
Bio-inspired Load Balancing Algorithm
in Cloud Computing

Marwa Gamal1, Rawya Rizk2(&), Hani Mahdi3, and Basem Elhady1

1 Electrical Engineering Department, Suez Canal University, Ismailia, Egypt
2 Electrical Engineering Department,

Port Said University, Port Said 42523, Egypt
r.rizk@eng.psu.edu.eg

3 Computers and Systems Engineering Department,
Ain Shams University, Cairo, Egypt

Abstract. Cloud computing is a widespread computing concepts which access
a huge amount of data that can be used by more clients. Therefore, load bal-
ancing between resources is an important field for scheduling tasks to achieve
better performance. In this paper, a Hybrid artificial Bee and Ant Colony
optimization (H_BAC) load balancing algorithm is proposed. It depends on
joining the important behavior of Ant Colony Optimization (ACO) such as
discovering good solutions rapidly and Artificial Bee Colony (ABC) Algorithm
such as collective interaction of bees and sharing information by waggle
dancing. The experimental results show that H_BAC improves execution time,
response time, makespan, resource utilization and standard deviation. This
improvement reaches about 40% in the execution time and response time and
30% in the makespan over the other algorithms.

Keywords: Ant Colony Optimization � Artificial Bee Colony � Bio-inspired
systems � Cloud computing � Load balancing

1 Introduction

Cloud computing is a paradigm for sharing a large number of on-demand services and
computing resources via a heterogeneous, broad network access [1]. Cloud computing
meets numerous challenges at increasing number of users because the demand of
resources sharing and usage are increased rapidly. Therefore, load balancing between
resources for scheduling tasks is an important challenge.

Load balancing is the strategy of conveying the load between different resources in
any system with an aim to use multiple resources with highest efficiency and minimum
response time and prevent single resource overload [2]. In this way, load requires to be
conveyed over the resources in cloud-based building design, so that every resource
indirect the equivalent measure of work at any time. The use of load balancing led to
discover new algorithms to achieve better efficiency. Load balancing must consider two
main tasks, one is the resource provisioning and the other is task scheduling in dis-
seminated environment [3].

© Springer International Publishing AG 2018
A.E. Hassanien et al. (eds.), Proceedings of the International
Conference on Advanced Intelligent Systems and Informatics 2017,
Advances in Intelligent Systems and Computing 639, DOI 10.1007/978-3-319-64861-3_54

There are basically two kinds of load balancing techniques; static and dynamic.
Static algorithms work properly among homogeneous resources with low variations of
load. Therefore, these algorithms are not suitable for highly varying resources in cloud
environment. Dynamic algorithms are successful for load balancing among heteroge-
neous resources in clouds. Among dynamic load balancing algorithms, Swarm Intel-
ligence (SI) based algorithms are investigated as a direct implementation of natural
phenomena [4]. Many researches have been proposed SI based algorithms, but some of
these algorithms have drawbacks such as producing overhead, causing many nodes
overloaded, and getting low throughput.

The most popular algorithms in SI field are Ant Colony Optimization (ACO) and
Artificial Bee Colony (ABC). The combination ACO and ABC exploits the strong
purposes of these two algorithms, discovering good solutions rapidly, collective
interaction, and sharing information by waggle dancing. In this paper, a Hybrid arti-
ficial Bee and Ant Colony optimization (H_BAC) load balancing algorithm is pro-
posed. It takes into consideration monitoring the load of Virtual machines (VMs) and
the decision of load balancing before scheduling tasks in VMs.

The planning of the paper further is as follows. Section 2 presents an overview of
related work in task scheduling in cloud environments. Section 3, presents the pro-
posed H_BAC algorithm. The function of the proposed algorithm is tested with the two
strategies in CloudSim environment and the results are presented in Sect. 4. The paper
is concluded in Sect. 5.

2 Related Work

Load balancing algorithms are divided into two categories: static and dynamic. In static
load balancing, the balancing technique is done before the execution. It is done based
on the probabilistic nature and no changes can be made during the execution, so time of
execution-period cannot be determined exactly. In dynamic load balancing, the tasks
are executed dynamically among all resources and it is necessary to monitor the current
load of the system [5, 6].

In [7–14] Bio Inspired Schedule algorithms were introduced. Researches in bio
inspired nature discovered that cooperation of groups of similar agents in an envi-
ronment can solve complicated problems. So many researches tended to study bio
inspired nature to balance load among cloud environment such as foraging for food.
Bio Inspired scheduling algorithm was divided in two categories: Evolutionary
scheduling algorithm and SI based scheduling algorithm. Evolutionary Algorithm can
be calculated by natural mechanisms of selection and developing. This algorithm is
separated into sub-categories genetic algorithm and genetic programming. However, in
many difficult cloud computing problems, evolutionary algorithms are unable to solve
these complex problems efficiently. SI algorithms are inspired by the behavior of some
social living creatures, such as ants, bees, birds, and fishes [7]. They have their own
specific way to explore the search space of the problem.

In [8], the Fire Flies algorithm is proposed. Fire Flies are awesome natural specie
which produces flash light. There are two functions of such flashes; firstly in order to
attract the mating partner and to attract to potential prey. This natural phenomenon can

580 M. Gamal et al.

help us in solving a large amount of complex cloud computing problem in scheduling
and managing the resources. However it has some disadvantageous such as its
parameters are set fixed and they do not change with the time and doesn’t memorize or
remember any history of better situation for each firefly.

The Cuckoo search is presented in [9] in which there is cuckoo specie which lay
eggs in the nest of host birds. This mechanism helps in bluffing the host bird of the
cuckoo bird. This natural phenomenon can be used in order to solve a large number of
complex cloud computing problems in scheduling and managing the resources.

In [10–12] ACO Algorithm is proposed. It is a random search algorithm which
inspired from the behavior of ants. It depends on foraging the food using external
chemical pheromone trails for communication and return to their nest via shortest path
based on the intensity of pheromone. The intensity of the pheromone depends on the
quality and distance of the food. As time passes, the pheromone power begins evap-
orating, subsequently decreasing the quality of fascination. ACO overcomes hetero-
geneity since it is adaptive algorithm. In addition, it is excellent in fault tolerance and
has good scalability. However, it has a lake in throughput.

ABC is based on foraging behavior of honey bee [13–16]. It consists of scout bees,
employed bees, and onlooker bees. Scout bees are responsible for looking for food
source randomly, employed bees share food information to the onlooker bees, and
onlooker bees find the amount of nectar and calculate the probability. Finally, they
return to their hive and go to the dance area to perform waggle dance. This dance is the
way to share information about quality of food source. While sharing information, bees
calculate the quality of food and energy waste. After that, onlooker bees choose the best
one and then scout bees will back to the food source to get nectar and return to the hive.
ABC performs well as system diversity increases. However, the disadvantage of ABC
is that, it does not show any significant improvement in throughput, which is due to the
additional queue and the computation overhead.

Combining SI algorithms such as ACO and ABC can achieve higher performance
since this combination exploits the strong purposes of these two algorithms [17]. In
[18], a hybrid algorithm that combines ACO and ABC is presented. However, this
hybrid algorithm wasn’t pointed to load balancing in its design as its parameters of
calculating load were not stated. So this technique inherits the waggle dance behavior
of ABC only.

In this paper, a hybrid ACO and ABC algorithm inherits the main behaviors of both
these techniques together. Since the pheromone behavior of ACO is very good in
discovering solutions rapidly at diversity systems, so it is adaptive to dynamic envi-
ronments. In the other hand, ABC achieves global load balancing and perform well as
system diversity increases by its behavior of sharing information by waggle dancing.
The proposed algorithm takes into consideration monitoring the load of VMs and the
decision of balancing before scheduling tasks in VMs.

3 The Proposed H_BAC Algorithm

This section presents the proposed hybrid algorithm. In H_BAC, The k-ants are
responsible for finding capacity of VMj as pheromone (sj) and sum of transfer time and

Bio-inspired Load Balancing Algorithm in Cloud Computing 581

execution time of the task on VMj as edge weight (gj). Bees are responsible for
providing the status of the VMj’s load (Lvmj) and deciding load balancing (LBj).
Figure 1 introduces the flowchart of the proposed H_BAC algorithm. The parameters
sj;gj, Lvmj, and LBj are stored in the knowledge base which represented as waggle
dance to share other ants and bees new information. Ants calculate the probability of
choosing the best VMj to achieve load balancing as:

pkj ¼
saj :g

b
j :L

c
VMj

:LBjP
saj :g

b
j :L

c
VMj

:LBj
if j 2 1;; n

0 otherwise

8<
: ð1Þ

where a; b; and c give relative importance between pheromone edge weight and status
of VMj’s Load. Edge weight (gj) is

gj ¼ ETj þTTj ð2Þ

where ETj, and TTj are execution time and transfer time of VMj and can be calculated
as follows

ETj ¼
Pm

i¼1 TLi

Penumj � Pemipsj

ð3Þ

TTj ¼ IFSj
VMbwj

ð4Þ

where TLi is the length of task i scheduled in VMj, Penumj is number of processors in
VMj, Pemipsj is million instructions per second (MIPS), VMbwj is bandwidth ability of
VMj; and IFS is the input file size of VMj.

Pheromone (sj) can be calculated as follows

snew ¼ 1� qð Þscurrent þ
Xn

k¼1
Dsj ð5Þ

As q is evaporating parameter on pheromone usually set to 0\q\1, Dsj ¼ 1
sj
[13]

and s0 is calculated as:

s0 ¼ Penumj � Pemipsj þVMbwj ð6Þ

The VMj’s load (LVMj) can be calculated by (7) and load balancing decision (LBj)
can be calculated by (8).

LVMj ¼
Xm

i¼1
TLi

.
Pemipsj ð7Þ

582 M. Gamal et al.

5

Start

Initial no. of ants and bees for cloud

Calculate initial parameters of
pheromone (),(),(LB),(LVM)

If all tasks are not
submitted

Knowledge base

Put ants and bees to select VMs
randomly

For each selected VM calculate
(),(),(LB),(LVM)

Yes

For each VM,
If LVM<max.

capacity of VM

If LB<Size of VM

Yes

Load balancing is possible

Calculate probability

Load balancing is not possible for this
VM

Select best VM's probability

Start scheduling task

Retrieve (),(),(LB),(LVM)

End

No

Yes

No

No

Parameters of
updating pheromone

after scheduling
Initial values

Parameters of last
saved pheromone

Fig. 1. The flowchart of H_BAC

Bio-inspired Load Balancing Algorithm in Cloud Computing 583

LBj ¼ 1 if TLDj\max:VMcapacityj
0 if TLDj [max:VMcapacityj

�
ð8Þ

where LBj is the parameter which is used to decide if load balance is possible or not in
VMj and TLDj is the total task length in VMj with the length of next task which isn’t
scheduled.

TLDj ¼
Xm

i¼1
TLi þTLnext task ð9Þ

As in (8), load balance is possible if TLDj of VMj does not exceed the maximum
capacity of selected VMj and then calculate probability by (1). However, load balance
isn’t possible if TLDj exceed the maximum capacity of selected VMj.

4 Simulation Results

In this section, H_BAC algorithm was compared against ABC [10], ACO [13], and
Hybrid [18] algorithms.

4.1 Simulation Environment

The proposed H_BAC algorithm has been implemented using CloudSim API 3.0.3.
Table 1 shows the values of the experimental parameters that have been set for
experiments [14]. 100 runs were executed of the simulator for each experiment. The
readings from these 100 trials were then averaged and plotted.

4.2 Performance Metrics

The performance metrics that were used to evaluate the performance of load balancing
techniques are execution time, response time, standard deviation, makespan, and
resource utilization.

Execution Time
It is the quantity of total time taken for scheduling total cloudlets in VMs.

Response Time
It is the quantity of time taken between submission of asking and the initial response
that’s created.

Standard Deviation
Standard Deviation (SD) is calculated in order to measure the deviations of load on
VMs. The smaller SD means more balanced system. It can be defined as [13]:

SD ¼
ffi
1
n

Xn

j¼0
ðXj � XÞ2

r
ð10Þ

584 M. Gamal et al.

where Xj is processing time of a VM which can be calculated as:

Xj ¼
Pk

i¼0 TLi

Vmcapacityj

ð11Þ

and X is mean of processing time of all VMs which can be calculated as:

X ¼
Pn

j¼1 Xj

n
ð12Þ

Table 1. Parameters setting of cloud simulator.

Type Parameter Value

Datacenter Number of datacenters 10
Number of hosts 5
Type of manager Space_shared,

Time_shared
Number of PEs per host 2–4
Bandwidth 2000
Host memory (MB) 2048–10240
Datacenter cost (The cost of using
processing in this resource)

10

VM Total number of VMs 10–210
MIPS of PE 1000–2000
Number of PEs per VM 1
VM memory (MB) 512–2048
Bandwidth (Bit) 1000
Type of manager Time_shared

Cloudlets Total number of tasks 200–1400
Length of task 1000–15000
Number of PEs per requirement 1
Type of manager Space_shared

H_BAC algorithm
parameter setting

Number of tasks 200–1400
Number of iterations 100
Number of Ants 5
Number of Honeybees 15
A 0.8
C 0.8
B 0.32
P 0.1

Bio-inspired Load Balancing Algorithm in Cloud Computing 585

Makespan
It is the overall completion time of task Ti on VMj as CTij [13].

Makespan ¼ maxfCTijji 2 Ti; j; i ¼ 1; 2; . . .::; n and j 2 1; 2; . . .;mg ð13Þ

Resource Utilization
It is one of the most important parameters which have to be measured for the load
leveling strategy [15].

Resource Utilization ¼ VM demand
range of tasks

ð14Þ

5 Experimental Results

Figures 2, 3, 4, 5 and 6 show the comparison between the proposed H_BAC algorithm
with ABC [10], ACO [13], and Hybrid [18] algorithms in terms of average execution
time, average response time, average standard deviation, average makespan, and uti-
lization rate; respectively. The number of VMs is fixed and equal to 100 VMs while the
number of tasks is gradually increased from 200 to 1400 tasks.

Figure 2 shows the execution time of H_BAC and the other algorithms. It is shown
that H_BAC improves execution time by about 36% with compared to ABC algorithm,
28% with compared to ACO algorithm, and 18% with compared to Hybrid algorithm.
In Fig. 3, response time is presented. It is shown that H_BAC gets better than ABC,
ACO, and Hybrid algorithms by 29%, 37%, and 18%; respectively.

Fig. 2. Comparison of average execution time among H_BAC, ACO, ABC, and Hybrid
algorithms versus the number of tasks.

586 M. Gamal et al.

Fig. 3. Average response time of H_BAC, ACO, ABC, and Hybrid algorithms at the increased
number of tasks.

Fig. 4. Comparison of average standard deviation among H_BAC, ACO, ABC, and Hybrid
algorithms at different number of tasks.

Fig. 5. Comparison of average makespan among H_BAC, ACO, ABC, and Hybrid algorithms
at the increased number of tasks.

Bio-inspired Load Balancing Algorithm in Cloud Computing 587

Figure 4 presents makespan of the four algorithms. Makespan of the proposed
H_BAC algorithm is decreased by 30%, 18%, and 13% with compared to ABC, ACO,
and Hybrid algorithms; respectively. The standard deviation is introduced in Fig. 5. It
is clear that H_BAC realizes about zero standard deviation. It achieves about 99.6%
improvement with compared to ABC, ACO, and Hybrid algorithms since it adds
constraints in order to calculate and decide load balance for each VM. Then, H_BAC is
the most balanced between the other algorithms.

An important parameter used in this work to check the load balancing strategy is
utilization rate. In Fig. 6 utilization rate is presented. It is shown that the utilization rate
of H_BAC is improved by 27%, 40%, 39% with compared to ABC, ACO, Hybrid
algorithms; respectively. This is due to H_BAC adds two constraints at scheduling
cloudlets in VMs; one for computing load balancing in VMs and the other to monitor
total task length for deciding if the load balance is possible or not. These constraints
give more accurate results in selecting the suitable VM and don’t risk the balance of the
system.

6 Conclusion

In this paper, a new algorithm is proposed to find load balancing for task scheduling in
cloud computing. H_BAC inherits the main behaviors of both ACO and ABC algo-
rithms. It takes into consideration the parameter of monitoring the load of VM and the
decision of load balancing before scheduling tasks in VMs. H_BAC has been tested in
large system to calculate the performance at various metrics. H_BAC decreases exe-
cution time, response time and makespan and verifies that it is the most balanced
algorithm over ACO, ABC, and Hybrid algorithm. H_BAC uses two constraints in
order to select the most suitable VM in the process and then guarantee the load
balancing of the system. This leads to improve utilization rate.

Fig. 6. Utilization rate of H_BAC, ACO, ABC, and Hybrid algorithms versus the number of
tasks.

588 M. Gamal et al.

References

1. Endo, P.T., Rodrigues, M., Gonçalves, G.E., Kelner, J., Sadok, D.H., Curescu, C.: High
availability in clouds: systematic review and research challenges. J. Cloud Comput. Adv.
Syst. Appl. 5(1), 5–16 (2016)

2. Saber, W., Rizk, R., Moussa, W., Ghonem, A.: LBSR: Load balance over slow resources. In:
International Conference on Computer Applications & Technology (ICCAT), Cairo, Egypt
(2017)

3. Kumar, V.V., Revathi, R., Rajkumar, M.N.: An assessment on various load balancing
techniques. Int. J. Adv. Inf. Commun. Technol. 1(8), 667–670 (2014)

4. Patil, A., Gala, H., Kapoor, J.: Dynamic load balancing in cloud computing using swarm
intelligence algorithms. Int. J. Comput. Appl. 130(15), 15–21 (2015)

5. Moharana, S.S., Ramesh, R.D., Powar, D.: Analysis of load balancers in cloud computing.
Int. J. Comput. Sci. Eng. 2(2), 101–108 (2013)

6. Katoch, S., Thakur, J.: Load balancing algorithms in cloud computing environment: a
review. Int. J. Recent Innov. Trends Comput. Commun. 2(8), 2151–2156 (2014)

7. Singh, G., Kaur, A.: Bio inspired algorithms: an efficient approach for resource scheduling in
cloud computing. Int. J. Comput. Appl. 116(10), 16–21 (2015)

8. Thilagavathi, D., Thanamani, A.S.: Scheduling in high performance computing environment
using firefly algorithm and intelligent water drop algorithm. Int. J. Eng. Trends Technol. 14
(1), 8–12 (2014)

9. Mandal, T., Acharyya, S.: Optimal task scheduling in cloud computing environment: meta
heuristic approaches. In: Proceedings of the 2nd International Conference on Electrical
Information and Communication Technology (EICT), Khulna, Bangladesh, pp. 24–28
(2015)

10. Tawfeek, M., El-Sisi, A., Keshk, A., Torkey, F.: Cloud task scheduling based on ant colony
optimization. Int. Arab J. Inf. Technol. 12(2), 129–136 (2015)

11. Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K.P., Nitin, Rastogi, R.: Load
balancing of nodes in cloud using ant colony optimization. In: International Conference of
Computer Modelling and Simulation (UKSim), Cambridge, pp. 3–8 (2012)

12. Pacini, E., Mateos, C., Garino, C.G.: Balancing throughput and response time in online
scientific clouds via ant colony optimization (sp2013/2013/00006). Adv. Eng. Softw. 84,
31–47 (2015)

13. Babua, L.D.D., Krishnab, P.V.: Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

14. Kruekaew, B., Kimpan, W.: Virtual machine scheduling management on cloud computing
using artificial bee colony. In: The International Multiconference of Engineers and Computer
Scientists (IMECS), Hong Kong, vol. I, pp. 18–22 (2014)

15. Rathore, M., Rai, S., Saluja, N.: Load balancing of virtual machine using honey bee
galvanizing algorithm in cloud. Int. J. Comput. Sci. Inf. Technol. 6(4), 4128–4132 (2015)

16. Saravanan, S., Venkatachalam, V., Malligai, S.T.: Optimization of SLA violation in cloud
computing using artificial. Int. J. Adv. Eng. 1(3), 410–414 (2015)

17. Singh, S., Vivek, T.: Implementation of a hybrid load balancing algorithm for cloud
computing. Int. J. Adv. Technol. Eng. Sci. 3(1), 73–81 (2015)

18. Madivi, R., Kamath, S.: An hybrid bio-inspired task scheduling algorithm. In: Proceedings
of the 5th International Conference on Computing Communication and Networking
Technologies (ICCCNT), China, pp. 1–7 (2014)

Bio-inspired Load Balancing Algorithm in Cloud Computing 589

	Bio-inspired Load Balancing Algorithm in Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed H_BAC Algorithm
	4 Simulation Results
	4.1 Simulation Environment
	4.2 Performance Metrics

	5 Experimental Results
	6 Conclusion
	References

