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Abstract. Ever increasing competition is driving the efforts to improve pro-
ductivity throughout nearly all domains. In the manufacturing context, digital-
ization of value networks and creation of autonomous, self-optimizing systems –
a vision coined ‘Industrie 4.0 – is an approach that promises competitive edge
over other players. One field in which this vision could lead to great productivity
potentials is order scheduling and sequencing in high variety, high volume
manufacturing businesses like the automobile industry. A viable technology to
realize the expected gains in productivity are software agents and multi-agent
systems, since they provide autonomy, flexibility, adaptiveness, and robustness
to unforeseeable events. This paper proposes an agent-based control architecture
that enables communication between resources and customer orders within a car
body shop, so that they can negotiate the best alternative schedule and order
sequence in case of disturbances. The proposed architecture allows improve-
ment of overall production system performance in terms of output, resource
utilization, delivery reliability and others. Further, the paper describes the
implementation and simulation of the multi-agent system with JADE framework
and discusses the simulation results, which show that significant productivity
leaps can be achieved.

Keywords: Industrie 4.0 � Multi-agent systems � Production control systems �
Production scheduling � Car-sequencing

1 Introduction

Customer demand simultaneously fosters product segmentation and higher product
individualization [1]. Consequentially, volume of each model and product variant
declines, resulting in more complex and more competitive markets [2]. In order to keep
up with demand and competition, manufacturing businesses have to constantly improve
their productivity, adapt quickly to changes in customer demand, and eliminate waste
throughout the value chain. However, to achieve new levels of productivity, new
approaches become increasingly important [3]. In this context, Industrie 4.0, as one of
the leading research and development initiatives, has envisioned an advanced pro-
duction system control architecture and engineering methodology, to achieve leaps in
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resource productivity and efficiency across entire value networks [4–7]. The underlying
potentials are assumed to allow cost reductions of up to 40% in work in progress, up to
20% in processing, and even up to 70% in complexity reduction [2].

A field that could benefit greatly from advances in this area is the manufacturing
sector, in particular, businesses with high product and production complexity, high
product variety, and high volume. The automobile industry comprises a prominent
representative of this kind of enterprise, where highly individual, complex products are
being mass manufactured on mixed-model production lines. The same production
method is also used in other segments like consumer electronics, white goods, furniture
and clothing [8]. However, high product diversity requires detailed sequence planning
in order to best exploit the potential of the production system [9].

This is achieved using mixed-model sequencing, which is an optimization problem
from the domain of operations research and falls into the category of discrete and
combinatorial optimization [10]. Research and industry have elaborated a broad range
of approaches like using real options from finance domain, fuzzy goal programming,
and particle swarm optimization to find satisfactory solutions in a given amount of time
[11–13]. Those approaches factor in the restrictions of the underlying production
system to give a near-optimal solution and have experienced considerable improvement
over the last decades [14]. However, the underlying optimization problem is NP-hard,
meaning that it cannot be solved in real-time [15]. Additionally, complex production
systems with thousands of entities are subject to unforeseeable disruptions, that con-
ventional, monolithic enterprise software is not designed to deal with. Multi-agent
systems (MAS), on the other hand, provide the necessary properties to excel in
dynamic environments [16]. This leads to the assumption, that the shortcomings of
static scheduling algorithms could potentially be compensated by cooperating with
dynamic multi-agent systems in order to achieve a better overall performance of pro-
duction systems. Therefore, the following research questions will be discussed in this
paper:

RQ1: How can decentralized control of production scheduling and sequencing with
multi-agent systems improve the overall performance of complex production
systems?
RQ2: How must a viable architecture for such a multi-agent system be designed and
what tasks does each agent have to perform in order to realize productivity
potentials?

To answer these questions, this work is structured as follows. In Sect. 2, the general
mixed-model sequencing problem in the context of complex production systems is
introduced and current challenges are illustrated. Following this, in Sect. 3, the
approach of this work is described, requirements for the proposed MAS are derived,
and the application case is presented. On this basis, the architecture of the MAS is
explained and the elaborated agent communication is discussed. After this, Sect. 4
describes the basis of the performed simulations including input data and simulation
approaches, and then focuses on the key performance indicators (KPI’s) which are used
to measure the performance of the system. The results of the simulations are discussed
in Sect. 5 and the paper ends with a summary and outlook on future challenges.
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In terms of scope and delimitations, the goal of this paper is to demonstrate the
feasibility of applying multi-agent systems in the selected area and tapping into their
potential. Therefore, focus is laid on the higher layers of the automation pyramid,
mainly manufacturing execution system layer (MES). This, in turn, means that
Enterprise Resource Planning (ERP) and field-level layers of the automation pyramid
are not regarded. However, the work of [17, 18] shows that this is a realizable
undertaking and a consequent next step. In real-world applications, deviations in cycle
times of different product configurations can cause an overload of manufacturing
equipment and, therefore, pose a challenge for production sequence planning [19].
However, due to the scope of this work, cycle times of each variant and within each
variant type are assumed equivalent. This property can be implemented ex-post and is
supported by existing sequencing algorithms as described in [8, 14], and alike. To
enable future improvements, the application programming interface (API) of the
designed software allows for easy exchange and adjustments of software modules and
algorithms.

2 Production Scheduling and Control

2.1 Complex Products and Production Systems

Today, state of the art automobile factories produce several thousand cars per day. Each
factory performs several thousand production steps to complete an order and has an
equal amount of work in progress distributed on the production floor. This creates a
very complex environment on production side already. On the product side, however,
the situation is even more complex: due to high personalization of vehicles and thereby
increasing product variety, manufacturers are confronted with billions of theoretically
possible product configurations. For example, BMW offers up to 1017 configurations
for its Series 7 and Daimler offers even up to 1024 for its E-Class [1, 20]. This product
complexity raises production complexity even further and demands for suitable control
approaches on the production side. Car wiring harnesses, for example, are each
assembled individually and work only for the car it was designed for. It, therefore, is
useless for any other car than this exact same one. To cope with the resulting com-
plexity in supply chain and internal logistics, most automobile manufacturers have
adopted the so-called “pearl chain logistics concept”. Here, the final assembly sequence
is defined several days in advance to handle complexity and required materials are
picked and sequenced in the predefined order [21–23].

2.2 Approaches for Sequencing Mixed-Model Assembly Lines

In research and industry, three main types of approaches for planning the optimal order
sequence on mixed-model assembly lines have emerged: mixed-model-sequencing,
car-sequencing, and level scheduling.

Mixed-Model-Sequencing. As a workload-oriented approach, mixed-model-
sequencing focuses on avoiding or minimizing sequence-depending work-overload at
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individual workstations. This approach explicitly integrates operational characteristics
like cycle times, personnel restrictions, station borders, etc. It, therefore, allows for high
accuracy but requires significant effort considering data collection [8].

Car-Sequencing. In contrast, car-sequencing requires significantly less effort, since it
considers the above-stated operational characteristics implicitly rather than explicitly
by setting sequencing rules of type Ho:No (meaning that a maximum of Ho occurrences
may be among No positions) [8]. The most successful implementations use heuristics
like greedy algorithms, local search methods, genetic algorithms, and ant colony
optimization methods [14]. Overall, this makes car-sequencing a valuable approach
that is frequently used in practice, although it comes with the trade-off of lower
accuracy.

Level Scheduling. The last approach to be mentioned in this paper seeks to optimize
Just-in-Time (JIT) objectives, rather than workload. The overall goal is to distribute
material requirements, which depend highly on the production sequence, as evenly as
possible over the planning horizon. Therefore, target production rates are defined and
product variants are sequenced according to those rates minimizing deviations [24].

Despite great efforts in academia describing alternative solutions, there is still a lack
of empirical research evaluating the fit of sequencing approaches for real-world
applications [8]. The next section tries to reduce this gap. Furthermore, manufacturers
have a hard time following the specific sequence defined by the pearl chain concept,
since perturbations and complex, parallel production lines tend to disrupt the planned
order [25]. The resulting challenges are discussed in the following section.

2.3 Case Study: Challenges in the Automotive Sector

Both, high product and production system complexity, increase the possibility of
disruptions during the manufacturing process. Even though concepts like Total Pro-
ductive Maintenance (TPM) and Predictive Maintenance helped reduce previously
unforeseeable failures in past decades, manufacturers constantly deal with disturbances.

Since disruptions in any of the thousands of participants of a production network
are possible anytime, adaptation of the production sequence is a necessary ability.
However, mixed-model scheduling is an NP-hard problem and a new near-optimal
sequence cannot be calculated under real-time conditions [15]. Current algorithms
require runtimes of about 30 min to calculate a new sequence, which is too slow for
real-time adjustments [26]. Limiting runtime, e.g. to 10 min like in the ROADEF’05
challenge [14], enables faster reactivity, but generally leads to lower quality of the
solution. As a consequence of both, dynamics of complex production systems and
insufficient real-time abilities, the elaborated solution is often outdated the moment it
comes into place. Therefore, it is inevitable for a robust production system to auton-
omously adapt to disturbances the moment they occur.

Conventional monolithic enterprise software, however, is not designed to cope with
unexpected events, since it is based on a very detailed set of rules to cover very specific
situations. On one hand, this allows excellent results in those predefined circumstances.
On the other hand, monolithic systems tend to have poor performance when handling
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events that were not specifically defined in advance, because they cannot respond
adequately and in a timely manner to such situations. Therefore, although many
automobile factories have the possibility to virtually or physically resequence the
production order at some point, they can only handle planned, predefined operations
like e.g. building color blocks before entering paint shop [27]. Unplanned resequencing
usually results in deviations from the originally planned sequence and causes problems
down the production stream. Inconsistent data types can further increase such com-
plications [28].

Additionally, the overall system complexity makes it extremely difficult for humans
to manage the required information in real-time. However, it can be observed that
humans are often the decision makers in such situations, which can lead to suboptimal
results. As an example, the distribution of lead times often shows that the expected bell
curve is stretched far to the right, with a significant part of orders having very long lead
times [22]. However, in the experience of the authors, this effect can be found in about
half of the factory output, and it can be argued, that ineffective production control is
accountable for a significant part of this effect. The same can be observed in the
distribution of product variants where unexpected events and disruptions often lead to
unevenness of production as depicted in Fig. 1. This unevenness usually causes
problems in assembly shop that can only process a certain number of variants in
sequence. In a production control context, these kinds of deviations are often caused by
disturbances like logistical restrictions, e.g. due to delayed material. Dispatchers
counteract by releasing other orders to keep production running. These decisions,
however are usually not entirely data-driven and must be taken quickly, resulting in the
distributions illustrated below. Based on the experiences of the authors at different
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Fig. 1. Work in progress of three product variants A, B, and C

Advancing the Performance of Complex Manufacturing Systems 107



factories and manufacturers, these observations appear to be representative of the
automobile sector.

To summarize, there are multiple approaches for sequencing mixed-model
assembly lines and great effort is being made in both, academia and industry, to
further improve the given tools. However, it can be observed that solutions like car
sequencing are used in real-world applications, rather due to better interpretability for
humans and lower computational effort then due to higher performance.

From this, two conclusions can be drawn: first, despite their complexity and
real-time requirements, decisions in modern production systems are – to some extent –
influenced by human decision-makers. And second, computation time is a critical
factor for the success of a production control system in the manufacturing domain.
Considering the fact that highly complex production systems with several thousand
suppliers as well as hundreds of internal production resources are exposed to a sub-
stantial amount of unexpected disruptions, it seems rational to increase the amount of
autonomy in that area. However, since the presented sequencing strategies already
provide near-optimal solutions and significant runtime-improvements are not expected,
it is difficult to achieve great productivity leaps in that area. It is far more likely to
realize substantial improvements by adding more flexibility and autonomy to the
production system itself, which is outlined in more detail in the following section.

3 Agent-Based Production Control System

3.1 Approach

A technology with high potential to address the challenges described above are
multi-agent systems, because they are able to adapt to dynamic environments.
Although there are many definitions of software agents, most researchers and authors
agree on certain core properties characterizing software agents, like being autonomous
(operating without external intervention), social (able to communicate with other
agents), reactive (perceiving its environment and responding to changes), and proactive
(taking initiative to achieve its goals) [29–31]. The agents’ properties allow multi-agent
systems to be highly flexible, adaptive, reconfigurable, and therefore also robust [31,
32]. However, by themselves, MAS do not deliver higher quality solutions for opti-
mization problems, like e.g. mixed-model sequencing [33].

Therefore, the authors propose implementing a production control system that
exploits the strengths of both approaches by combing existing scheduling algorithms
and multi-agent systems. This way, on one hand, the system can continuously calculate
new near-optimal production sequences for the next planning period that best suit the
current situation and adapt iteratively to changes. On the other hand, unexpected dis-
ruptions that require real-time responses can be handled by the MAS, resulting in a
highly optimized and highly adaptive system. In the next section, the requirements such
a system must fulfill are discussed.
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3.2 Requirements and Implementation-Framework

To address the defined challenges and equip the proposed production control system
with the necessary properties a set of requirements must be met. Although multi-agent
systems can provide a long list of valuable properties (see e.g. [29–31]), the following
five requirements are considered especially important by the authors:

R1: Autonomy and Decentralized Control. To cope with its complex and
dynamic environment, the designed system comprises of software-agents that are
autonomous by definition. Each agent has its own goals and autonomously exer-
cises plans to achieve them. Therefore, it controls its own behavior and operates
without direct intervention of human supervisors [31]. It can and must, however,
communicate with other agents.
R2: Flexibility and Adaptability. Unexpected disruptions must be handled
effectively, meaning that agents must adapt automatically to dynamic changes in
their environment. This was considered in the MAS by enabling agents to sense
their environment, i.e. receiving the information they need, and to act upon it. As an
example, if a resource suffers a malfunction and cannot process an order, the system
must recognize this and find an alternative way to achieve its goal.
R3: Reconfigurability. Multi-agent systems offer the opportunity to provide plug
& produce functionality to manufacturing businesses. In practice, this is a very
valuable property, since it allows adding and removing resources depending on
current demand. To ensure this functionality, the system is designed to allow
registering and deregistering resources at runtime, providing all necessary infor-
mation about the resource.
R4: Real-time capabilities. As shown in Sect. 2.3, it is necessary that the devel-
oped system can adequately respond to sudden changes. Since the system is
working in the MES-context, response times in the range of minutes, like they are
common in sequencing algorithms, are not allowed. Neither is the system respon-
sible for direct control of field-layer equipment like PLCs, so it does not have to
meet real-time requirements in the millisecond range. Therefore, the maximum
response time for the system was designed to be below one second. Although most
events are handled in significantly shorter time, this threshold is enough to make all
required decisions.
R5: Modularity and extensibility. To facilitate modifications of the proposed
system, the API was designed in a way that allows to easily replace or add modules.
The system can thus be adjusted to the domain it is used in and the goals developers
pursue. Examples for this are the scheduling and routing algorithms as well as
simulation of resource failures. Furthermore, the API allows integrating sophisti-
cated machine learning algorithms like reinforcement or deep learning and other
kinds of artificial narrow intelligence that allow to further increase the autonomy
and performance of the system.

Framework. To meet the above-stated requirements, the MAS was developed using
the widespread Java Agent Development Framework (JADE) [34]. It has the advantage
of being platform-independent, because it is Java-based and, in addition, provides
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FIPA-compatibility and is distributed open source under the LGPL license. Further-
more, database management systems and several libraries were used to achieve the
required functionality. Among them are MySQL, Apache Web Server, and
phpMyAdmin for database functionality, apache commons library for mathematical
functions like exponential and gamma distributions, and Dijkstra algorithm for finding
the shortest path in a directed graph. The next section describes the application case on
which those tools were applied.

3.3 Application Case: Car Body Weld Shop

The roots of many of the challenges described in Sect. 2.3 are linked to order release
and resource allocation. Therefore, a state of the art car body weld shop was selected as
an application case for this work, since it is an archetype for those challenges. It can be
structured using the hierarchical structure model from [35] which divides production
systems into 9 layers reaching from component to production network. The body shop
covers levels 1 to 7 of those hierarchy layers. Due to the MES-focus of this work, only
layers 5 to 7 are considered, i.e. work unit, production line segment, and production
line. From top to bottom, on layer 7 we can find two production lines which produce
different car body types, as depicted in Fig. 2. Going deeper to layer 6, these two lines
consist of 13 different production line segments S11 to S80. Some of these segments,
like S11 and S12, are used exclusively by either production line 1 or 2, others like S40
and S60 are shared by both production lines and build a bottleneck.

Finally, on layer 5, each segment consists of multiple separate work units which are
not depicted in the layout. They each perform separate production steps required in the
production segment.

In total, the car body weld shop is able to manufacture around 70 different product
variants, including different body types and market-specific models. However, all
variants are based on three main body types: a two-door compact car, a four-door
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Fig. 2. Layout and technical capabilities of resources in the application case
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compact car, and a four-door compact van. To better illustrate the effects of the MAS,
this paper focuses on those three main types which will be referred to as variants A, B,
and C.

Production line 1 is able to produce variants A and B, while production line 2 can
manufacture only variants A and C. Buffers can take all variants as shown in Table 1.

Since not all production line segments can produce all variants, it is up to the agents
in the system to decide which order will be produced by which resource to achieve the
best possible performance. In the next section, the architecture for these processes is
explained in more detail.

3.4 Multi-agent System Architecture

The agent architecture in this work was designed using the “Designing Agent-based
Control Systems”-methodology (DACS) which consists of the three steps analysis of
control decisions, identification of agents, and selection of interaction protocols [36].

For the first step, the authors build upon the work of [37], where control decisions
of manufacturing systems were collected, categorized, and assigned to general control
tasks. As part of a student work, the specific decisions in a car body weld shop have
been analyzed further and mapped to the necessary agents.

The second step, identification of agents, requires a broader look on agent-based
production system architectures. Over the past two decades, a large set of architectures
for manufacturing control has been developed. The work of [38] analyzes those
architectures and shows that common design patterns have emerged out of them.
Following those design patterns, a distributed control system architecture was designed
consisting of the seven agent types shown in Table 2.

Order, Product, and Resource Agents are the most elementary agents. While Order
Agents represent individual customer orders, Product Agents represent whole product
variants and contain information about their constitution. Resource Agents manage the
production line segments of the system and the therein contained work units. Although
work units could be represented as separate Resource Agents, for the selected scenario,
it suffices to represent them internally in the Resource Agents of the production line
segments. Furthermore, to control and supervise those resources, a Shop Management
Agent is required and the Scheduling Agent is necessary to select the next best order to
be released in the dynamic environment. A not so obvious but crucial entity is the
Mediator Agent, whose job it is to match supply and demand so that the best overall

Table 1. Resource capabilities considering production of product variants A, B, and C

Production line 1 Production line 2 Shared resources
Variant S11 S31 S51 S71 S12 S32 S52 S72 S21 S22 S40 S60 S80

A U U U U U U U U U U U U U

B U U U U U U U U U

C U U U U U U U U U
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system productivity can be achieved. However, this can only be achieved through
communication and cooperation between agents, which is the third step of the
DACS-methodology and the subject of the following section.

Table 2. Agent types and their corresponding tasks and information in the model

Agent type Tasks Required information

Order Agent
(OA)

• Initialize and supervise all required
production steps

• Order information (e.g. order ID,
variant, delivery date, priority)

Product
Agent (PA)

• Manage manufacturing information
for every product variant

• Provide information to OAs

• Product variant
• Production steps (e.g. welding spot
sequence in body shop, assembly
sequence in assembly shop, etc.)

• Technical and sales restrictions
Resource
Agent (RA)

• Process designated orders
• Keep track of reservation list
• Document order status
• Request new orders when not
occupied

• Inform SMA about status
(available/disturbed)

• Resource capabilities (cycle time,
number of work units, variants, etc.)

• Resource status (time to failure, time
to repair)

• Reservation list
• Order status

Shop
Management
Agent (SMA)

• Instantiate RAs
• Keep track of resource status
(available/disturbed)

• Provide routing information for
material flow to OAs

• Shop layout and material flow graph
• Resource status (available/disturbed)
via message from RA

Scheduling
Agent (SA)

• Manage production program
• Instantiate OAs when requested by
RA or SMA

• Valid production schedule (order ID,
variant, sequence, delivery date)

• Output and work in progress
• Capabilities of requesting resource
• Availability of resources in the shop
and other restrictions (e.g. logistical or
technical restrictions)

Mediator
Agent (MA)

• Collect mediation requests from
OAs and get proposals for
production from RAs during
reservation time frame

• Match orders to resources
appropriately

• Demand for production steps
(number and time of requests of
OAs)

• Supply for production steps (number
and ESOP of RAs)

• Rules for prioritization of orders (e.g.
delivery time, reservation time,
variant, priority)

Directory
Facilitator
(DF)

• Register and deregister every
available service in the system

• Provide information to all agents

• Registered services and related
information
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3.5 Agent Communication

Out of the control tasks listed in Sect. 3.4, the following two are described in more
detail in this paper, since they have the highest impact on system performance. The first
one is scheduling and releasing orders. A task especially important during disruptions.
The second one is allocating orders to resources, including a reservation mechanism
allowing to book resources in advance and thereby control the production sequence.

Scheduling and Order Release. The Scheduling Agent (SA) builds upon the pro-
duction sequence it receives from the sequencing algorithm. This sequence includes the
order-ID and related data like product variant and delivery time and is only changed if
necessary. On this basis, order release works as a pull mechanism: Resource Agents
(RA) of root resources (first work unit of the first production line segment) request new
orders from the SA, when they finish processing the predecessor. The SA then selects
the next order and instantiates an Order Agent (OA). The SA is equipped with an
algorithm that aims at leveling the order release. To do this, it uses the existing
production schedule, applies the real-time information it has from other agents (e.g.
resource status and capabilities to produce certain variants), and prioritizes orders in a
way that target ratios – defined by production system restrictions – of the respective
variants are met. However, conventional production systems do not adapt to them
automatically in case of disruption. Therefore, if e.g. product variant B cannot be built,
it balances production by releasing the variant with the least negative effect on the
target ratio one at a time. This way, the backlog of variant B leads to fewer upheavals
down the production stream, i.e. paint shop and especially assembly shop, and after the
resource is repaired, it can be reduced more easily.

Resource Allocation. Two things were needed to implement the required resource
allocation: an interaction protocol that supports the required negotiation between agents
and a reservation mechanism that allows matching orders and resources in advance to
minimize waiting time. For the negotiation part, the common contract net protocol [34]
was selected and extended to match the application case requirements. As the sequence
diagram in Fig. 3 suggests, the Mediator Agent (MA) plays an important role in the
negotiation. It coordinates the negotiation process as a broker and is triggered by a
mediation request from an OA. To avoid loss of productive time during negotiations and
thus compromising performance, a resource reservation mechanism was implemented.

Figure 4 shows that a reservation time window is at its core. This window starts a
predefined time period before the end of the current production process (e.g. one
second prior to production end), so that (a) the probability of disturbances during the
current production process is low, and (b) no productive time is lost due to negotiation
processes. After receiving the production request, the MA looks up available resources
and makes a call for proposition (CFP). The RAs provide the estimated start of pro-
duction (ESOP) and wait for a response at the end of the reservation window.

The MA then calculates the best match for all orders and resources using a
specifically engineered set of rules. Those include the variants and delivery times of the
requesting orders as well as their successors, the currently available resources and
variants in the resources that offer the desired operation, as well as the status and
available variants on the subsequent production steps. As an example, if a subsequent
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resource offering variant ‘B’ is down (e.g. S51), resource S40 would not offer variant
‘B’, since it would block the resource for all other variants. It therefore offers ‘A’ and
‘C’ to continue production. Based on this architecture, a series of simulations was
performed to examine the performance of the MAS, which is described in the following
section.

Fig. 3. Agent communication during resource allocation process
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4 Multi-agent Simulation

The objective of this work is to develop a solution that is tailored to the observed
challenges in complex production environments. Against this background, the authors
opted for using simulations with real-world data that allow emulating specific condi-
tions instead of using abstracted benchmark-problems. The most important factors are
summarized in the following.

4.1 Simulation Basis

Production Program. The starting point of the simulations is a real production pro-
gram for 24 h, already sequenced by a sequencing algorithm that considers the tech-
nical restrictions of the factory. It includes a typical daily amount of about 2.000 orders
of the three main body types A, B, and C. Internal delivery dates, i.e. the date when a
car body must be delivered to the paint shop as an internal customer, range between 12
and 24 h from scheduled production start for regular orders. However, about 1% of the
orders are fast orders with delivery dates between 10 and 12 h.

Resource Parameters. To reproduce the actual situation on the shop floor as realis-
tically as possible, major resource parameters of the MES-layer were integrated into the
model. That includes functional parameters like cycle times, variant capabilities, and
capacity, as well as maintenance parameters like mean time between failure (MTBF)
and mean time to repair (MTTR). Each Resource Agent is provided with the required
data via a JSON-file on startup and manages its state by itself.

Resource Disturbances. To simulate resource failures, Resource Agents are provided
with a function to calculate the time until the next breakdown and the time it will take
to recover. The earlier is based on the MTBF-value of the resource and is approximated
via an exponential distribution which is typically applied for lifetime distributions [39].
The latter, on the other hand, is based on the MTTR-value of the resource and is
approximated by an Erlang distribution, since it better represents repair processes [40].
With the help of inverse transform sampling, the RA calculates those two times and
takes down the resource during the disruption.

4.2 Evaluated KPI’s in the Simulation Runs

To measure the performance of the system according to industry standards, the fol-
lowing seven categories were selected: output, resource utilization, delivery date, lead
time, production program fulfillment, production sequence fulfillment, and work in
progress. For each of these seven areas, specific KPI’s were chosen that appropriately
measure the system’s performance. The list contains common KPI’s used in the
automobile industry as well as standard descriptive statistic methods like mean value
and standard deviation, and are summarized in Table 3.

Since the simulation contains randomly selected events like MTBF and MTTR a
simulation run is not replicable. To compensate outliers, the simulation was repeated
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multiple times for every configuration and results were averaged for each KPI. How-
ever, outliers can provide valuable information about the quality of the results and are
therefore discussed in the next section.

5 Results and Critical Evaluation

To allow a direct performance comparison between a conventional production control
system approach (CPCS) and the agent-based production control system (APCS),
multiple simulation runs have been performed. The results of the CPCS were then set
as an index, to display the direct performance delta of the APCS in a juxtaposition. The
results are presented in Table 4.

As can be seen, the performance of the underlying production system is generally
better when it is controlled by the agent-based control system. Good results are espe-
cially achieved in KPI’s like output and resource-utilization which are interdependent.
Higher resource utilization can be achieved through the systems adaptability properties,
which allow it to act dynamically upon unpredicted events and therefore improve the

Table 3. Selected KPI’s for evaluation of production system performance

Category KPI Description Unit

1. Output • System output • Number of good cars per time unit jobs/hour
(jph), %• Output-mix

fulfill
• Deviation from planned output-mix

2. Resources • Resource-
utilization

• Utilization of resources during uptime. Equal to OEE, if
there are no scrap parts/orders

%

3. Delivery
reliability

• Average delivery
date deviation

• Mean value of delivery date deviations of all orders Days

• r delivery date • Standard deviation of delivery date Days
4. Lead time • Average lead

time
• Mean value of lead time of all orders Hours

• r Lead time • Standard Deviation of lead time Hours

5. Production
program

• Production
program
fulfillment

• Degree to which the original production program is
fulfilled with a tolerance window of zero

%

• Average
sequence
deviation R000

• Mean value of sequence deviations at order release
point (R000)

No. of
cars

• r Production
program

• Standard deviation of actual to target sequence at order
release point

No. of
cars

6. Production
sequence

• Sequence
fulfillment

• Degree to which the released order sequence mimics
the planned production program with a tolerance
window of zero

%

• Average
sequence
deviation R800

•Mean value of sequence deviations at end of production
(R800)

No. of
cars

• r Production
sequence

• Standard deviation of actual to target production
sequence at end of production (R800)

No. of
cars

7. Work in
progress

• System filling
level

• Degree to which the technical capacity of the
production system is used by physical orders

%
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overall system yield. This also applies for KPI’s in the area of delivery reliability. Since
the system disfavors releasing orders that are subjected to current technical or logistical
disturbances, the delivery reliability of the released orders increases.

On the other hand, the agent-based control system does not achieve quite as high
levels of stability in the areas of production program and production sequence ful-
fillment. The adaptability of the system comes with the drawback of breaking a pre-
defined production schedule and leads to a more mixed production sequence. This is a
logical consequence of the adaptation of the system to influences of its environment
and eventually leads to a more balanced workload. Although this could be seen as a
challenge for manufacturers that follow the pearl chain concept, many production
systems work with lead times that allow adaptation to those changes without com-
promising efficiency. Furthermore, on an absolute scale these KPI’s decline at a
single-digit rate and have therefore limited impact. So, by filling up production slots
that would otherwise stay unused, production program conformity is sacrificed, but the
business-wise more important KPI’s considering output, resource utilization, and
delivery reliability are increased. Considering the limitations of the proposed MAS, it
should be noted that the system performance partly relies on predictions of the duration
of disruptions which is an information many present production systems do not provide
on their own. Instead, they depend on maintenance personnel or dispatchers to enter the
data manually into the system, which usually comes with a delay. However, since the
decisions of the MAS are being made in real-time, it can react immediately to the new

Table 4. Performance comparison of the two production control systems
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information and e.g. release new orders or block them. Even in this scenario, the
system would perform better than solely based on human decision making as it is
common today.

6 Conclusions and Future Works

This paper has presented an approach for manufacturing business to cope with con-
tinuously rising complexity in production scheduling and sequencing in turbulent
environments. The proposed approach is a hybrid between state of the art sequencing
algorithms and an agent-based production control system. It allows high-quality
solutions for sequencing problems while at the same time autonomously adapting to
unexpected changes in the production system. The developed system architecture is
based on common design patterns of agent-based production control systems and uses a
Mediator Agent as a broker to allow optimal resource allocation during runtime. In
simulations of an application case – a state of the art car body weld shop in the
automobile industry – the system achieved significant improvements in important
production system performance indicators such as output, resource utilization, and
delivery time. It can therefore be assumed, that implementation of this kind of hybrid
systems could help to reach substantial productivity improvements in manufacturing
businesses in similarly complex environments.

Despite the achieved performance increase, there are still opportunities for further
enhancements of the approach. Incremental system-specific improvements could be
achieved by advancing e.g. message exchange efficiency, code heaviness, and action
timing of agents. More potential, however, lies in the implementation of artificial
intelligence like reinforcement learning to improve decision making. Finally, a con-
sequent next step is the gradual implementation of the APCS into a state of the art
factory to exploit the described potentials and demonstrate applicability in practice.
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