2 = A. We want to show that B = VC

1
2V T or that

B − VC
1
2V T = 0. Form

(

B − VC
1
2V T

)(

B − VC
1
2V T

)

= B2 − VC
1
2V TB −BVC

1
2V T +

(

VC
1
2V T

)2

= 2A− VC
1
2V TB −

(

VC
1
2V TB

)T

. (5.47)

Now, we want to show that VC
1
2V TB = A. The argument below follows

(Harville 1997). Because B is nonnegative definite, we can write B = UDUT

for an orthogonal n× n matrix U and a diagonal matrix D with nonnegative
elements, d1, . . . dn. We first want to show that V TUD = C

1
2V TU . We have

V TUD2 = V TUDUTUDUTU

= V TB2U

= V TAU

= V T(VC
1
2V T)2U

= V TVC
1
2V TVC

1
2V TU

= CV TU.

Now consider the individual elements in these matrices. Let zij be the (ij)th

element of V TU , and since D2 and C are diagonal matrices, the (ij)th element
of V TUD2 is d2jzij and the corresponding element of CV TU is cizij , and these

two elements are equal, so djzij =
√
cizij . These, however, are the (ij)th

elements of V TUD and C
1
2V TU , respectively; hence V TUD = C

1
2V TU . We

therefore have

V C
1
2V TB = V C

1
2V TUDUT = V C

1
2C

1
2V TUUT = V CV T = A.

We conclude that VC
1
2V T is the unique square root of A.

If A is positive definite, it has an inverse, and the unique square root of
the inverse is denoted as A− 1

2 .

5.9.2 Cholesky Factorization

If the matrix A is symmetric and nonnegative definite, another important
factorization is the Cholesky decomposition. In this factorization,
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A = TTT, (5.48)

where T is an upper triangular matrix with nonnegative diagonal elements.
We occasionally denote the Cholesky factor of A (that is, T in the expression
above) as AC. (Notice on page 48 and later on page 366 that we use a lowercase
c subscript to represent a centered vector or matrix.)

The factor T in the Cholesky decomposition is sometimes called the square
root, but we have defined a different matrix as the square root, A

1
2 (page 160

and Sect. 5.9.1). The Cholesky factor is more useful in practice, but the square
root has more applications in the development of the theory.

We first consider the Cholesky decomposition of a positive definite matrix
A. In that case, a factor of the form of T in equation (5.48) is unique up to the
sign, just as a square root is. To make the Cholesky factor unique, we require
that the diagonal elements be positive. The elements along the diagonal of T
will be square roots. Notice, for example, that t11 is

√
a11.

Algorithm 5.1 is a method for constructing the Cholesky factorization of
a positive definite matrix A. The algorithm serves as the basis for a construc-
tive proof of the existence and uniqueness of the Cholesky factorization (see
Exercise 5.6 on page 262). The uniqueness is seen by factoring the principal
square submatrices.

Algorithm 5.1 Cholesky factorization of a positive definite matrix

1. Let t11 =
√
a11.

2. For j = 2, . . . , n, let t1j = a1j/t11.
3. For i = 2, . . . , n,

{
let tii =

√

aii −
∑i−1

k=1 t
2
ki, and

for j = i+ 1, . . . , n,
{

let tij = (aij −
∑i−1

k=1 tkitkj)/tii.
}

}
There are other algorithms for computing the Cholesky decomposition.

The method given in Algorithm 5.1 is sometimes called the inner product
formulation because the sums in step 3 are inner products. The algorithms
for computing the Cholesky decomposition are numerically stable. Although
the order of the number of computations is the same, there are only about half
as many computations in the Cholesky factorization as in the LU factorization.
Another advantage of the Cholesky factorization is that there are only n(n+
1)/2 unique elements as opposed to n2 + n in the LU factorization.

The Cholesky decomposition can also be formed as ˜TTD ˜T , whereD is a di-
agonal matrix that allows the diagonal elements of ˜T to be computed without
taking square roots. This modification is sometimes called a Banachiewicz
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factorization or root-free Cholesky. The Banachiewicz factorization can be
formed in essentially the same way as the Cholesky factorization shown in
Algorithm 5.1: just put 1s along the diagonal of T and store the squared
quantities in a vector d.

5.9.2.1 Cholesky Decomposition of Singular Nonnegative Definite
Matrices

Any symmetric nonnegative definite matrix has a decomposition similar to
the Cholesky decomposition for a positive definite matrix. If A is n× n with
rank r, there exists a unique matrix T such that A = TTT , where T is an
upper triangular matrix with r positive diagonal elements and n − r rows
containing all zeros. The algorithm is the same as Algorithm 5.1, except that
in step 3 if tii = 0, the entire row is set to zero. The algorithm serves as a
constructive proof of the existence and uniqueness.

5.9.2.2 Relations to Other Factorizations

For a symmetric matrix, the LDU factorization is UTDU ; hence, we have for
the Cholesky factor

T = D
1
2U,

whereD
1
2 is the matrix whose elements are the square roots of the correspond-

ing elements of D. (This is consistent with our notation above for Cholesky

factors; D
1
2 is the Cholesky factor of D, and it is symmetric.)

The LU and Cholesky decompositions generally are applied to square ma-
trices. However, many of the linear systems that occur in scientific applications
are overdetermined; that is, there are more equations than there are variables,
resulting in a nonsquare coefficient matrix.

For the n×m matrix A with n ≥ m, we can write

ATA = RTQTQR

= RTR, (5.49)

so we see that the matrix R in the QR factorization is (or at least can be)
the same as the matrix T in the Cholesky factorization of ATA. There is
some ambiguity in the Q and R matrices, but if the diagonal entries of R are
required to be nonnegative, the ambiguity disappears and the matrices in the
QR decomposition are unique.

An overdetermined system may be written as

Ax ≈ b,

where A is n×m (n ≥ m), or it may be written as

Ax = b+ e,
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where e is an n-vector of possibly arbitrary “errors”. Because not all equations
can be satisfied simultaneously, we must define a meaningful “solution”. A
useful solution is an x such that e has a small norm. The most common
definition is an x such that e has the least Euclidean norm; that is, such that
the sum of squares of the eis is minimized.

It is easy to show that such an x satisfies the square system ATAx = ATb,
the “normal equations”. This expression is important and allows us to analyze
the overdetermined system (not just to solve for the x but to gain some better
understanding of the system). It is easy to show that if A is of full rank (i.e.,
of rank m, all of its columns are linearly independent, or, redundantly, “full
column rank”), then ATA is positive definite. Therefore, we could apply either
Gaussian elimination or the Cholesky decomposition to obtain the solution.

As we have emphasized many times before, however, useful conceptual
expressions are not necessarily useful as computational formulations. That is
sometimes true in this case also. In Sect. 6.1, we will discuss issues relating to
the expected accuracy in the solutions of linear systems. There we will define
a “condition number”. Larger values of the condition number indicate that
the expected accuracy is less. We will see that the condition number of ATA is
the square of the condition number of A. Given these facts, we conclude that
it may be better to work directly on A rather than on ATA, which appears
in the normal equations. We discuss solutions of overdetermined systems in
Sect. 6.6, beginning on page 289, and in Sect. 6.7, beginning on page 296.
Overdetermined systems are also a main focus of the statistical applications
in Chap. 9.

5.9.3 Factorizations of a Gramian Matrix

The sums of squares and cross products matrix, the Gramian matrix XTX,
formed from a given matrix X, arises often in linear algebra. We discuss
properties of the sums of squares and cross products matrix beginning on
page 359. Now we consider some additional properties relating to various
factorizations.

First we observe that XTX is symmetric and hence has an orthogonally
similar canonical factorization,

XTX = V CV T.

We have already observed that XTX is nonnegative definite, and so it has
the LU factorization

XTX = LU,

with L lower triangular and U upper triangular, and it has the Cholesky
factorization

XTX = TTT

with T upper triangular. With L = TT and U = T , both factorizations are
the same. In the LU factorization, the diagonal elements of either L or U
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are often constrained to be 1, and hence the two factorizations are usually
different.

It is instructive to relate the factors of the m × m matrix XTX to the
factors of the n×m matrix X. Consider the QR factorization

X = QR,

where R is upper triangular. Then XTX = (QR)TQR = RTR, so R is the
Cholesky factor T because the factorizations are unique (again, subject to the
restrictions that the diagonal elements be nonnegative).

Consider the SVD factorization

X = UDV T.

We have XTX = (UDV T)TUDV T = V D2V T, which is the orthogonally sim-
ilar canonical factorization of XTX. The eigenvalues of XTX are the squares
of the singular values of X, and the condition number of XTX (which we
define in Sect. 6.1) is the square of the condition number of X.

5.10 Approximate Matrix Factorization

It is occasionally of interest to form a factorization that approximates a given
matrix. For a given matrix A, we may have factors B and C, where

˜A = BC,

and ˜A is an approximation to A. (See Sect. 3.10, beginning on page 175, for
discussions of approximation of matrices.)

The approximate factorization

A ≈ BC

may be useful for various reasons. The computational burden of an exact
factorization may be excessive. Alternatively, the matrices B and C may have
desirable properties that no exact factors of A possess.

In this section we discuss two kinds of approximate factorizations, one mo-
tivated by the properties of the matrices, and the other merely an incomplete
factorization, which may be motivated by computational expediency or by
other considerations.

5.10.1 Nonnegative Matrix Factorization

If A in an n ×m matrix all of whose elements are nonnegative, it may be of
interest to approximate A as

A ≈ WH,
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where W is n × r and H r ×m, and both W and H have only nonnegative
elements. Such matrices are called nonnegative matrices. If all elements of a
matrix are positive, the matrix is called a positive matrix. Nonnegative and
positive matrices arise often in applications and have a number of interesting
properties. These kinds of matrices are the subject of Sect. 8.7, beginning on
page 372.

Clearly, if r ≥ min(n,m), the factorization A = WH exists exactly, for
if r = min(n,m) then A = IrW , which is not unique since for a > 0, A =
( 1a )Ir(aH). If, however, r < min(n,m), the factorization may not exist.

A nonnegative matrix factorization (NMF) of the nonnegative matrix A
for a given r is the expression WH, where the n× r matrix W and the r×m
matrix H are nonnegative, and the difference A−WH is minimum according
to some criterion (see page 175); that is, given r, the NMF factorization of
the n×m nonnegative matrix A are the matrices W and H satisfying

min
W∈Rn×r,H∈Rr×m

ρ(A−WH)

s.t. W,H ≥ 0,
(5.50)

where ρ is a measure of the size of A − WH. Interest in this factorization
arose primarily in the problem of analysis of text documents (see page 339).

Most methods for solving the optimization problem (5.50) follow the al-
ternating variables approach: for fixed W (0) determine an optimal H(1); then
given optimal H(k) determine an optimal W (k+1) and for optimal W (k+1)

determine an optimal H(k+1).
The ease of solving the optimization problem (5.50), whether or not the

alternating variables approach is used, depends on the nature of ρ. Generally,
ρ is a norm, but Lee and Seung (2001) considered ρ to be the Kullback-
Leibler divergence (see page 176), and described a computational method for
solving the optimization problem. Often ρ is chosen to be a Frobenius p norm,
because that matrix norm can be expressed as a Lp vector norm, as shown in
equation (3.299) on page 169. Furthermore, if the ordinary Frobenius norm is
chosen (that is, p = 2), then each subproblem is just a constrained linear least
squares problem (as discussed on page 211). Kim and Park (2008) described
an alternating variables approach for nonnegative matrix factorization based
on the ordinary Frobenius norm.

Often in applications, the matrix A to be factored is sparse. Computational
methods for the factorization that take advantage of the sparsity can lead to
improvements in the computational efficiency of orders of magnitude.

5.10.2 Incomplete Factorizations

Often instead of an exact factorization, an approximate or “incomplete” fac-
torization may be more useful because of its computational efficiency. This
may be the case in the context of an iterative algorithm in which a matrix
is being successively transformed, and, although a factorization is used in
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each step, the factors from a previous iteration are adequate approximations.
Another common situation is in working with sparse matrices. Many exact
operations on a sparse matrix yield a dense matrix; however, we may want to
preserve the sparsity, even at the expense of losing exact equalities. When a
zero position in a sparse matrix becomes nonzero, this is called “fill-in”, and
we want to avoid that.

For example, instead of an LU factorization of a sparse matrix A, we may
seek lower and upper triangular factors ˜L and ˜U , such that

A ≈ ˜L˜U, (5.51)

and if aij = 0, then l̃ij = ũij = 0. This approximate factorization is easily
accomplished by modifying the Gaussian elimination step that leads to the
outer product algorithm of equations (5.27) and (5.28).

More generally, we may choose a set of indices S = {(p, q)} and modify
the elimination step, for m ≥ i, to be

a
(k+1)
ij ←

{

a
(k)
ij − a

(k)
mja

(k)
ij /a

(k)
jj if (i, j) ∈ S

aij otherwise.
(5.52)

Note that aij does not change unless (i, j) is in S. This allows us to preserve
0s in L and U corresponding to given positions in A.

Exercises

5.1. Consider the transformation of the 3-vector x that first rotates the vector
30◦ about the x1 axis, then rotates the vector 45◦ about the x2 axis, and
then translates the vector by adding the 3-vector y. Find the matrix
A that effects these transformations by a single multiplication. Use the
vector xh of homogeneous coordinates that corresponds to the vector x.
(Thus, A is 4× 4.)

5.2. Homogeneous coordinates are often used in mapping three-dimensional
graphics to two dimensions. The perspective plot function persp in R, for
example, produces a 4×4 matrix for projecting three-dimensional points
represented in homogeneous coordinates onto two-dimensional points in
the displayed graphic. R uses homogeneous coordinates in the form of
equation (5.6b) rather than equation (5.6a). If the matrix produced is
T and if ah is the representation of a point (xa, ya, za) in homogeneous
coordinates, in the form of equation (5.6b), then ahT yields transformed
homogeneous coordinates that correspond to the projection onto the two-
dimensional coordinate system of the graphical display. Consider the two
graphs in Fig. 5.4. The graph on the left in the unit cube was produced
by the simple R statements

x<-c(0,1)
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x y

z

x y

z

Figure 5.4. Illustration of the use of homogeneous coordinates to locate three-
dimensional points on a two-dimensional graph

y<-c(0,1)

z<-matrix(c(0,0,1,1),nrow=2)

persp(x, y, z, theta = 45, phi = 30)

(The angles theta and phi are the azimuthal and latitudinal viewing
angles, respectively, in degrees.) The graph on the right is the same with
a heavy line going down the middle of the surface; that is, from the point
(0.5, 0, 0) to (0.5, 1, 1). Obtain the transformation matrix necessary to
identify the rotated points and produce the graph on the right.

5.3. Determine the rotation matrix that rotates 3-vectors through an angle of
30◦ in the plane x1 + x2 + x3 = 0.

5.4. Let A = LU be the LU decomposition of the n× n matrix A.
a) Suppose we multiply the jth column of A by cj , j = 1, 2, . . . n, to

form the matrix Ac. What is the LU decomposition of Ac? Try to
express your answer in a compact form.

b) Suppose we multiply the ith row of A by ci, i = 1, 2, . . . n, to form
the matrix Ar. What is the LU decomposition of Ar? Try to express
your answer in a compact form.

c) What application might these relationships have?
5.5. Use the QR decomposition to prove Hadamard’s inequality:

|det(A)| ≤
n
∏

j=1

‖aj‖2,

where A is an n× n matrix, whose columns are the same as the vectors
aj . Equality holds if and only if either the aj are mutually orthogonal or
some aj is zero.

5.6. Show that if A is positive definite, there exists a unique upper triangular
matrix T with positive diagonal elements such that

A = TTT.

Hint: Show that aii > 0. Show that if A is partitioned into square sub-
matrices A11 and A22,
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A =

[

A11 A12

A21 A22

]

,

that A11 and A22 are positive definite. Use Algorithm 5.1 (page 256) to
show the existence of a T , and finally show that T is unique.

5.7. Let X1, X2, and X3 be independent random variables identically dis-
tributed as standard normals.
a) Determine a matrix A such that the random vector

A

⎡

⎣

X1

X2

X3

⎤

⎦

has a multivariate normal distribution with variance-covariance ma-
trix

⎡

⎣

4 2 8
2 10 7
8 7 21

⎤

⎦ .

b) Is your solution unique? (The answer is no.) Determine a different
solution.

5.8. Generalized inverses.
a) Prove equation (5.38) on page 250 (Moore-Penrose inverse of a full

column rank matrix).
b) Prove equation (5.42) on page 251 (generalized inverse of a nonfull

rank matrix).
c) Prove equation (5.45) on page 251, (Moore-Penrose inverse of a non-

full rank matrix).
5.9. Determine the Givens transformation matrix that will rotate the matrix

A =

⎡

⎢

⎢

⎣

3 5 6
6 1 2
8 6 7
2 3 1

⎤

⎥

⎥

⎦

so that the second column becomes (5, ã22, 6, 0) (see also Exercise 12.5).
5.10. Gram-Schmidt transformations.

a) Use Gram-Schmidt transformations to determine an orthonormal ba-
sis for the space spanned by the vectors

v1 = (3, 6, 8, 2),

v2 = (5, 1, 6, 3),

v3 = (6, 2, 7, 1).

b) Write out a formal algorithm for computing the QR factorization of
the n×m full rank matrix A. Assume n ≥ m.

c) Write a Fortran or C function to implement the algorithm you de-
scribed.
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