Chapter 6
The Blessing and Curse of Emergence
in Swarm Intelligence Systems

John Harvey

6.1 Introduction

We live in an increasingly complex and interconnected world, where there is an
increasing need for autonomous systems that can control systems that are beyond
the capabilities of human operators. To be useful, however, these autonomous systems
must be able to be trusted, even in scenarios which cannot be predicted in advance.
This is particularly important in safety critical systems where a mistake may lead
to loss of life. At the same time, however, not taking advantage of the performance
benefits of autonomous systems could also potentially lead to loss of life. One of
the key issues to be addressed in developing trusted autonomous systems is dealing
with the phenomenon of ‘emergence’, either by taking advantage of emergence or
avoiding emergence.

In simple terms, emergence is behaviour at the global level that was not pro-
grammed in at the individual level and cannot be readily explained based on behaviour
at the individual level. More formally, De Wolf identifies that “A system exhibits
emergence when there are coherent emergents at the macro-level that dynamically
arise from the interactions between the parts at the micro-level. Such emergents
are novel w.r.t. the individual parts of the system” [1]. A well known example of
emergence is the appearance of ‘gliders’ in Conway’s The Game of Life [2]. The
glider-like objects are an outcome of the code that controls the The Game of Life
but the objects themselves were never explicitly ‘designed in’ as part of the code. In
nature, the complex patterns displayed by flocks of birds and schools of fish are an
emergent property of the interaction of many individual units without any centralised
control.

Emergence is closely related to the concepts of ‘complexity’ and
‘self-organisation’. Including both of these concepts, Goldstein defines emergence
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as “... the arising of novel and coherent structures, patterns and properties during the
process of self-organization in complex systems” [3]. Complexity has been defined
by Kennedy et al. as: “The interaction of many parts of a system, giving rise to
behaviours and/or properties that are not found in the individual elements of the
system” [4]. Or as Wolfram put it: “It is possible to make things of great complex-
ity out of things that are very simple. There is no conservation of simplicity” [5].
Self organisation is defined by Camazine et al. as “... a process in which pattern
at the global level of a system emerges solely from numerous interactions among
the lower-level components of the system” [6]. Features of self organising systems
that are essential to emergent behaviour are the existence of: positive feedback—that
leads to amplification of fluctuations; negative feedback—to counterbalance ampli-
fication and provide stabilisation; multi stability—the coexistence of many stable
states; and the existence of state transitions—leading to dramatic change of the
system behaviour, i.e. ‘bifurcations’ in behaviour occur when some parameter/s are
varied.
Goldstein [3] identifies five essential features of emergence:

e Radical novelty—novel behaviour occurs that cannot be predicted.

e Coherence or correlation—the novel behaviour has some level of coherence over
time.

e Global or macro-level behaviour—coherence occurs at the macro level.

e Dynamical—the macro-level, while having some coherence in time, also evolves
over time.

e Ostensive—emergent behaviours are recognised ostensively, i.e. by showing them-
selves.

While Goldstein identifies that emergence is inherently unpredictable, Fromm [7]
proposes that there are four types of emergence, only two of which are unpredictable.
The four types of emergence proposed by Fromm are shown in Table 6.1. Using
Fromm’s classification scheme, there is a clear gradation in the complexity of systems
that display emergent behaviour, from the least complex in Type I, to the most
complex in Type IV.

The following Sections will examine the implications of emergent behaviour
in swarm intelligence systems, specifically in relation to their potential use in
autonomous systems. As identified in Table 6.1, based on Fromm’s classifica-
tion scheme, swarm intelligence systems fall into Type II “Weak and predictable’
emergence.

Table 6.1 Fromm’s classification of types of emergence

Type | Name Predictability Example

I Nominal/ Intentional | Predictable Ordinary machines such as
clocks or steam engines

I Weak Predictable in principle School of fish, flock of birds

I Multiple Not predictable Stock markets, pattern
formation in nature

v Strong Not predictable in principle Life and culture
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6.2 Emergence in Swarm Intelligence

Swarm intelligence systems, based on the local interaction of a large number of
relatively simple agents, display complex, goal-oriented behaviour at the global level.
Swarm intelligence is defined by Kordon as “... coherence without choreography and
is based on the emerging collective intelligence of simple artificial individuals” [8].
Swarm intelligence systems have proven useful in solving a wide range of complex,
non-linear, real-world problems based on their ability to search complex problem
spaces where other methods are unsuitable or ineffective.

Swarm intelligence systems, commonly comprising large numbers of relatively
simple, homogenous agents, are one form of multi-agent systems. Alternate imple-
mentations exist. For example in Chap. 5, Bryant and Miikulainen examine the advan-
tages and disadvantages of homogenous versus heterogenous agents and the benefits
of adaptability of the agents.

Examples of swarm intelligence systems relevant to trusted autonomy include
swarm robotics [9—12], control of groups of unmanned aerial vehicles [13-16], con-
trol of autonomous land and underwater vehicles [17, 18], network switching [19],
economic load dispatch [20], the control of switching networks [21], and the control
of chaotic non-linear networks [22].

The ‘intelligence’ displayed by swarm intelligence systems is an emergent prop-
erty of the system, without any form of external control, synchronous clock or shared
memory and in the absence of any system-wide communication mechanism [23].

While the emergent behaviour of swarm intelligence systems has proven useful in
solving complex real-world problems, as Parunak notes: “Neither self-organization
nor emergence is necessarily good” [15]. Emergence, therefore, can be both a blessing
and a curse in the application of swarm intelligence techniques to develop trusted
autonomous systems.

6.3 The ‘Blessing’ of Emergence

The emergent behaviour of swarm intelligence systems can be a ‘blessing’ in some
complex problem solving situations, based on a number of advantages that emergent
behaviour offers. The first of these advantages is simplicity: individual agents tend
to be quite simple, yet together they can produce very complicated behaviour. This
means that programming is easy as the complexity of individual agents is low [24—
26]. And because agents are relatively simple, programming errors are less likely
and debugging and validation of performance of the individual agents is relatively
simple.

The second is robustness: swarming systems are able to continue to operate,
albeit at a lower performance, even though there are failures in some individuals or
disturbances in the environment [12, 27]. Robustness also comes from the lack of
centralised control, which means there is no single point of failure.
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The third is flexibility: the system is self-adjusting, able to adapt quickly to
changing circumstances without changing individual agents’ behaviour [12, 26, 27].
Closely related to flexibility is the concept of environment integration: environmen-
tal dynamics are directly integrated into swarm’s behaviour, and can enhance system
performance [25].

The fourth is scalability: the swarm can operate using different swarm sizes with
little if any change to coordination mechanisms. Processing requirements, therefore,
tend to increase linearly as the swarm size increases [12, 26].

The fifth is autonomy: swarm intelligence systems operate without external con-
trol or supervision, providing the capacity to control systems that are too complex
or a require a response beyond the capacity of human involvement [17-19].

The sixth is parallelism: swarm intelligence systems inherently use parallel com-
putation for problem solving [19].

Together, these factors make the emergent nature of swarm intelligence systems
attractive for solving complex problems that cannot be broken down into simple parts.
They can therefore be attractive for use in autonomous systems and the advantages
they offer potentially contribute towards trust of the system.

6.4 The ‘Curse’ of Emergence

The emergent behaviour of swarm intelligence systems can also be a ‘curse’ in some
complex problem solving situations, based on a number of inherent limitations of
swarm intelligence systems. These limitations can lead to lack of trust in autonomous
systems that rely on swarm intelligence, which, in turn, rely on emergence.

The first of these limitations is the challenge of predicting the behaviour of swarm
intelligence systems. Fromm categorises swarming systems as Type II emergent
behaviour and predictable in principle, but in practice predictability is difficult to
achieve [7]. A simple swarming/not-swarming prediction may be possible, predict-
ing the detailed characteristics of swarming behaviour, however, is more challeng-
ing. Predictability is particularly important in relation to phase boundaries where
fundamental changes in behaviour occur [28]. As Wright et al. note, in real-world
systems “.. the presence of undesirable behaviours that are a result of unforeseen
non-linear interactions with the different components of these systems ... can have
catastrophic consequences ...” [29]. If predictability cannot be guaranteed, at least
within acceptable bounds, swarm intelligence systems will not be used for safety crit-
ical applications a priori. In one approach to improve the predictability of swarming
systems, Harvey et al. have used measures typically associated with chaotic dynamics
to quantify and predict swarming behaviour [30, 31].

The second limitation, and closely related to that of unpredictability, is the inabil-
ity to control the behaviour of swarm intelligence systems [28]. As Everitt and
Hutter note in Chap. 3, ... with increasing autonomy and responsibility, and with
increasing intelligence and capability, there inevitably comes a risk of systems caus-
ing substantial harm.” Control of swarming systems is inherently difficult due to the
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emergent, non-linear nature of their dynamics. Lack of control may be unaccept-
able in some problem solving areas where safety is critical. The inherent absence of
centralised/higher-level control of swarming systems means that control of behaviour
must be achieved indirectly, through the rules that control individual agent behaviour
or the parameters that ‘tune’ the rules. Developing appropriate rules at the individual
level can be a complex task. As Chevrier notes, the complexity is “...proportional to
the distance between the simplicity of individuals and the complexity of the collective
property” [32]. Choosing parameters to achieve a particular behaviour outcome is
also a difficult task and in many cases may not be possible [12, 33, 34]. An alternate
approach is to adjust parameters until a particular behaviour is achieved based on an
objective measure of behaviour using an optimisation routine [35]. Another possible
approach is to incorporate dynamic tuning—effectively a form of adaptation—in the
model but this considerably increases the complexity of the agents and potentially
the processing overhead and unpredictability of the behaviour of the system [36].

The third major limitation of swarm intelligence systems relates to the time
required to reach a solution, which may limit the usefulness of swarm intelligence
systems for on-line control tasks and time-critical tasks [33]. Options to improve
the time to obtain a solution include increasing the number of swarm members and
increasing the complexity of the members, for example, by incorporation of adap-
tation of members. These same changes, however, can also increase the processing
time to converge to a solution. Balancing these competing factors is itself a com-
plex optimising task which still may not lead to an acceptable outcome in the time
required.

6.5 Taking Advantage of the Good While Avoiding the Bad

As systems become too complex and/or too dynamic for human control, some form
of trusted autonomy will be required. In attempting to control such complex systems,
emergent behaviour is likely, and probably necessary. Paranuk observes, therefore,
that what is required are principles for designing and developing systems whose
emergent behaviour is beneficial, or at least benign [15].

Swarm intelligence systems have shown they can be beneficial in solving com-
plex real-world problems. This beneficial behaviour is dependent on emergence but
currently processes are not available to guarantee behaviour will be benign in all
possible circumstances. In an effort to take advantage of the benefits of swarm intel-
ligence systems, while avoiding the limitations, Winfield et al. [37] have introduced
the concept of “swarm engineering” which they see as a fusion of dependable sys-
tems engineering and swarm intelligence. They acknowledge the need to validate the
behaviour of such systems but argue there is no reason that validating swarm intelli-
gence systems should be any more complex than validating other complex systems.
Winfield et al. discuss two key features of a system in relation to dependability: ‘live-
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ness’, which relates to the swarm doing the right things; and ‘safety’ which relates to
the swarm not doing the wrong thing. The two concepts are related but not the same
thing. As Winfield et al. note: “A system that is provably safe could, for example, do
the wrong thing safely” [37].

Promising mathematical modelling approaches have been developed to validate
the ‘liveness’ aspect of swarm intelligence systems. In the context of swarm robotics
examples include: Lancaster who uses networks of simple probabilistic graphs to
predict swarm behaviour [38]; Dixon et al. who have investigated the verification
of swarms using temporal logic and model checking [39]; and Brambilla et al. who
have introduced an approach to the top-down design and verification of swarms via
formal specification and model checking [40]. Less progress has been achieved on
validation of safety aspects but Harper has shown the potential for using Lyapunov
stability techniques [41].

But even if ‘liveness’ and ‘safety’ aspects can be unambiguously determined,
there is still a body of work to be conducted to determine what ‘trusted’ means
in the real world. As Devitt notes in Chap. 10, “We have different thresholds for
trust depending on the risk of the decisions that have to be made and this in turn
depends on impact of decisions.” Consider a scenario where a swarm of robots is
tasked to find all the survivors after a disaster. If the robots find 90% of the survivors
but can be guaranteed not to injure anyone in the search process—can that system
be considered ‘trusted’. What if the swarm of robots can find 99% of survivors but
there is a 10% chance of injuring a survivor during the search—would that system
be trusted? Which would be the most trusted?

6.6 Conclusion

There is an increasing need for autonomous systems to control an increasingly com-
plex world. To solve real world problems, however, autonomous systems must be able
to be trusted. Swarm intelligence systems are one form of autonomous systems that
have proven useful in controlling complex real-world systems. The intelligence dis-
played by these systems is an emergent property of swarming systems. The emergent
behaviour of these systems is both a blessing and a curse. The emergent behaviour
provides the potential to solve problems that may not be able to be solved by other
means. But without the ability to verify and trust the emergent behaviour of swarm
intelligence systems in the full range of situations in which they will be applied, there
will be strict limits to their applicability in real-world systems. This is particularly
important in safety critical systems.
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