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Basic Properties of Matrices

In this chapter, we build on the notions introduced on page 5, and discuss
a wide range of basic topics related to matrices with real elements. Some of
the properties carry over to matrices with complex elements, but the reader
should not assume this. Occasionally, for emphasis, we will refer to “real”
matrices, but unless it is stated otherwise, we are assuming the matrices are
real.

The topics and the properties of matrices that we choose to discuss are
motivated by applications in the data sciences. In Chap. 8, we will consider in
more detail some special types of matrices that arise in regression analysis and
multivariate data analysis, and then in Chap. 9 we will discuss some specific
applications in statistics.

3.1 Basic Definitions and Notation

It is often useful to treat the rows or columns of a matrix as vectors. Terms
such as linear independence that we have defined for vectors also apply to
rows and/or columns of a matrix. The vector space generated by the columns
of the n×m matrix A is of order n and of dimension m or less, and is called
the column space of A, the range of A, or the manifold of A. This vector space
is denoted by

V(A)
or

span(A).

I make no distinction between these two notations. The notation V(·) em-
phasizes that the result is a vector space. Note that if A ∈ IRn×m, then
V(A) ⊆ IRn.
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56 3 Basic Properties of Matrices

The argument of V(·) or span(·) can also be a set of vectors instead of a
matrix. Recall from Sect. 2.1.3 that if G is a set of vectors, the symbol span(G)
denotes the vector space generated by the vectors in G.

We also define the row space of A to be the vector space of order m
(and of dimension n or less) generated by the rows of A; notice, however, the
preference given to the column space.

Many of the properties of matrices that we discuss hold for matrices with
an infinite number of elements, but throughout this book we will assume that
the matrices have a finite number of elements, and hence the vector spaces
are of finite order and have a finite number of dimensions.

Given an n×mmatrix A with elements aij , them×nmatrix with elements
aji is called the transpose of A. We use a superscript “T” to denote the
transpose of a matrix; thus, if A = (aij), then

AT = (aji). (3.1)

(In other literature, the transpose is often denoted by a prime, as in A′ =
(aji) = AT.)

If, in the matrix A with elements aij for all i and j, aij = aji, A is said
to be symmetric. A symmetric matrix is necessarily square. A matrix A such
that aij = −aji is said to be skew symmetric. Obviously, the diagonal entries
of a skew symmetric matrix must be 0. If aij = āji (where ā represents the
conjugate of the complex number a), A is said to be Hermitian. A Hermitian
matrix is also necessarily square with real elements on the diagonal, and, of
course, a real symmetric matrix is Hermitian. A Hermitian matrix is also
called a self-adjoint matrix.

3.1.1 Multiplication of a Matrix by a Scalar

Similar to our definition of multiplication of a vector by a scalar, we define
the multiplication of a matrix A by a scalar c as

cA = (caij).

3.1.2 Diagonal Elements: diag(·) and vecdiag(·)
The aii elements of a matrix are called diagonal elements. An element aij
with i < j is said to be “above the diagonal”, and one with i > j is said to
be “below the diagonal”. The vector consisting of all of the aii’s is called the
principal diagonal or just the diagonal. This definition of principal diagonal
applies whether or not the matrix is square.

We denote the principal diagonal of a matrix A by diag(A) or by
vecdiag(A). The latter notation is sometimes used because, as we will see on

page 60, diag()̇ is also used for an argument that is a vector (and the function
produces a matrix). The diag or vecdiag function defined here is a mapping

IRn×m → IRmin(n,m).
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If A is an n×m matrix, and k = min(n,m),

diag(A) = (a11, . . . , akk). (3.2)

As noted above, we may also denote this as vecdiag(A), but I will generally
use the notation “diag(·)”.

Note from the definition that

diag(AT) = diag(A), (3.3)

and this is true whether or not A is square.
The diagonal begins in the first row and first column (that is, a11), and

ends at akk, where k is the minimum of the number of rows and the number
of columns.

For c = ±1, . . ., the elements ai,i+c are called “codiagonals” or “minor
diagonals”. The codiagonals ai,i+1 are called “supradiagonals”, and the codi-
agonals ai,i−1 are called “infradiagonals” If the matrix has m columns, the
ai,m+1−i elements of the matrix are called skew diagonal elements. We use
terms similar to those for diagonal elements for elements above and below
the skew diagonal elements. These phrases are used with both square and
nonsquare matrices.

3.1.3 Diagonal, Hollow, and Diagonally Dominant Matrices

If all except the principal diagonal elements of a matrix are 0, the matrix is
called a diagonal matrix. A diagonal matrix is the most common and most
important type of “sparse matrix”. If all of the principal diagonal elements of
a matrix are 0, the matrix is called a hollow matrix. A skew symmetric matrix
is hollow, for example. If all except the principal skew diagonal elements of a
matrix are 0, the matrix is called a skew diagonal matrix.

An n×m matrix A for which

|aii| >
m∑

j �=i

|aij | for each i = 1, . . . , n (3.4)

is said to be row diagonally dominant; and a matrix A for which |ajj | >∑n
i�=j |aij | for each j = 1, . . . ,m is said to be column diagonally dominant.

(Some authors refer to this as strict diagonal dominance and use “diagonal
dominance” without qualification to allow the possibility that the inequalities
in the definitions are not strict.) Most interesting properties of such matrices
hold whether the dominance is by row or by column. If A is symmetric, row
and column diagonal dominances are equivalent, so we refer to row or column
diagonally dominant symmetric matrices without the qualification; that is, as
just diagonally dominant.
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3.1.4 Matrices with Special Patterns of Zeroes

If all elements below the diagonal are 0, the matrix is called an upper triangular
matrix; and a lower triangular matrix is defined similarly. If all elements of a
column or row of a triangular matrix are zero, we still refer to the matrix as
triangular, although sometimes we speak of its form as trapezoidal. Another
form called trapezoidal is one in which there are more columns than rows,
and the additional columns are possibly nonzero. The four general forms of
triangular or trapezoidal matrices are shown below, using an intuitive notation
with X and 0 to indicate the pattern.

⎡

⎣
X X X

0 X X

0 0 X

⎤

⎦

⎡

⎣
X X X

0 X X

0 0 0

⎤

⎦

⎡

⎢⎢⎣

X X X

0 X X

0 0 X

0 0 0

⎤

⎥⎥⎦

⎡

⎣
X X X X

0 X X X

0 0 X X

⎤

⎦

In this notation, X indicates that the element is possibly not zero. It does
not mean each element is the same. In some cases, X and 0 may indicate
“submatrices”, which we discuss in the section on partitioned matrices.

If all elements are 0 except ai,i+ck for some small number of integers ck,
the matrix is called a band matrix (or banded matrix). In many applications,
ck ∈ {−wl,−wl + 1, . . . ,−1, 0, 1, . . . , wu − 1, wu}. In such a case, wl is called
the lower band width and wu is called the upper band width. These patterned
matrices arise in time series and other stochastic process models as well as in
solutions of differential equations, and so they are very important in certain
applications. Although it is often the case that interesting band matrices are
symmetric, or at least have the same number of codiagonals that are nonzero,
neither of these conditions always occurs in applications of band matrices. If
all elements below the principal skew diagonal elements of a matrix are 0, the
matrix is called a skew upper triangular matrix. A common form of Hankel
matrix, for example, is the skew upper triangular matrix (see page 390). Notice
that the various terms defined here, such as triangular and band, also apply
to nonsquare matrices.

Band matrices occur often in numerical solutions of partial differential
equations. A band matrix with lower and upper band widths of 1 is a tridi-
agonal matrix. If all diagonal elements and all elements ai,i±1 are nonzero, a
tridiagonal matrix is called a “matrix of type 2”. The inverse of a covariance
matrix that occurs in common stationary time series models is a matrix of
type 2 (see page 385).

Using the intuitive notation of X and 0 as above, a band matrix may be
written as ⎡

⎢⎢⎢⎢⎢⎣

X X 0 · · · 0 0

X X X · · · 0 0

0 X X · · · 0 0

. . .
. . .

0 0 0 · · · X X

⎤

⎥⎥⎥⎥⎥⎦
.
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Computational methods for matrices may be more efficient if the patterns are
taken into account.

A matrix is in upper Hessenberg form, and is called a Hessenberg matrix, if
it is upper triangular except for the first subdiagonal, which may be nonzero.
That is, aij = 0 for i > j + 1:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

X X X · · · X X

X X X · · · X X

0 X X · · · X X

0 0 X · · · X X
...
...

. . .
...
...

0 0 0 · · · X X

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

A symmetric matrix that is in Hessenberg form is necessarily tridiagonal.
Hessenberg matrices arise in some methods for computing eigenvalues (see

Chap. 7).
Many matrices of interest are sparse; that is, they have a large propor-

tion of elements that are 0. The matrices discussed above are generally not
considered sparse. (“A large proportion” is subjective, but generally means
more than 75%, and in many interesting cases is well over 95%.) Efficient and
accurate computations often require that the sparsity of a matrix be accom-
modated explicitly.

3.1.5 Matrix Shaping Operators

In order to perform certain operations on matrices and vectors, it is often
useful first to reshape a matrix. The most common reshaping operation is
the transpose, which we define in this section. Sometimes we may need to
rearrange the elements of a matrix or form a vector into a special matrix. In
this section, we define three operators for doing this.

3.1.5.1 Transpose

As defined above, the transpose of a matrix is the matrix whose ith row is the
ith column of the original matrix and whose jth column is the jth row of the
original matrix. We note immediately that

(AT)T = A. (3.5)

If the elements of the matrix are from the field of complex numbers, the
conjugate transpose, also called the adjoint, is more useful than the transpose.
(“Adjoint” is also used to denote another type of matrix, so we will generally
avoid using that term. This meaning of the word is the origin of the other
term for a Hermitian matrix, a “self-adjoint matrix”.) We use a superscript
“H” to denote the conjugate transpose of a matrix; thus, if A = (aij), then
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AH = (āji). (3.6)

We also use a similar notation for vectors. (The conjugate transpose is often
denoted by an asterisk, as in A∗ = (āji) = AH. This notation is more common
if a prime is used to denote the transpose. We sometimes use the notation A∗

to denote a g2 inverse of the matrix A; see page 128.) As with the transponse,
(AH)H = A. If (and only if) all of the elements of A are all real, then AH = AT.

If (and only if) A is symmetric, A = AT; if (and only if) A is skew sym-
metric, AT = −A; and if (and only if) A is Hermitian, A = AH (and, in that
case, all of the diagonal elements are real).

3.1.5.2 Diagonal Matrices and Diagonal Vectors: diag(·) (Again)

A square diagonal matrix can be specified by a constructor function that
operates on a vector and forms a diagonal matrix with the elements of the
vector along the diagonal. We denote that constructor function by diag(·),
just as we used this name to denote a somewhat similar function on page 57.

diag
(
(d1, d2, . . . , dn)

)
=

⎡

⎢⎢⎢⎣

d1 0 · · · 0
0 d2 · · · 0

. . .

0 0 · · · dn

⎤

⎥⎥⎥⎦ . (3.7)

(Notice that the argument of diag here is a vector; that is why there are
two sets of parentheses in the expression above, although sometimes we omit
one set without loss of clarity.) The diag function defined here is a mapping
IRn → IRn×n. Later we will extend this definition slightly.

A very important diagonal matrix has all 1s along the diagonal. If it has
n diagonal elements, it is denoted by In; so In = diag(1n). This is called the
identity matrix of order n. The size is often omitted, and we call it the identity
matrix, and denote it by I.

Note that we have overloaded diag(·), which we defined on page 57 with a
matrix argument, to allow its argument to be a vector. (Recall that vecdiag(·)
is the same as diag(·) when the argument is a matrix.) Both the R and Mat-
lab computing systems, for example, use this overloading; that is, they each
provide a single function (called diag in each case).

Note further that over IRn and IRn×n, diag(·) is its own inverse; that is, if
v is a vector,

diag(diag(v)) = v, (3.8)

and if A is a square matrix,

diag(diag(A)) = A. (3.9)
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3.1.5.3 Forming a Vector from the Elements of a Matrix: vec(·)
and vech(·)
It is sometimes useful to consider the elements of a matrix to be elements of
a single vector. The most common way this is done is to string the columns
of the matrix end-to-end into a vector. The vec(·) function does this:

vec(A) = (aT1 , a
T
2 , . . . , a

T
m), (3.10)

where a1, a2, . . . , am are the column vectors of the matrix A. The vec function
is also sometimes called the “pack” function. (A note on the notation: the
right side of equation (3.10) is the notation for a column vector with elements
aTi ; see Chap. 1.) The vec function is a mapping IRn×m → IRnm.

For a symmetric matrix A with elements aij , the “vech” function stacks
the unique elements into a vector:

vech(A) = (a11, a21, . . . , am1, a22, . . . , am2, . . . , amm). (3.11)

There are other ways that the unique elements could be stacked that would
be simpler and perhaps more useful (see the discussion of symmetric storage
mode on page 548), but equation (3.11) is the standard definition of vech(·).
The vech function is a mapping IRn×n → IRn(n+1)/2.

3.1.6 Partitioned Matrices

We often find it useful to partition a matrix into submatrices; for example,
in many applications in data analysis, it is often convenient to work with
submatrices of various types representing different subsets of the data.

We usually denote the submatrices with capital letters with subscripts
indicating the relative positions of the submatrices. Hence, we may write

A =

[
A11 A12

A21 A22

]
, (3.12)

where the matrices A11 and A12 have the same number of rows, A21 and
A22 have the same number of rows, A11 and A21 have the same number of
columns, and A12 and A22 have the same number of columns. Of course, the
submatrices in a partitioned matrix may be denoted by different letters. Also,
for clarity, sometimes we use a vertical bar to indicate a partition:

A = [B |C ].

The vertical bar is used just for clarity and has no special meaning in this
representation.

The term “submatrix” is also used to refer to a matrix formed from a
given matrix by deleting various rows and columns of the given matrix. In this
terminology, B is a submatrix of A if for each element bij there is an akl with
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k ≥ i and l ≥ j such that bij = akl; that is, the rows and/or columns of the
submatrix are not necessarily contiguous in the original matrix. A more precise
notation specifies the rows and columns of the original matrix. For example,
A(i1,...,ik)(j1,...,jl) denotes the submatrix of A formed by rows i1, . . . , ik and
columns j1, . . . , jl. When the entire rows are included, A(i1,...,ik)(∗) denotes
the submatrix of A formed from rows i1, . . . , ik; and A(∗)(j1,...,jl) denotes the
submatrix formed from columns j1, . . . , jl with elements from all rows. Finally,
ai∗ denotes the vector whose elements correspond to those in the ith row of
the matrix A. We sometimes emphasize that it is a vector by writing it in
the form aTi∗. Likewise, a∗j denotes the vector whose elements correspond to
those in the jth column of A. See page 599 for a summary of this notation.
This kind of subsetting is often done in data analysis, for example, in variable
selection in linear regression analysis.

A square submatrix whose principal diagonal elements are elements of the
principal diagonal of the given matrix is called a principal submatrix. If A11 in
the example above is square, it is a principal submatrix, and if A22 is square,
it is also a principal submatrix. Sometimes the term “principal submatrix” is
restricted to square submatrices. If a matrix is diagonally dominant, then it
is clear that any principal submatrix of it is also diagonally dominant.

A principal submatrix that contains the (1, 1) element and whose rows
and columns are contiguous in the original matrix is called a leading principal
submatrix. If A11 is square, it is a leading principal submatrix in the example
above.

Partitioned matrices may have useful patterns. A “block diagonal” matrix
is one of the form ⎡

⎢⎢⎢⎣

X 0 · · · 0
0 X · · · 0

. . .

0 0 · · · X

⎤

⎥⎥⎥⎦ ,

where 0 represents a submatrix with all zeros and X represents a general
submatrix with at least some nonzeros.

The diag(·) function previously introduced for a vector is also defined for
a list of matrices:

diag(A1, A2, . . . , Ak)

denotes the block diagonal matrix with submatrices A1, A2, . . . , Ak along the
diagonal and zeros elsewhere. A matrix formed in this way is sometimes called
a direct sum of A1, A2, . . . , Ak, and the operation is denoted by ⊕:

A1 ⊕ · · · ⊕Ak = diag(A1, . . . , Ak). (3.13)

Although the direct sum is a binary operation, we are justified in defining
it for a list of matrices because the operation is clearly associative.

The Ai may be of different sizes and they may not be square, although in
most applications the matrices are square (and some authors define the direct
sum only for square matrices).
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We will define vector spaces of matrices below and then recall the definition
of a direct sum of vector spaces (page 18), which is different from the direct
sum defined above in terms of diag(·).

3.1.6.1 Transposes of Partitioned Matrices

The transpose of a partitioned matrix is formed in the obvious way; for ex-
ample,

[
A11 A12 A13

A21 A22 A23

]T
=

⎡

⎣
AT

11 AT
21

AT
12 AT

22

AT
13 AT

23

⎤

⎦ . (3.14)

3.1.7 Matrix Addition

The sum of two matrices of the same shape is the matrix whose elements
are the sums of the corresponding elements of the addends. As in the case of
vector addition, we overload the usual symbols for the operations on the reals
to signify the corresponding operations on matrices when the operations are
defined; hence, addition of matrices is also indicated by “+”, as with scalar
addition and vector addition. We assume throughout that writing a sum of
matrices A+B implies that they are of the same shape; that is, that they are
conformable for addition.

The “+” operator can also mean addition of a scalar to a matrix, as in
A + a, where A is a matrix and a is a scalar. Although this meaning of “+”
is generally not used in mathematical treatments of matrices, in this book
we use it to mean the addition of the scalar to each element of the matrix,
resulting in a matrix of the same shape. This meaning is consistent with the
semantics of modern computer languages such as Fortran and R.

The addition of two n×m matrices or the addition of a scalar to an n×m
matrix requires nm scalar additions.

The matrix additive identity is a matrix with all elements zero. We some-
times denote such a matrix with n rows and m columns as 0n×m, or just as 0.
We may denote a square additive identity as 0n.

3.1.7.1 The Transpose of the Sum of Matrices

The transpose of the sum of two matrices is the sum of the transposes:

(A+B)T = AT +BT. (3.15)

The sum of two symmetric matrices is therefore symmetric.
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3.1.7.2 Rank Ordering Matrices

There are several possible ways to form a rank ordering of matrices of the
same shape, but no complete ordering is entirely satisfactory. If all of the
elements of the matrix A are positive, we write

A > 0; (3.16)

if all of the elements are nonnegative, we write

A ≥ 0. (3.17)

The terms “positive” and “nonnegative” and these symbols are not to be
confused with the terms “positive definite” and “nonnegative definite” and
similar symbols for important classes of matrices having different properties
(which we will introduce on page 92, and discuss further in Sect. 8.3.)

3.1.7.3 Vector Spaces of Matrices

Having defined scalar multiplication and matrix addition (for conformable
matrices), we can define a vector space of n ×m matrices as any set that is
closed with respect to those operations. The individual operations of scalar
multiplication and matrix addition allow us to define an axpy operation on
the matrices, as in equation (2.1) on page 12. Closure of this space implies
that it must contain the additive identity, just as we saw on page 13). The
matrix additive identity is the 0 matrix.

As with any vector space, we have the concepts of linear independence,
generating set or spanning set, basis set, essentially disjoint spaces, and direct
sums of matrix vector spaces (as in equation (2.13), which is different from
the direct sum of matrices defined in terms of diag(·) as in equation (3.13)).

An important vector space of matrices is IRn×m. For matrices X,Y ∈
IRn×m and a ∈ IR, the axpy operation is aX + Y .

If n ≥ m, a set of nm n×m matrices whose columns consist of all combina-
tions of a set of n n-vectors that span IRn is a basis set for IRn×m. If n < m,
we can likewise form a basis set for IRn×m or for subspaces of IRn×m in a
similar way. If {B1, . . . , Bk} is a basis set for IRn×m, then any n×m matrix

can be represented as
∑k

i=1 ciBi. Subsets of a basis set generate subspaces of
IRn×m.

Because the sum of two symmetric matrices is symmetric, and a scalar
multiple of a symmetric matrix is likewise symmetric, we have a vector space
of the n × n symmetric matrices. This is clearly a subspace of the vector
space IRn×n. All vectors in any basis for this vector space must be symmetric.
Using a process similar to our development of a basis for a general vector
space of matrices, we see that there are n(n+ 1)/2 matrices in the basis (see
Exercise 3.1).
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3.1.8 Scalar-Valued Operators on Square Matrices:
The Trace

There are several useful mappings from matrices to real numbers; that is, from
IRn×m to IR. Some important ones are norms, which are similar to vector
norms and which we will consider later. In this section and the next, we
define two scalar-valued operators, the trace and the determinant, that apply
to square matrices.

3.1.8.1 The Trace: tr(·)
The sum of the diagonal elements of a square matrix is called the trace of the
matrix. We use the notation “tr(A)” to denote the trace of the matrix A:

tr(A) =
∑

i

aii. (3.18)

3.1.8.2 The Trace of the Transpose of Square Matrices

From the definition, we see

tr(A) = tr(AT). (3.19)

3.1.8.3 The Trace of Scalar Products of Square Matrices

For a scalar c and an n× n matrix A,

tr(cA) = c tr(A).

This follows immediately from the definition because for tr(cA) each diagonal
element is multiplied by c.

3.1.8.4 The Trace of Partitioned Square Matrices

If the square matrix A is partitioned such that the diagonal blocks are square
submatrices, that is,

A =

[
A11 A12

A21 A22

]
, (3.20)

where A11 and A22 are square, then from the definition, we see that

tr(A) = tr(A11) + tr(A22). (3.21)

3.1.8.5 The Trace of the Sum of Square Matrices

If A and B are square matrices of the same order, a useful (and obvious)
property of the trace is

tr(A+B) = tr(A) + tr(B). (3.22)
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3.1.9 Scalar-Valued Operators on Square Matrices:
The Determinant

The determinant, like the trace, is a mapping from IRn×n to IR. Although
it may not be obvious from the definition below, the determinant has far-
reaching applications in matrix theory.

3.1.9.1 The Determinant: det(·)
For an n × n (square) matrix A, consider the product a1j1 · · · anjn , where
πj = (j1, . . . , jn) is one of the n! permutations of the integers from 1 to n.
Define a permutation to be even or odd according to the number of times
that a smaller element follows a larger one in the permutation. For example,
given the tuple (1, 2, 3), then (1, 3, 2) is an odd permutation, and (3, 1, 2) and
(1, 2, 3) are even permutations. Let

σ(π) =

{
1 if π is an even permutation

−1 otherwise.
(3.23)

Then the determinant of A, denoted by det(A), is defined by

det(A) =
∑

all permutationsπj

σ(πj)a1j1 · · · anjn . (3.24)

This simple function has many remarkable relationships to various prop-
erties of matrices.

3.1.9.2 Notation and Simple Properties of the Determinant

The determinant is also sometimes written as |A|.
I prefer the notation det(A), because of the possible confusion between

|A| and the absolute value of some quantity. The latter notation, however,
is recommended by its compactness, and I do use it in expressions such as
the PDF of the multivariate normal distribution (see equation (4.73)) that
involve nonnegative definite matrices (see page 91 for the definition). The
determinant of a matrix may be negative, and sometimes, as in measuring
volumes (see page 74 for simple areas and page 215 for special volumes called
Jacobians), we need to specify the absolute value of the determinant, so we
need something of the form |det(A)|.

The definition of the determinant is not as daunting as it may appear
at first glance. Many properties become obvious when we realize that σ(·)
is always ±1, and it can be built up by elementary exchanges of adjacent
elements. For example, consider σ(3, 2, 1). There are two ways we can use
three elementary exchanges, each beginning with the natural ordering:

(1, 2, 3) → (2, 1, 3) → (2, 3, 1) → (3, 2, 1),
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or
(1, 2, 3) → (1, 3, 2) → (3, 1, 2) → (3, 2, 1);

hence, either way, σ(3, 2, 1) = (−1)3 = −1.
If πj consists of the interchange of exactly two elements in (1, . . . , n), say

elements p and q with p < q, then there are q − p elements before p that
are larger than p, and there are q − p − 1 elements between q and p in the
permutation each with exactly one larger element preceding it. The total
number is 2q − 2p + 1, which is an odd number. Therefore, if πj consists of
the interchange of exactly two elements, then σ(πj) = −1.

If the integers 1, . . . ,m occur sequentially in a given permutation and are
followed by m + 1, . . . , n which also occur sequentially in the permutation,
they can be considered separately:

σ(j1, . . . , jn) = σ(j1, . . . , jm)σ(jm+1, . . . , jn). (3.25)

Furthermore, we see that the product a1j1 · · · anjn has exactly one factor from
each unique row-column pair. These observations facilitate the derivation of
various properties of the determinant (although the details are sometimes
quite tedious).

We see immediately from the definition that the determinant of an upper
or lower triangular matrix (or a diagonal matrix) is merely the product of the
diagonal elements (because in each term of equation (3.24) there is a 0, except
in the term in which the subscripts on each factor are the same).

3.1.9.3 Minors, Cofactors, and Adjugate Matrices

Consider the 2× 2 matrix

A =

[
a11 a12
a21 a22

]
.

From the definition of the determinant, we see that

det(A) = a11a22 − a12a21. (3.26)

Now let A be a 3× 3 matrix:

A =

⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ .

In the definition of the determinant, consider all of the terms in which the
elements of the first row of A appear. With some manipulation of those terms,
we can express the determinant in terms of determinants of submatrices as
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det(A) = a11(−1)1+1det

([
a22 a23
a32 a33

])

+ a12(−1)1+2det

([
a21 a23
a31 a33

])

+ a13(−1)1+3det

([
a21 a22
a31 a32

])
.

(3.27)

Notice that this is the same form as in equation (3.26):

det(A) = a11(1)det(a22) + a12(−1)det(a21).

The manipulation in equation (3.27) of the terms in the determinant could
be carried out with other rows of A.

The determinants of the 2 × 2 submatrices in equation (3.27) are called
minors or complementary minors of the associated element. The definition
can be extended to (n−1)× (n−1) submatrices of an n×n matrix, for n ≥ 2.
We denote the minor associated with the aij element as

det
(
A−(i)(j)

)
, (3.28)

in which A−(i)(j) denotes the submatrix that is formed from A by removing

the ith row and the jth column. The sign associated with the minor corre-
sponding to aij is (−1)i+j . The minor together with its appropriate sign is
called the cofactor of the associated element; that is, the cofactor of aij is
(−1)i+jdet

(
A−(i)(j)

)
. We denote the cofactor of aij as a(ij):

a(ij) = (−1)i+jdet
(
A−(i)(j)

)
. (3.29)

Notice that both minors and cofactors are scalars.
The manipulations leading to equation (3.27), though somewhat tedious,

can be carried out for a square matrix of any size larger than 1×1, and minors
and cofactors are defined as above. An expression such as in equation (3.27)
is called an expansion in minors or an expansion in cofactors.

The extension of the expansion (3.27) to an expression involving a sum
of signed products of complementary minors arising from (n − 1) × (n − 1)
submatrices of an n× n matrix A is

det(A) =

n∑

j=1

aij(−1)i+jdet
(
A−(i)(j)

)

=

n∑

j=1

aija(ij), (3.30)

or, over the rows,
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det(A) =

n∑

i=1

aija(ij). (3.31)

These expressions are called Laplace expansions. Each determinant det(
A−(i)(j)

)
can likewise be expressed recursively in a similar expansion.

Expressions (3.30) and (3.31) are special cases of a more general Laplace
expansion based on an extension of the concept of a complementary minor
of an element to that of a complementary minor of a minor. The derivation
of the general Laplace expansion is straightforward but rather tedious (see
Harville 1997, for example, for the details).

Laplace expansions could be used to compute the determinant, but the
main value of these expansions is in proving properties of determinants. For
example, from the special Laplace expansion (3.30) or (3.31), we can quickly
see that the determinant of a matrix with two rows that are the same is zero.
We see this by recursively expanding all of the minors until we have only 2×2
matrices consisting of a duplicated row. The determinant of such a matrix is
0, so the expansion is 0.

The expansion in equation (3.30) has an interesting property: if instead of
the elements aij from the ith row we use elements from a different row, say
the kth row, the sum is zero. That is, for k �= i,

n∑

j=1

akj(−1)i+jdet
(
A−(i)(j)

)
=

n∑

j=1

akja(ij)

= 0. (3.32)

This is true because such an expansion is exactly the same as an expansion for
the determinant of a matrix whose kth row has been replaced by its ith row;
that is, a matrix with two identical rows. The determinant of such a matrix
is 0, as we saw above.

A certain matrix formed from the cofactors has some interesting properties.
We define the matrix here but defer further discussion. The adjugate of the
n× n matrix A is defined as

adj(A) = (a(ji)), (3.33)

which is an n × n matrix of the cofactors of the elements of the transposed
matrix. (The adjugate is also called the adjoint or sometimes “classical ad-
joint”, but as we noted above, the term adjoint may also mean the conjugate
transpose. To distinguish it from the conjugate transpose, the adjugate is also
sometimes called the “classical adjoint”. We will generally avoid using the
term “adjoint”.) Note the reversal of the subscripts; that is,
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adj(A) = (a(ij))
T.

The adjugate has an interesting property involving matrix multiplication
(which we will define below in Sect. 3.2) and the identity matrix:

A adj(A) = adj(A)A = det(A)I. (3.34)

To see this, consider the (i, j)th element of A adj(A). By the definition of
the multiplication of A and adj(A), that element is

∑
k aik(adj(A))kj . Now,

noting the reversal of the subscripts in adj(A) in equation (3.33), and using
equations (3.30) and (3.32), we have

∑

k

aik(adj(A))kj =

{
det(A) if i = j
0 if i �= j;

that is, A adj(A) = det(A)I.
The adjugate has a number of other useful properties, some of which we

will encounter later, as in equation (3.172).

3.1.9.4 The Determinant of the Transpose of Square Matrices

One important property we see immediately from a manipulation of the defi-
nition of the determinant is

det(A) = det(AT). (3.35)

3.1.9.5 The Determinant of Scalar Products of Square Matrices

For a scalar c and an n× n matrix A,

det(cA) = cndet(A). (3.36)

This follows immediately from the definition because, for det(cA), each factor
in each term of equation (3.24) is multiplied by c.

3.1.9.6 The Determinant of an Upper (or Lower) Triangular
Matrix

If A is an n× n upper (or lower) triangular matrix, then

det(A) =
n∏

i=1

aii. (3.37)

This follows immediately from the definition. It can be generalized, as in the
next section.
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3.1.9.7 The Determinant of Certain Partitioned Square Matrices

Determinants of square partitioned matrices that are block diagonal or upper
or lower block triangular depend only on the diagonal partitions:

det(A) = det

([
A11 0
0 A22

])
= det

([
A11 0
A21 A22

])
= det

([
A11 A12

0 A22

])

= det(A11)det(A22).

(3.38)

We can see this by considering the individual terms in the determinant, equa-
tion (3.24). Suppose the full matrix is n × n, and A11 is m × m. Then A22

is (n − m) × (n − m), A21 is (n − m) × m, and A12 is m × (n − m). In
equation (3.24), any addend for which (j1, . . . , jm) is not a permutation of the
integers 1, . . . ,m contains a factor aij that is in a 0 diagonal block, and hence
the addend is 0. The determinant consists only of those addends for which
(j1, . . . , jm) is a permutation of the integers 1, . . . ,m, and hence (jm+1, . . . , jn)
is a permutation of the integers m+ 1, . . . , n,

det(A) =
∑∑

σ(j1, . . . , jm, jm+1, . . . , jn)a1j1 · · · amjmam+1,jn · · · anjn ,
where the first sum is taken over all permutations that keep the first m in-
tegers together while maintaining a fixed ordering for the integers m + 1
through n, and the second sum is taken over all permutations of the inte-
gers from m+ 1 through n while maintaining a fixed ordering of the integers
from 1 to m. Now, using equation (3.25), we therefore have for A of this
special form

det(A) =
∑∑

σ(j1, . . . , jm, jm+1, . . . , jn)a1j1 · · · amjmam+1,jm+1
· · · anjn

=
∑

σ(j1, . . . , jm)a1j1 · · · amjm

∑
σ(jm+1, . . . , jn)am+1,jm+1

· · · anjn
= det(A11)det(A22),

which is equation (3.38). We use this result to give an expression for the
determinant of more general partitioned matrices in Sect. 3.4.2.

Another useful partitioned matrix of the form of equation (3.20) has A11 =
0 and A21 = −I:

A =

[
0 A12

−I A22

]
.

In this case, using equation (3.30), we get

det(A) = ((−1)n+1+1(−1))ndet(A12)

= (−1)n(n+3)det(A12)

= det(A12). (3.39)
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We will consider determinants of a more general partitioning in Sect. 3.4.2,
beginning on page 122.

3.1.9.8 The Determinant of the Sum of Square Matrices

Occasionally it is of interest to consider the determinant of the sum of square
matrices. We note in general that

det(A+B) �= det(A) + det(B),

which we can see easily by an example. (Consider matrices in IR2×2, for ex-

ample, and let A = I and B =

[−1 0
0 0

]
.)

In some cases, however, simplified expressions for the determinant of a
sum can be developed. We consider one in the next section.

3.1.9.9 A Diagonal Expansion of the Determinant

A particular sum of matrices whose determinant is of interest is one in which
a diagonal matrix D is added to a square matrix A, that is, det(A+D). (Such
a determinant arises in eigenanalysis, for example, as we see in Sect. 3.8.4.)

For evaluating the determinant det(A+D), we can develop another expan-
sion of the determinant by restricting our choice of minors to determinants of
matrices formed by deleting the same rows and columns and then continuing
to delete rows and columns recursively from the resulting matrices. The ex-
pansion is a polynomial in the elements of D; and for our purposes later, that
is the most useful form.

Before considering the details, let us develop some additional notation.
The matrix formed by deleting the same row and column of A is denoted
A−(i)(i) as above (following equation (3.28)). In the current context, however,
it is more convenient to adopt the notation A(i1,...,ik) to represent the matrix
formed from rows i1, . . . , ik and columns i1, . . . , ik from a given matrix A.
That is, the notation A(i1,...,ik) indicates the rows and columns kept rather
than those deleted; and furthermore, in this notation, the indexes of the rows
and columns are the same. We denote the determinant of this k × k matrix
in the obvious way, det(A(i1,...,ik)). Because the principal diagonal elements
of this matrix are principal diagonal elements of A, we call det(A(i1,...,ik)) a
principal minor of A.

Now consider det(A+D) for the 2× 2 case:

det

([
a11 + d1 a12

a21 a22 + d2

])
.

Expanding this, we have

det(A+D) = (a11 + d1)(a22 + d2)− a12a21
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= det

([
a11 a12
a21 a22

])
+ d1d2 + a22d1 + a11d2

= det(A(1,2)) + d1d2 + a22d1 + a11d2.

Of course, det(A(1,2)) = det(A), but we are writing it this way to develop the
pattern. Now, for the 3× 3 case, we have

det(A+D) = det(A(1,2,3))

+det(A(2,3))d1 + det(A(1,3))d2 + det(A(1,2))d3

+ a33d1d2 + a22d1d3 + a11d2d3

+ d1d2d3. (3.40)

In the applications of interest, the elements of the diagonal matrix D may be
a single variable: d, say. In this case, the expression simplifies to

det(A+D) = det(A(1,2,3)) +
∑

i�=j

det(A(i,j))d+
∑

i

ai,id
2 + d3. (3.41)

Carefully continuing in this way for an n×nmatrix, either as in equation (3.40)
for n variables or as in equation (3.41) for a single variable, we can make use
of a Laplace expansion to evaluate the determinant.

Consider the expansion in a single variable because that will prove most
useful. The pattern persists; the constant term is |A|, the coefficient of the
first-degree term is the sum of the (n − 1)-order principal minors, and, at
the other end, the coefficient of the (n − 1)th-degree term is the sum of the
first-order principal minors (that is, just the diagonal elements), and finally
the coefficient of the nth-degree term is 1.

This kind of representation is called a diagonal expansion of the determi-
nant because the coefficients are principal minors. It has occasional use for
matrices with large patterns of zeros, but its main application is in analysis
of eigenvalues, which we consider in Sect. 3.8.4.

3.1.9.10 Computing the Determinant

For an arbitrary matrix, the determinant is rather difficult to compute. The
method for computing a determinant is not the one that would arise directly
from the definition or even from a Laplace expansion. The more efficient meth-
ods involve first factoring the matrix, as we discuss in later sections.

The determinant is not very often directly useful, but although it may not
be obvious from its definition, the determinant, along with minors, cofactors,
and adjoint matrices, is very useful in discovering and proving properties of
matrices. The determinant is used extensively in eigenanalysis (see Sect. 3.8).
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3.1.9.11 A Geometrical Perspective of the Determinant

In Sect. 2.2, we discussed a useful geometric interpretation of vectors in a
linear space with a Cartesian coordinate system. The elements of a vec-
tor correspond to measurements along the respective axes of the coordinate
system. When working with several vectors, or with a matrix in which the
columns (or rows) are associated with vectors, we may designate a vector
xi as xi = (xi1, . . . , xid). A set of d linearly independent d-vectors define a
parallelotope in d dimensions. For example, in a two-dimensional space, the
linearly independent 2-vectors x1 and x2 define a parallelogram, as shown in
Fig. 3.1.

The area of this parallelogram is the base times the height, bh, where, in
this case, b is the length of the vector x1, and h is the length of x2 times the
sine of the angle θ. Thus, making use of equation (2.54) on page 37 for the
cosine of the angle, we have

x2

x1

q

a
h

b

e1

e2

Figure 3.1. Volume (area) of region determined by x1 and x2

area = bh

= ‖x1‖‖x2‖ sin(θ)

= ‖x1‖‖x2‖
√

1−
( 〈x1, x2〉
‖x1‖‖x2‖

)2

=
√

‖x1‖2‖x2‖2 − (〈x1, x2〉)2

=
√

(x2
11 + x2

12)(x
2
21 + x2

22)− (x11x21 − x12x22)2
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= |x11x22 − x12x21|
= |det(X)|, (3.42)

where x1 = (x11, x12), x2 = (x21, x22), and

X = [x1 | x2]

=

[
x11 x21

x12 x22

]
.

Although we will not go through the details here, this equivalence of a
volume of a parallelotope that has a vertex at the origin and the absolute
value of the determinant of a square matrix whose columns correspond to the
vectors that form the sides of the parallelotope extends to higher dimensions.

In making a change of variables in integrals, as in equation (4.62) on
page 215, we use the absolute value of the determinant of the Jacobian as a
volume element. Another instance of the interpretation of the determinant as
a volume is in the generalized variance, discussed on page 368.

3.2 Multiplication of Matrices and
Multiplication of Vectors and Matrices

The elements of a vector or matrix are elements of a field, and most matrix
and vector operations are defined in terms of the two operations of the field.
Of course, in this book, the field of most interest is the field of real numbers.

3.2.1 Matrix Multiplication (Cayley)

There are various kinds of multiplication of matrices that may be useful. The
most common kind of multiplication is Cayley multiplication. If the number
of columns of the matrix A, with elements aij , and the number of rows of the
matrix B, with elements bij , are equal, then the (Cayley) product of A and B
is defined as the matrix C with elements

cij =
∑

k

aikbkj . (3.43)

This is the most common type of matrix product, and we refer to it by the
unqualified phrase “matrix multiplication”.

Cayley matrix multiplication is indicated by juxtaposition, with no inter-
vening symbol for the operation: C = AB.

If the matrix A is n×m and the matrix B is m× p, the product C = AB
is n× p:

C = A B

[ ]

n×p

=

[ ]

n×m

[ ]m×p

.
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Cayley matrix multiplication is a mapping,

IRn×m × IRm×p → IRn×p.

The multiplication of an n × m matrix and an m × p matrix requires
nmp scalar multiplications and np(m − 1) scalar additions. Here, as always
in numerical analysis, we must remember that the definition of an operation,
such as matrix multiplication, does not necessarily define a good algorithm
for evaluating the operation.

It is obvious that while the product AB may be well-defined, the product
BA is defined only if n = p; that is, if the matrices AB and BA are square.
We assume throughout that writing a product of matrices AB implies that
the number of columns of the first matrix is the same as the number of rows of
the second; that is, they are conformable for multiplication in the order given.

It is easy to see from the definition of matrix multiplication (3.43) that
in general, even for square matrices, AB �= BA. It is also obvious that if AB
exists, then BTAT exists and, in fact,

BTAT = (AB)T. (3.44)

The product of symmetric matrices is not, in general, symmetric. If (but not
only if) A and B are symmetric, then AB = (BA)T.

Because matrix multiplication is not commutative, we often use the terms
“premultiply” and “postmultiply” and the corresponding nominal forms of
these terms. Thus, in the product AB, we may say B is premultiplied by A,
or, equivalently, A is postmultiplied by B.

Although matrix multiplication is not commutative, it is associative; that
is, if the matrices are conformable,

A(BC) = (AB)C. (3.45)

It is also distributive over addition; that is,

A(B + C) = AB +AC (3.46)

and
(B + C)A = BA+ CA. (3.47)

These properties are obvious from the definition of matrix multiplication.
(Note that left-sided distribution is not the same as right-sided distribution
because the multiplication is not commutative.)

An n×nmatrix consisting of 1s along the diagonal and 0s everywhere else is
amultiplicative identity for the set of n×nmatrices and Cayley multiplication.
Such a matrix is called the identity matrix of order n, and is denoted by In,
or just by I. The columns of the identity matrix are unit vectors.

The identity matrix is a multiplicative identity for any matrix so long as
the matrices are conformable for the multiplication. If A is n×m, then
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InA = AIm = A.

Another matrix of interest is a zero matrix, which is any matrix consisting
of all zeros. We denote a zero matrix as 0, with its shape being implied by the
context. Two properties for any matrix A and a zero matrix of the appropriate
shape are immediately obvious:

0A = 0

and
0 +A = A.

3.2.1.1 Powers of Square Matrices

For a square matrix A, its product with itself is defined, and so we will use the
notation A2 to mean the Cayley product AA, with similar meanings for Ak

for a positive integer k. As with the analogous scalar case, Ak for a negative
integer may or may not exist, and when it exists, it has a meaning for Cayley
multiplication similar to the meaning in ordinary scalar multiplication. We
will consider these issues later (in Sect. 3.3.6).

For an n × n matrix A, if Ak exists for negative integral values of k, we
define A0 by

A0 = In. (3.48)

For a diagonal matrix D = diag ((d1, . . . , dn)), we have

Dk = diag
(
(dk1 , . . . , d

k
n)
)
. (3.49)

3.2.1.2 Nilpotent Matrices

For an n × n matrix A, it may be the case for some positive integer k that
Ak = 0. Such a matrix is said to be nilpotent; more generally, we define a
nilpotent matrix of index k, for integer k > 1, as a square matrix A such that

Ak = 0, but Ak−1 �= 0. (3.50)

We may use the term “nilpotent” without qualification to refer to a matrix
that is nilpotent of any index; that is, strictly speaking, a nilpotent matrix is
nilpotent of index 2.

A simple example of a matrix that is nilpotent of index 3 is

A =

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤

⎥⎥⎥⎥⎦
, (3.51)
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in which I have indicated four submatrices of interest.
All nilpotent matrices have a certain relationship to matrices of the form

of A in equation (3.51). We will identify that form here, but we will not discuss
that form further. Notice two submatrices of A:

N1 =

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ and N2 =

[
0 1
0 0

]
(3.52)

so

A =

[
N1 0
0 N2

]
.

Matrices of the form of N1 and N2, consisting of all 0s except for 1s in the
supradiagonal, are called Jordan blocks and the nilpotent matrix A is said be
in Jordan form. An important property, which we will merely state without
proof, is that the index of a nilpotent matrix in Jordan form is the number of
1s in the largest Jordan block.

A nilpotent matrix is necessarily singular. Nilpotent matrices have many
other simple properties, some of which we will list on page 174.

3.2.1.3 Matrix Polynomials

Polynomials in square matrices are similar to the more familiar polynomials
in scalars. We may consider

p(A) = b0I + b1A+ · · · bkAk.

The value of this polynomial is a matrix.
The theory of polynomials in general holds, and in particular, we have the

useful factorizations of monomials: for any positive integer k,

I −Ak = (I −A)(I +A+ · · ·Ak−1), (3.53)

and for an odd positive integer k,

I +Ak = (I +A)(I −A+ · · ·Ak−1). (3.54)

3.2.2 Multiplication of Matrices with Special Patterns

Various properties of matrices may or may not be preserved under matrix
multiplication. We have seen already that the product of symmetric matrices
is not in general symmetric.

Many of the various patterns of zeroes in matrices discussed on page 58 are
preserved under matrix multiplication. Assume A and B are square matrices
of the same number of rows.
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• If A and B are diagonal, AB is diagonal and the (i, i) element of AB is
aiibii;

• if A and B are block diagonal with conformable blocks, AB is block diag-
onal;

• if A and B are upper triangular, AB is upper triangular and the (i, i)
element of AB is aiibii;

• if A and B are lower triangular, AB is lower triangular and the (i, i)
element of AB is aiibii;

• if A is upper triangular and B is lower triangular, in general, none of AB,
BA, ATA, BTB, AAT, and BBT is triangular.

Each of these statements can be easily proven using the definition of multipli-
cation in equation (3.43). An important special case of diagonal and triangular
matrices is one in which all diagonal elements are 1. Such a diagonal matrix is
the identity, of course, so it a very special multiplicative property. Triangular
matrices with 1s on the diagonal are called “unit triangular” matrices, and
they are often used in matrix factorizations, as we see later in this chapter
and in Chap. 5.

The products of banded matrices are generally banded with a wider band-
width. If the bandwidth is too great, obviously the matrix can no longer be
called banded.

3.2.2.1 Multiplication of Partitioned Matrices

Multiplication and other operations with partitioned matrices are carried out
with their submatrices in the obvious way. Thus, assuming the submatrices
are conformable for multiplication,

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

It is clear that the product of conformable block diagonal matrices is block
diagonal.

Sometimes a matrix may be partitioned such that one partition is just a
single column or row, that is, a vector or the transpose of a vector. In that
case, we may use a notation such as

[X y]

or
[X | y],

where X is a matrix and y is a vector. We develop the notation in the obvious
fashion; for example,

[X y]T [X y] =

[
XTX XTy
yTX yTy

]
. (3.55)
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3.2.3 Elementary Operations on Matrices

Many common computations involving matrices can be performed as a se-
quence of three simple types of operations on either the rows or the columns
of the matrix:

• the interchange of two rows (columns),
• a scalar multiplication of a given row (column), and
• the replacement of a given row (column) by the sum of that row (columns)

and a scalar multiple of another row (column); that is, an axpy operation.

Such an operation on the rows of a matrix can be performed by premultipli-
cation by a matrix in a standard form, and an operation on the columns of
a matrix can be performed by postmultiplication by a matrix in a standard
form. To repeat:

• premultiplication: operation on rows;
• postmultiplication: operation on columns.

The matrix used to perform the operation is called an elementary trans-
formation matrix or elementary operator matrix. Such a matrix is the identity
matrix transformed by the corresponding operation performed on its unit
rows, eTp , or columns, ep.

In actual computations, we do not form the elementary transformation
matrices explicitly, but their formulation allows us to discuss the operations
in a systematic way and better understand the properties of the operations.
Products of any of these elementary operator matrices can be used to effect
more complicated transformations.

Operations on the rows are more common, and that is what we will dis-
cuss here, although operations on columns are completely analogous. These
transformations of rows are called elementary row operations.

3.2.3.1 Interchange of Rows or Columns: Permutation Matrices

By first interchanging the rows or columns of a matrix, it may be possible
to partition the matrix in such a way that the partitions have interesting
or desirable properties. Also, in the course of performing computations on a
matrix, it is often desirable to interchange the rows or columns of the matrix.
(This is an instance of “pivoting”, which will be discussed later, especially
in Chap. 6.) In matrix computations, we almost never actually move data
from one row or column to another; rather, the interchanges are effected by
changing the indexes to the data.

Interchanging two rows of a matrix can be accomplished by premultiply-
ing the matrix by a matrix that is the identity with those same two rows
interchanged; for example,



3.2 Multiplication of Matrices 81

⎡

⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

a11 a12 a13
a31 a32 a33
a21 a22 a23
a41 a42 a43

⎤

⎥⎥⎦ .

The first matrix in the expression above is called an elementary permutation
matrix. It is the identity matrix with its second and third rows (or columns)
interchanged. An elementary permutation matrix, which is the identity with
the pth and qth rows interchanged, is denoted by Epq. That is, Epq is the
identity, except the pth row is eTq and the qth row is eTp . Note that Epq = Eqp.
Thus, for example, if the given matrix is 4×m, to interchange the second and
third rows, we use

E23 = E32 =

⎡

⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

It is easy to see from the definition that an elementary permutation matrix
is symmetric. Note that the notation Epq does not indicate the order of the
elementary permutation matrix; that must be specified in the context.

Premultiplying a matrix A by a (conformable) Epq results in an inter-
change of the pth and qth rows of A as we see above. Any permutation of rows
of A can be accomplished by successive premultiplications by elementary per-
mutation matrices. Note that the order of multiplication matters. Although
a given permutation can be accomplished by different elementary permuta-
tions, the number of elementary permutations that effect a given permutation
is always either even or odd; that is, if an odd number of elementary per-
mutations results in a given permutation, any other sequence of elementary
permutations to yield the given permutation is also odd in number. Any given
permutation can be effected by successive interchanges of adjacent rows.

Postmultiplying a matrix A by a (conformable) Epq results in an inter-
change of the pth and qth columns of A:

⎡

⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤

⎥⎥⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ =

⎡

⎢⎢⎣

a11 a13 a12
a21 a23 a22
a31 a33 a32
a41 a43 a42

⎤

⎥⎥⎦ .

Note that
A = EpqEpqA = AEpqEpq; (3.56)

that is, as an operator, an elementary permutation matrix is its own inverse
operator: EpqEpq = I.

Because all of the elements of a permutation matrix are 0 or 1, the trace
of an n× n elementary permutation matrix is n− 2.

The product of elementary permutation matrices is also a permutation
matrix in the sense that it permutes several rows or columns. For example,
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premultiplying A by the matrix Q = EpqEqr will yield a matrix whose pth row
is the rth row of the original A, whose qth row is the pth row of A, and whose
rth row is the qth row of A. We often use the notation E(π) to denote a more
general permutation matrix. This expression will usually be used generically,
but sometimes we will specify the permutation, π.

A general permutation matrix (that is, a product of elementary permuta-
tion matrices) is not necessarily symmetric, but its transpose is also a per-
mutation matrix. It is not necessarily its own inverse, but its permutations
can be reversed by a permutation matrix formed by products of permutation
matrices in the opposite order; that is,

ET
(π)E(π) = I.

As a prelude to other matrix operations, we often permute both rows and
columns, so we often have a representation such as

B = E(π1)AE(π2), (3.57)

where E(π1) is a permutation matrix to permute the rows and E(π2) is a per-
mutation matrix to permute the columns. We use these kinds of operations to
form a full rank partitioning as in equation (3.131) on page 104, to obtain an
equivalent canonical form as in equation (3.151) on page 110 and LDU decom-
position of a matrix as in equation (5.32) on page 246. These equations are
used to determine the number of linearly independent rows and columns and
to represent the matrix in a form with a maximal set of linearly independent
rows and columns clearly identified.

3.2.3.2 The Vec-Permutation Matrix

A special permutation matrix is the matrix that transforms the vector vec(A)
into vec(AT). If A is n×m, the matrix Knm that does this is nm× nm. We
have

vec(AT) = Knmvec(A). (3.58)

The matrix Knm is called the nm vec-permutation matrix.

3.2.3.3 Scalar Row or Column Multiplication

Often, numerical computations with matrices are more accurate if the rows
have roughly equal norms. For this and other reasons, we often transform a
matrix by multiplying one of its rows by a scalar. This transformation can also
be performed by premultiplication by an elementary transformation matrix.
For multiplication of the pth row by the scalar, the elementary transformation
matrix, which is denoted by Ep(a), is the identity matrix in which the pth

diagonal element has been replaced by a. Thus, for example, if the given
matrix is 4×m, to multiply the second row by a, we use
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E2(a) =

⎡

⎢⎢⎣

1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ .

Postmultiplication of a given matrix by the multiplier matrix Ep(a) results
in the multiplication of the pth column by the scalar. For this, Ep(a) is a square
matrix of order equal to the number of columns of the given matrix.

Note that the notation Ep(a) does not indicate the number of rows and
columns. This must be specified in the context.

Note that, if a �= 0,
A = Ep(1/a)Ep(a)A, (3.59)

that is, as an operator, the inverse operator is a row multiplication matrix on
the same row and with the reciprocal as the multiplier.

3.2.3.4 Axpy Row or Column Transformations

The other elementary operation is an axpy on two rows and a replacement of
one of those rows with the result

ap ← aaq + ap.

This operation also can be effected by premultiplication by a matrix formed
from the identity matrix by inserting the scalar in the (p, q) position. Such a
matrix is denoted by Epq(a). Thus, for example, if the given matrix is 4×m,
to add a times the third row to the second row, we use

E23(a) =

⎡

⎢⎢⎣

1 0 0 0
0 1 a 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ .

Premultiplication of a matrix A by such a matrix,

Epq(a)A, (3.60)

yields a matrix whose pth row is a times the qth row plus the original row.
Given the 4× 3 matrix A = (aij), we have

E23(a)A =

⎡

⎢⎢⎣

a11 a12 a13
a21 + aa31 a22 + aa32 a23 + aa33

a31 a32 a33
a41 a42 a43

⎤

⎥⎥⎦ .

Postmultiplication of a matrix A by an axpy operator matrix,

AEpq(a),
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yields a matrix whose qth column is a times the pth column plus the original
column. For this, Epq(a) is a square matrix of order equal to the number of
columns of the given matrix. Note that the column that is changed corresponds
to the second subscript in Epq(a).

Note that
A = Epq(−a)Epq(a)A; (3.61)

that is, as an operator, the inverse operator is the same axpy elementary
operator matrix with the negative of the multiplier.

A common use of axpy operator matrices is to form a matrix with zeros
in all positions of a given column below a given position in the column. These
operations usually follow an operation by a scalar row multiplier matrix that
puts a 1 in the position of interest. For example, given an n × m matrix A
with aij �= 0, to put a 1 in the (i, j) position and 0s in all positions of the jth

column below the ith row, we form the product

Eni(−anj) · · ·Ei+1,i(−ai+1,j)Ei(1/aij)A. (3.62)

This process is called Gaussian elimination.
The matrix

Gij = Eni(−anj) · · ·Ei+1,i(−ai+1,j)Ei(1/aij) (3.63)

is called a Gaussian transformation matrix. Notice that it is lower triangular,
and its inverse, also lower triangular, is

G−1
ij = Ei(aij)Ei+1,i(ai+1,j) · · ·Eni(anj) (3.64)

Gaussian elimination is often performed sequentially down the diagonal
elements of a matrix (see its use in the LU factorization on page 244, for
example).

To form a matrix with zeros in all positions of a given column except one,
we use additional matrices for the rows above the given element:

G̃ij = Eni(−anj) · · ·Ei+1,i(−ai+1,j)Ei−1,i(−ai−1,j) · · ·E1i(−a1j)Ei(1/aij).
(3.65)

This is also called a Gaussian transformation matrix.
We can likewise zero out all elements in the ith row except the one in the

(ij)th position by similar postmultiplications.
If at some point aii = 0, the operations of equation (3.62) cannot be

performed. In that case, we may first interchange the ith row with the kth

row, where k > i and aki �= 0. Such an interchange is called pivoting. We will
discuss pivoting in more detail on page 277 in Chap. 6.

As we mentioned above, in actual computations, we do not form the ele-
mentary transformation matrices explicitly, but their formulation allows us to
discuss the operations in a systematic way and better understand the prop-
erties of the operations.
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This is an instance of a principle that we will encounter repeatedly: the
form of a mathematical expression and the way the expression should be eval-
uated in actual practice may be quite different.

These elementary transformations are the basic operations in Gaussian
elimination, which is discussed in Sects. 5.7 and 6.2.1.

3.2.3.5 Elementary Operator Matrices: Summary of Notation and
Properties

Because we have introduced various notation for elementary operator matri-
ces, it may be worthwhile to review the notation. The notation is useful and
I will use it from time to time, but unfortunately, there is no general form for
the notation. I will generally use an “E” as the root symbol for the matrix,
but the specific type is indicated by various other symbols.

Referring back to the listing of the types of operations on page 80, we have
the various elementary operator matrices:

• Epq: the interchange of rows p and q (Epq is the same as Eqp)

Epq = Eqp =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 · · · 0 0
...
...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · 1 · · · 0 0
...
...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 1 · · · 0 · · · 0 0
...
...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

(3.66)

It is symmetric,
ET

pq = Epq, (3.67)

and it is its own inverse,
E−1

pq = Epq, (3.68)

that is, it is orthogonal.
E(π): a general permutation of rows, where π denotes a permutation. We
have

E(π) = Ep1q1 · · ·Epkqk , for some p1, . . . , pk and q1, . . . , qk. (3.69)

• Ep(a): multiplication of row p by a.
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Ep(a) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 0
...
...
. . .

...
. . .

...
...

0 0 · · · a · · · 0 0
...
...
. . .

...
. . .

...
...

0 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p (3.70)

Its inverse is
E−1

p (a) = Ep(1/a). (3.71)

• Epq(a): the replacement of row p by the sum of row p and a times row q.
If q > p,

Epq(a) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 · · · 0 0
...
...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 1 · · · a · · · 0 0
...
...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · 1 · · · 0 0
...
...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

(3.72)

Its inverse is
E−1

pq (a) = Epq(−a). (3.73)

Recall that these operations are effected by premultiplication. The same kinds
of operations on the columns are effected by postmultiplication.

3.2.3.6 Determinants of Elementary Operator Matrices

The determinant of an elementary permutation matrix Epq has only one term
in the sum that defines the determinant (equation (3.24), page 66), and that
term is 1 times σ evaluated at the permutation that exchanges p and q. As
we have seen (page 67), this is an odd permutation; hence, for an elementary
permutation matrix Epq,

det(Epq) = −1. (3.74)

Because a general permutation matrix E(π) can be formed as the product
of elementary permutation matrices which together form the permutation π,
we have from equation (3.74)

det(Eπ) = σ(π), (3.75)



3.2 Multiplication of Matrices 87

where σ(π) = 1 if π is an even permutation and −1 otherwise, as defined in
equation (3.23).

Because all terms in det(EpqA) are exactly the same terms as in det(A)
but with one different permutation in each term, we have

det(EpqA) = −det(A).

More generally, if A and E(π) are n × n matrices, and E(π) is any permuta-
tion matrix (that is, any product of Epq matrices), then det(E(π)A) is either
det(A) or −det(A) because all terms in det(E(π)A) are exactly the same as
the terms in det(A) but possibly with different signs because the permutations
are different. In fact, the differences in the permutations are exactly the same
as the permutation of 1, . . . , n in E(π); hence,

det(E(π)A) = det(E(π)) det(A)

= σ(π)det(A).

(In equation (3.81) below, we will see that this equation holds more generally.)

The determinant of an elementary row multiplication matrix Ep(a) is

det(Ep(a)) = a. (3.76)

If A and Ep(a) are n× n matrices, then

det(Ep(a)A) = adet(A),

as we see from the definition of the determinant, equation (3.24). (Again, this
also follows from the general result in equation (3.81) below.)

The determinant of an elementary axpy matrix Epq(a) is 1,

det(Epq(a)) = 1, (3.77)

because the term consisting of the product of the diagonals is the only term
in the determinant.

Now consider det(Epq(a)A) for an n×n matrix A. Expansion in the minors
(equation (3.30)) along the pth row yields

det(Epq(a)A) =

n∑

j=1

(apj + aaqj)(−1)p+jdet(A(ij))

=

n∑

j=1

apj(−1)p+jdet(A(ij)) + a

n∑

j=1

aqj(−1)p+jdet(A(ij)).

From equation (3.32) on page 69, we see that the second term is 0, and since
the first term is just the determinant of A, we have

det(Epq(a)A) = det(A). (3.78)

(Again, this also follows from the general result in equation (3.81) below. I
have shown the steps in the specific case because I think they help to see the
effect of the elementary operator matrix.)
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3.2.4 The Trace of a Cayley Product That Is Square

A useful property of the trace for the matrices A and B that are conformable
for the multiplications AB and BA is

tr(AB) = tr(BA). (3.79)

This is obvious from the definitions of matrix multiplication and the trace.
Note that A and B may not be square (so the trace is not defined for them),
but if they are conformable for the multiplications, then both AB and BA
are square.

Because of the associativity of matrix multiplication, this relation can be
extended as

tr(ABC) = tr(BCA) = tr(CAB) (3.80)

for matrices A, B, and C that are conformable for the multiplications indi-
cated. Notice that the individual matrices need not be square. This fact is
very useful in working with quadratic forms, as in equation (3.90).

3.2.5 The Determinant of a Cayley Product of Square Matrices

An important property of the determinant is

det(AB) = det(A) det(B) (3.81)

if A and B are square matrices conformable for multiplication. We see this by
first forming

det

([
I A
0 I

] [
A 0

−I B

])
= det

([
0 AB

−I B

])
(3.82)

and then observing from equation (3.39) that the right-hand side is det(AB).
Now consider the left-hand side. The matrix that is the first factor on the
left-hand side is a product of elementary axpy transformation matrices; that
is, it is a matrix that when postmultiplied by another matrix merely adds
multiples of rows in the lower part of the matrix to rows in the upper part of
the matrix. If A and B are n × n (and so the identities are likewise n × n),
the full matrix is the product:

[
I A
0 I

]
= E1,n+1(a11) · · ·E1,2n(a1n)E2,n+1(a21) · · ·E2,2n(a2,n) · · ·En,2n(ann).

Hence, applying equation (3.78) recursively, we have

det

([
I A
0 I

] [
A 0

−I B

])
= det

([
A 0

−I B

])
,

and from equation (3.38) we have
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det

([
A 0

−I B

])
= det(A)det(B),

and so finally we have equation (3.81).
From equation (3.81), we see that if A and B are square matrices con-

formable for multiplication, then

det(AB) = det(BA). (3.83)

(Recall, in general, even in the case of square matrices, AB �= BA.) This
equation is to be contrasted with equation (3.79), tr(AB) = tr(BA), which
does not even require that the matrices be square. A simple counterexample
for nonsquare matrices is det(xxT) �= det(xTx), where x is a vector with
at least two elements. (Here, think of the vector as an n × 1 matrix. This
counterexample can be seen in various ways. One way is to use a fact that we
will encounter on page 117, and observe that det(xxT) = 0 for any x with at
least two elements.)

3.2.6 Multiplication of Matrices and Vectors

It is often convenient to think of a vector as a matrix with only one element
in one of its dimensions. This provides for an immediate extension of the def-
initions of transpose and matrix multiplication to include vectors as either
or both factors. In this scheme, we follow the convention that a vector corre-
sponds to a column; that is, if x is a vector and A is a matrix, Ax or xTA may
be well-defined, but neither xA nor AxT would represent anything, except
in the case when all dimensions are 1. In some computer systems for matrix
algebra, these conventions are not enforced; in others, they are not. (R, for
example sometimes does and sometimes does not; see the discussion beginning
on page 572.) The alternative notation xTy we introduced earlier for the dot
product or inner product, 〈x, y〉, of the vectors x and y is consistent with this
paradigm.

Vectors and matrices are fundamentally different kinds of mathematical
objects. In general, it is not relevant to say that a vector is a “column” or
a “row”; it is merely a one-dimensional (or rank 1) object. We will continue
to write vectors as x = (x1, . . . , xn), but this does not imply that the vector
is a “row vector”. Matrices with just one row or one column are different
objects from vectors. We represent a matrix with one row in a form such as
Y = [y11 . . . y1n], and we represent a matrix with one column in a form such

as Z =

⎡

⎢⎣
z11
...

zm1

⎤

⎥⎦ or as Z = [z11 . . . zm1]
T.

(Compare the notation in equations (1.1) and (1.2) on page 4.)
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3.2.6.1 The Matrix/Vector Product as a Linear Combination

If we represent the vectors formed by the columns of an n × m matrix A
as a1, . . . , am, the matrix/vector product Ax is a linear combination of these
columns of A:

Ax =

m∑

i=1

xiai. (3.84)

(Here, each xi is a scalar, and each ai is a vector.)
Given the equation Ax = b, we have b ∈ span(A); that is, the n-vector b

is in the k-dimensional column space of A, where k ≤ m.

3.2.6.2 The Matrix as a Mapping on Vector Spaces

In this chapter we have considered matrices to be fundamental objects. Only
after defining operations on matrices themselves have we defined an operation
by a matrix on a vector. Another way of thinking about matrices is as a class
of functions or mappings on vector spaces. In this approach, we give primacy
to the vector spaces.

Let V1 and V2 be vector spaces of order m and n respectively. Then an
n×m matrix A is a function from V1 to V2 defined for x ∈ V1 as

x → Ax. (3.85)

Matrices are “transformations” of vectors. There is nothing essentially
different in this development of concepts about matrices; it does, however,
motivate terminology based in geometry that we will use from time to time
(“rotations”, “projections”, and so on; see Sect. 5.3).

A matrix changes the “direction” of a vector. The cosine of the angle
between the vector x and the vector Ax is the correlation

Cor(x,Ax) =
(x− x̄)TA(x− x̄)

(x− x̄)T(x− x̄)
,

see page 51. (This expression is the Rayleigh quotient, RA(x− x̄), page 157.)

3.2.7 Outer Products

The outer product of the vectors x and y is the matrix

xyT. (3.86)

Note that the definition of the outer product does not require the vectors to
be of equal length. Note also that while the inner product is commutative,
the outer product is not commutative (although it does have the property
xyT = (yxT)T).
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While the inner product is a mapping from IRn × IRn to IR, the outer
product of two vectors is a mapping

IRn × IRm → M ⊆ IRn×m,

where M is the set of n×m matrices of rank one. (We will define and discuss
matrix rank in Sect. 3.3, beginning on page 99. Also, see Exercise 3.14.)

A very common outer product is of a vector with itself:

xxT.

The outer product of a vector with itself is obviously a symmetric matrix.
We should again note some subtleties of differences in the types of objects

that result from operations. If A and B are matrices conformable for the
operation, the product ATB is a matrix even if both A and B are n× 1 and
so the result is 1 × 1. For the vectors x and y and matrix C, however, xTy
and xTCy are scalars; hence, the dot product and a quadratic form are not
the same as the result of a matrix multiplication. The dot product is a scalar,
and the result of a matrix multiplication is a matrix. The outer product of
vectors is a matrix, even if both vectors have only one element. Nevertheless,
as we have mentioned before, we will treat a one by one matrix or a vector
with only one element as a scalar whenever it is convenient to do so.

3.2.8 Bilinear and Quadratic Forms: Definiteness

Given a matrix A of conformable shape, a variation of the vector dot product,
xTAy, is called a bilinear form, and the special bilinear form xTAx is called
a quadratic form. Note

xTATx = xTAx and xTATy = yTAx �= xTAy in general.

Although in the definition of quadratic form we do not require A to be
symmetric—because for a given value of x and a given value of the quadratic
form xTAx there is a unique symmetric matrix As such that xTAsx = xTAx—
we generally work only with symmetric matrices in dealing with quadratic
forms. (The matrix As is 1

2 (A+AT); see Exercise 3.3.) Quadratic forms cor-
respond to sums of squares and hence play an important role in statistical
applications.

3.2.8.1 Nonnegative Definite and Positive Definite Matrices

A symmetric matrix A such that for any (conformable and real) vector x the
quadratic form xTAx is nonnegative, that is,

xTAx ≥ 0, (3.87)
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is called a nonnegative definite matrix. (There is another term, “positive
semidefinite matrix” and its acronym PSD, that is often used to mean “non-
negative definite matrix”, but the term is not used consistently in the litera-
ture. I will generally avoid the term “semidefinite”.) We denote the fact that
A is nonnegative definite by

A � 0.

(Note that we consider 0n×n to be nonnegative definite.)
A symmetric matrix A such that for any (conformable) vector x �= 0 the

quadratic form
xTAx > 0 (3.88)

is called a positive definite matrix. We denote the fact that A is positive
definite by

A � 0.

(Recall that A ≥ 0 and A > 0 mean, respectively, that all elements of A are
nonnegative and positive.)

Nonnegative and positive definite matrices are very important in applica-
tions. We will encounter them from time to time in this chapter, and then we
will discuss more of their properties in Sect. 8.3.

In this book we use the terms “nonnegative definite” and “positive defi-
nite” only for symmetric matrices. In other literature, these terms may be used
more generally; that is, for any (square) matrix that satisfies (3.87) or (3.88).

3.2.8.2 Ordinal Relations among Symmetric Matrices

When A and B are symmetric matrices of the same order, we write A � B to
mean A−B � 0 and A � B to mean A−B � 0.

The � relationship is a partial ordering and the � relationship is transi-
tive; that is, if for conformable matrices, A � B and B � C, then A � C
(See Exercise 8.2 on page 396; also compare ordinal relations among vectors,
page 16.)

3.2.8.3 The Trace of Inner and Outer Products

The invariance of the trace to permutations of the factors in a product (equa-
tion (3.79)) is particularly useful in working with bilinear and quadratic forms.
Let A be an n×m matrix, x be an n-vector, and y be an m-vector. Because
the bilinear form is a scalar (or a 1×1 matrix), and because of the invariance,
we have the very useful fact

xTAy = tr(xTAy)

= tr(AyxT). (3.89)

A common instance is when A is square and x = y. We have for the quadratic
form the equality
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xTAx = tr(AxxT). (3.90)

In equation (3.90), if A is the identity I, we have that the inner product of
a vector with itself is the trace of the outer product of the vector with itself,
that is,

xTx = tr(xxT). (3.91)

Also, by letting A be the identity in equation (3.90), we have an alternative
way of showing that for a given vector x and any scalar a, the norm ‖x− a‖
is minimized when a = x̄:

(x− a)T(x− a) = tr(xcx
T
c ) + n(a− x̄)2. (3.92)

(Here, “x̄” denotes the mean of the elements in x, and “xc” is x− x̄. Compare
this with equation (2.71) on page 48.)

3.2.9 Anisometric Spaces

In Sect. 2.1, we considered various properties of vectors that depend on the
inner product, such as orthogonality of two vectors, norms of a vector, angles
between two vectors, and distances between two vectors. All of these prop-
erties and measures are invariant to the orientation of the vectors; the space
is isometric with respect to a Cartesian coordinate system. Noting that for
real vectors the inner product is the bilinear form xTIy, we have a heuristic
generalization to an anisometric space. Suppose, for example, that the scales
of the coordinates differ; say, a given distance along one axis in the natural
units of the axis is equivalent (in some sense depending on the application) to
twice that distance along another axis, again measured in the natural units of
the axis. The properties derived from the inner product, such as a norm and
a metric, may correspond to the application better if we use a bilinear form in
which the matrix reflects the different effective distances along the coordinate
axes. A diagonal matrix whose entries have relative values corresponding to
the inverses of the relative scales of the axes may be more useful. Instead of
xTy, we may use xTDy, where D is this diagonal matrix.

Rather than differences in scales being just in the directions of the co-
ordinate axes, more generally we may think of anisometries being measured
by general (but perhaps symmetric) matrices. (The covariance and correla-
tion matrices defined on page 367 come to mind.) Any such matrix to be
used in this context should be positive definite because we will generalize the
dot product, which is necessarily nonnegative, in terms of a quadratic form.
A bilinear form xTAy may correspond more closely to the properties of the
application than the standard inner product.

3.2.9.1 Conjugacy

We define orthogonality of two vectors real vectors x and y with respect
to A by
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xTAy = 0. (3.93)

In this case, we say x and y are A-conjugate.
The L2 norm of a vector is the square root of the quadratic form of the

vector with respect to the identity matrix. A generalization of the L2 vector
norm, called an elliptic norm or a conjugate norm, is defined for the vector
x as the square root of the quadratic form xTAx for any symmetric positive
definite matrix A. It is sometimes denoted by ‖x‖A:

‖x‖A =
√
xTAx. (3.94)

It is easy to see that ‖x‖A satisfies the definition of a norm given on page 25. If
A is a diagonal matrix with elements wi ≥ 0, the elliptic norm is the weighted
L2 norm of equation (2.37).

The elliptic norm yields an elliptic metric in the usual way of defining a
metric in terms of a norm. The distance between the real vectors x and y
with respect to A is

√
(x− y)TA(x− y). It is easy to see that this satisfies

the definition of a metric given on page 32.
A metric that is widely useful in statistical applications is the Mahalanobis

distance, which uses a covariance matrix as the scale for a given space. (The
sample covariance matrix is defined in equation (8.67) on page 367.) If S is
the covariance matrix, the Mahalanobis distance, with respect to that matrix,
between the vectors x and y is

√
(x− y)TS−1(x− y). (3.95)

3.2.10 Other Kinds of Matrix Multiplication

The most common kind of product of two matrices is the Cayley product,
and when we speak of matrix multiplication without qualification, we mean
the Cayley product. Three other types of matrix multiplication that are use-
ful are Hadamard multiplication, Kronecker multiplication, and inner product
multiplication.

3.2.10.1 The Hadamard Product

Hadamard multiplication is defined for matrices of the same shape as the
multiplication of each element of one matrix by the corresponding element
of the other matrix. Hadamard multiplication is often denoted by �; for two
matrices An×m and Bn×m we have

A�B =

⎡

⎢⎣
a11b11 . . . a1mb1m

... . . .
...

an1bn1 . . . anmbnm

⎤

⎥⎦ .
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Hadamard multiplication immediately inherits the commutativity, asso-
ciativity, and distribution over addition of the ordinary multiplication of the
underlying field of scalars. Hadamard multiplication is also called array mul-
tiplication and element-wise multiplication. Hadamard matrix multiplication
is a mapping

IRn×m × IRn×m → IRn×m.

The identity for Hadamard multiplication is the matrix of appropriate
shape whose elements are all 1s.

3.2.10.2 The Kronecker Product

Kronecker multiplication, denoted by ⊗, is defined for any two matrices An×m

and Bp×q as

A⊗B =

⎡

⎢⎣
a11B . . . a1mB
... . . .

...
an1B . . . anmB

⎤

⎥⎦ .

The Kronecker product of A and B is np × mq; that is, Kronecker matrix
multiplication is a mapping

IRn×m × IRp×q → IRnp×mq.

The Kronecker product is also called the “right direct product” or just
direct product. (A left direct product is a Kronecker product with the factors
reversed. In some of the earlier literature, “Kronecker product” was used to
mean a left direct product.) Note the similarity of the Kronecker product of
matrices with the direct product of sets, defined on page 5, in the sense that
the result is formed from ordered pairs of elements from the two operands.

Kronecker multiplication is not commutative, but it is associative and it
is distributive over addition, as we will see below. (Again, this parallels the
direct product of sets.)

The identity for Kronecker multiplication is the 1 × 1 matrix with the
element 1; that is, it is the same as the scalar 1.

We can understand the properties of the Kronecker product by expressing
the (i, j) element of A⊗B in terms of the elements of A and B,

(A⊗B)i,j = A�(i−1)/p�+1, �(j−1)/q�+1Bi−p�(i−1)/p�, j−q�(j−1)/q�. (3.96)

Some additional properties of Kronecker products that are immediate re-
sults of the definition are, assuming the matrices are conformable for the
indicated operations,

(aA)⊗ (bB) = ab(A⊗B)

= (abA)⊗B

= A⊗ (abB), for scalars a, b, (3.97)
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(A+B)⊗ (C) = A⊗ C +B ⊗ C, (3.98)

(A⊗B)⊗ C = A⊗ (B ⊗ C), (3.99)

(A⊗B)T = AT ⊗BT, (3.100)

(A⊗B)(C ⊗D) = AC ⊗BD. (3.101)

I ⊗A = diag(A, . . . , A). (3.102)

A⊗ I = (aijI) . (3.103)

These properties are all easy to see by using equation (3.96) to express the
(i, j) element of the matrix on either side of the equation, taking into account
the size of the matrices involved. For example, in the first equation, if A is
n×m and B is p× q, the (i, j) element on the left-hand side is

aA[(i−1)/p]+1, [(j−1)/q]+1bBi−p[(i−1)/p], j−q[(j−1)/q]

and that on the right-hand side is

abA[(i−1)/p]+1, [(j−1)/q]+1Bi−p[(i−1)/p], j−q[(j−1)/q].

They are all this easy! Hence, they are Exercise 3.6.
The determinant of the Kronecker product of two square matrices An×n

and Bm×m has a simple relationship to the determinants of the individual
matrices:

det(A⊗B) = det(A)mdet(B)n. (3.104)

The proof of this, like many facts about determinants, is straightforward but
involves tedious manipulation of cofactors. The manipulations in this case can
be facilitated by using the vec-permutation matrix. See Harville (1997) for a
detailed formal proof.

From equation (3.100) we see that the Kronecker product of symmetric
matrices is symmetric.

Another property of the Kronecker product of square matrices is

tr(A⊗B) = tr(A)tr(B). (3.105)

This is true because the trace of the product is merely the sum of all possible
products of the diagonal elements of the individual matrices.

The Kronecker product and the vec function often find uses in the same
application. For example, an n×m normal random matrixX with parameters
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M , Σ, and Ψ can be expressed in terms of an ordinary np-variate normal
random variable Y = vec(X) with parameters vec(M) and Σ⊗Ψ . (We discuss
matrix random variables briefly on page 220. For a fuller discussion, the reader
is referred to a text on matrix random variables such as Carmeli 1983, or Kollo
and von Rosen 2005.)

A useful relationship between the vec function and Kronecker multiplica-
tion is

vec(ABC) = (CT ⊗A)vec(B) (3.106)

for matrices A, B, and C that are conformable for the multiplication indicated.
This is easy to show and is left as an exercise.

3.2.10.3 The Inner Product of Matrices

An inner product of two matrices of the same shape is defined as the sum of
the dot products of the vectors formed from the columns of one matrix with
vectors formed from the corresponding columns of the other matrix; that is,
if a1, . . . , am are the columns of A and b1, . . . , bm are the columns of B, then
the inner product of A and B, denoted 〈A,B〉, is

〈A,B〉 =
m∑

j=1

〈aj , bj〉. (3.107)

Similarly as for vectors (page 23), the inner product is sometimes called a “dot
product”, and the notation A ·B is sometimes used to denote the matrix inner
product. (I generally try to avoid use of the term dot product for matrices
because the term may be used differently by different people. In Matlab, for
example, “dot product”, implemented in the dot function, can refer either to
1×m matrix consisting of the individual terms in the sum in equation (3.107),
or to the n×1 matrix consisting of the dot products of the vectors formed from
the rows of A and B. In the NumPy linear algebra package, the dot function
implements Cayley multiplication! This is probably because someone working
with Python realized the obvious fact that the defining equation of Cayley
multiplication, equation (3.43) on page 75, is actually the dot product of the
vector formed from the elements in the ith row in the first matrix and the
vector formed from the elements in the jth column in the first matrix.)

For real matrices, equation (3.107) can be written as

〈A,B〉 =
m∑

j=1

aTj bj . (3.108)

As in the case of the product of vectors, the product of matrices defined as in
equation (3.108) over the complex field is not an inner product because the
first property (on page 24 or as listed below) does not hold.

For conformable matrices A, B, and C, we can easily confirm that this
product satisfies the general properties of an inner product listed on page 24:
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• If A �= 0, 〈A,A〉 > 0, and 〈0, A〉 = 〈A, 0〉 = 〈0, 0〉 = 0.
• 〈A,B〉 = 〈B,A〉.
• 〈sA,B〉 = s〈A,B〉, for a scalar s.
• 〈(A+B), C〉 = 〈A,C〉+ 〈B,C〉.

As with any inner product (restricted to objects in the field of the reals),
its value is a real number. Thus the matrix inner product is a mapping

IRn×m × IRn×m → IR.

We see from the definition above that the inner product of real matrices
satisfies

〈A,B〉 = tr(ATB), (3.109)

which could alternatively be taken as the definition.
Rewriting the definition of 〈A,B〉 as∑m

j=1

∑n
i=1 aijbij , we see that for real

matrices
〈A,B〉 = 〈AT, BT〉. (3.110)

Like any inner product, inner products of matrices obey the Cauchy-
Schwarz inequality (see inequality (2.26), page 24),

〈A,B〉 ≤ 〈A,A〉 1
2 〈B,B〉 1

2 , (3.111)

with equality holding only if A = 0 or B = sA for some scalar s.

3.2.10.4 Orthonormal Matrices

In Sect. 2.1.8, we defined orthogonality and orthonormality of two or more
vectors in terms of inner products. We can likewise define an orthogonal binary
relationship between two matrices in terms of inner products of matrices. We
say the matrices A and B of the same shape are orthogonal to each other if

〈A,B〉 = 0. (3.112)

We also use the term “orthonormal” to refer to matrices that are orthogonal
to each other and for which each has an inner product with itself of 1. In
Sect. 3.7, we will define orthogonality as a unary property of matrices. The
term “orthogonal”, when applied to matrices, generally refers to that property
rather than the binary property we have defined here. “Orthonormal”, on the
other hand, refers to the binary property.

3.2.10.5 Orthonormal Basis: Fourier Expansion

On page 64 we identified a vector space of matrices and defined a basis for the
space IRn×m. If {U1, . . . , Uk} is a basis set for M ⊆ IRn×m with the property
that 〈Ui, Uj〉 = 0 for i �= j and 〈Ui, Ui〉 = 1, then the set is an orthonormal
basis set.
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If A is an n×m matrix, with the Fourier expansion

A =
k∑

i=1

ciUi, (3.113)

we have, analogous to equation (2.59) on page 41,

ci = 〈A, Ui〉. (3.114)

The ci have the same properties (such as the Parseval identity, equation (2.60),
for example) as the Fourier coefficients in any orthonormal expansion. Best
approximations within M can also be expressed as truncations of the sum in
equation (3.113) as in equation (2.63). The objective of course is to reduce the
truncation error, and the optimality of the Fourier expansion in this regard
discussed on page 42 holds in the matrix case as well. (The norms in Parseval’s
identity and in measuring the goodness of an approximation are matrix norms
in this case. We discuss matrix norms in Sect. 3.9 beginning on page 164.)

3.3 Matrix Rank and the Inverse of a Matrix

The linear dependence or independence of the vectors forming the rows or
columns of a matrix is an important characteristic of the matrix.

The maximum number of linearly independent vectors (those forming ei-
ther the rows or the columns) is called the rank of the matrix. We use the
notation

rank(A)

to denote the rank of the matrix A. (We have used the term “rank” before to
denote dimensionality of an array. “Rank” as we have just defined it applies
only to a matrix or to a set of vectors, and this is by far the more common
meaning of the word. The meaning is clear from the context, however.)

Because multiplication by a nonzero scalar does not change the linear
independence of vectors, for the scalar a with a �= 0, we have

rank(aA) = rank(A). (3.115)

From results developed in Sect. 2.1, we see that for the n×m matrix A,

rank(A) ≤ min(n,m). (3.116)

The rank of the zero matrix is 0, and the rank of any nonzero matrix is
positive.
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3.3.1 Row Rank and Column Rank

We have defined matrix rank in terms of numbers of linearly independent rows
or columns. This is because the number of linearly independent rows is the
same as the number of linearly independent columns. Although we may use
the terms “row rank” or “column rank”, the single word “rank” is sufficient
because they are the same. To see this, assume we have an n ×m matrix A
and that there are exactly p linearly independent rows and exactly q linearly
independent columns. We can permute the rows and columns of the matrix
so that the first p rows are linearly independent rows and the first q columns
are linearly independent and the remaining rows or columns are linearly de-
pendent on the first ones. (Recall that applying the same permutation to all
of the elements of each vector in a set of vectors does not change the linear
dependencies over the set.) After these permutations, we have a matrix B
with submatrices W , X, Y , and Z,

B =

[
Wp×q Xp×m−q

Yn−p×q Zn−p×m−q

]
, (3.117)

where the rows of R = [W |X] correspond to p linearly independent m-vectors

and the columns of C =

[
W
Y

]
correspond to q linearly independent n-vectors.

Without loss of generality, we can assume p ≤ q. Now, if p < q, it must be
the case that the columns of W are linearly dependent because there are q
of them, but they have only p elements. Therefore, there is some q-vector
a �= 0 such that Wa = 0. Now, since the rows of R are the full set of linearly
independent rows, any row in [Y |Z] can be expressed as a linear combination
of the rows of R, and any row in Y can be expressed as a linear combination
of the rows of W . This means, for some n−p × p matrix T , that Y = TW .
In this case, however, Ca = 0. But this contradicts the assumption that the
columns of C are linearly independent; therefore it cannot be the case that
p < q. We conclude therefore that p = q; that is, that the maximum number
of linearly independent rows is the same as the maximum number of linearly
independent columns.

Because the row rank, the column rank, and the rank of A are all the
same, we have

rank(A) = dim(V(A)), (3.118)

rank(AT) = rank(A), (3.119)

dim(V(AT)) = dim(V(A)). (3.120)

(Note, of course, that in general V(AT) �= V(A); the orders of the vector spaces
are possibly different.)
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3.3.2 Full Rank Matrices

If the rank of a matrix is the same as its smaller dimension, we say the matrix
is of full rank. In the case of a nonsquare matrix, we may say the matrix is
of full row rank or full column rank just to emphasize which is the smaller
number.

If a matrix is not of full rank, we say it is rank deficient and define the
rank deficiency as the difference between its smaller dimension and its rank.

A full rank matrix that is square is called nonsingular, and one that is not
nonsingular is called singular.

A square matrix that is either row or column diagonally dominant is non-
singular. The proof of this is Exercise 3.9. (It’s easy!)

A positive definite matrix is nonsingular. The proof of this is Exercise 3.10.

Later in this section, we will identify additional properties of square full
rank matrices. (For example, they have inverses and their determinants are
nonzero.)

3.3.3 Rank of Elementary Operator Matrices and Matrix
Products Involving Them

Because within any set of rows of an elementary operator matrix (see
Sect. 3.2.3), for some given column, only one of those rows contains a nonzero
element, the elementary operator matrices are all obviously of full rank (with
the proviso that a �= 0 in Ep(a)).

Furthermore, the rank of the product of any given matrix with an elemen-
tary operator matrix is the same as the rank of the given matrix. To see this,
consider each type of elementary operator matrix in turn. For a given matrix
A, the set of rows of EpqA is the same as the set of rows of A; hence, the rank
of EpqA is the same as the rank of A. Likewise, the set of columns of AEpq

is the same as the set of columns of A; hence, again, the rank of AEpq is the
same as the rank of A.

The set of rows of Ep(a)A for a �= 0 is the same as the set of rows of A,
except for one, which is a nonzero scalar multiple of the corresponding row
of A; therefore, the rank of Ep(a)A is the same as the rank of A. Likewise,
the set of columns of AEp(a) is the same as the set of columns of A, except
for one, which is a nonzero scalar multiple of the corresponding row of A;
therefore, again, the rank of AEp(a) is the same as the rank of A.

Finally, the set of rows of Epq(a)A for a �= 0 is the same as the set of
rows of A, except for one, which is a nonzero scalar multiple of some row of
A added to the corresponding row of A; therefore, the rank of Epq(a)A is the
same as the rank of A. Likewise, we conclude that the rank of AEpq(a) is the
same as the rank of A.

We therefore have that if P and Q are the products of elementary operator
matrices,
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rank(PAQ) = rank(A). (3.121)

On page 113, we will extend this result to products by any full rank matrices.

3.3.4 The Rank of Partitioned Matrices, Products of
Matrices, and Sums of Matrices

The partitioning in equation (3.117) leads us to consider partitioned matrices
in more detail.

3.3.4.1 Rank of Partitioned Matrices and Submatrices

Let the matrix A be partitioned as

A =

[
A11 A12

A21 A22

]
,

where any pair of submatrices in a column or row may be null (that is, where
for example, it may be the case that A = [A11|A12]). Then the number of
linearly independent rows of A must be at least as great as the number of
linearly independent rows of [A11|A12] and the number of linearly independent
rows of [A21|A22]. By the properties of subvectors in Sect. 2.1.1, the number
of linearly independent rows of [A11|A12] must be at least as great as the
number of linearly independent rows of A11 or A21. We could go through a
similar argument relating to the number of linearly independent columns and
arrive at the inequality

rank(Aij) ≤ rank(A). (3.122)

Furthermore, we see that

rank(A) ≤ rank([A11|A12]) + rank([A21|A22]) (3.123)

because rank(A) is the number of linearly independent columns of A, which
is less than or equal to the number of linearly independent rows of [A11|A12]
plus the number of linearly independent rows of [A12|A22]. Likewise, we have

rank(A) ≤ rank

([
A11

A21

])
+ rank

([
A12

A22

])
. (3.124)

In a similar manner, by merely counting the number of independent rows,
we see that, if

V ([A11|A12]
T
) ⊥ V ([A21|A22]

T
)
,

then
rank(A) = rank([A11|A12]) + rank([A21|A22]); (3.125)

and, if

V
([

A11

A21

])
⊥ V

([
A12

A22

])
,

then

rank(A) = rank

([
A11

A21

])
+ rank

([
A12

A22

])
. (3.126)
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3.3.4.2 An Upper Bound on the Rank of Products of Matrices

Because the columns of the productAB are linear combinations of the columns
of A, it is clear that

V(AB) ⊆ V(A). (3.127)

The rank of the product of two matrices is less than or equal to the lesser
of the ranks of the two:

rank(AB) ≤ min(rank(A), rank(B)). (3.128)

This follows from equation (3.127). We can also show this by separately con-
sidering two cases for the n × k matrix A and the k × m matrix B. In one
case, we assume k is at least as large as n and n ≤ m, and in the other case
we assume k < n ≤ m. In both cases, we represent the rows of AB as k linear
combinations of the rows of B.

From inequality (3.128), we see that the rank of a nonzero outer product
matrix (that is, a matrix formed as the outer product of two nonzero vectors)
is 1.

The bound in inequality (3.128) is sharp, as we can see by exhibiting
matrices A and B such that rank(AB) = min(rank(A), rank(B)), as you are
asked to do in Exercise 3.12a.

Inequality (3.128) provides a useful upper bound on rank(AB). In
Sect. 3.3.11, we will develop a lower bound on rank(AB).

3.3.4.3 An Upper and a Lower Bound on the Rank of Sums of
Matrices

The rank of the sum of two matrices is less than or equal to the sum of their
ranks; that is,

rank(A+B) ≤ rank(A) + rank(B). (3.129)

We can see this by observing that

A+B = [A|B]

[
I
I

]
,

and so rank(A + B) ≤ rank([A|B]) by equation (3.128), which in turn is
≤ rank(A) + rank(B) by equation (3.124).

The bound in inequality (3.129) is sharp, as we can see by exhibiting
matrices A and B such that rank(A + B) = rank(A) + rank(B), as you are
asked to do in Exercise 3.12c.

Using inequality (3.129) and the fact that rank(−B) = rank(B), we write
rank(A−B) ≤ rank(A)+rank(B), and so, replacing A in (3.129) by A+B, we
have rank(A) ≤ rank(A+B)+rank(B), or rank(A+B) ≥ rank(A)−rank(B).
By a similar procedure, we get rank(A+B) ≥ rank(B)− rank(A), or
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rank(A+B) ≥ |rank(A)− rank(B)|. (3.130)

The bound in inequality (3.130) is sharp, as we can see by exhibiting
matrices A and B such that rank(A+ B) = |rank(A) − rank(B)|, as you are
asked to do in Exercise 3.12d.

3.3.5 Full Rank Partitioning

As we saw above, the matrix W in the partitioned B in equation (3.117) is
square; in fact, it is r × r, where r is the rank of B:

B =

[
Wr×r Xr×m−r

Yn−r×r Zn−r×m−r

]
. (3.131)

This is called a full rank partitioning of B.
The matrix B in equation (3.131) has a very special property: the full set

of linearly independent rows are the first r rows, and the full set of linearly
independent columns are the first r columns.

Any rank r matrix can be put in the form of equation (3.131) by using
permutation matrices as in equation (3.57), assuming that r ≥ 1. That is, if
A is a nonzero matrix, there is a matrix of the form of B above that has the
same rank. For some permutation matrices E(π1) and E(π2),

B = E(π1)AE(π2). (3.132)

The inverses of these permutations coupled with the full rank partitioning of
B form a full rank partitioning of the original matrix A.

For a square matrix of rank r, this kind of partitioning implies that there
is a full rank r × r principal submatrix, and the principal submatrix formed
by including any of the remaining diagonal elements is singular. The princi-
pal minor formed from the full rank principal submatrix is nonzero, but if
the order of the matrix is greater than r, a principal minor formed from a
submatrix larger than r × r is zero.

The partitioning in equation (3.131) is of general interest, and we will
use this type of partitioning often. We express an equivalent partitioning of a
transformed matrix in equation (3.151) below.

The same methods as above can be used to form a full rank square subma-
trix of any order less than or equal to the rank. That is, if the n×m matrix
A is of rank r and q ≤ r, we can form

E(πr)AE(πc) =

[
Sq×q Tq×m−q

Un−q×r Vn−q×m−q

]
, (3.133)

where S is of rank q.
It is obvious that the rank of a matrix can never exceed its smaller dimen-

sion (see the discussion of linear independence on page 12). Whether or not
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a matrix has more rows than columns, the rank of the matrix is the same as
the dimension of the column space of the matrix. (As we have just seen, the
dimension of the column space is necessarily the same as the dimension of the
row space, but the order of the column space is different from the order of the
row space unless the matrix is square.)

3.3.6 Full Rank Matrices and Matrix Inverses

We have already seen that full rank matrices have some important properties.
In this section, we consider full rank matrices and matrices that are their
Cayley multiplicative inverses.

3.3.6.1 Solutions of Linear Equations

Important applications of vectors and matrices involve systems of linear equa-
tions:

a11x1 + · · ·+ a1mxm
?
= b1

...
...

...

an1x1 + · · ·+ anmxm
?
= bn

(3.134)

or
Ax

?
= b. (3.135)

In this system, A is called the coefficient matrix. An x that satisfies this
system of equations is called a solution to the system. For given A and b, a
solution may or may not exist. From equation (3.84), a solution exists if and
only if the n-vector b is in the k-dimensional column space of A, where k ≤ m.
A system for which a solution exists is said to be consistent; otherwise, it is
inconsistent.

We note that if Ax = b, for any conformable y,

yTAx = 0 ⇐⇒ yTb = 0. (3.136)

3.3.6.2 Consistent Systems

A linear system An×mx = b is consistent if and only if

rank([A | b]) = rank(A). (3.137)

We can see this following the argument above that b ∈ V(A); that is, the space
spanned by the columns of A is the same as that spanned by the columns of
A and the vector b. Therefore b must be a linear combination of the columns
of A, and furthermore, the linear combination is a solution to the system
Ax = b. (Note, of course, that it is not necessary that it be a unique linear
combination.)
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Equation (3.137) implies the equivalence of the conditions

[A | b]y = 0 for some y �= 0 ⇔ Ax = 0 for some x �= 0. (3.138)

A special case that yields equation (3.137) for any b is

rank(An×m) = n, (3.139)

and so if A is of full row rank, the system is consistent regardless of the value
of b. In this case, of course, the number of rows of A must be no greater than
the number of columns (by inequality (3.116)). A square system in which A is
nonsingular is clearly consistent. (The condition of consistency is also called
“compatibility” of the system; that is, the linear system Ax = b is said to be
compatible if it is consistent.)

A generalization of the linear system Ax = b is AX = B, where B is an
n × k matrix. This is the same as k systems Ax1 = b1, . . . , Axk = bk, where
the xi and the bi are the columns of the respective matrices. Consistency of
AX = B, as above, is the condition for a solution in X to exist, and in that
case the system is also said to be compatible.

It is clear that the system AX = B is consistent if each of the Axi = bi
systems is consistent. Furthermore, if the system is consistent, then every
linear relationship among the rows of A exists among the rows of B; that is,
for any c such that cTA = 0, then cTB = 0. To see this, let c be such that
cTA = 0. We then have cTAX = cTB = 0, and so the same linear relationship
that exists among the rows of A exists among the rows of B.

As above for Ax = b, we also see that the system AX = B is consistent if
and only if any of the following conditions hold:

V(B) ⊆ V(A) (3.140)

V([A |B]) = V(A) (3.141)

rank([A |B]) = rank(A). (3.142)

These relations imply that if AX = B is consistent, then for any con-
formable vector c,

cTA = 0 ⇐⇒ cTB = 0. (3.143)

It is clear that this condition also implies that AX = B is consistent (because
right-hand implication of the condition implies the relationship (3.140)).

We discuss methods for solving linear systems in Sect. 3.5 and in Chap. 6.
In the next section, we consider a special case of n× n (square) A when
equation (3.139) is satisfied (that is, when A is nonsingular).

3.3.6.3 Matrix Inverses

Let A be an n× n nonsingular matrix, and consider the linear systems

Axi = ei,
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where ei is the ith unit vector. For each ei, this is a consistent system by
equation (3.137).

We can represent all n such systems as

A
[
x1| · · · |xn

]
=
[
e1| · · · |en

]

or
AX = In,

and this full system must have a solution; that is, there must be an X such
that AX = In. Because AX = I, we call X a “right inverse” of A. The matrix
X must be n× n and nonsingular (because I is); hence, it also has a right
inverse, say Y , and XY = I. From AX = I, we have AXY = Y , so A = Y ,
and so finally XA = I; that is, the right inverse of A is also the “left inverse”.
We will therefore just call it the inverse of A and denote it as A−1. This is
the Cayley multiplicative inverse. Hence, for an n× n nonsingular matrix A,
we have a matrix A−1 such that

A−1A = AA−1 = In. (3.144)

The inverse of the nonsingular square matrix A is unique. (This follows from
the argument above about a “right inverse” and a “left inverse”.)

We have already encountered the idea of a matrix inverse in our discussions
of elementary transformation matrices. The matrix that performs the inverse
of the elementary operation is the inverse matrix.

From the definitions of the inverse and the transpose, we see that

(A−1)T = (AT)−1, (3.145)

and because in applications we often encounter the inverse of a transpose of
a matrix, we adopt the notation

A−T

to denote the inverse of the transpose.
In the linear system (3.135), if n = m and A is nonsingular, the solution

is
x = A−1b. (3.146)

For scalars, the combined operations of inversion and multiplication are
equivalent to the single operation of division. From the analogy with scalar op-
erations, we sometimes denote AB−1 by A/B. Because matrix multiplication
is not commutative, we often use the notation “\” to indicate the combined
operations of inversion and multiplication on the left; that is, B\A is the same
as B−1A. The solution given in equation (3.146) is also sometimes represented
as A\b.

We discuss the solution of systems of equations in Chap. 6, but here we
will point out that when we write an expression that involves computations to
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evaluate it, such as A−1b or A\b, the form of the expression does not specify
how to do the computations. This is an instance of a principle that we will
encounter repeatedly: the form of a mathematical expression and the way the
expression should be evaluated in actual practice may be quite different.

3.3.6.4 Nonsquare Full Rank Matrices: Right and Left Inverses

Suppose A is n × m and rank(A) = n; that is, n ≤ m and A is of full row
rank. Then rank([A | ei]) = rank(A), where ei is the ith unit vector of length
n; hence the system

Axi = ei

is consistent for each ei, and, as before, we can represent all n such systems
as

A
[
x1| · · · |xn

]
=
[
e1| · · · |en

]

or
AX = In.

As above, there must be an X such that AX = In, and we call X a right
inverse of A. The matrix X must be m× n and it must be of rank n (because
I is). This matrix is not necessarily the inverse of A, however, because A and
X may not be square. We denote the right inverse of A as

A−R.

Furthermore, we could only have solved the system AX if A was of full row
rank because n ≤ m and n = rank(I) = rank(AX) ≤ rank(A). To summarize,
A has a right inverse if and only if A is of full row rank.

Now, suppose A is n × m and rank(A) = m; that is, m ≤ n and A is of
full column rank. Writing Y A = Im and reversing the roles of the coefficient
matrix and the solution matrix in the argument above, we have that Y exists
and is a left inverse of A. We denote the left inverse of A as

A−L.

Also, using a similar argument as above, we see that the matrix A has a left
inverse if and only if A is of full column rank.

We also note that if AAT is of full rank, the right inverse of A is

A−R = AT(AAT)−1. (3.147)

Likewise, if ATA is of full rank, the left inverse of A is

A−L = (ATA)−1AT. (3.148)
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3.3.7 Full Rank Factorization

For a given matrix A, it is often of interest to find matrices A1, . . . , Ak such
that A1, . . . , Ak have some useful properties and A = A1 · · ·Ak. This is called
a factorization or decomposition of A. (We will usually use these two words
interchangeably; that is, by “decomposition”, we will usually mean “multi-
plicative decomposition”. Occasionally we will be interested in an additive
decomposition of a matrix, as in Cochran’s theorem, discussed on page 401
and later in Sect. 9.2.3.)

In most cases, the number of factors in A = A1 · · ·Ak is either 2 or 3.
In this chapter, we will discuss some factorizations as they arise naturally in
the development, and then in Chap. 5 we will discuss factorizations in more
detail.

The partitioning of an n × m matrix as in equation (3.131) on page 104
leads to an interesting factorization of a matrix. Recall that we had an n×m
matrix B partitioned as

B =

[
Wr×r Xr×m−r

Yn−r×r Zn−r×m−r

]
,

where r is the rank of B, W is of full rank, the rows of R = [W |X] span the

full row space of B, and the columns of C =

[
W
Y

]
span the full column space

of B.
Therefore, for some T , we have [Y |Z] = TR, and for some S, we have[

X
Z

]
= CS. From this, we have Y = TW , Z = TX, X = WS, and Z = Y S,

so Z = TWS. Since W is nonsingular, we have T = YW−1 and S = W−1X,
so Z = YW−1X.

We can therefore write the partitions as

B =

[
W X
Y YW−1X

]

=

[
I

Y W−1

]
W
[
I | W−1X

]
. (3.149)

From this, we can form two equivalent factorizations of B:

B =

[
W
Y

] [
I | W−1X

]
=

[
I

Y W−1

] [
W | X].

The matrix B has a very special property: the full set of linearly indepen-
dent rows are the first r rows, and the full set of linearly independent columns
are the first r columns. We have seen, however, that any matrix A of rank
r can be put in this form, and A = E(π2)BE(π1) for an n × n permutation
matrix E(π2) and an m×m permutation matrix E(π1).
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We therefore have, for the n × m matrix A with rank r, two equivalent
factorizations,

A =

[
Q1W
Q2Y

] [
P1 | W−1XP2

]

=

[
Q1

Q2YW−1

] [
WP1 | XP2

]
,

both of which are in the general form

An×m = Ln×r Rr×m, (3.150)

where L is of full column rank andR is of full row rank. This is called a full rank
factorization of the matrix A. We will use a full rank factorization in proving
various properties of matrices. We will consider other factorizations later in
this chapter and in Chap. 5 that have more practical uses in computations.

3.3.8 Equivalent Matrices

Matrices of the same order that have the same rank are said to be equivalent
matrices.

3.3.8.1 Equivalent Canonical Forms

For any n×mmatrix A with rank(A) = r > 0, by combining the permutations
that yield equation (3.131) with other operations, we have, for some matrices
P and Q that are products of various elementary operator matrices,

PAQ =

[
Ir 0
0 0

]
. (3.151)

This is called an equivalent canonical form of A, and it exists for any matrix
A that has at least one nonzero element (which is the same as requiring
rank(A) > 0).

We can see by construction that an equivalent canonical form exists for
any n × m matrix A that has a nonzero element. First, assume aij �= 0. By
two successive permutations, we move aij to the (1, 1) position; specifically,
(Ei1AE1j)11 = aij . We then divide the first row by aij ; that is, we form
E1(1/aij)Ei1AE1j . We then proceed with a sequence of n − 1 premultipli-
cations by axpy matrices to zero out the first column of the matrix, as in
expression (3.62), followed by a sequence of (m − 1) postmultiplications by
axpy matrices to zero out the first row. We then have a matrix of the form

⎡

⎢⎢⎢⎣

1 0 · · · 0
0
... [ X ]
0

⎤

⎥⎥⎥⎦ . (3.152)
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If X = 0, we are finished; otherwise, we perform the same kinds of operations
on the (n − 1) × (m − 1) matrix X and continue until we have the form of
equation (3.151).

The matrices P and Q in equation (3.151) are not unique. The order in
which they are built from elementary operator matrices can be very important
in preserving the accuracy of the computations.

Although the matrices P and Q in equation (3.151) are not unique, the
equivalent canonical form itself (the right-hand side) is obviously unique be-
cause the only thing that determines it, aside from the shape, is the r in Ir,
and that is just the rank of the matrix. There are two other, more general,
equivalent forms that are often of interest. These equivalent forms, “row ech-
elon form” and “Hermite form”, are not unique. A matrix R is said to be in
row echelon form, or just echelon form, if

• rij = 0 for i > j, and
• if k is such that rik �= 0 and ril = 0 for l < k, then ri+1,j = 0 for j ≤ k.

A matrix in echelon form is upper triangular. An upper triangular matrix H
is said to be in Hermite form if

• hii = 0 or 1,
• if hii = 0, then hij = 0 for all j, and
• if hii = 1, then hki = 0 for all k �= i.

If H is in Hermite form, then H2 = H, as is easily verified. (A matrix H
such that H2 = H is said to be idempotent. We discuss idempotent matrices
beginning on page 352.) Another, more specific, equivalent form, called the
Jordan form, is a special row echelon form based on eigenvalues, which we
show on page 151.

Any of these equivalent forms is useful in determining the rank of a ma-
trix. Each form may have special uses in proving properties of matrices. We
will often make use of the equivalent canonical form in other sections of this
chapter.

3.3.8.2 Products with a Nonsingular Matrix

It is easy to see that if A is a square full rank matrix (that is, A is nonsingular),
and if B and C are conformable matrices for the multiplications AB and CA,
respectively, then

rank(AB) = rank(B) (3.153)

and
rank(CA) = rank(C). (3.154)

This is true because, for a given conformable matrix B, by the inequal-
ity (3.128), we have rank(AB) ≤ rank(B). Forming B = A−1AB, and again
applying the inequality, we have rank(B) ≤ rank(AB); hence, rank(AB) =
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rank(B). Likewise, for a square full rank matrix A, we have rank(CA) =
rank(C). (Here, we should recall that all matrices are real.)

On page 113, we give a more general result for products with general full
rank matrices.

3.3.8.3 A Factorization Based on an Equivalent Canonical Form

Elementary operator matrices and products of them are of full rank and thus
have inverses. When we introduced the matrix operations that led to the
definitions of the elementary operator matrices in Sect. 3.2.3, we mentioned
the inverse operations, which would then define the inverses of the matrices.

The matrices P and Q in the equivalent canonical form of the matrix
A, PAQ in equation (3.151), have inverses. From an equivalent canonical
form of a matrix A with rank r, we therefore have the equivalent canonical
factorization of A:

A = P−1

[
Ir 0
0 0

]
Q−1. (3.155)

A factorization based on an equivalent canonical form is also a full rank fac-
torization and could be written in the same form as equation (3.150).

3.3.8.4 Equivalent Forms of Symmetric Matrices

If A is symmetric, the equivalent form in equation (3.151) can be written
as PAPT = diag(Ir, 0) and the equivalent canonical factorization of A in
equation (3.155) can be written as

A = P−1

[
Ir 0
0 0

]
P−T. (3.156)

These facts follow from the same process that yielded equation (3.151) for a
general matrix.

Also a full rank factorization for a symmetric matrix, as in equa-
tion (3.150), can be given as

A = LLT. (3.157)

3.3.9 Multiplication by Full Rank Matrices

We have seen that a matrix has an inverse if it is square and of full rank.
Conversely, it has an inverse only if it is square and of full rank. We see that
a matrix that has an inverse must be square because A−1A = AA−1, and
we see that it must be full rank by the inequality (3.128). In this section, we
consider other properties of full rank matrices. In some cases, we require the
matrices to be square, but in other cases, these properties hold whether or
not they are square.

Using matrix inverses allows us to establish important properties of prod-
ucts of matrices in which at least one factor is a full rank matrix.
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3.3.9.1 Products with a General Full Rank Matrix

If C is a full column rank matrix and if B is a matrix conformable for the
multiplication CB, then

rank(CB) = rank(B). (3.158)

To see this, consider a full rank n×m matrix C with rank(C) = m (that is,
m ≤ n) and let B be conformable for the multiplication CB. Because C is
of full column rank, it has a left inverse (see page 108); call it C−L, and so
C−LC = Im. From inequality (3.128), we have rank(CB) ≤ rank(B), and ap-
plying the inequality again, we have rank(B) = rank(C−LCB) ≤ rank(CB);
hence rank(CB) = rank(B).

If R is a full row rank matrix and if B is a matrix conformable for the
multiplication BR, then

rank(BR) = rank(B). (3.159)

To see this, consider a full rank n ×m matrix R with rank(R) = n (that is,
n ≤ m) and let B be conformable for the multiplication BR. Because R is of
full row rank, it has a right inverse; call it R−R, and so RR−R = In. From
inequality (3.128), we have rank(BR) ≤ rank(B), and applying the inequality
again, we have rank(B) = rank(BRR−L) ≤ rank(BR); hence rank(BR) =
rank(B).

To state this more simply:

• Premultiplication of a given matrix by a full column rank matrix yields a
product with the same rank as the given matrix, and postmultiplication
of a given matrix by a full row rank matrix yields a product with the same
rank as the given matrix.

From this we see that, given any matrix B, if A is a square matrix of full
rank that is compatible for the multiplication AB = D, then B and D are
equivalent matrices. (And, of course, a similar statement for postmultiplica-
tion by a full-rank matrix holds.)

Furthermore, if the matrix B is square and A is a square matrix of the
same order that is full rank, then

rank(AB) = rank(BA) = rank(B). (3.160)

3.3.9.2 Preservation of Positive Definiteness

A certain type of product of a full rank matrix and a positive definite matrix
preserves not only the rank, but also the positive definiteness: if A is n × n
and positive definite, and C is n × m and of rank m (hence, m ≤ n), then
CTAC is positive definite. (Recall from inequality (3.88) that a matrix A is
positive definite if it is symmetric and for any x �= 0, xTAx > 0.)
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To see this, assume matrices A and C as described. Let x be any m-vector
such that x �= 0, and let y = Cx. Because C is of full column rank, y �= 0. We
have

xT(CTAC)x = (Cx)TA(Cx)

= yTAy

> 0. (3.161)

Therefore, since CTAC is symmetric,

• if A is positive definite and C is of full column rank, then CTAC is positive
definite.

Furthermore, we have the converse:

• if CTAC is positive definite, then C is of full column rank,

for otherwise there exists an x �= 0 such that Cx = 0, and so xT(CTAC)x = 0.

3.3.9.3 The General Linear Group

Consider the set of all square n×n full rank matrices together with the usual
(Cayley) multiplication. As we have seen, this set is closed under multiplica-
tion. (The product of two square matrices of full rank is of full rank, and of
course the product is also square.) Furthermore, the (multiplicative) identity
is a member of this set, and each matrix in the set has a (multiplicative)
inverse in the set; therefore, the set together with the usual multiplication is
a mathematical structure called a group. (See any text on modern algebra.)
This group is called the general linear group and is denoted by GL(n). The
order of the group is n, the order of the square matrices in the group. General
group-theoretic properties can be used in the derivation of properties of these
full-rank matrices. Note that this group is not commutative.

We note that all matrices in the general linear group of order n are equiv-
alent.

As we mentioned earlier (before we had considered inverses in general), if
A is an n× n matrix and if A−1 exists, we define A0 to be In (otherwise, A0

does not exist).
The n×n elementary operator matrices are members of the general linear

group GL(n).
The elements in the general linear group are matrices and, hence, can be

viewed as transformations or operators on n-vectors. Another set of linear
operators on n-vectors are the doubletons (A, v), where A is an n × n full-
rank matrix and v is an n-vector. As an operator on x ∈ IRn, (A, v) is the
transformation Ax + v, which preserves affine spaces. Two such operators,
(A, v) and (B,w), are combined by composition: (A, v)((B,w)(x)) = ABx +
Aw+ v. The set of such doubletons together with composition forms a group,
called the affine group. It is denoted by AL(n). A subset of the elements of
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the affine group with the same first element, together with the axpy operator,
constitute a quotient space.

3.3.10 Gramian Matrices: Products of the Form ATA

Given a real matrix A, an important matrix product is ATA. (This is called
a Gramian matrix, or just a Gram matrix. We will discuss this kind of matrix
in more detail beginning on page 359. I should note here that this is not a
definition of “Gramian” or “Gram”; these terms have more general meanings,
but they do include any matrix expressible as ATA.)

We first note that AAT is a Gramian matrix, and has the same properties
as ATA with any dependencies on A being replaced with dependencies on AT.

3.3.10.1 General Properties of Gramian Matrices

Gramian matrices have several interesting properties. First of all, we note that
for any A, because

(ATA)ij = aT∗ia∗j = aT∗ja∗i = (ATA)ji (recall notation, page 600),

ATA is symmetric, and hence has all of the useful properties of symmetric
matrices. (These properties are shown in various places in this book, but
are summarized conveniently in Sect. 8.2 beginning on page 340.) Further-
more, ATA is nonnegative definite, as we see by observing that for any y,
yT(ATA)y = (Ay)T(Ay) ≥ 0.

Another interesting property of a Gramian matrix is that, for any matrices
C and D (that are conformable for the operations indicated),

CATA = DATA ⇐⇒ CAT = DAT. (3.162)

The implication from right to left is obvious, and we can see the left to right
implication by writing

(CATA−DATA)(CT −DT) = (CAT −DAT)(CAT −DAT)T,

and then observing that if the left-hand side is null, then so is the right-
hand side, and if the right-hand side is null, then CAT − DAT = 0 because
ATA = 0 =⇒ A = 0, as above.

Similarly, we have

ATAC = ATAD ⇐⇒ AC = AD. (3.163)

3.3.10.2 Rank of ATA

Consider the linear system ATAX = ATB. Suppose that c is such that
cTATA = 0. Then by (3.162), cTAT = 0, which by (3.143) on page 106, implies
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that ATAX = ATB is consistent. Letting B = I, we have that ATAX = AT

is consistent.
Now if ATAX = AT, for any conformable matrix K,

V(KTAT) = V(KTATAX).

By (3.127) on page 103, V(KTATAX) ⊆ V(KTATA) and V(KTATA) ⊆
V(KTAT); hence V(KTATA) = V(KTAT). By similar arguments applied to
the transposes we have V(ATAK) = V(AK).

With K = I, this yields

rank(ATA) = rank(A). (3.164)

In a similar manner, we have rank(AAT) = rank(A), and hence,

rank(ATA) = rank(AAT). (3.165)

It is clear from the statements above that (ATA) is of full rank if and only
if A is of full column rank.

We also see that ATA is positive definite, that is, for any y �= 0 yTATAy >
0, if and only if A is of full column rank. This follows from (3.167), and if A
is of full column rank, Ay = 0 ⇒ y = 0.

3.3.10.3 Zero Matrices and Equations Involving Gramians

First of all, for any n×m matrix A, we have the fact that ATA = 0 if and only
if A = 0. We see this by noting that if A = 0, then tr(ATA) = 0. Conversely,
if tr(ATA) = 0, then a2ij = 0 for all i, j, and so aij = 0, that is, A = 0.
Summarizing, we have

tr(ATA) = 0 ⇔ A = 0 (3.166)

and
ATA = 0 ⇔ A = 0. (3.167)

Now consider the equation ATA = 0. We have for any conformable B and
C

ATA(B − C) = 0.

Multiplying by BT − CT and factoring (BT − CT)ATA(B − C), we have

(AB −AC)T(AB −AC) = 0;

hence, from (3.167), we have AB − AC = 0. Furthermore, if AB − AC = 0,
then clearly ATA(B − C) = 0. We therefore conclude that

ATAB = ATAC ⇔ AB = AC. (3.168)

By the same argument, we have
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BATA = CATA ⇔ BAT = CAT.

From equation (3.164), we have another useful fact for Gramian matrices.
The system

ATAx = ATb (3.169)

is consistent for any A and b.

3.3.11 A Lower Bound on the Rank of a Matrix Product

Equation (3.128) gives an upper bound on the rank of the product of two
matrices; the rank cannot be greater than the rank of either of the factors.
Now, using equation (3.155), we develop a lower bound on the rank of the
product of two matrices if one of them is square.

If A is n× n (that is, square) and B is a matrix with n rows, then

rank(AB) ≥ rank(A) + rank(B)− n. (3.170)

We see this by first letting r = rank(A), letting P and Q be matrices that form
an equivalent canonical form of A (see equation (3.155)), and then forming

C = P−1

[
0 0
0 In−r

]
Q−1,

so that A+C = P−1Q−1. Because P−1 and Q−1 are of full rank, rank(C) =
rank(In−r) = n− rank(A). We now develop an upper bound on rank(B),

rank(B) = rank(P−1Q−1B)

= rank(AB + CB)

≤ rank(AB) + rank(CB), by equation (3.129)

≤ rank(AB) + rank(C), by equation (3.128)

= rank(AB) + n− rank(A),

yielding (3.170), a lower bound on rank(AB).
The inequality (3.170) is called Sylvester’s law of nullity. It provides a

lower bound on rank(AB) to go with the upper bound of inequality (3.128),
min(rank(A), rank(B)). The bound in inequality (3.170) is also sharp, as we
can see by exhibiting matrices A and B such that rank(AB) = rank(A) +
rank(B)− n, as you are asked to do in Exercise 3.12b.

3.3.12 Determinants of Inverses

From the relationship det(AB) = det(A) det(B) for square matrices men-
tioned earlier, it is easy to see that for nonsingular square A,

det(A−1) = (det(A))−1, (3.171)

and so
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• det(A) = 0 if and only if A is singular.

(From the definition of the determinant in equation (3.24), we see that the
determinant of any finite-dimensional matrix with finite elements is finite. We
implicitly assume that the elements are finite.)

For an n × n matrix with n ≥ 2 whose determinant is nonzero, from
equation (3.34) we have

A−1 =
1

det(A)
adj(A). (3.172)

If det(A) = 1, this obviously implies

A−1 = adj(A).

See Exercise 3.15 on page 179 for an interesting consequence of this.

3.3.13 Inverses of Products and Sums of Nonsingular Matrices

In linear regression analysis and other applications, we sometimes need in-
verses of various sums or products of matrices. In regression analysis, this
may be because we wish to update regression estimates based on additional
data or because we wish to delete some observations.

There is no simple relationship between the inverses of factors in a
Hadamard product and the product matrix, but there are simple relation-
ships between the inverses of factors in Cayley and Kronecker products and
the product matrices.

3.3.13.1 Inverses of Cayley Products of Matrices

The inverse of the Cayley product of two nonsingular matrices of the same
size is particularly easy to form. If A and B are square full rank matrices of
the same size,

(AB)−1 = B−1A−1. (3.173)

We can see this by multiplying B−1A−1 and (AB). This, of course, generalizes
to

(A1 · · ·An)
−1 = A−1

n · · ·A−1
1

if A1, · · · , An are all full rank and conformable.

3.3.13.2 Inverses of Kronecker Products of Matrices

If A and B are square full rank matrices, then

(A⊗B)−1 = A−1 ⊗B−1. (3.174)

We can see this by multiplying A−1 ⊗B−1 and A⊗B using equation (3.101)
on page 96.
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3.3.13.3 Inverses of Sums of Matrices and Their Inverses

The inverse of the sum of two nonsingular matrices is somewhat more com-
plicated. The first question of course is whether the sum is nonsingular. We
can develop several useful relationships of inverses of sums and the sums and
products of the individual matrices.

The simplest case to get started is I+A. Let A and I+A be nonsingular.
Then it is easy to derive (I +A)−1 by use of I = AA−1 and equation (3.173).
We get

(I +A)−1 = A−1(I +A−1)−1. (3.175)

If A and B are full rank matrices of the same size and such sums as I+A,
A + B, and so on, are full rank, the following relationships are easy to show
(and are easily proven in the order given, using equations (3.173) and (3.175);
see Exercise 3.16):

A(I +A)−1 = (I +A−1)−1, (3.176)

(A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1, (3.177)

(A+BBT)−1B = A−1B(I +BTA−1B)−1, (3.178)

(A−1 +B−1)−1 = A(A+B)−1B, (3.179)

A−A(A+B)−1A = B −B(A+B)−1B, (3.180)

A−1 +B−1 = A−1(A+B)B−1, (3.181)

(I +AB)−1 = I −A(I +BA)−1B, (3.182)

(I +AB)−1A = A(I +BA)−1. (3.183)

When A and/or B are not of full rank, the inverses may not exist, but in that
case these equations may or may not hold for a generalized inverse, which we
will discuss in Sect. 3.6.

Another simple general result, this time involving some non-square matri-
ces, is that if A is a full-rank n× n matrix, B is a full-rank m×m matrix, C
is any n×m matrix, and D is any m× n matrix such that A+ CBD is full
rank, then

(A+ CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1. (3.184)

This can be derived from equation (3.176), which is a special case of it. We
can verify this by multiplication (Exercise 3.17).
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From this it also follows that if A is a full-rank n× n matrix and b and c
are n-vectors such that (A+ bcT) is full rank, then

(A+ bcT)−1 = A−1 − A−1bcTA−1

1 + cTA−1b
. (3.185)

This fact has application in adding an observation to a least squares linear
regression problem (page 418).

3.3.13.4 An Expansion of a Matrix Inverse

There is also an analogue to the expansion of the inverse of (1−a) for a scalar
a:

(1− a)−1 = 1 + a+ a2 + a3 + · · · , if |a| < 1.

This expansion for the scalar a comes from a factorization of the binomial
1− ak and the fact that ak → 0 if |a| < 1.

To extend this to (I + A)−1 for a matrix A, we need a similar condition
on Ak as k increases without bound. In Sect. 3.9 on page 164, we will discuss
conditions that ensure the convergence of Ak for a square matrix A. We will
define a norm ‖A‖ on A and show that if ‖A‖ < 1, then Ak → 0. Then,
analogous to the scalar series, using equation (3.53) on page 78 for a square
matrix A, we have

(I −A)−1 = I +A+A2 +A3 + · · · , if ‖A‖ < 1. (3.186)

We include this equation here because of its relation to equations (3.176)
through (3.182). We will discuss it further on page 171, after we have intro-
duced and discussed ‖A‖ and other conditions that ensure convergence. This
expression and the condition that determines it are very important in the
analysis of time series and other stochastic processes.

Also, looking ahead, we have another expression similar to equa-
tions (3.176) through (3.182) and (3.186) for a special type of matrix. If
A2 = A, for any a �= −1,

(I + aA)−1 = I − a

a+ 1
A

(see page 354).

3.3.14 Inverses of Matrices with Special Forms

Matrices with various special patterns may have inverses with similar patterns.

• The inverse of a nonsingular symmetric matrix is symmetric.
• The inverse of a diagonal matrix with nonzero entries is a diagonal matrix

consisting of the reciprocals of those elements.
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• The inverse of a block diagonal matrix with nonsingular submatrices along
the diagonal is a block diagonal matrix consisting of the inverses of the
submatrices.

• The inverse of a nonsingular triangular matrix is a triangular matrix with
the same pattern; furthermore, the diagonal elements in the inverse are
the reciprocals of the diagonal elements in the original matrix.

Each of these statements can be easily proven by multiplication (using the
fact that the inverse is unique). See also Exercise 3.19 (and the hint).

The inverses of other matrices with special patterns, such as banded ma-
trices, may not have those patterns.

In Chap. 8, we discuss inverses of various other special matrices that arise
in applications in statistics.

3.3.15 Determining the Rank of a Matrix

Although the equivalent canonical form (3.151) immediately gives the rank
of a matrix, in practice the numerical determination of the rank of a matrix
is not an easy task. The problem is that rank is a mapping IRn×m → ZZ+,
where ZZ+ represents the positive integers. Such a function is often difficult to
compute because the domain is dense and the range is sparse. Small changes
in the domain may result in large discontinuous changes in the function value.
(In Hadamard’s sense, the problem is ill-posed.) The common way that the
rank of a matrix is evaluated is by use of the QR decomposition; see page 252.

It is not even always clear whether a matrix is nonsingular. Because of
rounding on the computer, a matrix that is mathematically nonsingular may
appear to be singular. We sometimes use the phrase “nearly singular” or
“algorithmically singular” to describe such a matrix. In Sects. 6.1 and 11.4,
we consider this kind of problem in more detail.

3.4 More on Partitioned Square Matrices:
The Schur Complement

A square matrix A that can be partitioned as

A =

[
A11 A12

A21 A22

]
, (3.187)

where A11 is nonsingular, has interesting properties that depend on the matrix

Z = A22 −A21A
−1
11 A12, (3.188)

which is called the Schur complement of A11 in A.
We first observe from equation (3.149) that if equation (3.187) represents

a full rank partitioning (that is, if the rank of A11 is the same as the rank of
A), then
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A =

[
A11 A12

A21 A21A
−1
11 A12

]
, (3.189)

and Z = 0.
There are other useful properties of the Schur complement, which we men-

tion below. There are also some interesting properties of certain important
random matrices partitioned in this way. For example, suppose A22 is k × k
and A is an m × m Wishart matrix with parameters n and Σ partitioned
like A in equation (3.187). (This of course means A is symmetrical, and so
A12 = AT

21.) Then Z has a Wishart distribution with parameters n −m + k
and Σ22−Σ21Σ

−1
11 Σ12, and is independent of A21 and A11. (See Exercise 4.12

on page 224 for the probability density function for a Wishart distribution.)

3.4.1 Inverses of Partitioned Matrices

Suppose A is nonsingular and can be partitioned as above with both A11 and
A22 nonsingular. It is easy to see (Exercise 3.20, page 180) that the inverse of
A is given by

A−1 =

⎡

⎣
A−1

11 +A−1
11 A12Z

−1A21A
−1
11 −A−1

11 A12Z
−1

−Z−1A21A
−1
11 Z−1

⎤

⎦ , (3.190)

where Z is the Schur complement of A11.
If

A = [X y]T [X y]

and is partitioned as in equation (3.55) on page 79 and X is of full column
rank, then the Schur complement of XTX in [X y]T [X y] is

yTy − yTX(XTX)−1XTy. (3.191)

This particular partitioning is useful in linear regression analysis (see, for ex-
ample, page 363), where this Schur complement is the residual sum of squares
and the more general Wishart distribution mentioned above reduces to a chi-
squared distribution. (Although the expression is useful, this is an instance
of a principle that we will encounter repeatedly: the form of a mathematical
expression and the way the expression should be evaluated in actual practice
may be quite different.)

3.4.2 Determinants of Partitioned Matrices

If the square matrix A is partitioned as

A =

[
A11 A12

A21 A22

]
,

and A11 is square and nonsingular, then
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det(A) = det(A11) det
(
A22 −A21A

−1
11 A12

)
; (3.192)

that is, the determinant is the product of the determinant of the principal
submatrix and the determinant of its Schur complement.

This result is obtained by using equation (3.38) on page 71 and the fac-
torization

[
A11 A12

A21 A22

]
=

[
A11 0
A21 A22 −A21A

−1
11 A12

] [
I A−1

11 A12

0 I

]
. (3.193)

The factorization in equation (3.193) is often useful in other contexts as well.

3.5 Linear Systems of Equations

Some of the most important applications of matrices are in representing and
solving systems of n linear equations in m unknowns,

Ax = b,

where A is an n × m matrix, x is an m-vector, and b is an n-vector. As
we observed in equation (3.84), the product Ax in the linear system is a
linear combination of the columns of A; that is, if aj is the jth column of A,
Ax =

∑m
j=1 xjaj .

If b = 0, the system is said to be homogeneous. In this case, unless x = 0,
the columns of A must be linearly dependent.

3.5.1 Solutions of Linear Systems

When in the linear system Ax = b, A is square and nonsingular, the solution is
obviously x = A−1b. We will not discuss this simple but common case further
here. Rather, we will discuss it in detail in Chap. 6 after we have discussed
matrix factorizations later in this chapter and in Chap. 5.

When A is not square or is singular, the system may not have a solution or
may have more than one solution. A consistent system (see equation (3.137))
has a solution. For consistent systems that are singular or not square, the
generalized inverse is an important concept. We introduce it in this section
but defer its discussion to Sect. 3.6.

3.5.1.1 Underdetermined Systems

A consistent system in which rank(A) < m is said to be underdetermined.
An underdetermined system may have fewer equations than variables, or the
coefficient matrix may just not be of full rank. For such a system there is
more than one solution. In fact, there are infinitely many solutions because if
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the vectors x1 and x2 are solutions, the vector wx1 + (1− w)x2 is likewise a
solution for any scalar w.

Underdetermined systems arise in analysis of variance in statistics, and it
is useful to have a compact method of representing the solution to the system.
It is also desirable to identify a unique solution that has some kind of optimal
properties. Below, we will discuss types of solutions and the number of linearly
independent solutions and then describe a unique solution of a particular type.

3.5.1.2 Overdetermined Systems

Often in mathematical modeling applications, the number of equations in the
system Ax = b is not equal to the number of variables; that is the coefficient
matrix A is n×m and n �= m. If n > m and rank([A | b]) > rank(A), the system
is said to be overdetermined. There is no x that satisfies such a system, but
approximate solutions are useful. We discuss approximate solutions of such
systems in Sect. 6.6 on page 289 and in Sect. 9.3.2 on page 408.

3.5.1.3 Generalized Inverses

A matrix G such that AGA = A is called a generalized inverse and is denoted
by A−:

AA−A = A. (3.194)

Note that if A is n×m, then A− is m× n. If A is nonsingular (square and of
full rank), then obviously A− = A−1.

Without additional restrictions on A, the generalized inverse is not unique.
Various types of generalized inverses can be defined by adding restrictions to
the definition of the inverse. In Sect. 3.6, we will discuss various types of
generalized inverses and show that A− exists for any n ×m matrix A. Here
we will consider some properties of any generalized inverse.

From equation (3.194), we see that

AT(A−)TAT = AT;

thus, if A− is a generalized inverse of A, then (A−)T is a generalized inverse
of AT.

The m×m square matrices A−A and (I −A−A) are often of interest. By
using the definition (3.194), we see that

(A−A)(A−A) = A−A. (3.195)

(Such a matrix is said to be idempotent. We discuss idempotent matrices
beginning on page 352.) From equation (3.128) together with the fact that
AA−A = A, we see that

rank(A−A) = rank(A). (3.196)
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By multiplication as above, we see that

A(I −A−A) = 0, (3.197)

that
(I −A−A)(A−A) = 0, (3.198)

and that (I −A−A) is also idempotent:

(I −A−A)(I −A−A) = (I −A−A). (3.199)

The fact that (A−A)(A−A) = A−A yields the useful fact that

rank(I −A−A) = m− rank(A). (3.200)

This follows from equations (3.198), (3.170), and (3.196), which yield

0 ≥ rank(I −A−A) + rank(A)−m,

and from equation (3.129), which gives

m = rank(I) ≤ rank(I −A−A) + rank(A).

The two inequalities result in the equality of equation (3.200).

3.5.1.4 Multiple Solutions in Consistent Systems

Suppose the system Ax = b is consistent and A− is a generalized inverse of
A; that is, it is any matrix such that AA−A = A. Then

x = A−b (3.201)

is a solution to the system because if AA−A = A, then AA−Ax = Ax and
since Ax = b,

AA−b = b; (3.202)

that is, A−b is a solution.
Furthermore, if x = Gb is any solution, then AGA = A; that is, G is a

generalized inverse of A. This can be seen by the following argument. Let aj
be the jth column of A. The m systems of n equations, Ax = aj , j = 1, . . . ,m,
all have solutions. (Each solution is a vector with 0s in all positions except
the jth position, which is a 1.) Now, if Gb is a solution to the original system,
then Gaj is a solution to the system Ax = aj . So AGaj = aj for all j; hence
AGA = A.

If Ax = b is consistent, not only is A−b a solution but also, for any z,

A−b+ (I −A−A)z (3.203)

is a solution because A(A−b + (I − A−A)z) = AA−b + (A − AA−A)z = b.
Furthermore, any solution to Ax = b can be represented as A−b+(I−A−A)z
for some z. This is because if y is any solution (that is, if Ay = b), we have

y = A−b−A−Ay + y = A−b− (A−A− I)y = A−b+ (I −A−A)z.

The number of linearly independent solutions arising from (I −A−A)z is
just the rank of (I −A−A), which from equation (3.200) is m− rank(A).



126 3 Basic Properties of Matrices

3.5.2 Null Space: The Orthogonal Complement

The solutions of a consistent system Ax = b, which we characterized in equa-
tion (3.203) as A−b+(I −A−A)z for any z, are formed as a given solution to
Ax = b plus all solutions to Az = 0.

For an n×m matrix A, the set of vectors generated by all solutions, z, of
the homogeneous system

Az = 0 (3.204)

is called the null space of A. We denote the null space of A by

N (A).

The null space is either the single 0 vector (in which case we say the null
space is empty or null) or it is a vector space. (It is actually a vector space in
either case, but recall our ambiguity about the null vector space, page 13.)

We see that N (A) is a vector space (if it is not empty) because the zero
vector is in N (A), and if x and y are in N (A) and a is any scalar, ax + y is
also a solution of Az = 0, and hence in N (A). We call the dimension of N (A)
the nullity of A. The nullity of A is

dim(N (A)) = rank(I −A−A)
= m− rank(A) (3.205)

from equation (3.200).
If Ax = b is consistent, any solution can be represented as A−b + z, for

some z in the null space of A, because if y is some solution, Ay = b = AA−b
from equation (3.202), and so A(y −A−b) = 0; that is, z = y −A−b is in the
null space of A. If A is nonsingular, then there is no such z, and the solution is
unique. The number of linearly independent solutions to Az = 0, is the same
as the nullity of A.

The order of N (A) is m. (Recall that the order of V(A) is n. The order of
V(AT) is m.)

If A is square, we have

N (A) ⊆ N (A2) ⊆ N (A3) ⊆ · · · (3.206)

and
V(A) ⊇ V(A2) ⊇ V(A3) ⊇ · · · . (3.207)

(We see this easily from the inequality (3.128) on page 103.)
If a is in V(AT) and b is in N (A), we have bTa = bTATx = 0. In other

words, the null space of A is orthogonal to the row space of A; that is, N (A) ⊥
V(AT). This is because ATx = a for some x, and Ab = 0 or bTAT = 0. For
any matrix B whose columns are in N (A), AB = 0, and BTAT = 0.

Because dim(N (A)) + dim(V(AT)) = m and N (A) ⊥ V(AT), by equa-
tion (2.44) we have
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N (A)⊕ V(AT) = IRm; (3.208)

that is, the null space of A is the orthogonal complement of V(AT). All vectors
in the null space of the matrix AT are orthogonal to all vectors in the column
space of A.

3.6 Generalized Inverses

On page 124, we defined a generalized inverse of a matrix A as a matrix
A− such that AA−A = A, and we observed several interesting properties of
generalized inverses. We will now consider some additional properties, after
quickly summarizing some we observed previously.

3.6.1 Immediate Properties of Generalized Inverses

Let A be an n×m matrix, and let A− be a generalized inverse of A. The prop-
erties of a generalized inverse A− derived in equations (3.195) through (3.203)
include:

• (A−)T is a generalized inverse of AT.
• rank(A−A) = rank(A).
• A−A is idempotent.
• I −A−A is idempotent.
• rank(I −A−A) = m− rank(A).

We note that if A is square (that is, n = m) and nonsingular, then A− = A−1,
and so all of these properties apply to ordinary inverses.

In this section, we will first consider some special types of generalized
inverses. Two of these special types of generalized inverses are unique. We will
then discuss some more properties of “general” generalized inverses, which are
analogous to properties of inverses. (We will call general generalized inverses
“g1 inverses”.)

3.6.2 Special Generalized Inverses: The Moore-Penrose Inverse

A generalized inverse is not unique in general. As we have seen on page 125,
a generalized inverse determines a set of linearly independent solutions to a
linear system Ax = b. We may impose other conditions on the generalized
inverse to arrive at a unique matrix that yields a solution that has some
desirable properties. If we impose three more conditions, we have a unique
matrix, denoted by A+, that yields a solution A+b that has the minimum
length of any solution to Ax = b. We define this matrix and discuss some
of its properties below, and in Sect. 6.6 we discuss properties of the solution
A+b.
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3.6.2.1 Definitions and Terminology

To the general requirement AA−A = A, we successively add three require-
ments that define special generalized inverses, sometimes called respectively
g2 or g12, g3 or g123, and g4 or g1234 inverses. The “general” generalized inverse
is sometimes called a g1 inverse. The g4 inverse is called the Moore-Penrose
inverse. As we will see below, it is unique. The terminology distinguishing the
various types of generalized inverses is not used consistently in the literature.
I will indicate some alternative terms in the definition below.

For a matrix A, a Moore-Penrose inverse, denoted by A+, is a matrix that
has the following four properties.

1. AA+A = A. Any matrix that satisfies this condition is called a gener-
alized inverse, and as we have seen above is denoted by A−. For many
applications, this is the only condition necessary. Such a matrix is also
called a g1 inverse, an inner pseudoinverse, or a conditional inverse.

2. A+AA+ = A+. A matrix A+ that satisfies this condition is called an
outer pseudoinverse. A g1 inverse that also satisfies this condition is
called a g2 inverse or reflexive generalized inverse, and is denoted by
A∗.

3. A+A is symmetric.
4. AA+ is symmetric.

The Moore-Penrose inverse is also called the pseudoinverse, the p-inverse,
and the normalized generalized inverse. (My current preferred term is “Moore-
Penrose inverse”, but out of habit, I often use the term “pseudoinverse” for this
special generalized inverse. I generally avoid using any of the other alternative
terms introduced above. I use the term “generalized inverse” to mean the
“general generalized inverse”, the g1.) The name Moore-Penrose derives from
the preliminary work of Moore (1920) and the more thorough later work of
Penrose (1955), who laid out the conditions above and proved existence and
uniqueness.

3.6.2.2 Existence

We can see by construction that the Moore-Penrose inverse exists for any
matrix A. First, if A = 0, note that A+ = 0. If A �= 0, it has a full rank
factorization, A = LR, as in equation (3.150), so LTART = LTLRRT. Be-
cause the n × r matrix L is of full column rank and the r × m matrix R is
of full row rank, LTL and RRT are both of full rank, and hence LTLRRT

is of full rank. Furthermore, LTART = LTLRRT, so it is of full rank, and
(LTART)−1 exists. Now, form RT(LTART)−1LT. By checking properties 1
through 4 above, we see that

A+ = RT(LTART)−1LT (3.209)

is a Moore-Penrose inverse of A. This expression for the Moore-Penrose inverse
based on a full rank decomposition of A is not as useful as another expres-
sion we will consider later, based on QR decomposition (equation (5.45) on
page 251).
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3.6.2.3 Uniqueness

We can see that the Moore-Penrose inverse is unique by considering any matrix
G that satisfies the properties 1 through 4 for A �= 0. (The Moore-Penrose
inverse of A = 0 (that is, A+ = 0) is clearly unique, as there could be no other
matrix satisfying property 2.) By applying the properties and using A+ given
above, we have the following sequence of equations:

G =
GAG = (GA)TG = ATGTG = (AA+A)TGTG = (A+A)TATGTG =
A+AATGTG = A+A(GA)TG = A+AGAG = A+AG = A+AA+AG =

A+(AA+)T(AG)T = A+(A+)TATGTAT = A+(A+)T(AGA)T =
A+(A+)TAT = A+(AA+)T = A+AA+

= A+.

3.6.2.4 Other Properties

Similarly to the property for inverses expressed in equation (3.145), we have

(A+)T = (AT)+. (3.210)

This is easily seen from the defining properties of the Moore-Penrose inverse.
If A is nonsingular, then obviously A+ = A−1, just as for any generalized

inverse.
Because A+ is a generalized inverse, all of the properties for a generalized

inverse A− discussed above hold; in particular, A+b is a solution to the linear
system Ax = b (see equation (3.201)). In Sect. 6.6, we will show that this
unique solution has a kind of optimality.

Moore-Penrose inverses also have a few additional interesting properties
not shared by generalized inverses; for example

(I −A+A)A+ = 0. (3.211)

3.6.2.5 Drazin Inverses

A Drazin inverse of a square matrix A is a matrix, which we will denote as
AD, such that

1. ADAAD = AD; that is, it is an outer pseudoinverse,
2. AAD = ADA, and
3. Ak+1AD = Ak for any positive integer k.

Notice that these conditions together imply that a Drazin inverse is a g1
inverse (that is, AADA = A; see the conditions for the Moore-Penrose inverse
on page 128). Because of this, a Drazin inverse satisfies most of the properties
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listed for any generalized inverse on page 127; for example, ADA is idempotent.
The first property listed there is also satisfied; that is, (AD)T is the Drazin
inverse of AT. (This does not follow just because the Drazin inverse is a
generalized inverse, however.)

Other important properties of Drazin inverses include

• AD = A−1 if A is nonsingular.
• (AD)D = A.
• For any square matrix, the Drazin inverse is unique.

These are left as exercises.
There is an interesting relationship between Drazin inverses and Moore-

Penrose inverses. If A is any square matrix, for any positive integer k, its
Drazin inverse is the matrix

AD = Ak(A2k+1)+Ak. (3.212)

Drazin inverses arise in the solutions of linear systems of differential equa-
tions. See Campbell and Meyer (1991) for further discussions of properties and
applications of Drazin inverses and of their relationship to Moore-Penrose in-
verses.

3.6.3 Generalized Inverses of Products and Sums of Matrices

We often need to perform various operations on a matrix that is expressed
as sums or products of various other matrices. Some operations are rather
simple, for example, the transpose of the sum of two matrices is the sum
of the transposes (equation (3.15)), and the transpose of the product is the
product of the transposes in reverse order (equation (3.44)). Once we know
the relationships for a single sum and a single product, we can extend those
relationships to various sums and products of more than just two matrices.

In Sect. 3.3.13, beginning on page 118, we gave a number of relationships
between inverses of sums and/or products and sums and/or products of sums.
The two basic relationships were equations (3.173) and (3.175):

(AB)−1 = B−1A−1

and
(I +A)−1 = A−1(I +A−1)−1.

These same relations hold with the inverse replaced by generalized inverses.
We can relax the conditions on nonsingularity of A, B, I + A and so on,

but because of the nonuniqueness of generalized inverses, in some cases we
must interpret the equations as “holding for some generalized inverse”.

With the relaxation on the nonsingularity of constituent matrices, equa-
tions (3.176) through (3.182) do not necessarily hold for generalized inverses
of general matrices, but some do. For example,
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A(I +A)− = (I +A−)−.

(Again, the true relationships are easily proven if taken in the order given on
page 119, and in Exercise 3.18 you are asked to determine which are true for
generalized inverses of general matrices and to prove that those are.)

3.6.4 Generalized Inverses of Partitioned Matrices

If A is partitioned as

A =

[
A11 A12

A21 A22

]
, (3.213)

then, similar to equation (3.190), a generalized inverse of A is given by

A− =

⎡

⎣
A−

11 +A−
11A12Z

−A21A
−
11 −A−

11A12Z
−

−Z−A21A
−
11 Z−

⎤

⎦ , (3.214)

where Z = A22 −A21A
−
11A12 (see Exercise 3.23, page 180).

If the inverses on the right-hand side of equation (3.214) are Moore-Penrose
inverses, then the result is the Moore-Penrose inverse of A.

If the partitioning in (3.213) happens to be such that A11 is of full rank
and of the same rank as A, a generalized inverse of A is given by

A− =

⎡

⎣
A−1

11 0

0 0

⎤

⎦ , (3.215)

where 0 represents matrices of the appropriate shapes. The generalized inverse
given in equation (3.215) is the same as the Moore-Penrose inverse given in
equation (3.209), but it is not necessarily the same generalized inverse as in
equation (3.214). The fact that it is a generalized inverse is easy to establish
by using the definition of generalized inverse and equation (3.189).

3.7 Orthogonality

In Sect. 2.1.8, we defined orthogonality and orthonormality of two or more
vectors in terms of dot products. On page 98, in equation (3.112), we also
defined the orthogonal binary relationship between two matrices. Now we
define the orthogonal unary property of a matrix. This is the more important
property and is what is commonly meant when we speak of orthogonality of
matrices. We use the orthonormality property of vectors, which is a binary
relationship, to define orthogonality of a single matrix.
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3.7.1 Orthogonal Matrices: Definition and Simple Properties

A matrix whose rows or columns constitute a set of orthonormal vectors is
said to be an orthogonal matrix. If Q is an n × m orthogonal matrix, then
QQT = In if n ≤ m, and QTQ = Im if n ≥ m. If Q is a square orthogonal
matrix, then QQT = QTQ = I.

The determinant of a square orthogonal matrix is ±1 (because the deter-
minant of the product is the product of the determinants and the determinant
of I is 1).

When n ≥ m, the matrix inner product of an n×m orthogonal matrix Q
with itself is its number of columns:

〈Q,Q〉 = m. (3.216)

This is because QTQ = Im. If n ≤ m, the matrix inner product of Q with
itself is its number of rows.

Recalling the definition of the orthogonal binary relationship from page 98,
we note that if Q is an orthogonal matrix, then Q is not orthogonal to itself
in that sense.

A permutation matrix (see page 81) is orthogonal. We can see this by
building the permutation matrix as a product of elementary permutation ma-
trices, and it is easy to see that they are all orthogonal.

One further property we see by simple multiplication is that if A and B
are orthogonal, then A⊗B is orthogonal.

The definition of orthogonality is sometimes made more restrictive to re-
quire that the matrix be square.

An Aside: Unitary Matrices
For square matrices whose elements are complex numbers, a matrix
is said to be unitary if the matrix times its conjugate transpose is
the identity; that is, if UUH = UHU = I. Transformations using
unitary matrices are analogous in many ways to transformations using
orthogonal matrices, but there are important differences.

An orthogonal matrix with real elements is also a unitary matrix.

The definition of orthogonality of vectors is the same for complex vec-
tors as it is for real vectors; in both cases, it is that the inner product
is 0. Because of our emphasis on real vectors and matrices, we often
think of orthogonality of vectors in terms of xTy, but this only applies
to real vectors. In general, x and y are orthogonal if xHy = 0, which is
the inner product. The corresponding binary relationship of orthogo-
nality for matrices, as defined in equation (3.112) on page 98, likewise
depends on an inner product, which is given in equation (3.107). The
relationship in equation (3.108) may not be correct if the elements are
not real.
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For matrices, orthogonality is both a type of binary relationship and
a unary property. The unary property of orthogonality is defined in
terms of a transpose. A matrix that is orthogonal is also unitary only
if it is real.

3.7.2 Orthogonal and Orthonormal Columns

The definition given above for orthogonal matrices is sometimes relaxed to re-
quire only that the columns or rows be orthogonal (rather than orthonormal).
If orthonormality is not required, the determinant is not necessarily ±1. If Q
is a matrix that is “orthogonal” in this weaker sense of the definition, and Q
has more rows than columns, then

QTQ =

⎡

⎢⎢⎢⎣

X 0 · · · 0
0 X · · · 0

. . .

0 0 · · · X

⎤

⎥⎥⎥⎦ .

Unless stated otherwise, I use the term “orthogonal matrix” to refer to a
matrix whose columns are orthonormal; that is, for which QTQ = I.

3.7.3 The Orthogonal Group

The set of n×m orthogonal matrices for which n ≥ m is called an (n,m) Stiefel
manifold, and an (n, n) Stiefel manifold together with Cayley multiplication
is a group, sometimes called the orthogonal group and denoted as O(n). The
orthogonal groupO(n) is a subgroup of the general linear group GL(n), defined
on page 114. The orthogonal group is useful in multivariate analysis because of
the invariance of the so-called Haar measure over this group (see Sect. 4.5.1).

Because the Euclidean norm of any column of an n×m orthogonal matrix
with n ≥ m is 1, no element in the matrix can be greater than 1 in absolute
value. We therefore have an analogue of the Bolzano-Weierstrass theorem for
sequences of orthogonal matrices. The standard Bolzano-Weierstrass theorem
for real numbers states that if a sequence ai is bounded, then there exists a
subsequence aij that converges. (See any text on real analysis.) From this, we
conclude that if Q1, Q2, . . . is a sequence of n × n orthogonal matrices, then
there exists a subsequence Qi1 , Qi2 , . . ., such that

lim
j→∞

Qij = Q, (3.217)

where Q is some fixed matrix. The limiting matrix Q must also be orthogonal
because QT

ij
Qij = I, and so, taking limits, we have QTQ = I. The set of n×n

orthogonal matrices is therefore compact.
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3.7.4 Conjugacy

Instead of defining orthogonality of vectors in terms of dot products as in
Sect. 2.1.8, we could define it more generally in terms of a bilinear form as
in Sect. 3.2.9. If the bilinear form xTAy = 0, we say x and y are orthogonal
with respect to the matrix A. We also often use a different term and say
that the vectors are conjugate with respect to A, as in equation (3.93). The
usual definition of orthogonality in terms of a dot product is equivalent to the
definition in terms of a bilinear form in the identity matrix.

Likewise, but less often, orthogonality of matrices is generalized to conju-
gacy of two matrices with respect to a third matrix: QTAQ = I.

3.8 Eigenanalysis: Canonical Factorizations

Throughout this section on eigenanalysis, we will generally implicitly assume
that the matrices we discuss are square, unless we state otherwise.

Multiplication of a given vector by a square matrix may result in a scalar
multiple of the vector. Stating this more formally, and giving names to such
a special vector and scalar, if A is an n× n (square) matrix, v is a vector not
equal to 0, and c is a scalar such that

Av = cv, (3.218)

we say v is an eigenvector of the matrix A, and c is an eigenvalue of the matrix
A. We refer to the pair c and v as an associated eigenvector and eigenvalue
or as an eigenpair.

We immediately note that if v is an eigenvector of A, then for any scalar,
b, because A(bv) = c(bv), bv is also an eigenvector of A. (We will exclude the
case b = 0, so that we do not consider the 0 vector to be an eigenvector of A.)
That is, any vector in the double cone generated by an eigenvector, except
the 0 vector, is an eigenvector (see discussion of cones, beginning on page 43).

While we restrict an eigenvector to be nonzero (or else we would have 0 as
an eigenvector associated with any number being an eigenvalue), an eigenvalue
can be 0; in that case, of course, the matrix must be singular. (Some authors
restrict the definition of an eigenvalue to real values that satisfy (3.218), and
there is an important class of matrices for which it is known that all eigenvalues
are real. In this book, we do not want to restrict ourselves to that class; hence,
we do not require c or v in equation (3.218) to be real.)

We use the term “eigenanalysis” or “eigenproblem” to refer to the gen-
eral theory, applications, or computations related to either eigenvectors or
eigenvalues.

There are various other terms used for eigenvalues and eigenvectors. An
eigenvalue is also called a characteristic value (that is why I use a “c” to
represent an eigenvalue), a latent root (that is why I also might use a “λ” to
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represent an eigenvalue), or a proper value, and similar synonyms exist for an
eigenvector. An eigenvalue is also sometimes called a singular value, but the
latter term has a different meaning that we will use in this book (see page 161;
the absolute value of an eigenvalue is a singular value, and singular values are
also defined for nonsquare matrices).

Although generally throughout this chapter we have assumed that vectors
and matrices are real, in eigenanalysis, even if A is real, it may be the case
that c and v are complex. Therefore, in this section, we must be careful about
the nature of the eigenpairs, even though we will continue to assume the basic
matrices are real.

3.8.1 Eigenvalues and Eigenvectors Are Remarkable

Before proceeding to consider properties of eigenvalues and eigenvectors, we
should note how remarkable the relationship Av = cv is.

The effect of a matrix multiplication of an eigenvector is the same as a
scalar multiplication of the eigenvector.

The eigenvector is an invariant of the transformation in the sense that its
direction does not change. This would seem to indicate that the eigenvalue
and eigenvector depend on some kind of deep properties of the matrix, and
indeed this is the case, as we will see.

Of course, the first question is, for a given matrix, do such special vectors
and scalars exist?

The answer is yes.

The next question is, for a given matrix, what is the formula for the eigen-
values (or what is a finite sequence of steps to compute the eigenvalues)?

The answer is a formula does not exist and there is no finite sequence
of steps, in general, for determining the eigenvalues (if the matrix is
bigger than 4× 4).

Before considering these and other more complicated issues, we will state
some simple properties of any scalar and vector that satisfy Av = cv and
introduce some additional terminology.

3.8.2 Left Eigenvectors

In the following, when we speak of an eigenvector or eigenpair without qual-
ification, we will mean the objects defined by equation (3.218). There is
another type of eigenvector for A, however, a left eigenvector, defined as a
nonzero w in

wTA = cwT. (3.219)

For emphasis, we sometimes refer to the eigenvector of equation (3.218), Av =
cv, as a right eigenvector.
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We see from the definition of a left eigenvector, that if a matrix is sym-
metric, each left eigenvector is an eigenvector (a right eigenvector).

If v is an eigenvector of A and w is a left eigenvector of A with a different
associated eigenvalue, then v and w are orthogonal; that is, if Av = c1v,
wTA = c2w

T, and c1 �= c2, then wTv = 0. We see this by multiplying both
sides of wTA = c2w

T by v to get wTAv = c2w
Tv and multiplying both sides

of Av = c1v by wT to get wTAv = c1w
Tv. Hence, we have c1w

Tv = c2w
Tv,

and because c1 �= c2, we have wTv = 0.

3.8.3 Basic Properties of Eigenvalues and Eigenvectors

If c is an eigenvalue and v is a corresponding eigenvector for a real matrix
A, we see immediately from the definition of eigenvector and eigenvalue in
equation (3.218) the following properties. (In Exercise 3.25, you are asked to
supply the simple proofs for these properties, or you can see the proofs in a
text such as Harville 1997, for example.)

Assume that Av = cv and that all elements of A are real.

1. bv is an eigenvector of A, where b is any nonzero scalar.
It is often desirable to scale an eigenvector v so that vTv = 1. Such
an eigenvector is also called a “unit eigenvector”, but I prefer the term
“normalized eigenvector” because of the use of the phrase “unit vector”
to refer to the special vectors ei.
For a given eigenvector, there is always a particular eigenvalue associated
with it, but for a given eigenvalue there is a space of associated eigen-
vectors. (The space is a vector space if we consider the zero vector to
be a member.) It is therefore not appropriate to speak of “the” eigen-
vector associated with a given eigenvalue—although we do use this term
occasionally. (We could interpret it as referring to the normalized eigen-
vector.) There is, however, another sense in which an eigenvalue does not
determine a unique eigenvector, as we discuss below.

2. bc is an eigenvalue of bA, where b is any nonzero scalar.
3. 1/c and v are an eigenpair of A−1 (if A is nonsingular).
4. 1/c and v are an eigenpair of A+ if A (and hence A+) is square and c is

nonzero.
5. If A is diagonal or triangular with elements aii, the eigenvalues are aii, and

for diagonal A the corresponding eigenvectors are ei (the unit vectors).
6. c2 and v are an eigenpair of A2. More generally, ck and v are an eigenpair

of Ak for k = 1, 2, . . ..
7. c − d and v are an eigenpair of A − dI. This obvious fact is useful in

computing eigenvalues (see Sect. 7.1.5).
8. If A and B are conformable for the multiplications AB and BA, the

nonzero eigenvalues of AB are the same as the nonzero eigenvalues of
BA. (Note that A and B are not necessarily square.) All of eigenvalues
are the same if A and B are square. (Note, however, that if A and B are
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square and d is an eigenvalue of B, d is not necessarily an eigenvalue of
AB.)

9. If A and B are square and of the same order and if B−1 exists, then the
eigenvalues of BAB−1 are the same as the eigenvalues of A. (This is called
a similarity transformation; see page 146.)

List continued on page 140.

3.8.3.1 Eigenvalues of Elementary Operator Matrices

For a matrix with a very simple pattern, such as a disagonal matrix, whose
determinant is just the product of the elements, we can determine the eigen-
values by inspection. For example, it is clear immediately that all eigenvalues
of the identity matrix are 1s. (Although they are all the same, we still say there
are n of them, if n is the order of the identity. Multiplicity of eigenvalues is
an important property, which we will discuss beginning on page 143.)

Because of their simple patterns, we can also easily determine the eigen-
values of elementary operator matrices, possibly by considering one or two
adjugates that arise from submatrices that are identity matrices.

The eigenvalues of the 2× 2 permutation

[
0 1
1 0

]

are just the two square roots of 1; that is, 1 and −1. From this, using partitions
of an elementary permutation matrix Epq of order n to form adjugates that are
identities, we see that the eigenvalues of an elementary permutation matrix
Epq are n− 1 1s and one −1.

With a little more effort we can determine the eigenvalues of general per-
mutation matrices. Following the preceding approach, we immediately see that
the eigenvalues of the matrix ⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦

are the three cube roots of 1, two of which contain imaginary components. In
Chap. 8, on page 388, we describe the full set of eigenvalues for a permutation
matrix in which all rows are moved.

By inspection of the determinant, we see that the eigenvalues of an
elementary row-multiplication matrix Ep(a) of order n are n − 1 1s and
one a.

Again by inspection of the determinant, we see that the eigenvalues of an
elementary axpy matrix Epq(a) of order n are n 1s, the same as the identity
itself.
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3.8.4 The Characteristic Polynomial

From the equation (A − cI)v = 0 that defines eigenvalues and eigenvectors,
we see that in order for v to be nonnull, (A− cI) must be singular, and hence

det(A− cI) = det(cI −A) = 0. (3.220)

Equation (3.220) is sometimes taken as the definition of an eigenvalue c. It is
definitely a fundamental relation, and, as we will see, allows us to identify a
number of useful properties.

For the n×nmatrix A, the determinant in equation (3.220) is a polynomial
of degree n in c, pA(c), called the characteristic polynomial, and when it is
equated to 0, it is called the characteristic equation:

pA(c) = s0 + s1c+ · · ·+ snc
n = 0. (3.221)

From the expansion of the determinant det(cI −A), as in equation (3.41)
on page 73, we see that s0 = (−1)ndet(A) and sn = 1, and, in general,
sk = (−1)n−k times the sums of all principal minors of A of order n − k.
(Note that the signs of the si are different depending on whether we use
det(cI −A) or det(A− cI).)

An eigenvalue of A is a root of the characteristic polynomial. The existence
of n roots of the polynomial (by the Fundamental Theorem of Algebra) allows
the characteristic polynomial to be written in factored form as

pA(c) = (−1)n(c− c1) · · · (c− cn), (3.222)

and establishes the existence of n eigenvalues. Some may be complex, some
may be zero, and some may be equal to others. We call the set of all eigen-
values the spectrum of the matrix. The “number of eigenvalues” must be
distinguished from the cardinality of the spectrum, which is the number of
unique values.

A real matrix may have complex eigenvalues (and, hence, eigenvectors),
just as a polynomial with real coefficients can have complex roots. Clearly, the
eigenvalues of a real matrix must occur in conjugate pairs just as in the case of
roots of polynomials with real coefficients. (As mentioned above, some authors
restrict the definition of an eigenvalue to real values that satisfy (3.218). We
will see below that the eigenvalues of a real symmetric matrix are always real,
and this is a case that we will emphasize, but in this book we do not restrict
the definition.)

The characteristic polynomial has many interesting properties. One, stated
in the Cayley-Hamilton theorem, is that the matrix itself is a root of the matrix
polynomial formed by the characteristic polynomial; that is,

pA(A) = s0I + s1A+ · · ·+ snA
n = 0n. (3.223)

We see this by using equation (3.34) to write the matrix in equation
(3.220) as
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(A− cI)adj(A− cI) = pA(c)I. (3.224)

Hence adj(A− cI) is a polynomial in c of degree less than or equal to n− 1,
so we can write it as

adj(A− cI) = B0 +B1c+ · · ·+Bn−1c
n−1,

where the Bi are n × n matrices. Now, equating the coefficients of c on the
two sides of equation (3.224), we have

AB0 = s0I

AB1 −B0 = s1I

...

ABn−1 −Bn−2 = sn−1I

Bn−1 = snI.

Now, multiply the second equation by A, the third equation by A2, and the ith

equation by Ai−1, and add all equations. We get the desired result: pA(A) = 0.
See also Exercise 3.26.

Another interesting fact is that any given nth-degree polynomial, p, is the
characteristic polynomial of an n× n matrix, A, of particularly simple form.
Consider the polynomial

p(c) = s0 + s1c+ · · ·+ sn−1c
n−1 + cn

and the matrix

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1
−s0 −s1 −s2 · · · −sn−1

⎤

⎥⎥⎥⎥⎥⎦
. (3.225)

(Note that this matrix is the same as the Jordan block (see page 78), ex-
cept that the last row of 0s is replaced with the row of coefficients of the
characteristic equation.) The matrix A is called the companion matrix of the
polynomial p, and it is easy to see (by a tedious expansion) that the char-
acteristic polynomial of A is p. This, of course, shows that a characteristic
polynomial does not uniquely determine a matrix, although the converse is
true (within signs).

3.8.4.1 Additional Properties of Eigenvalues and Eigenvectors

Using the characteristic polynomial yields the following properties. This is a
continuation of the list we began on page 136. We assume A is a real matrix
with eigenpair (c, v).
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10. c is an eigenvalue of AT (because det(AT−cI) = det(A−cI) for any c). The
eigenvectors of AT, which are left eigenvectors of A, are not necessarily
the same as the eigenvectors of A, however.

11. There is a left eigenvector such that c is the associated eigenvalue.
12. (c̄, v̄) is an eigenpair of A, where c̄ and v̄ are the complex conjugates

and A, as usual, consists of real elements. (If c and v are real, this is a
tautology.)

13. cc̄ is an eigenvalue of the Gramian matrix ATA.
14. The nonzero eigenvalues of the Gramian matrix ATA are the same as

the nonzero eigenvalues of the Gramian matrix AAT. (This is actually
property 8 on page 136.)

15. c is real if A is symmetric or if A is triangular (the elements of A are
assumed to be real, of course).

In Exercise 3.27, you are asked to supply the simple proofs for these properties,
or you can see the proofs in a text such as Harville (1997), for example.

A further comment on property 12 may be worthwhile. Throughout this
book, we assume we begin with real numbers. There are some times, however,
when standard operations in the real domain carry us outside the reals. The
simplest situations, which of course are related, are roots of polynomial equa-
tions with real coefficients and eigenpairs of matrices with real elements. In
both of these situations, because sums must be real, the complex values occur
in conjugate pairs.

There are many additional interesting properties of eigenvalues and eigen-
vectors that we will encounter in later sections, but there is one more that I
want to list here with these very basic and important properties:

16. |c| ≤ ‖A‖, where ‖ · ‖ is any consistent matrix norm.

(We will discuss matrix norms in Sect. 3.9 beginning on page 164, and this
particular bound is given in equation (3.310) in that section. In my definition
of matrix norm, all norms are required to be consistent.)

3.8.4.2 Eigenvalues and the Trace and Determinant

If the eigenvalues of the matrix A are c1, . . . , cn, because they are the roots
of the characteristic polynomial, we can readily form that polynomial as

pA(c) = (c− c1) · · · (c− cn)

= (−1)n
∏

ci + · · ·+ (−1)n−1
∑

cic
n−1 + cn. (3.226)

Because this is the same polynomial as obtained by the expansion of the
determinant in equation (3.221), the coefficients must be equal. In particular,
by simply equating the corresponding coefficients of the constant terms and
(n− 1)th-degree terms, we have the two very important facts:

det(A) =
∏

ci (3.227)
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and
tr(A) =

∑
ci. (3.228)

It might be worth recalling that we have assumed that A is real, and
therefore det(A) and tr(A) are real, but the eigenvalues ci may not be real.
Nonreal eigenvalues, however, occur in conjugate pairs (property 12 above);
hence

∏
ci and

∑
ci are real even though the individual elements may not be.

3.8.5 The Spectrum

Although, for an n × n matrix, from the characteristic polynomial we have
n roots, and hence n eigenvalues, some of these roots may be the same. It
may also be the case that more than one eigenvector corresponds to a given
eigenvalue. As we mentioned above, the set of all the distinct eigenvalues of a
matrix is called the spectrum of the matrix.

3.8.5.1 Notation

Sometimes it is convenient to refer to the distinct eigenvalues and sometimes
we wish to refer to all eigenvalues, as in referring to the number of roots of the
characteristic polynomial. To refer to the distinct eigenvalues in a way that
allows us to be consistent in the subscripts, we will call the distinct eigenvalues
λ1, . . . , λk. The set of these constitutes the spectrum.

We denote the spectrum of the matrix A by σ(A):

σ(A) = {λ1, . . . , λk}. (3.229)

We see immediately that σ(AT) = σ(A) (property 10 above).
In terms of the spectrum, equation (3.222) becomes

pA(c) = (−1)n(c− λ1)
m1 · · · (c− λk)

mk , (3.230)

for mi ≥ 1.
We label the ci and vi so that

|c1| ≥ · · · ≥ |cn|. (3.231)

We likewise label the λi so that

|λ1| > · · · > |λk|. (3.232)

With this notation, we have
|λ1| = |c1|

and
|λk| = |cn|,

but we cannot say anything about the other λs and cs.
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3.8.5.2 The Spectral Radius

For the matrix A with these eigenvalues, |c1| is called the spectral radius and
is denoted by ρ(A):

ρ(A) = max |ci| = |c1| = |λ1|. (3.233)

We immediately note that ρ(AT) = ρ(A).
The set of complex numbers

{z : |z| = ρ(A)} (3.234)

is called the spectral circle of A.
An eigenvalue equal to ±max |ci| (that is, equal to ±c1) is called a domi-

nant eigenvalue. We are more often interested in the absolute value (or mod-
ulus) of a dominant eigenvalue rather than the eigenvalue itself; that is, ρ(A)
(or |c1|) is more often of interest than c1.

Interestingly, we have for all i

|ci| ≤ max
j

∑

k

|akj | (3.235)

and
|ci| ≤ max

k

∑

j

|akj |. (3.236)

The inequalities of course also hold for ρ(A) on the left-hand side. Rather
than proving this here, we show this fact in a more general setting relating
to matrix norms in inequality (3.310) on page 171. (The two bounds above
relate to the L1 and L∞ matrix norms, respectively, as we will see.)

The spectral radius gives a very simple indication of the region in the
complex plane in which the entire spectrum lies. Consider, for example, the
matrix

A =

⎡

⎣
9 −6 1

−2 9 −5
10 −2 4

⎤

⎦ . (3.237)

(See Exercise 3.24 for comments on the origins of this matrix.)
From equation (3.235), we see that all eigenvalues are less than or equal

to 16 in modulus. In fact, the eigenvalues are σ(A) = {16, 3 + 4i, 3− 4i}, and
ρ(A) = 16.

On page 145, we will discuss other regions of the complex plane in which
all eigenvalues necessarily lie.

A matrix may have all eigenvalues equal to 0 but yet the matrix itself may
not be 0. (The matrix must be singular, however.) A nilpotent matrix (see
page 77), as well as any upper triangular matrix with all 0s on the diagonal
are examples.
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Because, as we saw on page 136, if c is an eigenvalue of A, then bc is an
eigenvalue of bA where b is any nonzero scalar, we can scale a matrix with a
nonzero eigenvalue so that its spectral radius is 1. The scaled matrix is simply
S = A/|c1|, and ρ(S) = 1.

The spectral radius, is one of the most important properties of a matrix.
As we will see in Sect. 3.9.1, it is the the Lp norm for a symmetric matrix.
From equations (3.235) and (3.236), we have seen in any event that it is
bounded from above by the L1 and L∞ matrix norms (which we will define
formally in Sect. 3.9.1), and, in fact, in equation (3.310) we will see that the
spectral radius is bounded from above by any matrix norm. We will discuss
the spectral radius further in Sects. 3.9.5 and 3.9.6. In Sect. 3.9.6 we will see
that the spectral radius determines the convergence of a matrix power series
(and this fact is related to the behavior of autoregressive processes).

3.8.5.3 Linear Independence of Eigenvectors Associated with
Distinct Eigenvalues

Suppose that {λ1, . . . , λk} is a set of distinct eigenvalues of the matrix A
and {x1, . . . , xk} is a set of eigenvectors such that (λi, xi) is an eigenpair.
Then x1, . . . , xk are linearly independent; that is, eigenvectors associated with
distinct eigenvalues are linearly independent.

We can see that this must be the case by assuming that the eigenvectors
are not linearly independent. In that case, let {y1, . . . , yj} ⊂ {x1, . . . , xk}, for
some j < k, be a maximal linearly independent subset. Let the corresponding
eigenvalues be {μ1, . . . , μj} ⊂ {λ1, . . . , λk}. Then, for some eigenvector yj+1,
we have

yj+1 =

j∑

i=1

tiyi

for some ti. Now, multiplying both sides of the equation by A−μj+1I, where
μj+1 is the eigenvalue corresponding to yj+1, we have

0 =

j∑

i=1

ti(μi − μj+1)yi.

If the eigenvalues are distinct (that is, for each i ≤ j), we have μi �= μj+1,
then the assumption that the eigenvalues are not linearly independent is con-
tradicted because otherwise we would have a linear combination with nonzero
coefficients equal to zero.

3.8.5.4 The Eigenspace and Geometric Multiplicity

Rewriting the definition (3.218) for the ith eigenvalue and associated eigen-
vector of the n× n matrix A as



144 3 Basic Properties of Matrices

(A− ciI)vi = 0, (3.238)

we see that the eigenvector vi is in N (A − ciI), the null space of (A − ciI).
For such a nonnull vector to exist, of course, (A− ciI) must be singular; that
is, rank(A− ciI) must be less than n. This null space is called the eigenspace
of the eigenvalue ci.

It is possible that a given eigenvalue may have more than one associated
eigenvector that are linearly independent of each other. For example, we eas-
ily see that the identity matrix has only one distinct eigenvalue, namely 1,
but any vector is an eigenvector, and so the number of linearly independent
eigenvectors is equal to the number of rows or columns of the identity. If u
and v are eigenvectors corresponding to the same eigenvalue λ, then any lin-
ear combination of u and v is an eigenvector corresponding to λ; that is, if
Au = λu and Av = λv, for any scalars a and b,

A(au+ bv) = λ(au+ bv).

The dimension of the eigenspace corresponding to the eigenvalue ci is
called the geometric multiplicity of ci; that is, the geometric multiplicity
of ci is the nullity of A − ciI. If gi is the geometric multiplicity of ci, an
eigenvalue of the n× n matrix A, then we can see from equation (3.205) that
rank(A− ciI) + gi = n.

The multiplicity of 0 as an eigenvalue is just the nullity of A. If A is of full
rank, the multiplicity of 0 will be 0, but, in this case, we do not consider 0 to
be an eigenvalue. If A is singular, however, we consider 0 to be an eigenvalue,
and the multiplicity of the 0 eigenvalue is the rank deficiency of A.

Multiple linearly independent eigenvectors corresponding to the same
eigenvalue can be chosen to be orthogonal to each other using, for example,
the Gram-Schmidt transformations, as in equation (2.56) on page 38. These
orthogonal eigenvectors span the same eigenspace. They are not unique, of
course, as any sequence of Gram-Schmidt transformations could be applied.

3.8.5.5 Algebraic Multiplicity

A single value that occurs as a root of the characteristic equation m times
is said to have algebraic multiplicity m. Although we sometimes refer to this
as just the multiplicity, algebraic multiplicity should be distinguished from
geometric multiplicity, defined above. These are not the same, as we will see
in an example later (page 150). The algebraic multiplicity of a given eigenvalue
is at least as great as its geometric multiplicity (exercise).

An eigenvalue whose algebraic multiplicity and geometric multiplicity are
the same is called a semisimple eigenvalue. An eigenvalue with algebraic mul-
tiplicity 1 is called a simple eigenvalue (hence, a simple eigenvalue semisimple
eigenvalue).

Because the determinant that defines the eigenvalues of an n×n matrix is
an nth-degree polynomial, we see that the sum of the multiplicities of distinct
eigenvalues is n.
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3.8.5.6 Gershgorin Disks

In addition to the spectral circle, there is a another specification of regions in
the complex plane that regions in the complex plane that contain the spectrum
of an n× n matrix A. This is the union of the n Gershgorin disks, where for
i = 1, . . . , n, the ith of which is the disk

|z − aii| ≤ ri where ri =
∑

1≤j≤n; j �=i

|aij |. (3.239)

(“Gershgorin” is often spelled as “Gerschgorin” or “Gersgorin” or even
“Geršgorin”; he was Russian.)

To see that this is the case, let (c, v) be an arbitrary eigenpair of A with v
normalized by the L∞ norm (that is, max(v) = 1). Let k be such that |vk| = 1.
Then

cvk = (Av)k =

n∑

j=1

akjvj ;

hence
(c− akk)vk =

∑

1≤j≤n; j �=k

akjvj .

Now introduce the modulus, and we get the desired inequality:

|c− akk| = |c− akk||vk|

=

∣∣∣∣∣∣

∑

1≤j≤n; j �=k

akjvj

∣∣∣∣∣∣

≤
∑

1≤j≤n; j �=k

|akj ||vj |

≤
∑

1≤j≤n; j �=k

|akj |

= rk.

We conclude that every eigenvalue lies in some similar disk; that is, the spec-
trum lies in the union of such disks.

Since σ(AT) = σ(A), using the same argument as above, we can define
another collection of n Gershgorin disks based on column sums:

|z − ajj | ≤ sj where sj =
∑

1≤i≤n; i�=j

|aij |. (3.240)

All eigenvalues of A lie within the union of these disks.
Combining the two restrictions, we see that all eigenvalues of A lie within

the intersection of these two unions of Gershgorin disks.
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3.8.6 Similarity Transformations

Two n×nmatrices, A and B, are said to be similar if there exists a nonsingular
matrix P such that

B = P−1AP. (3.241)

The transformation in equation (3.241) is called a similarity transformation.
(Compare similar matrices with equivalent matrices on page 110. The matri-
ces A and B in equation (3.241) are also equivalent, as we see using equa-
tions (3.153) and (3.154).)

It is clear from the definition that the similarity relationship is both com-
mutative and transitive.

If A and B are similar, as in equation (3.241), then for any scalar c

det(A− cI) = det(P−1)det(A− cI)det(P )

= det(P−1AP − cP−1IP )

= det(B − cI),

and, hence, A and B have the same eigenvalues. (This simple fact was stated
as property 9 on page 137.)

3.8.6.1 Orthogonally and Unitarily Similar Transformations

An important type of similarity transformation is based on an orthogonal
matrix in equation (3.241). If Q is orthogonal and

B = QTAQ, (3.242)

A and B are said to be orthogonally similar.
If B in equation (3.242) B = QTAQ is a diagonal matrix, A is said to

be orthogonally diagonalizable, and QBQT is called the orthogonally diagonal
factorization or orthogonally similar factorization of A.

The concepts of orthogonally similar and orthogonal diagonalization are
very important, but for matrices with complex entries or for real matrices
with complex eigenvalues, generalizations of the concepts based on unitary
matrices are more useful. If U is unitary and

B = UHAU, (3.243)

A and B are said to be unitarily similar. Since an orthogonal matrix is unitary,
two matrices that are orthogonally similar are also unitarily similar.

If B in equation (3.243) B = UHAU is a diagonal matrix, A is said to
be unitarily diagonalizable, and QBQT is called the unitarily diagonal factor-
ization or unitarily similar factorization of A. A matrix that is orthogonally
diagonalizable is also unitarily diagonalizable.
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We will discuss characteristics of orthogonally diagonalizable matrices in
Sects. 3.8.8 through 3.8.10 below. The significant fact that we will see there
is that a matrix is orthogonally diagonalizable if and only if it is symmetric.

We will discuss characteristics of unitarily diagonalizable matrices in
Sect. 8.2.3 on page 345. The significant fact that we will see there is that
a matrix is unitarily diagonalizable if and only if it is normal (which includes
symmetric matrices).

3.8.6.2 Uses of Similarity Transformations

Similarity transformations are very useful in establishing properties of matri-
ces, such as convergence properties of sequences (see, for example, Sect. 3.9.6).
Similarity transformations are also used in algorithms for computing eigenval-
ues (see, for example, Sect. 7.3). In an orthogonally similar factorization, the
elements of the diagonal matrix are the eigenvalues. Although the diagonals
in the upper triangular matrix of the Schur factorization are the eigenvalues,
that particular factorization is rarely used in computations.

Although similar matrices have the same eigenvalues, they do not neces-
sarily have the same eigenvectors. If A and B are similar, for some nonzero
vector v and some scalar c, Av = cv implies that there exists a nonzero vector
u such that Bu = cu, but it does not imply that u = v (see Exercise 3.29b).

3.8.7 Schur Factorization

If B in equation (3.242) is an upper triangular matrix, QBQT is called the
Schur factorization of A:

A = QBQT. (3.244)

This is also called the “Schur form” of A.
For any square matrix, the Schur factorization exists. Although the ma-

trices in the factorization are not unique, the diagonal elements of the upper
triangular matrix B are the eigenvalues of A.

There are various forms of the Schur factorization. Because in general the
eigenvalues and eigenvectors may contain imaginary components, the orthog-
onal matrices in equation (3.244) may contain imaginary components, and
furthermore, the Schur factorization is particularly useful in studying factor-
izations involving unitary matrices, we will describe the Schur factorization
that use unitary matrices.

The general form of the Schur factorization for a square matrix A is

A = UTUH, (3.245)

where U is a unitary matrix and T is an upper triangular matrix whose
diagonal entries are the eigenvalues of A.

The Schur factorization exists for any square matrix, which we can see by
induction. It clearly exists in the degenerate case of a 1×1 matrix. To see that
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it exists for any n× n matrix A, let (c, v) be an arbitrary eigenpair of A with
v normalized, and form a unitary matrix U1 with v as its first column. Let U2

be the matrix consisting of the remaining columns; that is, U1 is partitioned
as [v |U2].

UH
1 AU1 =

[
vHAv vHAU2

UH
2 Av UH

2 AU2

]

=

[
c vHAU2

0 UH
2 AU2

]

= T,

where UH
2 AU2 is an (n− 1)× (n− 1) matrix. Now the eigenvalues of UHAU

are the same as those of A; hence, if n = 2, then UH
2 AU2 is a scalar and must

equal the other eigenvalue, and so the statement is proven for a 2× 2 matrix.
We now use induction on n to establish the general case. Assume that the

factorization exists for any (n− 1)× (n− 1) matrix, and let A be any n× n
matrix. We let (c, v) be an arbitrary eigenpair of A (with v normalized), follow
the same procedure as in the preceding paragraph, and get

UH
1 AU1 =

[
c vHAU2

0 UH
2 AU2

]
.

Now, since UH
2 AU2 is an (n−1)× (n−1) matrix, by the induction hypothesis

there exists an (n−1)×(n−1) Hermitian matrix V such that V H(UH
2 AU2)V =

T1, where T1 is upper triangular. Now let

U = U1

[
1 0
0 V

]
.

By multiplication, we see that UHU = I (that is, Q is Hermitian). Now form

UHAU =

[
c vHAU2V
0 V HUH

2 AU2V

]
=

[
c vHAU2V
0 T1

]
= T.

We see that T is upper triangular because T1 is, and so by induction the Schur
factorization exists for any n× n matrix.

The steps in the induction did not necessarily involve unique choices except
for the eigenvalues on the diagonal of T .

Note that the Schur factorization is also based on unitarily similar trans-
formations, but the term “unitarily similar factorization” is generally used
only to refer to the diagonal factorization.

3.8.8 Similar Canonical Factorization: Diagonalizable Matrices

If V is a matrix whose columns correspond to the eigenvectors of A, and C
is a diagonal matrix whose entries are the eigenvalues corresponding to the
columns of V , using the definition (equation (3.218)) we can write
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AV = V C. (3.246)

Now, if V is nonsingular, we have

A = VCV −1. (3.247)

Expression (3.247) represents a diagonal factorization of the matrix A. We see
that a matrix A with eigenvalues c1, . . . , cn that can be factorized this way is
similar to the matrix diag((c1, . . . , cn)), and this representation is sometimes
called the similar canonical form of A or the similar canonical factorization
of A.

Not all matrices can be factored as in equation (3.247). It obviously de-
pends on V being nonsingular; that is, that the eigenvectors are linearly inde-
pendent. If a matrix can be factored as in (3.247), it is called a diagonalizable
matrix, a simple matrix, or a regular matrix (the terms are synonymous, and
we will generally use the term “diagonalizable”); a matrix that cannot be fac-
tored in that way is called a deficient matrix or a defective matrix (the terms
are synonymous).

Any matrix all of whose eigenvalues are unique (that is, distinct) is di-
agonalizable (because, as we saw on page 143, in that case the eigenvectors
are linearly independent), but uniqueness of the eigenvalues is not a necessary
condition.

A necessary and sufficient condition for a matrix to be diagonalizable can
be stated in terms of the unique eigenvalues and their multiplicities: suppose
for the n× n matrix A that the distinct eigenvalues λ1, . . . , λk have algebraic
multiplicities m1, . . . ,mk. If, for l = 1, . . . , k,

rank(A− λlI) = n−ml (3.248)

(that is, if all eigenvalues are semisimple), then A is diagonalizable, and this
condition is also necessary for A to be diagonalizable. This fact is called the
“diagonalizability theorem”. Recall that A being diagonalizable is equivalent
to V in AV = V C (equation (3.246)) being nonsingular.

To see that the condition is sufficient, assume, for each i, rank(A− ciI) =
n−mi, and so the equation (A− ciI)x = 0 has exactly n− (n−mi) linearly
independent solutions, which are by definition eigenvectors of A associated
with ci. (Note the somewhat complicated notation. Each ci is the same as
some λl, and for each λl, we have λl = cl1 = clml

for 1 ≤ l1 < · · · < lml
≤ n.)

Let w1, . . . , wmi
be a set of linearly independent eigenvectors associated with

ci, and let u be an eigenvector associated with cj and cj �= ci. (The vectors
w1, . . . , wmi

and u are columns of V .) We have already seen on page 143 that
u must be linearly independent of the other eigenvectors, but we can also
use a slightly different argument here. Now if u is not linearly independent of
w1, . . . , wmi

, we write u =
∑

bkwk, and so Au = A
∑

bkwk = ci
∑

bkwk =
ciu, contradicting the assumption that u is not an eigenvector associated with
ci. Therefore, the eigenvectors associated with different eigenvalues are linearly
independent, and so V is nonsingular.
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Now, to see that the condition is necessary, assume V is nonsingular; that
is, V −1 exists. Because C is a diagonal matrix of all n eigenvalues, the matrix
(C − ciI) has exactly mi zeros on the diagonal, and hence, rank(C − ciI) =
n−mi. Because V (C− ciI)V

−1 = (A− ciI), and multiplication by a full rank
matrix does not change the rank (see page 113), we have rank(A − ciI) =
n−mi.

3.8.8.1 Symmetric Matrices

A symmetric matrix is a diagonalizable matrix. We see this by first letting A
be any n× n symmetric matrix with eigenvalue c of multiplicity m. We need
to show that rank(A − cI) = n − m. Let B = A − cI, which is symmetric
because A and I are. First, we note that c is real, and therefore B is real. Let
r = rank(B). From equation (3.164), we have

rank
(
B2
)
= rank

(
BTB

)
= rank(B) = r.

In the full rank partitioning of B, there is at least one r×r principal submatrix
of full rank. The r-order principal minor in B2 corresponding to any full rank
r× r principal submatrix of B is therefore positive. Furthermore, any j-order
principal minor in B2 for j > r is zero. Now, rewriting the characteristic
polynomial in equation (3.221) slightly by attaching the sign to the variable
w, we have

pB2(w) = tn−r(−w)n−r + · · ·+ tn−1(−w)n−1 + (−w)n = 0,

where tn−j is the sum of all j-order principal minors. Because tn−r �= 0, w = 0
is a root of multiplicity n−r. It is likewise an eigenvalue of B with multiplicity
n− r. Because A = B+ cI, 0+ c is an eigenvalue of A with multiplicity n− r;
hence, m = n− r. Therefore n−m = r = rank(A− cI).

As we will see below in Sect. 3.8.10, a symmetric matrix A is not only
diagonalizable in the form (3.247), A = VCV −1, the matrix V can be chosen as
an orthogonal matrix, so we have A = UCUT. We will say that the symmetric
matrix is orthogonally diagonalizable.

3.8.8.2 A Defective Matrix

Although most matrices encountered in statistics applications are diagonal-
izable, it may be of interest to consider an example of a matrix that is not
diagonalizable. Searle (1982) gives an example of a small matrix:

A =

⎡

⎣
0 1 2
2 3 0
0 4 5

⎤

⎦ .

The three strategically placed 0s make this matrix easy to work with, and the
determinant of (cI −A) yields the characteristic polynomial equation
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c3 − 8c2 + 13c− 6 = 0.

This can be factored as (c−6)(c−1)2, hence, we have eigenvalues c1 = 6 with
algebraic multiplicity m1 = 1, and c2 = 1 with algebraic multiplicity m2 = 2.
Now, consider A− c2I:

A− I =

⎡

⎣
−1 1 2
2 2 0
0 4 4

⎤

⎦ .

This is clearly of rank 2; hence the rank of the null space of A − c2I (that
is, the geometric multiplicity of c2) is 3 − 2 = 1. The matrix A is not
diagonalizable.

3.8.8.3 The Jordan Decomposition

Although not all matrices can be diagonalized in the form of equation (3.247),
V −1AV = C = diag(ci), any square matrix A can be expressed in the form

X−1AX = diag(Jji), (3.249)

where the Jji are Jordan blocks associated with a single eigenvalue λj , of the
form

Jji(λj) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λj 1 0 · · · 0 0

0 λj 1 · · · 0 0

0 0 λj · · · 0 0

...
...

...
. . .

. . .
...

0 0 · · · 0 λj 1

0 0 · · · 0 0 λj

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

or, in the degenerate case, Jji(λj) = [λj ], where λj is a specific distinct eigen-
value (that is, λj �= λk if j �= k). (Compare this with the Jordan form of a
nilpotent matrix following equation (3.51) on page 77, in which the diagonal
elements are 0s.) If each Jordan block Jji is 1× 1, the Jordan decomposition
is a diagonal decomposition.

There are some interesting facts about the Jordan decomposition. If there
are gj Jordan blocks associated with the eigenvalue λj , then λj has geometric
multiplicity gj . The algebraic multiplicity of λj is the total number of diagonal
elements in all the Jordan blocks associated with λj ; hence, if each Jordan
block Jji is 1 × 1 then all eigenvalues are semisimple. While these two facts
appear rather profound, they are of little interest for our purposes, and we
will not give proofs. (Proofs can be found in Horn and Johnson (1991).) The
problem of computing a Jordan decomposition is ill-conditioned because slight
perturbations in the elements of A can obviously result in completely different
sets of Jordan blocks.
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3.8.9 Properties of Diagonalizable Matrices

If the matrix A has the similar canonical factorization VCV −1 of equa-
tion (3.247), some important properties are immediately apparent. First of
all, this factorization implies that the eigenvectors of a diagonalizable matrix
are linearly independent.

Other properties are easy to derive or to show because of this factorization.
For example, the general equations (3.227) and (3.228) concerning the product
and the sum of eigenvalues follow easily from

det(A) = det(VCV −1) = det(V ) det(C) det(V −1) = det(C)

and
tr(A) = tr(VCV −1) = tr(V −1VC) = tr(C).

One important fact is that the number of nonzero eigenvalues of a diago-
nalizable matrix A is equal to the rank of A. This must be the case because
the rank of the diagonal matrix C is its number of nonzero elements and the
rank of A must be the same as the rank of C. Another way of saying this is
that the sum of the multiplicities of the unique nonzero eigenvalues is equal
to the rank of the matrix; that is,

∑k
i=1 mi = rank(A), for the matrix A with

k distinct eigenvalues with multiplicities mi.

3.8.9.1 Matrix Functions

We can use the diagonal factorization (3.247) of the matrix A = VCV −1 to
define a function of the matrix that corresponds to a scalar-valued function
of a scalar, f(x),

f(A) = V diag((f(c1), . . . , f(cn)))V
−1, (3.250)

if f(·) is defined for each eigenvalue ci. (Notice the relationship of this defini-
tion to the Cayley-Hamilton theorem, page 138, and to Exercise 3.26.)

Another useful feature of the diagonal factorization of the matrix A in
equation (3.247) is that it allows us to study functions of powers of A because
Ak = VCkV −1. In particular, we may assess the convergence of a function of
a power of A,

lim
k→∞

g(k,A).

Functions defined by elementwise operations have limited applications.
Functions of real numbers that have power series expansions may be defined
for matrices in terms of power series expansions in A, which are effectively
power series in the diagonal elements of C. For example, using the power

series expansion of ex =
∑∞

k=0
xk

k! , we can define the matrix exponential for
the square matrix A as the matrix
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eA =

∞∑

k=0

Ak

k!
, (3.251)

where A0/0! is defined as I. (Recall that we did not define A0 if A is singular.)
If A is represented as VCV −1, this expansion becomes

eA = V
∞∑

k=0

Ck

k!
V −1

= V diag ((ec1 , . . . , ecn))V −1.

This is called the matrix exponential for the square matrix A.
The expression exp(A) is generally interpreted as exp(A) = (exp(aij)),

while the expression eA is interpreted as in equation (3.251), but often each
expression is used in the opposite way. As mentioned above, the standard exp

function in software systems, when evaluated for a matrix A, yields (exp(aij)).
Both R and Matlab have a function expm for the matrix exponential. (In R,
expm is in the Matrix package.)

3.8.10 Eigenanalysis of Symmetric Matrices

The eigenvalues and eigenvectors of symmetric matrices have some interesting
properties. First of all, as we have already observed, for a real symmetric
matrix, the eigenvalues are all real. We have also seen that symmetric matrices
are diagonalizable; therefore all of the properties of diagonalizable matrices
carry over to symmetric matrices.

3.8.10.1 Orthogonality of Eigenvectors: Orthogonal
Diagonalization

In the case of a symmetric matrix A, any eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal. This is easily seen by assuming that c1 and
c2 are unequal eigenvalues with corresponding eigenvectors v1 and v2. Now
consider vT1 v2. Multiplying this by c2, we get

c2v
T
1 v2 = vT1 Av2 = vT2 Av1 = c1v

T
2 v1 = c1v

T
1 v2.

Because c1 �= c2, we have vT1 v2 = 0.
Now, consider two eigenvalues ci = cj , that is, an eigenvalue of multiplicity

greater than 1 and distinct associated eigenvectors vi and vj . By what we
just saw, an eigenvector associated with ck �= ci is orthogonal to the space
spanned by vi and vj . Assume vi is normalized and apply a Gram-Schmidt
transformation to form

ṽj =
1

‖vj − 〈vi, vj〉vi‖ (vj − 〈vi, vj〉vi),
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as in equation (2.56) on page 38, yielding a vector orthogonal to vi. Now, we
have

Aṽj =
1

‖vj − 〈vi, vj〉vi‖ (Avj − 〈vi, vj〉Avi)

=
1

‖vj − 〈vi, vj〉vi‖ (cjvj − 〈vi, vj〉civi)

= cj
1

‖vj − 〈vi, vj〉vi‖ (vj − 〈vi, vj〉vi)
= cj ṽj ;

hence, ṽj is an eigenvector of A associated with cj . We conclude therefore that
the eigenvectors of a symmetric matrix can be chosen to be orthogonal.

A symmetric matrix is orthogonally diagonalizable, because the V in equa-
tion (3.247) can be chosen to be orthogonal, and can be written as

A = VCV T, (3.252)

where V V T = V TV = I, and so we also have

V TAV = C. (3.253)

Such a matrix is orthogonally similar to a diagonal matrix formed from its
eigenvalues.

Not only is a symmetric matrix orthogonally diagonalizable, any matrix
that is orthogonally diagonalizable is symmetric. This is easy to see. Suppose
B = VCV T, where V is orthogonal and C is diagonal. Then

BT = (VCV T)T = V CV T = B; (3.254)

hence, B is symmetric.

3.8.10.2 Spectral Decomposition

When A is symmetric and the eigenvectors vi are chosen to be orthonormal,

I =
∑

i

viv
T
i , (3.255)

so

A = A
∑

i

viv
T
i

=
∑

i

Aviv
T
i

=
∑

i

civiv
T
i . (3.256)
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This representation is called the spectral decomposition of the symmetric ma-
trix A. It is essentially the same as equation (3.252), so A = VCV T is also
called the spectral decomposition.

The representation is unique except for the ordering and the choice of
eigenvectors for eigenvalues with multiplicities greater than 1. If the rank of
the matrix is r, we have |c1| ≥ · · · ≥ |cr| > 0, and if r < n, then cr+1 = · · · =
cn = 0.

Note that the matrices in the spectral decomposition are projection matri-
ces that are orthogonal to each other (but they are not orthogonal matrices)
and they sum to the identity. Let

Pi = viv
T
i . (3.257)

Then we have

PiPi = Pi, (3.258)

PiPj = 0 for i �= j, (3.259)
∑

i

Pi = I, (3.260)

and the spectral decomposition,

A =
∑

i

ciPi. (3.261)

The Pi are called spectral projectors.
The spectral decomposition also applies to powers of A,

Ak =
∑

i

cki viv
T
i , (3.262)

where k is an integer. If A is nonsingular, k can be negative in the expression
above.

The spectral decomposition is one of the most important tools in working
with symmetric matrices.

Although we will not prove it here, all diagonalizable matrices have a spec-
tral decomposition in the form of equation (3.261) with projection matrices
that satisfy properties (3.258) through (3.260). These projection matrices can-
not necessarily be expressed as outer products of eigenvectors, however. The
eigenvalues and eigenvectors of a nonsymmetric matrix might not be real, the
left and right eigenvectors might not be the same, and two eigenvectors might
not be mutually orthogonal. In the spectral representation A =

∑
i ciPi, how-

ever, if cj is a simple eigenvalue with associated left and right eigenvectors yj
and xj , respectively, then the projection matrix Pj is xjy

H
j /y

H
j xj . (Note that

because the eigenvectors may not be real, we take the conjugate transpose.)
This is Exercise 3.30.
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3.8.10.3 Kronecker Products of Symmetric Matrices: Orthogonal
Diagonalization

If A and B are symmetric, then A⊗B is symmetric. (We have already men-
tioned this fact, but it is easy to see using equation (3.100) on page 96.)

Now if A and B are symmetric, we can orthogonally diagonalize them as
in equation (3.252): A = VCV T and B = UDUT. This immediately yields an
orthogonal diagonalization of the symmetric matrix A⊗B:

A⊗B = VCV T ⊗ UDUT

= (V ⊗ U)(C ⊗D)(V T ⊗ UT), (3.263)

which we obtain by using equation (3.101) twice. Using equation (3.101) again,
we have (V ⊗ U)(V T ⊗ UT) = (V V T ⊗ UUT) = I and since C ⊗D is obvi-
ously diagonal, equation (3.263) is in the orthogonally diagonalized form of
equation (3.252).

3.8.10.4 Quadratic Forms and the Rayleigh Quotient

Equation (3.256) yields important facts about quadratic forms in A. Because
V is of full rank, an arbitrary vector x can be written as V b for some vector
b. Therefore, for the quadratic form xTAx we have

xTAx = xT
∑

i

civiv
T
i x

=
∑

i

bTV Tviv
T
i V bci

=
∑

i

b2i ci.

This immediately gives the inequality

xTAx ≤ max{ci}bTb.
(Notice that max{ci} here is not necessarily c1; in the important case when
all of the eigenvalues are nonnegative, it is, however.) Furthermore, if x �= 0,
bTb = xTx, and we have the important inequality

xTAx

xTx
≤ max{ci}. (3.264)

Equality is achieved if x is the eigenvector corresponding to max{ci}, so we
have

max
x �=0

xTAx

xTx
= max{ci}. (3.265)

If c1 > 0, this is the spectral radius, ρ(A).
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The expression on the left-hand side in (3.264) as a function of x is called
the Rayleigh quotient of the symmetric matrix A and is denoted by RA(x):

RA(x) =
xTAx

xTx

=
〈x, Ax〉
〈x, x〉 . (3.266)

Because if x �= 0, xTx > 0, it is clear that the Rayleigh quotient is nonnegative
for all x if and only if A is nonnegative definite, and it is positive for all x if
and only if A is positive definite.

3.8.10.5 The Fourier Expansion

The viv
T
i matrices in equation (3.256) have the property that 〈vivTi , vjvTj 〉 = 0

for i �= j and 〈vivTi , vivTi 〉 = 1, and so the spectral decomposition is a Fourier
expansion as in equation (3.113) and the eigenvalues are Fourier coefficients.
From equation (3.114), we see that the eigenvalues can be represented as the
inner product

ci = 〈A, vivTi 〉. (3.267)

The eigenvalues ci have the same properties as the Fourier coefficients
in any orthonormal expansion. In particular, the best approximating matrices
within the subspace of n×n symmetric matrices spanned by {v1vT1 , . . . , vnvTn }
are partial sums of the form of equation (3.256). In Sect. 3.10, however, we
will develop a stronger result for approximation of matrices that does not rely
on the restriction to this subspace and which applies to general, nonsquare
matrices.

3.8.10.6 Powers of a Symmetric Matrix

If (c, v) is an eigenpair of the symmetric matrix A with vTv = 1, then for any
k = 1, 2, . . ., (

A− cvvT
)k

= Ak − ckvvT. (3.268)

This follows from induction on k, for it clearly is true for k = 1, and if for a
given k it is true that for k − 1

(
A− cvvT

)k−1
= Ak−1 − ck−1vvT,

then by multiplying both sides by (A− cvvT), we see it is true for k:

(
A− cvvT

)k
=
(
Ak−1 − ck−1vvT

)
(A− cvvT)

= Ak − ck−1vvTA− cAk−1vvT + ckvvT

= Ak − ckvvT − ckvvT + ckvvT
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= Ak − ckvvT.

There is a similar result for nonsymmetric square matrices, where w and
v are left and right eigenvectors, respectively, associated with the same eigen-
value c that can be scaled so that wTv = 1. (Recall that an eigenvalue of A
is also an eigenvalue of AT, and if w is a left eigenvector associated with the
eigenvalue c, then ATw = cw.) The only property of symmetry used above
was that we could scale vTv to be 1; hence, we just need wTv �= 0. This is
clearly true for a diagonalizable matrix (from the definition). It is also true
if c is simple (which is somewhat harder to prove). It is thus true for the
dominant eigenvalue, which is simple, in two important classes of matrices
we will consider in Sects. 8.7.2 and 8.7.3, positive matrices and irreducible
nonnegative matrices.

If w and v are left and right eigenvectors of A associated with the same
eigenvalue c and wTv = 1, then for k = 1, 2, . . .,

(
A− cvwT

)k
= Ak − ckvwT. (3.269)

We can prove this by induction as above.

3.8.10.7 The Trace and Sums of Eigenvalues

For a general n × n matrix A with eigenvalues c1, . . . , cn, we have tr(A) =∑n
i=1 ci. (This is equation (3.228).) This is particularly easy to see for sym-

metric matrices because of equation (3.252), rewritten as V TAV = C, the
diagonal matrix of the eigenvalues. For a symmetric matrix, however, we have
a stronger result.

If A is an n× n symmetric matrix with eigenvalues c1 ≥ · · · ≥ cn, and U
is an n× k orthogonal matrix, with k ≤ n, then

tr(UTAU) ≤
k∑

i=1

ci. (3.270)

To see this, we represent U in terms of the columns of V , which span IRn, as
U = V X. Hence,

tr(UTAU) = tr(XTV TAVX)

= tr(XTCX)

=

n∑

i=1

xT
i xi ci, (3.271)

where xT
i is the ith row of X.

Now XTX = XTV TV X = UTU = Ik, so either xT
i xi = 0 or xT

i xi = 1,

and
∑n

i=1 x
T
i xi = k. Because c1 ≥ · · · ≥ cn, therefore

∑n
i=1 x

T
i xi ci ≤

∑k
i=1 ci,

and so from equation (3.271) we have tr(UTAU) ≤∑k
i=1 ci.
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3.8.11 Positive Definite and Nonnegative Definite Matrices

The factorization of symmetric matrices in equation (3.252) yields some useful
properties of positive definite and nonnegative definite matrices (introduced
on page 91). We will briefly discuss these properties here and then return to
the subject in Sect. 8.3 and discuss more properties of positive definite and
nonnegative definite matrices.

3.8.11.1 Eigenvalues of Positive and Nonnegative Definite Matrices

In this book, we use the terms “nonnegative definite” and “positive definite”
only for real symmetric matrices, so the eigenvalues of nonnegative definite or
positive definite matrices are real.

Any real symmetric matrix is positive (nonnegative) definite if and only
if all of its eigenvalues are positive (nonnegative). We can see this using the
factorization (3.252) of a symmetric matrix. One factor is the diagonal matrix
C of the eigenvalues, and the other factors are orthogonal. Hence, for any x,
we have xTAx = xTVCV Tx = yTCy, where y = V Tx, and so

xTAx > (≥) 0

if and only if
yTCy > (≥) 0.

This, together with the resulting inequality (3.161) on page 114, implies
that if P is a nonsingular matrix andD is a diagonal matrix, PTDP is positive
(nonnegative) if and only if the elements of D are positive (nonnegative).

A matrix (whether symmetric or not and whether real or not) all of whose
eigenvalues have positive real parts is said to be positive stable. Positive stabil-
ity is an important property in some applications, such as numerical solution
of systems of nonlinear differential equations. Clearly, a positive definite ma-
trix is positive stable.

3.8.11.2 Inverse of Positive Definite Matrices

If A is positive definite and A = VCV T as in equation (3.252), then
A−1 = VC−1V T, and A−1 is positive definite because the elements of C−1

are positive.

3.8.11.3 Diagonalization of Positive Definite Matrices

If A is positive definite, the elements of the diagonal matrix C in equa-
tion (3.252) are positive, and so their square roots can be absorbed into V
to form a nonsingular matrix P . The diagonalization in equation (3.253),
V TAV = C, can therefore be reexpressed as

PTAP = I. (3.272)
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3.8.11.4 Square Roots of Positive and Nonnegative Definite
Matrices

The factorization (3.252) together with the nonnegativity of the eigenvalues
of positive and nonnegative definite matrices allows us to define a square root
of such a matrix.

Let A be a nonnegative definite matrix and let V and C be as in equa-
tion (3.252): A = VCV T. Now, let S be a diagonal matrix whose elements
are the nonnegative square roots of the corresponding elements of C. Then
(VSV T)2 = A; hence, we write

A
1
2 = VSV T (3.273)

and call this matrix the square root of A. This definition of the square root
of a matrix is an instance of equation (3.250) with f(x) =

√
x. We also can

similarly define A
1
r for r > 0.

We see immediately that A
1
2 is symmetric because A is symmetric.

Notice that if A = I2 (the identity) and if J =

[
0 1
1 0

]
, then J2 = A, but

by the definition, J is not a square root of A.
If A is positive definite, A−1 exists and is positive definite. It therefore has

a square root, which we denote as A− 1
2 .

The square roots are nonnegative, and so A
1
2 is nonnegative definite. Fur-

thermore, A
1
2 and A− 1

2 are positive definite if A is positive definite.
In Sect. 5.9.1, we will show that this A

1
2 is unique, so our reference to it as

the square root is appropriate. (There is occasionally some ambiguity in the
terms “square root” and “second root” and the symbols used to denote them.
If x is a nonnegative scalar, the usual meaning of its square root, denoted by√
x, is a nonnegative number, while its second roots, which may be denoted by

x
1
2 , are usually considered to be either of the numbers ±√

x. In our notation
A

1
2 , we mean the square root; that is, the nonnegative matrix, if it exists.

Otherwise, we say the square root of the matrix does not exist.)

3.8.12 Generalized Eigenvalues and Eigenvectors

The characterization of an eigenvalue as a root of the determinant equa-
tion (3.220) can be extended to define a generalized eigenvalue of the square
matrices A and B to be a root in c of the equation

det(A− cB) = 0 (3.274)

if a root exists.
Equation (3.274) is equivalent to A− cB being singular; that is, for some

c and some nonzero, finite v,

Av = cBv. (3.275)
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Such a c (if it exists) is called a generalized eigenvalue of A and B, and such
a v (if it exists) is called a generalized eigenvector of A and B. In contrast
to the existence of eigenvalues of any square matrix with finite elements, the
generalized eigenvalues of two matrices may not exist; that is, they may be
infinite. Notice that if (and only if) c is nonzero and finite, the roles of A and
B can be interchanged in equation (3.275), and the generalized eigenvalue of
B and A is 1/c.

If A and B are n × n (that is, square) and B is nonsingular, then all
n generalized eigenvalues of A and B exist (and are finite). These general-
ized eigenvalues are the eigenvalues of AB−1 or B−1A. We see this because
det(B) �= 0, and so if c0 is any of the n (finite) eigenvalues of AB−1 or B−1A,
then 0 = det(AB−1 − c0I) = det(B−1A− c0I) = det(A− c0B) = 0. Likewise,
we see that any eigenvector of AB−1 or B−1A is a generalized eigenvector of
A and B.

In the case of ordinary eigenvalues, we have seen that symmetry of the
matrix induces some simplifications. In the case of generalized eigenvalues,
symmetry together with positive definiteness also yields some useful proper-
ties, which we will discuss in Sect. 7.6.

Generalized eigenvalue problems often arise in multivariate statistical ap-
plications. Roy’s maximum root statistic, for example, is the largest general-
ized eigenvalue of two matrices that result from operations on a partitioned
matrix of sums of squares.

3.8.12.1 Matrix Pencils

As c ranges over the reals (or, more generally, the complex numbers), the set
of matrices of the form A− cB is called the matrix pencil, or just the pencil,
generated by A and B, denoted as

(A,B).

(In this definition, A and B do not need to be square.) A generalized eigenvalue
of the square matrices A and B is called an eigenvalue of the pencil.

A pencil is said to be regular if det(A− cB) is not identically 0 (assuming,
of course, that det(A − cB) is defined, meaning A and B are square). An
interesting special case of a regular pencil is when B is nonsingular. As we
have seen, in that case, eigenvalues of the pencil (A,B) exist (and are finite)
and are the same as the ordinary eigenvalues of AB−1 or B−1A, and the
ordinary eigenvectors of AB−1 or B−1A are eigenvectors of the pencil (A,B).

3.8.13 Singular Values and the Singular Value Decomposition
(SVD)

An n×m matrix A can be factored as

A = UDV T, (3.276)
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where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix, and
D is an n×m diagonal matrix with nonnegative entries. (An n×m diagonal
matrix has min(n,m) elements on the diagonal, and all other entries are zero.)

The factorization (3.276) is called the singular value decomposition (SVD)
or the canonical singular value factorization of A. The elements on the diag-
onal of D, di, are called the singular values of A.

The SVD, which is unique, as we establish below, is one of the most impor-
tant and most useful decompositions in all of matrix theory and applications.

There are min(n,m) singular values. We can rearrange the entries in D so
that d1 ≥ · · · ≥ dmin(n,m), and by rearranging the columns of U correspond-
ingly, nothing is changed.

We see that the SVD exists for any matrix by forming a square symmetric
matrix and then using the decomposition in equation (3.252) on page 154. Let
A be an n×m matrix A, and form ATA = V CV T. If n ≥ m, we have

ATA = V CV T

= V [I 0]

[
C
0

]
V T

=

[
V 0
0 I

] [
C
0

]
V T

= UDV T,

as above. Note if n = m, the 0 partitions in the matrices are nonexistent. If,
on the other hand, n < m, we form D = [C 0] and proceed as before.

This same development follows for AAT, and it is clear that the nonzero
elements of the corresponding “C” matrix are the same (or property 14 on
page 140 ensures that they are the same.)

The number of positive entries in D is the same as the rank of A. (We see
this by first recognizing that the number of nonzero entries of D is obviously
the rank of D, and multiplication by the full rank matrices U and V T yields
a product with the same rank from equations (3.158) and (3.159).)

From this development, we see that the squares of the singular values of A
are the eigenvalues of ATA and of AAT, which are necessarily nonnegative. To
state this more clearly (and using some additional facts developed previously,
including property 13 on page 140), let A be an n × m matrix with rank r,
and let d be a singular value of A. We have

• c = d2 is an eigenvalue of ATA;
• c = d2 is an eigenvalue of AAT;
• if c is a nonzero eigenvalue of ATA, then there is a singular value d of A

such that d2 = c; and
• there are r nonzero singular values of A, and r nonzero eigenvalues of ATA

and of AAT.

These relationships between singular values and eigenvalues are some of
the most important properties of singular values and the singular value de-
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composition. In particular, from these we can see that the singular value
decomposition is unique (with the same qualifications attendant to unique-
ness of eigenvalues and eigenvectors, relating to ordering of the elements and
selection of vectors corresponding to nonunique values).

An additional observation is that if A is symmetric, the singular values of
A are the absolute values of the eigenvalues of A.

From the factorization (3.276) defining the singular values, we see that

• the singular values of AT are the same as those of A.

As pointed out above, for a matrix with more rows than columns, in an
alternate definition of the singular value decomposition, the matrix U is n×m
with orthogonal columns, andD is anm×m diagonal matrix with nonnegative
entries. Likewise, for a matrix with more columns than rows, the singular value
decomposition can be defined as above but with the matrix V being m × n
with orthogonal columns and D being n × n and diagonal with nonnegative
entries.

We often partition D to separate the zero singular values. If the rank of
the matrix is r, we have d1 ≥ · · · ≥ dr > 0 (with the common indexing), and
if r < min(n,m), then dr+1 = · · · = dmin(n,m) = 0. In this case

D =

[
Dr 0
0 0

]
,

where Dr = diag((d1, . . . , dr)).

3.8.13.1 The Fourier Expansion in Terms of the Singular Value
Decomposition

From equation (3.276), we see that the general matrix A with rank r also
has a Fourier expansion, similar to equation (3.256), in terms of the singular
values and outer products of the columns of the U and V matrices:

A =

r∑

i=1

diuiv
T
i . (3.277)

This is also called a spectral decomposition. The uiv
T
i matrices in equa-

tion (3.277) have the property that 〈uiv
T
i , ujv

T
j 〉 = 0 for i �= j and

〈uiv
T
i , uiv

T
i 〉 = 1, and so the spectral decomposition is a Fourier expan-

sion as in equation (3.113), and the singular values are Fourier coefficients.
The singular values di have the same properties as the Fourier coefficients

in any orthonormal expansion. For example, from equation (3.114), we see
that the singular values can be represented as the inner product

di = 〈A, uiv
T
i 〉.
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After we have discussed matrix norms in the next section, we will formulate
Parseval’s identity for this Fourier expansion.

The spectral decomposition is a rank-one decomposition, since each of the
matrices uiv

T
i has rank one.

3.9 Matrix Norms

Norms on matrices are scalar functions of matrices with the three properties
on page 25 that define a norm in general. Matrix norms are often required
to have another property, called the consistency property, in addition to the
properties listed on page 25, which we repeat here for convenience. Assume A
and B are matrices conformable for the operations shown.

1. Nonnegativity and mapping of the identity:
if A �= 0, then ‖A‖ > 0, and ‖0‖ = 0.

2. Relation of scalar multiplication to real multiplication:
‖aA‖ = |a| ‖A‖ for real a.

3. Triangle inequality:
‖A + B‖ ≤ ‖A‖+ ‖B‖.

4. Consistency property:
‖AB‖ ≤ ‖A‖ ‖B‖.

Some people do not require the consistency property for a matrix norm. Most
useful matrix norms have the property, however, and we will consider it to be
a requirement in the definition. The consistency property for multiplication is
similar to the triangular inequality for addition.

Any function from IRn×m to IR that satisfies these four properties is a
matrix norm.

A matrix norm, as any norm, is necessarily convex. (See page 26.)
We note that the four properties of a matrix norm do not imply that it

is invariant to transposition of a matrix, and in general, ‖AT‖ �= ‖A‖. Some
matrix norms are the same for the transpose of a matrix as for the original
matrix. For instance, because of the property of the matrix inner product
given in equation (3.110), we see that a norm defined by that inner product
would be invariant to transposition.

For a square matrix A, the consistency property for a matrix norm yields

‖Ak‖ ≤ ‖A‖k (3.278)

for any positive integer k.
A matrix norm ‖·‖ is orthogonally invariant if A and B being orthogonally

similar implies ‖A‖ = ‖B‖.
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3.9.1 Matrix Norms Induced from Vector Norms

Some matrix norms are defined in terms of vector norms. For clarity, we will
denote a vector norm as ‖ · ‖v and a matrix norm as ‖ · ‖M. (This notation is
meant to be generic; that is, ‖·‖v represents any vector norm.) For the matrix
A ∈ IRn×m, the matrix norm ‖ · ‖M induced by ‖ · ‖v is defined by

‖A‖M = max
x �=0

‖Ax‖v
‖x‖v . (3.279)

(Note that there are some minor subtleties here; Ax ∈ IRn while x ∈ IRm, so
the two vector norms are actually different. Of course, in practice, an induced
norm is defined in terms of vector norms of the same “type”, for example Lp

norms with the same p.)
An induced matrix norm is also sometimes called an operator norm.
It is easy to see that an induced norm is indeed a matrix norm. The first

three properties of a norm are immediate, and the consistency property can
be verified by applying the definition (3.279) to AB and replacing Bx with y;
that is, using Ay.

We usually drop the v or M subscript, and the notation ‖ · ‖ is overloaded
to mean either a vector or matrix norm. (Overloading of symbols occurs in
many contexts, and we usually do not even recognize that the meaning is
context-dependent. In computer language design, overloading must be recog-
nized explicitly because the language specifications must be explicit.)

The induced norm of A given in equation (3.279) is sometimes called the
maximum magnification by A. The expression looks very similar to the max-
imum eigenvalue, and indeed it is in some cases.

For any vector norm and its induced matrix norm, we see from equa-
tion (3.279) that

‖Ax‖ ≤ ‖A‖ ‖x‖ (3.280)

because ‖x‖ ≥ 0.

3.9.1.1 Lp Matrix Norms

The matrix norms that correspond to the Lp vector norms are defined for the
n×m matrix A as

‖A‖p = max
‖x‖p=1

‖Ax‖p. (3.281)

(Notice that the restriction on ‖x‖p makes this an induced norm as defined
in equation (3.279). Notice also the overloading of the symbols; the norm on
the left that is being defined is a matrix norm, whereas those on the right of
the equation are vector norms.) It is clear that the Lp matrix norms satisfy
the consistency property, because they are induced norms.

The L1 and L∞ norms have interesting simplifications of equation (3.279):
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‖A‖1 = max
j

∑

i

|aij |, (3.282)

so the L1 is also called the column-sum norm; and

‖A‖∞ = max
i

∑

j

|aij |, (3.283)

so the L∞ is also called the row-sum norm. We see these relationships by
considering the Lp norm of the vector

v = (aT1∗x, . . . , a
T
n∗x),

where ai∗ is the ith row of A, with the restriction that ‖x‖p = 1. The Lp

norm of this vector is based on the absolute values of the elements; that is,
|∑j aijxj | for i = 1, . . . , n. Because we are free to choose x (subject to the
restriction that ‖x‖p = 1), for a given i, we can choose the sign of each xj to
maximize the overall expression. For example, for a fixed i, we can choose each
xj to have the same sign as aij , and so |∑j aijxj | is the same as

∑
j |aij | |xj |.

For the column-sum norm, the L1 norm of v is
∑

i |aTi∗x|. The elements
of x are chosen to maximize this under the restriction that

∑ |xj | = 1. The
maximum of the expression is attained by setting xk = sign(

∑
i aik), where k

is such that |∑i aik| ≥ |∑i aij |, for j = 1, . . . ,m, and xq = 0 for q = 1, . . .m
and q �= k. (If there is no unique k, any choice will yield the same result.)
This yields equation (3.282).

For the row-sum norm, the L∞ norm of v is

max
i

|aTi∗x| = max
i

∑

j

|aij | |xj |

when the sign of xj is chosen appropriately (for a given i). The elements of
x must be chosen so that max |xj | = 1; hence, each xj is chosen as ±1. The
maximum |aTi∗x| is attained by setting xj = sign(akj), for j = 1, . . .m, where k
is such that

∑
j |akj | ≥

∑
j |aij |, for i = 1, . . . , n. This yields equation (3.283).

From equations (3.282) and (3.283), we see that

‖AT‖∞ = ‖A‖1. (3.284)

Alternative formulations of the L2 norm of a matrix are not so obvious
from equation (3.281). It is related to the eigenvalues (or the singular values)
of the matrix. The L2 matrix norm is related to the spectral radius (page 142):

‖A‖2 =
√

ρ(ATA), (3.285)

(see Exercise 3.34, page 182). Because of this relationship, the L2 matrix norm
is also called the spectral norm.
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From the invariance of the singular values to matrix transposition, we
see that positive eigenvalues of ATA are the same as those of AAT; hence,
‖AT‖2 = ‖A‖2.

For Q orthogonal, the L2 vector norm has the important property

‖Qx‖2 = ‖x‖2 (3.286)

(see Exercise 3.35a, page 182). For this reason, an orthogonal matrix is some-
times called an isometric matrix. By the proper choice of x, it is easy to see
from equation (3.286) that

‖Q‖2 = 1. (3.287)

Also from this we see that if A and B are orthogonally similar, then ‖A‖2 =
‖B‖2; hence, the spectral matrix norm is orthogonally invariant.

The L2 matrix norm is a Euclidean-type norm since it is induced by the
Euclidean vector norm (but it is not called the Euclidean matrix norm; see
below).

3.9.1.2 L1, L2, and L∞ Norms of Symmetric Matrices

For a symmetric matrix A, we have the obvious relationships

‖A‖1 = ‖A‖∞ (3.288)

and, from equation (3.285),

‖A‖2 = ρ(A). (3.289)

3.9.2 The Frobenius Norm—The “Usual” Norm

The Frobenius norm is defined as

‖A‖F =

√∑

i,j

a2ij . (3.290)

It is easy to see that this measure has the consistency property (Exercise 3.37),
as a norm must. The Frobenius norm is sometimes called the Euclidean matrix
norm and denoted by ‖ · ‖E, although the L2 matrix norm is more directly
based on the Euclidean vector norm, as we mentioned above. We will usually
use the notation ‖ · ‖F to denote the Frobenius norm. Occasionally we use
‖ · ‖ without the subscript to denote the Frobenius norm, but usually the
symbol without the subscript indicates that any norm could be used in the
expression. The Frobenius norm is also often called the “usual norm”, which
emphasizes the fact that it is one of the most useful matrix norms. Other
names sometimes used to refer to the Frobenius norm are Hilbert-Schmidt
norm and Schur norm.
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From the definition, we have ‖AT‖F = ‖A‖F. We have seen that the L2

matrix norm also has this property.
Another important property of the Frobenius norm that is obvious from

the definition is

‖A‖F =
√

tr(ATA) (3.291)

=
√

〈A,A〉; (3.292)

that is,

• the Frobenius norm is the norm that arises from the matrix inner product
(see page 97).

The complete vector space IRn×m with the Frobenius norm is therefore a
Hilbert space.

Another thing worth noting for a square A is the relationship of the Frobe-
nius norm to the eigenvalues ci of A:

‖A‖F =
√∑

cic̄i, (3.293)

and if A is also symmetric,

‖A‖F =
√∑

c2i , (3.294)

These follow from equation (3.291) and equation (3.228) on page 141.
Similar to defining the angle between two vectors in terms of the inner

product and the norm arising from the inner product, we define the angle
between two matrices A and B of the same size and shape as

angle(A,B) = cos−1

( 〈A,B〉
‖A‖F‖B‖F

)
. (3.295)

If Q is an n×m orthogonal matrix, then

‖Q‖F =
√
m (3.296)

(see equation (3.216)).
If A and B are orthogonally similar (see equation (3.242)), then

‖A‖F = ‖B‖F;

that is, the Frobenius norm is an orthogonally invariant norm. To see this, let
A = QTBQ, where Q is an orthogonal matrix. Then

‖A‖2F = tr(ATA)

= tr(QTBTQQTBQ)
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= tr(BTBQQT)

= tr(BTB)

= ‖B‖2F.

(The norms are nonnegative, of course, and so equality of the squares is suf-
ficient.)

3.9.2.1 The Frobenius Norm and the Singular Values

Several important properties result because the Frobenius norm arises from
an inner product. For example, following the Fourier expansion in terms of
the singular value decomposition, equation (3.277), we mentioned that the
singular values have the general properties of Fourier coefficients; for example,
they satisfy Parseval’s identity, equation (2.60), on page 41. This identity
states that the sum of the squares of the Fourier coefficients is equal to the
square of the norm that arises from the inner product used in the Fourier
expansion. Hence, we have the important property of the Frobenius norm
that it is the L2 norm of the vector of singular values of the matrix. For the
n×m matrix A, let d be the min(n,m)-vector of singular values of A. Then

‖A‖2F = ‖d‖2. (3.297)

Compare equations (3.293) and (3.294) for square matrices.

3.9.3 Other Matrix Norms

There are two different ways of generalizing the Frobenius norm. One is a
simple generalization of the definition in equation (3.290). For p ≥ 1, it is the
Frobenius p norm:

‖A‖Fp
=

⎛

⎝
∑

i,j

|aij |p
⎞

⎠
1/p

. (3.298)

Some people refer to this as the Lp norm of the matrix. As we have seen, the
Lp matrix norm is different, but there is a simple relationship of the Frobenius
p matrix norm to the Lp vector norm:

‖A‖Fp
= ‖vec(A)‖p. (3.299)

This relationship of the matrix norm to a vector norm sometimes makes com-
putational problems easier.

The Frobenius 2 norm is the ordinary Frobenius norm.
Another generalization of the Frobenius norm arises from its relation to

the singular values given in equation (3.297). For p ≥ 1, it is the Schatten p
norm:
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‖A‖Sp
= ‖d‖p, (3.300)

where d is the vector of singular values of A.
The Schatten 2 norm is the ordinary Frobenius norm.
The Schatten 1 norm is called the nuclear norm (because of its relation-

ship to “nuclear operators”, which are linear operators that preserve local
convexity). It is also sometimes called the trace norm, because

‖d‖1 = tr
(
(ATA)1/2

)
. (3.301)

The Schatten ∞ norm is the spectral norm.

3.9.4 Matrix Norm Inequalities

There is an equivalence among any two matrix norms similar to that of expres-
sion (2.39) for vector norms (over finite-dimensional vector spaces). If ‖ · ‖a
and ‖ · ‖b are matrix norms, then there are positive numbers r and s such
that, for any matrix A,

r‖A‖b ≤ ‖A‖a ≤ s‖A‖b. (3.302)

We will not prove this result in general but, in Exercise 3.39, ask the reader
to do so for matrix norms induced by vector norms. These induced norms
include the matrix Lp norms of course.

If A is an n×m real matrix, we have some specific instances of (3.302):

‖A‖∞ ≤ √
m ‖A‖F, (3.303)

‖A‖F ≤
√

min(n,m) ‖A‖2, (3.304)

‖A‖2 ≤ √
m ‖A‖1, (3.305)

‖A‖1 ≤ √
n ‖A‖2, (3.306)

‖A‖2 ≤ ‖A‖F, (3.307)

‖A‖F ≤ √
n ‖A‖∞. (3.308)

See Exercise 3.40 on page 182.
Compare these inequalities with those for Lp vector norms on page 28.

Recall specifically that for vector Lp norms we had the useful fact that for a
given x and for p ≥ 1, ‖x‖p is a nonincreasing function of p; and specifically
we had inequality (2.34):
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‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.
There is a related inequality involving matrices:

‖A‖22 ≤ ‖A‖1‖A‖∞. (3.309)

3.9.5 The Spectral Radius

The spectral radius is the appropriate measure of the condition of a square
matrix for certain iterative algorithms. Except in the case of symmetric ma-
trices, as shown in equation (3.289), the spectral radius is not a norm (see
Exercise 3.41a).

We have for any norm ‖ · ‖ and any square matrix A that

ρ(A) ≤ ‖A‖. (3.310)

To see this, we consider the associated eigenvalue and eigenvector, ci and vi,
and form the matrix V = [vi|0| · · · |0]. This yields ciV = AV , and by the
consistency property of any matrix norm,

|ci|‖V ‖ = ‖ciV ‖
= ‖AV ‖
≤ ‖A‖ ‖V ‖,

or
|ci| ≤ ‖A‖,

(see also Exercise 3.41b).
The inequality (3.310) and the L1 and L∞ norms yield useful bounds on

the eigenvalues and the maximum absolute row and column sums of matrices:
the modulus of any eigenvalue is no greater than the largest sum of absolute
values of the elements in any row or column. (These were inequalities (3.235)
and (3.236) on page 142.)

The inequality (3.310) and equation (3.289) also yield a minimum property
of the L2 norm of a symmetric matrix A:

‖A‖2 ≤ ‖A‖.

3.9.6 Convergence of a Matrix Power Series

We define the convergence of a sequence of matrices in terms of the conver-
gence of a sequence of their norms, just as we did for a sequence of vectors (on
page 32). We say that a sequence of matrices A1, A2, . . . (of the same shape)
converges to the matrix A with respect to the norm ‖ · ‖ if the sequence of
real numbers ‖A1 − A‖, ‖A2 − A‖, . . . converges to 0. Because of the equiv-
alence property of norms, the choice of the norm is irrelevant. Also, because
of inequality (3.310), we see that the convergence of the sequence of spectral
radii ρ(A1 −A), ρ(A2 −A), . . . to 0 must imply the convergence of A1, A2, . . .
to A.
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3.9.6.1 Conditions for Convergence of a Sequence of Powers to 0

For a square matrix A, we have the important fact that

Ak → 0, if ‖A‖ < 1, (3.311)

where 0 is the square zero matrix of the same order as A and ‖·‖ is any matrix
norm. (The consistency property is required.) This convergence follows from
inequality (3.278) because that yields limk→∞ ‖Ak‖ ≤ limk→∞ ‖A‖k, and so
if ‖A‖ < 1, then limk→∞ ‖Ak‖ = 0.

Now consider the spectral radius. Because of the spectral decomposition,
we would expect the spectral radius to be related to the convergence of a
sequence of powers of a matrix. If Ak → 0, then for any conformable vector
x, Akx → 0; in particular, for the eigenvector v1 �= 0 corresponding to the
dominant eigenvalue c1, we have Akv1 = ck1v1 → 0. For ck1v1 to converge to
zero, we must have |c1| < 1; that is, ρ(A) < 1. We can also show the converse:

Ak → 0 if ρ(A) < 1. (3.312)

We will do this by defining a norm ‖ · ‖d in terms of the L1 matrix norm in
such a way that ρ(A) < 1 implies ‖A‖d < 1. Then we can use equation (3.311)
to establish the convergence.

Let A = QTQT be the Schur factorization of the n × n matrix A,
where Q is orthogonal and T is upper triangular with the same eigen-
values as A, c1, . . . , cn. Now for any d > 0, form the diagonal matrix
D = diag((d1, . . . , dn)). Notice that DTD−1 is an upper triangular matrix
and its diagonal elements (which are its eigenvalues) are the same as the
eigenvalues of T and A. Consider the column sums of the absolute values of
the elements of DTD−1:

|cj |+
j−1∑

i=1

d−(j−i)|tij |.

Now, because |cj | ≤ ρ(A) for given ε > 0, by choosing d large enough, we have

|cj |+
j−1∑

i=1

d−(j−i)|tij | < ρ(A) + ε,

or

‖DTD−1‖1 = max
j

(
|cj |+

j−1∑

i=1

d−(j−i)|tij |
)

< ρ(A) + ε.

Now define ‖ · ‖d for any n × n matrix X, where Q is the orthogonal matrix
in the Schur factorization and D is as defined above, as

‖X‖d = ‖(QD−1)−1X(QD−1)‖1. (3.313)
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It is clear that ‖ · ‖d is a norm (Exercise 3.42). Furthermore,

‖A‖d = ‖(QD−1)−1A(QD−1)‖1
= ‖DTD−1‖1
< ρ(A) + ε,

and so if ρ(A) < 1, ε and d can be chosen so that ‖A‖d < 1, and by equa-
tion (3.311) above, we have Ak → 0; hence, we conclude that

Ak → 0 if and only if ρ(A) < 1. (3.314)

Informally, we see that Ak goes to 0 more rapidly the smaller is ρ(A).
We will discuss convergence of a sequence of powers of an important special

class of matrices with spectral radii possibly greater than or equal to 1 on
page 378.

3.9.6.2 Another Perspective on the Spectral Radius: Relation to
Norms

From inequality (3.310) and the fact that ρ(Ak) = ρ(A)k, we have

ρ(A) ≤ ‖Ak‖1/k, (3.315)

where ‖ · ‖ is any matrix norm. Now, for any ε > 0, ρ
(
A/(ρ(A) + ε)

)
< 1 and

so
lim
k→∞

(
A/(ρ(A) + ε)

)k
= 0

from expression (3.314); hence,

lim
k→∞

‖Ak‖
(ρ(A) + ε)k

= 0.

There is therefore a positive integer Mε such that ‖Ak‖/(ρ(A) + ε)k < 1 for
all k > Mε, and hence ‖Ak‖1/k < (ρ(A) + ε) for k > Mε. We have therefore,
for any ε > 0,

ρ(A) ≤ ‖Ak‖1/k < ρ(A) + ε for k > Mε,

and thus
lim
k→∞

‖Ak‖1/k = ρ(A). (3.316)

Compare this with the inequality (3.310).
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3.9.6.3 Convergence of a Power Series: Inverse of I − A

Consider the power series in an n × n matrix such as in equation (3.186) on
page 120,

I +A+A2 +A3 + · · · .
In the standard fashion for dealing with series, we form the partial sum

Sk = I +A+A2 +A3 + · · ·Ak

and consider limk→∞ Sk. We first note that

(I −A)Sk = I −Ak+1

and observe that if Ak+1 → 0, then Sk → (I−A)−1, which is equation (3.186).
Therefore,

(I −A)−1 = I +A+A2 +A3 + · · · if ‖A‖ < 1. (3.317)

3.9.6.4 Nilpotent Matrices

As we discussed on page 77, for some nonzero square matrices, Ak = 0 for
a finite integral value of k. If A2 = 0, such a matrix is a nilpotent matrix
(otherwise, it is nilpotent with an index greater than 2). A matrix such as we
discussed above for which Ak → 0, but for any finite k, Ak �= 0, is not called
a nilpotent matrix.

From the definition, it is clear that the Drazin inverse of any nilpotent
matrix is 0.

We have seen in equation (3.314) that Ak → 0 if and only if ρ(A) < 1. The
condition in equation (3.311) on any norm is not necessary, however; that is,
if Ak → 0, it may be the case that, for some norm, ‖A‖ > 1. In fact, even for
an idempotent matrix (for which Ak = 0 for finite k), it may be the case that
‖A‖ > 1. A simple example is

A =

[
0 2
0 0

]
.

For this matrix, A2 = 0, yet ‖A‖1 = ‖A‖2 = ‖A‖∞ = ‖A‖F = 2.
At this point, I list some more properties of nilpotent matrices that involve

concepts we had not introduced when we first discussed nilpotent matrices.
It is easy to see that if An×n is nilpotent, then

tr(A) = 0, (3.318)

det(A) = 0, (3.319)

ρ(A) = 0, (3.320)
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(that is, all eigenvalues of A are 0), and

rank(A) ≤ n− 1. (3.321)

You are asked to supply the proofs of these statements in Exercise 3.43b.
In applications, for example in time series or other stochastic processes,

because of expression (3.314), the spectral radius is often the most useful.
Stochastic processes may be characterized by whether the absolute value of
the dominant eigenvalue (spectral radius) of a certain matrix is less than 1.
Interesting special cases occur when the dominant eigenvalue is equal to 1.

3.10 Approximation of Matrices

In Sect. 2.2.6, we discussed the problem of approximating a given vector in
terms of vectors from a lower dimensional space. Likewise, it is often of interest
to approximate one matrix by another.

In statistical applications, we may wish to find a matrix of smaller rank
that contains a large portion of the information content of a matrix of larger
rank (“dimension reduction” as on page 428; or variable selection as in
Sect. 9.5.2, for example), or we may want to impose conditions on an esti-
mate that it have properties known to be possessed by the estimand (positive
definiteness of the correlation matrix, for example, as in Sect. 9.5.6).

In numerical linear algebra, we may wish to find a matrix that is easier to
compute or that has properties that ensure more stable computations.

Finally, we may wish to represent a matrix as a sum or a product of
other matrices with restrictions on those matrices that do not allow an exact
representation. (A nonnegative factorization as discussed in Sect. 5.10.1 is an
example.)

3.10.1 Measures of the Difference Between Two Matrices

A natural way to assess the goodness of the approximation is by a norm
of the difference (that is, by a metric induced by a norm), as discussed on

page 32. If Ã is an approximation to A, we could measure the quality of
the approximation by Δ(A, Ã) = ‖A − Ã‖ for some norm ‖ · ‖. The measure

Δ(A, Ã) is a metric, as defined on page 32, and is a common way of measuring
the “distance” between two matrices.

Other ways of measuring the difference between two matrices may be based
on how much the entropy of one divergences from that of the other. This may
make sense if all elements in the matrices are positive. The Kullback-Leibler
divergence between distributions is based on this idea. Because one distribu-
tion is used to normalize the other one, the Kullback-Leibler divergence is not
a metric. If all elements of the matrices Ã and A are positive, the Kullback-
Leibler divergence measure for how much the matrix Ã differs from A is
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dKL(A− Ã) =
∑

ij

(
ãij log

(
ãij
aij

)
− ãij + aij

)
. (3.322)

The most commonly-used measure of the goodness of an approximation
uses the norm that arises from the inner product (the Frobenius norm).

3.10.2 Best Approximation with a Matrix of Given Rank

Suppose we want the best approximation to an n×m matrix A of rank r by
a matrix Ã in IRn×m but with smaller rank, say k; that is, we want to find Ã
of rank k such that

‖A− Ã‖F (3.323)

is a minimum for all Ã ∈ IRn×m of rank k.
We have an orthogonal basis in terms of the singular value decomposition,

equation (3.277), for some subspace of IRn×m, and we know that the Fourier
coefficients provide the best approximation for any subset of k basis matrices,
as in equation (2.65). This Fourier fit would have rank k as required, but it
would be the best only within that set of expansions. (This is the limitation
imposed in equation (2.65).) Another approach to determine the best fit could
be developed by representing the columns of the approximating matrix as
linear combinations of the given matrix A and then expanding ‖A − Ã‖2F.
Neither the Fourier expansion nor the restriction V(Ã) ⊂ V(A) permits us to
address the question of what is the overall best approximation of rank k within
IRn×m. As we see below, however, there is a minimum of expression (3.323)
that occurs within V(A), and a minimum is at the truncated Fourier expansion
in the singular values (equation (3.277)).

To state this more precisely, let A be an n × m matrix of rank r with
singular value decomposition

A = U

[
Dr 0
0 0

]
V T,

where Dr = diag((d1, . . . , dr)), and the singular values are indexed so that
d1 ≥ · · · ≥ dr > 0. Then, for all n×m matrices X with rank k < r,

‖A−X‖2F ≥
r∑

i=k+1

d2i , (3.324)

and this minimum occurs for X = Ã, where

Ã = U

[
Dk 0
0 0

]
V T. (3.325)

To see this, for any X, let Q be an n × k matrix whose columns are an
orthonormal basis for V(X), and let X = QY , where Y is a k × m matrix,
also of rank k. The minimization problem now is



3.10 Approximation of Matrices 177

min
Y

‖A−QY ‖F

with the restriction rank(Y ) = k.
Now, expanding, completing the Gramian and using its nonnegative defi-

niteness, and permuting the factors within a trace, we have

‖A−QY ‖2F = tr
(
(A−QY )T(A−QY )

)

= tr
(
ATA

)
+ tr

(
Y TY −ATQY − Y TQTA

)

= tr
(
ATA

)
+ tr

(
(Y −QTA)T(Y −QTA)

)− tr
(
ATQQTA

)

≥ tr
(
ATA

)− tr
(
QTAATQ

)
.

The squares of the singular values of A are the eigenvalues of ATA, and so
tr(ATA) =

∑r
i=1 d

2
i . The eigenvalues of A

TA are also the eigenvalues of AAT,

and so, from inequality (3.270), tr(QTAATQ) ≤∑k
i=1 d

2
i , and so

‖A−X‖2F ≥
r∑

i=1

d2i −
k∑

i=1

d2i ;

hence, we have inequality (3.324). (This technique of “completing the
Gramian” when an orthogonal matrix is present in a sum is somewhat
similar to the technique of completing the square; it results in the difference
of two Gramian matrices, which are defined in Sect. 3.3.10.)

Direct expansion of ‖A− Ã‖2F yields

tr
(
ATA

)− 2tr
(
ATÃ

)
+ tr

(
ÃTÃ

)
=

r∑

i=1

d2i −
k∑

i=1

d2i ,

and hence Ã is the best rank k approximation to A under the Frobenius norm.
Equation (3.325) can be stated another way: the best approximation of A

of rank k is

Ã =
k∑

i=1

diuiv
T
i . (3.326)

This result for the best approximation of a given matrix by one of lower
rank was first shown by Eckart and Young (1936). On page 342, we will
discuss a bound on the difference between two symmetric matrices whether
of the same or different ranks.

In applications, the rank k may be stated a priori or we examine a sequence
k = r − 1, r − 2, . . ., and determine the norm of the best fit at each rank. If
sk is the norm of the best approximating matrix, the sequence sr−1, sr−2, . . .
may suggest a value of k for which the reduction in rank is sufficient for
our purposes and the loss in closeness of the approximation is not too great.
Principal components analysis is a special case of this process (see Sect. 9.4).
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Exercises

3.1. Vector spaces of matrices.
a) Exhibit a basis set for IRn×m for n ≥ m.
b) Does the set of n×m diagonal matrices form a vector space? (The

answer is yes.) Exhibit a basis set for this vector space (assuming
n ≥ m).

c) Exhibit a basis set for the vector space of n× n symmetric matrices.
(First, of course, we must ask is this a vector space. The answer is
yes.)

d) Show that the cardinality of any basis set for the vector space of
n× n symmetric matrices is n(n+ 1)/2.

3.2. By expanding the expression on the left-hand side, derive equation (3.92)
on page 93.

3.3. Show that for any quadratic form xTAx there is a symmetric matrix
As such that xTAsx = xTAx. (The proof is by construction, with As =
1
2 (A+AT), first showingAs is symmetric and then that xTAsx = xTAx.)

3.4. For a, b, c ∈ IR, give conditions on a, b, and c for the matrix below to be
positive definite. [

a b
b c

]
.

3.5. Show that the Mahalanobis distance defined in equation (3.95) is a
metric (that is, show that it satisfies the properties listed on page 32).

3.6. Verify the relationships for Kronecker products shown in equa-
tions (3.97) through (3.103) on page 95.
Hint: Make liberal use of equation (3.96) and previously verified equa-
tions.

3.7. Verify the relationship between the vec function and Kronecker multi-
plication given in equation (3.106), vec(ABC) = (CT ⊗A)vec(B).
Hint: Just determine an expression for the ith term in the vector on
either side of the equation.

3.8. Cauchy-Schwarz inequalities for matrices.
a) Prove the Cauchy-Schwarz inequality for the dot product of matrices

((3.111), page 98), which can also be written as

(tr(ATB))2 ≤ tr(ATA)tr(BTB).

b) Prove the Cauchy-Schwarz inequality for determinants of matrices
A and B of the same shape:

det(ATB)2 ≤ det(ATA)det(BTB).

Under what conditions is equality achieved?
c) Let A and B be matrices of the same shape, and define

p(A,B) = det(ATB).

Is p(·, ·) an inner product? Why or why not?
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3.9. Prove that a square matrix that is either row or column (strictly) diag-
onally dominant is nonsingular.

3.10. Prove that a positive definite matrix is nonsingular.
3.11. Let A be an n×m matrix.

a) Under what conditions does A have a Hadamard multiplicative in-
verse?

b) If A has a Hadamard multiplicative inverse, what is it?
3.12. Bounds on ranks.

a) Show that the bound in inequality (3.128) is sharp by finding two
matrices A and B such that rank(AB) = min(rank(A), rank(B)).

b) Show that the bound in inequality (3.170) is sharp by finding an
n× n matrix A and a matrix B with n rows such that rank(AB) =
rank(A) + rank(B)− n.

c) Show that the bound in inequality (3.129) is sharp by finding two
matrices A and B such that rank(A+B) = rank(A) + rank(B).

d) Show that the bound in inequality (3.130) is sharp by finding two
matrices A and B such that rank(A+B) = |rank(A)− rank(B)|.

3.13. The affine group AL(n).
a) What is the identity in AL(n)?
b) Let (A, v) be an element of AL(n). What is the inverse of (A, v)?

3.14. Let A be an n×m matrix of rank one. Show that A can be written as
an outer product

A = xyT,

where x is some n-vector and y is some m-vector.
3.15. In computational explorations involving matrices, it is often convenient

to work with matrices whose elements are integers. If an inverse is in-
volved, it would be nice to know that the elements of the inverse are also
integers. Equation (3.172) on page 118 provides us a way of ensuring
this.
Show that if the elements of the square matrix A are integers and if
det(A) = ±1, then (A−1 exists and) the elements of A−1 are integers.

3.16. Verify the relationships shown in equations (3.176) through (3.183) on
page 119. Do this by multiplying the appropriate matrices. For example,
equation (3.176) is verified by the equations

(I +A−1)A(I +A)−1 = (A+ I)(I +A)−1 = (I +A)(I +A)−1 = I.

Make liberal use of equation (3.173) and previously verified equations.
Of course it is much more interesting to derive relationships such as these
rather than merely to verify them. The verification, however, often gives
an indication of how the relationship would arise naturally.

3.17. Verify equation (3.184).
3.18. In equations (3.176) through (3.183) on page 119, drop the assumptions

of nonsingularity of matrices, and assume only that the matrices are
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conformable for the operations in the expressions. Replace the inverse
with the Moore-Penrose inverse.
Now, determine which of these relationships are true. For those that are
true, show that they are (for general but conformable matrices). If the
relationship does not hold, give a counterexample.

3.19. Prove that if A is nonsingular and lower triangular, then A−1 is lower
triangular.

3.20. By writing AA−1 = I, derive the expression for the inverse of a parti-
tioned matrix given in equation (3.190).

3.21. Show that the expression given in equation (3.209) on page 128 is a
Moore-Penrose inverse of A. (Show that properties 1 through 4 hold.)

3.22. Properties of Drazin inverses (page 129).
a) Show that a Drazin inverse is a g1 inverse; that is,

AADA = A.

b) Prove equation (3.212), for any square matrix A and any positive
integer k,

AD = Ak(A2k+1)+Ak;

inter alia, show that for positive integers j and k,

Aj(A2j+1)+Aj = Ak(A2k+1)+Ak.

3.23. Show that the expression given for the generalized inverse in equa-
tion (3.214) on page 131 is correct.

3.24. In computational explorations involving matrices, it is often convenient
to work with matrices whose elements are integers. If eigenvalues are
involved, it would be nice to know that the eigenvalues are also inte-
gers. This is similar in spirit to matrices with integral elements whose
inverses also have integral elements, as was the problem considered in
Exercise 3.15. Matrices like this also provide convenient test problems
for algorithms or sogtware.
The use of the companion matrix (equation (3.225)) gives us a conve-
nient way of obtaining “nice” matrices for numerically exploring proper-
ties of eigenvalues. Using other properties of eigenvalues/vectors such as
those listed on page 136 and with similarity transforms, we can generate
“interesting” matrices that have nice eigenvalues.
For instance, a 3×3 matrix in equation (3.237) was generated by choos-
ing a set of eigenvalues {a, 1 + i, 1− i}.
Next, I used the relationship between the eigenvalues of A and A− dI,
and finally, I squared the matrix, so that the eigenvalues are squared.
The resulting spectrum is {(a−d)2, (1−d+i)2, (1−d−i}. After initializing
a and d, the R statements are

B <- matrix(c(-d,0,2*a, 1,-d,-2*a+2, 0,1,a+2-d),nrow=3)

A <- B%*%B
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eigen(A)

and the Matlab statements are

B = [-d, 0, 2*a; 1, -d, -2*a+2; 0, 1, a+2-d];

A = B*B;

eigen(A)

Can you tell what values of a and d were used in generating the matrix
in equation (3.237) following these steps?
a) Using R, Matlab, or some other system you like, construct two dif-

ferent 3 × 3 matrices whose elements are all integers and whose
eigenvalues are {7, 5, 3}.

b) Determine the six Gershgorin disks for each of your matrices.
(Are they the same?)

3.25. Write formal proofs of the properties of eigenvalues/vectors listed on
page 136.

3.26. Let A be a square matrix with an eigenvalue c and corresponding eigen-
vector v. Consider the matrix polynomial in A

p(A) = b0I + b1A+ · · ·+ bkA
k.

Show that if (c, v) is an eigenpair of A, then p(c), that is,

b0 + b1c+ · · ·+ bkc
k,

is an eigenvalue of p(A) with corresponding eigenvector v. (Technically,
the symbol p(·) is overloaded in these two instances.)

3.27. Write formal proofs of the properties of eigenvalues/vectors listed on
page 139.

3.28. Prove that for any square matrix, the algebraic multiplicity of a given
eigenvalue is at least as great as the geometric multiplicity of that eigen-
value.

3.29. a) Show that the unit vectors are eigenvectors of a diagonal matrix.
b) Give an example of two similar matrices whose eigenvectors are not

the same.
Hint: In equation (3.241), let A be a 2× 2 diagonal matrix (so you
know its eigenvalues and eigenvectors) with unequal values along
the diagonal, and let P be a 2× 2 upper triangular matrix, so that
you can invert it. Form B and check the eigenvectors.

3.30. Let A be a diagonalizable matrix (not necessarily symmetric) with a
spectral decomposition of the form of equation (3.261), A =

∑
i ciPi.

Let cj be a simple eigenvalue with associated left and right eigenvectors
yj and xj , respectively. (Note that because A is not symmetric, it may
have nonreal eigenvalues and eigenvectors.)
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a) Show that yHj xj �= 0.

b) Show that the projection matrix Pj is xjy
H
j /y

H
j xj .

3.31. If A is nonsingular, show that for any (conformable) vector x

(xTAx)(xTA−1x) ≥ (xTx)2.

Hint: Use the square roots and the Cauchy-Schwarz inequality.
3.32. Prove that the induced norm (page 165) is a matrix norm; that is, prove

that it satisfies the consistency property.
3.33. Prove the inequality (3.280) for an induced matrix norm on page 165:

‖Ax‖ ≤ ‖A‖ ‖x‖.

3.34. Prove that, for the square matrix A,

‖A‖22 = ρ(ATA).

Hint: Show that ‖A‖22 = maxxTATAx for any normalized vector x.
3.35. Let Q be an n× n orthogonal matrix, and let x be an n-vector.

a) Prove equation (3.286):

‖Qx‖2 = ‖x‖2.

Hint: Write ‖Qx‖2 as
√

(Qx)TQx.
b) Give examples to show that this does not hold for other norms.

3.36. The triangle inequality for matrix norms: ‖A+B‖ ≤ ‖A‖+ ‖B‖.
a) Prove the triangle inequality for the matrix L1 norm.
b) Prove the triangle inequality for the matrix L∞ norm.
c) Prove the triangle inequality for the matrix Frobenius norm.

3.37. Prove that the Frobenius norm satisfies the consistency property.
3.38. The Frobenius p norm and the Shatten p norm.

a) Prove that the expression in equation (3.298), the “Frobenius p
norm”, is indeed a norm.

b) Prove that the expression in equation (3.300), the “Shatten p norm”,
is indeed a norm.

c) Prove equation (3.301).
3.39. If ‖ · ‖a and ‖ · ‖b are matrix norms induced respectively by the vector

norms ‖ · ‖va
and ‖ · ‖vb

, prove inequality (3.302); that is, show that
there are positive numbers r and s such that, for any A,

r‖A‖b ≤ ‖A‖a ≤ s‖A‖b.

3.40. Prove inequalities (3.303) through (3.309), and show that the bounds
are sharp by exhibiting instances of equality.

3.41. The spectral radius, ρ(A).
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a) We have seen by an example that ρ(A) = 0 does not imply A = 0.
What about other properties of a matrix norm? For each, either
show that the property holds for the spectral radius or, by means
of an example, that it does not hold.

b) Use the outer product of an eigenvector and the one vector to show
that for any norm ‖ · ‖ and any matrix A, ρ(A) ≤ ‖A‖.

3.42. Show that the function ‖ · ‖d defined in equation (3.313) is a norm.
Hint: Just verify the properties on page 164 that define a norm.

3.43. Nilpotent matrices.
a) Prove that a nilpotent matrix is singular without using the proper-

ties listed on page 174.
b) Prove equations (3.318) through (3.321).

3.44. Prove equations (3.324) and (3.325) under the restriction that V(X) ⊆
V(A); that is, where X = BL for a matrix B whose columns span V(A).
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