Chapter 4
Social Planning for Trusted Autonomy

Tim Miller, Adrian R. Pearce and Liz Sonenberg

4.1 Introduction

Early work on Trusted Autonomy (See Sect. 4.5) introduced the term social autonomy
(See Chap. 1) to capture the idea that to be coordinated with other agents or keep its
commitments, an agent must relinquish some of its autonomy, but that an agent that
is sociable and responsible can still be autonomous: it would attempt to coordinate
with others where appropriate and keep its commitments as much as possible, but it
would exercise its autonomy in entering into those commitments in the first place [1].

It has been argued that human-machine trust can enhance performance in complex
situations [2], and while we acknowledge there are many unanswered questions about
the relationship between human-human trust, and human-machine trust, especially in
the context of technology advances impacting machine capability for autonomy [3],
we adopt the hopefully uncontroversial perspective that successful human-agent in-
teraction demands that the agent behaves in an intuitive and explainable way from
the perspective of the human.

So the work described here, on computational mechanisms for constructing and
representing explainable plans in human-agent interactions, addresses one aspect of
what it will take to meet the requirements of a trusted autonomous system. In turn,
such properties are essential to enable the deployment of autonomous systems from
the laboratory into production, such as in manufacturing assembly environments,
assistive robotics, disaster management, defence applications, and self-driving cars.

Consider a simple example of a self-driving car that receives information that a
road on its planned route is blocked. Re-planning the route to take a different road is
straightforward, but the autonomy in the car should inform the passengers of this so
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that they understand why an unusual route is taken. However, the autonomy should
not inform the passengers if they are aware of this road closure already; for example,
on the return trip.

We assert that scenarios such as this require social planning. Social planning
is automated planning in which the planning agent maintains and reasons with an
explicit model of the humans with which it interacts, including the human’s goals,
intentions(See Sect. 6.6), and belief, as well as their potential behaviours. Indeed, hu-
mans themselves use these concepts to make decisions that are intuitive, explainable,
and acceptable to other people. This phenomenon is known as Theory of Mind(See
Sect. 15.8), aterm introduced by Premack and Woodruff in the context of the study of
animal behaviour [4] and widely used since in philosophy, psychology amd cognitive
science, e.g. [5, 6].

The state-of-the-art in artificial intelligence offers limited foundations on such
constructs. Indeed, as articulated recently, challenges for artificial intelligence in the
delivery of systems that can operate autonomously under some conditions, but cannot
always complete an entire task on their own (so-called semi-autononmous systems),
include the development of realtime activity and intent recognition techniques, the
design of representations for human actions that are usable in the context of automated
planning, integrated with interfaces that facilitate communication and transfer of
control between the human and the machine, and supported by novel execution
architectures [7]. The work described in this chapter addresses (in part) the second
and fourth of these issues.

Specifically, we seek to build artificial agents that are able to fluidly operate
in complex dynamic environments with humans, interacting in a ‘human-intuitive’
manner. We are developing building blocks towards the design of non-human agents
whose actions can be trusted and understood by humans, and towards approaches
that take these factors into account when designing the collaboration with humans.

The structure of this Chapter is as follows. So far we have offered an overview
of the challenge of planning in human-agent teams, with a specific focus on social
planning as one way to increase transparency and explainability, and hence a criti-
cal enabler of trust. Section4.1 provides some high level background on (classical)
planning and the motivation for social planning. Section4.3 includes an introduction
to a recent body technical work by the authors and collaborators in social planning
- specifically in multi-agent epistemic planning [8—15]. In Sect.4.4, we present two
scenarios that illustrate the benefits of planning in the presence of nested belief rea-
soning and first-person multi-agent planning, hence indicating how social planning
could be used as a means for planning human-agent interaction explicitly as part of
the ‘deliberation’ cycle. Section4.5 offers some brief summary remarks.

4.2 Motivation and Background

In this section, we outline some background material required to understand the
chapter, as well as some motivation for our work.
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4.2.1 Automated Planning

Planning research in classical planning has yielded highly efficient mechanisms for
plan synthesis suiting single-agent scenarios. Figure 4.1 outlines a conceptual model
of Al planning. A planning problem is formulated as a tuple (F,Z, G, A), with the
following meanings:

1. F is a set of Boolean fluents describing the objects within the world of interest;

2. 7 C F is the initial state represented as the set of Boolean fluents that are true in
the world before the plan-execution agent performs any actions;

3. G C F is a set of fluents describing the desired objectives, such as achieving a
goal or performing a specific task; and

3. Ais aset of actions, described as a pair containing a precondition specifying the
fluents that must be true for that action to be executed, and the effects that action
will have on the world, described as fluents that will become true or false.

The output consists of either a plan (a sequence of actions for the agent to perform)
or a policy (an action to perform for each reachable state).

A simple and commonly supported extension to classical planning is conditional
effects. A conditional effect of an action is of the form (C — [), in which C is a set
of fluents representing a condition, and / is a single fluent. The informal semantics
of such an effect is that if C held before the action was executed, then [ holds after
the action is executed. A single action can have multiple such conditional effects.

Much research over the last three decades has focused on the problem of offfine
classical planning, proposing compact state and transition encodings and effective
domain-independent heuristics. This has led to massive improvements in classical
planning tools, which can solve problems with hundreds of actions and large state
spaces (~2!9 states) from several milliseconds to just a few hours.

However, classical planning is the simplest of the domain-independent planning
problems, as it assumes the following:
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e Deterministic events: The effects of all actions are deterministic — there is only
one possible set of effects, and those effects happen each time the action is applied
in the real world.

e Worlds change only as the result of an action: the only manner in which a world
changes is when the planning agent executes an action — the world is otherwise
static.

e Fully observable (omniscience): the state of the world is always fully observable
— as such, when an action is applied, the agent can see the effects fully.

e Single actor (omnipotence): There are no other agents in the world, either coop-
erative, adversarial, and ambivalent.

Clearly, none of these assumption hold in the setting of real-world autonomy.
However, more recently, research in the area of automated planning has focused on
relaxing the problem description to enable a wider range of problems to be speci-
fied. In particular, planning in non-deterministic [17] and partially-observable [18]
domains has matured to the point in which many problems in these domains can
be solved efficiently offline, producing robust policies for execution. A key part of
almost all solutions in this area is that a classical planning tool is used to solve part
of the richer, underlying problem.

However, most planning research to date is still lacking in one key area: the
consideration of other agents (human or otherwise) in the domain.

4.2.2 From Autistic Planning to Social Planning

To move into planning into multi-agent environments, agents must move out of the
so-called autistic realm and into the social realm [19]. This means that a single agent
reasoning in a multi-agent environment must have a Theory of Mind, considering
the possible behaviours and mental states of others in the environment.

Building on recent analysis by Bolander and Herzig [20], we note that extending
classical planning to the multi-agent case presents many new challenges:

1. Planners must track beliefs (or knowledge) of other agents, which are typically
incomplete and only partially correct.

2. These beliefs include higher-order beliefs; that is, beliefs about other agents’
beliefs about other agents’ beliefs, etc. (as in Fig.4.2).

3. Other agents have their own goals and intentions, which may be cooperative or
competitive with our own, and these goals and intentions direct their actions,
which influence our ability to achieve our own goals.

4. Chosen actions should be plausible or acceptable from the perspective of other
agents; for example, in an adversarial setting in which an agent is attempting to
conceal their real identity, their actions must conform to the identity attributed to
them by their adversaries.
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Fig. 4.2 Tracking others’ beliefs about beliefs (taken from http://www?2.compute.dtu.dk/~tobo/
epistemic-planning-cph/index.php)

These present significant computational challenges: the actions of the other a-
gents can induce a combinatorial explosion in the number of contingencies to be
considered, making both the search space and the solution size exponentially larger,
hence demanding novel methods [12, 21, 22].

The ability to hold a Theory of Mind to oneself and others, and to understand that
others are doing the same, is important in many domains. Consider two fighter pilots
seeking to disable an enemy radar defended by missiles. To do so, the pilots need to
fool the enemy missile operators into believing that the two aircraft are attacking from
the opposite direction to what they are truly attacking, in order to get close enough
to the radar. Further, they need to attack simultaneously — one will destroy the radar
while the other provides cover. However, they may be required to approach without
communication, to reduce the chance of revealing their location. Thus, their agreed
plan is to attack simultaneously only when they believe the enemy is deceived, and
they believe that their team member believes that the enemy is deceived. To do this,
they need to independently observe the same events as each other in the environment,
and from these, update their theory of the others’ mental state, as well as that of the
enemy. Provided that both pilots are able to observe key events and understand that
the observations of these events are common (known as co-presence), then they can
coordinate their actions without communication.
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In a first-order theory of mind, the reasoner considers that other people have
beliefs, desires, etc. that influence their behaviour; e.g. they believe we are attacking
from the opposite direction. In a second-order theory of mind, the reasoner allows
that others are doing the same about us and other people; e.g. my co-pilot believes that
the enemy believe that we are attacking from the opposite direction. In higher-order
theories of mind, this nesting continues; I believe that my co-pilot believes the enemy
believe that we are attacking from the opposite direction, and I believe my co-pilot
believes I believe this.

Such reasoning has received much attention in empirical studies of children’s
and adults’ reasoning, e.g. [6, 23-25] and there is considerable evidence that many
adults have ToM abilities of levels 3 and 4, with some subjects succeeding in tasks
requiring level 5 reasoning, yet even level 2 reasoning is beyond the reach of almost
all state-of-the-art planning tools.

Multi-agent systems research has contributed a deep understanding of concepts
such as group knowledge, group belief, and collective intention, often informed by
philosophical and psychological perspectives, e.g. [26—30]. Studies have also exam-
ined computational models of ToM, e.g. [8, 31, 32], and also the impact of different
levels of awareness that an agent has about the others acting in a team task context,
e.g. [33]. Although the tools used in such investigations are highly expressive — typ-
ically description logics and rich multi-modal logics, and some bespoke algebraic
belief update mechanisms — they are not accompanied by efficient reasoning en-
gines, so fall short of providing practical means for systematically operationalising
complex analyses.

Existing multi-agent planning tools that do take into account the beliefs, goals,
intentions and capabilities of others, e.g. [34], consider a third-person view, in which
a plan is constructed for a team, and each member is given their part to execute.
When planning must be distributed amongst a team (including, when humans are
to be in the loop), a semi-autonomous system must plan for its own actions while
considering others explicitly - i.e. such reasoning demands a first-person view.

4.3 Social Planning

The authors, in conjunction with several collaborators, have made recent advances
in this area; notably in the area of multi-agent epistemic planning. In this section, we
overview two of the key advances made and provide a high-level technical overview
of these. The two areas are:

1. Efficient epistemic planning — Bolander and Anderson [21] define the concept
of epistemic planning domains, a generalisation of classical planning domains in
which action models can have preconditions and effects on the (possibly nested)
belief of others. They also show epistemic planning to be decidable in the single-
agent case, but only semi-decidable in the multi-agent case.
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In recent work, the authors, along with other collaborators, showed how restricted
forms of epistemic knowledge bases can be used for efficient querying [10, 11,
15], and proposed a method that used these knowledge bases to take extend
planning domains with higher-order belief operators, in a similar spirit to Bolander
and Anderson’s epistemic planning, and encode these as propositional planning
problem [13]. The resulting encoding allows a large class of epistemic planning
problems to be solved efficiently.

2. First-person perspective multi-agent planning — The authors and their collab-
orators propose a computational model for reasoning about and with others in
multi-agent environments using heterogeneous agent models [8, 9], and subse-
quently instantiate this model as a non-deterministic planning problem [14]. The
result is a planning tool that can produce policies for acting in a multi-agent en-
vironment, in which the policy has been compiled such that the agent considers
the actions of others as it deliberates.

The latter item allows an agent to act in a multi-agent world considering the other
agents’ actions, while the former extends this with a Theory of Mind about the other
agents’ beliefs. Integrating these two pieces provides a tool for social planning: the
ability to consider the possible behaviours and mental states (in this case, beliefs and
goals) of others during the deliberation process.

4.3.1 A Formal Model for Multi-agent Epistemic Planning

In this section, we present a formal model for our multi-agent epistemic planning
problem. This problem extends standard planning problems with the addition of
epistemic fluents and multi-agent actions.

4.3.1.1 Epistemic Fluents

The notion of epistemic planning refers to the ability to reason about knowledge (or
belief), rather than just about facts of the world. In the example of the two fighter
pilots outlined in Sect.4.2.2, these pilots are reasoning about the knowledge/beliefs
of their partners as well as that of their adversary. Such reasoning is imperative for
Theorem of Mind reasoning: to put oneself in the shoes of another, one must adopt
their perspective of the world, including their understanding of the environment and
others within it.

Epistemic logics extend standard propositional logics with modal operators, in
which the mode of the formula represents the perspective of individual agents and
groups of agents. First, we present some background material on epistemic and
doxastic! logics that is required for this chapter. Throughout the remainder of this

"'We use the term “epistemic” to refer to both knowledge and belief throughout the paper.
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chapter, we will assume that the epistemic logic use is modal logic K D (see Fagin
et al. [35] for a definition of this), and as such, is truly a belief operator, rather than
a knowledge operator.

Due to the high computational complexity of epistemic logic, we adopt a simplified
version of epistemic/doxastic logic by restricting modal formulae to restricted modal
literal (RML) [36], proposed by Lakemeyer and Lespérance. An RML is defined
using the following grammar:

pu=pllilp|—¢

where p is a propositional literal and i is an agent identified. Note that an RML cannot
contain disjunctions, and is always in negation normal form (NNF). A set of RMLs,
which is equivalent to their conjunction, is called a proper epistemic knowledge base
(PEKB).

These RMLs are the fluents used in our epistemic planning problems: they offer
an increase in expressiveness over propositional fluents, but as we will show later,
they do not greatly increase the difficultly of solving the problem.

4.3.1.2 First-Person Multi-agent Planning

Similar to our earlier work [14], we define a first-person multi-agent planning prob-
lem as a tuple
(Ag, F,Z,Gi—o..1ag|-1> Ai=0...|ag|-1)

where:

e Ag is the set of agents in the world, including the planning agent specially desig-
nated as 0;

e F is a set of epistemic fluents, in which each fluent is an RML;

e 7 C F is the initial state of the world;

e §; C Fis the goal for agenti € Ag; and

e A; is the finite set of actions agent i can execute.

Note the difference between this and the definition of classical planning outlined
in Sect.4.2: there is a set of agents associated with the problem definition, fluents
can be epistemic, each agent has a goal, and actions are associated with particular
agents.

Each action a € A; is a tuple of the form (Pre,, Eff,) where Pre, C F is the
precondition that must hold for the action to be executed, and Eff, is a set of one
or more possible conditional effects, in which exactly one of the effects will hold
after the execution of the action, but we do not know which until the action has been
executed; that is, actions can be non-deterministic. We assume here that the non-
deterministic effects are fully-observable; that is, the agents do not which outcome
will occur, but they can observe the outcome immediately after the action is executed.
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(:action share

:derive-condition at Sagent$ ?1)

(
:parameters (?a ?as - agent 2?1 - loc)
:precondition (and (at ?a ?1) [?a] (secret ?as))
reffect (and

(forall 2a2 - agent
(when (at 2a2 21)
[?a2] (secret ?as)))

)

Fig. 4.3 An epistemic PDDL description of sharing a secret

The set of all joint actions between agents is the cross product of all individual
actions: A = Ap x - -+ X Ajag—1. To model that it is possible for some agents to
perform an action while others do not, (at least some) agents must be equipped with
a “noop” (no operation) action, which has no effects.

Example 1 Consider the Grapevine problem, based on the well-known gossip prob-
lem, in which agents can move between rooms, share a secret piece of information in
their room, but only those agents in the room will learn the secret when it is shared.
The epistemic Planning Domain Description Language (PDDL) [37] extension of
this action can be modelled as in Fig.4.3.

In this example, ?1 is a room, ?a is the agent sharing the secret, and ?as are
the other agents in the room. The fluent [?a2] (secret ?as) means that agent
?a2 believes fluent (secret ?as). Note that any agent can execute this action.
Action preconditions can be used to restrict actions to only a subset of the agents in
the domain.

The derive condition at the top of the action definition models the conditions of
mutual awareness. Essentially, this says that for any agent in the room ?1, they will
derive the effects of this action if the action is executed. In essence, they will be
aware that the action has been executed and will see its effect. They will therefore
know the secret, but also know that all other agents in the room know the secret.

The types of goals one could consider in this example are: to share one’s secret
with only a subset of the agents; to deceive a particular set of agents; or to have every
agent share their secret with everyone else.

A solution to a first-person multi-agent planning problemis a policy P : 2F — Aj,
thus mapping a partial state (a set of fluents) to an action specifying which action the
0 agent should take in a state that satisfies the partial state.

4.3.2 Solving Multi-agent Epistemic Planning Problems

While multi-agent epistemic planning problems are significantly more expressive
than standard classical or contingent planning problems, they often can be solved with
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some compilations to and modifications of existing — albeit advanced — planning
technology.

As noted earlier, we solve this problem in two ways. First, we compile away the
epistemic fluents in the planning problem into standard propositional fluents, such
that any action defined using epistemic fluents can be compiled into an equivalent
action and solved using an existing planner, such as a classical planner or non-
deterministic planner. Second, by modifying an existing non-deterministic planning
tool to consider multiple agents (without epistemic fluents), and then treating the ef-
fects of other agents actions as non-determinism in the environment. Thus, compiling
a multi-agent epistemic planning problem into a multi-agent propositional planning
problem and using this multi-agent planner, we can solve this rich class of problems.

4.3.2.1 Compiling Away Epistemic Fluents

There are several parts to the compilation — in this section we describe just the two
most important: encoding consistent belief update; and encoding the perspective of
other agents when the planning agent is unsure whether they witnessed an event.
These both extend a base encoding, which strips away epistemic fluents are replaces
them with propositional fluents suitable for our (non-epistemic) multi-agent planner.
Technical details about this encoding can be found in Muise et al. [13]. In this section,
we simply provide the intuition behind these via some examples.

Base Encoding. The base encoding describes a simple multi-agent planning problem
that is not equivalent to the original problem. This encoding is then extended to deal
with belief update and uncertain firing of events.

Put simply, the encoded problem takes the original problem and compiles it to
an alternative problem such that each epistemic fluent in the action models, initial
state, and goal is encoded into a proposition; that is, fluents of the form [?a]p are
compiled to a_p. Thus, a_p represents the agent a believing p as a proposition. This
replacement is nested for nested beliefs; for example, [?a] [ ?b] [ ?c]p is encoded
as a_b_c_p. Negations of the form not ( [?a]lp) are encoded as not_a_p.
Belief Update. In classical planning, belief update is straightforward: when a propo-
sition becomes true, it is no longer false, and vice versa. However, in epistemic
planning, the problem is not so simple. Consider the Grapevine example described
in Example 1, in which agent 1 learns secret s, modelled as the epistemic fluent
[?a]s. The propositional fluent a_s models this, however, we must also consider
thatif [?a]sistrue,thensoisnot ([?a] not (s)) —ifagenta believes s, then
is should not believe the negation of s. Thus, for every compiled action in which a_s
becomes true, so too must not_a_not_s. This counters for epistemic actions in
whichnot ([?a] not(s)) isa precondition for example. If we add only a_s to
the state, then not_a_not_s will not be true when that precondition is evaluated
for another action. As such, the encoded model would not be equivalent without this
modified belief update.
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The reverse problem occurs if we want to no longer believe
not ([?a] not(s)) —we must also remove [?a]s.

To solve these problems, one could modify our multi-agent underlying planner to
know that whenever a__s is true, then not_a_not_ s must also be true. Instead, we
extend the base encoding by adding additional effects to actions that explicitly con-
sider these situations, resulting in an encoding that faithfully encodes the dynamics
of the original problem.

Compiling this down not only allows us to keep the epistemic and multi-agent

parts of our solution loosely coupled — it means that our epistemic compilation tool
can be used for other problems and other planners that support PDDL,? such as other
classical planners, temporal planners, non-deterministic planners, etc.
Uncertain Firing. Consider again the Grapevine scenario, and an example in which
we model the trustworthiness of agents. We may have a model of the share ac-
tion that only believes a secret an agent shares if we believe that agent is trust-
worthy. For this, we would use a conditional effect on the action of the form
[0ltrustworthy (?a) —--> [O]lsecret(?a), meaning that we only add
[0]secret (?a) toourstateif [0] trustworthy (?a) was in our state before
the action was executed (recall that the planning agent is agent 0). This models what
is intended, but what if agent O is unsure whether agent a is trustworthy? That is,
neither [0] trustworthy (?a) nor [0]lnot (trustworthy (?a) ) arein the
state. Should [0]secret (?a) be added to the state?

Our intuition is that the solution should be to remove [01not (secret(?a))
(ifitis in the state) if not ( [0] trustworthy (?a) ) holds before the action exe-
cutes. Note here that not ([0] trustworthy (?a) ) is not the same as [0]not
(trustworthy (?a) ). In the latter, we model that agent O believes that a is not
trustworthy, while in the former we model that it is not the case that agent O believes
a is trustworthy — agent O may be unsure of agent a’s trustworthiness.

Thus, we model that if O is unsure whether a is trustworthy, then it should not
believe the secret, but it should at least no longer believe that the secret is false either:
it should be uncertain whether the secret is true or not.

4.3.2.2 Multi-agent Problems as Non-deterministic Problems

The difference between single-agent and multi-agent planning problems is clear: in
multi-agent planning problems, the agents must consider not only their own actions,
but actions of other agents as well. For example, consider the simple two-player game
Tic-Tac-Toe. When playing a move, we should not only consider whether we can get
three pieces in a row, which is trivial in a single-player version, but also whether our
opponent can block us or whether they can also get their own three pieces in a row.

One way to model other agents is to treat them as a dynamic environment. That
is, when we execute an action, and another agent can subsequently change the world,

2Note: the underlying planner must support conditional effects for our compilation to work.
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Fig. 4.4 Treating other agents’ actions as non-determinism

we treat their action as arbitrary changes in a dynamic environment, such that it is
as if the environment itself changed, rather than being explicitly changed by another
agent.

Such an approach presents an opportunity to build on recent advances in non-
deterministic planning [17] to extend planning technology to multi-agent environ-
ments. In non-deterministic planning, actions can have multiple possible effects, but
the actual effect cannot be known until after the action is executed.

Using techniques in non-deterministic planning, we can cast the problem of plan-
ning in multi-agent environments as a non-deterministic planning task. Essentially,
we can treat the actions of other agents in the environment as non-deterministic
effects of our own actions.

Figure 4.4 outlines the intuition behind this idea. Figure4.4: Left shows an agent
me considering the execution of action a. If agents ag, and ag, will then subse-
quently perform actions, then from a deliberation perspective, the possible effects of
executing action a should be consider as all possible effects of agents ag; and ag;’s
actions. Figure4.4: Right illustrates the non-deterministic treatment of this.

Modelling the problem like this results in a faithful encoding of the original
problem; however, as noted earlier in Sect.4.2, the actions of the other agents can
induce a combinatorial explosion in the number of contingencies to be considered,
making the search for solutions too high for all but the most trivial applications.

One way that we mitigate this problem is to consider the infent of the other agents
in the scenario. That is, if we know/believe that the other agents have some particular
intent, then we are able to reduce the branching factor by focusing the search only
on those actions that are plausible given the other agents’ intent.

For example, consider Tic-Tac-Toe. We know our opponent’s goal: to win the
game. Given this, if we are planning what to do in the state of the game shown in
Fig.4.5, where the opponent is O and we are player X. If it is our move, one possible
move is to place X in the bottom right corner, which sets us up to win along the
bottom row. We then need to consider player Y’s moves. A rational agent would
consider that player O’s most plausible response is to play in the top-right corner,
winning the game. Player O’s next most plausible move (if one can really consider
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Fig. 4.5 A sample game
state of Tic-Tac-Toe

O
X
X

any such move as plausible!), would be to block the cell at the middle bottom, thus
preventing us from winning.

Our search algorithm considers this by looking at the other agents’ goals and
using standard planning search heuristics to decide which actions are the best for the
other agents when assessing what they may do. It uses these heuristics to rank the
opponents move from most plausible to least plausible. Then, it considers the agent’s
most plausible action first at each stage of a scenario, until the search terminates.
Then, it considers the next most plausible action, and so on.

Using the Tic-Tac-Toe example, our algorithm would consider player Y first
playing top-right, then it would consider middle-bottom. Other moves are implausible
and it is little value to explore them. The search continues until either: (a) the entire
search terminates, in which case we have a complete solution and the plausibility
ranking is meaningless; or more likely (b) a pre-defined time or memory budget is
exhausted, at which point it has the best move considering the search space that it
has explored.

This search strategy is highly effective in many domains, because it does not
assume complete rationality of the other agents; nor that the model we have of the
other agents is complete. That is, rather than determine exactly which action other
agents will choose, it considers all, but only reasons about the effects of the most
plausible ones. Given enough time and memory, this will result in a complete search,
but for large problems, it focuses the search on those actions that are the most likely.

Technical details of the problem formulation, solution, and evaluation of this
approach can be found in Muise et al. [14].

4.4 Social Planning for Human Robot Interaction

To demonstrate the benefits of social planning, we present two case studies involving
semi-autonomous teams, which we have adapted to illustrate the benefits of planning
in the presence of nested belief and first-person multi-agent planning.
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4.4.1 Search and Rescue

Disaster response and management involves a number of important tasks, such as
preparation before disaster, response and restoration. If we consider a scenario of a
simplified search and rescue mission following a natural disaster, such as an earth-
quake, there are a series of tasks that must be undertaken to search for survivors
and get them to the appropriate service, such as medical evacuation. As part of this,
we can imagine a scenario in which two unmanned ground vehicles (UGVs) and a
human operator are working as a three-member semi-autonomous team to locate and
assess survivors.

The environment of this scenario consists of a set of buildings, organised according
to a known map. However, the buildings may be damaged, leading to unexpected
inaccessibility to search regions or locations. Buildings may contain survivors or
could be empty, but this is initially unknown.

The human supervisor oversees the entire mission and coordinates the UGVs.
They can interact with the agents controlling the vehicles by assigning goals, such
as to search a particular building or to return back to particular base location. They
can also query the agents on their current goals, intentions, and beliefs; including the
nested beliefs of the other agent and the operator themselves.

The two UGVs have the same capabilities, which can be modelled as actions in
epistemic PDDL, such as:

1. Moving to specific way-points, identified by coordinates on the map, including
inside buildings.

. Attempt to open doors to buildings/rooms (which may either succeed or fail).

. Go into buildings and rooms, providing the doors are open.

. Take a picture and upload it for assessment.

. Drop a first-aid survival pack, provided that the agent believes there is a survivor
in need of this.

. Drop water to a survivor.

. Lift a survivor onto one of the vehicles, which requires the assistance of the other
vehicle.

8. Communicate with the other agent or the supervisor.
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This final action — communication — is enabled by the epistemic actions. Com-
munication can simply be modelled as an action with epistemic effects. For example,
one agent can send a message to the others indicating that a particular door is blocked
(e.g. by rubble).

Such an action can be modelled as follows:

Parameters The parameters are the agents to which to send the message, and the
location of the door that is blocked.

Precondition = The precondition is that the sending agent believes that the door is
blocked, and believes the recipient does not believe that the door is blocked.
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Effects The effects are that the sending agent believes that the receiving agents
believe that the door is blocked, and further, the sending agent believes that the
receiving agent believes that the sending agent believes that the door is blocked.
Similarly, an agent receiving such a message would believe that the door is blocked
and that the sender believes that the door is locked.

Although this scenario is a simplification of a real search and rescue mission, it
illustrates the implications that explicitly modelling these communication actions has
on the scenario. We assert that these go some way towards improving the interactions
between the semi-autonomous team, such as:

Efficiency It may be that the other vehicle agent could want to use that door
later as part of a plan, and now knows to plan a different route to get inside the
building/room that does not used this blocked door.

Lower Communication Overhead By explicitly representing the beliefs of others
(and potentially their nested beliefs of the team), the amount of communication
overhead can be reduced. For example, the precondition of the action above is
that the receiving agents do not already believe this information. Thus, if the
planning agent already has information noting that another agent beliefs the door is
blocked, it will not send this information on. This is particularly important in semi-
autonomous teams, in which human collaborators are more easily overloaded with
information than their artificial team members.

Re-planning Having an explicit model of the other agents’ Theory of Mind, and
being able to update this model, enables agents to identify that their expectation of
their team members’ behaviour is no longer valid, thus triggering them to re-assess
or re-plan the intentions and plans of their team members.

Coordination  As outlined in the task of the fighter pilots in Sect.4.2.2, providing
updates of each others mental states allows agents to synchronise on joint actions
that require e.g. simultaneous execution, such as lifting a survivor onto one of
the vehicles to transport them back to a location with further medical assistance,
which may require that each agent believes that the survivor is on the stretcher
and believes that the other agent believes this as well.

Transparency It provides some transparency to the human supervisor, informing
them why the agent is not entering the room that it had originally planned, without
(at least in some cases) the agent having to explicitly update the supervisor on its
new plan.

Epistemic goals Being able to model the epistemic effects allow us to pose epis-
temic goals, such as that agent A believes something is true while agent B believes
the opposite — in other words, one of the agents is deceived.

While it is straightforward to model communication actions in other planning
languages, the ability to model the epistemic effects of these actions, and have these
effects represented as a Theory of Mind, enables additional possibilities over using
propositional planning, particularly regarding coordination and transparency.
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Fig. 4.6 Industrial painting
robots with optional human
inspection; presented in [39],
the video can be found at
http://tiny.cc/2aytrw

Further to this though, we assert that epistemic first-person multi-agent problem
is a more natural way to model these problems, compared to existing approaches,
such as keeping a separate model for each other agent [38].

In particular, the ability to model and reason about epistemic goals requires the
ability to model basic multi-agent epistemic effects — they cannot be captured with
separate models.

4.4.2 Collaborative Manufacturing

In Fig. 4.6 we consider a variant of a painting and assessment task presented in [39]
where robot actions are only partially observable to human operators. The task
involves the real-time scheduling of painting robots for the fuselage of an aeroplane.
Human operators optionally intervene in the painting process to assess the quality of
the painted surfaces.

The painting robots must adapt and re-schedule to the optional assessment of
panels by human operators, to allow the panels to have sufficient drying time and to
achieve the goal of painting the fuselage in the time allocated to the task. The temporal
constraints are captured in this task using a form of temporal constraint networks
termed simple temporal networks (STNs) [40].? The time required for the application
of each coat is captured using the STNs, along with the time before the (optional)
assessment of each coat; including the assessment time. From the perspective of
the painting robots, paths through STNs emerge according to the non-deterministic
choice of humans according to which panels they chose to assess. This forms a
branching tree, similar to Fig.4.4: Left, as painting robots and human operators
interleave painting and assessment tasks. At any instant, there is a minimal STN that
achieves all of the tasks within a minimum time, which will be traversed according
to the optional assessments that are potentially performed by human operators in the
future.

3See [39] for the STN encoding details for this task and the video at http:/tiny.cc/2aytrw.
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Fig. 4.7 Industrial assembly
with human-robot
interaction; presented in [41],
the video can be found at
http://tinyurl.com/7n439eg

If the robots work too far down the fuselage from the human operators, humans
cannot distinguish which panels the robots are painting. If nested belief is used
during planning this allows robots to choose panels to paint which are observable to
human assessors. The robots know that actions observable to the human operators
allow the humans to infer the minimal STN. The robots therefore know that humans
know the robots know the humans know the minimal STN. Humans can therefore
understand the choice of panel robots make to paint; and can even take this choice
into account in deciding which panel next to assess. Thus, theory of mind facilitates
the robots to maintain human knowledge of which panel(s) are ready to assess.
Social planning builds trust between robots and human operators—Ileading to goal
achievement within shorter times.

In another industrial task, shown in Fig.4.7, an assembly task is shown where a
human and a robot share in a simple assembly task that involves placing fasteners then
applying torque to each fastener. The robot shares the task by applying sealant to each
hole ahead of placement of the fastener. The robot must be able to handle different
preferences of human operators. For example, operators may choose to place all the
fasteners first, then apply torque to each one. Alternatively operators may choose to
place each fastener then apply torque to each one immediately following placement.
The approach described in [41] shows an approach that can adapt to the preferences
of humans using dynamic scheduling, the video can be found at http://tinyurl.com/
Tn439eg.

We adapt this task to utilise social planning. If we assume the goal is to minimise
the overall time to complete the task, theory of mind facilitates robots to adapt to
humans changing their preferred assembly behaviour part-way through the achieve-
ment of task, as they learn to perform the task within less time. Using theory of mind
principles, the robot uses social planning in the knowledge that the human knows
the robot knows the human has learned the shortest human-robot interleaving strat-
egy. This enables the robot to perform other preparatory tasks, such as fetching and
positioning the correct number of fasteners, further shortening the time to complete
the task.
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4.5 Discussion

We have presented an an outline of several principal elements of the emerging field
of social planning. These include theory of mind, as we move to first-person perspec-
tive planning in a multi-agent setting, and we present a formal model for first-person
multi-agent epistemic planning. We have covered two emerging solution techniques
for solving multi-agent epistemic planning problems, including an approach for
compiling away epistemic fluents, where multi-agent problems are posed as non-
deterministic problems, for which solutions are quite well understood. Finally, we
presented two case studies of semi-autonomous systems by adapting examples from
the literature to utilise social planning and theory of mind principles to demonstrate
the benefits for realising trusted autonomy. These examples demonstrate how so-
cial planning can used to improve the interaction between humans and robots in
semi-autonomous teams.

The work forms an important step towards achieving trusted autonomy where the
perspective of both humans and robots are explicitly modelled using a first-person
theory of mind approach. There is excellent potential for the exploitation of recen-
t developments in efficient epistemic and non-deterministic reasoning techniques.
For example, recent techniques in proper epistemic databases such as ‘knowing
whether’ [10] can be used to establish the knowledge of human operators during
more complex tasks without knowing the knowledge itself, and the observability
of asynchronously occurring actions can even be modelled [42]. Further work and
experimentation is warranted to explore the application of these and other related
techniques in social planning.
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