
11

Numerical Linear Algebra

Many scientific computational problems in various areas of application involve
vectors and matrices. Programming languages such as C provide the capabili-
ties for working with the individual elements but not directly with the arrays.
Modern Fortran and higher-level languages such as Octave or Matlab and R
allow direct manipulation of objects that represent vectors and matrices. The
vectors and matrices are arrays of floating-point numbers.

The distinction between the set of real numbers, IR, and the set of floating-
point numbers, IF, that we use in the computer has important implications for
numerical computations. As we discussed in Sect. 10.2, beginning on page 483,
an element x of a vector or matrix is approximated by a computer number [x]c,
and a mathematical operation ◦ is simulated by a computer operation [◦]c. The
familiar laws of algebra for the field of the reals do not hold in IF, especially
if uncontrolled parallel operations are allowed. These distinctions, of course,
carry over to arrays of floating-point numbers that represent real numbers,
and the properties of vectors and matrices that we discussed in earlier chapters
may not hold for their computer counterparts. For example, the dot product
of a nonzero vector with itself is positive (see page 24), but 〈xc, xc〉c = 0 does
not imply xc = 0.

A good general reference on the topic of numerical linear algebra is Č́ıžková
and Č́ıžek (2012).

11.1 Computer Storage of Vectors and Matrices

The elements of vectors and matrices are represented as ordinary numeric
data, as we described in Sect. 10.1, in either fixed-point or floating-point
representation.

© Springer International Publishing AG 2017
J.E. Gentle, Matrix Algebra, Springer Texts in Statistics,
DOI 10.1007/978-3-319-64867-5 11

523

524 11 Numerical Linear Algebra

11.1.1 Storage Modes

The elements of vectors and matrices are generally stored in a logically con-
tiguous area of the computer’s memory. What is logically contiguous may not
be physically contiguous, however.

Accessing data from memory in a single pipeline may take more computer
time than the computations themselves. For this reason, computer memory
may be organized into separate modules, or banks, with separate paths to the
central processing unit. Logical memory is interleaved through the banks; that
is, two consecutive logical memory locations are in separate banks. In order
to take maximum advantage of the computing power, it may be necessary to
be aware of how many interleaved banks the computer system has.

There are no convenient mappings of computer memory that would allow
matrices to be stored in a logical rectangular grid, so matrices are usually
stored either as columns strung end-to-end (a “column-major” storage) or as
rows strung end-to-end (a “row-major” storage). In using a computer language
or a software package, sometimes it is necessary to know which way the matrix
is stored. The type of matrix computation to be performed may determine
whether a vectorized processor should operate on rows or on columns.

For some software to deal with matrices of varying sizes, the user must
specify the length of one dimension of the array containing the matrix. (In
general, the user must specify the lengths of all dimensions of the array except
one.) In Fortran subroutines, it is common to have an argument specifying
the leading dimension (number of rows), and in C functions it is common
to have an argument specifying the column dimension. (See the examples in
Fig. 12.2 on page 563 and Fig. 12.3 on page 564 for illustrations of the leading
dimension argument.)

11.1.2 Strides

Sometimes in accessing a partition of a given matrix, the elements occur at
fixed distances from each other. If the storage is row-major for an n × m
matrix, for example, the elements of a given column occur at a fixed distance
of m from each other. This distance is called the “stride”, and it is often more
efficient to access elements that occur with a fixed stride than it is to access
elements randomly scattered.

Just accessing data from the computer’s memory contributes significantly
to the time it takes to perform computations. A stride that is not a multi-
ple of the number of banks in an interleaved bank memory organization can
measurably increase the computational time in high-performance computing.

11.1.3 Sparsity

If a matrix has many elements that are zeros, and if the positions of those
zeros are easily identified, many operations on the matrix can be speeded up.

11.2 General Computational Considerations 525

Matrices with many zero elements are called sparse matrices. They occur of-
ten in certain types of problems; for example in the solution of differential
equations and in statistical designs of experiments. The first consideration is
how to represent the matrix and to store the matrix and the location infor-
mation. Different software systems may use different schemes to store sparse
matrices. The method used in the IMSL Libraries, for example, is described on
page 550. An important consideration is how to preserve the sparsity during
intermediate computations.

11.2 General Computational Considerations
for Vectors and Matrices

All of the computational methods discussed in Chap. 10 apply to vectors and
matrices, but there are some additional general considerations for vectors and
matrices.

11.2.1 Relative Magnitudes of Operands

One common situation that gives rise to numerical errors in computer opera-
tions is when a quantity x is transformed to t(x) but the value computed is
unchanged:

[t(x)]c = [x]c; (11.1)

that is, the operation actually accomplishes nothing. A type of transformation
that has this problem is

t(x) = x+ ε, (11.2)

where |ε| is much smaller than |x|. If all we wish to compute is x + ε, the
fact that [x + ε]c = [x]c is probably not important. Usually, of course, this
simple computation is part of some larger set of computations in which ε was
computed. This, therefore, is the situation we want to anticipate and avoid.

Another type of problem is the addition to x of a computed quantity y
that overwhelms x in magnitude. In this case, we may have

[x+ y]c = [y]c. (11.3)

Again, this is a situation we want to anticipate and avoid.

11.2.1.1 Condition

A measure of the worst-case numerical error in numerical computation in-
volving a given mathematical entity is the “condition” of that entity for the
particular computations. The condition number of a matrix is the most gener-
ally useful such measure. For the matrix A, we denote the condition number
as κ(A). We discussed the condition number in Sect. 6.1 and illustrated it in

526 11 Numerical Linear Algebra

the toy example of equation (6.1). The condition number provides a bound
on the relative norms of a “correct” solution to a linear system and a solution
to a nearby problem. A specific condition number therefore depends on the
norm, and we defined κ1, κ2, and κ∞ condition numbers (and saw that they
are generally roughly of the same magnitude). We saw in equation (6.10) that
the L2 condition number, κ2(A), is the ratio of magnitudes of the two extreme
eigenvalues of A.

The condition of data depends on the particular computations to be per-
formed. The relative magnitudes of other eigenvalues (or singular values) may
be more relevant for some types of computations. Also, we saw in Sect. 10.3.2
that the “stiffness” measure in equation (10.3.2.7) is a more appropriate mea-
sure of the extent of the numerical error to be expected in computing vari-
ances.

11.2.1.2 Pivoting

Pivoting, discussed on page 277, is a method for avoiding a situation like that
in equation (11.3). In Gaussian elimination, for example, we do an addition,
x+y, where the y is the result of having divided some element of the matrix by
some other element and x is some other element in the matrix. If the divisor is
very small in magnitude, y is large and may overwhelm x as in equation (11.3).

11.2.1.3 “Modified” and “Classical” Gram-Schmidt
Transformations

Another example of how to avoid a situation similar to that in equation (11.1)
is the use of the correct form of the Gram-Schmidt transformations.

The orthogonalizing transformations shown in equations (2.56) on page 38
are the basis for Gram-Schmidt transformations of matrices. These transfor-
mations in turn are the basis for other computations, such as the QR factor-
ization. (Exercise 5.10 required you to apply Gram-Schmidt transformations
to develop a QR factorization.)

As mentioned on page 38, there are two ways we can extend equa-
tions (2.56) to more than two vectors, and the method given in Algorithm 2.1
is the correct way to do it. At the kth stage of the Gram-Schmidt method, the

vector x
(k)
k is taken as x

(k−1)
k and the vectors x

(k)
k+1, x

(k)
k+2, . . . , x

(k)
m are all made

orthogonal to x
(k)
k . After the first stage, all vectors have been transformed.

This method is sometimes called “modified Gram-Schmidt” because some
people have performed the basic transformations in a different way, so that at
the kth iteration, starting at k = 2, the first k− 1 vectors are unchanged (i.e.,

x
(k)
i = x

(k−1)
i for i = 1, 2, . . . , k− 1), and x

(k)
k is made orthogonal to the k− 1

previously orthogonalized vectors x
(k)
1 , x

(k)
2 , . . . , x

(k)
k−1. This method is called

“classical Gram-Schmidt” for no particular reason. The “classical” method is
not as stable, and should not be used; see Rice (1966) and Björck (1967) for

11.2 General Computational Considerations 527

discussions. In this book, “Gram-Schmidt” is the same as what is sometimes
called “modified Gram-Schmidt”. In Exercise 11.1, you are asked to experi-
ment with the relative numerical accuracy of the “classical Gram-Schmidt”
and the correct Gram-Schmidt. The problems with the former method show
up with the simple set of vectors x1 = (1, ε, ε), x2 = (1, ε, 0), and x3 = (1, 0, ε),
with ε small enough that

[1 + ε2]c = 1.

11.2.2 Iterative Methods

As we saw in Chap. 6, we often have a choice between direct methods (that is,
methods that compute a closed-form solution) and iterative methods. Iterative
methods are usually to be favored for large, sparse systems.

Iterative methods are based on a sequence of approximations that (it is
hoped) converge to the correct solution. The fundamental trade-off in iter-
ative methods is between the amount of work expended in getting a good
approximation at each step and the number of steps required for convergence.

11.2.2.1 Preconditioning

In order to achieve acceptable rates of convergence for iterative algorithms, it
is often necessary to precondition the system; that is, to replace the system
Ax = b by the system

M−1Ax = M−1b

for some suitable matrix M . As we indicated in Chaps. 6 and 7, the choice of
M involves some art, and we will not consider any of the results here. Benzi
(2002) provides a useful survey of the general problem and work up to that
time, but this is an area of active research.

11.2.2.2 Restarting and Rescaling

In many iterative methods, not all components of the computations are up-
dated in each iteration. An approximation to a given matrix or vector may be
adequate during some sequence of computations without change, but then at
some point the approximation is no longer close enough, and a new approxi-
mation must be computed. An example of this is in the use of quasi-Newton
methods in optimization in which an approximate Hessian is updated, as in-
dicated in equation (4.28) on page 202. We may, for example, just compute
an approximation to the Hessian every few iterations, perhaps using second
differences, and then use that approximate matrix for a few subsequent iter-
ations.

Another example of the need to restart or to rescale is in the use of fast
Givens rotations. As we mentioned on page 241 when we described the fast
Givens rotations, the diagonal elements in the accumulated C matrices in

528 11 Numerical Linear Algebra

the fast Givens rotations can become widely different in absolute values, so
to avoid excessive loss of accuracy, it is usually necessary to rescale the el-
ements periodically. Anda and Park (1994, 1996) describe methods of doing
the rescaling dynamically. Their methods involve adjusting the first diagonal
element by multiplication by the square of the cosine and adjusting the second
diagonal element by division by the square of the cosine. Bindel et al. (2002)
discuss in detail techniques for performing Givens rotations efficiently while
still maintaining accuracy. (The BLAS routines (see Sect. 12.2.1) rotmg and
rotm, respectively, set up and apply fast Givens rotations.)

11.2.2.3 Preservation of Sparsity

In computations involving large sparse systems, we may want to preserve
the sparsity, even if that requires using approximations, as discussed in
Sect. 5.10.2. Fill-in (when a zero position in a sparse matrix becomes nonzero)
would cause loss of the computational and storage efficiencies of software for
sparse matrices.

In forming a preconditioner for a sparse matrix A, for example, we may
choose a matrix M = ˜L˜U , where ˜L and ˜U are approximations to the matrices
in an LU decomposition of A, as in equation (5.51). These matrices are con-
structed as indicated in equation (5.52) so as to have zeros everywhere A has,

and A ≈ ˜L˜U . This is called incomplete factorization, and often, instead of an
exact factorization, an approximate factorization may be more useful because
of computational efficiency.

11.2.2.4 Iterative Refinement

Even if we are using a direct method, it may be useful to refine the solution by
one step computed in extended precision. A method for iterative refinement
of a solution of a linear system is given in Algorithm 6.3.

11.2.3 Assessing Computational Errors

As we discuss in Sect. 10.2.2 on page 485, we measure error by a scalar quan-
tity, either as absolute error, |r̃ − r|, where r is the true value and r̃ is the
computed or rounded value, or as relative error, |r̃ − r|/r (as long as r �= 0).
We discuss general ways of reducing them in Sect. 10.3.2.

11.2.3.1 Errors in Vectors and Matrices

The errors in vectors or matrices are generally expressed in terms of norms;
for example, the relative error in the representation of the vector v, or as a
result of computing v, may be expressed as ‖ṽ− v‖/‖v‖ (as long as ‖v‖ �= 0),
where ṽ is the computed vector. We often use the notation ṽ = v + δv, and

11.3 Multiplication of Vectors and Matrices 529

so ‖δv‖/‖v‖ is the relative error. The choice of which vector norm to use may
depend on practical considerations about the errors in the individual elements.
The L∞ norm, for example, gives weight only to the element with the largest
single error, while the L1 norm gives weights to all magnitudes equally.

11.2.3.2 Assessing Errors in Given Computations

In real-life applications, the correct solution is not known, but we would still
like to have some way of assessing the accuracy using the data themselves.
Sometimes a convenient way to do this in a given problem is to perform inter-
nal consistency tests. An internal consistency test may be an assessment of the
agreement of various parts of the output. Relationships among the output are
exploited to ensure that the individually computed quantities satisfy these re-
lationships. Other internal consistency tests may be performed by comparing
the results of the solutions of two problems with a known relationship.

The solution to the linear system Ax = b has a simple relationship to
the solution to the linear system Ax = b + caj , where aj is the jth column
of A and c is a constant. A useful check on the accuracy of a computed
solution to Ax = b is to compare it with a computed solution to the modified
system. Of course, if the expected relationship does not hold, we do not know
which solution is incorrect, but it is probably not a good idea to trust either.
To test the accuracy of the computed regression coefficients for regressing
y on x1, . . . , xm, they suggest comparing them to the computed regression
coefficients for regressing y+ dxj on x1, . . . , xm. If the expected relationships
do not obtain, the analyst has strong reason to doubt the accuracy of the
computations.

Another simple modification of the problem of solving a linear system with
a known exact effect is the permutation of the rows or columns. Although this
perturbation of the problem does not change the solution, it does sometimes
result in a change in the computations, and hence it may result in a different
computed solution. This obviously would alert the user to problems in the
computations.

A simple internal consistency test that is applicable to many problems is
to use two levels of precision in some of the computations. In using this test,
one must be careful to make sure that the input data are the same. Rounding
of the input data may cause incorrect output to result, but that is not the
fault of the computational algorithm.

Internal consistency tests cannot confirm that the results are correct; they
can only give an indication that the results are incorrect.

11.3 Multiplication of Vectors and Matrices

Arithmetic on vectors and matrices involves arithmetic on the individual el-
ements. The arithmetic on the individual elements is performed as we have
discussed in Sect. 10.2.

530 11 Numerical Linear Algebra

The way the storage of the individual elements is organized is very impor-
tant for the efficiency of computations. Also, the way the computer memory is
organized and the nature of the numerical processors affect the efficiency and
may be an important consideration in the design of algorithms for working
with vectors and matrices.

The best methods for performing operations on vectors and matrices in
the computer may not be the methods that are suggested by the definitions
of the operations.

In most numerical computations with vectors and matrices, there is more
than one way of performing the operations on the scalar elements. Consider
the problem of evaluating the matrix times vector product, c = Ab, where A
is n×m. There are two obvious ways of doing this:

• compute each of the n elements of c, one at a time, as an inner product of
m-vectors, ci = aTi b =

∑

j aijbj , or
• update the computation of all of the elements of c simultaneously as

1. For i = 1, . . . , n, let c
(0)
i = 0.

2. For j = 1, . . . ,m,
{

for i = 1, . . . , n,
{

let c
(i)
i = c

(i−1)
i + aijbj .

}
}

If there are p processors available for parallel processing, we could use a fan-in
algorithm (see page 487) to evaluate Ax as a set of inner products:

c
(1)
1 = c

(1)
2 = . . . c

(1)
2m−1 = c

(1)
2m = . . .

ai1b1 + ai2b2 ai3b3 + ai4b4 . . . ai,4m−3b4m−3 + ai,4m−2b4m−2
↘ ↙ . . . ↘ ↙ . . .

c
(2)
1 = . . . c

(2)
m = . . .

c
(1)
1 + c

(1)
2 . . . c

(1)
2m−1 + c

(1)
2m . . .

↘ . . . ↓ . . .

c
(3)
1 = c

(2)
1 + c

(2)
2

The order of the computations is nm (or n2).
Multiplying two matrices A and B can be considered as a problem of mul-

tiplying several vectors bi by a matrix A, as described above. In the following
we will assume A is n × m and B is m × p, and we will use the notation
ai to represent the ith column of A, aTi to represent the ith row of A, bi to
represent the ith column of B, ci to represent the ith column of C = AB, and
so on. (This notation is somewhat confusing because here we are not using aTi
to represent the transpose of ai as we normally do. The notation should be

11.3 Multiplication of Vectors and Matrices 531

clear in the context of the diagrams below, however.) Using the inner product
method above results in the first step of the matrix multiplication forming

⎡

⎢

⎢

⎢

⎣

aT1
· · ·
. . .

· · ·

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

· · ·
b1 · · ·

. . .

· · ·

⎤

⎥

⎥

⎥

⎦

−→

⎡

⎢

⎢

⎢

⎣

c11 = aT1 b1 · · ·
· · ·

...
. . .

· · ·

⎤

⎥

⎥

⎥

⎦

.

Using the second method above, in which the elements of the product vec-
tor are updated all at once, results in the first step of the matrix multiplication
forming

⎡

⎢

⎢

⎢

⎣

· · ·
a1 · · ·

. . .

· · ·

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

b11 · · ·
· · ·

...
. . .

· · ·

⎤

⎥

⎥

⎥

⎦

−→

⎡

⎢

⎢

⎢

⎢

⎣

c
(1)
11 = a11b11 · · ·
c
(1)
21 = a21b11 · · ·

...
. . .

c
(1)
n1 = an1b11 · · ·

⎤

⎥

⎥

⎥

⎥

⎦

.

The next and each successive step in this method are axpy operations:

c
(k+1)
1 = b(k+1),1a1 + c

(k)
1 ,

for k going to m− 1.
Another method for matrix multiplication is to perform axpy operations

using all of the elements of bT1 before completing the computations for any of
the columns of C. In this method, the elements of the product are built as
the sum of the outer products aib

T
i . In the notation used above for the other

methods, we have

⎡

⎢

⎢

⎢

⎣

· · ·
a1 · · ·

. . .

· · ·

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

bT1
· · ·
. . .

· · ·

⎤

⎥

⎥

⎥

⎦

−→

⎡

⎢

⎢

⎣

c
(1)
ij = a1b

T
1

⎤

⎥

⎥

⎦

,

and the update is

c
(k+1)
ij = ak+1b

T
k+1 + c

(k)
ij .

The order of computations for any of these methods is O(nmp), or just
O(n3), if the dimensions are all approximately the same. Strassen’s method,
discussed next, reduces the order of the computations.

11.3.1 Strassen’s Algorithm

Another method for multiplying matrices that can be faster for large matrices
is the so-called Strassen algorithm (from Strassen 1969). Suppose A and B
are square matrices with equal and even dimensions. Partition them into sub-
matrices of equal size, and consider the block representation of the product,

532 11 Numerical Linear Algebra

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

,

where all blocks are of equal size. Form

P1 = (A11 +A22)(B11 +B22),

P2 = (A21 +A22)B11,

P3 = A11(B12 −B22),

P4 = A22(B21 −B11),

P5 = (A11 +A12)B22,

P6 = (A21 −A11)(B11 +B12),

P7 = (A12 −A22)(B21 +B22).

Then we have (see the discussion on partitioned matrices in Sect. 3.1)

C11 = P1 + P4 − P5 + P7,

C12 = P3 + P5,

C21 = P2 + P4,

C22 = P1 + P3 − P2 + P6.

Notice that the total number of multiplications is 7 instead of the 8 it would
be in forming

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

directly. Whether the blocks are matrices or scalars, the same analysis holds.
Of course, in either case there are more additions. The addition of two k ×
k matrices is O(k2), so for a large enough value of n the total number of
operations using the Strassen algorithm is less than the number required for
performing the multiplication in the usual way.

The partitioning of the matrix factors can also be used recursively; that
is, in the formation of the P matrices. If the dimension, n, contains a factor
2e, the algorithm can be used directly e times, and then conventional matrix
multiplication can be used on any submatrix of dimension ≤ n/2e.) If the
dimension of the matrices is not even, or if the matrices are not square, it
may be worthwhile to pad the matrices with zeros, and then use the Strassen
algorithm recursively.

The order of computations of the Strassen algorithm is O(nlog2 7), instead
of O(n3) as in the ordinary method (log2 7 = 2.81). The algorithm can be
implemented in parallel (see Bailey et al. 1990), and this algorithm is actually
used in some software systems.

Several algorithms have been developed that use similar ideas to Strassen’s
algorithm and are asymptotically faster; that is, with order of computations
O(nk) where k < log2 7). (Notice that k must be at least 2 because there

11.4 Other Matrix Computations 533

are n2 elements.) None of the algorithms that are asymptotically faster than
Strassen’s are competitive in practice, however, because they all have much
larger start-up costs.

11.3.2 Matrix Multiplication Using MapReduce

While methods such as Strassen’s algorithm achieve speedup by decreasing
the total number of computations, other methods increase the overall speed
by performing computations in parallel. Although not all computations can be
performed in parallel and there is some overhead in additional computations
for setting up the job, when multiple processors are available, the total number
of computations may not be very important. One of the major tasks in parallel
processing is just keeping track of the individual computations. MapReduce
(see page 515) can sometimes be used in coordinating these operations.

For the matrix multiplication AB, in the view that the multiplication is a
set of inner products, for i running over the indexes of the rows of A and j
running over the indexes of the columns of B, we merely access the ith row of
A, ai∗, and the jth column of B, b∗j , and form the inner product aTi∗b∗j as the
(i, j)th element of the product AB. In the language of relational databases in
which the two matrices are sets of data with row and column identifiers, this
amounts to accessing the rows of A and the columns of B one by one, matching
the elements of the row and the column so that the column designator of the
row element matches the row designator of the column element, summing the
product of the A row elements and the B column elements, and then grouping
the sums of the products (that is, the inner products) by the A row designators
and the B column designators. In SQL, it is

SELECT A.row, B.col

SUM(A.value*B.value) FROM A,B WHERE A.col=B.row

GROUP BY A.row, B.col;

In a distributed computing environment, MapReduce could be used to
perform these operations. However the matrices are stored, possibly each over
multiple environments, MapReduce would first map the matrix elements using
their respective row and column indices as keys. It would then make the
appropriate associations of row element from A with the column elements
from B and perform the multiplications and the sum. Finally, the sums of
the multiplications (that is, the inner products) would be associated with the
appropriate keys for the output. This process is described in many elementary
descriptions of Hadoop, such as in Leskovec, Rajaraman, and Ullman (2014)
(Chapter 2).

11.4 Other Matrix Computations

Many other matrix computations depend on a matrix factorization. The most
useful factorization is the QR factorization. It can be computed stably using

534 11 Numerical Linear Algebra

either Householder reflections, Givens rotations, or the Gram-Schmidt pro-
cedure, as described respectively in Sects. 5.8.8, 5.8.9, and 5.8.10 (beginning
on page 252). This is one time when the computational methods can follow
the mathematical descriptions rather closely. Iterations using the QR factor-
ization are used in a variety of matrix computations; for example, they are
used in the most common method for evaluating eigenvalues, as described in
Sect. 7.4, beginning on page 318.

Another very useful factorization is the singular value decomposition
(SVD). The computations for SVD described in Sect. 7.7 beginning on
page 322, are efficient and preserve numerical accuracy. A major difference
in the QR factorization and the SVD is that the computations for SVD are
necessarily iterative (recall the remarks at the beginning of Chap. 7).

11.4.1 Rank Determination

It is often easy to determine that a matrix is of full rank. If the matrix is
not of full rank, however, or if it is very ill-conditioned, it is often difficult to
determine its rank. This is because the computations to determine the rank
eventually approximate 0. It is difficult to approximate 0; the relative error
(if defined) would be either 0 or infinite. The rank-revealing QR factorization
(equation (5.43), page 251) is the preferred method for estimating the rank.
(Although I refer to this as “estimation”, it more properly should be called
“approximation”. “Estimation” and the related term “testing”, as used in
statistical applications, apply to an unknown object, as in estimating or testing
the rank of a model matrix as discussed in Sect. 9.5.5, beginning on page 433.)
When this decomposition is used to estimate the rank, it is recommended
that complete pivoting be used in computing the decomposition. The LDU
decomposition, described on page 242, can be modified the same way we used
the modified QR to estimate the rank of a matrix. Again, it is recommended
that complete pivoting be used in computing the decomposition.

The singular value decomposition (SVD) shown in equation (3.276) on
page 161 also provides an indication of the rank of the matrix. For the n×m
matrix A, the SVD is

A = UDV T,

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix, and
D is a diagonal matrix of the singular values. The number of nonzero singular
values is the rank of the matrix. Of course, again, the question is whether or
not the singular values are zero. It is unlikely that the values computed are
exactly zero.

A problem related to rank determination is to approximate the matrix
A with a matrix Ar of rank r ≤ rank(A). The singular value decomposition
provides an easy way to do this,

Ar = UDrV
T,

11.4 Other Matrix Computations 535

where Dr is the same as D, except with zeros replacing all but the r largest
singular values. A result of Eckart and Young (1936) guarantees Ar is the
rank r matrix closest to A as measured by the Frobenius norm,

‖A−Ar‖F,

(see Sect. 3.10). This kind of matrix approximation is the basis for dimension
reduction by principal components.

11.4.2 Computing the Determinant

The determinant of a square matrix can be obtained easily as the product of
the diagonal elements of the triangular matrix in any factorization that yields
an orthogonal matrix times a triangular matrix. As we have stated before,
however, it is not often that the determinant need be computed.

One application in statistics is in optimal experimental designs. The D-
optimal criterion, for example, chooses the design matrix, X, such that |XTX|
is maximized (see Sect. 9.3.2).

11.4.3 Computing the Condition Number

The computation of a condition number of a matrix can be quite involved.
Clearly, we would not want to use the definition, κ(A) = ‖A‖ ‖A−1‖, directly.
Although the choice of the norm affects the condition number, recalling the
discussion in Sect. 6.1, we choose whichever condition number is easiest to
compute or estimate.

Various methods have been proposed to estimate the condition number
using relatively simple computations. Cline et al. (1979) suggest a method
that is easy to perform and is widely used. For a given matrix A and some
vector v, solve

ATx = v

and then

Ay = x.

By tracking the computations in the solution of these systems, Cline et al.
conclude that ‖y‖

‖x‖
is approximately equal to, but less than, ‖A−1‖. This estimate is used with
respect to the L1 norm in the LINPACK software library (see page 558 and
Dongarra et al. 1979), but the approximation is valid for any norm. Solving the
two systems above probably does not require much additional work because
the original problem was likely to solve Ax = b, and solving a system with

536 11 Numerical Linear Algebra

multiple right-hand sides can be done efficiently using the solution to one of
the right-hand sides. The approximation is better if v is chosen so that ‖x‖ is
as large as possible relative to ‖v‖.

Stewart (1980) and Cline and Rew (1983) investigated the validity of the
approximation. The LINPACK estimator can underestimate the true condi-
tion number considerably, although generally not by an order of magnitude.
Cline et al. (1982) give a method of estimating the L2 condition number of
a matrix that is a modification of the L1 condition number used in LIN-
PACK. This estimate generally performs better than the L1 estimate, but the
Cline/Conn/Van Loan estimator still can have problems (see Bischof 1990).

Hager (1984) gives another method for an L1 condition number. Higham
(1988) provides an improvement of Hager’s method, given as Algorithm 11.1
below, which is used in the LAPACK software library (Anderson et al. 2000).

Algorithm 11.1 The Hager/Higham LAPACK condition number
estimator γ of the n× n matrix A
Assume n > 1; otherwise set γ = ‖A‖. (All norms are L1 unless specified
otherwise.)

0. Set k = 1; v(k) = 1
nA1; γ

(k) = ‖v(k)‖; and x(k) = ATsign(v(k)).

1. Set j = min{i, s.t. |x(k)
i | = ‖x(k)‖∞}.

2. Set k = k + 1.
3. Set v(k) = Aej .
4. Set γ(k) = ‖v(k)‖.
5. If sign(v(k)) = sign(v(k−1)) or γ(k) ≤ γ(k−1), then go to step 8.
6. Set x(k) = ATsign(v(k)).

7. If ‖x(k)‖∞ �= x
(k)
j and k ≤ kmax, then go to step 1.

8. For i = 1, 2, . . . , n, set xi = (−1)i+1
(

1 + i−1
n−1

)

.

9. Set x = Ax.
10. If 2‖x‖

(3n) > γ(k), set γ(k) = 2‖x‖
(3n) .

11. Set γ = γ(k).

Higham (1987) compares Hager’s condition number estimator with that of
Cline et al. (1979) and finds that the Hager LAPACK estimator is generally
more useful. Higham (1990) gives a survey and comparison of the various
ways of estimating and computing condition numbers. You are asked to study
the performance of the LAPACK estimate using Monte Carlo methods in
Exercise 11.5 on page 538.

Exercises 537

Exercises

11.1. Gram-Schmidt orthonormalization.
a) Write a program module (in Fortran, C, R, Octave or Matlab, or

whatever language you choose) to implement Gram-Schmidt or-
thonormalization using Algorithm 2.1. Your program should be for
an arbitrary order and for an arbitrary set of linearly independent
vectors.

b) Write a program module to implement Gram-Schmidt orthonormal-
ization using equations (2.56) and (2.57).

c) Experiment with your programs. Do they usually give the same re-
sults? Try them on a linearly independent set of vectors all of which
point “almost” in the same direction. Do you see any difference in
the accuracy? Think of some systematic way of forming a set of
vectors that point in almost the same direction. One way of doing
this would be, for a given x, to form x + εei for i = 1, . . . , n − 1,
where ei is the i

th unit vector and ε is a small positive number. The
difference can even be seen in hand computations for n = 3. Take
x1 = (1, 10−6, 10−6), x2 = (1, 10−6, 0), and x3 = (1, 0, 10−6).

11.2. Given the n× k matrix A and the k-vector b (where n and k are large),
consider the problem of evaluating c = Ab. As we have mentioned, there
are two obvious ways of doing this: (1) compute each element of c, one
at a time, as an inner product ci = aTi b =

∑

j aijbj , or (2) update
the computation of all of the elements of c in the inner loop.
a) What is the order of computation of the two algorithms?
b) Why would the relative efficiencies of these two algorithms be dif-

ferent for different programming languages, such as Fortran and C?
c) Suppose there are p processors available and the fan-in algorithm

on page 530 is used to evaluate Ax as a set of inner products. What
is the order of time of the algorithm?

d) Give a heuristic explanation of why the computation of the inner
products by a fan-in algorithm is likely to have less roundoff error
than computing the inner products by a standard serial algorithm.
(This does not have anything to do with the parallelism.)

e) Describe how the following approach could be parallelized. (This is
the second general algorithm mentioned above.)

for i = 1, . . . , n
{
ci = 0
for j = 1, . . . , k
{
ci = ci + aijbj

}
}

f) What is the order of time of the algorithms you described?

538 11 Numerical Linear Algebra

11.3. Consider the problem of evaluating C = AB, where A is n ×m and B
is m × q. Notice that this multiplication can be viewed as a set of ma-
trix/vector multiplications, so either of the algorithms in Exercise 11.2d
above would be applicable. There is, however, another way of performing
this multiplication, in which all of the elements of C could be evaluated
simultaneously.
a) Write pseudocode for an algorithm in which the nq elements of C

could be evaluated simultaneously. Do not be concerned with the
parallelization in this part of the question.

b) Now suppose there are nmq processors available. Describe how the
matrix multiplication could be accomplished in O(m) steps (where
a step may be a multiplication and an addition).
Hint: Use a fan-in algorithm.

11.4. Write a Fortran or C program to compute an estimate of the L1 LA-
PACK condition number γ using Algorithm 11.1 on page 536.

11.5. Design and conduct a Monte Carlo study to assess the performance of
the LAPACK estimator of the L1 condition number using your program
from Exercise 11.4. Consider a few different sizes of matrices, say 5× 5,
10×10, and 20×20, and consider a range of condition numbers, say 10,
104, and 108. In order to assess the accuracy of the condition number
estimator, the random matrices in your study must have known con-
dition numbers. It is easy to construct a diagonal matrix with a given
condition number. The condition number of the diagonal matrix D, with
nonzero elements d1, . . . , dn, is max |di|/min |di|. It is not so clear how
to construct a general (square) matrix with a given condition number.
The L2 condition number of the matrix UDV , where U and V are or-
thogonal matrices is the same as the L2 condition number of U . We
can therefore construct a wide range of matrices with given L2 condi-
tion numbers. In your Monte Carlo study, use matrices with known L2

condition numbers. The next question is what kind of random matri-
ces to generate. Again, make a choice of convenience. Generate random
diagonal matrices D, subject to fixed κ(D) = max |di|/min |di|. Then
generate random orthogonal matrices as described in Exercise 4.10 on
page 223. Any conclusions made on the basis of a Monte Carlo study, of
course, must be restricted to the domain of the sampling of the study.
(See Stewart, 1980, for a Monte Carlo study of the performance of the
LINPACK condition number estimator.)

	11 Numerical Linear Algebra
	11.1 Computer Storage of Vectors and Matrices
	11.1.1 Storage Modes
	11.1.2 Strides
	11.1.3 Sparsity

	11.2 General Computational Considerations for Vectors and Matrices
	11.2.1 Relative Magnitudes of Operands
	11.2.1.1 Condition
	11.2.1.2 Pivoting
	11.2.1.3 ``Modified'' and ``Classical'' Gram-Schmidt Transformations

	11.2.2 Iterative Methods
	11.2.2.1 Preconditioning
	11.2.2.2 Restarting and Rescaling
	11.2.2.3 Preservation of Sparsity
	11.2.2.4 Iterative Refinement

	11.2.3 Assessing Computational Errors
	11.2.3.1 Errors in Vectors and Matrices
	11.2.3.2 Assessing Errors in Given Computations

	11.3 Multiplication of Vectors and Matrices
	11.3.1 Strassen's Algorithm
	11.3.2 Matrix Multiplication Using MapReduce

	11.4 Other Matrix Computations
	11.4.1 Rank Determination
	11.4.2 Computing the Determinant
	11.4.3 Computing the Condition Number

	Exercises

