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Abstract. Social media like Facebook, Twitter, or Google+ have
become important communication channels. Nonetheless, the distribu-
tion and dynamics of that communication make it difficult to analyze and
understand. To overcome this, we propose an agent architecture for mod-
eling and simulating user behavior to analyze communication dynamics
in social media. Our agent decision-making method utilizes sociological
actor types to represent motivations of media users and their impact
on communicative behavior. We apply this concept to a simulation of
real world Twitter communication accompanying a German television
program. Our evaluation shows that the agent architecture is capable of
simulating communication dynamics in human media usage.

Keywords: Agent architecture · Social actor types · Social media com-
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1 Introduction

Within the last decade, social media like Facebook, Twitter, or Google+ have
become predominant means of communication for both private and professional
users. They are used for purposes as various as casual smalltalk, commercial
marketing campaigns, and the shaping of political opinion [19,23].

However, the inherent distribution of social media and the dynamics of user
interactions therein make it difficult to analyze and comprehend that communi-
cation. Agent-based social simulations (ABSS) [11] are a promising technique for
understanding complex dynamics of interrelated communication activities. For
instance, viral dynamics of mass phenomena in social media like the harlem shake
[6] can be reproduced by representing media users with artificial agents [21].
The interrelated activities of these agents within a simulation lead to emergent
dynamics. Exploring various user populations and agent decisions in a controlled
experiment helps understand these dynamics in real world social media [33].

Nevertheless, there is a discrepancy between the majority of agent-based
models for social media analysis on the one hand and the available agent archi-
tectures based on sociological, philosophical, and psychological theories on the
other. While the ABSS community has recognized these architectures for agent
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decision-making [1], agent-based social media simulation focuses largely on sim-
ple reactive agents (e.g., threshold models of information diffusion) without
accounting for elaborate decision-making [10,18,36]. That is, these models only
address the question, whether or not users communicate in a social network.

In this paper, we complement the aforementioned approaches with a socio-
logically inspired agent decision-making architecture for simulating user motiva-
tions and the resulting behaviors. In particular, we aim at modeling when and
why users communicate in which way. This requires more differentiated models
of agent decision contexts, their available activities, and their action selection
mechanisms. Only if the agents in a social simulation experiment are complex
enough in these respects, it is possible to reproduce realistic communication
processes and to explain why and how these processes emerge.

The remainder of the paper is structured as follows. Section 2 provides
an overview of social media communication, sociological and psychological
models, as well as agent-based approaches to social simulation. Subsequently,
Sect. 3 describes our agent decision-making concept for modeling communication
dynamics. This concept covers the decision-making of individual social actors as
well as populations of media users. Section 4 applies the concept to an example
of communication processes on Twitter which accompany a German television
program. In Sect. 5 we evaluate the agent architecture by simulating communi-
cation in that scenario and by comparing our results to a real world dataset.
Finally, Sect. 6 provides a concluding summary and an outlook on future work.

2 Foundations

Agent-based social simulation models consist of three main components: The
agents’ decision-making context, their decision mechanisms, and their available
activity options in a specific context. An agent observes a situation which pro-
vides the context for its decision. The decision itself is made by selecting an
activity by means of its agent function (i.e., the decision mechanism). While con-
text and activities depend on a particular application domain, there are domain
independent theories and architectures for the actual decision-making. Thus, the
following sections first introduce the application domain of social media commu-
nication to provide a scenario for agent-based social simulation. Subsequently,
they discuss sociological and psychological theory and techniques for modeling
decisions as well as the underlying motivations in such a setting.

2.1 Social Media Communication

Human communication can be considered as a sequence of actions by individuals,
where the behavior of a sender influences the behavior of a receiver [3]. The
sender uses a set of characters to encode a message, which is transmitted using
an information medium. The receiver uses an own set of characters to decode
and interpret the message and returns a feedback using the same mechanism
[31]. The formulation and transmission of messages by the sender as well as
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the corresponding reaction by the receiver form the communicative activities
available to users of social media.

Social media provide options to their users to connect and communicate with
each other. In terms of graph theory, such a structure can be described by a set
of users (nodes) and relationships between the users (edges) [35]. For instance,
the online social network Twitter can be modeled as a directed graph. Twitter
distinguishes between followers and followees. A user actively and voluntarily
decides which other users to follow for receiving their status updates (Tweets).
Being followed by another Twitter participant makes a user become a followee.
However, the user being followed does not need to follow its followers.

When a user publishes a message on Twitter, all of that person’s followers
become notified. However, it is also possible to address other users directly in
order to reply to a message and to forward messages to others. Using the @-
symbol followed by the name of a user or putting the prefix “RT” (retweet)
at the beginning of a Tweet establishes sequences of messages. These sequences
form dialogs and conversations between two or more users [8]. In addition, Twit-
ter provides another operator for classifying the content of a message. To that
end, the #-symbol (hashtag) is used for categorizing messages and for marking
keywords that describe the topic of a conversation.

Twitter has been widely used for conducting studies of certain subjects or
events, e.g., spread of news and criticism [20,33], the activity of diseases [32],
or political communication [23]. In an agent-based social simulation of such
phenomena, the agents’ activities comprise publishing messages. Their options
among which to choose are given by the aforementioned operators. They can
introduce new messages, retweet existing ones, address particular users, and
cover specific topics. In addition, further content descriptors can cover the tonal-
ity and style of messages. This leads to a variety of possible agent activities.

Moreover, in a simulated conversation, an agent’s previous messages as well
as other agents’ Tweets about the same topic form the context of the agent’s
decision-making. The agent observes the preceding sequence of messages and
decides whether and how to react to it. Consequently, it requires a mechanism
to process the conversational context and to select a response. In order to obtain
a realistic simulation, it is desirable take sociological and psychological analyses
into account for developing agent decision-making mechanisms. Such theory can
provide deeper insights into the dynamics of communication processes and the
underlying motivations of social actors from which they emerge.

2.2 Sociological and Psychological Models

Communication is inherently social. In fact, sociality can be considered to con-
sist entirely of communication [22]. Social systems emerge from interconnected
communicative activities being selected by social actors [15]. Those actors are
influenced by an observed social situation and decide about their reactions to
that situation which results in observable behaviors that lead to the emergence of
a new situation (cf. Fig. 1). For example, a Twitter user can observe an ongoing
conversation about a specific topic (1). She may decide to utter a controversial
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opinion about that topic (2) which becomes observable to other users in the form
of her respective Tweet (3). This changes the conversation and provokes further
reactions. Thus, the conversation on the macro-social level (4) both influences
individual behaviors on the micro-social level and emerges from them.

Fig. 1. Emergence of macro-social effects from micro-social behavior [15].

For explaining macro-level communication dynamics by means of the afore-
mentioned model, it is necessary to understand the behaviors of participating
actors on the micro-level. As discussed in the preceding section, in social media,
the visibility of the situational context (1) is given by the social network plat-
form. That platform also provides the activity options and publishes the selected
action for other users to observe (3). However, given a specific situation, the user
behavior (2) depends on various attributes and dispositions like static personal
and demographic traits as well as dynamic motivations. Psychologically and
sociologically grounded analyses identify these traits and motivations in order
to derive their impact on the decision-making from empirical evidence.

There are several analyses of user behavior in social media available. For
instance, activity frequencies on Twitter have been related to user attributes
and traits such as gender, age, region, and political opinion [27]. While such an
analysis reveals how social media users interact with each other, it cannot explain
why they do it. To answer that question, other studies cover motivations for
communication. These motivations can be categorized into groups like smalltalk,
entertainment, or information and news sharing [17]. Additionally, they can be
derived from psychological personality traits [21,34]. Such approaches provide
insights into the decision-making of social actors in diverse situations ranging
from casual comments on a television series [29] to crisis communication [16].

In addition to social media specific and psychologically founded motivations,
there are also theoretical foundations for describing actor behaviors in sociology.
Sociologists distinguish between four basic social actor types which differ in their
behavior [12]. Firstly, a homo economicus is a rational decision-maker who strives
to maximize her personal utility. Such an actor attempts to reach personal goals
as efficiently as possible, whereas such a goal does not need to be monetary.
Secondly, a homo sociologicus obeys social norms and obligations. This actor
type tries to conform with expectations in order to avoid negative sanctions.
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Thirdly, an emotional man is driven by uncontrollable emotions such as love,
anger, respect, or disgust. This leads to affective behavior in response to, e.g.,
unfulfilled expectations [14]. Finally, an identity keeper tries to establish and
maintain a desired social role. Such an actor seeks social acknowledgment by
provoking positive reactions toward stereotypical behaviors. These basic types
are theoretically well-founded and can be utilized to describe basic as well as
mixed social motivations of humans [12].

2.3 Agent Architectures for Social Simulation

Communication processes in social media emerge from individual activities of
the participating users. For experimentally analyzing such emergent phenomena,
agent-based computer simulation has been established as a standard means. By
modeling real world actors as software agents, individual behavior and antici-
pation of behavior on the micro level can be simulated resulting in emergent
effects on a macro level [4,7]. In terms of social sciences, this is referred to as
agent-based modeling and agent-based social simulation [11].

The majority of agent-based models in social media analysis focuses on infor-
mation propagation. These models aim at identifying the optimal group of users
to spread information to as many others as possible [36]. The users are fre-
quently modeled as reactive agents with behavioral rules that fire if an activation
threshold is reached. The threshold denotes the required strength of influence
(e.g., a number of received messages) on an agent until it becomes active itself.
This method is particularly relevant for planning marketing campaigns in social
media which make use of information propagation effects [10,18].

While threshold models are usually investigated by means of simulation stud-
ies, there are also analytical approaches to agent-based modeling of opinion for-
mation. These focus on the interactions among agents which lead to the diffusion
and adoption of opinions in a process of compromising [25]. They model these
interactions by means of thermodynamics [30] or the kinetic theory of gases
[24]. These methods describe the emergence of macro-social phenomena from
micro-social interactions using differential equations. This allows for analyzing
the resulting opinion dynamics mathematically.

However, there is a discrepancy between threshold and analytical models on
the one hand, and sociological perspectives on decision-making on the other.
While these methods describe how opinion and communication dynamics occur
in agent-based social simulations, they lack the descriptive power to analyze why
this happens. That is, they focus on the dynamics between interacting agents
and treat the agent population as a homogeneous mass. For instance, in kinetic
theory, gas molecules behave solely according to their current states and their
mutual influences without having individual habits. As a result, the discussed
approaches largely leave the communication content as well as the participating
users’ underlying motivations out of account.

Thus, to understand human behavior, more elaborate agent decision
approaches are necessary. In fact, a wide range of agent architectures based on
philosophy, psychology and cognitive science is readily available [1]. The most
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prominent of those is the belief-desire-intention (BDI) architecture of practical
reasoning [9,28]. BDI agents are well-suited for modeling motivations in terms
of desires and for deriving intentional behavior from them according to beliefs
about the current situational context.

Nonetheless, BDI agents are more complicated to apply than reactive archi-
tectures. They are especially suitable for modeling strategic and goal-directed
behavior. By contrast, social media communication is often governed by affec-
tive and spontaneous contributions [33]. Hence, there is no need for modeling
persistent intentions to satisfy communicative desires in such a setting. Conse-
quently, we propose to strike a balance between cognitive and reactive agents
which utilizes the aforementioned sociological foundations for modeling complex
agent behaviors based on social actor types.

Sociological theory and agent technology have been combined in the interdis-
ciplinary field of socionics [13]. In that context, Dittrich and Kron model social
characters by means of actor types and combinations between these types [12].
They simulate the “bystander dilemma” in which persons must decide whether
or not to help a victim of physical violence. In their model, agents with the homo
sociologicus and identity keeper roles feel obliged to help while homo economicus
and emotional man flee the situation. Combining these dispositions on both the
individual and population levels leads to complex macro-social behaviors.

As social actor types provide a simple method for modeling complex agent
motivations, they are a promising concept for simulating other human inter-
action dynamics. However, it is unclear, how they can be transferred to other
applications. Therefore, we provide an agent decision-making architecture based
on these actor types and show its applicability for simulating communication
dynamics in social media in the remainder of this paper.

3 Agent Decision-Making Concept

In this section, we adapt the agent decision-making approach by Dittrich and
Kron [12] to modeling communicative user behavior in social media. In partic-
ular, we model the selection of messages about a specific topic to be published
on a social media platform within a limited time frame [2].

Our modeling and simulation concept is structured as depicted in Fig. 2.
Each decision-making situation receives an input of one or more keywords to

Fig. 2. Agent-environment interaction and agent decision-making concept.
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describe that situation (e.g., a list of hashtags or abstract topic description).
The respective output consists of messages being published at the social media
platform by the population of agents. In order to produce that output, each agent
observes the situation and calculates expected values for its potential reactions
according to its respective social actor type and depending on the activities of
other agents. It then selects its next message (or chooses not to publish any
message) with respect to these expected values. The following sections describe
the actor types, their combinations, and the resulting agent populations.

3.1 Social Actor Types and Decision-Making

According to Fig. 2, the agent decision-making maps a perceived situation
description to a communicative action. Given a set S of possible situations and
a set A of available actions, the agent function has the following structure.

action : S → A

Besides the current situation s ∈ S, its social actor type determines an agent’s
decision-making. To that end, we model each type by means of a function EV
that returns an expected value for each available activity option. For a homo
economicus (HE), this amounts to a standard utility function. Contrastingly,
a homo sociologicus (HS) prefers socially adequate behaviors over controver-
sial actions. Such an agent makes its behavior dependent on contributions to a
conversation by other agents. In addition, while the identity keeper (IK) has a
genuine desire to further any kind of discussion, the emotional man (EM) only
becomes active when being emotionally affected by the situation.

All of the expected value functions should cover the same range of values to
make them comparable with each other. That range depends on the number of
available activity options and their effects in a particular application scenario.
Each option can either have a positive, neutral, or negative effect on an agent’s
motivations. For instance, a scenario with five possible messages can be encoded
through the following set of values: {−1, 0, 1, 2, 3}. In this case, a message is
either detrimental to an agent’s goals (−1), it can be neutral towards them (0),
or it furthers its motivations to different extents (1–3). Then, the agent can select
its next action a ∈ A depending on the situation s as follows.

actioni(s) = arg max
a

EV i(s, a)

Each actor type i ∈ {HE ,HS ,EM , IK} maximizes its expected value for all
available actions a in the situation s. If there are several options with the same
value, an agent decides randomly among them. This results in a specific mes-
sage (i.e., Tweet) being selected and published at the simulated social network
platform for all other agents to observe.

3.2 Actor Type Combinations and Populations

According to the preceding decision-making model, each agent can implement
one of the four available actor types. However, these are only prototypical
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examples for categorizing motivations. In fact, an actor’s motivational dispo-
sition will often be more adequately described by a mixture of several basic
motivations [12]. Consequently, we allow for combinations of actor types within
individual agents to represent that phenomenon.

For mixing several actor types, each agent is defined by four weights wi, one
for each actor type i, with

∑
i wi = 1. Those weights denote the ratio with which

those types contribute to its decision-making. Then, an agent with mixed types
selects its activities by maximizing the weighted sum of the respective expected
values (with a randomized selection in case of several maxima).

action(s) = arg max
a

∑

i

EV i(s, a) wi

In addition to combining actor types within an individual agent, it is also
possible to mix different agents within the overall agent population. That is,
a population can either consist of homogeneous agents that all implement the
same actor type combination, or it can comprise different agents. Homogeneous
populations are particularly useful for model validation and calibration. They
make the effects of different value functions easily observable and adjustable.
Contrastingly, heterogeneous populations are more realistic. They lead to com-
plex interaction dynamics which are necessary for replicating and explaining user
behaviors in social media as described in the following sections.

4 Application to Social Media Communication

The preceding section has outlined the general agent decision-making behavior
without specifying the application-dependent expected value functions for the
four actor types. In this section, we complement that description by applying our
modeling concept to an analysis of user behavior in communication processes on
Twitter. In particular, we model live-tweeting behavior during an episode of the
German television series “Tatort” (meaning crime scene). Running since 1970,
“Tatort” is the most popular German TV series which attracts a broad audience
across all social groups, genders, and ages. We use a dataset of Tweets about
the episode “Alle meine Jungs” (all my boys), of May 18, 2014. The dataset
has been obtained through the Twitter-API and contains 7448 Tweets. Out of
these, 192 original Tweets (excluding Retweets) form eight distinct phases of
Twitter activity which correspond to specific scenes of the episode. These scenes
provide the situation for the agents in our model to react to. Each of them is
described by one or more out of five attributional categories as shown in Table 1.
The categories are described by

C = {thrilling, funny, music-related, emotional, judgmental}.

Each scene in this model is represented by a subset of C. Hence, S = 2C is the
set of all possible scene descriptors.

The agents can act repeatedly during each scene. At the beginning of a scene,
they base their actions only on the respective description; subsequently, they
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Table 1. Situation descriptions.

Scene Description

0 Thrilling

1 Funny, music-related

2 Funny, music-related

3 Funny, music-related

4 Funny

5 Thrilling, emotional

6 Thrilling

7 Judgmental

can also react to other agents’ Tweets. Thus, a dynamic communication system
emerges from these interrelated activities. In the following, we particularize the
available actions and the decision-making of the four actor types.

4.1 Agent Activity Options and Auxiliary Functions

The Tweets in our data set can be classified by their sentiment and tonality
along two different dimensions. They are either positive or negative and they
are either joking or not joking (i.e., serious). The possible combinations of these
categories result in four different message types available to the agents. However,
since not all users reply to every message, an agent also has the option not to
tweet. Nevertheless, it can still decide to participate in the conversation about
the current scene at a later time after observing Tweets by other agents. This
results in the following set A of five activity options.

A = {No tweet, Tweet−positive−joking, Tweet−positive−not joking,
Tweet−negative−joking, Tweet−negative−not joking}

Which option a ∈ A an agent selects at what time depends on its underlying
combination of actor types as well as on the activities of other agents. To include
the latter into the decision-making, we define two auxiliary functions ϕs and
tweetss which count published messages in the original data set as well as in
the simulated communication process, respectively. The function ϕs : As∈S → N

returns the absolute number of each action a in scene s ∈ S as contained in the
data set. Analogously, the numbers of different Tweets being published at the
time of decision in the agent-based simulation is given by tweetss : As∈S → N.
Those functions are necessary to take the activities of other agents into account
in the agent decision-making process.

4.2 Agent Decision-Making

In our application example, the four actor types represent typical behavioral roles
and motivations in social media communication. These include the maximization
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of publicity, a desire for serious discussion, the expression of anger, as well as
genuine content production. These motivations are represented by the homo
economicus, homo sociologicus, emotional man, and identity keeper, respectively.
For all actor types, we evaluate the available activity options with respect to
those motivations in each situation in order to identify expected values for the
agents’ decisions. Table 2 summarizes the criteria and values for that evaluation.

Table 2. Agent decision-making by social actor types (expected values).

Homo economicus Homo sociologicus Emotional man Identity keeper

No tweet (0) Must (3) Unchanged (0) Strengthened (3)

Utility function Should (2) Increased (−1) Weakened (−1)

(0 to 3) Can (1) Decreased (2)

Conversation size Should not (−1) Strongly

Threshold (−1) Decreased (3)

In social media communication, a homo economicus agent tries to maximize
the impact of its contributions on the conversation. Such an agent gains the
highest utility by reaching agreement with as many others as possible. Thus,
its underlying utility function anticipates probable majority opinions. Actions
supporting these are rated higher than less popular or controversial contributions
according to the ratio of actions in the original dataset. This agent type will
maintain its ratings during a conversation regardless of other agents’ behaviors.
In addition, we use a threshold of a minimal number of Tweets by other agents
for the agent to become active itself. The threshold is the mean number of Tweets
across all scenes. Until this threshold is reached, an agent will not participate in
the conversation which leaves its utility unchanged. Thus, the homo economicus
represents a casual media user who only joins ongoing conversations to represent
common sense opinions shared by the expected majority of recipients.

The corresponding expected value function depends on the Tweets published
in the current scene s so far as given by tweetss. If the overall number of Tweets
in

∑
a′∈A tweetss(a′) does not exceed the threshold, the homo economicus has

a value of −1 for all other actions than the no Tweet option. The threshold
1

|A|
∑

a′∈A ϕs(a′) is the arithmetic mean of all Tweets throughout the scenes in
the entire original data set. Otherwise, the agent selects its actions according
to their share in the real world data set given by ϕs(a) The prevalent action
is yielded by the term maxa′∈A(ϕs(a′)) which iterates over all possible actions
in the respective scene. Moreover, the utility values for a homo economicus are
normalized and rounded to natural numbers between 0 and 3.

EVHE (s, a) =

{−1 , if
∑

a′∈A tweetss(a′) < 1
|A|

∑
a′∈A ϕs(a′)

⌊
3 ϕs(a)
maxa′∈A(ϕs(a′))

⌉
, otherwise
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Contrastingly, a homo sociologicus agent rates the available actions accord-
ing to both general social norms as well as other agents’ behaviors. Its expected
value function evaluates these options by their perceived strength of obligation.
For instance, an agent should not joke about an emotional scene. However, if the
majority of other agents has deviated from such norms before, the homo sociolog-
icus will mimic these previously observed activities in order to gain acceptance
by other agents. Hence, that type of agent represents a both morally concerned
and opportunistic user who joins the dominant group as soon as one emerges.
This behavior is typical, e.g., in massive online protests [33].

The expected value of a homo sociologicus agent depends on the norm for
the current situation and the predominant action so far. The function norm(c, a)
returns a value of −1 for an action it should not select, 1 if the agent can execute
an activity, 2 if it should do it, and 3 if it must choose the respective action.
Table 3 shows the norms that affect an agent for each attributional category in
the current scene description.

EVHS (s, a) =
{

3 , if a = arg maxa′εA(tweetss(a′))∑
c∈s norm(c, a) , otherwise

with norm : C × A → {−1, 0, 1, 2, 3}

The emotional man, on the other hand, represents an outright dissatisfied
and angry user. Such an agent strives to express that anger which leads to
predominantly negative and sometimes sarcastic (i.e., joking) contributions. By
publishing negative Tweets, the agent decreases its anger until it no longer feels
the need to communicate. Consequently, that behavior produces isolated criti-
cism without any intention of engaging in an actual discussion.

The expected value for the emotional man depends on the output of an
anger -function. That function evaluates the current attributional categories of
the situation description according to their emotional implications for the agent.
If an action decreases the agent’s anger, its expected value is 2. If the agent can
even strongly decrease it, the value is 3. In case an action would increase its anger
instead, the anger-function returns −1 and if an action does not affect the anger
at all, the yielded value is 0. Table 3 shows the results of the anger -function.

EVEM (s, a) =
∑

c∈s

anger(c, a), with anger : C × A → {−1, 0, 1, 2, 3}

Finally, the identity keeper is a genuine content producer. This type of agent
has the goal of bringing forward any kind of discussion in order to maintain its
participation in it. That is, the agent can strengthen its identity by providing
arguments for other agents to react to. For that purpose, any kind of Tweet
can be appropriate, especially controversial ones if they provoke reactions. Only
remaining inactive weakens that identity. As a result, the identity keeper rep-
resents a user who enjoys a conversation for the sake of the conversation and
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Table 3. Values of anger(c, a) and norm(c, a) for categories and actions.

Category c ∈ C Action a ∈ A norm(c, a) anger(c, a)

Thrilling No tweet 1 0

Tweet - positive - joking 2 −1

Tweet - positive - not joking 2 −1

Tweet - negative - joking −1 3

Tweet - negative - not joking 1 2

Funny No tweet 1 0

Tweet - positive - joking 2 −1

Tweet - positive - not joking 3 −1

Tweet - negative - joking −1 2

Tweet - negative - not joking −1 3

Music-related No tweet 1 0

Tweet - positive - joking 2 −1

Tweet - positive - not joking 3 −1

Tweet - negative - joking −1 2

Tweet - negative - not joking 1 2

Emotional No tweet 2 0

Tweet - positive - joking −1 −1

Tweet - positive - not joking 1 −1

Tweet - negative - joking −1 0

Tweet - negative - not joking 1 0

Judgmental No tweet −1 0

Tweet - positive - joking 1 −1

Tweet - positive - not joking 3 −1

Tweet - negative - joking −1 3

Tweet - negative - not joking 2 2

who ensures a certain diversity of perspectives on the discussed topic. Thus, the
expected value for the identity keeper is expressed as follows.

EVIK(s, a) =
{−1 , if a = no tweet

3 , otherwise

The described actor types explain different motivations that cause partic-
ular behaviors in decision-making. Combining these actor type models within
individual agents creates complex agent behaviors. In the following section we
evaluate this modeling approach by reproducing the behavior recorded in the
real world data set in an agent-based simulation experiment.
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5 Evaluation: Simulation of Social Media Usage

In this section, we evaluate the capability of our agent decision-making approach
to reproduce realistic communication dynamics in social media. From a previous
experiment [5], we know that the composition of the agent population in this
kind of model has a large impact on the overall communication dynamics in the
simulation. In that experiment, we evaluated two different settings to analyze
the interplay of several actor types on the individual level and the population
level. The first setting examined a homogeneous agent poulation ofpopulationall
four actor types in equal shares. The second setting consisted of a heterogeneous
agent population in which every agent implemented one of the four basic actor
types. These experiments gave us an impression of the interplay of different actor
types both within and between agents. In the following, we complement these
findings with an analysis of whether the agent architecture is also capable of
producing realistic simulation results.

5.1 Experiment Setup and Results

We implemented the four agent types in a JAVA program to imitate the behavior
of 165 human Twitter users as represented in the aforementioned data set in a
simulation experiment. Consequently, our experiment confronts a population
of 165 agents with each of the eight scene descriptions shown in Table 1. This
population comprises equal numbers of three different actor type combinations,
each of which contains all four basic types to various extents. In particular,
each agent includes all motivational descriptions for at least 10% and at most
70% to add up to a total of 100%. In our simulation, we vary the ratios of
these combinations in steps of 10% in order to evaluate whether the resulting
simulated communication accurately replicates the original conversation.

Iterating the percentages of the motivational descriptions results in 80 differ-
ent actor type combinations. As the overall agent population consists of three of
these combinations, our experiment covers 512 thousand different populations
(80 × 80 × 80). Each of these populations is simulated 100 times to account for
stochastic decisions. The arithmetic mean of those repetitions is used to evalu-
ate the accuracy of the simulated data. To that end, the communication in each
scene of the experiment is compared to that of the matching scene of the real
world data set.

Throughout the experiment, the population of interacting agents does not
have to remain stable across all scenes. In fact, in real world social media commu-
nication, users enter and leave the conversation. Furthermore, the composition
of the four actor types within an agent is perceived as a current set of motiva-
tions. These motivations can vary depending on the situational context or other
external or internal stimulations. Therefore, we treat each scene seperately in
our search for a fitting agent population to reproduce real world communication
dynamics. Table 4 presents the actor type combinations which lead to the most
accurate simulation results for each scene.
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Table 4. Agent population (actor type combinations) for the different scenes.

Scene Combination 1 Combination 2 Combination 3

HE HS EM IK HE HS EM IK HE HS EM IK

0 10 50 20 20 20 30 20 30 10 20 30 40

1 20 10 10 60 20 20 20 40 10 50 20 20

2 70 10 10 10 30 20 20 30 30 20 20 30

3 40 10 40 10 50 30 10 10 10 60 10 20

4 20 30 30 20 30 20 10 40 10 30 40 20

5 20 30 40 10 40 10 30 20 30 50 10 10

6 10 20 30 40 30 10 20 40 20 20 50 10

7 30 10 10 50 20 50 20 10 10 10 60 20

Figure 3 shows the outcomes of the expriment (except for the “No Tweet”
option) for the populations listed in Table 4. The upper barplot represents the
total numbers of Tweets taken by the different agents in the eight scenes. The
numbers show the arithmetic mean of all 100 iterations of the simulation (omit-
ting the standard deviation which never exceeds a value of 0.2). The lower barplot
shows the relative ratio of the actions executed by the agent-population. The
error bars depict the distance of the simulation output to the original real world
data. Due to the small absolute number of Tweets in some scenes, a slight dis-
tance in individual actions leads to a more pronounced error bar in the relative
ratio.

We define the distance dista,z as the absolute difference between the numbers
of occurrences of action a in the simulation and the real world data for any
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scene z ∈ {0, . . . , 7}. To calculate that distance, we count the occurrences of
each particular action: countsim,r(a, z) in simulation run r and countreal(a, z)
in the data set. Then, we use the arithmetic mean of countsim for the n = 100
simulation runs and subtract countreal to obtain our distance measure.

dista,z =

∣
∣
∣
∣
∣

(
1
n

n∑

r=1

countsim,r(a, z)

)

− countreal(a, z)

∣
∣
∣
∣
∣

True to the real world data set, the results show a majority of negative not
joking Tweets. Responsible for this are the actor types of homo economicus,
identity keeper, and emotional man that consider this action either as the best
or as one of their favorite activities. Moreover, while a homo sociologicus gen-
erally prefers positive and serious (not joking) Tweets, it imitates the dominant
behavior. Only scenes 1 and 2 produce a majority of positive outputs. Scene 2
is described as being funny and music-related and scene 1 is characterized as
thrilling. This leads to positive not joking actions being favored by three of the
actor types which outrival the negative option selected by the emotional man.
Furthermore, thrilling scenes reduce the overall number of Tweets. In the simula-
tion, this is accomplished by the homo economicus needing to reach a threshold
of 24 existing contributions to join a conversation.

Due to those effects, the absolute number of agent activities in the simulation
deviates only slightly from the original user behavior. The maximum distance (in
scene 3) amounts to a total of four Tweets. Here, the two major options selected
by the agents are negative not joking and positive not joking Tweets. The former
message option is favored by the first actor type combination, predominantly
consisting of homo economicus and emotional man. The second form of Tweet
is mainly chosen by the homo sociologicus in third combination of actor types.
These actions are balanced out by the second actor type combination which
is dominated by the homo economicus. When the threshold is reached, those
agents decide for a negative Tweet. Otherwise, they do not participate in the
conversation which boosts the relative ratio of positive contributions.

5.2 Experiment Discussion

The presented results show that our agent architecture allows for simulating real-
istic dynamics of social media communication in an agent-based setting. How-
ever, there are still some minor inaccuracies in the emergent agent behavior. In
particular, the small percentage of identity keeper behaviors in the agent popu-
lation leads to a slight under-representation of positive joking Tweets in scene
3. In order to reproduce the real data behavior exactly, a fourth combination of
actor types would be required. By extending the experiment design with more
actor types in each experiment, a more diverse activity-pattern can be achieved.
This would facilitate further minimizing the distance between the simulated and
the original behavior. Nevertheless, our results show that even a population of
only three different actor type combinations is able to approximate real world
social media communication in an agent-based simulation.
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In addition, our experiment has analyzed the model behavior on the macro-
social level. We have concentrated on evaluating the aggregated effects of the
agents‘different decision making strategies. While this allows for concluding on
the emergence of communication dynamics, further experiments will provide
deeper insights into micro-social behaviors that bring about these results. In
this context, both the capability of our agent architecture to simulate individual
media users and the interplay between their activities over time are of interest.

Firstly, the behavior of individual agents within a population should be com-
pared to the real world behavior of actual media users. This amounts to evaluat-
ing the simulated behavior on the micro-social level with respect to the frequency
of activity and the tendencies to react to a scene description and other agents’
communication. This will then allow for examining which agents in the simula-
tion are more important than others for the emergence of specific communication
dynamics. In other communication contexts (e.g., massive online criticism), the
conversation is frequently driven by few particular users [33]. Therefore, an accu-
rate representation of such users in the simulation will be useful for analyzing
communication strategies in such a situation.

Secondly, the discourse dynamics between different agents within the frame
of each scene is a relevant aspect to evaluate. For deriving the aforementioned
strategies, it is necessary to observe the impact of possible interventions on
the communication. To that end, the agents’ mutual reactions to each other’s
communicative acts must be understood. Hence, a next step in our future exper-
iments will include a detailed analysis of trajectories and their stability within
the dynamic multiagent communication system.

6 Conclusions and Future Work

In this paper, we have developed an agent architecture for modeling user behav-
ior in social media. Our model utilizes well-established sociological foundations
for representing actors that communicate about a specific topic. In particular,
we have presented a concept for representing and combining motivational causes
for user behaviors by means of four different social actor types in agent-based
simulations. We have applied this concept to model and analyze Twitter commu-
nication about a German television program. Our evaluation shows that even few
combinations of different motivations within individual agents are sufficient for
near accurate replications of real world user behavior. Thus, we conclude that
our agent architecture provides a promising approach toward more elaborate
agent-based simulation studies of social media usage than existing information
propagation models [36]. Such a simulation can serve as a useful decision support
tool for planning communication strategies in social media [33].

Nonetheless, there are several extensions of our agent architecture we consider
for future work. Firstly, we are interested in comparing this method with existing
information diffusion approaches. This will provide further insights into which
level of complexity is necessary for simulating meaningful social media communi-
cation. Moreover, integrating both approaches will extend our architecture with
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a representation of the social network in which an agent is connected with others.
This network restricts an agent’s ability to perceive other agents’ activities. In
addition, such an integration will complement information propagation methods
with motivational aspects of why information is spread within a social network.

Secondly, it will also be necessary to represent the activity options and sit-
uation descriptions for the agents in more detail. In order to simulate, e.g., the
shaping of opinions in political discourses, a classification of communication con-
tents and their impact on the interaction is required. To achieve this, we plan
to utilize content modeling and annotation techniques from media and commu-
nication studies [26] for encoding discourses in agent-based social simulations.

Finally, a more detailed decision context and activity representation enables
more strategic decision-making. As developing behavioral rules for an increasing
number of options quickly becomes complicated, we plan to re-implement the
four social actor types as BDI agents. How these types can influence the adoption
of communicative intentions by such agents will be subject of our future research.

Acknowledgments. We thank Carla Schmidt, Christof Barth, and Hans-Jürgen
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