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Preface

In 2017, MATES, the German Conference on Multiagent System Technologies,
celebrated its 15th edition—a blessed age in a fast-changing and moving field like
computer science. Over these 15 years, the MATES conference series has been aiming
at the promotion of and the cross-fertilization between theory and application of
intelligent agents and multi-agent systems. In all these years, numerous brilliant,
renowned keynote speakers, Program Committee (PC) chairs, and honorary chairs
helped to promote MATES and to lift it to an internationally highly respected and
accepted conference level. This year was no exception as can easily be seen from the
list of keynote speakers. Thus, it was no surprise that Springer decided to publish the
proceedings ab initio in its Lecture Notes in Artificial Intelligence (LNAI) series. And
of course, 2017 was no exception.

MATES celebrated its significant birthday during August 23–26, 2017, in Leipzig,
Germany, in conjunction with the 2017 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2017). This was seen as a dignified location and setting for this
event given the fact that the Steering Committee (SC) of MATES had decided to end
this conference series with this event. It was an affair of the heart for the SC to end this
series as long as it is still going strong and the SC came to the conclusion that the 15th
edition is the right time and location to execute this decision. Of course, now that
MATES leaves the stage with its head held high we would like to thank all those who
have contributed to the enormous success of MATES, especially Matthias Klusch, as
one of the most active founding members of MATES, and Springer for their excellent
support of this conference during all these years. We are very grateful to all those who
did the work, the PC and honorary chairs, the keynote speakers, the many PC members,
the even bigger number of authors. A toast to all.

This year, the combined event of MATES and Web Intelligence offered six excellent
keynote talks by renowned scientists and expert practitioners. In particular, distin-
guished cognitive science scholar Cristiano Castelfranchi contributed his views on the
problems of mixed reality and hybrid societies consisting of natural and artificial
intelligences. Turing Award winner Raj Reddy extended this vision by discussing the
benefits and potentials of computational social science. These positions were com-
plemented by Amit Sheth’s talk about the background and applications of semantic,
cognitive, and perceptual computing. Frank Leymann bridged the gap between
agent-based and Web technologies with his discussion of architectures for loose cou-
pling of systems. Finally, both Christine Preisach and Matthias Klusch focused in their
keynotes on the highly timely and exciting topics of the Internet of Things and Industry
4.0. They addressed these emerging technologies from a machine-learning as well as an
agent-based computing perspective, respectively.

In addition, both MATES and WI conferences shared a doctoral consortium
(DC) program, chaired by Alexander Pokahr and René Schumann. This program
offered PhD students a platform to present and to discuss their work in an academic



professional environment. Students presented their PhD projects, receiving feedback
and suggestions from both their peers and experienced researchers. Moreover, each
PhD student was assigned to an expert in the respective field as a mentor for individual
interaction.

As conference chairs and on behalf of the MATES SC, we are very grateful to the
authors and keynote speakers for contributing to the success of this conference.
Moreover, we would like to express our thanks to the PC members and additional
reviewers for their timely and helpful reviews of the submissions, as well as to the local
organization team at the University of Leipzig. Besides, we are indebted to the
Springer LNAI team for their kind and excellent support in publishing these
proceedings.

Finally, we hope that all attendees enjoyed MATES 2017 and had interesting
inspiration and exciting insights from attending the conference.

June 2017 Jan Ole Berndt
Paolo Petta

Rainer Unland

VI Preface
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Semantic, Cognitive, and Perceptual
Computing – Three Intertwined Strands

of A Golden Braid of Intelligent Computing

Amit Sheth

Wright State University
3640 Colonel Glenn Hwy, Dayton, OH 45435, USA

amit.sheth@wright.edu

Abstract. While Bill Gates, Stephen Hawking, Elon Musk, Peter Thiel, and
others engage in OpenAI discussions of whether or not AI, robots, and machines
will replace humans, proponents of human-centric computing continue to extend
work in which humans and machine partner in contextualized and personalized
processing of multimodal data to derive actionable information. In this talk, we
discuss how maturing towards the emerging paradigms of semantic computing
(SC), cognitive computing (CC), and perceptual computing (PC) provides a
continuum through which to exploit the ever-increasing and growing diversity
of data that could enhance people’s daily lives. SC and CC sift through raw data
to personalize it according to context and individual users, creating abstractions
that move the data closer to what humans can readily understand and apply in
decision-making. PC, which interacts with the surrounding environment to
collect data that is relevant and useful in understanding the outside world, is
characterized by interpretative and exploratory activities that are supported by
the use of prior/background knowledge. Using the examples of personalized
digital health and a smart city, we will demonstrate how the trio of these
computing paradigms form complementary capabilities that will enable the
development of the next generation of intelligent systems.



AI and Machine Learning in IoT

Christine Preisach

SAP Deutschland SE & Co. KG
Hasso-Plattner-Ring 7, 69190 Walldorf, Germany

Abstract. Machine Learning is a hot topic in general, but even more in the area
of Internet of Things because of the huge amount of data collected and the
necessity to extract insights from it. Example use cases are predictive quality in
manufacturing, predictive maintenance for machines, smart buildings, smart
cities, smart logistics and many more. In this talk we will discuss why Machine
Learning is important and focus on how Machine Learning can be successfully
integrated into IoT applications and provide an outlook in the future of AI and
Machine Learning in the space of IoT.



Cognition and Self-organization in a Hybrid
Society and Coupled Reality: The Role of AI

Cristiano Castelfranchi

Institute of Cognitive Sciences and Technologies
Via San Martino della Battaglia, 44, 00185, Roma, Italy

cristiano.castelfranchi@istc.cnr.it

Abstract. We are not just building a new technology but a new Socio-
Cognitive-Technical System, a new form of society, an anthropological revolu-
tion. We are social engineers. Are we aware of? I will focus on some problems
and dangers of the Digital and WEB Revolution and of the “mixed” (virtual and
physical) reality and “hybrid” society (natural and artificial intelligences) we will
live in. Not just Privacy, Security, War and Artificial soldiers/arms, Ethics inside
Artificial creatures and algorithms and so on, but less discussed problems, like
the need for a decentralized control, for a understanding and dealing with
self-organization, for becoming aware of the interest behind the “invisible hand”
and the “spontaneous” emerging “order”. The possibility to improve human
intelligence of social dynamics, an effective democracy, and reducing manipu-
lation and alienation. The role of distributed intelligences and of computer
modeling and social simulation, as a collective “imagination” power for plan-
ning, participation, and policies decisions. The need for dis-agreement tech-
nologies, defense of user’s interests, supporting and managing conflicts. The role
of Intelligent social “presences” in our life and home; guardian angels and
tempting devils. The need for a tutelary non-manipulative role.



The Ultimate Web Intelligence: Computational
Social Science

Raj Reddy

School of Computer Science, Carnegie Mellon University
Wean Hall 5325, Pittsburgh PA 15213, USA

rr@cmu.edu

Abstract. Computational Social Science (CSS) is the use of Web Intelligence
and the tools and technology capable of monitoring, analyzing, diagnosing, and
resolving day-to-day problems of society. CSS is the development of intelligent
systems and solutions to address the critical problems of the society such as
poverty and hunger, slavery and torture, disease and suffering, and create tools
that enable an illiterate person to be as productive as a PhD. Computer Science
and Artificial Intelligence must embrace CSS as the next frontier in Web
intelligence and Web Intelligence and WIC need to be at the forefront of
inventing that future.



Loose Coupling and Architectural Implications

Frank Leymann

Institut für Architektur von Anwendungssystemen
Universitätsstraße 38, 70569 Stuttgart, Germany

Leymann@iaas.uni-stuttgart.de

Abstract. Loose coupling is a key architectural principle for ensuring a range of
non-functional properties. It is extensively and successfully used in message
queuing since many decades. In this talk we will show that service computing
(in both styles, i.e. SOA-based as well as REST-based) is enabling loose cou-
pling too. Based on this, the talk will argue why microservices is nothing really
new. Best practices (aka patterns) will be discussed that help building loosely
coupled applications for the cloud. The use of patters in architecting applications
will reveal some opportunities for future research.



Intelligent Agents and Semantic Technologies
for Industry 4.0: Showcases and Challenges

Matthias Klusch

German Research Center for Artificial Intelligence (DFKI)
Agents and Simulated Reality Department

Stuhlsatzenhausweg 3, Campus D3.2/R+1.26 66123 Saarbruecken, Germany
matthias.klusch@dfki.de

Abstract. About a decade ago, the fourth industrial revolution, also known as
Industry 4.0, has been ushered by the introduction of the Internet of Things and
Services into the manufacturing environment. Industry 4.0 is focused on cre-
ating smart products and processes flexibly in dynamic, real-time optimised and
self-organising value chains, and profitably even down to production lot size of
one. To rise up to this challenge, Industry 4.0 applications basically operate on
the principles and use of autonomous cyber-physical systems with self-*
properties for integrated production across the entire value chain. In particular,
the IP-networked and sensor-equipped machinery, systems, vehicles and devices
of smart factories are vertically and horizontally integrated with service-based
business processes both within a company and inter-company value networks.
Besides, cyber-physical production systems are envisioned to not only cooperate
with each other but also with humans on a new level of sociotechnical inter-
action. From a holistic perspective, Industry 4.0 connects smart production
closely with the areas of smart transport and logistics, smart buildings, and smart
energy, while keeping humans in the loop via smart multimodal assistance in
modern working environments. In this context, agent-based and semantic
computing both with deep roots in AI are considered as keys to implement
intelligent cyber-physical systems for Industry 4.0 scenarios in the future
Internet. In this talk, I will present selected showcases of leveraging intelligent
agents and semantic technologies for different Industry 4.0 applications, and
discuss related research and societal challenges.
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Learning About Human Personalities

Sebastian Ahrndt(B) and Sahin Albayrak

Faculty of Electrical Engineering and Computer Science, DAI-Laboratory of the
Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

sebastian.ahrndt@dai-labor.de

Abstract. This work approaches the question whether or not agents
are able to learn the personality of a human during interaction. We
develop two agent-models to learn about the personality of humans dur-
ing repeatedly played rounds in the Colored Trails Game. Human per-
sonality is described using a psychological theory of personality traits
known as the Five-Factor Model. The results show that some character-
istics of a personality can be learned more accurately than others. The
work extends the state-of-the-art in that it does not follow a supervised
learning approach requiring existing data sets.

Keywords: User/machine systems · Human factors · Software psychol-
ogy · Automatic Personality Recognition · Five-Factor Model · Colored
Trails Game

1 Introduction

Automatic Personality Recognition (APR) is the task of recognising the true per-
sonality of an individual [18]. Figure 1 illustrates the cognitive processes together
with this task and highlights the relations between externalised observable
behaviour on the one hand—named distal cues—and the perceptual process—
named proximal cues—on the other. Within this work, we develop two agent
models that infer the self-assessed personality traits from distal cues. In the con-
text of human-agent interaction, distal cues are all forms of a humans’ behaviour
an agent can observe, as most of these behaviours encode personality traces [18]
(e.g. loudness of voice, interaction patterns, appearance). We develop such agent
models, as the related work concentrates on learning personality traits using
supervised approaches, though, in several domains the requirement of having
labelled training data sets is not satisfied. This justifies to approach the ques-
tion: Can agents learn about the personality of a human during interaction with
this human? As a side-question we want to make use of the learned informa-
tion, and further approach the question: Can we use the personality information
directly to make informed decisions about the potential behaviour of humans?

The paper starts with background information in Sect. 2. After introducing
the applied personality theory and the used environment, the paper proceeds
with analysing the related work and classifying our own work in Sect. 3. The

c© Springer International Publishing AG 2017
J.O. Berndt et al. (Eds.): MATES 2017, LNAI 10413, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-64798-2 1



2 S. Ahrndt and S. Albayrak

Fig. 1. Brunswick’s Lens model and the technical task of Automatic Personality Recog-
nition (APR). APR contributions are based on the idea that each action and in conse-
quence each observable behaviour encodes personality traces. The ecological validity is
used to measure the performance of APR solutions, in that it provides the covariation
between personality traits and distal cues. This illustration is adopted from published
work [18, p. 276].

agent models that are applied are introduced in Sect. 4. The experimental setup
and the results are presented in Sect. 5. Finally, we will discuss the results in
Sect. 6.

2 Background Information

Next, we give some background information about personality as affective phe-
nomena and how it is defined by psychologist and the scientific game we use to
develop and test our agent models.

2.1 Personality – The Five-Factor Model

Human factor psychology describes a human’s personality as “. . . a pattern of
relatively permanent traits and unique characteristics that give both consistency
and individuality to a person’s behavior” [3, p. 4]. Although there are differ-
ent theories about personality, we have shown [1] that the Five-Factor Model [9]
(FFM) is suited for the integration of personality in agents. FFM introduces—as
indicated by the name—five dimensions characterising an individual. These are
openness to experience, which is related to a person’s preference to act inventive,
emotional and curious vs. acting consistent, conservative and cautious; conscien-
tiousness, which is related to a person’s preference to act efficient, planned and
organised vs. acting easy-going, spontaneous and careless; extraversion, which is
related to a person’s preference to act outgoing, action-oriented and energetic vs.
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acting solitary, inward and reserved; agreeableness, which is related to a person’s
preference to act friendly, cooperative and compassionate vs. acting analytical,
antagonistic and detached; and neuroticism which is related to a person’s pref-
erence to act sensitive, pessimistic and nervous vs. acting secure, emotionally
stable and confident.

2.2 Environment – The Colored Trails Game

The Colored Trails Game [6] (CT) is a multi-agent testbed to investigate coop-
erative decision making within a chess-like setting.1 The primal settings of the
game are the following: The board is an N × M grid consisting of coloured
squares with a previously defined set of available colours. Each player has a spe-
cific starting position and a set of coloured chips. The colours for the squares
and chips are determined by the same palette. The player has to use chips that
match the colour of an adjacent square to move to that square. The primary
objective for each player is to reach one of the ‘goal squares’, which are marked
with a ‘G’, as reaching it usually ends the game and provides the biggest reward
for a player. Secondary objectives could be the amount of remaining chips or
the number of rounds played. Having this competitive aspect on the one hand,
players have to cooperate with each other during a communication phase on the
other. During the communication they are allowed to negotiate the exchange of
an arbitrary amount of chips. This phase usually consists of the proposal stage,
the decision stage, and the actual exchange of the chips. Offered proposals can be
accepted or refused, though, players are not enforced to hand-over the (amount,
coloured) chips that have been proposed. Within each game the players act
consecutively and alternate their roles as being the proposer or the responder.
Finally, CT exchanges the chips and makes the best movement towards the goal
square automatically using the Manhattan distance algorithm.

3 Classification and Related Work

In the following, we will concentrate on approaches that specifically focus on
recognising personality as one of the phenomena that influence a humans’
‘. . . disposition toward action, belief, and attitude formation.’ [11, p. 146], i.e.
that focus on personality information as predictive of outcomes of interest [17];
introducing approaches where agents learn the personality of other agents (arti-
ficial and natural) in different scenarios.

Agent-based work on this topic originated from approaches that applied
social preferences to enhance predictability. Here, [7] presents a work where
agent use a weighted sum of the other agents expected outcomes as utility func-
tion. The examined behaviour is called socially rational decision-making and is
1 Several groups have used CT to study different behavioural aspects. A list of related

papers can be found here: https://goo.gl/BnsXof, last visit: 2017-14-06. We selected
CT as it provides a relatively simple environment, which is complex enough to learn
aspects of human behaviour as shown in existing work.

https://goo.gl/BnsXof
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based on the idea of social welfare functions, where the individual agents have
to balance their individual utilities and the social utilities with the intention to
maximise the welfare of the group, making it possible to have selfish or selfless
personalities. The authors applied Q-learning in a way that each agents learns
which interaction with other agents (personalities) is beneficial. A comparable
work is presented in [5] introducing social preferences in terms of the three dimen-
sions self-interest, social welfare and inequity aversion. Agents build knowledge
in these dimensions about the other agents and integrate this knowledge into
their own decision-making process. [15] use the dimensions equality and selfish-
ness to learn the behaviour of other agents during a repeatedly played trading
game. In the experiments, groups of agents played the game and the composition
of the group changes during the game, making it one of the early work that adds
the requirement of life-long learning. [16] present a work that illustrates the use
of a rather simple abstraction of personality types. Personalities of agents are
determined through the two dimensions cooperation and reliability. The agents
play the CT game and try to optimise a utility function incorporating whether
or not the player reaches the goal, the distance to the goal, and the number of
chips left. During repeatedly played games the agents reason about each oth-
ers helpfulness along the two dimensions. Consequently, they try to respond
more effectively by customising their behaviour appropriately for different
personalities.

The introduced approaches have in common that they learn what can be
identified as sub-traits of the Big-Five Factors, i.e. traits which cope with spe-
cific aspects of one of the five dimensions. However, the models are usually not
grounded in psychological literature by the authors, e.g. it is not substantiated
how the authors decided what is meant by selfish or selfless behaviour. Fur-
thermore, the agent-models applied learn the behaviour of other artificial agents
that simulate different personality aspects. In contrast, we focus on learning the
personality of humans. In addition, our goal is not to produce optimal group
behaviour but to prove if we can learn personality information in direct inter-
action with an individual human, and if we can use information about the per-
sonality of the human directly to make informed decisions. This work is partly
comparable to the discussed related work as it also applies a multi-attributed
utility function for the decision-making process. In fact, it is motivated by the
work of Talman et al. [16] and transfers the presented ideas from agent-agent to
human-agent cooperation.

[2] present a work, which examines if the interaction of humans with humans
and agents depends on the humans’ personality type according to the MBTI.
The experiments done using the cake-cutting-game show that the different per-
sonalities act in different ways, but also show that there is only little clue, when
trying to make predictions about possible behaviour based on information about
personality. In any case, the work provides a ground truth, that even in scientific
games, one can identify personality characteristics using the available distal cues.
[18] presents an overview about 55 publications on automatic personality recog-
nition (pp. 277–282). The authors classified the approaches w.r.t. the used data
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sets; classifying it as text-based, based on nonverbal communication, using data
sets collected via mobile and wearable devices, social media based, and com-
puter game behaviour based. The majority of the described approaches2 uses
supervised machine learning techniques working on different data sets and distal
cues reaching from linguistic features in speech and text to physical activities to
social network activities and observations of gaming behaviour.

The majority of the work discussed here applied the FFM using all traits.
Roughly half of the described approaches aim to determine the actual personality
using the theories’ continuous values. The other half aims to determine if a
person is on one side of the traits’ extremes or the other. This process is called
binarization. This work differs from the ones listed in the survey as the agents
learn about the personality in direct interaction with the human. In contrast,
the other approaches use existing data-sets to learn classifiers using different
machine learning techniques. Furthermore, the objective of this work is to learn
the actual self-assessed personality characteristics of the human.

4 Modulating Agents That Learn Personality

Our approach is based on the idea to link the personality traits to the available
actions by interpreting the meaning of the trait taking into consideration the
effect of the action. In doing this, it can categorised as applying reverse fac-
tor analysis techniques. To achieve the goal we follow the Realistic Accuracy
Model [4], that introduces the concepts of Relevance and Accuracy. These con-
cepts advice one, to restrict the experiments to the relevant traits, i.e. the traits
that can be expressed in a given environment, and the available traits, i.e. the
traits that can be perceived by others [19]. Given the CT environment we have
to restrict our agent models to three of the five dimension (conscientiousness,
extraversion, agreeableness) of the FFM. The inclusion of the remaining traits
(openness, neuroticism) is hard to accomplish as they cannot be expressed in
the environment. That is because, CT does not provide the options to reward
or punish creative or conservative behaviour to perceive information about the
openness trait. Furthermore, as CT is a scientific game it is not constructed
to evoke emotional reactions in its players. One might argue that repeatedly
loosing in the game will lead to an emotional reaction; but this effect provides
little indication about the emotional stability of a person and cannot be per-
ceived observing the players’ game actions. Thus, we do not expect users to
show behaviours related to the neuroticism trait. On the other hand, we include
conscientiousness due to the trading component and the possibility to cheat on
other players, extraversion due to the communication component, and agreeable-
ness due to the negotiation component of the game.

The agent models that will be described next have in common that they
follow the same objectives:

2 Only one publication described an unsupervised learning technique.
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1. Building an estimate of a humans’ personality observing the humans behav-
iour in the CT game, which is the task of APR that was introduced and will
be used to answer the first research question; and

2. Using this estimate to make informed decisions while playing the game, which
is the task of predicting the possible course of action of the human and will
be used to answer the second research question.

To build an estimate about the personality traits of the human the agent i
refers to a human k using the set Pk = {pkc , p

k
e , p

k
a}, where each p ∈ P represents a

personality trait (pc – conscientiousness, pe – extraversion, pa – agreeableness).
As the traits within the FFM are characterised using a continuous scale, the
range of each p is [0, 1] and the initial value is set to 0.5. This set is the main
feature used by i to build the expected utility of taking an action a ∈ A in
the current state s ∈ S playing against k, which we denote as u : S × A × P .
To improve the estimate of the personality the agent adapts each p during the
interaction. In favour of this task, we develop two different approaches that are
described next. The first approach learns about the personality of the human
online, i.e. using the observations directly to adapt the personality estimate. The
second one applies a classical Naive Bayes (NB) classifier using relative sparse
data to the very same environment and is used to compare the results of the
first approach with the commonly used supervised learning techniques.

4.1 Adapting to Human Personality

The first, and arguably simpler model, uses different equations to build estimates
from the observation of the humans actions within the game. In the following, we
will describe the construction of the model and substantiate the design-decisions
that have been made.

The distal cues available to both agent models are restricted to the actions
taken by the human. The action-space comprises the action to do nothing, to
make proposals to exchange chips, to accept or refuse proposals made by the
other, the actual exchange of chips, and the movement of the player. All of these
actions, except the latter which is automatically performed by CT, can be used
to reason about different facets of the humans personality, e.g. how beneficial
a proposal is for oneself or for the opponent or if the human sticks to reached
trade agreements or frauds the agents.

In order to adapt the estimates for the individual personality traits we apply
the one cue–one trait process [4], in which we use observations of single behav-
iours of a single cue to build knowledge about a single trait as follows:

– pc—denotes the estimate of the conscientiousness of the human and is inter-
preted as how reliable a player is.

Therefore, fulfilling a trade agreement increases and not fulfilling it decreases
this value. As failing to predict the reliability of a player can lead to significant
score losses for the agent, this trait is of utmost importance. To update the
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estimate after each trading agreement, we compute the conscientiousness of a
human by increasing/decreasing it with a constant factor xc ∈ [0, 1] using the
following equation:

pc ←
⎧
⎨

⎩

pc + xc if successful exchange
pc − xc if successful exchange but fraud
pc − 2 · xc if fraud

.

The first case applies when the proposed set of chips is equal to the one received.
The second case applies when the set of proposed and received chips is not equal,
but in the set of received chips exist some chips that are useful for the agent. The
last case applies if the agent was fooled. This is when there is no exchange or
when the agent only receives useless chips. Thus bailing out on an agreed trade
is punished harder, as it is a greater break of trust and might critically damage
the agent’s chance to reach the goal square.

– pe—denotes the estimate of the extraversion of the human and is interpreted
as how contact friendly the player is.

Therefore it is increased when the player makes a proposal of exchanging chips,
which is the most extroverted actions possible in the game. It is decreased when
the player acts passively not proposing anything. To update the estimate after
each round, we compute the extraversion of a human by increasing/decreasing
it with a constant factor xe ∈ [0, 1] using the following equation:

pe ←
{

pe + xe if proposed and
pe − n · xe otherwise .

The first case applies when the player offers an proposal, the second case other-
wise. The multiplicator n is growing until the player offers something and depicts
the number of rounds played:

n ←
{

0 if proposed
n + 1 otherwise .

– pa—denotes the estimate of the agreeableness of the human and is interpreted
as how friendly/altruistic a player is.

Therefore it increases when the player accepts offers and decreases when the
player declines an offer. Furthermore, the reward for an acceptance is reinforced
if the proposal is favourable to the agent, i.e. rewarding an altruistic action
twice as much. On the other side, the estimate is decreased twice if the not
accepted proposal was indeed favourable for the agent. To update the estimate
after each active communication phase, we compute the agreeableness of a human
by increasing/decreasing it with a constant factor xa ∈ [0, 1] using the following
equation:

pa ←

⎧
⎪⎪⎨

⎪⎪⎩

pa + 2 · xa if accepted and favourable
pa + xa if accepted and not favourable
pa − xa if not accepted
pa − 2 · xa if not accepted but favourable

.
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This equation rewards generous offers and exchanges as they might be harmful
to the player’s own score. To analyse if the acceptance or non-acceptance was
altruistic/favourable requires the CT environment to be fully observable. At the
same time, the agreeableness estimate is decreased when the exchange of valuable
chips were declined. Thus, the level of agreeableness is a kind of measure of the
selfishness of the player.

The constants xc, xe and xa were adjusted and determined in test-games
played prior the experiment. For reasons of readability the edge-cases when the
estimates reach the minimal/maximal value of the interval are omitted within
the formulas. In these cases a positive/negative adjustment is no longer applied.

Using the Personality Estimates. The above-described part of the agent
model is used to build the estimates about the humans personality. These per-
sonality estimates are used within the decision-making by calculating a utility
for each action. The estimates pe and pa are utilised to calculate the expectation
that a proposal will be accepted, as weighted sum eacc = pe · we + pa · wa. The
weights are used to adjust the influence of the traits. In addition, eexc = pc
indicates the expectation if an agreed exchange indeed takes place.

The second feature to build the expected utility is the reachable score with the
current set of coloured chips (rc), the reachable score after a successful trade (rt),
and the reachable score when falling for a betrayal (rf ). Betrayal means accept-
ing a trade and transferring own chips without getting the promised response.
All three can be easily calculated when knowing (1) that CT controls the move-
ment phase by applying the A* algorithm to move towards the goal square and
(2) the scoring function of the game, which sums the following parameters: 100
points for reaching the goal square and ending the round as winner; 5 additional
points for all coloured chips left; and 10 penalty points for each tile between the
final position and the goal square calculated using the Manhattan distance.

Both features are used to calculate the expected value (reward) of executing
action a given the current state of the game s using the following multi-attribute
utility function when making a proposal:

ui
a(s, Pk) = eacc · eexc · rt + (1 − eacc) · rc+

eacc · (1 − eexc) · rf .

When the agent receives a proposal the likelihood that it will be accepted is
not of relevance since the agent can choose its answer and only has to consider
that the exchange truly takes place. Therefore we remove eacc when building the
utility for an action in this case.

Given this function the estimate of the personality of the human influences
the policy of the agent, which tries to maximizes the utility. If equally valued
actions exists, the one is selected that was found first. Indeed, in the implemen-
tation the agent has no knowledge that there exists more than one action that
maximises the utility.
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4.2 Bayesian-Based Estimation of Human Personality

The second model applies Bayesian techniques to the same task and environment.
In order to receive estimates of the humans’ personality the agent is interacting
with, we again apply the one cue–one trait process, following the argumentation
that a humans’ behaviour depends on the personality and the rewards which
can be received. Figure 2 depicts these assumptions using the notion of a MDP.
It highlights the possible state transitions for the players, the starting state
being the proposers position to create a proposal in a one-shot round of the
CT game. The move actions and the next round of the game with swapped
roles are started automatically, after the process of making a proposal or not
(s0 → s1 → . . . or s0 → s4), accepting the proposal or not (s1 → s2 → . . . or
s1 → s3), and trading the agreed chips (trade) (s2 → s5) or some other selection
of chips (fraud) (s2 → s6) are finished. Several actions lead to a reward, though,
the most beneficial policy is the one that leads to a successful exchange (either
trade or fraud) as the scoring-function for the games played reads as follows:
each player starts with 100 points; 50 points are granted for reaching the goal
square and ending the round as winner; 10 additional points are granted for all
coloured chips left; and 20 penalty points for each tile between the final position
and the goal square calculated using the Manhattan distance.

Fig. 2. Illustration of the CT environment using the notion of MDPs (transitions start-
ing in green states are conducted by proposing players, transitions starting in blue states
are conducted by responding players). Automatically performed actions are marked
with an ε. Game restarts with swapped roles after each round. (Colour figure online)

The figure also highlights the linkage between the personality traits and
the actions. Again using reverse factor-analysis techniques and interpreting the
meaning of the trait taking into consideration the effect of the action. This is
done as follows:
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– P (c), 1 − P (c)—denotes the likelihood that a player acts reliable, which is
indicated by the conscientiousness of the human. As discussed before, we
interpret this trait as how likely an agreed trade will take place P (trade | c)
=̂ P (c) =̂ c and how likely it is that the agents falls for a betrayal P (fraud | c)
=̂ 1 − P (c) =̂ 1 − c.

– P (e), 1−P (e)—denotes the likelihood that a player is contact friendly, which
is indicated by the extraversion of the human. As before, we interpret extra-
version as how likely it is that a player offers a proposal P (propose | e) =̂
P (e) =̂ e or not P (¬propose | e) =̂ 1 − P (e) =̂ 1 − e.

– P (a), 1 − P (a)—denotes the likelihood that a player acts friendly/altruistic,
which is indicated by the agreeableness trait of the human. As before, we
interpret agreeableness as how likely a player accepts an offer P (accept | a)
=̂ P (a) =̂ a and how likely an offer is declined P (reject | a) =̂ 1 − P (a) =̂
1 − a.

Given these links we conduct an experimental protocol where we first play 30
games against a human recording its behaviour and use the generated training
data set to train a Naive Bayes (NB) classifier for each human. Thus we follow
the assumption of NB, that the attributes we want to use are conditionally
independent of each other, given the action space. To handle the relative small
sample size for each game, we apply a maximum-likelihood method assuming
that all traits are equally likely a priori.

Using the Personality Estimates. In the second stage, the agent uses the
classifier to adapt its behaviour. We use a proposer and a responder utility
function. For the proposing case, we have to take into account the cases where
the human does not accept a proposal, the human accepts a proposal and the
trade takes place, and the human accepts the proposal but it dupes the agent
during the trade. Again we refer to these facets with the currently reachable score
(rc) and the reachable score after a successful trade (rt) respectively betrayal
(rf ). We introduce the weights w0, w1, w2 to control the behaviour of the agent as
acting more or less optimistic and more or less risky, balancing between proposals
that are fair and acceptable for both sides vs. proposals that promise maximum
score. For the proposing case the utility function reads as follows:

ui
a(s, Pk) = (1 − P (a)) · w0 · rc

︸ ︷︷ ︸
no trade

+P (a) · P (c) · w1 · rt
︸ ︷︷ ︸

accept, trade

+

P (a) · (1 − P (c)) · w2 · rf
︸ ︷︷ ︸

accept, fraud

.

For the responding case the agent only needs to take the likeliness into account
that human frauds it during the trade, which shortens the utility function to the
following:

ui
a(s, Pk) = P (c) · w1 · rt

︸ ︷︷ ︸
trade

+ (1 − P (c)) · w2 · rf
︸ ︷︷ ︸

fraud

.
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Giving these utilities the personality estimate influences the policy of the agent
trying to maximise the utilities. This means, that the agent selects the action
with the highest utility, similar to the behaviour discussed in the other agent
model.

5 Experimental Setup and Results

For the experiment we implemented the introduced agent models for the CT
environment and invited under-graduated students to play against our agents.
At the beginning, the participants were asked to self-assess their personality
using established assessment questionnaires (as described in the next sections).
Afterwards, the game environment was explained and each participant got a
10 min tutorial to get familiar with the environment, the game rules, and the
control elements. We explained the rules, the scoring function and played the
game in practice with the subjects. In this initial stage the participants played
against an agent that did not adapt to the opponent. Afterwards, the attendees
played 30 games in a row against the adapting agent and 40 games in a row
against the Bayesian agent. The latter applied the learned personality estimates
during the last 20 games and used the first 20 games to build the training
data set used to train the classifier. The goal of the participants was to reach
the maximum score as often as possible. The participant were not explicitly
informed about our intention to learn about their personality, but were told
that we develop an AI to play CT and want to test it.

5.1 Adapting Agent

In the experiment with the adapting agent 22 participants took part. To assess
the personality of the participants we used a 100-Item questionnaire derived from
the IPIP3. After collecting the data we compare the personality estimates that
have been build by the agent and the estimates derived from the self-assessment.
Table 1 lists the data. The scoring results listed in column 2 and 3 show the mean
value of the points of all 30 games determined for each human player and the
agent playing against the participant. It shows that the agent outperforms the
human players in average, but the difference is fairly small. Setting up the CT
environment we made the individual game rounds more comparable by distribut-
ing the same amount of chips to the opponents and centralising the goal square.
Taking that and the total number of 660 games played into consideration the
scoring difference could be interpreted as an indication that we actually can use
the personality information to make informed decisions. However, a detailed dis-
cussion of the figures is required to come up with a comprehensive conclusion.
To do so, we will discuss both research questions separately next.
3 IPIP—International Personality Item Pool: A Scientific Collaboratory for the Devel-

opment of Advanced Measures of Personality and Other Individual Differences—
http://ipip.ori.org/. For the experiment the 100-Item Set of IPIP Big-Five Factor
Markers has been used.

http://ipip.ori.org/
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Table 1. Adapting agent – Listing of the average scores reached by the opponents
(human and agent) and the average score (μ) and deviation (σ) over all games (column
2 and 3). Listing of the deviation between the agents personality estimates and the one
derived from the questionnaire (column 4 to 6). At the bottom the Pearsons r and
Spearmans ρ correlation coefficients between the reached scores and the deviation of
the personality estimates.

# Human Agent Extraversion Agreeableness Conscientiousness

1 111 99 0.18 0.225 0.265

2 107 154 0.09 0.09 0.12

3 98 113 0.02 0.28 0.245

4 121 127 0.075 0.025 0.215

5 118 140 0.035 0.06 0.4

6 105 113 0.05 0.19 0.175

7 132 134 0.03 0.235 0.09

8 100 107 0.14 0.335 0.24

9 88 154 0.015 0.05 0.425

10 142 102 0.045 0.225 0.11

11 104 106 0.055 0.195 0.075

12 105 112 0.07 0.295 0.37

13 99 144 0.06 0.17 0.425

14 121 120 0.065 0.19 0.12

15 126 111 0.16 0.095 0.215

16 145 137 0.04 0.05 0.22

17 86 141 0.025 0.215 0.065

18 102 107 0.015 0.06 0.13

19 138 132 0.145 0.075 0.47

20 154 110 0.05 0.21 0.275

21 101 124 0.02 0.165 0.215

22 97 138 0.125 0.285 0.23

μ 113.64 123.86 0.07 0.17 0.23

σ 15.84 14.77 0.04 0.08 0.09

Pearsons r −0.23 −0.11 0.16

Spearmans ρ −0.32 −0.06 0.09

p > 0.1 p > 0.1 p > 0.1

Can agents use our model to learn about the personality of a human during the
interaction with this human?

Table 1 lists the deviation between the agents estimate of the personality traits
(column 4 to 6) of its opponents and the actual self-assessed personality charac-
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teristics derived from the questionnaire including the average deviation. It shows
that least variety exists with the extraversion parameter, while agreeableness and
conscientiousness are drifting apart stronger (Fig. 3a depicts the spreading of the
values in a boxplot chart). A zero value here would mean that both characteri-
sations are perfectly equivalent, which is only a theoretical option, that cannot
be reached when comparing the results of different assessment instrument, e.g.
self-assessment, questionnaire, professional assessments, or psychological inter-
views.

To get an indication about the accuracy of the reached results we have to
calculate the ecological validity ρEV , which is the Spearmans ρ between the
ranked values of the agents’ personality estimate and the self-assessed person-
ality [10,18]. The ecological validity shows to which extent the findings of an
experiment could be generalised to real-life settings, i.e. it provides a measure
that answers the questions whether or not we can use observations from arti-
ficial laboratory settings in more natural environments [14]. For the deviation
between the self-assessed personality and the agents’ estimate of the personality
the ecological validity for the traits is ρeEV = 0.88, ρaEV = 0.36, and ρcEV = 0.3.
These values substantiate what is already visible in Fig. 3a, showing that the
results for extraversion are promising whereas the results for the other traits
have to be improved.

One way to improve the results for agreeableness and conscientiousness would
be to change the adaptation of the estimation functions for the observed actions,
i.e. our interpretation of the link between the actions and the agreeableness and
conscientiousness trait is not accurate. An obvious solution would be to use
the same adaptation mechanism then applied for extraversion. However, several
researchers showed that individual mechanisms for each distal cue and each trait
are more promising [18]; substantiating our design decisions to use individual
mechanisms.

To conclude, the results show that we can learn about the personality of a
human in direct interaction and that some characteristics of a personality can be
learned more accurately than others. From the experience we gained during the
development and substantiated by the related work, it can be concluded that one
needs streamlined learning mechanisms for the distal cues that are observable in
an environment.

Can we use the personality information directly to make informed decisions about
the potential behaviour of the human?

The hypotheses to test our second objective read as follows:

– H0 : The agent does not perform differently, i.e. the agents score does not
increase/decrease, if the personality estimates becomes more accurate.

– H1 : The agent performs better, i.e. the agents score increases, if the person-
ality estimates becomes more accurate.

The last two rows of Table 1 show the Pearsons r and Spearmans ρ [10]. Due
to the sample size, the Pearson’s r is not that meaningful and can only be used
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to give an indication. This indication is substantiated with the Spearmans ρ,
which is better suited for relative small sample sizes. Both values show that the
agent performs the worse the more accurate the personality estimate becomes
for extraversion and agreeableness (negative correlation). On the other hand, the
agent performs better the more accurate the conscientiousness becomes (posi-
tive correlation). Here a zero value for either correlation score means that the
scoring ranks do not correlate with the ranked personality estimates; in other
words, as the scoring ranks increase, the deviation of the personality estimates
do not increase (or decrease). As neither r nor ρ become zero for any of the
traits we cautiously reject the null hypothesis H0 as the coefficients show a weak
correlation. We cautiously reject it as the significance level of 0.1 is not reached
by any of the traits. Thus, for the adapting agent we have to conclude that the
applied utility function does not use the personality information to predict the
humans course of action in the way it was intended.

5.2 Bayesian Agent

Within the experiment with the Bayesian agent 10 other participants took
part. For the personality assessment we used a 30-Item questionnaire provided
by Satow [13]. We selected another questionnaire as the applied maximum-
likelihood method requires prior knowledge about the distribution of the argu-
ments. These values are given by L. Satow and read as follows: pe = 0.65,
pc = 0.65, and pv = 0.75.4 These values are not available for the IPIP ques-
tionnaire used in the first experiment, neither was the requirement known while
performing the first experiment. However, the results remain comparable, as
both questionnaires assess the Big Five factors with reasonable reliability coeffi-
cients. The remaining setup stayed the same. Again, we will discuss both research
questions separately next.

Can agents use our model to learn about the personality of a human during the
interaction with this human?

Table 2 lists the data recorded for the Bayesian agent. In column 4 to 6 the
deviations between the personality assessment and the personality estimate of
the agent are listed. The least variety exists with the conscientiousness trait,
though, extraversion shows a closely related value. The average difference and
the spreading for the agreeableness trait is much bigger. Figure 3b visualises the
results as a boxplot. Due to the fairly small sample size the ecological validity has
to be interpreted quite carefully. For each trait it reads as follows: ρeEV = 0.83,
ρaEV = 0.63, and ρcEV = 0.84. This gives an indication that the Bayesian agent
might work more accurate than the adapting agent, e.g. given another population
or another environment. Given much bigger sample sizes, the related work shows
several approaches that have applied the NB classifier successfully to the APR
task [18]. In contrast to the adapting agent the Bayesian agent applied the same

4 Values are derived from a sample size of 5520 with a Cronbachs Alpha between .76
and .87 [13, p. 20].
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Table 2. Bayesian agent – Listing of the results reached for the Bayesian agent.
Table show same structure than Table 1.

# Human Agent Extraversion Agreeableness Conscientiousness

1 112 113 0.095 0.47 0.115

2 139 110 0.06 0.225 0.03

3 113 113 0.035 0.225 0.06

4 115 123 0.175 0.155 0.195

5 116 110 0.18 0.155 0.075

6 129 129 0.07 0.03 0.175

7 115 119 0.215 0.43 0.16

8 129 127 0.39 0.12 0.3

9 125 108 0.13 0.3 0.035

10 135 111 0.05 0.05 0.175

μ 122.6 116.2 0.14 0.22 0.13

σ 9.28 7.29 0.08 0.11 0.07

Pearsons r 0.38 0.21 0.41

Spearmans ρ 0.28 0.09 0.47

p > 0.1 p > 0.1 p > 0.1

approach to each distal cue, eliminating one dynamic factor. Still, the figures
reveal a difference between the individual traits. This substantiate the prior
made statement, that one should use different techniques to recognise the effects
of personality traits that are expressed within a distal cue that can be observed.

Can we use the personality information directly to make informed decisions about
the potential behaviour of the human?

Column 2 and 3 of Table 2 list the scoring results including mean and deviation.
In contrast to the adapting agent the human outperformed the Bayesian agent
in more than half of the games. Indeed the humans were successful in 224 of
the 400 played games. Taking the same hypotheses as above into account, we
can again reject the null hypothesis H0 as shown by the correlation coefficients.
As they are positive for each of the traits, it seems promising to repeat the
experiment with a stronger null hypothesis, which could be read as follows:
The agent does not perform better, i.e. the agents score does not increase, if the
personality estimates becomes more accurate, i.e. if the deviation of self-assessed
personality and the agents estimates decreases. The strongest correlations exists
for the conscientiousness trait, however, neither of the correlations reach an
acceptable significance level and the number participants is fairly small. Thus,
as well as for the adapting agent we conclude for the Bayesian agent that the
applied utility function does not use the personality information to predict the
humans course of action in the way it was intended.
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(a) Boxplot for Adapting agent (b) Boxplot for Bayesian agent

Fig. 3. Deviation between questionnaire and the agents’ personality estimate.

6 Discussion

The results that have been described are mixed. On the one hand, they show
that we are able to learn about the personality in direct interaction with the
human using a fairly simple approach or using only a few observations to train a
classifier. On the other hand, we learned that the linkage between the observable
actions and the expressible and interpretable distal cues is crucial. Furthermore,
the results show that we were not able to use the learned personality estimates
given the described utility functions.

Since the CT game has very limited action space available to evaluate and
analyse the behaviour of the other player, it is complicated to associate these
actions with factors of the FFM. Thus, the environment/action-space might
have to be more complex. Another possible explanation for the estimates not
depicting the assessment results is that a person might behave different to the
interpretation we had while associating actions with traits. Since the goal of the
game is to reach the best possible score, it might be beneficial to use a more
generalised trait just indicating how cooperative the human is (cf. [16]). Despite
these imaginable hindrances the outcome is still good, especially for the value of
extraversion.

It can be concluded, that some of the traits can be estimated more accurately
than others, at least in the CT environment. During the experiment we followed
the relevance and accuracy features. Leading to the focus on three out of the
five traits of the FFM. It was shown that we were able to more accurately learn
the extraversion trait than the agreeableness and conscientiousness trait. There
are multiple reason for that. One is based on the distal cues itself, i.e. are those
cues observable and how well does the physical cue encode the characteristics of
the personality traits. This is known as the good trait variable of accuracy [4, p.
662], which describes the possibility that some traits might be easier to estimate
accurately than others as some behaviours might be easier to judge than others.
To approach this problem, we provided and discussed justifications how and why
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we made design decisions in the agent model. It is just right, to assume that we
made errors during this process coming up with an inaccurate agent model and
that better results can be achieved with another one. One potential problem here
is an oversimplification of the effects of the personality traits on the distal cues.
Another reason can be found in the perception module, i.e. how we actually
used observed behaviours to generate personality estimates. This is known as
the good judge variable of accuracy [4, p. 660], which describes the possibility
that different individuals are differently good in judging personality. Although
[4] writes about human judgement, these variables apply for machine learning as
well as shown by the different approaches and their reached accuracies on same
data sets in [18]. To approach this problem, we applied two different approaches
within the same setting. Both of them show the same tendency that in the
selected environment using the identified distal cues, extraversion can be better
estimated than agreeableness and agreeableness can be better estimated than
conscientiousness.

The above-discussed points are directly related to the presented approach.
Beside that, we can identify limitations w.r.t. the conducted experiments and
result analysis. First of all, the sample size for both experiments is limited
(nadapting = 22, nbayesian = 10) making it possible that the results are ran-
dom, biased w.r.t. the sample, or related to other (non-human) factors [8]. Other
common method biases such as the measurement and item context effects may
induce further weaknesses [12]. Within the experimental design we addressed this
by separating the measurement of the self-assessed personality and the agents’
estimation using a cover story that disconnected both parts.

Overall, although the results are mixed, we argue that the presented findings
provide interesting insights into the task of learning about personality traits
in interaction with a human. That is because very little is known about this
task as shown in the related work section. Thus, even imperfect information and
approaches offer valuable insights at this stage.

Acknowledgement. Special thanks goes to Dr.-Ing. Frank Trollmann for his insight-
ful comments and to the anonymous reviewers for their valuable critique, suggestions,
and questions.
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Abstract. Social media like Facebook, Twitter, or Google+ have
become important communication channels. Nonetheless, the distribu-
tion and dynamics of that communication make it difficult to analyze and
understand. To overcome this, we propose an agent architecture for mod-
eling and simulating user behavior to analyze communication dynamics
in social media. Our agent decision-making method utilizes sociological
actor types to represent motivations of media users and their impact
on communicative behavior. We apply this concept to a simulation of
real world Twitter communication accompanying a German television
program. Our evaluation shows that the agent architecture is capable of
simulating communication dynamics in human media usage.

Keywords: Agent architecture · Social actor types · Social media com-
munication · Agent-based social simulation

1 Introduction

Within the last decade, social media like Facebook, Twitter, or Google+ have
become predominant means of communication for both private and professional
users. They are used for purposes as various as casual smalltalk, commercial
marketing campaigns, and the shaping of political opinion [19,23].

However, the inherent distribution of social media and the dynamics of user
interactions therein make it difficult to analyze and comprehend that communi-
cation. Agent-based social simulations (ABSS) [11] are a promising technique for
understanding complex dynamics of interrelated communication activities. For
instance, viral dynamics of mass phenomena in social media like the harlem shake
[6] can be reproduced by representing media users with artificial agents [21].
The interrelated activities of these agents within a simulation lead to emergent
dynamics. Exploring various user populations and agent decisions in a controlled
experiment helps understand these dynamics in real world social media [33].

Nevertheless, there is a discrepancy between the majority of agent-based
models for social media analysis on the one hand and the available agent archi-
tectures based on sociological, philosophical, and psychological theories on the
other. While the ABSS community has recognized these architectures for agent
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decision-making [1], agent-based social media simulation focuses largely on sim-
ple reactive agents (e.g., threshold models of information diffusion) without
accounting for elaborate decision-making [10,18,36]. That is, these models only
address the question, whether or not users communicate in a social network.

In this paper, we complement the aforementioned approaches with a socio-
logically inspired agent decision-making architecture for simulating user motiva-
tions and the resulting behaviors. In particular, we aim at modeling when and
why users communicate in which way. This requires more differentiated models
of agent decision contexts, their available activities, and their action selection
mechanisms. Only if the agents in a social simulation experiment are complex
enough in these respects, it is possible to reproduce realistic communication
processes and to explain why and how these processes emerge.

The remainder of the paper is structured as follows. Section 2 provides
an overview of social media communication, sociological and psychological
models, as well as agent-based approaches to social simulation. Subsequently,
Sect. 3 describes our agent decision-making concept for modeling communication
dynamics. This concept covers the decision-making of individual social actors as
well as populations of media users. Section 4 applies the concept to an example
of communication processes on Twitter which accompany a German television
program. In Sect. 5 we evaluate the agent architecture by simulating communi-
cation in that scenario and by comparing our results to a real world dataset.
Finally, Sect. 6 provides a concluding summary and an outlook on future work.

2 Foundations

Agent-based social simulation models consist of three main components: The
agents’ decision-making context, their decision mechanisms, and their available
activity options in a specific context. An agent observes a situation which pro-
vides the context for its decision. The decision itself is made by selecting an
activity by means of its agent function (i.e., the decision mechanism). While con-
text and activities depend on a particular application domain, there are domain
independent theories and architectures for the actual decision-making. Thus, the
following sections first introduce the application domain of social media commu-
nication to provide a scenario for agent-based social simulation. Subsequently,
they discuss sociological and psychological theory and techniques for modeling
decisions as well as the underlying motivations in such a setting.

2.1 Social Media Communication

Human communication can be considered as a sequence of actions by individuals,
where the behavior of a sender influences the behavior of a receiver [3]. The
sender uses a set of characters to encode a message, which is transmitted using
an information medium. The receiver uses an own set of characters to decode
and interpret the message and returns a feedback using the same mechanism
[31]. The formulation and transmission of messages by the sender as well as
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the corresponding reaction by the receiver form the communicative activities
available to users of social media.

Social media provide options to their users to connect and communicate with
each other. In terms of graph theory, such a structure can be described by a set
of users (nodes) and relationships between the users (edges) [35]. For instance,
the online social network Twitter can be modeled as a directed graph. Twitter
distinguishes between followers and followees. A user actively and voluntarily
decides which other users to follow for receiving their status updates (Tweets).
Being followed by another Twitter participant makes a user become a followee.
However, the user being followed does not need to follow its followers.

When a user publishes a message on Twitter, all of that person’s followers
become notified. However, it is also possible to address other users directly in
order to reply to a message and to forward messages to others. Using the @-
symbol followed by the name of a user or putting the prefix “RT” (retweet)
at the beginning of a Tweet establishes sequences of messages. These sequences
form dialogs and conversations between two or more users [8]. In addition, Twit-
ter provides another operator for classifying the content of a message. To that
end, the #-symbol (hashtag) is used for categorizing messages and for marking
keywords that describe the topic of a conversation.

Twitter has been widely used for conducting studies of certain subjects or
events, e.g., spread of news and criticism [20,33], the activity of diseases [32],
or political communication [23]. In an agent-based social simulation of such
phenomena, the agents’ activities comprise publishing messages. Their options
among which to choose are given by the aforementioned operators. They can
introduce new messages, retweet existing ones, address particular users, and
cover specific topics. In addition, further content descriptors can cover the tonal-
ity and style of messages. This leads to a variety of possible agent activities.

Moreover, in a simulated conversation, an agent’s previous messages as well
as other agents’ Tweets about the same topic form the context of the agent’s
decision-making. The agent observes the preceding sequence of messages and
decides whether and how to react to it. Consequently, it requires a mechanism
to process the conversational context and to select a response. In order to obtain
a realistic simulation, it is desirable take sociological and psychological analyses
into account for developing agent decision-making mechanisms. Such theory can
provide deeper insights into the dynamics of communication processes and the
underlying motivations of social actors from which they emerge.

2.2 Sociological and Psychological Models

Communication is inherently social. In fact, sociality can be considered to con-
sist entirely of communication [22]. Social systems emerge from interconnected
communicative activities being selected by social actors [15]. Those actors are
influenced by an observed social situation and decide about their reactions to
that situation which results in observable behaviors that lead to the emergence of
a new situation (cf. Fig. 1). For example, a Twitter user can observe an ongoing
conversation about a specific topic (1). She may decide to utter a controversial
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opinion about that topic (2) which becomes observable to other users in the form
of her respective Tweet (3). This changes the conversation and provokes further
reactions. Thus, the conversation on the macro-social level (4) both influences
individual behaviors on the micro-social level and emerges from them.

Fig. 1. Emergence of macro-social effects from micro-social behavior [15].

For explaining macro-level communication dynamics by means of the afore-
mentioned model, it is necessary to understand the behaviors of participating
actors on the micro-level. As discussed in the preceding section, in social media,
the visibility of the situational context (1) is given by the social network plat-
form. That platform also provides the activity options and publishes the selected
action for other users to observe (3). However, given a specific situation, the user
behavior (2) depends on various attributes and dispositions like static personal
and demographic traits as well as dynamic motivations. Psychologically and
sociologically grounded analyses identify these traits and motivations in order
to derive their impact on the decision-making from empirical evidence.

There are several analyses of user behavior in social media available. For
instance, activity frequencies on Twitter have been related to user attributes
and traits such as gender, age, region, and political opinion [27]. While such an
analysis reveals how social media users interact with each other, it cannot explain
why they do it. To answer that question, other studies cover motivations for
communication. These motivations can be categorized into groups like smalltalk,
entertainment, or information and news sharing [17]. Additionally, they can be
derived from psychological personality traits [21,34]. Such approaches provide
insights into the decision-making of social actors in diverse situations ranging
from casual comments on a television series [29] to crisis communication [16].

In addition to social media specific and psychologically founded motivations,
there are also theoretical foundations for describing actor behaviors in sociology.
Sociologists distinguish between four basic social actor types which differ in their
behavior [12]. Firstly, a homo economicus is a rational decision-maker who strives
to maximize her personal utility. Such an actor attempts to reach personal goals
as efficiently as possible, whereas such a goal does not need to be monetary.
Secondly, a homo sociologicus obeys social norms and obligations. This actor
type tries to conform with expectations in order to avoid negative sanctions.
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Thirdly, an emotional man is driven by uncontrollable emotions such as love,
anger, respect, or disgust. This leads to affective behavior in response to, e.g.,
unfulfilled expectations [14]. Finally, an identity keeper tries to establish and
maintain a desired social role. Such an actor seeks social acknowledgment by
provoking positive reactions toward stereotypical behaviors. These basic types
are theoretically well-founded and can be utilized to describe basic as well as
mixed social motivations of humans [12].

2.3 Agent Architectures for Social Simulation

Communication processes in social media emerge from individual activities of
the participating users. For experimentally analyzing such emergent phenomena,
agent-based computer simulation has been established as a standard means. By
modeling real world actors as software agents, individual behavior and antici-
pation of behavior on the micro level can be simulated resulting in emergent
effects on a macro level [4,7]. In terms of social sciences, this is referred to as
agent-based modeling and agent-based social simulation [11].

The majority of agent-based models in social media analysis focuses on infor-
mation propagation. These models aim at identifying the optimal group of users
to spread information to as many others as possible [36]. The users are fre-
quently modeled as reactive agents with behavioral rules that fire if an activation
threshold is reached. The threshold denotes the required strength of influence
(e.g., a number of received messages) on an agent until it becomes active itself.
This method is particularly relevant for planning marketing campaigns in social
media which make use of information propagation effects [10,18].

While threshold models are usually investigated by means of simulation stud-
ies, there are also analytical approaches to agent-based modeling of opinion for-
mation. These focus on the interactions among agents which lead to the diffusion
and adoption of opinions in a process of compromising [25]. They model these
interactions by means of thermodynamics [30] or the kinetic theory of gases
[24]. These methods describe the emergence of macro-social phenomena from
micro-social interactions using differential equations. This allows for analyzing
the resulting opinion dynamics mathematically.

However, there is a discrepancy between threshold and analytical models on
the one hand, and sociological perspectives on decision-making on the other.
While these methods describe how opinion and communication dynamics occur
in agent-based social simulations, they lack the descriptive power to analyze why
this happens. That is, they focus on the dynamics between interacting agents
and treat the agent population as a homogeneous mass. For instance, in kinetic
theory, gas molecules behave solely according to their current states and their
mutual influences without having individual habits. As a result, the discussed
approaches largely leave the communication content as well as the participating
users’ underlying motivations out of account.

Thus, to understand human behavior, more elaborate agent decision
approaches are necessary. In fact, a wide range of agent architectures based on
philosophy, psychology and cognitive science is readily available [1]. The most
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prominent of those is the belief-desire-intention (BDI) architecture of practical
reasoning [9,28]. BDI agents are well-suited for modeling motivations in terms
of desires and for deriving intentional behavior from them according to beliefs
about the current situational context.

Nonetheless, BDI agents are more complicated to apply than reactive archi-
tectures. They are especially suitable for modeling strategic and goal-directed
behavior. By contrast, social media communication is often governed by affec-
tive and spontaneous contributions [33]. Hence, there is no need for modeling
persistent intentions to satisfy communicative desires in such a setting. Conse-
quently, we propose to strike a balance between cognitive and reactive agents
which utilizes the aforementioned sociological foundations for modeling complex
agent behaviors based on social actor types.

Sociological theory and agent technology have been combined in the interdis-
ciplinary field of socionics [13]. In that context, Dittrich and Kron model social
characters by means of actor types and combinations between these types [12].
They simulate the “bystander dilemma” in which persons must decide whether
or not to help a victim of physical violence. In their model, agents with the homo
sociologicus and identity keeper roles feel obliged to help while homo economicus
and emotional man flee the situation. Combining these dispositions on both the
individual and population levels leads to complex macro-social behaviors.

As social actor types provide a simple method for modeling complex agent
motivations, they are a promising concept for simulating other human inter-
action dynamics. However, it is unclear, how they can be transferred to other
applications. Therefore, we provide an agent decision-making architecture based
on these actor types and show its applicability for simulating communication
dynamics in social media in the remainder of this paper.

3 Agent Decision-Making Concept

In this section, we adapt the agent decision-making approach by Dittrich and
Kron [12] to modeling communicative user behavior in social media. In partic-
ular, we model the selection of messages about a specific topic to be published
on a social media platform within a limited time frame [2].

Our modeling and simulation concept is structured as depicted in Fig. 2.
Each decision-making situation receives an input of one or more keywords to

Fig. 2. Agent-environment interaction and agent decision-making concept.
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describe that situation (e.g., a list of hashtags or abstract topic description).
The respective output consists of messages being published at the social media
platform by the population of agents. In order to produce that output, each agent
observes the situation and calculates expected values for its potential reactions
according to its respective social actor type and depending on the activities of
other agents. It then selects its next message (or chooses not to publish any
message) with respect to these expected values. The following sections describe
the actor types, their combinations, and the resulting agent populations.

3.1 Social Actor Types and Decision-Making

According to Fig. 2, the agent decision-making maps a perceived situation
description to a communicative action. Given a set S of possible situations and
a set A of available actions, the agent function has the following structure.

action : S → A

Besides the current situation s ∈ S, its social actor type determines an agent’s
decision-making. To that end, we model each type by means of a function EV
that returns an expected value for each available activity option. For a homo
economicus (HE), this amounts to a standard utility function. Contrastingly,
a homo sociologicus (HS) prefers socially adequate behaviors over controver-
sial actions. Such an agent makes its behavior dependent on contributions to a
conversation by other agents. In addition, while the identity keeper (IK) has a
genuine desire to further any kind of discussion, the emotional man (EM) only
becomes active when being emotionally affected by the situation.

All of the expected value functions should cover the same range of values to
make them comparable with each other. That range depends on the number of
available activity options and their effects in a particular application scenario.
Each option can either have a positive, neutral, or negative effect on an agent’s
motivations. For instance, a scenario with five possible messages can be encoded
through the following set of values: {−1, 0, 1, 2, 3}. In this case, a message is
either detrimental to an agent’s goals (−1), it can be neutral towards them (0),
or it furthers its motivations to different extents (1–3). Then, the agent can select
its next action a ∈ A depending on the situation s as follows.

actioni(s) = arg max
a

EV i(s, a)

Each actor type i ∈ {HE ,HS ,EM , IK} maximizes its expected value for all
available actions a in the situation s. If there are several options with the same
value, an agent decides randomly among them. This results in a specific mes-
sage (i.e., Tweet) being selected and published at the simulated social network
platform for all other agents to observe.

3.2 Actor Type Combinations and Populations

According to the preceding decision-making model, each agent can implement
one of the four available actor types. However, these are only prototypical
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examples for categorizing motivations. In fact, an actor’s motivational dispo-
sition will often be more adequately described by a mixture of several basic
motivations [12]. Consequently, we allow for combinations of actor types within
individual agents to represent that phenomenon.

For mixing several actor types, each agent is defined by four weights wi, one
for each actor type i, with

∑
i wi = 1. Those weights denote the ratio with which

those types contribute to its decision-making. Then, an agent with mixed types
selects its activities by maximizing the weighted sum of the respective expected
values (with a randomized selection in case of several maxima).

action(s) = arg max
a

∑

i

EV i(s, a) wi

In addition to combining actor types within an individual agent, it is also
possible to mix different agents within the overall agent population. That is,
a population can either consist of homogeneous agents that all implement the
same actor type combination, or it can comprise different agents. Homogeneous
populations are particularly useful for model validation and calibration. They
make the effects of different value functions easily observable and adjustable.
Contrastingly, heterogeneous populations are more realistic. They lead to com-
plex interaction dynamics which are necessary for replicating and explaining user
behaviors in social media as described in the following sections.

4 Application to Social Media Communication

The preceding section has outlined the general agent decision-making behavior
without specifying the application-dependent expected value functions for the
four actor types. In this section, we complement that description by applying our
modeling concept to an analysis of user behavior in communication processes on
Twitter. In particular, we model live-tweeting behavior during an episode of the
German television series “Tatort” (meaning crime scene). Running since 1970,
“Tatort” is the most popular German TV series which attracts a broad audience
across all social groups, genders, and ages. We use a dataset of Tweets about
the episode “Alle meine Jungs” (all my boys), of May 18, 2014. The dataset
has been obtained through the Twitter-API and contains 7448 Tweets. Out of
these, 192 original Tweets (excluding Retweets) form eight distinct phases of
Twitter activity which correspond to specific scenes of the episode. These scenes
provide the situation for the agents in our model to react to. Each of them is
described by one or more out of five attributional categories as shown in Table 1.
The categories are described by

C = {thrilling, funny, music-related, emotional, judgmental}.

Each scene in this model is represented by a subset of C. Hence, S = 2C is the
set of all possible scene descriptors.

The agents can act repeatedly during each scene. At the beginning of a scene,
they base their actions only on the respective description; subsequently, they
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Table 1. Situation descriptions.

Scene Description

0 Thrilling

1 Funny, music-related

2 Funny, music-related

3 Funny, music-related

4 Funny

5 Thrilling, emotional

6 Thrilling

7 Judgmental

can also react to other agents’ Tweets. Thus, a dynamic communication system
emerges from these interrelated activities. In the following, we particularize the
available actions and the decision-making of the four actor types.

4.1 Agent Activity Options and Auxiliary Functions

The Tweets in our data set can be classified by their sentiment and tonality
along two different dimensions. They are either positive or negative and they
are either joking or not joking (i.e., serious). The possible combinations of these
categories result in four different message types available to the agents. However,
since not all users reply to every message, an agent also has the option not to
tweet. Nevertheless, it can still decide to participate in the conversation about
the current scene at a later time after observing Tweets by other agents. This
results in the following set A of five activity options.

A = {No tweet, Tweet−positive−joking, Tweet−positive−not joking,
Tweet−negative−joking, Tweet−negative−not joking}

Which option a ∈ A an agent selects at what time depends on its underlying
combination of actor types as well as on the activities of other agents. To include
the latter into the decision-making, we define two auxiliary functions ϕs and
tweetss which count published messages in the original data set as well as in
the simulated communication process, respectively. The function ϕs : As∈S → N

returns the absolute number of each action a in scene s ∈ S as contained in the
data set. Analogously, the numbers of different Tweets being published at the
time of decision in the agent-based simulation is given by tweetss : As∈S → N.
Those functions are necessary to take the activities of other agents into account
in the agent decision-making process.

4.2 Agent Decision-Making

In our application example, the four actor types represent typical behavioral roles
and motivations in social media communication. These include the maximization
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of publicity, a desire for serious discussion, the expression of anger, as well as
genuine content production. These motivations are represented by the homo
economicus, homo sociologicus, emotional man, and identity keeper, respectively.
For all actor types, we evaluate the available activity options with respect to
those motivations in each situation in order to identify expected values for the
agents’ decisions. Table 2 summarizes the criteria and values for that evaluation.

Table 2. Agent decision-making by social actor types (expected values).

Homo economicus Homo sociologicus Emotional man Identity keeper

No tweet (0) Must (3) Unchanged (0) Strengthened (3)

Utility function Should (2) Increased (−1) Weakened (−1)

(0 to 3) Can (1) Decreased (2)

Conversation size Should not (−1) Strongly

Threshold (−1) Decreased (3)

In social media communication, a homo economicus agent tries to maximize
the impact of its contributions on the conversation. Such an agent gains the
highest utility by reaching agreement with as many others as possible. Thus,
its underlying utility function anticipates probable majority opinions. Actions
supporting these are rated higher than less popular or controversial contributions
according to the ratio of actions in the original dataset. This agent type will
maintain its ratings during a conversation regardless of other agents’ behaviors.
In addition, we use a threshold of a minimal number of Tweets by other agents
for the agent to become active itself. The threshold is the mean number of Tweets
across all scenes. Until this threshold is reached, an agent will not participate in
the conversation which leaves its utility unchanged. Thus, the homo economicus
represents a casual media user who only joins ongoing conversations to represent
common sense opinions shared by the expected majority of recipients.

The corresponding expected value function depends on the Tweets published
in the current scene s so far as given by tweetss. If the overall number of Tweets
in

∑
a′∈A tweetss(a′) does not exceed the threshold, the homo economicus has

a value of −1 for all other actions than the no Tweet option. The threshold
1

|A|
∑

a′∈A ϕs(a′) is the arithmetic mean of all Tweets throughout the scenes in
the entire original data set. Otherwise, the agent selects its actions according
to their share in the real world data set given by ϕs(a) The prevalent action
is yielded by the term maxa′∈A(ϕs(a′)) which iterates over all possible actions
in the respective scene. Moreover, the utility values for a homo economicus are
normalized and rounded to natural numbers between 0 and 3.

EVHE (s, a) =

{−1 , if
∑

a′∈A tweetss(a′) < 1
|A|

∑
a′∈A ϕs(a′)

⌊
3 ϕs(a)
maxa′∈A(ϕs(a′))

⌉
, otherwise
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Contrastingly, a homo sociologicus agent rates the available actions accord-
ing to both general social norms as well as other agents’ behaviors. Its expected
value function evaluates these options by their perceived strength of obligation.
For instance, an agent should not joke about an emotional scene. However, if the
majority of other agents has deviated from such norms before, the homo sociolog-
icus will mimic these previously observed activities in order to gain acceptance
by other agents. Hence, that type of agent represents a both morally concerned
and opportunistic user who joins the dominant group as soon as one emerges.
This behavior is typical, e.g., in massive online protests [33].

The expected value of a homo sociologicus agent depends on the norm for
the current situation and the predominant action so far. The function norm(c, a)
returns a value of −1 for an action it should not select, 1 if the agent can execute
an activity, 2 if it should do it, and 3 if it must choose the respective action.
Table 3 shows the norms that affect an agent for each attributional category in
the current scene description.

EVHS (s, a) =
{

3 , if a = arg maxa′εA(tweetss(a′))∑
c∈s norm(c, a) , otherwise

with norm : C × A → {−1, 0, 1, 2, 3}

The emotional man, on the other hand, represents an outright dissatisfied
and angry user. Such an agent strives to express that anger which leads to
predominantly negative and sometimes sarcastic (i.e., joking) contributions. By
publishing negative Tweets, the agent decreases its anger until it no longer feels
the need to communicate. Consequently, that behavior produces isolated criti-
cism without any intention of engaging in an actual discussion.

The expected value for the emotional man depends on the output of an
anger -function. That function evaluates the current attributional categories of
the situation description according to their emotional implications for the agent.
If an action decreases the agent’s anger, its expected value is 2. If the agent can
even strongly decrease it, the value is 3. In case an action would increase its anger
instead, the anger-function returns −1 and if an action does not affect the anger
at all, the yielded value is 0. Table 3 shows the results of the anger -function.

EVEM (s, a) =
∑

c∈s

anger(c, a), with anger : C × A → {−1, 0, 1, 2, 3}

Finally, the identity keeper is a genuine content producer. This type of agent
has the goal of bringing forward any kind of discussion in order to maintain its
participation in it. That is, the agent can strengthen its identity by providing
arguments for other agents to react to. For that purpose, any kind of Tweet
can be appropriate, especially controversial ones if they provoke reactions. Only
remaining inactive weakens that identity. As a result, the identity keeper rep-
resents a user who enjoys a conversation for the sake of the conversation and
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Table 3. Values of anger(c, a) and norm(c, a) for categories and actions.

Category c ∈ C Action a ∈ A norm(c, a) anger(c, a)

Thrilling No tweet 1 0

Tweet - positive - joking 2 −1

Tweet - positive - not joking 2 −1

Tweet - negative - joking −1 3

Tweet - negative - not joking 1 2

Funny No tweet 1 0

Tweet - positive - joking 2 −1

Tweet - positive - not joking 3 −1

Tweet - negative - joking −1 2

Tweet - negative - not joking −1 3

Music-related No tweet 1 0

Tweet - positive - joking 2 −1

Tweet - positive - not joking 3 −1

Tweet - negative - joking −1 2

Tweet - negative - not joking 1 2

Emotional No tweet 2 0

Tweet - positive - joking −1 −1

Tweet - positive - not joking 1 −1

Tweet - negative - joking −1 0

Tweet - negative - not joking 1 0

Judgmental No tweet −1 0

Tweet - positive - joking 1 −1

Tweet - positive - not joking 3 −1

Tweet - negative - joking −1 3

Tweet - negative - not joking 2 2

who ensures a certain diversity of perspectives on the discussed topic. Thus, the
expected value for the identity keeper is expressed as follows.

EVIK(s, a) =
{−1 , if a = no tweet

3 , otherwise

The described actor types explain different motivations that cause partic-
ular behaviors in decision-making. Combining these actor type models within
individual agents creates complex agent behaviors. In the following section we
evaluate this modeling approach by reproducing the behavior recorded in the
real world data set in an agent-based simulation experiment.
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5 Evaluation: Simulation of Social Media Usage

In this section, we evaluate the capability of our agent decision-making approach
to reproduce realistic communication dynamics in social media. From a previous
experiment [5], we know that the composition of the agent population in this
kind of model has a large impact on the overall communication dynamics in the
simulation. In that experiment, we evaluated two different settings to analyze
the interplay of several actor types on the individual level and the population
level. The first setting examined a homogeneous agent poulation ofpopulationall
four actor types in equal shares. The second setting consisted of a heterogeneous
agent population in which every agent implemented one of the four basic actor
types. These experiments gave us an impression of the interplay of different actor
types both within and between agents. In the following, we complement these
findings with an analysis of whether the agent architecture is also capable of
producing realistic simulation results.

5.1 Experiment Setup and Results

We implemented the four agent types in a JAVA program to imitate the behavior
of 165 human Twitter users as represented in the aforementioned data set in a
simulation experiment. Consequently, our experiment confronts a population
of 165 agents with each of the eight scene descriptions shown in Table 1. This
population comprises equal numbers of three different actor type combinations,
each of which contains all four basic types to various extents. In particular,
each agent includes all motivational descriptions for at least 10% and at most
70% to add up to a total of 100%. In our simulation, we vary the ratios of
these combinations in steps of 10% in order to evaluate whether the resulting
simulated communication accurately replicates the original conversation.

Iterating the percentages of the motivational descriptions results in 80 differ-
ent actor type combinations. As the overall agent population consists of three of
these combinations, our experiment covers 512 thousand different populations
(80 × 80 × 80). Each of these populations is simulated 100 times to account for
stochastic decisions. The arithmetic mean of those repetitions is used to evalu-
ate the accuracy of the simulated data. To that end, the communication in each
scene of the experiment is compared to that of the matching scene of the real
world data set.

Throughout the experiment, the population of interacting agents does not
have to remain stable across all scenes. In fact, in real world social media commu-
nication, users enter and leave the conversation. Furthermore, the composition
of the four actor types within an agent is perceived as a current set of motiva-
tions. These motivations can vary depending on the situational context or other
external or internal stimulations. Therefore, we treat each scene seperately in
our search for a fitting agent population to reproduce real world communication
dynamics. Table 4 presents the actor type combinations which lead to the most
accurate simulation results for each scene.
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Table 4. Agent population (actor type combinations) for the different scenes.

Scene Combination 1 Combination 2 Combination 3

HE HS EM IK HE HS EM IK HE HS EM IK

0 10 50 20 20 20 30 20 30 10 20 30 40

1 20 10 10 60 20 20 20 40 10 50 20 20

2 70 10 10 10 30 20 20 30 30 20 20 30

3 40 10 40 10 50 30 10 10 10 60 10 20

4 20 30 30 20 30 20 10 40 10 30 40 20

5 20 30 40 10 40 10 30 20 30 50 10 10

6 10 20 30 40 30 10 20 40 20 20 50 10

7 30 10 10 50 20 50 20 10 10 10 60 20

Figure 3 shows the outcomes of the expriment (except for the “No Tweet”
option) for the populations listed in Table 4. The upper barplot represents the
total numbers of Tweets taken by the different agents in the eight scenes. The
numbers show the arithmetic mean of all 100 iterations of the simulation (omit-
ting the standard deviation which never exceeds a value of 0.2). The lower barplot
shows the relative ratio of the actions executed by the agent-population. The
error bars depict the distance of the simulation output to the original real world
data. Due to the small absolute number of Tweets in some scenes, a slight dis-
tance in individual actions leads to a more pronounced error bar in the relative
ratio.

We define the distance dista,z as the absolute difference between the numbers
of occurrences of action a in the simulation and the real world data for any
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scene z ∈ {0, . . . , 7}. To calculate that distance, we count the occurrences of
each particular action: countsim,r(a, z) in simulation run r and countreal(a, z)
in the data set. Then, we use the arithmetic mean of countsim for the n = 100
simulation runs and subtract countreal to obtain our distance measure.

dista,z =

∣
∣
∣
∣
∣

(
1
n

n∑

r=1

countsim,r(a, z)

)

− countreal(a, z)

∣
∣
∣
∣
∣

True to the real world data set, the results show a majority of negative not
joking Tweets. Responsible for this are the actor types of homo economicus,
identity keeper, and emotional man that consider this action either as the best
or as one of their favorite activities. Moreover, while a homo sociologicus gen-
erally prefers positive and serious (not joking) Tweets, it imitates the dominant
behavior. Only scenes 1 and 2 produce a majority of positive outputs. Scene 2
is described as being funny and music-related and scene 1 is characterized as
thrilling. This leads to positive not joking actions being favored by three of the
actor types which outrival the negative option selected by the emotional man.
Furthermore, thrilling scenes reduce the overall number of Tweets. In the simula-
tion, this is accomplished by the homo economicus needing to reach a threshold
of 24 existing contributions to join a conversation.

Due to those effects, the absolute number of agent activities in the simulation
deviates only slightly from the original user behavior. The maximum distance (in
scene 3) amounts to a total of four Tweets. Here, the two major options selected
by the agents are negative not joking and positive not joking Tweets. The former
message option is favored by the first actor type combination, predominantly
consisting of homo economicus and emotional man. The second form of Tweet
is mainly chosen by the homo sociologicus in third combination of actor types.
These actions are balanced out by the second actor type combination which
is dominated by the homo economicus. When the threshold is reached, those
agents decide for a negative Tweet. Otherwise, they do not participate in the
conversation which boosts the relative ratio of positive contributions.

5.2 Experiment Discussion

The presented results show that our agent architecture allows for simulating real-
istic dynamics of social media communication in an agent-based setting. How-
ever, there are still some minor inaccuracies in the emergent agent behavior. In
particular, the small percentage of identity keeper behaviors in the agent popu-
lation leads to a slight under-representation of positive joking Tweets in scene
3. In order to reproduce the real data behavior exactly, a fourth combination of
actor types would be required. By extending the experiment design with more
actor types in each experiment, a more diverse activity-pattern can be achieved.
This would facilitate further minimizing the distance between the simulated and
the original behavior. Nevertheless, our results show that even a population of
only three different actor type combinations is able to approximate real world
social media communication in an agent-based simulation.
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In addition, our experiment has analyzed the model behavior on the macro-
social level. We have concentrated on evaluating the aggregated effects of the
agents‘different decision making strategies. While this allows for concluding on
the emergence of communication dynamics, further experiments will provide
deeper insights into micro-social behaviors that bring about these results. In
this context, both the capability of our agent architecture to simulate individual
media users and the interplay between their activities over time are of interest.

Firstly, the behavior of individual agents within a population should be com-
pared to the real world behavior of actual media users. This amounts to evaluat-
ing the simulated behavior on the micro-social level with respect to the frequency
of activity and the tendencies to react to a scene description and other agents’
communication. This will then allow for examining which agents in the simula-
tion are more important than others for the emergence of specific communication
dynamics. In other communication contexts (e.g., massive online criticism), the
conversation is frequently driven by few particular users [33]. Therefore, an accu-
rate representation of such users in the simulation will be useful for analyzing
communication strategies in such a situation.

Secondly, the discourse dynamics between different agents within the frame
of each scene is a relevant aspect to evaluate. For deriving the aforementioned
strategies, it is necessary to observe the impact of possible interventions on
the communication. To that end, the agents’ mutual reactions to each other’s
communicative acts must be understood. Hence, a next step in our future exper-
iments will include a detailed analysis of trajectories and their stability within
the dynamic multiagent communication system.

6 Conclusions and Future Work

In this paper, we have developed an agent architecture for modeling user behav-
ior in social media. Our model utilizes well-established sociological foundations
for representing actors that communicate about a specific topic. In particular,
we have presented a concept for representing and combining motivational causes
for user behaviors by means of four different social actor types in agent-based
simulations. We have applied this concept to model and analyze Twitter commu-
nication about a German television program. Our evaluation shows that even few
combinations of different motivations within individual agents are sufficient for
near accurate replications of real world user behavior. Thus, we conclude that
our agent architecture provides a promising approach toward more elaborate
agent-based simulation studies of social media usage than existing information
propagation models [36]. Such a simulation can serve as a useful decision support
tool for planning communication strategies in social media [33].

Nonetheless, there are several extensions of our agent architecture we consider
for future work. Firstly, we are interested in comparing this method with existing
information diffusion approaches. This will provide further insights into which
level of complexity is necessary for simulating meaningful social media communi-
cation. Moreover, integrating both approaches will extend our architecture with
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a representation of the social network in which an agent is connected with others.
This network restricts an agent’s ability to perceive other agents’ activities. In
addition, such an integration will complement information propagation methods
with motivational aspects of why information is spread within a social network.

Secondly, it will also be necessary to represent the activity options and sit-
uation descriptions for the agents in more detail. In order to simulate, e.g., the
shaping of opinions in political discourses, a classification of communication con-
tents and their impact on the interaction is required. To achieve this, we plan
to utilize content modeling and annotation techniques from media and commu-
nication studies [26] for encoding discourses in agent-based social simulations.

Finally, a more detailed decision context and activity representation enables
more strategic decision-making. As developing behavioral rules for an increasing
number of options quickly becomes complicated, we plan to re-implement the
four social actor types as BDI agents. How these types can influence the adoption
of communicative intentions by such agents will be subject of our future research.

Acknowledgments. We thank Carla Schmidt, Christof Barth, and Hans-Jürgen
Bucher for providing us with the data set and a media studies perspective on our
application example.
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Abstract. This paper studies compromise, which is the tendency of
agents to move their opinions towards those of agents they interact with,
trying to reach consensus. Compromise is one of the most important phe-
nomena in the study of opinion dynamics, and this paper presents two
analytic models to study it. First, agents are considered deterministic and
a preliminary model of the effects of compromise is derived. Then, the
model is generalized to give agents some level of autonomy by modelling
their behaviour in terms of a stochastic process. Both models are ana-
lytic and they can be used to study collective properties of multi-agent
systems starting from the details of single interactions among agents.
Analytic results concerning the conservation of the average opinion for
both models are verified by simulation in the last part of the paper.

1 Introduction

This paper discusses an analytic framework that can be used to study relevant
collective and asymptotic properties of multi-agent systems, which are assumed
to be completely decentralized and with no form of supervised coordination.
According to the proposed framework, observable macroscopic properties of a
multi-agent system can be derived analytically under proper assumptions from
the description of the effects of microscopic interactions among agents. The term
interaction is frequently used in the description of the discussed framework to
denote a message exchange among two agents, and each interaction corresponds
to a single time step. Time is modelled as a sequence of discrete steps, which
may not have the same duration, and each step corresponds to a single interac-
tion among two agents. No restriction is imposed on the topological properties
of the multi-agent system, and each agent is free to interact with any other
agent. The discussed framework assumes that each agent is associated with a
scalar attribute, and since the application of the framework considered in this
paper refers to the study of opinion dynamics, we assume that such an attribute
represents the opinion of an agent regarding a fact. Note that the ideas behind
the discussed framework are not limited to the study of opinion dynamics and
the proposed approach can be fruitfully applied to describe other attributes and
other collective properties.
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J.O. Berndt et al. (Eds.): MATES 2017, LNAI 10413, pp. 38–53, 2017.
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Most of the existing agent-based models used to study opinion dynamics are
based on simulations (see, e.g., [13] and referenced literature) and, hence, the
validity of obtained results depends on the specific type of multi-agent system
that is simulated, and on the actual values of the parameters of simulations. In
contrast, the framework discussed in this paper is analytic, and it leads to results
that are valid when the hypotheses used to derive them are valid. Analytic models
are typically simpler than simulative ones, but they can be preferred when no
representative simulations can be identified or when models are built primarily to
identify the values of characteristic parameters that explain interesting collective
properties. Note that analytic models are commonly verified by simulation in
interesting cases, as done in Sect. 5 for proposed models.

The study of opinion dynamics normally considers a number of sociological
phenomena that can be used to model the behaviours of agents (see, e.g., [13]).
Among considered phenomena, some of the most extensively studied are:

– Compromise: the tendency of agents to move their opinions towards those of
agents they interact with, trying to reach consensus [1];

– Diffusion: the phenomenon according to which the opinion of each agent can
be influenced by the social context [3];

– Homophily: the process according to which agents interact only with those
with similar opinions [16];

– Negative influence: the idea according to which agents evaluate their peers,
and they only interact with those with positive scores [6];

– Opinion noise: the process according to which a random additive variable
may lead to arbitrary opinion changes with small probability [4]; and

– Striving for uniqueness: the phenomenon based on the idea that agents want
to distinguish themselves from others and, hence, they decide to change their
opinions if too many agents share the same opinion [7].

We have already proposed analytic models to study, under proper assumptions,
all such phenomena [2,8–15], and the main contribution of this paper is to
account for the autonomy of agents with respect to compromise by modelling
compromise as a stochastic process. First, compromise is studied for determinis-
tic agents, and results on the conservation of the average opinion are presented.
Then, the deterministic model is generalized to include stochastic agents, and
the conservation of the average opinion is studied also in this case. The pro-
posed stochastic model can be enriched to incorporate all mentioned phenomena
by adding specific contributions to the description of microscopic interactions
among agents, but such a generalization is not discussed in this paper.

In detail, the analytic framework to study opinion dynamics discussed in this
paper is inspired by the kinetic theory of gases, a branch of physics according to
which macroscopic properties of gases can be explained starting from the details
of microscopic interactions among molecules. The idea is not new because the
similarities between the kinetic theory of gases and the study of opinion dynam-
ics are evident, and other models of opinion dynamics, closely related to the
discussed framework, have been already proposed (see, e.g., [17,18]). An obvious
parallelism between molecules in gases and agents in a multi-agent systems can
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be drawn, and it can be used to study collective properties concerning the opinion
of agents using the same techniques that are adopted to study the temperature
or other macroscopic properties of gases. Note that only a few results of the
kinetic theory of gases are directly applicable to the study of opinion dynamics
because the details of collisions among molecules are intrinsically different from
those of interactions among agents. This is evident when comparing interaction
rules used to model collisions among molecules with interaction rules considered
in the study of opinion dynamics.

This paper is organized as follows. Section 2 surveys the kinetic framework
that we use to study the dynamics of the opinion and it fixes notation and
nomenclature. Section 3 presents a preliminary deterministic model of compro-
mise which assumes that agents are deterministic. Section 4 generalizes the deter-
ministic model by describing compromise as a stochastic process, which accounts
for some level of autonomy of agents. Section 5 shows simulations that confirm
relevant results of both models. Finally, Sect. 6 concludes the paper and outlines
future work.

2 A Kinetic Framework to Study Opinion Dynamics

Taking inspiration from the kinetic theory of gases, in this paper we aim at
discussing an analytic framework that allows deriving macroscopic properties
of multi-agent systems starting from the details of microscopic interactions
among agents. The discussed framework has already been applied successfully to
describe various phenomena that govern the dynamics of the opinion [2,8–15].
While in the kinetic theory of gases each molecule is associated with specific
physical parameters, such as its position and velocity, in the context of opinion
dynamics we assume that each agent is associated with a single scalar attribute
which models its opinion. In order to treat the dynamics of the opinion math-
ematically, the opinion is typically modelled as variable that takes values from
either a discrete set or a continuous set [5,19]. Discrete models, where the opin-
ion takes value from discrete sets, apply, for instance, in the context of political
elections, where a finite number of parties, and, hence, a finite number of possi-
ble values for the opinion, is present. In contrast, continuous models, where the
opinion takes values from a continuous set, are used to represent different level
of agreement with respect to a single issue, for example, from strongly disagree
to completely agree. In this paper, we model opinion as a continuous variable v
defined over a closed interval Iv and, without loss of generality, we consider

Iv = [−1, 1] (1)

where values close to 0 represent moderate opinions while −1 and +1 represent
extremal opinions.

Ordinary kinetic theory of gases studies the distribution function f(x, v, t),
which denotes the number of molecules whose position is in (x, x+dx) and whose
velocity is in (v, v + dv) at time t. According to the kinetic theory of gases, the
temporal evolution of such a function is described by the Boltzmann equation,
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which is an integro-differential equation that takes into account the effects of
the collisions among molecules and that can be used to analyze macroscopic
properties of gases. Analogously, the discussed framework studies the distrib-
ution function f(v, t), which represents the number of agents with opinion in
(v, v + dv) at time t, and we assume that the distribution function f(v, t) is
governed by the homogeneous Boltzmann equation

∂f

∂t
(v, t) = Q(f)(v, t) (2)

where Q(f)(v, t) is an integral operator that takes into account the effects of
interactions among agents, and that it is normally called collisional operator. In
Sects. 3 and 4 we study two different models that can be used to describe how
the opinions of agents changes because of interactions. The first model is deter-
ministic, while the second model involves stochastic parameters. In both cases,
we derive explicit expressions of specific collisional operators and we use them
to study analytically macroscopic properties of multi-agent systems. Note that
such explicit expressions are very different from the expression of the collisional
operator normally used in the kinetic theory of gases because the description of
the collisions among molecules in gases is very different from the description of
interactions among agents.

Before describing mentioned models, let us introduce a proper notation rel-
ative to the macroscopic characteristics of multi-agent systems. The number of
agents at time t is denoted as n(t) and it can be obtained by integrating f(v, t)
with respect to v

n(t) =
∫

Iv

f(v, t)dv. (3)

The average opinion at time t is denoted as u(t) and it is computed as follows:
f(v, t) is multiplied by v, it is integrated with respect to v, and it is divided by
the total number of agents,

u(t) =
1

n(t)

∫
Iv

vf(v, t)dv. (4)

Finally, the variance at time t is denoted as σ2(t) and it can be computed as
follows: f(v, t) is multiplied by (v −u(t))2, it is integrated with respect to v, and
it is divided by the total number of agents,

σ2(t) =
1

n(t)

∫
Iv

(v − u(t))2f(v, t) dv. (5)

In order to analyze the temporal evolution of u(t) and of σ(t), let us introduce
the so called weak form of the Boltzmann equation, which is obtained from (2)
by multiplying by a suitable test function and by integrating with respect to v.
The weak form of the Boltzmann equation with respect to a generic test function
φ(v) can be written as

d
dt

∫
Iv

f(v, t)φ(v)dv =
∫

Iv

Q(f)(v, t)φ(v)dv (6)
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where the right-hand side is called weak form of the collisional operator Q with
respect to test function φ(v). It can be observed that the choice of proper test
functions in (6) allows studying the temporal evolution of macroscopic properties
of multi-agent systems. In detail, from (3) it can be easily observed that the left-
hand side of (6) with φ(v) = 1 represents the derivative, with respect to time,
of the number of agents n(t). Similarly, from (4), the integral at the left-hand
side of (6) with φ(v) = v can be written as n(t)u(t). Hence, the left-hand side
of the weak form of the Boltzmann equation relative to test function φ(v) = v
is related to the time derivative of the average opinion. Finally, choosing test
function φ(v) = (v − u(t))2 in (6) and recalling (5), it is possible to observe
that the integral at the left-hand side of (6) can be written as n(t)σ2(t), so that
the left-hand side of (6) is related to the time derivative of the variance of the
opinion. In summary, the weak form of the Boltzmann equation (6) can be used
to write differential equations whose unknowns are:

1. The number of agents n(t), for φ(v) = 1;
2. The average opinion u(t), for φ(v) = v; and
3. The variance of the opinion σ2(t), for φ(v) = (v − u(t))2.

The explicit derivation of analytic results relative to the macroscopic proper-
ties mentioned above is performed in next two sections, considering two different
models, a deterministic model and a stochastic model.

3 A Deterministic Model of Compromise

In order to analyze the temporal evolution of the macroscopic properties of multi-
agent systems introduced in (3), (4), and (5), it is necessary to analyze the weak
form of the Boltzmann equation, and the explicit expression of the weak form
of the collisional operator in (6). In order to derive the explicit expression of the
weak form of the collisional operator, the details of the effects of interactions on
the opinions of agents need to be described. As stated in Sect. 1, we assume that
each agent can interact with any other agent in the system and that interactions
are binary, which means that a single interaction comprises only two agents.
Under such assumptions, we aim at studying compromise, which models the
idea that the opinions of agents after an interaction become closer.

Let us denote as v and w the opinions of two agents that are about to have
an interaction, and as v′ and w′ their respective opinions after the interaction.
In order to study compromise, we assume that the post-interaction opinions of
the two agents are related to their pre-interaction opinions according to the
following rules

v′ = v + γ(w − v)
w′ = w + γ(v − w)

(7)

where γ is a deterministic parameter used to quantify the effects of compro-
mise. A proper choice of the admissible values of γ must be adopted to prop-
erly model compromise. Recall that compromise is the tendency of agents to
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change their opinions towards those of agents they interact with, trying to reach
consensus. Therefore, rules (7) represent a good model of compromise when
v �= w (see, e.g., [18]) only if the absolute value of the difference between post-
interaction opinions is smaller than the absolute value of the difference between
pre-interaction opinions

|v′ − w′| < |v − w|. (8)

Note that the difference between post-interaction opinions equals

v′ − w′ = (1 − 2γ) (v − w), (9)

and therefore (8) holds if and only if |1 − 2γ| < 1, which means that

0 < γ < 1. (10)

In addition, in a good model of compromise when v �= w (see, e.g., [18]) the
post-interaction opinion of an agent is closer to its pre-interaction opinion than
to the pre-interaction opinion of the agent it interacts with, which means

|v′ − v| < |v′ − w| |w′ − w| < |w′ − v|. (11)

But, from (7) and considering (10), it can be derived that

|v′ − v| = γ|w − v| |v′ − w| = (1 − γ)|w − v| (12)

and, therefore, the first inequality in (11) is satisfied if and only if

0 < γ <
1
2
. (13)

When considering the second inequality in (11), the same condition on γ is
found. Hence, in order to provide the model with an accurate description of
compromise, which includes the fact that the opinion of each agent after an
interaction is closer to its pre-interaction opinion than to the pre-interaction
opinion of the agent it interacts with, we restrict the domain of γ to

Iγ =
(

0,
1
2

)
, (14)

and for the rest of this paper we assume that γ ∈ Iγ . Observe that for this choice
of γ, rules (7) guarantee that post-interaction opinions still belong to interval Iv

where the opinion is defined because

|v′| = |(1 − γ)v + γw| ≤ (1 − γ)|v| + γ|w| ≤ max{|v|, |w|} ≤ 1
|w′| = |(1 − γ)w + γv| ≤ (1 − γ)|w| + γ|v| ≤ max{|v|, |w|} ≤ 1

(15)

and, therefore, v′ ∈ Iv and w′ ∈ Iv. Also note that from (7) it can be eas-
ily observed that the sum of post-interaction opinions equals the sum of pre-
interaction opinions

v′ + w′ = v + w + γ(w − v + v − w) = v + w. (16)
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It can then be concluded that the average opinion is conserved in each interac-
tion. Finally, we remark that rules (7) are different from those used in kinetic
theory of gases to update the velocities of two molecules after a collision. This
difference results in a different explicit expression of the collisional operator, and,
hence, in different properties of the system, as shown in the rest of this section.

Microscopic rules (7) can be used to describe how the opinions of two inter-
acting agents are updated after an interaction, which allows deriving the explicit
formulation of the weak form of the Boltzmann equation (6). According to [14],
it can be shown that
d
dt

∫
Iv

f(v, t)φ(v)dv =
∫

Iv

∫
Iv

β(v, w)f(v∗, t)f(w∗, t)φ(v∗ + γ(w∗ − v∗))dw∗ dv∗−
∫

Iv

∫
Iv

β(v, w)f(v, t)f(w, t)φ(v)dvdw

where β(v, w) represents the probability that an agent, whose opinion is v,
interacts with another agent, whose opinion is w. Under the broadly-applicable
assumption that β(v, w) is constant [18], i.e., that it does not depend on the
opinions of the two interacting agents, and using a proper change of variable,
the weak form of the Boltzmann equation can be written in a simpler way as

d
dt

∫
Iv

f(v, t)φ(v)dv = β

∫
Iv

∫
Iv

f(v, t)f(w, t) (φ(v′(v, w)) − φ(v)) dv dw. (17)

where v′(v, w) = v + γ(w − v) denotes the post-interaction opinion of the agent
whose pre-interaction opinion is v, as in (7).

Given the weak form of the Boltzmann equation (17), which is based on
microscopic rules (7), it is possible to analytically study relevant macroscopic
properties of the system, as explained at the end of the previous section. In
particular, proper choices of the test function in (17) allow deriving first order
differential equations whose unknowns are the number of agents, the average
opinion, and the variance of the opinion, respectively.

Proposition 1. The number of agents n(t) is conserved.

Proof. Let us set φ(v) = 1 in (17), so that the left-hand side can be written as

d
dt

∫
Iv

f(v, t)φ(v)dv =
d
dt

∫
Iv

f(v, t)dv =
d
dt

n(t). (18)

Since, according to this choice, the test function is constant, in (17)

φ(v′) − φ(v) = 0. (19)

Therefore, from (18), it can be concluded that the weak form of the Boltzmann
equation (17) with φ(v) = 1 can be rewritten as

d
dt

n(t) = 0, (20)

which corresponds to the conservation of the number of agents n(t) in the multi-
agent system, and it proves the proposition. ��
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We remark that this property is analogous to mass conservation in gases.
Since the number of agents is constant, in the rest of this paper we denote it as
n, thus omitting its dependence on time.

Proposition 2. The average opinion u(t) is conserved.

Proof. Let us set φ(v) = v in (17), so that the left-hand side can be written as

d
dt

∫
Iv

f(v, t)φ(v)dv =
d
dt

∫
Iv

vf(v, t)dv = n
d
dt

u(t). (21)

According to this choice, and using (7), the difference φ(v′) − φ(v) inside the
integral on the right-hand side of (17) can be written as γ(w−v). Therefore, the
weak form of the collisional operator with φ(v) = v can be rewritten as

βγ

∫
Iv

∫
Iv

f(v, t)f(w, t)(w − v)dvdw (22)

which equals 0 because
∫

Iv

f(v, t)dv

∫
Iv

wf(w, t)dw −
∫

Iv

vf(v, t)dv

∫
Iv

f(w, t)dw = n2u(t) − n2u(t) = 0.

Finally, the weak form of the Boltzmann equation with φ(v) = v becomes

d
dt

u(t) = 0, (23)

which proves the proposition. ��
We remark that this property is analogous to the conservation of momentum

in gases. Since the average opinion is constant, in the rest of this paper we denote
it as u, thus omitting its dependence on time.

Proposition 3. The variance of the opinion σ2(t) exponentially tends to 0 as t
tends to +∞.

Proof. Let us set φ(v) = (v − u)2 in (17), so that its left-hand side becomes

d
dt

∫
Iv

f(v, t)φ(v)dv =
d
dt

∫
Iv

f(v, t)(v − u)2dv = n
d
dt

σ2(t). (24)

According to the choice of φ(·), and using (7), the weak form of the collisional
operator can be rewritten as

β

∫
Iv

∫
Iv

f(v, t)f(w, t){[v + γ(w − v) − u]2 − (v − u)2}dvdw. (25)

Simple algebraic manipulations show that the integral in (25) can be written as
∫

Iv

∫
Iv

f(v, t)f(w, t)
[
γ2(w − v)2 + 2γ(v − u)(w − v)

]
dvdw, (26)
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which can be rewritten to

γ2

∫
Iv

∫
Iv

f(v, t)f(w, t)(w2 − 2vw + v2)dvdw +

2γ

∫
Iv

∫
Iv

f(v, t)f(w, t)(v − u)(w − v)dvdw,

and proper application of (4) and (5) leads to
∫

Iv

∫
Iv

f(v, t)f(w, t)
[
γ2(w − v)2 + 2γ(v − u)(w − v)

]
dvdw =

2γ2n2σ2(t) − 2γn2σ2(t).
(27)

Inserting this result in (17), and recalling (24), shows that the weak form of
the Boltzmann equation with φ(v) = (v − u)2 can be written as the following
differential equation for the variance of the opinion

d
dt

σ2(t) = 2βnγ(γ − 1)σ2(t). (28)

Solving the differential equation (28) shows that the variance σ2(t) of the opinion
as a function of time can be written as

σ2(t) = σ2(0)e2βnγ(γ−1)t (29)

where σ2(0) denotes the initial variance of the opinion. Observe that, since β and
n are positive, and since, according to previous assumptions, γ ∈ Iγ =

(
0, 1

2

)
,

the coefficient of t inside the exponential function is negative. Hence, it can be
concluded that the variance σ2(t) of the opinion tends to 0 as time t, which
represents the number of interactions, tends to +∞. ��

We remark that this property is not found in the kinetic theory of gases, and
it follows from the specific assumptions that we took to model the opinion.

4 A Stochastic Model of Compromise

In this section, we introduce a stochastic component in the rules used to model
the post-interaction opinions of two interacting agents as functions of their pre-
interaction opinions. This generalization is meant to drop the assumption of
deterministic agents and it can be used to give agents some level of autonomy.
In detail, we now consider the following rules for opinion updates

v′ = v + γ1(w − v)
w′ = w + γ2(v − w).

(30)

where γ1 and γ2 are independent random variables with the same probability
distribution function Θ(·). Observe that rules (30) are obtained from (7) by
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replacing the deterministic parameter γ with two random variables γ1 and γ2.
In the following, we denote as γ̄ and σ2

γ the average value and the variance of
such random variables

γ̄ = E[γ1] = E[γ2] =
∫ +∞

−∞
γΘ(γ)dγ

σ2
γ = E[(γ1 − γ̄)2] = E[(γ2 − γ̄)2] =

∫ +∞

−∞
(γ − γ̄)2Θ(γ)dγ.

(31)

Note that rules (30) represent a good model of compromise when v �= w only
if the absolute value of the difference between post-interaction opinions is smaller
than the absolute value of the difference between pre-interaction opinions. More-
over, in order to provide the model with an accurate description of compromise,
which includes the fact that when v �= w the opinion of each agent after an inter-
action is closer to its pre-interaction opinion than to the pre-interaction opinion
of the agent it interacts with, we need to restrict the distribution function Θ(·)
to a suitable domain. Let us compute the average value of the difference between
post-interaction opinions. From (30), it can be obtained that

E[v′ − w′] = E[v − w + γ1(w − v) − γ2(v − w)] = (1 − 2γ̄) (v − w). (32)

In order to guarantee that the idea of compromise is respected, it is necessary
that |1 − 2γ̄| < 1. This condition is guaranteed if we restrict the support of Θ(·)
to the interval (0, 1). Observe that if the support of Θ(·) is further restricted to
Iγ = (0, 1

2 ), then it is also possible to reproduce the phenomenon, expressed in
(11), according to which the post-interaction opinion of an agent is closer to its
pre-interaction opinion than to the pre-interaction opinion of the other agent.
Finally, from (30) it can be easily derived that the expected value of the sum of
post-interaction opinions equals the sum of pre-interaction opinions, since the
following equality holds

E[v′+w′] = E[v+w+γ1(w−v)+γ2(v−w)] = v+w+(γ̄−γ̄)(w−v) = v+w. (33)

Observe that in (33) we used the fact that the two random variables γ1 and γ2
have the same distribution and, hence, the same average value γ̄.

As when considering the deterministic model for the update of the opinions
of two interacting agents, we now aim at deriving macroscopic properties of
the considered multi-agent system. In particular, we are interested in deriving
the temporal evolution of the number of agents, of the average opinion, and of
the variance of the opinion. This can be done, as in the deterministic case, by
analyzing the weak form of the Boltzmann equation, whose general definition is
(6). However, in this case, a different explicit expression of the collisional operator
must be considered in order to account for the fact that a stochastic component
has been introduced in the microscopic rules used to update the opinions of
agents. The explicit expression of the weak form of the collisional operator for
test function φ(·) when considering interaction rules (30) is discussed in [18]
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∫
Iγ

∫
Iγ

∫
Iv

∫
Iv

Θ(γ1)Θ(γ2)f(v, t)f(w, t)φ(v + γ1(w − v))dv dwdγ1dγ2 −
∫

Iγ

∫
Iγ

∫
Iv

∫
Iv

Θ(γ1)Θ(γ2)f(v, t)f(w, t)φ(v)dvdwdγ1dγ2

where the two integrals on Iγ have been introduced to consider the presence of
random variables in (30). Using a proper change of variable, the weak form of
the collisional operator can be written as

∫
Iγ

∫
Iγ

∫
Iv

∫
Iv

Θ(γ1)Θ(γ2)f(v, t)f(w, t) (φ(v′(v, w, γ1)) − φ(v)) dv dwdγ1dγ2.

As when considering the deterministic model, v′(v, w, γ1) = v + γ1(w − v) inside
the integrals at the right-hand side of the previous equation is related to the
post-interaction opinion of the agent whose pre-interaction opinion is v.

We now consider the same test functions considered in the deterministic case
to study the same macroscopic properties, namely the number of agents, the
average opinion, and the variance of the opinion. Propositions proved for the
deterministic model are generalized to the stochastic model with similar results,
as follows. Note that the presence of random variables influences only the number
of interactions needed to reach consensus, as detailed in Proposition 6. Also
note that such results are essentially caused by the symmetry introduced by the
assumption that random variables in (30) have the same distribution.

Proposition 4. The number of agents n(t) is conserved.

Proof. We start by considering φ(v) = 1 in the weak form of the Boltzmann
equation. As in the deterministic case, according to the definition of the number
of agents (3), the left-hand side of the weak form of the Boltzmann equation can
be written as

d
dt

∫
Iv

f(v, t)φ(v)dv =
d
dt

∫
Iv

f(v, t)dv =
d
dt

n(t). (34)

Due to the presence of the difference φ(v′)−φ(v) inside the integrals of the weak
form of the collisional operator, the choice of a constant test function leads to

d
dt

n(t) = 0, (35)

which is the same equality found in the deterministic case. This implies that the
number of agents n(t) is conserved, and proves the proposition. ��

As in the deterministic case, this property is analogous to mass conservation
in gases. In the rest of this paper we denote the number of agents as n, thus
omitting its dependence on time.
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Proposition 5. The average opinion u(t) is conserved.

Proof. Let us consider test function φ(v) = v in the weak form of the Boltzmann
equation. According to this choice, its left-hand side can be written as

d
dt

∫
Iv

f(v, t)φ(v)dv =
d
dt

∫
Iv

f(v, t)vdv = n
d
dt

u(t). (36)

Recalling (30), the difference φ(v′) − φ(v) in the weak form of the collisional
operator can be written as

φ(v′) − φ(v) = γ1(w − v). (37)

Therefore, the weak form of the collisional operator with φ(v) = v can be rewrit-
ten as ∫

Iγ

γ1Θ(γ1)dγ1

∫
Iγ

Θ(γ2)dγ2

∫
Iv

∫
Iv

f(v, t)f(w, t)(w − v)dv dw. (38)

Observe that the two integrals with respect to v and w are the same that appear
in (22), and it has already been shown that they equal 0. Finally, from (36) it
can be concluded that the weak form of the Boltzmann equation with φ(v) = v
can be written as

d
dt

u(t) = 0, (39)

which proves the proposition because it ensures that the average opinion u(t) is
constant. ��

We remark that this property is analogous to the conservation of momentum
in gases. Since the average opinion is constant, in the rest of this paper we denote
it as u, thus omitting its dependence on time.

Proposition 6. The variance of the opinion σ2(t) exponentially tends to 0 as t
tends to +∞.

Proof. Let us set φ(v) = (v − u)2 in the weak form of the Boltzmann equation,
so that its left-hand side becomes

d
dt

∫
Iv

f(v, t)φ(v)dv =
d
dt

∫
Iv

f(v, t)(v − u)2dv = n
d
dt

σ2(t). (40)

According to this choice and using the first equation in (30), the weak form of
the collisional operator can be rewritten as

∫
Iγ

∫
Iγ

∫
Iv

∫
Iv

Θ(γ1)Θ(γ2)f(v, t)f(w, t)·
[
(v + γ1(w − v) − u)2 − (v − u)2

]
dv dwdγ1dγ2.

(41)
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Simple algebraic manipulations show that (41) can be written as follows
∫

Iγ

Θ(γ1)γ2
1dγ1

∫
Iv

∫
Iv

f(v)f(w)(w2 − 2vw + v2)dvdw +

2
∫

Iγ

Θ(γ1)γ1dγ1

∫
Iv

∫
Iv

f(v)f(w)(v − u)(w − v)dvdw

(42)

where we used the fact that ∫
Iγ

Θ(γ2)dγ2 = 1. (43)

Straightforward calculation leads to simplify (41) to

2n2(σ2
γ + γ̄2 − γ̄)σ2(t). (44)

Inserting this result in the weak form of the collisional operator, and recalling
(40), it can be easily observed that the weak form of the Boltzmann equation
with φ(v) = (v −u)2 can be written as the following differential equation for the
variance of the opinion

d
dt

σ2(t) = 2n(σ2
γ + γ̄2 − γ̄)σ2(t). (45)

The explicit solution of the differential equation (45) shows that the variance
σ2(t) of the opinion as a function of time can be written as

σ2(t) = σ2(0) e2n(σ2
γ+γ̄2−γ̄)t (46)

where σ2(0) denotes the initial variance of the opinion. Hence, it can be con-
cluded that the variance σ2(t) of the opinion tends to 0 as t, which represents
the number of interactions, tends to +∞. ��

We remark that this property is not found in ordinary kinetic theory of gases,
and it follows from the specific choices adopted to model the opinion.

5 Verifying Simulations

Analytic models of compromise developed in Sects. 3 and 4 proved, for multi-
agent systems where the hypotheses of models hold, that the average opinion
is conserved, and that consensus is reached (exponentially) after a sufficiently
large number of interactions. The simulations reported in this sections are meant
to verify such results in a multi-agent system made of 103 agents that freely
interact using binary interactions. Agents are initialized with random opinions
uniformly distributed in Iv = (−1, 1), with u = 0 and σ2(0) = 1

3 . At each
iteration of the simulation, two agents are randomly chosen and their opinions
are updated according to the adopted interaction rules: (7) for the deterministic
model, and (30) for the stochastic model. Note that described simulations are
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Fig. 1. Fraction of agents in the multi-agent system whose opinion falls in interval
(−10−2, +102) as a function of the number of interactions: for deterministic agents
(blue), and for stochastic agents with random variables γ1 and γ2 uniformly distributed
in intervals (1/4 − 1/32, 1/4 + 1/32) (red), in (1/4 − 1/16, 1/4 + 1/16) (green), in
(1/4 − 1/8, 1/4 + 1/8) (cyan), and in (0, 1/2) (black). (Colour figure online)

completely independent from the results of analytic models, and they are simple
implementations of chosen interactions rules.

Figure 1 shows the results of simulations for the deterministic model and
for the stochastic model with three different parameters. The figure shows for
each iteration of the simulation the fraction of agents whose opinion falls in
interval (−10−2, 102) for deterministic agents (blue), and for stochastic agents
with random variables γ1 and γ2 uniformly distributed in (1/4−1/32, 1/4+1/32)
(red), in (1/4 − 1/16, 1/4 + 1/16) (green), in (1/4 − 1/8, 1/4 + 1/8) (cyan), and
in (0, 1/2) (black). Note that an increased level of autonomy of agents, which
is modelled as an increased contribution of random variables, tends to slow the
convergence to consensus.

Similarly, Fig. 2 shows the results of simulations for the deterministic model
and for the stochastic model with three different parameters. In detail, the
figure shows for each iteration of the simulation the fraction of agents whose
opinion falls in interval (−10−2, 102) for deterministic agents (blue), and for
stochastic agents with random variables γ1 and γ2 uniformly distributed in
(1/8−1/32, 1/8+1/32) (red), in (1/8−1/16, 1/8+1/16) (green), and in (0, 1/4)
(cyan). As expected, also in this case, compromise makes agents tend to the same
opinion, which is the average of initial opinions. The level of autonomy intro-
duced in the model of compromise by means of the two random variables in (30)
contributes to increase the number of iterations needed to reach consensus, but
it cannot prevent the multi-agent system from reaching consensus.
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Fig. 2. Fraction of agents whose opinion is in interval (−10−2, 102) as a function of the
number of interactions: for deterministic agents (blue), and for stochastic agents with
random variables γ1 and γ2 uniformly distributed in (1/8− 1/32, 1/8 + 1/32) (red), in
(1/8 − 1/16, 1/8 + 1/16) (green), and in (0, 1/4) (cyan). (Colour figure online)

6 Conclusions

This paper presented two analytic models of compromise. The first assumes
that agents are deterministic and it can be considered preliminary. The second
accounts for the autonomy of agents by modelling compromise as a stochastic
process. Both models have similar properties and, in particular, in both models
the average opinion of the multi-agent system is conserved and the variance of
the opinion exponentially tends to 0 as the number of interactions tends to +∞.
Simulations reported in Sect. 5 confirm such properties and emphasize that the
introduction of random variables in the stochastic model contributes to slow the
convergence of the opinions. Even if the value of γ used to quantify the effects of
compromise is the same as that of γ̄, the number of interactions needed to reach
consensus in the stochastic model is always greater than that of the deterministic
model because of the effects of random variables. This property is coherent with
the fact random variables are used to give some level of autonomy to agents.
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Abstract. A team formation problem consists in finding an effective
group of experts in a social network to accomplish a job with a mini-
mum expenditure of energy and time. This problem has been transposed
into the domain of multiagent systems to form a team of autonomous
agents whose mission is to achieve a given goal. There is a wide range of
such problems. This paper generalizes one of them by assigning explicit
behaviors to agents whose tasks are equipped with multiple attributes.
Their values are compared with preferences attached to the desired tasks
of the goal. A synthesized controller realizes the goal by invoking tasks
of a subset of the available agents, called a composition in this paper.
Furthermore, utility values are assigned to compositions and robustness
is considered to be an important property of a team to prevent its dete-
rioration when one or more of its agents fail. Finding a robust team that
satisfies the goal’s preferences with better utility values for composi-
tions constitutes a difficult optimization problem. The proposed method
to solve this problem consists in three phases: controller synthesis with
filtering on tasks with respect to some qualitative preferences, compo-
sition ranking based on their fitness, and multiobjective mathematical
optimization.

Keywords: Multiagent system · Team formation · Preference
modeling · Control · Planning · Multiobjective optimization

1 Introduction

Automated team formation plays a central role in multiagent systems [20]. It
is a prerequisite to coordination and cooperation of agents, since a team speci-
fies roles, relationships, and authority structures [16]. The latter control agent’s
behaviors. In the context of explicit control, they determine control laws and
apply them to act on a group of agents, so that they collaborate to achieve a
goal. The control actions need to be adjusted or recalculated due to failures or
unfortunate situations, even if agents are assumed to be not malicious. This brief
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description conceals a great deal of work done in many directions on this sub-
ject in the past [7,15,16]. Significant research efforts are still, however, required
due to the fact that relatively few studies have paid attention to both behaviors
inherent to agents and attributes associated with tasks. Behaviors are intrinsic
to agents. They are abstraction of their reasoning capacities and interactions.
Attributes are nonfunctional properties associated with the tasks that an agent
can perform. Adding such features leads to a richer model of multiagent systems
over which control policies can be synthesized.

A typical team formation problem includes a set of agents A = {a1, . . . , an};
a set of tasks T = {t1, . . . , tm}; a function τ : A → 2T , which assigns to every
agent a subset of tasks that it can perform; and a goal G ⊆ T , which repre-
sents functional requirements [21]. In its simplest form, it corresponds to the set
cover problem, which consists in identifying a subset C of A, with the smallest
cardinality, such that C is an effective team, that is, G ⊆ ∪ai∈Cτ(ai) [7]. Such
a team formation problem involves cooperation of agents according to the first
condition stated in [10] (i.e., agents have a goal in common and their tasks tend
to achieve that goal).

Various variants of this problem have been proposed in the past. For instance,
the addition of a cost function κ : A → R

+, which assigns a cost to every agent,
changes the objective to the minimization problem in order to determine an
effective team with the minimal cost.1 In an unpredictable environment or a haz-
ardous system, a team must remain effective even if any k agents are removed
from the original team. When a team satisfies this property, it is then said
to be k-robust [21]. A bi-objective constraint-optimization problem then arises,
because the cost must be minimized while k must be maximized. This variant
adds an additional objective and intends to identify the Pareto-optimal front as
illustrated in Example 1.1. More specifically, every team is such that there exists
no other team with better cost and k value. More complex team formation prob-
lems can be defined when replacing the sets of tasks associated with agents by
multisets of tasks [17] and considering more objectives. A common characteristic
of all these variants is that most of them can be formulated as multiple-objective
optimization problems [21] or linear integer programming problems [7].

Various algorithm strategies have been used to conceive exact algorithms
and heuristics for solving team formation problems: from greedy algorithms to
evolutionary approximation algorithms, including planning, branch-and-bound
and dynamic programming algorithms [7]. All these problems find immediate
application in the domain of cloud computing, where agents are virtual machines
and tasks are microservices [11].

Example 1.1. In Fig. 1, A = {a1, a2, a3, a4, a5}, T = {t1, t2, t3, t4, t5, t6, t7, t8},
and G = {t2, t3, t5}. The set of tasks of agent a1 is τ(a1) = {t1, t2, t4, t5} and its
cost is κ(a1) = 8. The following table gives some effective teams with their cost
and degree of robustness.

1 If κ(ai) = 1 for all i, the optimization problem reduces to the set cover problem.
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a1(8)

a2(3) a3(6)

a4(10)
a5(6)

G = {t2, t3, t5}

•
t1

•
t2

•
t4

•
t5

•
t2

•
t3

•
t8

•
t4

•
t6

•
t1

•
t2

•
t3

•
t4 •

t5•
t5

•
t6

•
t7

t6

Fig. 1. An instance of a team formation problem

Team Cost k-robust

{a4} 10 0-robust

{a1, a2} 11 0-robust

{a2, a5} 9 0-robust

{a1, a2, a4} 21 1-robust

{a2, a4, a5} 19 1-robust

The Pareto-optimal front is {{a2, a5}, {a2, a4, a5}}. �

In the aforementioned problems, there are strong implicit assumptions about
the tasks that an agent can perform:

– they can be invoked anytime and in any order;
– they are plain tasks, that is, without attributes or properties.

The contribution of this paper is the tightening of the two above assumptions
by combining a framework for behavior composition [8] (described in Sect. 2)
with a preference model [18] (described in Sect. 3). This leads to a variant of
the team formation problem, which has, however, consequential impacts with
regards to the solutions already proposed, since mathematical regularity is lost.
The benefit of such an approach lies in increasing the expressiveness of a goal
with a better satisfaction level through control exercised on agents. The compo-
sition method implements a particular planning technique to synthesize plans,
called controllers, which delegate the tasks of a goal to agents for execution,
based on their current states [8]. The preference model includes constructors
used to specify composite preferences from atomic ones, classified as qualitative
or quantitative. Constructors and atomic preferences can be interpreted with
respect to a well-defined semantics [18]. This combination is not, however, suf-
ficient in itself to reach a team. According to their semantics, some preferences
cannot be taken into consideration by the synthesis procedure, in the sense that
only the candidate compositions that do not satisfy some strict preferences spec-
ified in the goal are discarded (described in Sect. 4). The other candidates must
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be compared with each other in order to determine their rank. On the one hand,
the degree of robustness of a team can be determined from the compositions in
the first rank or having a rank above a given threshold. This is possible because
the synthesis procedure ensures that each composition forms an effective team.
On the other hand, a bi-objective constraint-optimization problem can be for-
mulated and solved by using usual approaches. The variables represent choices
of compositions and the objective functions are defined by considering utility
factors such as cost and degree of robustness (described in Sect. 5). This paper
investigates all these aspects, including the obstacles that need to be overcome
for an eventual deployment in real applications.

2 Preliminaries—A Behavior Composition Framework

In the basic team formation problem as stated in the introduction, the order in
which the tasks are executed is irrelevant, both in the agents and the goal. Other-
wise, behaviors arise and the behavior composition framework can be applied [8].
A basic issue in this framework is the synthesis of a universal controller, called
controller generator. It determines a set of agents that are able to carry out each
task conveyed by the goal based on the system’s current state. In fact, a target
behavior acts as a substitute for the goal. It forces an order in the execution of
its tasks. The available agents have also behaviors. The selected agents are such
that their behaviors coincide with that order. The universal controller encom-
passes all the possible compositions, where a composition is a narrow controller
with the underlying set of agents realizing together the target behavior. The syn-
thesis of the universal controller relies on the notion of largest nondeterministic
(ND) simulation whose calculation involves a strict match between the tasks of
the goal and those offered by the available agents, because they have neither
semantics nor attributes.

Formally, each agent (behavior) is represented by a finite-state transition
system βi = 〈Bi, Ti, δi, bi0, Fi〉, where Bi is a finite set of states, Ti is a finite
set of tasks (called actions in the original framework), δi ⊆ Bi × Ti × Bi is the
transition relation, bi0 ∈ Bi is the initial state, and Fi ⊆ Bi is the set of final
states. It should be noted that δi involves nondeterminism. Likewise, the target
behavior is βt = 〈Bt, Tt, δt, bt0, Ft〉. The original framework assumes that βt is
deterministic. It also includes the notion of environment (represented by E). It is
useful when one wants to impose local conditions on the triggering of behavior’s
transitions. In that case, the state transition systems are augmented with guards
on transitions.

Example 2.1. Figure 2 shows the behavior of three agents available on the web
which offer traveling services, namely β1, β2, and β3. The goal is to realize an
agent-based travel agency with behavior βt. A transition labeled with more than
one task is just a more compact notation to represent multiple transitions. There
is no environment in this example to simplify the presentation. �

Let In be the set {1, . . . , n}, where n is the number of available agents. The
original behavior composition problem is formulated as follows [8]:
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b1 b2 b3
Hotel(3-star , 320$)

Meals(meat , 60$)
Meals(vegetable, 55$)

Airplaneticket(economy , 380$)
Airplaneticket(business, 450$)

Hotel(3-star , 240$)

β1 :

b1 b2

Meals(vegetable, 50$)

Bus(tour , 30$)

Airplaneticket(economy , 420$)

β2 : b1 b2

Airplaneticket(economy , 350$)
Airplaneticket(business, 420$)
Airplaneticket(first , 480$)

Hotel(2-star , 200$)
Hotel(3-star , 250$)
Hotel(4-star , 300$)

Bus(shuttle, 20$)

β3 :

t1 t2 t3 t4
Airplaneticket(not{first},Lowest) Hotel({4-star}/{3-star},Lowest) Meals({vegetable},Lowest)

Bus({shuttle},Lowest)

βt :

Fig. 2. Available agents and a goal for an agent-based travel agency

Given a system S = 〈β1, . . . , βn, E〉 and a deterministic target behavior βt

over E , synthesize a controller P (i.e., a plan) that realizes βt.

The computation of a controller involves the five steps:

1. The asynchronous product of behaviors β1, . . . , βn synchronized with the envi-
ronment to obtain the enacted system behavior TS = 〈SS , T, In, δS , sS0, FS〉.

2. The synchronous product of the target behavior βt and environment E to
obtain the enacted target behavior TT = 〈ST , T, δT , sT0, FT 〉.

3. The calculation of the largest ND-simulation of TT by TS . If sS0 simulates
sT0 then there exists a controller that realizes βt.

4. The construction of a controller generator from the simulation relation (i.e.,
a transition structure like a Mealy machine).

5. The inference of a (narrow) controller P from the controller generator.

Every transition of TS is labeled by a task and an index that belongs to In, which
indicates the agent that can perform the task. Steps 3 and 4 may be replaced by
the calculation of a winning strategy of a corresponding two-player safety game
by using the model checker TLV/SMV [8].

Example 2.2. Figure 3 shows the controller generator calculated by TLV/SMV
from β1, β2, β3, and βt introduced in Example 2.1. It takes into account the
preferences of the goal (later explained in Sect. 4). �

In this paper a controller P is a subtransition system of the controller gen-
erator with the following restrictions. There is at most one transition from each
state on a given task (while preserving nondeterminism) and this task is dele-
gated to only one agent. The realization of a goal by a controller, together with
the subset of agents {ai1 , . . . , ail} ⊆ A (l ≤ n), defines a composition denoted by
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s0 s1

s2

s3

s4

s5

Airplaneticket(economy , 350$), 3
Airplaneticket(business, 420$), 3

Hotel(3-star , 250$), 3
Hotel(4-star , 300$), 3

Hotel(3-star , 240$, 1)

Hotel(3-star , 320$, 1)

Meals(vegetable, 50$), 2

Meals(vegetable, 50$), 2

Bus(shuttle, 20$), 3

Bus(shuttle, 20$), 3

Fig. 3. The universal controller

C. Formally, C = 〈P, {ai1 , . . . , ail}〉. This definition is quite different from the
one introduced in the original framework, which is based on the notions of trace
(infinite sequence of the form σ0〈t1, i1〉σ1〈t2, i2〉σ2 . . ., where tj ∈ T , ij ∈ In,
and σj is a state of the controller generator), history (finite trace), and selection
function (S : H ×T → In, where H is the set of histories of the controller gener-
ator, which means that the task t is delegated to βi after the system has evolved
according to h if S(h, t) = i). Then, the function P : HS × T 	→ In represents
a controller, where HS is the set of histories of TS obtained from those of the
controller generator by projection. In that case, the choice of P is arbitrary. It
does not depend on a requirements specification, more specifically, utility values
attached to controllers such as cost or energy consumption.

3 Preliminaries—A Preference Model

The kind of control exercised in the behavior composition framework is a control
by delegation. To make this model more flexible, it was suggested to introduce a
compatibility relation 
 ⊆ T × T over the set of tasks [8]. It substitutes for the
present equality between tasks in the definition of the ND-simulation relation
and the underlying algorithm that computes it. A task t′ can now be carried
out by an agent, if it is compatible with the delegated task t, that is, t 
 t′.
No more details were given by the authors. The use of the semantic-similarity
metric sim constitutes a first appealing solution [2,23]. It evaluates the degree
of similarity between any two tasks. Given a threshold ε ∈ (0, 1], two tasks
are considered compatible (i.e., t 
 t′) if they satisfy the following similarity
condition: sim(t, t′) ≥ ε. Generally, such a metric fits with a domain ontology
graph, usually in the form of a well-formed taxonomy of concepts and consid-
ers the multipaths connecting two concepts. The main effort must be concen-
trated on building ontologies [3]. Choice-relevant similarity metrics derived from
aggregation of member preferences, based on their individual judgments, can be
regarded as another approach [5]. They reflect a consensus between the members
of a group. This approach is peculiar to intelligent recommendation tools, which
match the most related artifacts with those supplied by a client agent, but when
the latter is generally unaware of their functional or nonfunctional requirements.
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Neglecting significant factors in the design of similarity metrics may, however,
affect the overall efficiency of recommendation tools.

In contrast, techniques based on explicit qualitative preferences sit at the
opposite end of the spectrum. Regardless of the precision and computational
complexity inherent to similarity metrics, they allow for expressing preferences
about artifacts more naturally and directly. On the one hand, they give strong
control to client agents in regard to specific needs. On the other hand, they help
alleviate the number of undesirable matches. They are particularly convenient
when there is not enough semantic information about artifacts to calculate sim-
ilarity ratings. Recent hybrid approaches aim at filling the gap between explicit
qualitative preferences and similarity metrics required for the purpose of prefer-
ence modeling [25]. These approaches are beyond the scope of this paper.

The preference model used hereafter has been defined to support complex
database queries to match user preferences closely [18]. The principle behind a
preference-based database search engine is query relaxation. Its adoption leads
to reasoning about approximate-match query results, which is more appropriate,
for instance, in real-world big-data applications. Later, a semantic ontology of
user preferences, which largely rests on this work, has been proposed in the
context of web-service discovery and ranking [13]. Basically, the authors follow
the same mathematical formulation for preferences. Nevertheless, depending on
the context in which the model is used, different interpretations can be adopted
when the condition associated with a given preference is not satisfied. Given
a set of available tasks T with their own attributes, the realization of a goal,
through the synthesis of a decision maker, from functional and nonfunctional
requirements expressed in terms of preferences among attribute values, is, in
some sense, partly reminiscent of a complex preference query.

Let Att = {att1, . . . , attl} be the set of attributes. Each attribute atti is
associated with a domain of values Vi = dom(atti). A valuation for a set of
attributes Att is a function ν : Att → V1 ∪ · · · ∪Vl, assigning a value ν(atti) ∈ Vi

to every attribute atti ∈ Att. The term val(Att) denotes the set of all valuations
over Att. The notion of valuation entails the idea of resource variability due to
dynamic changes of task’s attribute values.

The preference model distinguishes between atomic and composite prefer-
ences. The former are subdivided into qualitative and quantitative preferences.

3.1 Qualitative Atomic Preferences

A natural approach to specify qualitative preferences is to use sets of lexical
terms instead of rating values. Given an attribute att ∈ Att, the disjoint sets
Fav , Alt , and Dis included in dom(att) represent the favorite, alternative, and
disliked values for attribute att, respectively. These sets or combinations of them
induce strict partial orders over dom(att), which formally define some sorts of
preferences:
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x <Fav y iff y ∈ Fav ∧ x /∈ Fav ; (1)
x <Dis y iff y /∈ Dis ∧ x ∈ Dis; (2)

x <Fav/Alt y iff (y ∈ Fav ∧ x ∈ Alt) ∨ (3)
(y ∈ Fav ∪ Alt ∧ x /∈ Fav ∪ Alt);

x <Fav/Dis y iff (y ∈ Fav ∧ x /∈ Fav) ∨ (4)
(y /∈ Fav ∪ Dis ∧ x ∈ Dis).

With respect to a favorite preference, the tasks with an attribute having a
value that does not belong to Fav must be discarded. The notion of dislike pref-
erence is the opposite of favorite preference. The condition to discard a task is
that the value belongs to Dis. A favorite/alternative preference gives an advan-
tage to tasks with an attribute having a value that belongs to Fav , if they exist,
without ignoring those for which the value belongs to Alt . The tasks for which
the value of the attribute does not belong to Fav or Alt must be discarded.
Finally, with respect to a favorite/dislike preference, a task should preferably
have a value in Fav for the corresponding attribute. Otherwise, the value should
not belong to Dis.2 The condition to discard a task is the same as for the dislike
preference.

3.2 Quantitative Atomic Preferences

Many preferences are often expressed by using numerical values rather than
lexical terms. Typically, the attribute domain is N, Z, or R (equipped with a
subtractive operation). Given an attribute att ∈ Att, typical preferences over
dom(att) are lowest, highest, around, and score. Let f : dom(att) → R, and
v ∈ dom(att). The induced strict orders are the following:

x <Lowest y iff x > y;
x <Highest y iff x < y;

x <Around(v) y iff |x − v| > |y − v|;
x <Score(f ) y iff f(x) < f(y).

Contrary to qualitative preferences, none of these conditions allows for discarding
tasks during controller synthesis.

3.3 Composite Preferences

Generally, a task has more than one attribute. Preferences must then be com-
posed to relate two or more preferences. Constructors for balanced (or Pareto),
prioritized, and numerical preferences have been introduced for that purpose.
Using the third constructor can give rise to many specialized preferences. For
instance, let f1 : dom(att1) → N and f2 : dom(att2) → N be two functions that
2 The authors of [13,18] give two different formulations of favorite/dislike. Both include

an inconsistency. Equation (4) corrects these mistakes.
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transform numerical values or lexical terms of two different domains into nat-
ural numbers. Let F : N×N → R such that F (n1, n2) = 0.3n1 + 0.7n2, then the
following strict order defines a numerical preference, more precisely, a weighted
preference:

x <Weight y iff F (f1(x1), f2(x2)) < F (f1(y1), f2(y2)), where x = (x1, x2) and
y = (y1, y2).

The intended role of composite preferences within the proposed preference-
based behavior composition framework is to rank compositions. Preferences on
attributes have a ripple effect. Their fulfilments are propagated from tasks to
compositions. Composite preferences are a means to specify various ranking
heuristics.

Example 3.1. In Fig. 2 of Example 2.1, all the tasks of agents have two attributes
and their values are between parenthesis. The value of the second attribute is
the price a traveler will pay for the corresponding service. The preferences for
the corresponding tasks appear in the goal. The dislike preference “not {first}”
indicates that the customer does not want a first class flight. He also prefers
a 4-star hotel, but a 3-star hotel is acceptable. This is a favorite/alternative
preference. The preferences for meals and bus are favorite preferences. The pref-
erence for the second attribute is a quantitative preference. It indicates that the
customer always looks for the lowest prices. �

4 Preference-Based Behavior Composition

The formal representation for behaviors need to be changed to take into account
attributes and preferences. Each behavior βi is represented by a finite-state tran-
sition system 〈Bi, Ti, αi, δi, bi0, Fi, 〉, where all elements are defined in Sect. 2,
except that there is an additional element αi : Ti → 2Att, which is a func-
tion assigning a subset of attributes of Att to every task. It should be noted
that τ(βi) = Ti. The same tasks of different behaviors have the same attributes
(i.e., αi(t) = αj(t), if t ∈ Ti ∩ Tj). Likewise, the (enacted) system behavior
is S = 〈S, T, In, α, δ, s0, F 〉, where S = B1 × · · · × Bn is the set of states, with
s0 = 〈b10, . . . , bn0〉 and F = F1×· · ·×Fn; T = ∪iTi is the set of tasks; α(t) ⊆ αi(t)
for t ∈ Ti; and δ ⊆ S × T × In × S is the transition relation defined in the usual
way, except that each transition is labeled by a task and an index that belongs to
In, which indicates the behavior that may perform the task. The target behavior
(goal) is βt = 〈Bt, Tt, αt, δt, bt0, Ft〉, where Tt ⊆ T . For any t ∈ Tt, αt(t) = α(t).
This means that a task of the goal has the same attributes as the ones of the
corresponding task in the system.

Values must be assigned to attributes via valuations. To provide a flexible
model, the way the values are assigned to attributes depends on transitions, that
is, each transition is labeled by an instance of a task (a task with specific values
for its attributes). In this sense, a valuation ν is a conditional valuation and
ν(att|〈s, t, k, s′〉) (or shortly ν(att) when the context is clear), with 〈s, t, k, s′〉 ∈ δ
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and att ∈ α(t), denotes the value of att. The counterpart of ν for βt is ρ, but its
range is atomic preferences (Indifference is the default preference). For instance,
ρ(att) = Around(v) for a preference of type “Around” with argument v and
ρ(att) = Fav/Alt for a favorite/alternative preference with the sets Fav and Alt
as arguments.

4.1 A New Version of the ND-Simulation Relation

The main notion of ND-simulation relation has been adapted, so that the match
between tasks is not strict, but depends on preferences. A filter is applied on the
tasks with respect to Eqs. 1 to 4.

An ND-simulation relation of βt by S is a relation R ⊆ Bt × S such that
〈st, s〉 ∈ R implies:

1. if st ∈ Ft, then s ∈ F ;
2. for all transitions 〈st, t, s

′
t〉 ∈ δt:

– there exists a transition 〈s, t, k, s′〉 ∈ δ;
– for all transitions 〈s, t, k, s′〉 ∈ δ, 〈s′

t, s
′〉 ∈ R and for all att ∈ αt(t):

• ν(att) ∈ Fav if ρ(att) = Fav ,
• ν(att) /∈ Dis if ρ(att) = Dis,
• ν(att) ∈ Fav ∪ Alt if ρ(att) = Fav/Alt ,
• ν(att) /∈ Dis if ρ(att) = Fav/Dis.

This definition can be easily implemented through a fixpoint calculation proce-
dure to obtain the largest relation R. As mentioned in Sect. 3, a final decision
(acceptance or rejection of a task offered by an agent) cannot be taken due to
the fact that the transitions are examined one at a time with local information.
The characterization of the “best” compositions relies, among other things, on
the composite preferences used to rank all candidate compositions.

4.2 Enumeration of Compositions

Based on the preceding definition of ND-simulation relation, a prototyping app-
roach has been followed initially to generate all candidate compositions from
problem instances of smaller size to evaluate the feasibility and effectiveness of
the integration of a preference model into a synthesis procedure. The prototype
has been implemented by using a SAT-solving environment especially developed
for controller synthesis in Alloy [12].

4.3 Synthesis of Controllers

Another approach has also been taken for controller synthesis. It is based on
the TLV/SMV code provided in [8]. Since the original SMV module skeletons
only support functional requirements (tasks), they have been modified to include
nonfunctional requirements (preferences and attributes) by exploiting set opera-
tors. When the initial state is a winning state, the controller generator can then
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be constructed from the maximal set of winning states (the output of TLV) and
narrow controllers can be extracted from it to obtain the set of all candidate
compositions.

Example 4.1. Six compositions can be identified form the controller generator
depicted in Fig. 3 of Example 2.2. Four have a deterministic controller. For
instance, C1 = 〈P1, {a2, a3}〉 with the following transitions for P1:

〈s0,Airplaneticket(economy , 350$), 3, s1〉, 〈s1,Hotel(4-star , 300$), 3, s2〉,
〈s2,Meals(vegetable, 50$), 2, s4〉, 〈s4,Bus(shuttle, 20$), 3, s0〉.

Two have a nondeterministic controller. For instance, C6 = 〈P6, {a1, a2, a3}〉
with the following transitions for P6:

〈s0,Airplaneticket(economy , 350$), 3, s1〉,
〈s1,Hotel(3-star , 240$), 1, s2〉, 〈s1,Hotel(3-star , 320$), 1, s3〉,

〈s2,Meals(vegetable, 50$), 2, s4〉, 〈s3,Meals(vegetable, 50$), 2, s5〉,
〈s4,Bus(shuttle, 20$), 3, s0〉, 〈s5,Bus(shuttle, 20$), 3, s0〉.

�

Recall that, based on the current state of the system and the current task
t ∈ Tt released by the goal, the controller returns an index k ∈ In such that agent
ak is ready to execute the task t, while taking into account some preferences of
the goal.

5 Formulation of a Team Formation Problem

The team formation problem through preference-based behavior composition is
formulated as follows:

Given an attributed multiagent system S = 〈a1, . . . , an〉 and a determinis-
tic goal G with preferences, find a set of compositions {C1, . . . , Cm}, such
that each composition Ci = 〈Pi, {aij1

, . . . , aijl
}〉 realizes (through Pi) the

goal G and presents the best match for the preferences, and agents involved
in these compositions form the more robust team at less cost.

The original behavior composition problem is then extended to the one of
finding the more robust team at less cost (i.e., the utility factors are cost and
degree of robustness). It comprises distinct parts. Each of them may be declined
in numerous variants. One variant is further formalized with the following multi-
objective optimization problem, in which the variable xj , yi, and xij are Boolean
variables and K is an integer variable:

min[
∑

i

κ1(Ci)yi +
∑

j

κ2(aj)xj +
∑

i,j

κ3(aj , Ci)xij ,−K] (5)
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subject to
∨

i

xij = xj ; (6)

∑

aj∈Ci

xij = |Ci|yi;
∑

aj /∈Ci

xij = 0; (7)

∑

j:tk∈τ̂(aj)

xj ≥ K + 1; (8)

yi, xj , xij ∈ {0, 1};
Ci realizes G at best. (9)

The two objectives of this problem concern costs (κ1, κ2, κ3) and degree of
robustness (K), respectively. The function κ1 gives the global cost of a com-
position. The functions κ2 and κ3 represent the access cost to an agent and
connection cost of an agent to a composition, respectively. The variables i, j,
and k range from 1 to m (the number of candidate compositions), from 1 to n
(the number of agents), and from 1 to |Tt| (the number of tasks in the goal),
respectively. There are three blocks of constraints. Constraints (6) relate the
individual agents to the corresponding agents in the compositions. If agent aj

is selected (i.e., xj = 1 in the solution), then aj belongs to at least one com-
position, say Ci (i.e., xij = 1 for at least one i in the solution). Constraints
(7) ensure that each composition includes only their own agents. The term |Ci|
denotes the number of agents in composition Ci. If composition Ci is selected
(i.e., yi = 1 in the solution), then its agents are necessary attached to it (i.e.,
for all j such that aj ∈ Ci, xij = 1 in the solution). These two subblocks of
constraints could also be written as follows:

∑
j In(aj , Ci)xij = |Ci|yi, where

the predicate In holds whether aj ∈ Ci. Constraints (8) correlate the degree
of robustness and the number of agents that can perform the same task. The
function τ̂ is a restriction of τ . It gives only the set tasks delegated to an agent,
not all the tasks it can perform. For a given task tk of the goal, if it is also a
task of agent aj and it is delegated to aj then it counts for one whether aj is
selected (i.e., xj = 1 in the solution). Without loss of generality, it is assumed
that τ̂(ai) ∩ τ̂(aj) = ∅, for all distinct pairs of agent ai, aj that belong to the
same composition (care must be taken when considering a task delegated to
more than one agent in the same composition). Due to the last constraint (9),
the problem rests on another multiobjective optimization problem, which deter-
mines a subset of the set of candidate compositions that meet the preferences
of the goal to the greatest extent possible. Its solution cannot be computed by
exploiting usual mathematical programming techniques, since the maximization
is over an unknown set of compositions, which must be generated while tak-
ing into account some qualitative preferences. Several heuristics and an efficient
non-dominated sort algorithm [9] are used instead for approximate ranking of
compositions.
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5.1 Composition Ranking

As explained in Sect. 4, it is impossible to distinguish between compositions
satisfying favorite preferences and those offering just alternative or non-dislike
preferences due to their semantics and implementation details. A similar remark
applies for the quantitative preferences. The compositions with the most desir-
able values cannot be identified during the generation of compositions. An addi-
tional step is required to classify compositions in a number of ranks when com-
paring all attribute values of their tasks with respect to the corresponding pref-
erences of the goal. The goal here is not only to solve the optimization problem
(9), but to collect and rank a large number of compositions. First, a composite
preference on attributes of every task, namely Pareto, prioritized, and weighted,
is applied to reflect their relative importance. Second, rating values are associ-
ated with the relevant attributes based on the goal’s preferences. Finally, the
rating values are aggregated into one (total value) or more (Pareto) values to
determine the rank of each composition.

Example 5.1. The six compositions identified in Example 4.1 have been ranked
with respect to the Pareto composite preference for attributes of each task,
Boolean values (1 for the best, 0 otherwise) as rating values, and summation over
them. The final rating values of C1 to C6 are 5, 5, 4, 4, 3, and 4, respectively.
So, C1 and C2 have rank 1, C3, C4 and C6 have rank 2, and C5 has rank 3. �

Example 5.2. Let κ1(Ci) = 1 (for all i), κ2(aj) = 1 (for all j), and κ3(aj , Ci) = 1
(for all i, j) in the optimization problem defined by Eqs. 5 to 9. Then, the total
cost of compositions C1, C2, C3 and C4 is 5, and is 7 for C5 and C6. If the
compositions with rank 1 or 2 are those considered in Eq. 9, then the Pareto
front (best solutions) are C1, C2, C3 and C4. The agent team is {a2, a3} and it
is 0-robust. �

6 Experiments with a Synthetic Problem

The synthetic problem consists in n available agents that carry out tasks, ranging
from groups of agents having one task to those having p − 1 different tasks,
including the group of a single agent having p different tasks, where p is the
total number of tasks in the goal. So, n = 2p − 1 and the number of candidate
compositions is also 2p − 1. Each task, in turn, has three attributes. One has a
numerical value, ranging from 1 to 10 and chosen randomly. It corresponds to
any sort of quantitative preference. The others have lexical terms as domains
and correspond to favorite/alternative or favorite/dislike preferences. A favorite
term is represented by 1 and a non-favorite or alternative term by 0. The 0 and
1 are generated randomly with the constraint that 40% of them be 1 (favorite).
The Pareto heuristic was implemented by using a non-dominated sort. Figure 4
provides the results computed by a Ruby program for p = 7. Results are averages
calculated after 10 iterations with different random data.
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Fig. 4. Experimental results

As depicted in the left graph, the horizontal axis indicates the rank, ranging
from 1 to 34, and the vertical axis shows the number of compositions. Bell-
shaped curves arise for the three composite preferences (Pareto, prioritized,
and weighted). The number of best and worst compositions (i.e., the most and
least matchable with goal preferences, respectively) are at the extremities of
the curves. They look like a normal distribution with heavier tails in the case
of Pareto and prioritized preferences (e.g., like a logistic distribution), since
attributes values have been generated randomly. The compositions are distrib-
uted in ten groups with the Pareto preference, and the one of rank 1 contains
in average more compositions in comparison with the other groups of rank 1 for
the prioritized and weighted preferences. The fluctuation among groups is less
variable for the weighted preference, which tends to discriminate compositions
between a larger range of ranks. The reason for that is that the prioritized pref-
erence gives importance to one attribute per task, the Pareto preference gives
the same priority to all the attributes, and the weighted preference takes also
into account all the attributes, but assigns different priorities (or weights) to
them.

The right graph shows the degree of robustness for groups of compositions.
With respect to the horizontal axis, each label of the scale has the format “1–i”
and refers to all compositions with a rank between 1 and i. It can be observed
that the slopes of the curves are high, except at the beginning and end. The slope
is higher for the Pareto heuristic and lower for the weighted heuristic. This is
consistent with the bell-shaped curves in the left graph, in particular the shape
of the curves for the Pareto and prioritized heuristics is quite similar. Compared
with the Pareto heuristic, more ranks and thus more groups of compositions,
with a larger gap between the first and last, must be added to the team to reach
the same degree of robustness. Finally, it is impossible to achieve a reasonable
degree of robustness when considering only compositions of rank one.
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7 Related Work

Besides work on static team formation mentioned in the introduction (e.g., [20,
21]), which include good literature reviews on the subject, a lot of work has
been done in the past few years on the selection or discovery of web services and
their ranking to determine which of the alternatives give the highest degree of
goal achievement (e.g., [1,22], just to mention a few). The focus was mainly on
formalisms (e.g., conditional preference network, fuzzy if-then rules, preference
tree, μcalculus) to specify constraints, preferences, and trade-offs over functional
requirements (e.g., behavior, data) or nonfunctional requirements (e.g., avail-
ability, privacy, reliability, security). The goal was to lay the foundation for the
automatic generation of compositions (or in some sense formation of teams). In
general, no reference is made to artificial-intelligence planning techniques. A few
of these papers, however, exploit verification techniques.

Other related research work argue for the use of planning techniques for
composition or team formation: STRIPS [6], HTN planning [24], or particular
planning algorithm [27]. From a reactive planning perspective, a controller, as
defined in this paper, is like a reactive plan that prescribes behavior delegations
rather than domain actions [8]. There are other solutions based on control by
enablement, rather than control by delegation, implemented by a state machine
operating in synchronous composition with a state machine representing the sys-
tem behavior [4]. Although they share common characteristics, they are notably
different because there are many facets to the underlying problem and many
contrasting angles to address. In most of them (e.g., [6,27]), agents are loosely
coupled. Utility factors (e.g., cost) and preferences appear in an uneven way
across the underlying approaches. Furthermore, none of them pay attention to
runtime failures of agents, which are one of our motivations. For instance, the
authors of [24] focus on gathering data operations, that is, the invocation of ν in
the context of our paper. They identify conditions on when (e.g., decoupling or
not from composition generation) and how (e.g., local optimization) data access
can be made without compromising composition optimality. The language used
to express preferences gives more freedom to the user, but it allows for the defin-
ition of only one kind of metric function (or objective function) over preferences,
which can either be minimized or maximized. In some sense, a metric function is
similar to a numerical preference. Services (agents) have no behavior, but tasks
can be, however, chronologically ordered by adding constraints in a task network.
The planning algorithm returns the globally optimal composition instead of a
set of acceptable compositions from which a robust team can be identified. The
reason is that only numerical composite preferences over all atomic preferences
is allowed. The Pareto preference, among others, is not supported. In fact, the
objectives must be combined into one single-objective scalar function.

An approach similar to the last described above also uses HTN [19], but
neither information gathering nor robustness are considered. Finally, graph the-
ory has been used as foundation to formulate and solve a basic team formation
problem with the only objective to determine the minimum number of agents to
satisfy a goal [26].
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8 Contributions and Conclusion

Automated preference-based composition of software artifacts (e.g., agents, busi-
ness processes, components, services) so far has received relatively little attention
when addressed from the perspective of a team formation problem as formulated
in this paper. The novel solution proposed to solve a new distinct formulation
of the team formation problem (see Eqs. 5 to 9) combines existing concepts and
synthesis procedures borrowed from a well-defined preference model and a sound,
complete behavior composition framework. In summary, this paper makes the
following contributions:

– It extends the basic robust team formation problem to include agents
with behaviors, tasks with attributes, and scalar-valued functions over
compositions.

– It integrates the semantics of a preference model into the notion of ND-
simulation relation with implementations into two synthesis procedures.

– It considers a large number of compositions (not only one plan) without which
it is impossible to cope with the Pareto preference or produce robust teams.

– It takes into account more global properties on compositions for discrimi-
nation at a higher level in order to formulate multiobjective optimization
problems and solve them with usual mathematical programming techniques.

– It provides experiments with a synthetic multiagent system to show the
impacts of composite preferences (or heuristics) on the distribution of com-
positions with respect to their rank and on the degree of robustness of a team
formed from agents, which are involved in a given number of compositions.

The proposed approach is not the panacea. Further work should be done.
First, recovery procedures must be defined to manage failures in a k-robust
team. Some indications are given in [8], but they do not consider, for instance,
the reversibility of tasks or any other assumptions on agents. Second, contrary
to flat agents and tasks, compositions reveal properties at three levels: proper-
ties associated with compositions, agents, and tasks. Although a solution to this
problem has been suggested herein (with no other utility factors than cost and
robustness), a uniform solution must be developed for both the preference model
and synthesis procedures. Third, centralized control is generally too restrictive
with respect to the multiagent paradigm. Theories should be developed with
synthesis algorithms to generate control policies as well as negotiation poli-
cies, which could be distributed into agents. The former is more appropriate
for orchestration and the latter for choreography.

From a more general point of view, it should be interesting to further inves-
tigate how the approach proposed in this paper could be applied, for instance,
to the multiple team formation problem [14]. In this problem, the goal is divided
into several subgoals and a team of agents must be assigned to each of them.
An agent can simultaneously participate in several teams, but its efforts must
be allocated to the corresponding subgoals in some proportions.
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Abstract. Multi-goal pathfinding (MGPF) is a problem of searching
for a path between an origin and a destination, which allows a set of
goals to be satisfied. We are interested in MGPF in ubiquitous environ-
ments that are composed of cyber, physical and social (CPS) entities
from connected objects, to sensors and to people. Our approach aims
at exploiting data from various resources such as CPS entities and the
Web to solve MGPF. However, accessing resources creates overheads –
specifically latency affecting the efficiency of the approach. In this paper,
we present a collaborative multi-agent search model that addresses the
latency problem. The model handles the process of accessing resources
such that agents are not blocked while data from resources are being
processed and transferred. Agents search concurrently and collabora-
tively on different parts of the search space. The model exploits the
knowledge and structure of the search space to distribute the work among
agents and to create an agent network facilitating agent communications
as well as separating the search from the communications. To evaluate
our model, we apply it in uniform cost search, creating a collaborative
uniform cost algorithm. We compare it to the original algorithm. Exper-
iments are conducted on search spaces of various sizes and structures.
In most cases, collaborative uniform cost is shown to run significantly
faster and scale better in function of latency as well as graph size.

Keywords: Collaborative search · Multi-agent search · Multi-goal
pathfinding · Ubiquitous environments

1 Introduction

Pathfinding is a problem that has been studied extensively due to its importance
in various fields such as AI, robotics, logistics and video games. There are dif-
ferent variations of pathfinding problems [2,8] such as single-agent pathfinding,
multi-agent pathfinding in static, dynamic and real-time environments. Numer-
ous techniques have been proposed to address pathfinding [1]. In this paper,
we focus on a particular kind of pathfinding problem, multi-goal pathfinding
(MGPF) in the context of ubiquitous environments accommodating cyber, phys-
ical and social (CPS) entities such as sensors, smart objects and humans.
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MGPF is a problem of searching for a path between an origin and a des-
tination, which allows a set of goals to be satisfied. Our approach to solving
MGPF exploits data acquired from CPS entities in a given environment and
from external resources such as the Web. It uses up-to-date and dynamic infor-
mation from various resources for path computation. For path evaluation, we use
generic criteria, which are not limited to distance, and quality of entities, which
is determined using qualitative information from resources. To understand the
underlying motivation of our approach, consider the following scenario. A trav-
eler, Carol, arrives at an airport. Carol wants to find a path to her departure
gate. Carol has a set of activities (goals) she wants to do on her way to the
gate: get a trolley for her luggage, check-in, buy a takeout for lunch and find a
waiting seat near a power socket to charge her laptop. Using spatial information
of the airport, we can find a path to the gate. Information about the airport
makes it possible to determine which locations allow Carol to satisfy each of her
goals. For example, restaurant is a business which prepares and serves food and
drinks to customers in exchange for money. By obtaining that piece of informa-
tion from the Web, we are able to deduce that Carol can buy lunch at locations
of type restaurant. Dynamic and up-to-date information from sensors and smart
objects enables us to determine the optimal path for Carol. For instance, instead
of going to a trolley area, which is at the opposite direction of her gate, it is pos-
sible to locate an available trolley nearby that was left by other people, thanks
to data from connected trolleys. We might suggest Carol to take an escalator
instead of an elevator because we know that there are too many people in the
queue waiting for the elevators or that the elevators are out of service thanks
to the feeds from sensors. In addition, information from social entities such as
other travelers or personnel can be used to enhance Carol’s travel experience.
For instance, reviews by travelers (e.g. quality or availability) on restaurants
enable us to choose locations that are at Carol’s best interests.

Considering the aim of the approach, one might ask two challenging ques-
tions: (1) Which resources to use to solve a MGPF problem? (2) How to deal with
the dynamics, mobility and heterogeneity of CPS entities? The first question is
concerned with the discovery of resources that are relevant to a given MGPF
problem. We address this question via the use of a data model to capture nec-
essary knowledge enabling resource discovery. Regarding the second question,
there are existing works that address these issues in the context of IoT. As an
example, in [4], the authors propose a multi-agent-based socio-technical network
(STN) to manage the complexity of CPS entities. In our approach, we focus on
the conceptual level, and we employ one of the existing solutions such as STN
to abstract away the complexity at the lower level.

In our approach, we solve MGPF by abstracting a given environment as a
search space and use search algorithms to find the path. Necessary informa-
tion for finding and evaluating a path during a search is acquired from vari-
ous resources from CPS entities to the Web. Accessing resources creates over-
heads resulted from the latency of processing and transferring data from their
sources. To address this issue, we propose a collaborative search model for search
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algorithms, which is the main contribution of this paper. The model is composed
of multiple agents collaboratively and concurrently searching on different parts
of a search space. It handles the process of resource accesses such that agents
do not have to wait for data and are able to perform other tasks while requests
to resources are being processed. It exploits the structure and knowledge of the
search space to distribute the work efficiently among agents and to construct
an agent network on-the-fly to facilitate agent communications and separate the
search from the communications.

The rest of the paper is organized as follows. First, we review related work.
Second, we present the problem addressed in this paper. Third, a detailed
description of the collaborative search model is provided. Fourth, we present an
application of our model in uniform cost search, and provide some experimental
results. Fifth, we conclude the paper and outline future work.

2 Related Work

There are two common variants of MGPF. First, given a single start and multiple
goals, MGPF is defined as a problem of searching for paths for each start-goal
pair, resulting in multiple paths [12]. Second, MGPF is treated as a traveling
salesman problem (TSP) in which the aim is to find a path from a start to a
number of goals before reaching the destination such as in [5,13]. Our problem
is close to the second definition. However, unlike the classical TSP, we have
constraints on the order of goals to satisfy. The work in [21] addresses a TSP
with partial order constraints. The author proposes two algorithms to solve the
selection and ordering of points-of-interests (goals), which are places, for indoor
navigation systems. Path computation is based on complete spatial knowledge
of an environment, and distance is the sole criterion for path evaluation. In this
paper, we address a problem similar to [21], but the specific property of our
problem is that satisfying a goal is not limited to passing by a place, but can
be any activity carried out via a CPS entity, which can be mobile and dynamic.
Furthermore, we have a strict order in which goals are satisfied.

There is a rich body of literature on pathfinding. Many search algorithms
have been proposed to address various aspects of the problem. The most com-
mon search algorithms are the centralized and synchronous ones such breadth-
first search, depth-first search, Dijkstra’s algorithm, uniform cost search and
A*. A* is probably the most used heuristic algorithm due to its theoretical
properties that guarantee completeness and optimality [9], provided that the
heuristics are consistent. Considerable efforts have been invested to optimize A*
by reducing search space [3], mitigating memory requirements [15] and adapting
it to dynamic environments [11,18]. In these algorithms, each step is performed
sequentially as the global state of the search is required. For example, A* selects
a promising node to expand by comparing it to all the candidate nodes. With
latency, sequential search will become impractical as the algorithm is blocked
while waiting for requested data to determine the cost of each node.

Much work has been done [16,17,20] to address search that involves multiple
agents, commonly known as cooperative pathfinding or multi-agent pathfinding.
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However, such work aims at finding non-interfering paths for each agent from
their current state to their respective goal state. In our case, each agent may have
different starts, but they cooperate to find the same goal state. This falls under
the definition of collaborative mulit-agent search as classified by the author in
[6]. Parallelization techniques such as [10,19] have been used to improve search.
They distribute workloads or search operators between processors using generic
mechanisms independent of the problem (e.g. using hash function to assign each
node to a process). Furthermore, in [14], the authors propose a multi-agent A*
based on agents possessing different search operators. Workloads are distributed
based on the operators (i.e. discovered nodes are sent to agents who have the
operators to expand them). In our model, we separate a search space among
agents based on the structure of the space, thus distributing the workload by
assigning each agent a sub search space. In addition, to the best of our knowl-
edge, there is no work that addresses the latency during search, which makes
reasonable sense since accessing resources to compute node cost is specific to our
approach.

3 The Problem

In this section, we present our method to abstract a ubiquitous environment into
a search space. Then, we provide an overview of our approach, and describe how
search algorithms are positioned in the approach.

3.1 Environment Abstraction

Spatial information is necessary but insufficient to determine the locations at
which a goal can be satisfied. Up-to-date and qualitative information from CPS
entities and external resources are also required to find an optimal path. There-
fore, in our approach, we model a ubiquitous environment by integrating its
spatial and CPS dimensions along with the notion of resources. We assume that
the spatial topology of a ubiquitous environment is abstracted as a graph SG
where nodes are locations in the environment. A directed edge between two
nodes n and n′ is defined if, in the given environment, the location represented
by n′ is directly accessible from that by n.

Definition 1 (Environment). An environment at a given time is a tuple
Et = (SG ,HE ,CPSE ,R) where:

– SG is a search graph defined as SG = 〈L,C〉 where L is a finite set of nodes
representing locations in E and C ⊆ L × L is a set of edges representing
connections between locations

– HE represents an organizational hierarchy of E. It is a tree whose elements
correspond to hierarchy entities (e.g. terminals) of E and the child relation
indicates sub-hierarchy entities (e.g. zones within a terminal). Locations are
grouped under hierarchy entities, so the leafs of HE are directly connected to
the locations
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– CPSE is a finite set of CPS entities located in E
– R = (rn)n∈CPSE∪C is a finite set of resources providing information about

a CPS entity or giving information on how to move between locations. An
example of a resource can be a website, a database or an API to sources of
data collected from cyber-physical entities.

Figure 1 shows an example of an abstracted environment. The top layer is
the spatial dimension of an environment. The bottom layer consists of resources
relevant to an environment. The middle layer integrates L with CPSE , and
connects them to R.

Fig. 1. An example of an environment description

Definition 2 (Multi-goal pathfinding). By abstracting a given environ-
ment as previously described, we can formulate MGPF as a tuple MGPF =
(Et , no, nd, G,CR, f) where Et is a representation of an environment at time t,
no ∈ L is a node representing the start location, nd ∈ L is a node representing
the destination, G is an ordered list of goals to satisfy, CR is a set of criteria for
evaluating a path and f is a cost function used to evaluate paths. Criteria are
problem-specific. For instance, a criterion can be distance, price, duration or all
of them combined. f determines how CR is taken into account in the decision
process when choosing a path (e.g. prioritize a subset of CR or compromise all
the criteria in CR). A problem is solved when an optimal path is found. A path
is a list of locations through which every goal can be satisfied in the given order.
A path is optimal if it has a minimum cost evaluated using f .
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3.2 The Approach

Our approach to MGPF consists of two main steps goal-space graph generation
and multi-layer search. In the first step, we construct a goal-space graph to
represent goals, the locations where each goal can be satisfied and the order of
goals to satisfy. A goal-space graph, denoted by π, is an acyclic graph where
nodes are goal-location pairs, and nodes are connected according to the order
of goals defined in G. In this work, we associate a goal g to an activity ag.
We say that g can be satisfied at a location l if l contains at least one entity
cpse ∈ CPSE through which ag can be carried out. For illustration purpose,
suppose the followings are the locations where Carol’s goals can be satisfied:
trolley = {l21, l32}, check-in = {l43, l64}, lunch = {l15, l61, l11} and waiting seat
= {l20, l71}. We can generate a goal-space graph π as shown in Fig. 2.

In the second step, we search over π to find an optimal path. π is an abstract
graph built on top of SG . An edge of π is equivalent to a path that may con-
sist of multiple nodes on SG . For instance, an edge between (lunch, l15) and
(waitingseat, l20) may be equivalent to a sequence of nodes (l15, l16, l28, l18, l20)
on SG . Computing the cost of an edge between two nodes of π is equivalent
to a pathfinding problem of two corresponding nodes on SG . Searching on SG
requires accesses to resources to determine the cost of moving between nodes,
which leads to the issue of latency. In this paper, we address the search on SG
by providing a collaborative search model that can be used to adapt search
algorithms to efficiently handle latency and to improve search efficiency.

Fig. 2. An example of a goal-space graph

4 Collaborative Search Model

The aim of the collaborative search model is to manage resource accesses, thus
the consequential latency, and to improve search efficiency. This model can be
applied to forward-search algorithms such as breadth-first search, depth-first
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search, uniform cost search and A*. Generally, during each iteration, a forward-
search algorithm selects a node from the list of candidate nodes Frontier, gen-
erates its child nodes, prunes some unpromising nodes, and updates Frontier to
include the remaining children [7]. The critical point that creates latency is the
generation of child nodes. To determine the cost for moving from an expanded
node n to its child node n′, we need to retrieve information from one or multiple
resources. An example of the cost can be time, distance or all of them combined.
Besides enabling us to determine the value of the cost, dynamic information from
resources allows us to factor in cost-influencing criteria such as the fact that an
elevator in the path is out of service or the path is currently blocked. This process
results in latency as the algorithm has to wait for the requested information to
arrive to determine the cost of child nodes and proceed the execution. The pro-
posed model adapts each step of forward-search algorithms. More precisely, to
distribute workloads, agents explore different parts of a search space concurrently
by executing a search algorithm, thus selecting nodes from their respective part
of the search space. Child generation is modified into an asynchronous and non-
blocking process where agents are able to execute other tasks while information
from resources is being retrieved. Discovered paths to a node in another part of
the search space are communicated to agents responsible for that part so that
they can prune and update their local search process.

Definition 3 (Collaborative search model). A collaborative search model is
a tuple CSM = (Et , no, nd,SA,Sao ,RA,NA) where Et is an abstraction of an
environment at time t as previously defined, no ∈ L is a node representing a
start location, nd ∈ L is a node representing a destination location, SA is a set
of search agents executing the search algorithm, Sao ∈ SA is the initial search
agent that starts the search process, RA is a set of resource agents, each of which
is responsible for retrieving information from a set of resources, and NA is a set
of network agents. A network agent is responsible for managing a search process
and related communications within the coverage of a set of hierarchy entities.

The model is based on collaborations among search agents, resource agents
and network agents. We describe in the following subsections the roles of these
agents in realizing the aim of this search model.

4.1 The Search Agents

In our model, the role of search agents is to execute a given search algorithm.
The execution cycle of a search agent consists of expanding a node, retrieving
the cost of a child node and processing received messages. A search agent Sa
is responsible for exploring a part of the search space. The nodes constituting
the part of the search space for which Sa is responsible are dynamically and
incrementally assigned by Sa’s parent agent (a network agent) and are stored in
ResponsibledNodes. The dynamic assignment and distribution of a search space
is presented in depth in the following section (Sect. 4.2).

As in a forward-search algorithm, Sa has a set of candidate nodes to expand
Frontier and a set of expanded nodes Expanded. In each iteration, Sa executes
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the search algorithm which starts by selecting a node n from Frontier to expand.
If n is the destination, goal verification procedure (GVP) is initiated (further
explained in Sect. 4.3), and Sa continues its execution until the destination is
verified or a better path to the destination is found. Otherwise, Sa generates
the child nodes of n. To generate each child n′, it is necessary to know the cost
for moving from n to n′. We call the moving from n to n′ an action a(n, n′). If
n′ belongs to Sa’s part of the search space (i.e. in its ResponsibledNodes), Sa
stores a(n, n′) in its ActionList to be queried for its cost. Otherwise, Sa sends
a(n, n′) to a search agent Sa ′ that is responsible for n′ through the parent agent
of Sa. Upon receiving a(n, n′), Sa ′ discards a(n, n′) if it already knows the path
to n′ with a better cost than through n; this prevents Sa ′ from requesting for
the cost to move from n to n′, which is clearly in a non-optimal path. Otherwise,
Sa ′ adds a(n, n′) to its ActionList.

After node expansion, Sa takes an action aq from its ActionList to query for
its cost. The cost of an action is determined by using information retrieved from
resources associated with the action, and is computed using the cost function
f given as a part of MGPF. To obtain the cost of aq, Sa sends a request to
a resource agent. A resource agent is capable of accessing a number of types
of resources. Information about resource agents are provided to search agents
as a part of their knowledge. Depending on the type of resource, Sa chooses a
resource agent to inquire. While the cost of aq is being retrieved, aq is moved from
ActionList to PendingActionList where all the actions pending for their cost
are stored. Retrieving an action cost is a non-blocking process. After sending the
request to a resource agent, Sa continues its execution. Once the necessary data
is acquired, the resource agent sends it to Sa. This asynchronous mechanism
for retrieving information enables search agents to perform other tasks while
resources are being accessed, thus mitigates the latency.

After retrieving the cost of an action, Sa processes received messages. When
receiving a message containing the cost of an action a(n, n′), Sa computes the
cost of n′, f(n′) and removes a(n, n′) from PendingActionList. Based on f(n′),
Sa prunes unpromising nodes from Frontier and updates Expanded. How the
pruning is done depends on the actual algorithm (e.g. A*, uniform cost search).
The algorithm is terminated when a verified solution is found or the entire search
space has been explored. Naturally, we reach the end of a search space when all
search agents have no node in their Frontier, no action in ActionList and no
pending action in PendingActionList.

4.2 The Network Agents

In this search model, we separate a search space based on the knowledge of
the search space, in this case, the hierarchy information. A network agent is
responsible for a set of hierarchy entities at a certain level of hierarchy. The
role of a network agent is to manage the search process related to the hierarchy
entities for which it is responsible. This management entails routing an action
to a relevant search agent, distributing workloads to search agents, assigning
sub-hierarchy entities to other network agents to manage, creating new search
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agents and network agents when necessary, and handling communications among
agents. Search space separation and assignment as well as workload distribution
are done on-the-fly during the search in order to focus only on the parts of the
search space relevant to a given pathfinding request. This process is triggered by
the routing of actions, illustrated in Algorithm 1, to their relevant search agents,
and progressively, it constructs an agent network tailored to a given request.

Algorithm 1. action-routing-protocol(a〈n, n′〉)
1: hierarchy ← get the entire hierarchy of n′

2: if the executing agent Na is in charge of a hierarchy entity he in hierarchy then
3: if he is the direct parent hierarchy entity (i.e. a leaf of HE) of n′ then
4: if Na has no search agent that is the agent responsible of n′ then
5: if Na has no search agents OR all search agents cannot take more respon-

sibility then
6: create a new search agent Sa and send a〈n, n′〉 to Sa
7: set Na as the parent agent of Sa and Sa as a search agent of Na
8: else
9: select the search agent with the least responsibility and send it a〈n, n′〉

10: end if
11: else
12: send a〈n, n′〉 to the search agent responsible
13: end if
14: else
15: get he′ from hierarchy where he′ is a direct child hierarchy entity of he
16: if Na has no child agents OR all child agents cannot take more responsibility

then
17: create a network agent Na ′ and make Na ′ responsible for he′

18: set Na as the parent agent of Na ′ and Na ′ as a child agent of Na
19: else
20: assign he′ to Na ′ where Na ′ is a child agent of Na with the least responsi-

bility
21: end if
22: forward a〈n, n′〉 to Na ′

23: end if
24: else
25: if Na’s parent agent doesn’t exist yet then
26: create a network agent Nap

27: make Nap responsible for the hierarchy entity that is the direct parent of Na’s
hierarchy entity(ies)

28: set Nap as the parent of Na and Na as the child of Nap

29: end if
30: forward the request a〈n, n′〉 to the parent agent Nap

31: end if
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During node expansion, when a search agent Sa discovers an action a(n, n′)
where n′ is not under its responsibility, Sa sends a(n, n′) to its parent agent
Na. However, if it is the beginning of the search, which is an exceptional case
where there are no network agents yet, the initial search agent Sao creates the
first network agent Na to route a(n, n′). Na becomes the agent responsible for
the hierarchy entity in which n is directly located. Upon receiving a(n, n′), Na
executes the action routing protocol (Algorithm 1) to find the search agent
responsible for n′.

We separate a search space based on the hierarchy, so a search agent San′

that is responsible for n′, if it exists, is under the management of a network agent
that is responsible for the hierarchy entity in which n′ is directly located. Na uses
the hierarchy information of n′ to guide the search (Algo:1 - L:1). The hierarchy
of n′ is an ascending ordered list of hierarchy entities in which n′ is located. For
instance, in an airport, the hierarchy of n′ can be Zone 1 -Terminal 2 -Airport
where n′ is located directly under Zone 1. Zone 1 is a sub-hierarchy entity of
Terminal 2, which is in turn a sub-hierarchy entity of Airport.

If n′ is not a part of Na’s search space (i.e. not located in one of Na’s hierarchy
entities), Na passes the control to its parent Nap, if Nap already exists, to do
the routing (Algo:1 - L:25–30). If Nap does not exist yet, Na creates Nap to
take charge of a hierarchy entity in which all Na’s hierarchy entities are located
and forward the request to Nap. For example, suppose Na’s hierarchy entities
are Zone 1 and Zone 2 of Terminal 1; as Na’s parent, Nap takes charge of all
the search processes in Terminal 1. Then, Nap takes over the routing operation
and executes the action routing protocol. On the other hand, if n′ is located in
one of Na’s hierarchy entities, denoted by heNa , Na takes control of the routing
process (Algo:1 - L:2–23). This implies one of the two possibilities - (1) n′ is
directly under heNa (i.e. heNa is a leaf of HE ) or (2) n′ is indirectly under heNa

(i.e. n′ is under a leaf, which in turns is under heNa).
In the case of (1), the relevant search agent San′

should be under the manage-
ment of Na. In such case, a(n, n′) is sent to San′

if San′
already exists (Algo:1 -

L:12), and the routing operation of a(n, n′) is finished. If n′ has not been assigned
to any search agent (i.e. San′

does not exist), Na selects a search agent under
its management that has the least responsibility to take charge of n′ (Algo:1 -
L:9). To determine the responsibility of a search agent, we take into account its
current workload, which is the number of nodes in its Frontier, and number
of nodes for which it is responsible ResponsibledNodes. The workload indicates
the current tasks that a search agent has to execute, and the number nodes in
ResponsibledNodes indicates the amount of potential tasks that it may have to
do. The potential tasks include requesting the cost of actions, processing update
messages and pruning. Using both criteria to measure responsibility enables us
to assign more work to a search agent that is more likely to become idle (i.e. hav-
ing few current tasks), and also preventing assignments to the ones that might
potentially be occupied (i.e. responsible for many nodes). However, when all the
search agents of Na reach the responsibility limit, a new search agent is created
to take charge of n′ (Algo:1 - L:5–7). The reason for introducing responsibility
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limit is to distribute workloads among the search agents exploring the same
part of the search space. This is essential when the part of the search space
of a network agent is large. The responsibility limit is determined according to
two factors: the computational resources available and the search space. If the
computational resources are limited, the responsibility limit should be high to
reduce the number of search agents. This configuration, however, may affect the
efficiency when working with a large graph. Otherwise, the limit should be low,
resulting in more search agents exploring in parallel.

In the case of (2), San′
, if it exists, is under the management of one of the

direct or indirect child agents of Na. Na forwards a(n, n′) to its child agent
Na ′ (Algo:1 - L:15–22). Na ′ is the direct child agent of Na and is the agent
responsible for a hierarchy entity he′ where he′ is a direct sub-hierarchy entity
of heNa and n′ is located directly or indirectly under he′. If Na ′ does not exist,
he′ is assigned to a child agent with the least responsibility (Algo:1 - L:20).
The responsibility of a network agent is measured by the sum of the number
of nodes under the hierarchy entity(ies) for which it is responsible. We employ
such indicator because the number of nodes determine the number potential
tasks such as routing and other communications a network agent has to handle.
Each network agent has a responsibility limit that is the maximum number of
nodes it should handle. This limit is determined by the computational resources
available. Setting the limit low results in having more network agents, but this
would avoid problems such as communication bottlenecks. If all child agents of
Na reach the responsibility limit, he′ is assigned to a new network agent and
a(n, n′) is forwarded to the new agent, which will continue the routing.

4.3 Goal Verification Procedure, Termination and Optimality

Goal Verification Procedure. When a destination node nd is expanded, the
expanding search agent Sad initiates the GVP. The objective is to determine
whether a found path leading to nd is a minimum-cost path. This process is
necessary because each search agent does not possess global knowledge of the
search state. The verification is conducted in a distributed manner by each search
agent. A path is a minimum-cost path only if all search agents reach a consensus
concerning its validity. For each search agent, a path to nd is optimal if there
exists no node n where f(n) < f(nd). To verify this property, each search agent
performs the following verification:

– If there is any node n in Frontier where f(n) < f(nd), the path is not
verified.

– If there are actions in ActionList or PendingActionList, the path is not
verified. The cost of those actions are still unknown, so it is impossible to
determine the cost of the nodes to which those actions lead.

To start this procedure, Sad sends a goal verification request to its parent agent
Nad. Nad propagates the request by forwarding the request to its other children
and its parent agent. The receiving parent agent repeats the propagation process.
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In this way, every search agent will receive the request from its parent agent.
Each search agent keeps verifying the found path leading to nd until the path is
verified or a better path to nd is found.

– If the found path is verified by an agent, the agent sends the response to
its parent. Responses are sent back in the opposite direction of the one in
which the request is propagated. Therefore, eventually, Sad receives all the
responses directly from Nad, who receives responses from its parent and other
children.

– If a better path to nd is found, the expanding agent initiates another GVP
to replace the previous one.

Besides determining the validity of a path, GVP also enables search agents to
filter nodes and actions. When the found path is under location verification of
an agent, the knowledge about the found destination such as its cost is used to
discard unpromising nodes from Frontier and actions from ActionList.

Termination. A search execution is terminated when a path verified by GVP
is found or when the entire search space has been explored. Naturally, the end
of a search space is reached when all search agents have no nodes in Frontiers,
no actions in ActionList and no pending actions in PendingActionList.

Optimality. GVP enables us to determine whether a path has a minimum-cost.
However, whether a path is optimal depends on the actual algorithm and the cost
function(s) that it uses. For instance, in uniform cost search, the cost of a node
is the cost from the start node to the node, which guarantees optimality. In such
case, a path verified by GVP is an optimal path. However, for a greedy algorithm,
a path verified by GVP is a minimum-cost path based on the algorithm’s cost
function, but not necessarily an optimal path.

The algorithm terminates by finding a minimum-cost path if one exists,
assuming the following properties:

– The search space is finite.
– All messages arrive at their destinations.
– For every request for the cost of an action, we get a response.
– All operations take a finite amount of time.

5 Experimental Evaluation

Our experiments were conducted on a 2.4 GHz Intel Core i7 laptop with 16 GB
of RAM. We used 2 types of requests: the start and destination nodes are (1)
in the same hierarchy entity (same hierarchy entity request) and (2) in different
hierarchy entities (inter-hierarchy entity request). The principle of our approach
is that it acquires information from various resources. As a result, we introduced
simulated latency in accessing resources (1, 5, and 9 ms). 1, 5 and 9 (ms) are
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the maximum latency of each respective case. For instance, in the 5 ms case, we
generate latency values between 0 to 5 ms. We applied our collaborative search
model in uniform cost search (UC), creating a collaborative uniform cost algo-
rithm (CUC). In our experiments, we compare CUC with UC. The choice of UC
for our experiments is motivated by the fact UC is independent of any domain-
specific or case-based heuristics. Consequently, the impacts of the collaborative
search model on UC’s performance can be accurately observed.

In the first experiment, we used both algorithms to solve the two types of
requests on the same environment, abstracted as graph 1. Graph 1 has a 4-level
depth hierarchy (1 hierarchy entity at first level, 10 at second, 100 at third, 1000
at fourth), 10000 locations and 10000 CPS entities. Figure 3 demonstrates time
efficiency in (%) gained by using CUC compared to UC to solve the two types of
requests. The results show that for requests of type (1), UC is more efficient than
CUC when there is no latency. This is because in type (1) requests, the start and
the destination are under the same hierarchy entity containing approximately
100 nodes. In both algorithms, the solution was quickly found, but CUC takes
more time because there are overheads for creating the network agent and man-
aging communication as well as workload distribution. However, these overheads
become negligible when latency is present. CUC starts to outperform UC from
around 1 ms of latency. For type (2) requests, which involve multiple hierar-
chy entities, CUC performs better even without latency. The reason is that our
model is based on concurrent agents exploring different parts of a search space
(i.e. nodes under relevant hierarchy entities), which leads agents to discover the
destination quicker. With latency, CUC is remarkably more efficient, reaching
over 90% of time efficiency gains in the case of 9 ms latency. Regarding node
expansion, in our model, each search agent has only partial knowledge of the
search process, so it selects nodes to be expanded based on its limited knowl-
edge. This may lead to expansion of costly or unpromising nodes. Despite such
limitation, the results of our experiment, depicted in Fig. 4, suggest that CUC
expands approximately the same number of nodes for type (1) requests and less
for type (2). This is thanks to agent collaboration and the GVP. Collaborative
and concurrent search leads to rapid discovery of the destination, irrespective of
its optimality. Once the destination is found, the GVP is initiated, informing all
search agents about the destination. While the destination is under local ver-
ification (i.e. verifying the properties described in Sect. 4.3), search agents use
knowledge about the found destination to filter unpromising nodes and actions
(i.e. having higher cost than the found destination).

In the second experiment, we compared CUC with UC over three different
graph structures of the same size, namely graph 1, 2 and 3. Graph 2 has the same
hierarchy structure and location distribution as graph 1. The only difference is
that in graph 2, there is only one connection between 2 locations and 1 exit point
for each hierarchy entity, while there are 3 connections and 2 exit points in graph
1. Graph 3 has a 3-level depth hierarchy (1 hierarchy entity at first level, 10 at
second, 100 at third), 10000 nodes (locations) and 10000 CPS entities. Figure 5
illustrates time efficiency (in percentage) gained by using CUC compared to
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Fig. 3. Run time efficiency of collaborative uniform cost compared to uniform cost

UC on different graph structures. CUC performs best on graph 1 because there
are more connections between nodes and more exits to other hierarchy entities.
Our collaborative search model does not use a predefined method to separate a
search space, but it dynamically and progressively distributes the search space
among agents based on the structure of the space, in this case the hierarchy,
during the search process. More exits to different hierarchy entities allow agents
to reach more parts of the graphs faster, and thus finding the destination faster;
more connections to other nodes also lead to a more efficient search since more
nodes can be explored by concurrent agents. In graph 2 and 3, each node has
only one neighbor node and a hierarchy entity has only one exit. With such
connectivity, the algorithm takes more time to find the exits to enable agents to
explore different parts of the graph. Between graph 2 and 3, CUC works better on
graph 2 because locations are more distributed in graph 2. In graph 3, each 1000
locations are grouped under the same hierarchy entity, and there is only one exit
from each hierarchy entity. In such case, the algorithm can only distribute the
workloads, which are nodes under the same hierarchy entity, and has to expand
many nodes to find an exit allowing spreading of the search to other hierarchy
entities. This reason coupled with the overheads for communications and agent
network management makes UC outperform CUC in graph 2 and 3 when there
is no latency.

In the third experiment, we compared the two algorithms on three different
graphs of the same structure and connectivity, but different sizes to examine the
scalability. Graph 1, as described previously, has 10000 nodes; graph 4 has 4096
nodes, and graph 5 has 1296 nodes. Figure 6 shows the order of growth of both
algorithms over the three graphs. Regardless latency, CUC outperforms UC as
the graph size grows due to the concurrent graph exploration by collaborative
agents. Remarkably, CUC scales much better in function of latency.
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Fig. 4. Comparison of expands between collaborative uniform cost and uniform cost

Fig. 5. Run time efficiency of collaborative uniform cost compared to uniform cost over
different graph structures

Fig. 6. Time comparison between collaborative uniform cost and uniform cost
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These experimental results show the impact of graph structures, request types
and latency on the efficiency of search algorithms. These factors can be used to
choose a search algorithm suitable for each given MGPF problem.

6 Conclusion

This paper describes an approach to solve MGPF in ubiquitous environments by
exploiting data from various resources from CPS entities to data sources on the
Web. The overview of the approach was provided. We proposed a collaborative
multi-agent search model that can be applied to forward-search algorithms to
improve the efficiency and handle latency issue resulting from resource accesses.
The model is based on agents searching collaboratively towards a shared goal.
Such collaboration is enabled and facilitated by an agent network constructed by
exploiting the structure and knowledge of a search space. While the collaborative
search model is applicable to forward-search algorithms in general, we presented
a specific example by applying it to uniform cost search. We used this example
to demonstrate a concrete application of the model and to evaluate its efficiency.
The results showed that the collaborative algorithm improves search efficiency
in most cases, and scales better in function of latency and graph size.

In this paper, we focus on pre-trip planning. In ubiquitous environments, CPS
entities are mobile and often changing their states. An activity for satisfying a
goal takes a certain amount of time, during which CPS entities may be changing.
Consequently, an optimal pre-planned path may lose its optimality over time.
This necessitates en-route planning to keep refining the initial path according to
the current state of the environment. In future work, we plan to extend our search
model to support en-route planning. An agent network constructed during each
search is tailored to that particular search. The network agents can be extended
to support monitoring of CPS entities and resources under their coverage to
detect mobility and changes. Such knowledge will then be taken in account to
adapt the path on-the-fly while users are traveling.
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Abstract. The Standard Vicsek Model and a popular variant—using
topological neighbour interactions—are widely used models for studying
flocking phenomena in the natural world. It is capable of demonstrating
the ordered and disordered states of real world flocks by tuning a tem-
perature variable η, where high η corresponds to the disordered state.
Here we show that the ordered state attained at low η is not stable over
indefinite time periods raising implications for simulations and settling
times. Additionally, we show that the loss of coherency in the metric case
is reversible, while it is permanent in topological case.

Keywords: Vicsek model · Metric interactions · Topological interac-
tions · Flocking

1 Introduction

The motions of bird flocks are impressive in their grace and grandeur. Birds
fly in complex interweaving paths that seem chaotic, yet lead to the formation
of coherent flocks. Flocking behaviour is not just restricted to birds, either.
Many species display similar movements, from schools of fish [12] to colonies of
bacteria [9]. The behaviours that lead to this phenomenon are subject to much
research [15].

One of the most widely used models for studying flocking phenomena was
introduced in 1995 by Vicsek et al. [14]. This minimal model approximates flock
members as simple point particles with position and heading, moving with con-
stant speed in discrete time steps. At each time step, a given particle will adjust
its heading to match the average direction—with some random perturbation,
η—of its neighbouring particles, including itself. By adjusting the magnitude of
the perturbation, one can observe the flock in ordered (η = 0) or disordered
states (η = 2π), or any state in between, including the phase transition at the
critical noise ηc.

The use of just an alignment rule in the Vicsek model is in contrast to the
earlier model by Reynolds [11] which combines three rules to achieve flocking
phenomena: alignment, as above, dispersion where flock members steer to avoid
flock mates, and cohesion in which flock members steer towards the centre of
local flock mates.

c© Springer International Publishing AG 2017
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Many studies have been performed using the Vicsek Model (VM), from low
level analysis of criticality [2,7,14] to high level comparisons with real world flock
data [1,4]. Studies investigate either some specific noise value—generally at or
around criticality—or the whole noise range [0, 2π], relying on the assumption
that as η → 0 the flocking behaviour becomes increasingly stable. This is further
reinforced by work showing that when η = 0 the Vicsek model will converge to
a single stable flock [8,13]. In this paper, we question this assumption and show
that for the low noise regime, permanent stability—that is, over sufficiently large
time scales—is not guaranteed.

In Sect. 2 we formally introduce the Vicsek model followed by a demonstra-
tion of flock instability in both the metric and topological cases in Sect. 3. We
then provide a detailed analysis of the mechanics that give rise to these results
in Sect. 4 and show that over large time scales, these states are unavoidable. We
conclude in Sect. 5 with some discussion on managing the models to minimise
instability.

2 Methods

In the Standard Vicsek Model (SVM ) N particles move continuously in a two
dimensional square space of linear size L with periodic boundary conditions. The
model is updated with a time interval Δt = 1. Positions for each particle are
updated according to:

x i(t + Δt) = x i(t) + v i(t)Δt, (1)

where the velocity v i(t) is constructed to have constant magnitude, s, and head-
ing, θi(t). This method of position update—using v i(t) instead of v i(t+Δt)—is
known as Backwards Update.

Heading angles are updated according to:

θi(t + Δt) = 〈θ(t)〉i,k +
η

2
ξi(t), (2)

where 〈θ(t)〉i,k denotes the average direction of k neighbours of particle i (includ-
ing itself) that fit the neighbourhood criterion. In the Standard—or Metric—
model the neighbourhood of particle i is all particles within radius r = 1. The
Topological variant (TVM) instead uses the neighbourhood of the nearest kT

particles, regardless of distance. We use the definition from [14] for average
angle—〈θ(t)〉i,k = arctan[〈sin(θ(t))〉i,k/〈cos(θ(t))〉i,k]. ξi(t) is a realisation from
the uniform interval [−1, 1] and 0 ≤ η ≤ 2π. Where convenient, the shorthand
Δθi(t) = η

2 ξi(t) will be used to refer to the noise term.
This work deals solely with the low noise regime, 0 < η ≤ 0.5, outside of the

phase transition regime. Here—after a settling period—large flocks are expected
to predominate. As we are considering only flocks far from criticality, we will
not broach the topic of the precise nature of the phase transition in the Vicsek
Model.
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We denote the order, ϕ, of the flock with

ϕ(t) =
1

sN
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∣
∣
∣
∣
∣
, (3)

which defines the overall alignment of particles at time t, with ϕ(t) = 1 signalling
all particles pointing in the same direction and ϕ(t) = 0 indicating complete
disorder. Fluctuations of the order parameter are given by the susceptibility

χ = 〈ϕ2〉 − 〈ϕ〉2, (4)

where a peak in χ indicates a phase transition [16].
When analysing the topological case, we construct swarm signalling net-

works (SSN) from our simulations as described by Komareji and Bouffanais
in their investigation into consensus and its resilience in topological systems
[10]. The SSN shows the directed connectivity between particles—as topological
interactions are not symmetric. Komareji and Bouffanais demonstrate that for
a system to reach consensus the SSN must be a strongly connected super set
during most—not necessarily all—time steps, and to achieve this, kT should be
6 or more, in agreement with bird flocking studies [3]. We use these SSNs to
analyse consensus over longer time scales.

Simulations were performed and visualised in C++, with post processing done
in Matlab. Where statistics were collated, we performed 100 repetitions to calcu-
late standard error. Free variables—ρ,N, s, kT , r—were all varied over common
values in the literature and behaved analogously to the results presented below.

3 Results

We simulated both metric and topological flocks, using a range of values for
the free parameters, and found that in all cases—except degenerate cases such
as r → L or kT → N—flock stability was not permanent and flocks would
eventually split apart for long periods of time at low η where cohesive flocks
are expected to predominate the system. In this section, we give an overview of
these results, while a detailed mathematical analysis will follow in the Sect. 4.

We start with the metric case, with Fig. 1 showing the evolution of a flock
from a completely ordered, singular flock into seven sub-flocks of varying sizes,
demonstrating that an aligned metric flock can split apart into disjoint sub-
flocks from just thermal fluctuations. At later time steps, this flock coalesces
into fewer sub-flocks, before returning to a single flock at t = 99, 000, repeating
ad infinitum.

While the particles are still mostly ordered in Fig. 1b, with ϕ(t) = 0.99,
this does not necessarily have to be. Sub-flocks can diverge completely to π
radians from each other. However, due to the periodic boundary conditions of
the system, as divergence increases so too does the chance of the sub-flocks
colliding and merging into a single flock, thus—temporarily—restoring stability
to the flock.
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Fig. 1. Metric—Snapshots of an SVM flock at (a) t = 10 and (b) t = 24, 000 with
ϕ = 1.0 and 0.99 respectively, demonstrating instability behaviours in the metric model.
Flock parameters were N = 500, ρ = 0.25, s = 0.1, η = 0.1, with all particles initialised
facing right (θi(0) = 0 ∀ i ∈ N), in a box of local density, ρ = 5.0, to force a flocking
event at t = 0. This flock behaves no differently to a flock achieved more naturally
via a settling regime whereby particles are given random positions and headings and
simulated for time series of at least order t = 1 × 105. Particles are positioned at the
base of each arrow, with arrow direction indicating heading. Arrow colour conveys the
same information as in Fig. 6 although is unnecessary here. Extra flock information
included in Fig. 6 is stripped here for clarity. Large black arrows indicate centre of
sub-flock and average flock heading. (Color figure online)

The topological flock also suffers from instability, as shown in Fig. 2. Komareji
and Bouffanais [10] show consensus for topological systems with kT = 6 neigh-
bours, which we recreate in Fig. 2a with N = 1, 000, ρ = 1.6 at t = 3, 000.
Figure 2b shows the same system at a future time step, t = 7, 000, where it has
devolved to a quasi-disordered state of many flock fragments. Similar behaviours
are seen for all kT tested, kT ∈ {3, 6, 7, 8, 9, 20, 40} at ρ ∈ {0.25, 1.6}. The size of
the fragmented flocks scales with kT , while the time taken to devolve scales pro-
portional to kT , and inversely with ρ. Komareji and Bouffanais [10] also shows
the case of kT = 3, exhibiting similar behaviour as observed in Fig. 2b, indicating
that with low enough kT fragmentation sets in before consensus can be achieved.
Simulations with other starting conditions—including those seen in Fig. 1a—all
exhibited the same behaviour.

While the flocks can merge in the metric case we show later that this is
not the case for the topological model. Sub-flocks continue to fragment, with a
minimum bound of kT particles per sub-flock, with no ability to merge into larger
flocks for any meaningful length of time. Entering the quasi-disordered state is
a one way transition for the topological flock. Figure 3 shows ϕ and χ of one set
of simulations at low η, for a large time frame. The peak in χ and behaviour of
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Fig. 2. Topological—Snapshots of the one flock at (a) t = 3, 000 (ϕ = 0.97) and (b)
t = 7, 000 (ϕ = 0.75). System was initialised facing right (θi(0) = 0 ∀ i ∈ N), with
parameters N = 1, 000, ρ = 1.6, s = 0.05, η = 0.1π, kT = 7 as per [10], where (a)
matches Fig. 1 of [10]—noting their initial state of θi(0) = π

2
. Particle colour indicates

heading angle, such that the colour of θ = θ + π. Note that the only headings not
represented in (b) are π

2
< θ < π indicating significant fragmentation between sub-

flocks. (Color figure online)

ϕ indicates the system does indeed experience a quasi-phase transition from an
ordered state to a not-quite-disordered one while η remains constant.

4 Discussion

In this section, we give detailed analysis of the mechanics leading to instability
showing that it is inevitable in both cases.

We begin with analysis of a minimal two particle metric flock and introduce
the term drift, ḋ, to explore how the distance between particles changes at a
subsequent time step when noise is or is not applied. Specifically, ḋ < 0 indicates
convergence at the future step when noise is applied than if it is not, while ḋ > 0
indicates the addition of noise leads to separation. The main result of Sect. 4.1 is
to show that the probability of ḋ < 0 and ḋ > 0 is approximately equal in both
neighbour and non-neighbour cases, while the probability of converging between
time steps is 0.5 only in the neighbour case.

We extend this argument in Sect. 4.2 to show that drift plays a vital role in
the instability of metric flocks and is able to explain the behaviour in Fig. 1.
Notably, this instability is reversible, allowing reformation of a stable flock. This
argument holds in the topological case, however does not adequately cover the
phenomena in Fig. 2.

To understand the topological case we analyse a small flock and its SSN in
Sect. 4.3. We show that due to a lack of dispersion rule in the Vicsek model and
the asymmetric nature of topological interactions, a quasi-phase transition takes
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Fig. 3. Topological—Plot of order (left axis) and susceptibility (right axis)—measured
over a sliding window of 3 × 104 time steps. All particles were initialised facing right
(θi(0) = 0 ∀ i ∈ N), using the parameters N = 1, 000, ρ = 0.25, s = 0.05, η = 0.2, kT =
7. ρ and η were reduced to increase the time taken for fragmentation to occur to
better visualise χ. The peak in χ at t = 7 × 104 indicates the flocks fragmenting into
the quasi-disordered state described in text. Additionally, the non-zero χ after the
peak demonstrates that the quasi-disordered state is maintained for the remainder of
the simulation. Measurements repeated 100 times to calculate standard error (shaded
regions).

place whereby particle flocks devolve to the fragmented clusters seen in Fig. 2b.
We also show that this instability is irreversible unlike the drift instability.

4.1 Two Particle Metric Flocks

We begin with a minimal metric flock of just 2 particles, pi and pj , well within
interaction radius—such that they remain neighbours—with centre of mass x f (t)
and velocity vf (t) (with heading θf (t)). For notational convenience, we will
construct the flock with pi always above pj—i.e., xi,x ≈ xj,x and xi,y > xj,y.
Note that by rotational symmetry, this is equivalent to any orientation of a 2
particle flock.
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The benefit of this construction is that pi is to the “left” of x f , that is, the
z-component1 of (x i − x f ) × vf is positive (i.e. pointing up) and thus positive
rotation of vf points towards pi, while pj corresponds with negative rotations.

Since the particles are neighbours2, 〈θ(t)〉i,k = 〈θ(t)〉j,k, resulting in three
possibilities when updating the headings in Eq. 2:

1. Δθi(t) = Δθj(t) - Both particles will move (at the next time step, since we are
backward updating) in parallel to each other—i.e. |x i(t+Δt)−x j(t+Δt)| =
|x i(t + 2Δt) − x j(t + 2Δt)|.

2. Δθi(t) > Δθj(t) - pi experiences a more positive (or less negative) rotation
from noise than pj , meaning either one or both of pi, pj is turning away from
vf . In all three possibilities, this leads to an increase in distance between
x i(t + 2Δt) and x j(t + 2Δt) than otherwise would have been the case if
Δθi(t) = Δθj(t) = 0.

3. Δθi(t) < Δθj(t) - pi experiences a more negative (or less positive) rotation
than pj and results in decreased distance at t + 2Δt.

Since the noise is uniformly distributed, the second two items have equal
likelihood giving the relation

P [Δθi(t) < Δθj(t)] = P [Δθi(t) > Δθj(t)], (5)

with P [Δθi(t) = Δθj(t)] being negligible—both in terms of chance of occurrence
as well as the consequences when it does occur.

Before continuing, we need to distinguish that the above relates to a gradient-
esque term for the distance between two particles. That is, will they be closer at
t + 2Δt with Δθi(t),Δθj(t) than they would have been with no noise. We will
describe this comparative gradient property as drift, or ḋ(x i,x j), with d(x i,x j)
referring to the actual distance. Equation 5 can be rewritten in two ways:

P [dt(x i,x j) < dt+Δt(x i,x j)] = P [dt(x i,x j) > dt+Δt(x i,x j)], (6)

to denote that the distance is equally likely to increase or decrease, or

P [ḋ(x i,x j) < 0] = P [ḋ(x i,x j) > 0], (7)

to denote that the probability of the drift being positive (diverging) or negative
(converging) is equally likely. When the two particles are neighbours the two
equalities are equal since the average angle for each particle is equal at each
time step via neighbourhood averaging.

Additionally, we note the above does not quite hold for all values of 〈θ(t)〉i,k,
specifically, when 〈θ(t)〉i,k approaches parallel to the vector between the two
particles—〈θ(t)〉i,k → ±π

2 in this case—Eq. 7 breaks, giving a bias towards
divergence, as seen in Fig. 4. This bias increases as the distance decreases between
the two particles. When the distance between the two particles is sufficiently
small the bias appears for all 〈θ(t)〉i,k, with P [ḋ(x i,x j) < 0] → 0.
1 We obtain a z-component by treating the simulation plane as existing in 3D, with

z = 0 for all positions and velocities.
2 Note that the metric case is symmetric. If pi is a neighbour of pj , then pj is a

neighbour of pi. This does not necessarily hold in the topological case.
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Fig. 4. Metric—Drift convergence profile for interacting two particle case described in
text, where d(x i, x j) ≤ r. The 100 linearly spaced points are the ratio of convergence
events occurring over every permutation of Δθi(t) and Δθj(t) for 100 linearly spaced
noise values between ±0.25—i.e. η = 0.5. Distance convergence follows exactly.

When the particles are not neighbours however the distinction between drift
and distance is pertinent. Here Eq. 7 holds for most values—with biases occurring
at four singularities as above, shown in Fig. 5a—while Eq. 6 does not. Specifically,
since they are no longer neighbours, the first term in Eq. 2 differs for each particle.
At low η, θ(t)i and θ(t)j can dominate such that there is no Δθi(t) or Δθj(t)
that changes the relationship between dt+2(x i,x j) and dt(x i,x j) and thus the
particles, regardless of noise, must get closer or must separate. Figure 5b shows
the dominance of θ(t)i and θ(t)j over the noise.

Thus when discussing drift, we can see that—aside from four singularity
points—P [ḋ(x i,x j) < 0] ≈ P [ḋ(x i,x j) > 0] while Eq. 6 completely breaks, with
one side of the equality approaching 1 for most heading combinations.

4.2 Drift in Large Metric Flocks

We can extend this to the multiple particle single flock case (multiple flocks
follows on exactly by treating flocks as locally singular) by setting aside pj and
instead considering pl, the imaginary particle representing the local neighbour-
hood of pi, with x l as the centre of mass of pi’s neighbours, and v l representing
the velocity vector of the neighbourhood. Let Ωl represent the change of v l aris-
ing from neighbour changes rather than from uniform noise. By the central limit
theorem, Ωl will approximately follow a Gaussian distribution with μ = 0. Due
to the symmetrical nature of both distributions, Eq. 7 still holds (with x l). That
is, pi is equally likely to drift away from or towards pl. In fact, as 〈θ(t)〉i,k = v l

we have the neighbour case from above, meaning Eqs. 6 and 7 both hold for x i

and x l.
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Fig. 5. Metric—(a) Drift convergence profile for non-interacting two particle case
described in text at η = 0.5, with d(x i, x j) = 2. Measurements same as Fig. 4, extended
for differing θi, θj . Singularities exist at ±π

2
, parallel to x i−x j . When signs match, both

particles move together, with slight biases—converging and diverging. With opposite
signs, particles face away from or towards each other, resulting in complete convergence
or divergence, respectively. This can only occur once flocks have lost coherency how-
ever, thus is dismissed from discussion on losing coherency. Lower η sharpens peaks
and flattens all other values. (b) Distance convergence profile, approaching equality
only at θi ≈ θj and sgn(θi)π − θi ≈ θj . Decreasing η increases the steepness between
extremes.

This does not extend to the overall flock—i.e., x i and x f—for similar rea-
sons to the non-neighbour two particle case, meaning only P [ḋ(x i,x f ) < 0] ≈
P [ḋ(x i,x f ) > 0] holds true. That is, pi is equally like to drift away from or
toward pf (the imaginary flock centre particle), however at low η, v l constrains
pi such that equality of Eq. 6 breaks and completely favours either convergence
or divergence.

In the case of a perfectly ordered flock (i.e., v i = v l = vf ∀ i, l), we have
symmetry in fluctuations about vf (even though the symmetry of particle head-
ings is broken). This will quickly change as thermal noise is introduced unless
∑nj

j ξj(t) = 0 for all local neighbourhoods. Any case of v l(t + Δt) 	= v l(t) will
constrain all connected particles, even if slightly, towards a converging or diverg-
ing trajectory—the probabilities in Eq. 6 are no longer equal. Furthermore, when
particles on the boundary diverge from their neighbourhoods, they also freely
diverge from the flock, while those near the centre move towards other particles
and are more likely to keep v l,i ≈ vf .

Even though noise is uniform, for v l(t + Δt) to return to vf an equivalent
but opposite set of noise realisations is required for each connected particle. As
discussed above however, particles connected to pl will have a noise distribution
centred about v l, leading to v l staying steady. Additionally, when pl is along
the border of the overall flock, the outermost particles of pl will have their own
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D=-1025

D=553

D=1086D=3588D=3436a b c d

Fig. 6. Metric—Headings of particles at (a) t = 692, (b) t = 782, (c) t = 946, and (d)
t = ts = 947, coloured according to neighbourhood divergence, that is, if a particle is
diverging, how many of its neighbours are also diverging. Red = 0%, green = 50% of
neighbours are also diverging, purple = 100%. Black circles indicate minimum spanning
circle of connected diverging sub-flocks, where each particle in the connected set has
a neighbourhood divergence >80%. Number near flock represents sum of each neigh-
bourhood divergence D =

∑nj

j δ(i, j), where δ(i, j) = 1 if both particles are diverging
from vf and −1 otherwise. Black vector indicates xf and vf for each flock. Note the
lack of divergence in (c)—the inertia has dissipated with the flock split happening in
the next time step in (d). Black dashed line in (d) indicates the demarcation between
the two flocks. Flock presented here is the same flock presented in Fig. 1. (Color figure
online)

smaller neighbourhoods, allowing for their own v l to diverge with more ease as
they only partially reset to the inner v l at each time step.

This inertia in the heading of each v l is what ultimately leads to a flock
split event at some future time step ts. The inertia need not even exist at ts
and could have dissipated many time steps earlier, with the final split occurring
due to minor fluctuations in the few particles linking the sub-flocks together.
Figure 6 shows such a case with inertia almost completely dissipated at ts − 1
and ts.

This has implications for the symmetry breaking of the system. Typically, we
have an unstable state where particles are disordered3 and stable states of just
one flock from which the system has trouble escaping giving a state space similar
to Fig. 7a. However, as argued above, we have other stable states—those with
more flocks—which can be reached via thermal fluctuations. This also creates
additional unstable states between the stable states—different thermal fluctua-
tions in Fig. 6c could cause a collapse back to the 1 flock stable state instead.
Figure 7b shows a cross section of one possible potential function with this behav-
iour. Note that moving between these states is reversible, with the jump to fewer
flocks being more achievable as it can also be achieved by the flocks explicitly col-
liding, which becomes increasingly likely the further the flock directions diverge.

3 Remembering that we are dealing exclusively with the η � ηc regime in which
particles “want” to clump together.
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Fig. 7. Metric—(a) Goldstone’s [6] Mexican hat potential function. The peak is anal-
ogous to the unstable disordered state of the SVM with the trough representing the
single rotationally symmetric stable flock state. (b) Proposed cross section of state
space for SVM. Each higher local minimum represents more flocks, with the global
minimum indicating a single flock. Note that where thermal fluctuations would not
return the system to the peak in (a) they could push the system up into higher buckets
in (b).

4.3 Topological Flocks

We now turn our attention to the topological variant of the Vicsek model and
begin by noting that the above analysis holds true here as well, with the exception
that the two particle neighbour-less case is not possible. However, the subsequent
distinction between the local neighbourhood and overall flock and Eqs. 6 and 7
remains valid.

As the drift analysis holds true for both cases, and explains a reversible
flock instability, something else must explain the behaviour seen in Figs. 2 and
3, where the topological flock permanently enters a quasi-disordered state. The
issue, in fact, stems from an interplay between the lack of dispersion rule in the
Vicsek model and the asymmetric nature of topological neighbours. This allows
groups of particles to contract around a local centre of mass such that they
disconnect from the rest of the flock. For example, in a system with kT = 6, a
small flock fd of just 6 particles can be internally connected—for each pi ∈ fd, all
kT neighbours pj ∈ fd—creating only unidirectional connections between fd and
f . In practice, these disconnected flocks are usually larger than the minimum kT

particles4.
The lack of dispersion rule naturally leads to this outcome, as particles will

move—within thermal fluctuation—in the direction of 〈θ(t)〉i,k. As with the met-
ric case, pi has equal likelihood of diverging or converging with pl. Here how-
ever, at best, divergence leads to the status quo, local density is roughly constant

4 The minimum is kT and not kT + 1 since particles are always neighbours to them-
selves, such that the neighbourhood is never empty in the metric case.
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just with new neighbours, while convergence leads to a positive feedback loop
cementing the current kT neighbours as the permanent neighbours for pi.

This eventually reduces the flock to a weakly connected super set. That
is, a path exists from particle pi /∈ fd to particle pj including those pj ∈ fd,
however, no path exists from pi ∈ fd to pj /∈ fd. The result is that no alignment
information can transfer from the overall flock to the disconnected flock fd. Since
fd is only influenced by members of fd, it can proceed in directions unrelated to
the flock. If fd is near the boundary of f this can quickly lead to splitting apart.

During this process, neighbours to fd can be stripped away from f , where
they either disconnect from f and trail fd, or exist in a no-man’s land between
them. The disconnected flock can be compact enough that it can approach f
without influence as shown in Fig. 8.

Once flocks start exhibiting these behaviours the only way for them to inter-
act again is for the flocks to collide rather than brush near each other. However,
such mergers are only temporary, as the new flock is constructed of even closer
particles. Figure 9 shows two flocks merging and disbanding in under 200 time
steps, resulting in two new denser flocks. Thus it is clear that once the quasi-
disordered state is reached, the system will not return to an ordered state without
some dispersion rule preventing contained islands of particles.

For systems with larger kT , the above mechanism still occurs, just at a slower
rate as it takes longer for the requisite islands to contract enough for fragmen-
tation to arise.

a b c

Fig. 8. Topological—Snapshots of small flock, N = 30 (15 shown), ρ = 0.25, kT =
3, s = 0.1, demonstrating the effect of contraction. SSN super-imposed where dashed
purple lines indicate asymmetric neighbours—i.e., pi is one of pj ’s kT neighbours, but
not vice versa—and full orange lines indicate symmetric neighbours. Self-connections
are implicit and not drawn. Arrow colour denotes sub-flock membership as established
in (a). (a) t = 4, 655: The three red particles are connected only to themselves, while
a green particle has one red neighbour. (b) t = 4, 693: Sub-flock moves in front of the
main flock. Both flocks are tight enough that no connection occurs between red and
blue particles. (c) t = 4, 710: Both flocks continue with no changes to heading. (Color
figure online)
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a b

c d

Fig. 9. Topological—Snapshots of two flocks merging then disbanding at (a) t = 4, 812,
(b) t = 4, 821, (c) t = 4, 969, (d) t = 4, 986. Note in (b) the tight core of 3 particles—
originating from both original flocks—occupying almost the same space—and that in
(d) the two flock are made up of both red and blue particles. See Fig. 8 for colour
legend. (Color figure online)

5 Conclusion

By careful inspection of how particles interact at each time step, we have demon-
strated that when consensus is reached in the Vicsek Model, it is not permanent
for η > 0, regardless of metric or topological interactions. The topological case
is the more troublesome of the two as it clearly exhibits a state in which the
original stable flock is no longer reachable, while the metric case can return to
stability more easily than escaping from it in the first place.

In extensions to the SVM or TVM, such behaviour may potentially disap-
pear, even without a rule explicitly addressing the flock instability. One such
extension is the Inertial Spin Model (ISM) by Cavagna et al. [5]. The ISM intro-
duces a spin component which influences the velocity component of particles,
leading to an inertia in a particle’s direction. This would invalidate Eq. 5 and
would likely result in long term flock stability. Furthermore, the spin component
could potentially interfere with the contraction behaviour in the topological case
preventing islands from forming.

For the Vicsek model as it stands however, instability is inescapable. The
key respite is that both sets of instability mechanics do require moderate time
scales to occur meaning that with careful consideration of observation windows,
particularly when settling time is required, data collection regimes can be struc-
tured such that flock instability is avoided. However, we note that the Vicsek
model is one of the simplest flocking models available—which leads to its popu-
larity in many numerical analyses of collective behaviour—and while it is quite
informative for applied fields, it should perhaps be replaced altogether in prac-
tical applications with a more robust model rather than adjusting observation
windows.
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Abstract. Ever increasing competition is driving the efforts to improve pro-
ductivity throughout nearly all domains. In the manufacturing context, digital-
ization of value networks and creation of autonomous, self-optimizing systems –
a vision coined ‘Industrie 4.0 – is an approach that promises competitive edge
over other players. One field in which this vision could lead to great productivity
potentials is order scheduling and sequencing in high variety, high volume
manufacturing businesses like the automobile industry. A viable technology to
realize the expected gains in productivity are software agents and multi-agent
systems, since they provide autonomy, flexibility, adaptiveness, and robustness
to unforeseeable events. This paper proposes an agent-based control architecture
that enables communication between resources and customer orders within a car
body shop, so that they can negotiate the best alternative schedule and order
sequence in case of disturbances. The proposed architecture allows improve-
ment of overall production system performance in terms of output, resource
utilization, delivery reliability and others. Further, the paper describes the
implementation and simulation of the multi-agent system with JADE framework
and discusses the simulation results, which show that significant productivity
leaps can be achieved.

Keywords: Industrie 4.0 � Multi-agent systems � Production control systems �
Production scheduling � Car-sequencing

1 Introduction

Customer demand simultaneously fosters product segmentation and higher product
individualization [1]. Consequentially, volume of each model and product variant
declines, resulting in more complex and more competitive markets [2]. In order to keep
up with demand and competition, manufacturing businesses have to constantly improve
their productivity, adapt quickly to changes in customer demand, and eliminate waste
throughout the value chain. However, to achieve new levels of productivity, new
approaches become increasingly important [3]. In this context, Industrie 4.0, as one of
the leading research and development initiatives, has envisioned an advanced pro-
duction system control architecture and engineering methodology, to achieve leaps in
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resource productivity and efficiency across entire value networks [4–7]. The underlying
potentials are assumed to allow cost reductions of up to 40% in work in progress, up to
20% in processing, and even up to 70% in complexity reduction [2].

A field that could benefit greatly from advances in this area is the manufacturing
sector, in particular, businesses with high product and production complexity, high
product variety, and high volume. The automobile industry comprises a prominent
representative of this kind of enterprise, where highly individual, complex products are
being mass manufactured on mixed-model production lines. The same production
method is also used in other segments like consumer electronics, white goods, furniture
and clothing [8]. However, high product diversity requires detailed sequence planning
in order to best exploit the potential of the production system [9].

This is achieved using mixed-model sequencing, which is an optimization problem
from the domain of operations research and falls into the category of discrete and
combinatorial optimization [10]. Research and industry have elaborated a broad range
of approaches like using real options from finance domain, fuzzy goal programming,
and particle swarm optimization to find satisfactory solutions in a given amount of time
[11–13]. Those approaches factor in the restrictions of the underlying production
system to give a near-optimal solution and have experienced considerable improvement
over the last decades [14]. However, the underlying optimization problem is NP-hard,
meaning that it cannot be solved in real-time [15]. Additionally, complex production
systems with thousands of entities are subject to unforeseeable disruptions, that con-
ventional, monolithic enterprise software is not designed to deal with. Multi-agent
systems (MAS), on the other hand, provide the necessary properties to excel in
dynamic environments [16]. This leads to the assumption, that the shortcomings of
static scheduling algorithms could potentially be compensated by cooperating with
dynamic multi-agent systems in order to achieve a better overall performance of pro-
duction systems. Therefore, the following research questions will be discussed in this
paper:

RQ1: How can decentralized control of production scheduling and sequencing with
multi-agent systems improve the overall performance of complex production
systems?
RQ2: How must a viable architecture for such a multi-agent system be designed and
what tasks does each agent have to perform in order to realize productivity
potentials?

To answer these questions, this work is structured as follows. In Sect. 2, the general
mixed-model sequencing problem in the context of complex production systems is
introduced and current challenges are illustrated. Following this, in Sect. 3, the
approach of this work is described, requirements for the proposed MAS are derived,
and the application case is presented. On this basis, the architecture of the MAS is
explained and the elaborated agent communication is discussed. After this, Sect. 4
describes the basis of the performed simulations including input data and simulation
approaches, and then focuses on the key performance indicators (KPI’s) which are used
to measure the performance of the system. The results of the simulations are discussed
in Sect. 5 and the paper ends with a summary and outlook on future challenges.
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In terms of scope and delimitations, the goal of this paper is to demonstrate the
feasibility of applying multi-agent systems in the selected area and tapping into their
potential. Therefore, focus is laid on the higher layers of the automation pyramid,
mainly manufacturing execution system layer (MES). This, in turn, means that
Enterprise Resource Planning (ERP) and field-level layers of the automation pyramid
are not regarded. However, the work of [17, 18] shows that this is a realizable
undertaking and a consequent next step. In real-world applications, deviations in cycle
times of different product configurations can cause an overload of manufacturing
equipment and, therefore, pose a challenge for production sequence planning [19].
However, due to the scope of this work, cycle times of each variant and within each
variant type are assumed equivalent. This property can be implemented ex-post and is
supported by existing sequencing algorithms as described in [8, 14], and alike. To
enable future improvements, the application programming interface (API) of the
designed software allows for easy exchange and adjustments of software modules and
algorithms.

2 Production Scheduling and Control

2.1 Complex Products and Production Systems

Today, state of the art automobile factories produce several thousand cars per day. Each
factory performs several thousand production steps to complete an order and has an
equal amount of work in progress distributed on the production floor. This creates a
very complex environment on production side already. On the product side, however,
the situation is even more complex: due to high personalization of vehicles and thereby
increasing product variety, manufacturers are confronted with billions of theoretically
possible product configurations. For example, BMW offers up to 1017 configurations
for its Series 7 and Daimler offers even up to 1024 for its E-Class [1, 20]. This product
complexity raises production complexity even further and demands for suitable control
approaches on the production side. Car wiring harnesses, for example, are each
assembled individually and work only for the car it was designed for. It, therefore, is
useless for any other car than this exact same one. To cope with the resulting com-
plexity in supply chain and internal logistics, most automobile manufacturers have
adopted the so-called “pearl chain logistics concept”. Here, the final assembly sequence
is defined several days in advance to handle complexity and required materials are
picked and sequenced in the predefined order [21–23].

2.2 Approaches for Sequencing Mixed-Model Assembly Lines

In research and industry, three main types of approaches for planning the optimal order
sequence on mixed-model assembly lines have emerged: mixed-model-sequencing,
car-sequencing, and level scheduling.

Mixed-Model-Sequencing. As a workload-oriented approach, mixed-model-
sequencing focuses on avoiding or minimizing sequence-depending work-overload at
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individual workstations. This approach explicitly integrates operational characteristics
like cycle times, personnel restrictions, station borders, etc. It, therefore, allows for high
accuracy but requires significant effort considering data collection [8].

Car-Sequencing. In contrast, car-sequencing requires significantly less effort, since it
considers the above-stated operational characteristics implicitly rather than explicitly
by setting sequencing rules of type Ho:No (meaning that a maximum of Ho occurrences
may be among No positions) [8]. The most successful implementations use heuristics
like greedy algorithms, local search methods, genetic algorithms, and ant colony
optimization methods [14]. Overall, this makes car-sequencing a valuable approach
that is frequently used in practice, although it comes with the trade-off of lower
accuracy.

Level Scheduling. The last approach to be mentioned in this paper seeks to optimize
Just-in-Time (JIT) objectives, rather than workload. The overall goal is to distribute
material requirements, which depend highly on the production sequence, as evenly as
possible over the planning horizon. Therefore, target production rates are defined and
product variants are sequenced according to those rates minimizing deviations [24].

Despite great efforts in academia describing alternative solutions, there is still a lack
of empirical research evaluating the fit of sequencing approaches for real-world
applications [8]. The next section tries to reduce this gap. Furthermore, manufacturers
have a hard time following the specific sequence defined by the pearl chain concept,
since perturbations and complex, parallel production lines tend to disrupt the planned
order [25]. The resulting challenges are discussed in the following section.

2.3 Case Study: Challenges in the Automotive Sector

Both, high product and production system complexity, increase the possibility of
disruptions during the manufacturing process. Even though concepts like Total Pro-
ductive Maintenance (TPM) and Predictive Maintenance helped reduce previously
unforeseeable failures in past decades, manufacturers constantly deal with disturbances.

Since disruptions in any of the thousands of participants of a production network
are possible anytime, adaptation of the production sequence is a necessary ability.
However, mixed-model scheduling is an NP-hard problem and a new near-optimal
sequence cannot be calculated under real-time conditions [15]. Current algorithms
require runtimes of about 30 min to calculate a new sequence, which is too slow for
real-time adjustments [26]. Limiting runtime, e.g. to 10 min like in the ROADEF’05
challenge [14], enables faster reactivity, but generally leads to lower quality of the
solution. As a consequence of both, dynamics of complex production systems and
insufficient real-time abilities, the elaborated solution is often outdated the moment it
comes into place. Therefore, it is inevitable for a robust production system to auton-
omously adapt to disturbances the moment they occur.

Conventional monolithic enterprise software, however, is not designed to cope with
unexpected events, since it is based on a very detailed set of rules to cover very specific
situations. On one hand, this allows excellent results in those predefined circumstances.
On the other hand, monolithic systems tend to have poor performance when handling
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events that were not specifically defined in advance, because they cannot respond
adequately and in a timely manner to such situations. Therefore, although many
automobile factories have the possibility to virtually or physically resequence the
production order at some point, they can only handle planned, predefined operations
like e.g. building color blocks before entering paint shop [27]. Unplanned resequencing
usually results in deviations from the originally planned sequence and causes problems
down the production stream. Inconsistent data types can further increase such com-
plications [28].

Additionally, the overall system complexity makes it extremely difficult for humans
to manage the required information in real-time. However, it can be observed that
humans are often the decision makers in such situations, which can lead to suboptimal
results. As an example, the distribution of lead times often shows that the expected bell
curve is stretched far to the right, with a significant part of orders having very long lead
times [22]. However, in the experience of the authors, this effect can be found in about
half of the factory output, and it can be argued, that ineffective production control is
accountable for a significant part of this effect. The same can be observed in the
distribution of product variants where unexpected events and disruptions often lead to
unevenness of production as depicted in Fig. 1. This unevenness usually causes
problems in assembly shop that can only process a certain number of variants in
sequence. In a production control context, these kinds of deviations are often caused by
disturbances like logistical restrictions, e.g. due to delayed material. Dispatchers
counteract by releasing other orders to keep production running. These decisions,
however are usually not entirely data-driven and must be taken quickly, resulting in the
distributions illustrated below. Based on the experiences of the authors at different
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factories and manufacturers, these observations appear to be representative of the
automobile sector.

To summarize, there are multiple approaches for sequencing mixed-model
assembly lines and great effort is being made in both, academia and industry, to
further improve the given tools. However, it can be observed that solutions like car
sequencing are used in real-world applications, rather due to better interpretability for
humans and lower computational effort then due to higher performance.

From this, two conclusions can be drawn: first, despite their complexity and
real-time requirements, decisions in modern production systems are – to some extent –
influenced by human decision-makers. And second, computation time is a critical
factor for the success of a production control system in the manufacturing domain.
Considering the fact that highly complex production systems with several thousand
suppliers as well as hundreds of internal production resources are exposed to a sub-
stantial amount of unexpected disruptions, it seems rational to increase the amount of
autonomy in that area. However, since the presented sequencing strategies already
provide near-optimal solutions and significant runtime-improvements are not expected,
it is difficult to achieve great productivity leaps in that area. It is far more likely to
realize substantial improvements by adding more flexibility and autonomy to the
production system itself, which is outlined in more detail in the following section.

3 Agent-Based Production Control System

3.1 Approach

A technology with high potential to address the challenges described above are
multi-agent systems, because they are able to adapt to dynamic environments.
Although there are many definitions of software agents, most researchers and authors
agree on certain core properties characterizing software agents, like being autonomous
(operating without external intervention), social (able to communicate with other
agents), reactive (perceiving its environment and responding to changes), and proactive
(taking initiative to achieve its goals) [29–31]. The agents’ properties allow multi-agent
systems to be highly flexible, adaptive, reconfigurable, and therefore also robust [31,
32]. However, by themselves, MAS do not deliver higher quality solutions for opti-
mization problems, like e.g. mixed-model sequencing [33].

Therefore, the authors propose implementing a production control system that
exploits the strengths of both approaches by combing existing scheduling algorithms
and multi-agent systems. This way, on one hand, the system can continuously calculate
new near-optimal production sequences for the next planning period that best suit the
current situation and adapt iteratively to changes. On the other hand, unexpected dis-
ruptions that require real-time responses can be handled by the MAS, resulting in a
highly optimized and highly adaptive system. In the next section, the requirements such
a system must fulfill are discussed.
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3.2 Requirements and Implementation-Framework

To address the defined challenges and equip the proposed production control system
with the necessary properties a set of requirements must be met. Although multi-agent
systems can provide a long list of valuable properties (see e.g. [29–31]), the following
five requirements are considered especially important by the authors:

R1: Autonomy and Decentralized Control. To cope with its complex and
dynamic environment, the designed system comprises of software-agents that are
autonomous by definition. Each agent has its own goals and autonomously exer-
cises plans to achieve them. Therefore, it controls its own behavior and operates
without direct intervention of human supervisors [31]. It can and must, however,
communicate with other agents.
R2: Flexibility and Adaptability. Unexpected disruptions must be handled
effectively, meaning that agents must adapt automatically to dynamic changes in
their environment. This was considered in the MAS by enabling agents to sense
their environment, i.e. receiving the information they need, and to act upon it. As an
example, if a resource suffers a malfunction and cannot process an order, the system
must recognize this and find an alternative way to achieve its goal.
R3: Reconfigurability. Multi-agent systems offer the opportunity to provide plug
& produce functionality to manufacturing businesses. In practice, this is a very
valuable property, since it allows adding and removing resources depending on
current demand. To ensure this functionality, the system is designed to allow
registering and deregistering resources at runtime, providing all necessary infor-
mation about the resource.
R4: Real-time capabilities. As shown in Sect. 2.3, it is necessary that the devel-
oped system can adequately respond to sudden changes. Since the system is
working in the MES-context, response times in the range of minutes, like they are
common in sequencing algorithms, are not allowed. Neither is the system respon-
sible for direct control of field-layer equipment like PLCs, so it does not have to
meet real-time requirements in the millisecond range. Therefore, the maximum
response time for the system was designed to be below one second. Although most
events are handled in significantly shorter time, this threshold is enough to make all
required decisions.
R5: Modularity and extensibility. To facilitate modifications of the proposed
system, the API was designed in a way that allows to easily replace or add modules.
The system can thus be adjusted to the domain it is used in and the goals developers
pursue. Examples for this are the scheduling and routing algorithms as well as
simulation of resource failures. Furthermore, the API allows integrating sophisti-
cated machine learning algorithms like reinforcement or deep learning and other
kinds of artificial narrow intelligence that allow to further increase the autonomy
and performance of the system.

Framework. To meet the above-stated requirements, the MAS was developed using
the widespread Java Agent Development Framework (JADE) [34]. It has the advantage
of being platform-independent, because it is Java-based and, in addition, provides
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FIPA-compatibility and is distributed open source under the LGPL license. Further-
more, database management systems and several libraries were used to achieve the
required functionality. Among them are MySQL, Apache Web Server, and
phpMyAdmin for database functionality, apache commons library for mathematical
functions like exponential and gamma distributions, and Dijkstra algorithm for finding
the shortest path in a directed graph. The next section describes the application case on
which those tools were applied.

3.3 Application Case: Car Body Weld Shop

The roots of many of the challenges described in Sect. 2.3 are linked to order release
and resource allocation. Therefore, a state of the art car body weld shop was selected as
an application case for this work, since it is an archetype for those challenges. It can be
structured using the hierarchical structure model from [35] which divides production
systems into 9 layers reaching from component to production network. The body shop
covers levels 1 to 7 of those hierarchy layers. Due to the MES-focus of this work, only
layers 5 to 7 are considered, i.e. work unit, production line segment, and production
line. From top to bottom, on layer 7 we can find two production lines which produce
different car body types, as depicted in Fig. 2. Going deeper to layer 6, these two lines
consist of 13 different production line segments S11 to S80. Some of these segments,
like S11 and S12, are used exclusively by either production line 1 or 2, others like S40
and S60 are shared by both production lines and build a bottleneck.

Finally, on layer 5, each segment consists of multiple separate work units which are
not depicted in the layout. They each perform separate production steps required in the
production segment.

In total, the car body weld shop is able to manufacture around 70 different product
variants, including different body types and market-specific models. However, all
variants are based on three main body types: a two-door compact car, a four-door
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Fig. 2. Layout and technical capabilities of resources in the application case
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compact car, and a four-door compact van. To better illustrate the effects of the MAS,
this paper focuses on those three main types which will be referred to as variants A, B,
and C.

Production line 1 is able to produce variants A and B, while production line 2 can
manufacture only variants A and C. Buffers can take all variants as shown in Table 1.

Since not all production line segments can produce all variants, it is up to the agents
in the system to decide which order will be produced by which resource to achieve the
best possible performance. In the next section, the architecture for these processes is
explained in more detail.

3.4 Multi-agent System Architecture

The agent architecture in this work was designed using the “Designing Agent-based
Control Systems”-methodology (DACS) which consists of the three steps analysis of
control decisions, identification of agents, and selection of interaction protocols [36].

For the first step, the authors build upon the work of [37], where control decisions
of manufacturing systems were collected, categorized, and assigned to general control
tasks. As part of a student work, the specific decisions in a car body weld shop have
been analyzed further and mapped to the necessary agents.

The second step, identification of agents, requires a broader look on agent-based
production system architectures. Over the past two decades, a large set of architectures
for manufacturing control has been developed. The work of [38] analyzes those
architectures and shows that common design patterns have emerged out of them.
Following those design patterns, a distributed control system architecture was designed
consisting of the seven agent types shown in Table 2.

Order, Product, and Resource Agents are the most elementary agents. While Order
Agents represent individual customer orders, Product Agents represent whole product
variants and contain information about their constitution. Resource Agents manage the
production line segments of the system and the therein contained work units. Although
work units could be represented as separate Resource Agents, for the selected scenario,
it suffices to represent them internally in the Resource Agents of the production line
segments. Furthermore, to control and supervise those resources, a Shop Management
Agent is required and the Scheduling Agent is necessary to select the next best order to
be released in the dynamic environment. A not so obvious but crucial entity is the
Mediator Agent, whose job it is to match supply and demand so that the best overall

Table 1. Resource capabilities considering production of product variants A, B, and C

Production line 1 Production line 2 Shared resources
Variant S11 S31 S51 S71 S12 S32 S52 S72 S21 S22 S40 S60 S80

A U U U U U U U U U U U U U

B U U U U U U U U U

C U U U U U U U U U
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system productivity can be achieved. However, this can only be achieved through
communication and cooperation between agents, which is the third step of the
DACS-methodology and the subject of the following section.

Table 2. Agent types and their corresponding tasks and information in the model

Agent type Tasks Required information

Order Agent
(OA)

• Initialize and supervise all required
production steps

• Order information (e.g. order ID,
variant, delivery date, priority)

Product
Agent (PA)

• Manage manufacturing information
for every product variant

• Provide information to OAs

• Product variant
• Production steps (e.g. welding spot
sequence in body shop, assembly
sequence in assembly shop, etc.)

• Technical and sales restrictions
Resource
Agent (RA)

• Process designated orders
• Keep track of reservation list
• Document order status
• Request new orders when not
occupied

• Inform SMA about status
(available/disturbed)

• Resource capabilities (cycle time,
number of work units, variants, etc.)

• Resource status (time to failure, time
to repair)

• Reservation list
• Order status

Shop
Management
Agent (SMA)

• Instantiate RAs
• Keep track of resource status
(available/disturbed)

• Provide routing information for
material flow to OAs

• Shop layout and material flow graph
• Resource status (available/disturbed)
via message from RA

Scheduling
Agent (SA)

• Manage production program
• Instantiate OAs when requested by
RA or SMA

• Valid production schedule (order ID,
variant, sequence, delivery date)

• Output and work in progress
• Capabilities of requesting resource
• Availability of resources in the shop
and other restrictions (e.g. logistical or
technical restrictions)

Mediator
Agent (MA)

• Collect mediation requests from
OAs and get proposals for
production from RAs during
reservation time frame

• Match orders to resources
appropriately

• Demand for production steps
(number and time of requests of
OAs)

• Supply for production steps (number
and ESOP of RAs)

• Rules for prioritization of orders (e.g.
delivery time, reservation time,
variant, priority)

Directory
Facilitator
(DF)

• Register and deregister every
available service in the system

• Provide information to all agents

• Registered services and related
information
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3.5 Agent Communication

Out of the control tasks listed in Sect. 3.4, the following two are described in more
detail in this paper, since they have the highest impact on system performance. The first
one is scheduling and releasing orders. A task especially important during disruptions.
The second one is allocating orders to resources, including a reservation mechanism
allowing to book resources in advance and thereby control the production sequence.

Scheduling and Order Release. The Scheduling Agent (SA) builds upon the pro-
duction sequence it receives from the sequencing algorithm. This sequence includes the
order-ID and related data like product variant and delivery time and is only changed if
necessary. On this basis, order release works as a pull mechanism: Resource Agents
(RA) of root resources (first work unit of the first production line segment) request new
orders from the SA, when they finish processing the predecessor. The SA then selects
the next order and instantiates an Order Agent (OA). The SA is equipped with an
algorithm that aims at leveling the order release. To do this, it uses the existing
production schedule, applies the real-time information it has from other agents (e.g.
resource status and capabilities to produce certain variants), and prioritizes orders in a
way that target ratios – defined by production system restrictions – of the respective
variants are met. However, conventional production systems do not adapt to them
automatically in case of disruption. Therefore, if e.g. product variant B cannot be built,
it balances production by releasing the variant with the least negative effect on the
target ratio one at a time. This way, the backlog of variant B leads to fewer upheavals
down the production stream, i.e. paint shop and especially assembly shop, and after the
resource is repaired, it can be reduced more easily.

Resource Allocation. Two things were needed to implement the required resource
allocation: an interaction protocol that supports the required negotiation between agents
and a reservation mechanism that allows matching orders and resources in advance to
minimize waiting time. For the negotiation part, the common contract net protocol [34]
was selected and extended to match the application case requirements. As the sequence
diagram in Fig. 3 suggests, the Mediator Agent (MA) plays an important role in the
negotiation. It coordinates the negotiation process as a broker and is triggered by a
mediation request from an OA. To avoid loss of productive time during negotiations and
thus compromising performance, a resource reservation mechanism was implemented.

Figure 4 shows that a reservation time window is at its core. This window starts a
predefined time period before the end of the current production process (e.g. one
second prior to production end), so that (a) the probability of disturbances during the
current production process is low, and (b) no productive time is lost due to negotiation
processes. After receiving the production request, the MA looks up available resources
and makes a call for proposition (CFP). The RAs provide the estimated start of pro-
duction (ESOP) and wait for a response at the end of the reservation window.

The MA then calculates the best match for all orders and resources using a
specifically engineered set of rules. Those include the variants and delivery times of the
requesting orders as well as their successors, the currently available resources and
variants in the resources that offer the desired operation, as well as the status and
available variants on the subsequent production steps. As an example, if a subsequent
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resource offering variant ‘B’ is down (e.g. S51), resource S40 would not offer variant
‘B’, since it would block the resource for all other variants. It therefore offers ‘A’ and
‘C’ to continue production. Based on this architecture, a series of simulations was
performed to examine the performance of the MAS, which is described in the following
section.

Fig. 3. Agent communication during resource allocation process
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4 Multi-agent Simulation

The objective of this work is to develop a solution that is tailored to the observed
challenges in complex production environments. Against this background, the authors
opted for using simulations with real-world data that allow emulating specific condi-
tions instead of using abstracted benchmark-problems. The most important factors are
summarized in the following.

4.1 Simulation Basis

Production Program. The starting point of the simulations is a real production pro-
gram for 24 h, already sequenced by a sequencing algorithm that considers the tech-
nical restrictions of the factory. It includes a typical daily amount of about 2.000 orders
of the three main body types A, B, and C. Internal delivery dates, i.e. the date when a
car body must be delivered to the paint shop as an internal customer, range between 12
and 24 h from scheduled production start for regular orders. However, about 1% of the
orders are fast orders with delivery dates between 10 and 12 h.

Resource Parameters. To reproduce the actual situation on the shop floor as realis-
tically as possible, major resource parameters of the MES-layer were integrated into the
model. That includes functional parameters like cycle times, variant capabilities, and
capacity, as well as maintenance parameters like mean time between failure (MTBF)
and mean time to repair (MTTR). Each Resource Agent is provided with the required
data via a JSON-file on startup and manages its state by itself.

Resource Disturbances. To simulate resource failures, Resource Agents are provided
with a function to calculate the time until the next breakdown and the time it will take
to recover. The earlier is based on the MTBF-value of the resource and is approximated
via an exponential distribution which is typically applied for lifetime distributions [39].
The latter, on the other hand, is based on the MTTR-value of the resource and is
approximated by an Erlang distribution, since it better represents repair processes [40].
With the help of inverse transform sampling, the RA calculates those two times and
takes down the resource during the disruption.

4.2 Evaluated KPI’s in the Simulation Runs

To measure the performance of the system according to industry standards, the fol-
lowing seven categories were selected: output, resource utilization, delivery date, lead
time, production program fulfillment, production sequence fulfillment, and work in
progress. For each of these seven areas, specific KPI’s were chosen that appropriately
measure the system’s performance. The list contains common KPI’s used in the
automobile industry as well as standard descriptive statistic methods like mean value
and standard deviation, and are summarized in Table 3.

Since the simulation contains randomly selected events like MTBF and MTTR a
simulation run is not replicable. To compensate outliers, the simulation was repeated
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multiple times for every configuration and results were averaged for each KPI. How-
ever, outliers can provide valuable information about the quality of the results and are
therefore discussed in the next section.

5 Results and Critical Evaluation

To allow a direct performance comparison between a conventional production control
system approach (CPCS) and the agent-based production control system (APCS),
multiple simulation runs have been performed. The results of the CPCS were then set
as an index, to display the direct performance delta of the APCS in a juxtaposition. The
results are presented in Table 4.

As can be seen, the performance of the underlying production system is generally
better when it is controlled by the agent-based control system. Good results are espe-
cially achieved in KPI’s like output and resource-utilization which are interdependent.
Higher resource utilization can be achieved through the systems adaptability properties,
which allow it to act dynamically upon unpredicted events and therefore improve the

Table 3. Selected KPI’s for evaluation of production system performance

Category KPI Description Unit

1. Output • System output • Number of good cars per time unit jobs/hour
(jph), %• Output-mix

fulfill
• Deviation from planned output-mix

2. Resources • Resource-
utilization

• Utilization of resources during uptime. Equal to OEE, if
there are no scrap parts/orders

%

3. Delivery
reliability

• Average delivery
date deviation

• Mean value of delivery date deviations of all orders Days

• r delivery date • Standard deviation of delivery date Days
4. Lead time • Average lead

time
• Mean value of lead time of all orders Hours

• r Lead time • Standard Deviation of lead time Hours

5. Production
program

• Production
program
fulfillment

• Degree to which the original production program is
fulfilled with a tolerance window of zero

%

• Average
sequence
deviation R000

• Mean value of sequence deviations at order release
point (R000)

No. of
cars

• r Production
program

• Standard deviation of actual to target sequence at order
release point

No. of
cars

6. Production
sequence

• Sequence
fulfillment

• Degree to which the released order sequence mimics
the planned production program with a tolerance
window of zero

%

• Average
sequence
deviation R800

•Mean value of sequence deviations at end of production
(R800)

No. of
cars

• r Production
sequence

• Standard deviation of actual to target production
sequence at end of production (R800)

No. of
cars

7. Work in
progress

• System filling
level

• Degree to which the technical capacity of the
production system is used by physical orders

%
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overall system yield. This also applies for KPI’s in the area of delivery reliability. Since
the system disfavors releasing orders that are subjected to current technical or logistical
disturbances, the delivery reliability of the released orders increases.

On the other hand, the agent-based control system does not achieve quite as high
levels of stability in the areas of production program and production sequence ful-
fillment. The adaptability of the system comes with the drawback of breaking a pre-
defined production schedule and leads to a more mixed production sequence. This is a
logical consequence of the adaptation of the system to influences of its environment
and eventually leads to a more balanced workload. Although this could be seen as a
challenge for manufacturers that follow the pearl chain concept, many production
systems work with lead times that allow adaptation to those changes without com-
promising efficiency. Furthermore, on an absolute scale these KPI’s decline at a
single-digit rate and have therefore limited impact. So, by filling up production slots
that would otherwise stay unused, production program conformity is sacrificed, but the
business-wise more important KPI’s considering output, resource utilization, and
delivery reliability are increased. Considering the limitations of the proposed MAS, it
should be noted that the system performance partly relies on predictions of the duration
of disruptions which is an information many present production systems do not provide
on their own. Instead, they depend on maintenance personnel or dispatchers to enter the
data manually into the system, which usually comes with a delay. However, since the
decisions of the MAS are being made in real-time, it can react immediately to the new

Table 4. Performance comparison of the two production control systems
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information and e.g. release new orders or block them. Even in this scenario, the
system would perform better than solely based on human decision making as it is
common today.

6 Conclusions and Future Works

This paper has presented an approach for manufacturing business to cope with con-
tinuously rising complexity in production scheduling and sequencing in turbulent
environments. The proposed approach is a hybrid between state of the art sequencing
algorithms and an agent-based production control system. It allows high-quality
solutions for sequencing problems while at the same time autonomously adapting to
unexpected changes in the production system. The developed system architecture is
based on common design patterns of agent-based production control systems and uses a
Mediator Agent as a broker to allow optimal resource allocation during runtime. In
simulations of an application case – a state of the art car body weld shop in the
automobile industry – the system achieved significant improvements in important
production system performance indicators such as output, resource utilization, and
delivery time. It can therefore be assumed, that implementation of this kind of hybrid
systems could help to reach substantial productivity improvements in manufacturing
businesses in similarly complex environments.

Despite the achieved performance increase, there are still opportunities for further
enhancements of the approach. Incremental system-specific improvements could be
achieved by advancing e.g. message exchange efficiency, code heaviness, and action
timing of agents. More potential, however, lies in the implementation of artificial
intelligence like reinforcement learning to improve decision making. Finally, a con-
sequent next step is the gradual implementation of the APCS into a state of the art
factory to exploit the described potentials and demonstrate applicability in practice.
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Abstract. Paradigms in modern production are shifting and pose new
demands for optimization techniques. The emergence of new, versatile,
reconfigurable and networked machines enables flexible manufacturing
scenarios which require, in particular, planning and scheduling methods
for cyber-physical production systems to be flexible, reasonably fast, and
anytime. This paper presents an approach to flexible job-shop manufac-
turing scheduling with agent-based simulated trading, called shopST.
Aspects of real manufacturing scheduling problems form the basis for a
physical decomposition of the planning system into agents. The initial
schedule created by the agents in shopST through reactive negotiation
is successively improved through the exchange of resource binding con-
straints with an additional market agent. shopST is evaluated in compar-
ison to selected other different solution approaches to flexible job-shop
scheduling.

Keywords: Agents · Simulated trading · Flexible job-shop scheduling

1 Introduction

Modern production facilities are increasingly relying on networked machines for
their benefits caused by increased flexibility and the ability for self organization.
In order to further enhance economic factors, scheduling methods are needed,
that take advantage of these features and can cope with the rising amount of
complexity. Flexible job-shop scheduling (FJSS) is an extension of the classical
job-shop scheduling problem, which is NP-hard and among the hardest combi-
natorial optimization problems [1]. There are several different types of solution
methods available, though most of them disregard some constraints in order to
simplify the problem or only regard a single cost function, e.g. makespan. The
combination of several criteria or additional constraints generalizes the problem
and further enhances its complexity. There is a wide range of approaches for
using multi-agent systems in manufacturing in general and for job-shop schedul-
ing in particular [2,11,12,16,17,19,20,25]. In this paper, we present a novel
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approach, shopST, that applies agent-based distributed simulated trading [3] to
solve dynamic FJSS problems. In particular, shopST complements locally opti-
mizing reactive agent scheduling with long-term planning via simulated trading.
The results of a comparative experimental evaluation revealed that shopST is
competitive in highly flexible manufacturing environments with multi-purpose
machines.

The remainder of the paper is structured as follows. Section 2 shortly intro-
duces the problem of flexible job-shop scheduling, and gives an overview of the
solution and its implementation. Section 3 presents the comparative performance
evaluation results, while related work is briefly discussed in Sect. 4. Section 5 con-
cludes the paper with a short summary.

2 The shopST Solution for FJSS

This section introduces the problem of flexible job-shop scheduling and the first
agent-based approach that makes use of simulated trading for this purpose.1

2.1 Flexible Job-Shop Scheduling

The problem of flexible job-shop scheduling (FJSS), in general, is to find an opti-
mal, valid job-shop schedule S that minimizes a cost function c (e.g. makespan)
for a given configuration of jobs, operations on multi-purpose machines, and is
subject to certain constraints of processing. FJSS is an extension of the classical
job-shop scheduling problem. Classical job-shop scheduling solutions determine
a schedule for a set of jobs on a set of machines with the objective to minimize a
certain criterion subject to the constraint that each job has a specified process-
ing order through all machines, which are fixed and known in advance. A more
flexible job-shop scheduling allows, for example, one operation to be performed
on one machine out of a whole set of alternative machines. In the following, the
type of FJSS problems our solution approach can cope with is described in more
detail.

A set J = {j1, . . . , jn} of n ∈ jobs, which corresponds to factory workpieces,
needs to be processed with a set M = {m1, . . . ,mp} of p machines, while every
job ji has a number of ki ≤ p operations Oi = {o1, . . . , oki

}, which have to be
performed in order for the job to be completed. Performing a job ji on a machine
mj is denoted as an operation oij , which requires the exclusive, uninterrupted
use of mj over a time period pij , called processing time. It is assumed that the
processing time can be deterministically deduced from the system in advance.
A schedule S is a bijective assignment (S(oi) → (m, fi)) of every operation oi
to a processing machine m ∈ Mop

i and a completion date fi, with completion
dates fij for every operation and job j. The schedule is valid, if all time intervals,
which are assigned to a machine are free of overlaps and precedences are met

1 The source code for this project is publicly available at https://sourceforge.net/
projects/shopst/.

https://sourceforge.net/projects/shopst/
https://sourceforge.net/projects/shopst/
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among the other additional constraints to the system. Each possible schedule S
can be evaluated by assigning a cost c to every possible state of S via a cost
function c(S). To find an optimal, valid schedule then requires either to compute
a valid S with minimal costs c, or to take an existing schedule and continually
decrease its cost.

Fig. 1. Abstract example of a job-shop schedule for two machines M1 and M2

The following types of processing constraints are part of an extended flexible
job-shop scheduling problem specification. First, any operation ok can be per-
formed by a number of machines Mop

k and it is possible that the processing time
pij varies depending on ji and mj . We assume the constraint |Mop

k | > 1, which
implies flexible job-shop scheduling with multi-purpose machines. We speak of
|Mop

k | as the factory flexibility for the remainder of this paper. Second, the sched-
ule may also have to follow a given order of precedences for the operations to be
performed. These operation precedences are encoded in a directed, acyclic prece-
dence graph Gprec

i = (Vi, Ei), where the number of vertices equals a subset of
the operation set Vi ⊆ Oi. A directed edge (o → o′) ∈ Ei for o, o′ ∈ Oi is part of
the graph, if and only if operation o′ has to be performed before operation o. In
contrast to classical job-shop scheduling, the non-linear precedence constraints
of the flexible version allow an arbitrary order between some processing steps of
the job (e.g. drilling holes with different machines) and other precedences that
are fixed (e.g. paint job only after all drilling is completed). Inflexible job-shop
scheduling problems have completely linear precedence graphs. Third, possible
tool changes on a multi-purpose machines may require a certain amount of time
for it to prepare in between the processing of two operations. Such a sequence-
dependent setup time sikj is the time period in which the machine cannot process
any job, and which is dependent on the two operations oij and okj that shall
be performed in succession. In practice, these times obey the triangle inequality
sikj +skuj ≥ siuj . Besides, jobs ji that enter the system at a release time ri can-
not have their operations processed before that time, and can have a due date
di > ri before which their completion is preferable, if stated in the cost function.
Deadlines are mostly relevant for tardiness related cost functions like maximum
lateness. We assume that already started operations oij cannot be interrupted
(no preemption).

Finally, we focus on a dynamic version of FJSS with sequence depen-
dent setup times and multi-purpose machines: J-MPM |prec, ri, di, sdst|c in the
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established α|β|γ notation for scheduling problems, whereas c denotes an arbi-
trary cost function [10]. The α field contains the overall class of the problem and
the beta field describes additional constraints in the setup. In particular, the sets
J , M and Mop of FJSS problems may dynamically change during optimization
of the schedule, since new jobs may enter the system, and changes to the oper-
ation sequences, machine breakdowns and other unexpected events may occur
at any time. That requires the dynamic optimization to be sufficiently robust
against such changes. Furthermore, the information exchange between networked
machines and tools is required to be decentralized, that is, unlike most state-
of-the-art solution approaches [7], we assume no global information blackboard
for this purpose, as the system is decomposed by the physical constraints of the
machines and not the functional ones of the algorithm.

2.2 shopST System: Overview

The proposed FJSS optimization system, shopST, consists of two phases: In the
first phase, agents create a valid schedule by scheduling the resource binding con-
straints (operations) through standard contract net protocol based interaction
in a reactive manner. In the second phase, the valid schedule is improved by the
long-term schedule optimization via agent-based simulated trading. These phases
are executed in succession whenever an unanticipated event disrupts the validity
of the planning. The first phase creates a valid solution, which is improved in
the second phase.

The use of an arbitrary short term agent-based planning system in the first
phase enables local optimization of the machine schedules and a heterogeneous
agent system. We used a standard contract net protocol for the local short term
planning in this paper, but others can be used. The factory environment can be
highly dynamic because of machine breakdowns, or other events, such that the
plans have to be adapted immediately in order to commence production, which
requires an anytime solution. Long-term planning with simulated trading, as
first introduced by Bachem et al. [3], is a method to find approximated solutions
through several rounds of hypothetical trading between trading agents and a
common market agent, followed by a consolidation round. In the following, we
focus on the application of simulated trading and required modifications to fit
the planning domain. An overview of the agent interaction is given in Fig. 2.

Agent Mapping. The trading agents are the instances in the system, which
want to optimize their cost function. Thus, every machine in the system pro-
vides one trading agent. An additional non-physical market agent is existent in
the network. The communication in the network is enabled via common agent
technologies as described in Sect. 2.3.

Each agent is equipped with a cost function c(m), m ∈ M , that on the
one hand, resembles a good evaluation of the local performance of the machine.
On the other hand, the summed local costs over all agents

∑
m∈M c(m) should

be a good indicator of the overall factory performance. We experimented with
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Fig. 2. Algorithm sequence and agent system structure

different possibilities for such cost functions with varying complexity. Simple cost
functions like the total operation completion date (TOpC) c(m) =

∑
fi for all fi

that have a pair (m, fi) in the schedule S or the total operation lateness (TOpL)
seem to work well and are computationally inexpensive. shopST also offers total
operation tardiness (TOpT) and slack time (TOpSL) as cost functions.

Initialization. At the beginning of the simulated trading protocol, all partic-
ipating agents are invited by the market agent to perform successive trading
steps. In each such step, called a trading level, every agent chooses either to sell
a resource binding constraint to the common market agent, or to buy such a
constraint from it. Resource binding constraints of the trading machine agents
in the planning domain are their processed operation plans. Whether to buy or
sell is determined evenly randomized. The decision, whether a certain operation
is traded or not, is not solely made in a greedy manner by local criteria, because
in this case, agents would always sell the costliest operation at the moment
and never buy because their resources are bound by this action. Because of
this behavior, the trading is randomized and the used random distribution still
depends on the anticipated buying cost or selling gain respectively, as follows.
Because buying an operation from the market does almost always result in a
deterioration of the local cost function, buying probabilities are derived from
the difference of the cost difference the selling agent achieved, and the current
buying cost. A trading agent can only buy an operation from the market if it can
process this operation on the machine it is representing and successfully inte-
grate it into its current schedule. If an operation is sold, it is deleted from the
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local schedule of the machine and its information is transferred to the market
agent, where other agents can see and possibly buy it in upcoming trading levels.
The trading agents decide which operation to trade by a random distribution
depending on the impact on their local cost function. This random function is
designed in a way, that operations, that highly impact the cost function of the
agent are more likely to be sold. In order to avoid stagnation, every operation
has a strictly positive probability.

Trading Graph. In the previous phase, it is possible for an operation to be
bought by multiple agents or that sold operations are not included in the plan
again. This means that the hypothetical schedule resulting after a certain amount
of trading levels is not necessarily valid. In order to generate a valid schedule
of lower cost, a trading graph is maintained during the execution of the trading
phase. The trading graph is a bipartite graph, its vertices are represented by
the single buy and sell actions. Edges link the actions belonging to the same
operation and are weighted with the cost difference achieved by this trade. An
exemplary trading graph is represented in Fig. 3. Every node is annotated by
the number of the trading level it was performed in. This results in a unique
identification using trading agent and trading level, as every agent trades exactly
one operation per level.

Fig. 3. Trading graph example for machine agents M1 to M3. Jobs are referred to by
letters, their operations are numbered.

Trading Match. In order to get to a valid schedule again, a so called trading
match has to be found. This matching is a subset of the trading graph and has
to satisfy the following conditions:

– A sold operation may only be bought by exactly one agent, this property is
equivalent to a matching graph.

– If a vertex of round i is part of the matching, then every vertex of the same
trading agent with level smaller than i has to be part of the graph, too.

– The overall weight of the graph has to be negative, which means that if the
trading actions belonging to the graph are all executed, the overall cost of
the system is decreasing.

In Fig. 4, two trading matchings with three trading levels are displayed, which
may result from the trading graph in Fig. 3.
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Fig. 4. Matching graphs of the trading graph in Fig. 3

Consolidation and Anytime Feature. If a trading match is found, the
according trading actions are communicated to the corresponding agents.
Because of the structure of the trading matching, the resulting schedule is valid
and the overall costs decrease; this concludes the trading round. As each round
generates another valid schedule and costs do not deteriorate after a round, the
system can take new properties of the factory into account after each round.
Algorithms that behave in such a way belong to the class of anytime algorithms,
as they can be interrupted arbitrarily and still deliver a valid result, which is at
least as good as the initial state.

Incorporated Aspects of Simulated Annealing. A main property of sim-
ulated annealing is the acceptance of system states with higher costs [18]. In
order to avoid early stagnation of the shopST algorithm, we adopted aspects of
simulated annealing. Several simulated trading rounds are clustered into a super
round. In a single super round, the quality of the schedule may also decrease by
accepting trading matchings with positive weight up to a certain limit imposed
by the temperature. The temperature decreases from round to round, similarly
to the original simulated annealing meta-heuristic. In order to not affect the
reactivity of the system, the sizes of these super rounds have to be adapted to
the frequency of disturbances of the system. For the remainder of this paper, we
will refer to the number of trading rounds in a single super round as round size.

2.3 Implementation

The shopST system has been implemented in Java. For the reactive agent plan-
ning, we used standard contract net protocol based interaction between the
agents. The agent framework was built according to FIPA standards [5] and uses
ACL messages to communicate between agents. For the transference of informa-
tion and to keep the system generic, an ontology was used, which was specifically
designed for this task. The transferred information is especially relevant for the
trading agents to compute whether they can handle a workpiece operation and
if they do, at which cost. The search for an optimal matching graph during
the consolidation phase is computationally costly and mainly contributes to the
overall runtime of the algorithm. However, its costs can be transferred into the
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network by the market agent and thus, make use of convenient resources as they
are not bound to a specific physical instance.

3 Comparative Performance Evaluation

Experimental Setting. The experimental evaluation of shopST was run on
a laptop with Intel Core i5-5300U CPU@2.3 GHz processor. In order to test
shopST performances, we pragmatically determine some optimal values for its
main parameters first. The main metrics used for the comparison are the quality
of the produced solutions and the effects the factory flexibility has on solutions.
As the criterion of solution quality, the total length of the computed schedule, i.e.
the makespan, has been taken. Regarding the testing of flexibility, we adopted its
definition from [14], i.e. the average number of machines that can execute a given
operation, and the best makespan reached as a measure for different settings of
this parameter. The solution quality of shopST was compared with that of the
most recent and successful FJSSP solving algorithms: HTSA [21], Zhang GA [33],
AIA [4], X2010 [31], MOGA [28], P-DABC [23], X2009 [30], MOPSO [13], and
HSFLA [22]. Whenever available, experimental results from the original papers
were reused. The Zhang GA had to be re-implemented due to the unavailability
of the original code, in order to run it on the same infrastructure and to support
more detailed comparisons with shopST. Every run was repeated five times on
the same instance, in order to obtain meaningful and comparable results. For
the makespan analysis, the best result was adopted, in accordance with the
general approach reported by the compared algorithms; for flexibility analysis,
the results were averaged to overcome the non-deterministic nature of the shopST
algorithm.

Three popular collections of problem instances have been used for testing,
namely:

1. Kacem et al. [15]: 4 problems with total flexibility and different number
of operations per job; every operation can be processed on any one of the
machines. The number of machines ranges from 5 to 10, number of opera-
tions from 12 to 56.

2. Brandimarte [6]: 10 problems, which were randomly generated using a uniform
distribution between two given units. The number of jobs ranges from 10 to
20, number of machines from 4 to 15, number of operations per job from 3 to
103 and number of machines per operation from 2 to 6.

3. Hurink et al. [14]: 129 test problems divided by flexibility levels into sdata,
edata, rdata and vdata subsets. The number of jobs ranges from 6 to 30 and
the number of machines ranges from 5 to 15.

Based on the number of operations, machines and flexibility, the problem
instances from Brandimarte [6] and Hurink et al. [14] datasets were grouped
as specified in Table 1. The problems were arranged by the number of machines
and operations into three groups (small, average, and large). Each group was
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Table 1. Selected problems grouped by size and flexibility from [6,14]

Size Flexibility level Problem Operations Machines Flexibility

Small Low Mk01 55 6 3

la05(vdata) 50 5 2.5

la06(rdata) 75 5 2

High Mk02 58 6 6

Average Low Mk04 90 8 3

la11(rdata) 100 5 2

la25(rdata) 150 10 2

High Mk07 100 5 5

la18(vdata) 100 10 5

Mk03 150 8 5

Large Low la26(rdata) 200 10 2

la36(rdata) 225 15 2

la31(rdata) 300 10 2

High la36(vdata) 225 15 7.5

la26(vdata) 200 10 5

Mk09 240 10 5

split further by its flexibility level into two subgroups with low and high flex-
ibility. The small size group, high flexibility sub-group presents only a single
instance, as only one small highly flexible problem is included in the aforemen-
tioned datasets. The test problems were chosen to cover to a certain extent the
full data space for every defined subgroup. It is worth to be noted that based on
the very limited extension of the Kacem dataset (4 problems) and its full flexi-
bility, the set contains only outliers with respect to the classification dimension
and consequently no representative of it was selected, as for Table 1.

The solving of each problem listed in Table 1 has been tested with different
values of round size, ranging from 1 to 5000. Based on the experimental results
shown in Table 2, one can see that there is a direct correlation between the
problem size and the round size: larger problems require larger round sizes. A
comparison of flexibility levels shows that more flexible problems require more
rounds to converge, which can be explained by the higher number of trade
options for the agents. The result of an example run of such complex, highly
flexible problems from la26(vdata) is shown in Fig. 5 in which, for readability
reasons, the range of round size is divided into representative discrete values
(10/100/500/1000/2500/5000).

Based on experiments, the other parameters of shopST have been chosen
as five trading levels, 100 super rounds and TOpC as cost function. The initial
solution for shopST has been generated by randomly assigning operations to
suitable machine agents.
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Fig. 5. Makespan convergence of la26(vdata) problem with different round sizes

Table 2. Optimal round size by size and flexibility

Size Flexibility level Optimal round size

Small Low 100

High 100–500

Average Low 1000–2500

High 2000–5000

Large Low 2500–5000

High 5000

Solution Quality. The solution qualities produced by all tested algorithms
including shopST for different datasets are shown in Tables 3 and 4. As a result,
shopST produces a solution quality that is comparable to that of the selected
representative state-of-art solution algorithms although it has not found the best
solutions most of the time. The last rows of these tables show the relative devi-
ation with respect to shopST. The relative deviation for each problem instance
is defined as

dev = [(MKcomp − MKshopST )/MKshopST ] ∗ 100%

where MKshopST is the makespan obtained by shopST and MKcomp is the average
makespan of all the other algorithms shopST is compared to. As a result, shopST
underperformed by an average of 13.5% (ranging from 0% to about 25%). Zhang
GA [33] found 8 out of 10 best solutions and for this reason was chosen for a
more detailed comparison with shopST. Please keep in mind that the notion
of iteration differs for shopST and Zhang GA [33]: While in Zhang GA one
iteration is one evolution of the population and takes around 60 ms in shopST
one iteration corresponds to one super round of simulated trading, which can
run from several seconds to several minutes depending on the round size.
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Table 3. Makespan results for Kacem et al. [15] data, best solutions in bold

Algorithms Instance 1 Instance 2 Instance 3

shopST 12 7 13

Zhang [33] 11 7 11

HTSA [21] 11 7 11

AIA [4] - 7 11

Xing [31] 12 7 11

MOGA [28] 11 7 11

P-DABC [23] 11 7 11

MOPSO [13] 11 7 11

dev(%) −6.9 0.0 −15.4

Table 4. Makespan results for Brandimarte [6] data, best solutions in bold

Algorithms MK01 MK02 MK03 MK04 MK05 MK06 MK07 MK08 MK09 MK10

shopST 47 34 229 84 196 80 164 558 342 267

Zhang [33] 40 26 204 60 173 58 144 523 307 198

Xing [30] 42 28 204 68 177 75 150 523 311 227

MOGA [28] 40 26 204 66 173 62 139 523 311 214

HTSA [21] 40 26 204 61 172 65 140 523 310 214

HSFLA [22] 40 26 204 62 173 64 141 523 311 215

AIA [4] 40 26 204 60 173 63 140 523 312 214

MOPSO [13] 40 26 204 61 173 62 139 523 310 214

dev(%) −14.3 −22.7 −10.9 −25.5 −11.5 −19.8 −13.5 −6.3 −9.3 −20.0

Execution Time. In order to compare the runtimes of shopST and Zhang GA,
both algorithms have been executed with optimal parameters on the la40(vdata)
problem instance. The experiment was run 10 times for each algorithm, and the
best results were selected. The results, as shown in Fig. 6 for shopST and in
Fig. 7 for Zhang GA, reveal that the execution time of shopST is three orders of
magnitude larger than that of Zhang GA and appears to be connected with the
high round size requirement for reaching an optimal solution by shopST.

Flexibility. For the second evaluation metric, the effects of problem flexibil-
ity on solution quality were addressed in the following experiment: shopST and
Zhang GA were executed on problems with different degrees of flexibility. In
order to simulate different levels of flexibility, an original non-flexible problem
la40(sdata) from Hurink dataset was modified by the application of a new para-
meter P , representing the probability that a particular machine can execute a
particular operation. This is to simulate flexible manufacturing environments
with multi-purpose machines. The results shown in Fig. 8 reveal that shopST
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Fig. 6. Execution time of shopST

Fig. 7. Execution time of Zhang et al. [33]
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Fig. 8. Results of flexibility test on shopST

significantly improves its solution quality for more flexible problems, and out-
performs Zhang GA in this regard. In particular, Zhang GA shows a decrease in
its performance with increasingly flexible problems, as depicted in Fig. 9. Allow-
ing more machines to execute particular operations results in an increase in the
problem search space, that increases the probability for Zhang GA to be stuck
in a local minimum, hindering its capability of converging to a globally optimal
value. ShopST, on the other hand, works solely on flexible problems, because
exchanges between agents are only enabled if multiple machines can exchange
operations. As a consequence, a more flexible problem enables a larger number
of exchange points and therefore the performance of shopST greatly improves
with a greater flexibility of the multi-purpose machines.

One main strength of shopST is that it excels in solving highly flexible JJS
problems with agent-based simulated trading. Besides, it natively adapts online
to dynamic events that affect the problem that is currently being solved with-
out the need of a full restart. These advantages, however, come at the cost
of a comparatively higher execution time. Overall, shopST can be considered
as a valuable solution for job-shop scheduling in highly flexible and dynamic
cyber-physical production systems and environments, if there are no hard time
constraints for solution availability.
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Fig. 9. Results of flexibility test on Zhang GA [33]

4 Related Work

For the comparative performance evaluation of shopST, we selected different
types of state-of-the-art FJSS problem solving approaches including multi-agent
system based ones. The solutions qualities of shopST are close to those of these
approaches, which utilize genetic algorithm, artificial immune, knowledge-based
ant colony optimization, Pareto-based discrete artificial bee colony, modified dis-
crete particle swarm optimization, shuffled frog-leaping, hybrid tabu search. Of
course, there are many other agent-based approaches for dynamic and distributed
job-shop scheduling in manufacturing [2,11,12,17,19,20,29,32]. For example,
[29] presents an actor-based approach to job-shop scheduling using Lagrangian
relaxation which may adapt its schedule after dynamic events quickly but no
values are given for comparison. BnB-ADOPT [32] is a memory-bounded asyn-
chronous distributed constraint optimization problem solver that uses the agent
framework of ADOPT. It performs exceptionally well in regard to runtime and
solution quality but, in contrast to shopST, the dynamic constrained optimiza-
tion problem description has to be explicitly encoded for every agent in prior.
However, to the best of our knowledge, shopST is the first agent-based approach
with simulated trading used to solve the class of FJSS problems defined above.
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From the results of the comparative experimental testing of flexibility it became
evident that shopST has its general strength in highly flexible manufacturing
environments with multi-purpose machines.

Scheduling approaches can be characterized as constructing a schedule vs.
optimizing a given schedule. In the first case an (ideally) exact solution for a given
problem is generated (cf. [24] for a thorough overview of classical approaches).
Optimization approaches improve an already existing schedule with respect to a
cost function and are in general based on heuristics or meta-heuristic procedures
and generate solutions iteratively, at the expense of non-optimal schedules [27].
A related field is online scheduling [26], where information about the problem
domain is restricted (e.g. incoming jobs are only known when they arrive and
processing times only after a job is completed). shopST addresses the problem
of the optimization and repair of schedules in flexible and dynamic manufactur-
ing environments with multi-purpose machines. Closely related approaches are
based on (meta-)heuristics, since standard algorithms assume complete knowl-
edge about the problem domain which usually implies a restart of the algorithm
after a change of the problem domain. In recent years, a number of job-shop
scheduling approaches based on meta-heuristics have been proposed for this
purpose. [6,14] used tabu search for solving the FJSS problem, while [8] com-
bine approaches using tabu search with simulated annealing. Several approaches
for the JSS and FJSS based on evolutionary algorithms have also been devel-
oped (for a survey see e.g. [9]). Genetic algorithms such as those developed by
Zhang et al. [33] or Xing et al. [30], for example, are an efficient way for schedule
optimization. However, they have two major drawbacks: The first is that their
information structure is functional and does not take advantage of an underly-
ing agent encapsulation. The other is that they lose performance and solution
quality in more flexible factory layouts, a use case which gets more and more
common.

5 Conclusions

We presented a novel approach, shopST, that applies agent-based simulated
trading to solve dynamic FJSS problems. shopST complements locally optimiz-
ing reactive agent scheduling with long-term optimization of the valid schedule
via simulated trading. The results of a comparative experimental evaluation
revealed that shopST is particularly competitive in highly flexible manufactur-
ing environments with multi-purpose machines. Future work includes further
investigation of robustness against disruptive events and performance trade-offs
compared to other negotiation-based approaches when applicable to the same
problem.
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Abstract. In the research project NgMPPS - DPC (Next-Generation
Multi-Purpose Production Systems - Distributed Production Control) a
distributed, actor-based system has been realised, that uses Lagrangian
Relaxation for optimising Flexible Job Shop Scheduling with Transport
Times (FJSSTT) problems. The design of the architecture builds on
the actor model. This design allows to combine operations research with
distributed computing and is driven by the mathematical formulation of
the Lagrange Relaxation approach. Runtime experiments with the initial
implementation of the architecture have been done. The performance of
the multi actor-based implementation is compared to other approaches
finding solutions to the NP-hard FJSSTT problem.

Keywords: Lagrangian relaxation · Actor system · Schedule
optimisation

1 Introduction

Future Enterprise Systems will be S∧3 Enterprises (Sensing, Smart and Sus-
tainable Enterprise) [42]. These systems form complex adaptive socio-technical
systems, where machines, workers are networked and through the sensing capa-
bilities are able to identify changing environmental conditions. The (assumed)
built-in smartness supports swift adaptation to changing (customer) demands.
The interconnection of the systems parts make the S∧3 Enterprise System a Com-
plex Adaptive System. However, business performance is not only measured in
terms of adaptability or resilience but also using traditional performance crite-
ria of production time and manufacturing costs. This networked system is in
the need of an approach that supports maintaining high quality processes and
optimal production schedules while still be able to adapt to disturbances.

In the Next-Generation Multi-Purpose Production Systems - Distributed Pro-
duction Control (NgMPPS - DPC) project algorithms are developed for distrib-
uted optimisation of manufacturing schedules in production networks. A focal
point is dynamic rescheduling, where disruptions such as machine failures or
transport delays impede the execution of planned schedules, and adapted sched-
ules have to be calculated in real time.
c© Springer International Publishing AG 2017
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The presented distributed schedule optimisation approach builds on a formal
mechanism called Lagrangian Relaxation which may be interpreted as a mar-
ket price mechanism for optimisation. That mechanism is implemented using a
distributed architecture. The NgMPPS - DPC actor-based architecture design was
introduced earlier [41]. In this paper we go into details with respect to the under-
lying mathematical formulation, the detailed design and report on the imple-
mentation of the system and its runtime behaviour and computational results.
The scheduling performance of the system is compared to other approaches
using published, open problems sets and solution data. The above mentioned
re-scheduling mechanism is currently under development and will be presented
in the future.

This discussion is organised in the following way. Section 2 introduces the
algorithmic approach en détail. It is followed by a presentation of the software
design, including the rationales for using an actor based architecture. With
respect to runtime behaviour we compare the quality of results and perfor-
mance with other systems and report on solutions found to the Flexible Job
Shop Scheduling with Transport Times (FJSSTT) problem.

2 Lagrange Relaxation

In this section, first the problem and then the mathematical formulation of the
solution are presented. As mentioned above, focus here is on the currently imple-
mented formulation of the static problem. This formulation (and its implemen-
tation) is the basis for later work that will enhance it for dynamic re-scheduling.

2.1 Schedule Optimisation

The overall optimisation scenario targeted by this architecture is one of distrib-
uted manufacturing facilities engaged in the production of goods. Each order for
a good, called job (a), needs different machines, where (b) each of the opera-
tions necessary to realise a job may be done on one or more machines. Between
facilities (and hence between machines) transport times exist (c), and finally the
distribution of all job-operations to machine should be optimal with respect to
being on time.

The optimisation problem is to be solved, respecting the following
constraints.

– Processing time constraints: Every operation requires a deterministic,
machine-dependent process time.

– Precedence constraints of job operations: Simple, chain-like precedence rela-
tions between operations belonging to the same job are modelled.

– Machine capacity constraints: At every time slot only one operation may be
processed on a single machine.

– Operations have to be processed non-pre-emptively: Once an operation is
started it may not be interrupted.
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The above scenario is called Flexible Job Shop Scheduling with travel times
between machines (FJSSTT). This optimisation problem is a computational
problem which is a complex combinatorial problem, more specifically a non-
deterministic polynomial-time hard (NP-hard) problem. This implies, that even
for a small number of jobs and machines the determination of the optimal sched-
ule becomes practically infeasible [20,24].

2.2 Formal Model

In the following a mathematical formulation for the FJSSTT problem with min-
imisation of total weighted tardiness, as objective function, is described. An
integer program for the FJSSTT problem is developed, and Lagrangian relaxation
is applied by relaxing machine capacity constraints. The resulting Lagrangian
problem is decomposed into independent job-level sub-problems.

Problem Formulation. This formulation is based on an integer programming
formulation by Wang et al. [37]. I jobs with individual due dates are scheduled
on M available machines, where jobs are immediately available. The set of jobs I
is {0, 1, ..., I −1} and each job i consists of a set of Ji non-preemptive operations
(Ji = {0, 1, ..., Ji − 1}), where operation j of job i is denoted as (i, j).

We regard simple, chain-like precedence constraints amongst operations
belonging to the same job. The set of machines M is {0, 1, ...,M −1}. The set of
alternative machines for operation (i, j) is denoted as Hij , with machine-specific
processing times.

The scheduling horizon consists of K discrete time slots, the set of time
slots K is {0, 1, ...,K − 1}. The beginning time of an operation is defined as the
beginning of the corresponding time slot, and the completion time as the end of
the time slot.

The following parameters are defined for a specific problem instance. Decision
variables span the solution space for the scheduling problem.

Parameters

Di, i ∈ I: Job due dates.
Pijm, i ∈ I, j ∈ Ji,m ∈ Hij : Processing time of operation (i, j) on machine m.
Rmn,m ∈ M, n ∈ M: Travel time from machine m to machine n.
Wi, i ∈ I: Job tardiness weight.

Variables

δijmk, i ∈ I, j ∈ Ji,m ∈ M, k ∈ K: The binary variable δijmk is 1, if operation
(i, j) is processed on machine m at time slot k, and 0 otherwise.

bij , i ∈ I, j ∈ Ji: Beginning time of operation (i, j).
cij , i ∈ I, j ∈ Ji: Completion time of operation (i, j).
mij ∈ Hij , i ∈ I, j ∈ Ji: The machine assigned to operation (i, j).
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The decision variables δijmk, bij and cij are not independent, the following rela-
tion holds:

δijmk =

{
1 if bij ≤ k ≤ cij

0 otherwise.
(1)

The optimisation objective is the minimisation of the weighted sum of job tar-
diness, the optimisation problem is then

Z = min
bij ,mij

∑
i∈I

WiTi, (2)

with
Ti = max(0, Ci − Di), (3)

where Ci is the completion time for job i, i.e. Ci = ci,Ji−1.

Constraints. Equation (2) has to be solved subject to a number of constraints.
The machine capacity constraints are expressed as∑

i∈I

∑
j∈Ji

δijmk ≤ 1,∀m ∈ M,∀k ∈ K. (4)

Equation (4) states that at each time slot a machine cannot process more than
one operation. Processing time constraints define the relation between beginning
time and completion time of operations:

cij = bij + Pijm − 1,∀i ∈ I,∀j ∈ Ji,∀m ∈ Hij . (5)

The precedence constraints between job operations are

bij ≥ ci,j−1 + 1 + Rmi,j−1mij
,∀i ∈ I,∀j ∈ Ji. (6)

The term “1” in (5) and (6) occurs due to the definition of operation begin-
ning time and completion time, respectively. The precedence constraints consider
travel times Rmn between machines. For operations (i, j − 1) and (i, j) Eq. (6)
states that the beginning time of (i, j) cannot be earlier than the arrival time at
machine mij . We assume immediate availability of transport resources to move
workpieces corresponding to jobs between machines. In a production network,
the travel time between machines located in different job shops covers transport
between the shops as well as shop-internal logistics activities.

The occurrence of the term Rmi,j−1mij
in (6) renders the constraint non-

linear. This non-linearity can easily be resolved, in fact the mathematical model
can be formulated as a linear integer program, which is outside the scope of this
paper.
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Lagrangian Relaxation. With respect to the problem solving approach,
Lagrangian relaxation (LR) is used. In this approach hard problems are divided
into multiple, much easier to solve, problems, by inclusion of constraints in the
objective function. The objective function of the original problem is formulated
with the relaxed constraints multiplied with a Lagrange multiplier.

These multipliers are often interpreted as shadow prices of the corresponding
constraints. The values indicate how much it costs to violate a constraint. In
addition to this, using this interpretation allows to think about a distributed
architecture that implements the mathematical formulation.

The relaxed problem is easier to solve than the original problem. An optimal
solution to the relaxed problem provides a lower bound (for minimisation prob-
lems) on the optimal objective value of the original problem. However, the sim-
plification comes with a price: in addition to the original set of decision variables
we have to determine the values for the Lagrange multipliers. The multiplier
values are determined by solving the Lagrangian dual problem, with Lagrange
multipliers being the dual variables. Due to the relaxation of constraints, solu-
tions to the dual problem are generally infeasible with respect to the original
problem. Hence only a lower bound is found and a feasibility repair mechanism
has to be applied.

In flexible job shop scheduling, there are two possible constraint relaxation
approaches: job-operation precedence constraint relaxation and machine capac-
ity constraint relaxation. The relaxation of precedence constraints and decompo-
sition into independent machine-level subproblems is hampered by the structure
of the precedence constraints (6), as the term Rmi,j−1mij

couples the precedence
constraints across machines. The relaxation of machine capacity constraints (4)
in Z results in the following relaxed problem.

ZD(λ) = min
bij ,mij

∑
i∈I

WiTi +
∑

m∈M

∑
k∈K

λmk

⎡
⎣∑

i∈I

∑
j∈Ji

δijmk − 1

⎤
⎦ , (7)

where λ is the vector of Lagrange multipliers.

λmk,m ∈ M, k ∈ K: Lagrange multiplier for time slot k on machine m.

A solution to (7) has to be found, constraint by (5) and (6). For a given pair
of indices m, k the term in brackets is positive if the capacity constraint for time
slot k on machine m is violated. ZD(λ) can be reformulated as

ZD(λ) = min
bij ,mij

∑
i∈I

WiTi +
∑
i,j

cij∑
k=bij

λmijk −
∑
m,k

λmk. (8)

The structure of ZD(λ) allows the decomposition into independent job-level
subproblems

Si = min
bij ,mij

WiTi +
∑
j∈Ji

cij∑
k=bij

λmijk. (9)
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Si is a one job scheduling problem and can be characterised as follows, cf. [8].
A job requires the completion of a set of operations, and each operation can be
performed on one of several alternative machines. The job operations must sat-
isfy a set of chain-like, non-linear precedence constraints (6), considering travel
times between machines. Furthermore processing time constraints (5) have to
be satisfied. Each machine has a marginal cost for utilisation at each time slot
within the scheduling horizon under consideration. The scheduling problem is to
determine the machine and the completion time of each operation of the job to
minimise the sum of job tardiness and the total cost of using the machines to
complete the job, where the cost of using machine m at time k is given as λmk.

The one job scheduling problem with standard precedence constraints is
not NP-hard, and it can be efficiently solved with dynamic programming, cf.
[6,8,21,37].

With the introduction of subproblems Si, the relaxed problem can be
reformulated,

ZD(λ) =
∑
i∈I

Si −
∑
m,k

λmk. (10)

The Lagrangian dual problem, optimising the Lagrange multiplier values, is

ZD = max
λ

ZD(λ). (11)

In [12] it is shown that ZD(λ) is concave and piece-wise linear, thus hill-climbing
methods like subgradient search can be applied to solve the dual problem.

This formal model, requires an architecture that supports the advantage of
solving subproblems concurrently.

3 Actor-Based Design

In this section we discuss possible architectural approaches that have been con-
sidered for implementation. The chosen design paradigm needs to be capable to
allow a straight forward mapping from the formal Lagrange Relaxation to the
system’s computational units.

For the NgMPPS design the Multi-Agent Systems, Holonic and Multi Actor
System approach have been analysed for their suitability to implement the formal
model.

All three general approaches are discussed in the following for their suitability
to implement the formal model.

3.1 Decentralised Systems

Multi-agent-systems (MAS) have been applied in a number of application areas
within the domain of manufacturing with respect to adaptability and optimisa-
tion under disturbances.
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MAS can be used for planning and control of complex adaptive systems such
as factories [38]. MAS technologies allow to realize Complex Adaptive Systems
(CASs) [18].

Multi Agent Systems are systems composed out of autonomous (sub-)systems
called agents [43]. Agents are capable of sensing their environment. Agents have
a name, address, provide a function or service, are autonomous, smart, learn
and are able to interact, communicate with other agents and their environment
enlarge [17].

In a multi agent system there are infrastructure services provided through the
environment. Multi agent system services support agents in their doing, being.
One well known service is the Directory Facilitator [11] which has a well-known
address, and which may be queried about agents providing a certain service.
Hence, the identity and address of an agent may be discovered at runtime. This
particular functionality increases the adaptability of the overall system. It is
possible to replace agents with agents having the same capabilities.

A similar approach to MAS are multi-actor systems, where actors are more
lightweight and are attributed less intelligence, when compared to agents. In
contrast to agents, do actors posses a lower level of intelligence, less knowledge
processing capabilities. Actors are seen to be more reactive where agents are
seen to be pro-active [19].

The term Actor as a model for decentralised problem-solving was first coined
by Hewitt [15] and a detailed architecture was developed by Agha [1]. An actor
system is composed of independent actors that coordinate through message pass-
ing. Actors have a message-inbox and a set of behaviours where the active behav-
iour determines the reaction to a message. An actor is autonomous and may send
messages to other known actors (identity and address of the receiver is to be
known), create new actors and determine its own subsequent behaviour [19]. A
typical actor system is hierarchically organised with parent - child relationships.

Within the intelligent manufacturing systems domain, also the holonic app-
roach is of importance [29]. A holonic system is composed out of systems called
holons. The word holon is composed from the Greek word hólos, meaning the
entire whole, and the suffix on, indicating that it is a part or a particle. The con-
cept holon signifies that this system is a closed whole and a part of something
bigger at the same time [22]. In a holonic system, a holon is an autonomous self-
governing sub-system, integrating other (sub-)holons. The other way around, a
group of holons form a (super-)holon. This nested structure of holons composed
out of holons forms a so called holarchy. However, control is not imposed from
the top to the bottom but the “lower” holons are the source of resources and
power for the higher (super-)holons.

The holonic view places emphasis on the dynamics, and holons may be
created dynamically according to the requirements. For example business net-
works can be seen as a temporarily existing holon where enterprises are holons
within the network-holon. Each enterprise itself consist of departmental holons,
and so on.
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The communication-based interaction of the above briefly discussed
autonomously acting systems (agents, actors, holons) facilitates adaptability.
Each unit is independent and through the message passing, communication inter-
face coupled with other units. However, neither the dynamic behaviour of the
individual units nor the message exchange protocol is pre-determined. Adapt-
ability is observed on both levels, the overall systems level and the agent level.
This leads to complexity and emergent behaviour and to an overall complex
adaptive system [18]. Loose coupling through messages allows emergent behav-
iour on the overall systems level, where here behaviour cannot be predicted as
it is not directly understood by observing the individual units’ behaviour. These
properties are of importance when adaptation of the overall system is needed.

Also a mix of the above paradigms is possible. Due to their flexibility and
adaptivity, multi agent systems have been organised using holonic principles. The
terms holonic agent and holonic agent system refer to agent systems organised
according to the holonic paradigm [24].

The important aspect of the architectural design is that the active units
have to fit the Lagrange Relaxation model. Overall the system’s algorithm has a
particular structure where subproblems are solved concurrently, but after each
round of subproblem solving the partial solutions need to be combined.

The structural nature of the problem solving algorithm is hierarchical, but
the encapsulation in holons is not straight forward, as the same machines are
assigned to multiple jobs. That lead to the conclusion that a multi-actor system
is conceptually the closest to the algorithmic formulation.

3.2 Detail Design

We have chosen akka [27] as actor system for the implementation of the above
architecture. That has influence with respect to the structural organisation of
the actor system:

“Akka implements a specific form called “parental supervision”. Actors
can only be created by other actors—where the top-level actor is provided
by the library—and each created actor is supervised by its parent. This
restriction makes the formation of actor supervision hierarchies implicit
and encourages sound design decisions. It should be noted that this also
guarantees that actors cannot be orphaned or attached to supervisors from
the outside, which might otherwise catch them unawares. In addition, this
yields a natural and clean shutdown procedure for (sub-trees of) actor
applications.” [27]1

Figure 1 shows the actors, their parent-child relationships and Fig. 2 the messages
used for coordination.

There is a single root actor (Fig. 1) started by the user. It starts the resource
manager actor who is responsible for starting resource actors, representing
machines and transporters. The resource actors are configured with process times
1 http://doc.akka.io/docs/akka/current/general/supervision.html.

http://doc.akka.io/docs/akka/current/general/supervision.html
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Fig. 1. NgMPPS actor architecture

for particular job operations and travel times between machines. The root agent
also starts the feasibility repair actor, being responsible for repairing the infea-
sible schedules resulting from solving the dual problem ZD. For each FJSSTT
problem to be solved, a corresponding FJSSTT actor is started. This hierarchy
allows to distribute know-how about different aspects to different branches of
the structure.

From an abstract behavioural point of view, an overview is given in Fig. 2.
This diagram shows how the individual actors interact to solve the overall prob-
lem. This interaction diagram hence shows how the above described mathemat-
ical formulation is distributed among a of actors. The used subgradient search
method is an adaptation of the gradient method [4,12]. Due to the usage of
subgradients, the method is applicable to nondifferentiable functions, like the
Lagrangian dual function ZD(λ) in Eq. (7). For the current version, we have
implemented two flavours of this subgradient search in the architecture: a stan-
dard subgradient search method requiring ZD(λ) to be fully optimised, and
additionally a surrogate subgradient method which allows that ZD(λ) is only
solved approximately.

Initial interactions of the actors shown in Fig. 2 concern the creation of the
above described actor hierarchy (Fig. 1). In order to solve the dual problem ZD,
a subgradient search actor is created. For each job in a FJSSTT problem a job
actor is created. It is configured to use a particular subgradient search actor,
and it is also introduced to resource actors knowledgeable of process and travel
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times. The main task of an actor representing job i is to solve a subproblem
Si. We have implemented two problem solving methods for Si: (1) a dynamic
programming algorithm for exact solutions, based on [37], and (2) a variable
neighbourhood search for approximate solutions, allowing to solve larger problem
instances than with dynamic programming. We refer to [14] for an introduction
to variable neighbourhood search.

The subgradient search procedure is iterative: the vector of Lagrange multi-
pliers λ is calculated based on the subgradients in the current iteration, and λ
is communicated to the job actors. The subgradient γl

mk can be interpreted as
the violation of the capacity constraint for machine m at time slot k in iteration
l, more formally

γl
mk =

∑
i∈I

∑
j∈Ji

δ∗
ijmk − 1. (12)

The term δ∗
ijmk denotes the optimal value for δijmk in iteration l.

The job actors use the updated Lagrange multipliers to solve their subprob-
lems, and send their solutions to the subgradient search actor. With the job
solutions the subgradient search actor compiles the complete, generally infeasi-
ble schedule for the FJSSTT problem and calculates new subgradients.

The FJSSTT actor receives the infeasible schedule from the subgradient search
actor and asks the feasibility repair actor to generate a feasible schedule. For
feasibility repair we have implemented a list scheduling heuristic based on [16].
Machine actors are informed about the feasible schedule, and a machine actor is
informed about the jobs that are scheduled on the machine.

4 Runtime Behaviour

As mentioned above, for the implementation the akka actor library2 had been
used. The general implementation had been done in java. Initially a parallel
threading approach did exist. That was re-implemented to the actor-based archi-
tecture. Having the source code of both systems allowed to also benchmark run-
time performance.

The overall performance may be measured with respect to the found solution
quality and with respect to runtime-performance (i.e. how fast a solution is
found). The problem instances of a particular class identified as “WT” (without
TT; transport times) are based on [5] and are available online [28]. The WT set
with transport time (TT) are novel generated problem sets based on the ones
with similar name. Details on the generation process are reported in [13].

Not going into details, the problem instances consist of the following number
of elements. WT1 consists of 10 Jobs, 5 Machines, and 5 Operations. WT2
consists of 20 Jobs, 5 Machines, 5 Operations. Transport times in this case are
between 0,09 and 1,1 of the minimum make span of the Jobs in the respective
sets. Transport times are assigned randomly (cf [13]).

2 c©Lightbend Inc. http://akka.io.

http://akka.io
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Fig. 2. NgMPPS actor interaction - sequence diagram

UB (upper bound) is the best feasible solution produced. The global optimum
schedule will be equal or better than the UB. With respect to TWT (Total
Weighted Tardiness) better means lower values. In addition to calculating the
UB, the taken approach finds the LB (lower bounds). UB and LB is a corridor,
within which the global optimum really is. If UB equals LB it is proven, that
the optimum is found.

4.1 Solution Quality

The best known optimal values (UB*) for the WT1, WT2 instances in Table 1
are based on a shifting bottleneck implementation [32]. The concrete reference
problems have been made available as open data set (see [28]). With respect to
the found solution quality, the UB and LB produced by the NgMPPS-DPC system
for the WTx instances are above and below the UB*.

The best known values for WTxTT problem instances reported in Table 1
have been generated by a simple list scheduling algorithm. This is due to the
novelty of the problem instances and the need to establish an initial baseline
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for our system. That simple algorithm produced results (UB*) with low quality.
Therefore the improvement is very high with respect to the best known upper
bound in WT with travel times (WT1TT, WT2TT).

Table 1. Benchmarking NgMPPS-DPC with the best known Upper Bound (UB*).

Test instance Id UB* Max LB Min UB

WT1 57 43,9 61,0

WT1TT 138 58,0 86,0

WT2 252 127,8 274,0

WT2TT 911 213,3 412,0

Table 1 shows that the solution quality produced by the NgMPPS-DPC sys-
tem for WT1, WT2, is on par with the solutions documented in the litera-
ture as best known solutions [28,32]. For the instances with transport times
(WT1TT,WT2TT, we provide now initial values of Upper Bounds. The prob-
lem description and the transport matrix used to calculate the values are made
available on the web3 and will (hopefully) serve as benchmarks for colleagues.

4.2 Runtime Performance

Since the tackled problem is of NP-hard nature, not only the solution quality
found is of interest, but also the runtime performance. That is an indicator, if the
used approach is scalable on a single machine, and later on a network of machines.
If the overhead of the actor library on a single machine has a negative impact
on runtime performance that would limit the number of times the subgradient
search may be executed in a particular time.

Table 2 shows the difference of the java parallel threads and akka actor system
implementation on a single machine.

Since the system was implemented by the same team, we where able to test
it on the same hardware for comparable results. This comparison was done to
estimate the impact of using an actor library on the runtime performance. The
results did surprise us.

Most of the time the solution quality found by the akka system is better or
on par with the parallel implementation. However, the runtime performance of
the actor system is always better than with the parallel system, i.e. less time is
needed to find a solution.

In this comparison the instances with transport times are much more relevant
than in the solution quality comparison shown above in Table 1.

We have expected the akka implementation to perform worse than the thread-
ing implementation. With respect to akka performing better to java threads
3 https://www.profactor.at/en/research/industrial-assistive-systems/distributed-info

rmation-systems/.

https://www.profactor.at/en/research/industrial-assistive-systems/distributed-information-systems/
https://www.profactor.at/en/research/industrial-assistive-systems/distributed-information-systems/
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because of coding skills, this can be ruled out to a great extend, due the fact
that the same team has implemented both systems.

We attribute this performance to the effective handling of threads in akka.

Table 2. Parallel vs. Actor Performance for total weighted tardiness problems;
LB. . . Lower Bound; UB. . . Upper Bound; Par. . . Parallel Impl.; Act. . . Actor Impl.;
WTx[TT]. . . without [with Transport Times]; emph marks the better value

Test instance Max LB Min UB Time [s]

Par Act Par Act Par Act

WT1 43,9 43,9 57,0 61,0 51,3 48,7

WT1TT 58,1 58,0 86,0 86,0 27,8 27,3

WT2 127,8 127,8 284,0 274,0 50,7 48,8

WT2TT 213,1 213,3 421,0 412,0 49,5 47,8

5 State of the Art

In this section we first focus on methods for decentralised scheduling, with an
emphasis on distributed artificial intelligence (DAI) methods. At the end of this
section we discuss briefly job shop scheduling.

From a historic DAI point of view are initial developments for advanced
production planing and scheduling based on the holonic idea, followed more
recently by Multi Agent Systems approaches. Several MAS prototypes for net-
worked planning and their implementation in production environment were doc-
umented in the scientific literature [26,30,31]. A detailed overview of industrial
MAS implementation is given in [25,26] A well-known example of an MAS for
adaptive production control is the myJoghurt Demonstrator at Technical Uni-
versity Munich4 [36].

Agent technology has been applied to manufacturing enterprise integration,
supply chain management, manufacturing scheduling and control, material han-
dling and logistics service provision [7,20,25]. Multi Agent Systems negotiation
is used as a means to reduce the number of alternative solutions and to distribute
the problem solving.

In several approaches, the holonic paradigm was applied to address the open-
ness and dynamism of enterprises and enterprise networks [33,35,39].

Adaptive and distributed approaches for (re)scheduling of production sched-
ules are discussed in the following with focus on Multi Agent Systems, Holonic
Systems, and Actor based systems.

An important holonic architecture for distributed manufacturing execution
is the Product Resource Order Staff Architecture (PROSA) cooperative control
reference architecture [30,35].
4 http://i40d.ais.mw.tum.de/.

http://i40d.ais.mw.tum.de/
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The PROSA architecture allows a separation of concerns and continuous
replanning in the manufacturing domain. This architecture has been built to
allow solving large and complex problems by allowing solutions to emerge com-
bining sub-solutions [34]. The PROSA architecture has been used as a basis for
ant-based algorithms for production plans that are constructed over time [33].
The ant and agent types existing in the system are product ants (knowing what
operations are needed in which sequence for a product), resource agents (know
the current state and capability of a particular resource), order ants (in charge
for scheduling a particular operation on a particular machine for a order of a
particular product). Staff agents support the other agents/ants in their activi-
ties. Product ants run in the virtual production system upstream and leave a
pheromone trail of possible routes for order ants. These run downstream and use
these routes. Order ants determine possible schedules for customer orders. One
of these schedules may be chosen at the end of the planning process. PROSA
supports emergent and robust solutions. For example if a new machine is intro-
duced, it will be discovered by the ants and new pheromone trails will start to
appear which signify to the order agents new routes. When a machine breaks
down order agents are not able to follow a given path as the broken machine inter-
rupts the route. Since now the pheromone trail can not be refreshed anymore,
the pheromones vanish and product, order ants search for new routes leaving
new pheromone trails where the best trail is used when orders are produced.

PROSA has been extended towards ensuring adaptive behaviour of agent-
based manufacturing control systems by introducing adaptive staff agents [44].
Staff agents communicate across different production facilitates and modify para-
meters used by the other agents or ants in order to guide their decision process
and search for an optimal solution.

ADACOR2 is a distributed scheduling architecture also based on a holonic
modelling approach [3,24]. The overall problem is divided into subproblems
and subproblems are solved taking the level of granularity into account. In
ADACOR2 each scheduler is composed from a swarm of schedulers. ADACOR2

is capable of self-organising the macro structure based on behaviour changes
of holons. The other way around, the behaviour of holons is influenced by the
global structure.

Multi Agent Systems technology is capable of realising reactive schedule exe-
cution systems. Approaches exist that support schedule execution, advanced
planing and optimisation for manufacturing networks and supply chains. In the
IntLogProd project [20] a distributed infrastructure has been implemented that
makes of FIPA contract net protocols [11] for scheduling production machines
and transport for simple products in a production network. Optimisation is done
on multiple levels. On the Network level partial solutions are combined focusing
on cost considerations. The partial solutions in turn are optimised using local
strategies. Each job shop (manufacturing facility) may be optimised according
to its own goals [40].

A hierarchical approach for a centralised control of distributed manufacturing
systems which share (some) resources is realised by the DSCEP framework [2].
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This system supports indirect cooperation between customer agents (C) and
producer agents (P). Where each customer agent represents one order and each
producer agent represents one resource (machine or human). Synchronisation
between c and p agents is facilitated by the environment agent e. The overall
system is controlled by a supervisor agent S. Through the introduction of virtual
c and virtual p agents a distributed system may be designed.

The work of [23] deals with a classical job shop scheduling problem, with total
weighted tardiness as the objective function. Applying Lagrangian Relaxation,
machine capacity constraints are relaxed, and the resulting Lagrangian function
is decomposed into independent one job scheduling problems. Auction protocols
are used to solve the dual problem, determining optimal values for the Lagrange
multipliers. In [9,10] the authors tackle a dynamic scheduling problem, where
machine failures and new jobs are regarded as disruptions during schedule exe-
cution. The approach is similar to [23], with one fundamental difference: while
in [23] one auctioneer is coordinating the jobs, in [9,10] each machine acts as an
auctioneer. As soon as a machine becomes inactive, an auction is initiated, with
all jobs requiring the machine as bidders.

6 Conclusions and Next Steps

We have presented the mathematical foundation, the actor based design, and
performance results of the NgMPPS-DPC project. For evaluating the solutions
produced by the implementation, we use open data problem instances [28]. The
results with respect to solution quality are promising and are on par with state
of the art solution approaches of the same problem. Additionally the runtime
performance of the actor implementation is better than expected. We compared
our system on a single machine to a java threading approach, and found good
solutions in shorter time.

Currently the system is extended to be able to handle machine failures and
dynamic rescheduling events. After having optimised a schedule, it is executed.
During execution, disrupting events like machine failures occur. These events
lead to deviations in process/travel times. As a consequence, the planned sched-
ule can not be further executed. Dynamic rescheduling catches the disruptions
and calculates an adapted feasible schedule: a resource actor detects a disruption
and informs the job actors which are affected by the disruption. For job i, the
deviating process/travel times and the reduced set of operations to be sched-
uled are reflected in a subproblem S ′

i, with Lagrange multipliers from the final
iteration of the preceding subgradient search. Affected job actors solve subprob-
lems S ′

i and send the solutions to the subgradient search actor, which starts a
new subgradient search. Depending on the severity of the disruption, and the
changes in job-level schedules, it is likely that in the course of the new search
procedure other jobs than the initially affected are forced to re-calculate their
schedules. This effect propagation of a disruption may be deliberately limited,
e.g. by explicitly “freezing” the schedules of high-priority jobs.

As mentioned above, the system’s performance will be evaluated in a network
environment with multiple limited computational devices executing part of the
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overall algorithm. Runtime performance impact of different configuration para-
meters will be evaluated. The problem description (jobs, operations, machines)
and the according transport time matrices are published on the web5. When new
results become available these will also be documented there.

Acknowledgement. The research leading to these results is funded by the Aus-
trian Ministry for Transport, Innovation and Technology www.bmvit.gv.at through
the project NgMPPS-DPC: Next-Generation Multi-Purpose Production Systems – Decen-
tralised production control based on distributed optimisation.

References

1. Agha, G.A.: Actors: a model of concurrent computation in distributed sys-
tems. Ph.D. thesis, Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology (1985). http://oai.dtic.mil/oai/oai?verb=getRecord&
metadataPrefix=html&identifier=ADA157917

2. Archimede, B., Letouzey, A., Memon, M.A., Xu, J.: Towards a distributed multi-
agent framework for shared resources scheduling. J. Intell. Manuf. 25(5), 1077–1087
(2013). http://dx.doi.org/10.1007/s10845-013-0748-8

3. Barbosa, J., Leitão, P., Adam, E., Trentesaux, D.: Self-organized holonic multi-
agent manufacturing system: the behavioural perspective. In: 2013 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC), pp. 3829–3834,
October 2013

4. Bragin, M.A., Luh, P.B., Yan, J.H., Yu, N., Stern, G.A.: Convergence of the sur-
rogate lagrangian relaxation method. J. Optim. Theory Appl. 164(1), 173–201
(2014)

5. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search.
Ann. Oper. Res. 41(3), 157–183 (1993)

6. Buil, R., Piera, M.A., Luh, P.B.: Improvement of lagrangian relaxation convergence
for production scheduling. IEEE Trans. Autom. Sci. Eng. 9(1), 137–147 (2012)

7. Camarinha-Matos, L., Afsarmanesh, H.: Elements of a base VE infrastructure.
Comput. Ind. 51(51), 139–163 (2003)

8. Chen, H., Chu, C., Proth, J.M.: An improvement of the Lagrangean relaxation
approach for job shop scheduling: a dynamic programming method. IEEE Trans.
Robot. Autom. 14(5), 786–795 (1998)

9. Dewan, P., Joshi, S.: Implementation of an auction-based distributed scheduling
model for a dynmaic job shop environment. Int. J. Comput. Integr. Manuf. 14(5),
446–456 (2001)

10. Dewan, P., Joshi, S.: Auction-based distributed scheduling in a dynamic job shop
environment. Int. J. Prod. Res. 40(5), 1173–1191 (2002)

11. FIPA - Foundation for Intelligent Physical Agents: Standard FIPA Specifications
(2005). http://fipa.org/repository/standardspecs.html, http://www.fipa.org

12. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming
problems. Manage. Sci. 50(12 Suppl.), 1861–1871 (2004)

5 https://www.profactor.at/en/research/industrial-assistive-systems/distributed-info
rmation-systems/.

www.bmvit.gv.at
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA157917
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA157917
http://dx.doi.org/10.1007/s10845-013-0748-8
http://fipa.org/repository/standardspecs.html
http://www.fipa.org
https://www.profactor.at/en/research/industrial-assistive-systems/distributed-information-systems/
https://www.profactor.at/en/research/industrial-assistive-systems/distributed-information-systems/


154 G. Weichhart and A. Hämmerle

13. Hämmerle, A., Weichhart, G.: Variable neighbourhood search solving sub-problems
of a Lagrangian flexible scheduling problem. In: Proceedings of the 6th Interna-
tional Conference on Operations Research and Enterprise Systems, ICORES, vol.
1, pp. 234–241 (2017)

14. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Handbook of Meta-
heuristics, pp. 145–184. Kluwer Academic Publishers (2003)

15. Hewitt, C.: Viewing control structures as patterns of passing messages. Artif.
Intell. 8(3), 323–364 (1977). http://www.sciencedirect.com/science/article/pii/
0004370277900339

16. Hoitomt, D.J., Luh, P.B., Pattipati, K.R.: A practical approach to job-shop
scheduling problems. IEEE Trans. Robot. Autom. 9(1), 1–13 (1993)

17. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Basic Books,
New York (1996)

18. Holland, J.H.: Emergence: From Chaos to Order. Basic Books, New York (1998)
19. Kafura, D., Briot, J.P.: Actors & agents. IEEE Concurr. 6(2), 24–29 (1998)
20. Karageorgos, A., Mehandjiev, N., Weichhart, G., Hämmerle, A.: Agent-based opti-

misation of logistics and production planning. Eng. Appl. Artif. Intell. 16(4), 335–
348 (2003)

21. Kaskavelis, C.A., Caramanis, M.C.: Efficient Lagrangian relaxation algorithms for
industry size job-shop scheduling problems. IIE Trans. 30(11), 1085–1097 (1998)

22. Koestler, A.: The Ghost in the Machine. Arkana Books, London (1989)
23. Kutanoglu, E., Wu, S.D.: On combinatorial auction and Lagrangean relaxation for

distributed resource scheduling. IIE Trans. 31, 813–826 (1999)
24. Leitão, P., Barbosa, J.: Adaptive scheduling based on self-organized Holonic swarm

of schedulers. In: 2014 IEEE 23rd International Symposium on Industrial Electron-
ics (ISIE), pp. 1706–1711, June 2014
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Abstract. Ontology is one of the popular models for knowledge representation,
and Web Ontology Language (OWL) is the current industry standard for sup-
porting ontology in semantic web and knowledge encoding for various appli-
cation domains including healthcare and cyber-security.
But ontology basically only supports one relation “is-a” between the classes.

Even though OWL introduced object properties to emulate other relations, it
lacks effective support for fundamental relations like part-of, which is very
popular in engineering knowledge, and the temporal relation, which underpins
all algorithms for most computer science knowledge.
This paper introduces our minimal syntax extension to OWL to allow domain

experts to declare and apply custom relations with various mathematical prop-
erties, and our extension to Stanford University’s Protégé project so that it can
be used to encode intuitively knowledge with custom relations, and our Pace-
Jena project that can use the extended OWL documents to empower knowledge-
driven decision making in software agents. Important use cases illustrate how
this approach supported effective drug side-effect detection, efficient software
diagnostic message pattern specification and detection, and an intelligent online
tutoring system that supports effective cyberlearning with knowledge naviga-
tion, specialization and generalization as well as assessment-based learning.

Keywords: Knowledge representation � OWL � Intelligent agents � Ontology �
Protégé

1 Introduction

Knowledge representation is the foundation of any intelligent system/agent. Popular
knowledge representation models include the rule-based approach, the logic approach,
the algorithmic approach, the code-based approach, and ontologies. Knowledge can be
at various levels from observed statements and true statements about entities, and
abstract or distilled knowledge about classes of entities. As examples for the former,
Resource Definition Language (RDF) is for making statements about entities, normally
in the subject-verb-object triple format, and deep learning algorithms aim at identifying
patterns from ill-understood observed statements and represent the resulting knowledge
in weight parameters of the neural networks. As an example of the latter, Web
Ontology Language (OWL) [5, 19] is the current industry standard for representing
well-understood relations among the abstractions or classes of entities to encode
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domain knowledge as ontologies, and the semantic web search frameworks use such
ontologies to describes the relationship or linkage among the web data for improving
web search efficiency.

While the current industry standard uses OWL to represent knowledge in ontolo-
gies, we believe that ontology is not enough or natural to represent most domain
knowledge that needs to support relations beyond is-a or inheritance. For example,
most engineering knowledge heavily uses variations of relation part-of, and most
computer science knowledge is in form of algorithms for which time dependency is the
key relation among the activities. Emulating custom relations with object properties in
OWL is cumbersome at the best and not suitable for domain experts to encode and
validate knowledge.

This paper introduces our research to extend ontology into Pace University
Knowledge Graph that is basically ontology with custom relations. We have extended
OWL with minimal syntax extension to support custom relations as the “first-class”
relations. We have extended Stanford University project Protégé, an open-source IDE
for visually developing OWL based knowledge representation, to support the decla-
ration of custom relations with various mathematical properties and the creation of
Knowledge Graphs by subject domain experts who have limited IT background.

This paper also presents three important applications of the Knowledge Graphs in
effective drug side-effect detection, efficient software diagnostic message pattern
specification and detection, and an intelligent online tutoring system that supports
effective cyberlearning with knowledge navigation, specialization and generalization as
well as assessment-based learning.

2 Related Work

The foundation of any intelligent system is how to represent knowledge in a form that a
computer can understand and use. While the AI research has adopted various knowl-
edge representation schemes including logic-based, rule-based and code-based,
the current industry dominant approach is to use RDF to specify statements or relations
between resources/entities, and OWL to define knowledge types or concepts
(abstraction of resources/entities) and relations among the concepts. Ontology is
the mathematical model behind OWL, connected by the “is-a” or inheritance
relation [6–8].

For example, vehicle, car and truck are example concepts, and car and truck are
special cases of, or “is-a”, vehicle. The red car with plate AMB501 is an instance of a
car. Since car is a vehicle and any vehicle has wheels, this red car is also a vehicle and
it must have wheels.

But most knowledge involves custom relations between the concepts, or relations
that are not “is-a”. For example, most engineering knowledge heavy uses various forms
of relation part-of, and the main computer science knowledge bodies are in form of
algorithms or processes for which time dependency is a foundation relation among the
activities.

The current industry standard OWL doesn’t support such custom relations. We
have to use object properties to emulate such custom relations. Since each object
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property must have unique domain-range combination, a knowledge representation
must use different part-of relation definitions for different domain-range pairs, leading
to cumbersome and inaccurate knowledge representation.

Since 2014 Pace University researchers have extended OWL with minimal syntax
extension so domain experts can freely introduce custom relations with various
mathematical properties in knowledge representation [2, 7]. The resulting ontology
extended with custom relations is called Knowledge Graphs. Stanford University
open-source OWL GUI editor Protégé has also been extended to support the intuitive
creation of the Knowledge Graphs. This research uses Knowledge Graph representation
of course concepts and relations to encode course knowledge structure.

3 Extending Owl to Support Knowledge Graphs

3.1 Knowledge Representation

While OWL is the current industry standard for knowledge representation, it doesn’t
support custom relations like part-of which is very important in engineering knowledge
modeling. Knowledge modelers have to declare multiple part-of object properties to
model the same part-of relation between different pairs of domain-ranges, leading to
unnecessary complication and inaccuracy.

We have extended OWL syntax to support custom relations, thus extending the
ontology behind OWL into the much more expressive Knowledge Graph. The fol-
lowing is an example declaration of custom relations “partOf” and “implement”.

<rel:NewRelation rdf:about="http://pace.edu/

semweb.owl#partOf"/>
<rel:NewRelation rdf:about="http://pace.edu/

semweb.owl#implement"/>

The following example declares that ServletContainer is part of the Tomcat Web
server.

<owl:Class rdf:about="http://pace.edu/
semweb.owl#ServletContainer">

<rel:partOf rdf:resource="http://pace.edu/

semweb.owl#Tomcat"/>

</owl:Class>

and the following example declares that Cookie is used to implement SessionID.

<owl:Class rdf:about="http://pace.edu/

semweb.owl#Cookie">

<rel:implement rdf:resource="http://pace.edu/

semweb.owl#SessionID"/>

</owl:Class>
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3.2 Knowledge Encoding with Protégé

We have extended Stanford University open-source OWL editor Protégé to support the
visual declaration of custom relations, and encode knowledge into Knowledge Graphs.
Figure 1 is an example Protégé screen for knowledge representation for the sample
Web tutorial use case described in the next section.

3.3 Knowledge Parsing and Reasoning with Pace

PaceJena is our OWL/Knowledge Graph parser and validator [9–11]. It reads in an
OWL or Knowledge Graph document, validates its contents against the syntax stan-
dard, conduct necessary logic reasoning to find out implied knowledge, and expose the
knowledge to other applications through public APIs. For example, when the tutoring
system needs to find out example concepts of concept “web server”, it would invoke
PaceJena’s public method derivedClasses(“web server”), which will return
an enumeration of the derived concepts including “Apache” and “Tomcat”.

4 Drug Side Effect Inferencing Using Knwoledge Graphs

Drug adverse reaction data contains important constraints about side effects and conflict
avoidance of component and compound drugs [12–17]. We observe that many of these
constraints are transitive in nature due to the relationship between drug and drug

Fig. 1. Encoding knowledge with Protégé
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classes. Current drug side effects representations in XML does not have a proper
knowledge representation mechanism to clearly specify all kinds of dependencies
among the drug components and drugs. Even the recently introduced OWL based
approach for medical drug side effects data representation still suffers from several
shortcomings inherent to the OWL restrictions like using “is-a” relationship and usage
of object property emulations.

We used Knowledge Graphs to represent the complex relationships among the
drugs for side effects, and enhanced PaceJena to support logic inferencing among the
relations. The research also developed a concept demonstrator for checking out pre-
scriptions to avoid complications. The research outcome shows that the proposed
model allows the doctors and caregivers to derive dynamic information about
side-effects avoiding costly errors caused by human interpretation.

While Doctors prescribe drugs during routine visits, they always strive to make sure
the benefits of prescribing the drug outweighs the risk caused by side effects. Here they
always seek in-depth knowledge about the side effects keeping in mind the ultimate
safety of the patient’s life at the forefront of the drug prescription strategy [4].

As an example, Saxagliptin drugs are used to treat diabetes and they are the newest
treatment options for patients who are not responding well for other diabetic treatment
options. While Saxagliptin causes a set of side effects (|A| - abdominal pain, motor
dysfunction, hyperhidrosis, malaise, nasal congestion, increased blood sugar,
arrhythmia, rash, and cerebro vascular accident) which are well known, doctors often
find that it does not represent the full list possible side effects. Actually, Saxagliptin’s
parent class DPP4Inhibitors (gliptin) causes its own set of common side effects (|B| -
nausea, diarrhea, stomach pain, headache, runny nose, sore throat, pancreatitis, and
severe join pain).

When the doctors look for side effects caused by a drug against what are reported
by patents, they often rely on the direct side effect list |A| as primary source as the full
spectrum of the side effects is not available to them due to several reasons. This could
cause them to overlook side effects like pancreatitis which is in |B|. Studies show that
while emulations with object properties are used to capture these additional relations
they often cause other problems like high cost of maintenance on data modelers.

Linking the component and compound drugs using the proposed knowledge graph
based approach allows the domain experts to capture the full spectrum side effects of
the drug (|A| + |B|) by including all possible side effects while reducing syntax burden
to knowledge modelers compared with any other workarounds like object properties.
Such a dynamic data representation model will also provide a full spectrum side effects
to the doctors and patient helping them immensely to benefit to either adapt newer
treatment models without fear or just to choose a suitable treatment model beneficial to
the patient. Even when the knowledge about the drug side effects is available, the
current knowledge representation makes it harder to help the doctor in clinical
diagnostics.

Figure 2 shows a sample piece of Knowledge Graph related to Saxagliptin through
two custom relations “part of” and “cause”.

A web application is developed for the doctors to find direct/indirect side effects for
patient prescriptions based on a subclass of drugs. PaceJena’s real-time inference
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capacity takes full advantage of the Knowledge Graphs about the drug side effect
causality and significantly improved the prescription quality control.

5 Reducing Complexity of Diagnostic Message Specification
and Recognition

Different companies in the same line of business can have similar computer systems
with built-in diagnostic routines, and the ability to regularly send error-driven or
event-driven environmental diagnostic messages in XML back to the system manu-
facturer. The system manufacturer typically uses these to determine faults in the sys-
tem. The outcome of this troubleshooting can also assist end-users and clients in
solving problems, and provide the production team valuable information that can be
used to improve future versions of the product [3].

Consider that company A acquires company B, and seeks to integrate the IT
infrastructure of the acquired company that processes incoming diagnostic XML files
from field-resident systems into its existing inbound file processing infrastructure for
efficient identification and explications of actionable system faults. Because different
teams were involved in the production of the different field-resident products, with no
XML formatting standard, the inbound files contain similar information, but in different
formats. This is a classic case of the XML Semantic Rule Complexity and Hetero-
geneity Problem. Controlling the complexity of specifying exception-handling patterns
to validate and process the various formats and dialects is a herculean task.

Fig. 2. Adverse reactions caused by Saxagliptin
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After conducting a systematic risk assessment of the proposed integration, the
acquiring company deems the proposed effort to be prohibitively expensive, and seeks
alternatives to a full-blown integration project.

Schematron, an easy to use, highly configurable, rule-based language that validates
XML files can be used to tackle this complex integration challenge. The complexity of
the validation process, and the need for reusability in the specification of validations
requires the use of declarative XML schemas, which are decoupled from the appli-
cation business logic.

However, to validate and enforce constraints in a typical Schematron-driven XML
integration initiative, multiple Schematron files are required. Also, Schematron’s lim-
ited XSLT-based design and expressiveness, and lack of convenient access for invo-
cation through external APIs, make it difficult to support extended custom semantic
constraints.

This research overcomes the afore-mentioned limitations by proposing a framework
for pattern identification and classification to act as an intermediary between both
infrastructures. This research manages the complexity of maintaining various versions
of Schematron semantic rules for similar data encoded in different dialects by modeling
the business entities with Knowledge Graphs, and specifying business semantic con-
straints on the concepts of the Knowledge Graphs once, and automatically generate
concrete business semantic constraints/patterns based on data syntax thus significantly
reducing the complexity to work with ever-growing number of diverse data formats.

Figure 3 shows our system architecture for data integration and knowledge-driven
error classification.

The process starts when a file arrives. The system inspects the received file to try to
identify the dialect. If the dialect is recognized, it proceeds on to the abstract level to
extract the abstract rule, perform the abstract to concrete rule conversion, populates the
place-holder variables with actual values, and proceeds on to validate the received
diagnostic message file. If the validation is successful and it is able to identify an
actionable error, that has the potential to cause a critical problem, it emits an alert,
invokes PaceJena, to extract the semantics and relations relevant to that error and

Fig. 3. System architecture for data integration and knowledge-driven error classification
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escalate to technical support staff, to prevent catastrophic damage to business-critical
systems. If the error is spurious and deemed trivial, then it just discards the file and
goes back to the beginning to check for additional files, and if additional files exist, it
goes through the entire process again for the new files. Figure 4 shows the three levels
of knowledge representation that support this solution.

6 Knowledge-Driven Tutoring System for Effective
Cyberlearning

Cyberlearning is characterized by endless volume and type of learning resources freely
and readily available to the students through the Web; the lack of personized guidance
by experienced instructors as to learning resource selection and learning order rec-
ommendation including concept specialization and generalization; and the lack of an
assessment-based learning process [1].

This research developed a complete intelligent Web-based tutoring system layered
framework for easy adoption by the instructors for the delivering of courses in any
subject. To adopt this framework, the instructor will first use Pace-extended Protégé
GUI to model intuitively the course knowledge concepts and relations with the Pace
Knowledge Graph model, and specify the mathematical properties of the custom
relations. Instructor experience in form of recommended learning paths for students at
different levels is also coded in the Knowledge Graph. Pace-extended Protégé will
convert Knowledge Graph into a Pace-extended OWL file. PaceJena, a Pace-extended
OWL parser, will read in the Pace-extended OWL file, support logic reasoning, and
expose public API to empower the tutoring system runtime educational components.
The tutoring web application is implemented with Java Servlets/JSP and web services
[18] (Fig. 5).

Fig. 4. The three levels of knowledge representation
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The following is the tutoring system solution framework architecture. It is designed
for customization by non-IT instructors in any subject through graphic user interfaces
(Fig. 6).

For an instructor to adopt this Web based tutoring system for a specific subject,
he/she needs to complete the following steps:

1. Describe the main concepts of the course, and describe various relations among the
concepts. Declare custom relations if necessary.

2. Select suitable open-source learning objects/resources for each concept that can be
presented in the Web. Each concept could have multiple alternative learning objects
using different media or approaches for different student preferences.

3. Design assessment questions for each learning object. Learning object’s integrated
assessment questions could be used.

4. Specify recommended learning order for students with different background.

To use such a tutoring system, a student needs first to register with it, take a quiz, and
create a student profile. The profile will be updated after each study session. The
student can follow the recommended learning order, or request the tutoring system to

Fig. 5. PaceJena tutoring system architecture tiers

Fig. 6. Tutoring system architecture
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show application examples of a generic concept, or show the foundation concepts of an
application concept. After a student completes a course module, the student needs to
pass an online quiz. If the student passes the quiz, he/she can move on to the next
topic/module suitable for his/her level. Otherwise the student will be presented alter-
native learning modules to study the current topic from a different angle.

The main contributions of this work includes:

• Pace Knowledge Graph is used to better model the knowledge structure of a course
as well as recommended learning paths so the tutoring system could support free
knowledge navigation and the common learning patterns including specialization
and generalization.

• A tutoring system framework is developed so instructors without IT background
can customize the framework into a full-fledged online tutoring system on any
subject with any learning objects, quizzes and recommended learning orders.

7 Conclusion

This paper introduced Pace University Knowledge Graph, an extension to OWL, for
more effective knowledge representation. It also introduced three important applica-
tions of the Knowledge Graph as examples of knowledge-driven intelligent systems.
Related current research includes integrated syntax/semantic data validation and pattern
specification on data concept models instead of XML representations.
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Abstract. Inspired by the theory of practical reasoning, Belief-Desire-
Intention (BDI) agents are perhaps the most well-known type and archi-
tecture of cognitive agents. Such agents can reason about their environ-
ment and perform complex plans to bring about their objectives and
goals. Within the context of ever-changing environments though, one
desirable feature for agents is that of learning, implemented in BDI
agents as Intentional Learning, a framework focused on the monitor-
ing of the mental states to include learning as part of the agent goals.
In this paper, we consider and develop intentional learning within the
Jason BDI framework for agents focused on a plan acquisition strategy
addressing the cases of learning plans composed of one action, sequences
or a repetition of actions that allow an agent to improve its behaviour
at run-time. This is done at the pure BDI agent level, the repertoire of
plans is directly updated without using external planning tools.

We take as a testbed the simple vacuum cleaning environment and
how new plans are acquired for accomplishing tasks of different level of
complexity: escape from tunnel-like paths and wall-following. Further-
more, we integrate in a novel way the use of NetLogo as an environment
to locate Jason agents, maintaining a clear delineation between decision
making and action in the environment with the decision-making firmly
anchored within the BDI agent’s reasoning cycle.

Keywords: Intentional learning · BDI-agents · Cognitive agents · Plan-
ning in agents · Jason · NetLogo

1 Introduction

From their roots in Distributed Artificial Intelligence (DAI), research in agents
and multi-agent systems has seen immense growth. An agent can be considered
as an entity which acts for the sake of a given purpose, interacting with the
environment by means of perceptions and actions. A range of agent models and
architectures have been developed, with one essential distinction being made
between reactive and cognitive/intentional agents while achieving their objec-
tives: the capability of maintain a mental representation of the environment.
Cognitive agents transcend the reactive approach being capable of exhibit a
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richer behaviour and more capabilities [11]. Perhaps the most well-known archi-
tecture for cognitive agents is the Belief-Desire-Intention (BDI) architecture [18]
which is inspired by the theory of practical reasoning [6].

One notable and desirable feature for agents is that of being able to learn
and adapt to their environment.

Learning can help to cope with unexpected situations in design time as those
present in a changing environment. An agent can improve its performance even
for tasks that are part of its repertoire, but are further refined based on past expe-
rience. Many algorithms and approaches have been developed to enable agents to
learn and adapt to changes, such as reinforcement learning, neural networks and
genetic algorithms among others. A number of works have been directed towards
reactive agents, while some proposals have been directed towards cognitive ones
[16,28].

Despite that the original BDI notion of agency lack of the learning capability,
some works have demonstrated the potential to include learning into it (mainly
reinforcement, and intentional learning – inductive or abductive) [7,8,17,26].

We are interested in intentional learning, a process based on the use of meta-
level plans to monitor the agent intentions identifying when learning is needed.
Hence, we consider and develop a plan acquire strategy within the Jason BDI
framework. We address the cases of learning plans composed of one action,
sequences or a repetition of actions that allow for improvements in the agent
behaviour.

The contribution of this work is three-fold. Firstly, we progress the state of
the art in agent programming by demonstrating the potential to include inten-
tional learning for plan acquisition at the agent level in a pure logic-based BDI
framework. To this end we use the basic scenario of a vacuum cleaning agent
environment. Secondly, we integrate in a novel way the use of NetLogo as an envi-
ronment to locate Jason agents, maintaining a clear delineation between action
in the environment and decision-making that is firmly anchored within the BDI
agent’s reasoning cycle. Finally, our work represents the first step towards the
extension of the IL mechanism to the multi-agent systems (MAS) case.

This paper is organised as follows. In Sect. 2, we provide a brief overview
of intentional learning. The implementation of intentional learning in Jason is
exposed in Sect. 3. Section 4 show the basis for plan acquisition in a pure BDI
framework. Section 5 shows the experimentation and the results obtained in the
vacuum cleaning scenario. This is followed by a brief revision of the related work
and the discussion in Sect. 6. Finally, the paper ends with the conclusions and
plans for our future work.

2 Intentional Learning

One approach that has been proposed to address the need for learning within
the BDI framework is the Intentional Learning (IL) framework, where learning
is a behaviour driven by the mental attitudes characterising BDI agents, namely,
beliefs, goals and intentions [24–26]. IL involves learning in three main areas [25]:
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1. Goals [3,17]. Focused on monitoring the beliefs and adjusting them as needed
in order to select the applicable plan to the current state of affairs.

2. Plans [24–26]. Learning is goal-directed, described in pre-specified plans in a
reactive-like manner. New skills are gained by adding new plans to the agent’s
repertoire.

3. Plan’s contexts and applicability [1,7,8,23]. Focused on the adjustment of
the triggering conditions of plans given certain contexts. The plans remain
the same, but the agent learns that they can be applied in different contexts
(situations).

Our work is focused on learning at the activities level, i.e. plan level, as it is
the only one that includes the possibility of new behaviour generation.

With regard to the implementation of IL within a BDI framework, the
authors in [26], raise a number of key issues that need to be taken into consider-
ation: (a) Capturing the intention structure at run time; (b) Updating the plan
library (at run time); (c) Controlling the execution of an intention (by another
intention); (d) Monitoring actions to check their feasibility before including them
into a plan body.

The last point represents the most important requirement to decide when and
what to learn. According to [26], this can be done through the implementation
of meta-level plans that allow controlling deliberation, the execution of commit-
ments and explicitly driving the learning process through cycles of abduction on
hypothesis testing.

As described in [26], IL is not a set of algorithms, but a framework: it provides
the general framework to accomplish learning (like plans updating/generation)
within intentional systems, namely, BDI agents. IL has been tried by adding
ideas and techniques from other ML techniques, like Reinforcement Learning
(RL), Inductive Logic Programming, and Manipulative Abduction (MA). MA is
a deliberation method based on templates of plans that represent the behavioural
response to finding patterns or regularities in the environment, i.e. the templates
build new plans from the repertoire of actions [26].

One central issue in IL, is the selection of the actions to include in the updat-
ing of the plan library, particularly when creating new plans. In [24,26] a method
inspired by RL and MA is proposed based on three main templates of learning to
perform IL when updating a plan: adding one action, repetitions and sequences
of actions. So, observing their applicability and past usage the learning proce-
dure can select the actions to be included in the new plan. Templates acts as
a shortcut in the search of suitable actions that helps the RL-like procedure to
find feasible actions for a new plan [24].

Finally, IL directed at learning the plans’ context of applicability and driving
of goals has been considered from the agent-level point of view within the scope of
a set of agents in works such as [2,8,10,15–17,29]. In this regard and in contrast
to these other proposals, the work described here forms the basis to include
IL (at the level of plan acquisition) in BDI MAS, i.e. through undertaking the
essential first step which is to include IL in a pure BDI environment at the level
of the individual agent.
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3 BDI Agency in Jason

Jason is a fully fledged multi-agent programming environment based on AgentS-
peak, an extension of logic programming to implement the BDI agent-based
architecture [5,18], and as such offers a concrete framework for implementing
BDI agents and MAS directly making use of mentalistic attitudes. Since its incep-
tion, it has been extended and it offers many features that makes it amenable to
developing a wide range of systems and applications. In Jason, the knowledge of
the agent is encoded through beliefs expressed as first-order logic predicates [4].
A detailed description of the language can be found in [5,18]. Moreover, Java
classes are used to extend the agent capabilities (known as internal actions),
interfacing packages to link the BDI engine with other systems, including even
the potential of linking and reusing legacy code. Additionally, it is the potential
to develop complex environments in a different platform and interfacing it with
Jason by extending the environment class.

Fig. 1. The components of the Jason BDI environment. [internal actions allow to imple-
ment IL].

As illustrated in Fig. 1, a BDI agent in Jason comprises: Beliefs (the agent’s
knowledge and perceptions), Events (the stimuli external or internal that the
agent perceives), a PlanLibrary (the repertoire of courses of action that an
agent is capable of performing in response to events; these courses of action
are expressed as plans), and Intentions (the commitment to action the agent
undertakes as a response to some event). The agent’s reasoning cycle involves
three functions to perceive, deliberate and act:

– event selection: a single event is chosen of those available through perceiving
changes in the environment or in the list of intentions due to beliefs being
updated;

– option selection or applicable plan selection: take a course of action suitable
for the chosen event creating and intention; and

– intention selection: choose the next intention of a particular plan to be
executed.
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All the courses of action an agent has at its disposal are encoded in the plans
stored in the PlanLibrary .

The main components of a plan are: triggering event, context, and body.
The triggering event defines the name of a plan and determines when it can be
initiated, hence, during the execution loop of the agent when an event (internal
or external) matches this name, this plan is eligible for execution. There may be
multiple plans that can have the same event as a trigger. The context, formed
by a conjunction of first-order literals, defines the applicability of the plan given
some condition or state of affairs in the environment translated into the agent
perceptions or beliefs. Therefore, the context specifies under what conditions
a plan applies and could be executed and this may vary from plan to plan.
As a result, an agent can have multiple plans with the same triggering event
differentiated by their context. Finally, the body of a plan is composed either of
subgoals, which are calls to other plans (defined in the PlanLibrary), or internal
actions (defined in Java code).

3.1 Agent and Environment Representation

Jason provides the facilities to develop external complex environments where
agents can take action, and interface the execution of the agents within such
environments, i.e. keeping the deliberation process on the Jason side (following
a pure logic-based definition). Then, it is possible to interface Jason and NetLogo
(a rapid and flexible prototyping tool1) due to both are Java-based free pieces
of software with API facilities that grant their interoperability.

In order to develop and demonstrate our work, we configure a simple vacuum
cleaning environment as a model in NetLogo: a 11× 11 grid-like environment
populated by walls an a single cleaning agent operating in it. The objective
was to reproduce the same simple environment as used in [26] but adjusted
within the pure BDI agent framework currently Jason makes available. Hence,
the model is the scenario where the actions will be performed and from where
the agent will gather its perceptions. The vacuum cleaning agent is represented
as a NetLogo turtle and as a Jason agent. The functionality of the vacuum
agent, is defined in Jason in terms of actions and plans plans included in the
PlanLibrary. A translation step from Jason code to NetLogo and vice versa is
performed whenever sensing and acting is needed.

The situated BDI agent has a limited perception of the environment: an
array of cells in front of it restricted to a sight of one cell of depth represented
as five predicates: [o1(C), o2(C), o3(C), o4(C), o5(C)], where C = {0, 25}
values denote: cleared space, boundaries or walls, respectively. Also, the agent is
constrained to moving according to the 4-connected way: only the cells in front
and both sides are allowed to move in. The movement through the environment is
based on the following primitives: (i) moveForward: advance one position ahead
when no obstacle is present; (ii) turnRight: change its perspective turning 90◦

to the right; and (iii) turnLeft: turning 90◦ to the left.

1 http://ccl.northwestern.edu/netlogo/.

http://ccl.northwestern.edu/netlogo/
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The unique function of these actions is to return a command to be sent to
the environment (the actual NetLogo model) to make the turtle execute the
corresponding movement (go further one patch/cell, turn left or right).

Once the system starts, the environment sends the start perception to the
Jason agent, it configures the command to create the turtle in the environment,
and begins to run wandering throughout the environment using its plans to
move.

4 Intentional Learning in Jason

The earlier implementation of IL regarding the generation of plans (i.e. in the
activities level) was performed both in pure NetLogo and in a hybrid NetLogo-
BDI architecture [26]. In contrast, the developments presented here are aimed
at including the complete learning process in a full BDI agent framework,
Jason, and where tested by learning a different behaviour: the left-handed wall-
following.

The main issues around the implementation of IL are: capturing the intention
structure and changing the plan library at run time; controlling the execution
of intentions (by means of another intention); monitoring an action to check its
failure; and controlling the deliberation process at the meta-level.

To manage these points Jason provides methods to retrieve the agent’s inten-
tions stack, and meta programing facilities as meta-plans and meta-events to
manage intention (suspend, resume, fail) and to change the repertoire of plans
(add, delete or modify).

The purpose of IL in the BDI architecture is to generate new plans to be
added into the PlanLibrary of the learning agent in order to increase its range
of actions. To do so, three learning templates are defined to produce new plans,
namely, including one action, repetition and sequence of actions. The criteria of
plan updating and acquisition follows a RL-like strategy based in the utilities
reported by the plans when running. Furthermore, the action selection mecha-
nism implemented in Jason by its Java plan selection function can be extended
to adjust the way the plans are selected to be executed in case they are applicable
and share the name. This is the case of the movement plans of the vacuum clean-
ing agent including the new learned plans. As a result, this function is modified
to choose the most beneficial plans according to their computed utilities.

Plan Acquisition. In the current implementation there are two types of plans:
movement plans and primitives (moveForward, turnRight, turnLeft). The for-
mer are triggered by the main loop of action of the agent whenever a movement
is required in the environment. Once any of these plans is fired, i.e. it is applica-
ble due to the environment and the current mental state of the agent, the plan
fires a primitive.

IL is demonstrated by reaching a couple of behaviours virtually from scratch
as they are not defined by the movement plans: (a) manage tunnel-like structures;
and (b) reach a left-handed wall-following behaviour.
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In the first case, the given movement plans can drive to a failure when a
tunnel-like structure is found in the environment as any of them are applicable
in such a case. The inapplicability of movement plans is monitored by a fail
plan (coded in Jason as other plans). Once the failure occurs, the fail plan fires
the learning procedure by calling an internal action implemented in Java by
extending the default internal action Java classes.

On the second case, the intended wall-following behaviour is not included in
the movement plans. Plans are annotated with utilities to indicate its adequacy
in pursuing the task. Whenever a movement plan is fired the meta-level plans
evaluate its utility and determine if the learning should be triggered. In this
way, each time a plan is fired, the utility is computed based on the primitive’s
rewards. Rewards are discrete values {1,−1} provided in design time depend-
ing on its contribution to the intended wall-following behaviour: 1 if the agent
touches a wall with the left-hand, −1 otherwise. Under this framework a differ-
ent behaviour could be targeted, in such a case the primitives would be different
in order to fulfil the objective of the task and consequently, the set of rewards
should be changed accordingly to contribution of each primitive to the intended
behaviour.

Then, the learning is triggered as a consequence of either a failure or when
the movements of the agent lose their utility. In both cases, the result of the
learning function is is a new plan added to the agent’s PlanLibrary.

There are three templates to guide the learning of new plans: one action,
repetition, and sequences.

The first template generates a plan with only one action in its body. The
actions considered as candidates to be added in the new plan belong to the
set of actions included in the other plans’ bodies. The selection criteria are the
applicability of the candidate actions to the current context, for instance the
context that gave rise to the failure, and the reward of the action for the current
state of affairs of the environment.

The second template concerns the generation of more complex plans, i.e.
plans with repetitions of actions, that can potentially give rise to more useful
behaviours due to the interaction with the environment and the new set of
actions included in them. The number of action is given by a parameter N setup
at design time.

The last template for implementing IL produces a new plan including an
alternate sequence of actions. Differently from [26] where plans and actions
are stored in a list to avoid repetitions, in our system the selection of the actions
is based on the applicability according to the current context and the util-
ity of actions in the history of executions, i.e. sampling the trace of executed
plan/action so far. In this case the length of the sequence is also defined by the
parameter N .

The development of the last template requires additional changes in com-
parison with the previous ones, namely, collecting a sequence of fired actions
while the agent is interacting with the environment before a failure occurs in
order to track sequences of valid actions according to their demonstrated past
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applicability and utility. Thus, there is a need to track the times an action is
triggered, and the pre and post conditions when it does so, i.e. the transitions
between states and the actions to perform those changes. This is accomplished
by setting tracking beliefs of the actions undertaken by the agent and comput-
ing its utility. The belief tAB/13 is used to collect the transitions of the context
when a primitive plan is fired, i.e. the array of cells of the agent’s line of sight
[o1(C) ...o5(C)]; the belief lastMove/13 collects the past execution of a plan
for moving (the last previous movement action).

The template of learning to generate alternate sequences of actions is showed
in Algorithm 1. Once the set of relevant plans (those who match the failed trigger
TFL) are stored in RelPlans by the function RelevantPlan (line 1), the actions
of the body of each plan in RelPlans are collected by the function GetActions
(line 2) taking into account the context when the failure occurs (cntx). Then,
they are ranked via the function GetMaxRankedAction based on their utility
showed so far (line 3). Context pcntx is initialised with the value of cntx (line
4) in order to query the belief tAB/13 looking for an applicable action cAct. From
the tracked beliefs, the learning performs a sequence by matching the contexts
of the past fired actions (while loop in line 5) stored in the list Actions (line
7). In addition, the context must be a logical consequence of the agent’s beliefs
at the current moment, i.e. the current perceptions of the environment (line 6).
Contexts and applicable actions are updated accordingly to the belief’s content
(lines 8 and 9). The process continues until chaining at most N actions.

Algorithm 1. The template for adding a plan with sequences of actions
Data: TFL: the failed trigger; cntx: failed plan context
Result: A new plan to be added into the agent’s PlanLibrary
begin

/* Get actions from other plans matching the context */

1 RelP lans = RelevantPlans(TFL)
2 cActions = GetActions(RelP lans,cntx)
3 cAct = GetMaxRankedAction(cActions)

/* Select actions from tAB/13 */

4 pcntx = cntx
5 while (cAct in tAB/13 with pcntx) and (|Actions| < N) do
6 if agentBelieves(pcntx) then
7 Actions.add(cAct)
8 cAct = action in tAB with pcntx
9 pcntx = post-context in tAB/13 with cAct

10 Building the new plan [TFL : cntx : Actions] annotated with learn(1)

In any of the aforementioned cases, the utility of a new plan is taken from the
utility of the last executed plan augmented in 0.1, to give it higher precedence and
this plan can be chosen in the first place when the applicability could compete
with other plans already stored in the PlanLibrary.
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Exploration and Exploitation. A characteristic issue in learning is the
exploitation and exploration dilemma, and in our case this regards the option of
keep using the learned plans versus continuing to add new ones. To this end, the
agent has the following elements to help it decide: (a) An exploration parameter
e; and (b) Re-learning stages.

The first case introduces variations in the eligibility of actions by transferring
the RL e-greedy strategy [27] from the action selection to the learning process.
In other words, instead of applying that strategy every time the agent acts here
it is restricted only to the learning case, keeping the action selection mechanism
based on the plan utilities. As a result, low ranked actions (which suggest lower
order of preference) are able to be part of a new plan. e is set to 0.01 as in [27].

Re-learning stages are related with the fulfillment of the task. They are imple-
mented in meta-plans as a learning asking arising when a number of executions
exceeded an adequacy threshold, i.e. when the number of executions with neg-
ative utilities reaches the threshold experimentally set to 10 due the number
of possible steps in the environment (at most 9 steps without reaching a wall).
On this basis, re-learning stages address the agent to two possible outcomes:
(a) plan revision, applicable when a learned plan seems to has lost its adequacy
for pursuing the task (as described below); or (b) the addition of a new plan,
applicable when the plan belongs to the original given set of plans.

Utility Updating. The learning templates generate a new plan in the Plan-
Library with a utility based on the last executed plan. As explained above, the
plan’s applicability is defined by the context, i.e. the array of cells in front of
the agent’s line of sight: [o1..o5], and its utility. In other words, the more
beneficial the plan, the more likely it is it will be used and consequently its util-
ity will increase respectively. This establishes a criterion of plan selection that
determines the behaviour of the agent while running and confers the capabil-
ity of keep learning as required by the environment changes when pursuing its
intended task.

In order to keep the utilities updated, two tracking beliefs are used: qr/8 and
q/7. The former stores the rewards of a primitive action belonging to a certain
plan; the latter stores the utility qc of a plan once it has been triggered, i.e. this
utility takes into account just the current state of the agent when fires that plan.
Then the utility is computed by means of a RL-inspired formulae [27]:

qc =
n∑

i

qi (1)

Where qi are each of the values stored in q/7 matching the plan’s name and the
current context. In the case of plans with only one action, qi is the past value,
otherwise it is the summation of all the primitives belonging to the plan fired
similar contexts.
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On the other hand, the values of the qr values are computed according to the
Q-Learning utility updating:

qr = qr + δ ∗ (R + γ ∗ qi − qr) (2)

Where δ is the learning rate set to 0.1; γ is the discount factor set to 0.95; and
qi as defined in (1) is the plan utility. This keep the balance between past and
current utilities, allowing the updating to take into account the new observations
from the environment.

Plan Revision. The learning templates generate three kind of plans based on
partial information, i.e. the perceptions of the agent up to a given moment. In
some cases, the sub-goals of a plan could not complete their execution. Conse-
quently, a revision of the plan is needed. Moreover, plan revision is a form of
tuning mechanism for learning to improve the agent’s behaviour once the learned
plans’ results are not good enough to fulfil an intended task or to reach certain
behaviour. There are two cases where plan revision is needed:

– In the basic case, to cope with the inapplicability of sub goals; and
– When a plan seems no longer helpful to fulfil a task given its negative utility

and it has been executed surpassing the fixed threshold. Then, plan revision
aims to increase the utilities of a plan again.

In both cases, the target plan is reviewed and some of the actions are substituted
by new ones. In the first case, an action is eligible to be deleted from a plan
whenever it fails. On the other hand, the actions in the plan are rearranged
based on its utility and their context of applicability, given priority to the most
beneficial sequences. The candidate actions are taken based on the beliefs tAB/13
and qr/13 and their matching context of application.

5 Experiments and Results

The vacuum cleaning agent starts its behaviour by wandering around the envi-
ronment, taking decisions about moving based on its plans.

Two cases were used to test the learning: (a) Failure handling: a failure
occurs as the given agent plans are not capable to manage tunnel-like structures
in the environment; and (b) Reach a left-handed wall-following behaviour. In
both cases the agent lacked from the given plans to fulfil the task.

Different configurations to test the learning under diverse conditions have
been used. The learning templates were run 5 times in each scenario. Each
run lasts for 3500 movement actions for learning and 1750 for testing. What is
reported here is the mean of those runs.
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5.1 Failure Handling

While the agent traverses the environment, at a certain point it reaches a tunnel-
like structure which cannot be managed by its given movement plans. Figure 2
illustrates when the agent starts the learning process. In (A) the agent reaches
a tunnel-like structure, as the plans in its PlanLibrary cannot cope with this
situation the fail arises. Subsequently, the learning process is started using the
templates described earlier; while in (B) after the learning process is finished,
a new plan is added to the PlanLibrary. After learning, the agent has a plan
with a context applicability able to cope with tunnel-like structures. Then, the
agent’s code is saved on the hard disc and the agent now has increased its set of
abilities.

A) The learning process firing B) The learned plan

Fig. 2. When no applicable plan exists, the learning generates a new one to be directly
added to the PlanLibrary .

Learning of plans with one action and repetitions in their body suffices to
solve the task in all the cases, while the sequences of actions are more sensible to
the history of environment observations: when early applied can result in loops
of turns left and right, keeping the agent into the tunnel-like structure. In such
a case, plan revision is applied.

5.2 Wall-Following

In addition to managing the tunnel-like structures, this test is focused on learning
a left-handed wall-following type of behaviour not included in the given plans.
The behaviour is reached after hundreds of interactions (sensing-acting) with
the environment as a result of the generation of new plans and the tuning of the
utility as the agent traverses the environment. It is important to note that the
agent has restricted scope of sight making it impossible to sense when it has left
or reached a wall through a corner increasing the difficulty degree of this task.
The wall-following behaviour is depicted in Fig. 3 using three different scenarios,
the yellow lines mark when the agent touches a wall on the left side. In Fig. 4
the cumulated times of a cell has been visited in each of the scenarios using the
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Fig. 3. The agent achieving the left-hand wall-following behaviour in different
scenarios.

B) Scenario 1 B) Scenario 2 C) Scenario 3

Fig. 4. Cumulated visited of cells in the scenarios using the template to add one action
in the plan.

template with one action in the plan body is showed. The darker cell, the most
visited one. As can be seen, the boundaries of the environment are the most
visited illustrating the wall-following behaviour.

Table 1 includes a summary of the plans on 5 runs showing the number of
useful actions, i.e. the times when the agent touches a wall with the left side,
reviews and the liveness of the plans (their execution frequency) which gives a
hint about how a plan is being used during the run due its applicability and its
adequacy for the task.

Table 1. Summary of the wall-following behaviour tests on diverse scenarios tested
up to 3500 movements after 1750 testing actions. Letters stand for Scenario (S), Tem-
plate (ILT), Learned Plans (LrPl), Revisions (PRev), Plan Liveness (PLiv), Useful
Actions (UsAc), where (O) denotes one action and (S) refers to sequences of actions.

S ILT LrPl PRev PLiv UsAc

1 O 21 827 406 548

S 19 445 85 135

2 O 27 867 370 501

S 24 814 535 431

3 O 26 806 408 538

S 19 816 119 139
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As can be seen, the learning template with one action in their body populates
the agent with more number of plans than the other strategy and the template
with more than one action require more plan reviews than learned plans. This can
be noticed when comparing the differences between the scenarios: the template
with one action included 6 more plans in the second scenario than in the first
one and 40 more revisions were required; while the template with sequences
of actions included 5 more plans but implied 369 more revisions in the same
scenarios.

Comparing the second and third scenarios, the template with one action
decreased in 1 plan the number of learnt plans requiring 61 less revisions, while
the other template decreased in 5 the number of learnt plans but increased in 2
the revisions.

Finally, comparing the third and first scenarios, the one action template
increased 5 the learnt plans and decreased in 21 the revisions, while the other
template keeps the same number of learnt plans but implies 371 more revisions.

This is explained by two causes: firstly, each scenario configures a different
experience for the agent, which is reflected in the learning of the agent (particu-
larly in the plan revision), and secondly, because the narrow scope of applicability
of plans with more than one action in the body, i.e. the plan context is deter-
mined by the context where either an error arose or a revision was performed,
and the applicability or benefit of the actions can be affected as the state of
affairs in learning could be different of those exhibit when the plan is fired, con-
sequently, template with longer plans receive less feedback from the environment
and need to be constantly reviewed.

Finally, Fig. 5 (A) shows the plan utilities of an agent running using the
learning templates. As explained before, in addition to the plan applicability the
action-selection function considers the plan utility to establish a precedence in
the execution of plan. Accordingly, the plans with the better rewards and utility
will be selected most frequently. On the other hand, despite of their applicability,
some plans could decrease their utility reaching cases where their reported benefit
to the task is lower or even negative. It also could be the case that some plans
be seldom applied due the features of the scenario and the movements of the
agent after this plan is added to the PlanLibrary. The plot shows a snapshot of
the plan utilities while the agent is running and how the plans are varying their
utilities where in early stages they have similar values and they became different
during the run. In (B) a plot of the plans generated by the three templates
are showed while running up to 3500 actions. As can be seen, the strategy that
includes more plans is the one action template, this is explained also because the
longer plans include more actions and the plans take more time to be evaluated
delaying the addition of new plans. It has an impact in the training as more
cycles are required for the repetition and sequences.

The agent starts exploring the environment and the learning fires as the
utilities of the plans decreased. The behaviour is reached as a result of the
addition of new plans and plan revisions.
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Fig. 5. (A) Plan utilities when the agent is running and with the one action learning
template (B) plot of the plans generated by the three learning strategies in same
scenario.

6 Related Work and Discussion

Plan acquisition in cognitive agents has been of interest in the agent and MAS
community and several works to include planning and learning in BDI agents
have been proposed. In [26], the Intentional Learning framework is implemented
in two ways: (a) developing a BDI layer upon NetLogo, and (b) on a hybrid
NetLogo-BDI architecture (using JAM as the BDI engine) [30]. Furthermore, in
[19,20] a very basic BDI implementation in pure NetLogo programing language is
reported, mainly focused on teaching the MAS BDI foundations. This approach
includes communication capabilities and a straightforward way to implement
intentions (as a list of commands). However, being a basic implementation, it
lacks a proper definition of plans and other facilities offered by other BDI ori-
ented platforms [19], and it was not conceptualised to include learning. Other
works have focused o IL just in the level of plan applicability using other learn-
ing strategies, mainly based on logical tree induction algorithms (either using
external tools or including them as Jason libraries) [7,9,22,31], or learning goals
[17] even implemented a pure RL approach in Jason [3].

On the other hand, in [13], an integrated version of Jason and a STRIPS-
like planner is proposed, allowing the agent to add new plans as a result of
the planner. To couple the two systems a bidirectional translation stage from
AgentSpeak to the plan’s representation in the planner is required to update
the PlanLibrary of the agent. More recently, in [12], a successful probabilistic
method of learning using the tracked interactions with the environment has been
proposed. Despite using first-order logic to represent the agent knowledge, this
work is further away from BDI agents. Consequently, it does not use AgentSpeak
to encode the plans but the Relational Dynamic Influence Diagram Language
(RDDL) [21].

In contrast with the aforementioned work on IL, which main focus is on learn-
ing the context of plan applicability and goals adjustment without considering
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to acquire new plans (i.e. no new skills are learned by the agent), the aim of
our work has been to include IL in cognitive agents on the plan acquisition level
within the same framework without using external systems. We have shown how
this is feasible in Jason, a pure BDI agent oriented framework, through a set
of templates for learning different types of plans which we have demonstrated
through the implementation of the single-agent vacuum cleaning scenario. Fur-
thermore, IL was implemented making use of the NetLogo as the environment
where the agent is located.

A noteworthy feature of our work is that plans are directly represented in
Jason’s code (AgentSpeak). As a result, the use of external tools (like planners) is
avoided, consequently, there is no need of translation processes between different
plan representations. Moreover, the agent built new behaviours based only on
its primitive actions and the interactions with the environment.

As it is shown in Fig. 2, the addition of new plans enables the agent to
follow walls while it is capable of coping with tunnel-like structures, which is not
equipped to deal with by default. The results of this work contribute to the state
of the art in both IL and in BDI Multi-Agent Systems by exhibiting the feasibility
of including learning driven by intentions and manipulative abduction in a pure
BDI agent environment in a very simple scenario with a narrow repertoire of
actions, namely, move forward, turn left and turn right.

The learning templates addressed as part of this work are: (1) learning
plans with one action; (2) plans involving repetition of the same action; and
(3) sequences of actions.

For the first type, in the most simple case, the learning process is just required
to find a matching action with the current perceptions (an array of five cells in
its line of sight) of the environment to produce a new plan. This is reached by
observing the utility an action has when previously fired in a given state. On
this basis, the agent can select the most useful action that matches the state of
affairs at the time that the learning has started. Once the learned plan is added,
the agent can use it in the following steps of reasoning and manage to escape
from tunnel-like structures.

Concerning the second template, this generates a repetition of one action N
times. In essence, such a plan represents a loop of execution of the same action.

The result of the last template, focused on generating sequences of actions,
is a new plan which includes different actions in an alternate sequence.

The behaviour of learning new skills has been reached in both a simple prob-
lem of managing tunnel-like structures and a more complex behaviour which has
been achieved essentially from scratch, namely, wall-following.

The first learning template seems to be sufficient for solving the task, by
including several plans it captures a wider range of applicability of them. Plans
with more than one action in their body requires more steps of plan revision
due that their applicability (its pre condition) is closer related to the state of
affairs when they were added to the set of plans, becoming more demanding of
the revision stage to keep its utilities.
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The template with one action also requires less learning steps than the repe-
titions and sequences and it could be considered more valuable for the intended
behaviour accordingly with its higher reported number of useful actions. On
the other hand, repetitions and sequences allow the agent to explore and per-
form a kind of map from the environment, and can easily derive to patterns
of behaviours (like oscillatory and square trajectories in the domain presented
here) potentially helpful in building higher level tasks not explored here.

The advantages of the work presented here can be summarized as: (a) The
procedural knowledge of the agent is reused either for failure handling or to
improve the agent behaviour. By plan acquisition the agent is capable of per-
forming tasks not specified in design time. (b) The use of RL techniques for
action selection confers the agent the capability of learning through interacting
with the environment, on this way, the agent can approximate the model of the
world by encoding this knowledge in the set of plans and the capability of refine
this procedural knowledge from new interactions. Despite the work presented
here relies in basic RL techniques for the selection criteria, other ranking meth-
ods can be used as long as they allow to establish a way of determining when
an action is beneficial for an intended task. (c) The learning mechanism is fully
integrated in the BDI framework without the use of external planning tools, pro-
gressing in enhancing agents with plan acquisition (IL in the level of activities).
(d) The Manipulative Abduction component of the approach (the set of learn-
ing templates) is able to be changed, i.e. changing the templates to organize the
actions in a structurally different way or even to incorporate domain knowledge
when pursuing a different task.

On the other hand, some limitations of the present work can be pointed
out: (a) As the applicability of plans generated by the learning templates with
more than one action is affected by the narrow space of feedback that the agent
gets when the learning occurs, these learnt plans demand further refinements
steps. On this regard, the current implementation is focused on demonstrating
the plan acquisition possibilities but nothing prevent the use of IL in the other
levels, namely learning in the level of goals and plan applicability [7,22]. Fur-
thermore, a simple version of plan revision based on the reported utility and the
applicability of actions when the learning process is triggered was implemented,
although a more robust analysis of the interactions with the environment could
be incorporated, for instance, by adopting a more flexible action selection that
consider other contexts apart from the current one. (b) In order to scale the app-
roach to a more difficult environment or task, both the relevant set of plans and a
set of applicable rewards to the aimed task must be provided as they are specific
for an intended behaviour. In the simple problem presented here, the pre and pos
conditions of the actions where captured by sampling the state perceived by the
agent before and after executing a movement action. Consequently, jointly with
the use of ad hoc learning templates an important aspect for scaling to reach
behaviours with higher level of complexity is the configuration of the primi-
tives and their precedence that should be expressed accordingly to the intended
task. To do so, in [12,14] some relevant techniques that could be considered are
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mentioned. (c) Additionally, the re-learning stages are driven by a measure of
the adequacy of the plans when pursuing a task, in the left-handed wall-following
behaviour the negative utility indicates when a new learning process is needed.
When changing the task this criteria should be adjusted as required to fit the
new conditions.

Finally, it is worth noting that working with a logic-based programming
language poses additional challenges to IL and planning in general. An example
of a challenge is the case of conditional actions: despite the fact that conditional
actions can be integrated in learning, the logic programming paradigm splits
the condition in different structures according to the options (i.e. plans), which
implies in terms of plan generation the need to build different plans instead of
just one. This is an open question which is currently under consideration and
will be addressed as part of our future work.

7 Conclusions and Future Work

Learning in cognitive systems has been addressed from different perspectives,
including using traditional Machine Learning algorithms that are called by the
agents in certain circumstances, or other proposals that are more aligned with
the paradigm of cognitive agents. This latter line of work includes Intentional
Learning, which has been developed in different directions: learning referring to
goals, plan selection and plan acquisition.

In this paper, we have presented a first implementation of IL taking the plan
acquisition direction, i.e. learning of plans driven by intention monitoring and
guided by Manipulative Abduction. The scenario that we have experimented
and demonstrated our work is the well-known vacuum cleaning agent located
in a grid-like environment with the purpose of traversing the 11× 11 cells that
comprise the environment following the walls on the left-hand side.

We have developed and implemented three cases of learning within a declar-
ative BDI system, the Jason BDI framework. To the best of our knowledge, this
work represents the first such inclusion of IL in a fully fledged BDI declarative
environment. Although we have demonstrated the concepts and templates in a
simple environment, we would argue that the inclusion of IL in a BDI agent pro-
vides the means to develop agents that are able to learn at run-time and modify
their behaviour and cope with situations that have not been taken into account
in terms of their provided plan library. Altogether, plan generation and plan
revision allow the agent to keep in an ever-learning mode, a desirable feature in
dynamic domains.

This is an essential first step in developing Intentional Learning within a
multi-agent environment consisting of BDI agents that can learn on their own,
but also by working together.

The work presented here shows the primitives for including IL in Jason,
addressing the cases of three learning templates as the guiding mechanism.
Additionally, it is successfully exploits the inter-operation of Jason and Net-
Logo, taking the advantage of the latter as a rendering tool for environments
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and agents, while the reasoning is kept on the side of the BDI engine. While it is
not restricted to the current domain, it inspires to try more complex applications
using both powerful MAS frameworks.

Our endeavour is ongoing and there are a number of avenues that are cur-
rently under exploration and will be considered as part of future work:

– The current experimental setting is limited and we aim to test the learn-
ing processes developed in more challenging environments and in different
domains where a different set of learning templates could be explored.

– Additionally to continue exploring the plan revision (concerned with the con-
tent of the plans) and the acquisition of several plans (in order to cover a
wider scope of cases), IL at the level of context of applicability is a promising
extension of this work. Moreover, the parameter N in sequences and repeti-
tions of plans should be determined automatically.

– Finally, our ultimate goal is to progress the state of the art by including IL
within a multi-agent system set up and in particular, we would like to study
the influence of a group of agents in the learning process. One of the main
aspects in MAS organization is the exchange of messages between agents and
the agreement that can be obtained in order to tackle a common goal or
task. Within such a context, there are different views/levels of information
that need to be considered: partial/individual information; partial collective
information; and environmental information.
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Abstract. The Braess’ paradox is a well-known problem associated with
route choice and traffic distribution. Agent-based simulations that inves-
tigate this paradox typically model driver’s behaviour using reactive
agent architectures, which simplify and abstract an inherently complex
behaviour. The BDI architecture is an alternative widely used in multi-
agent systems, which has not been evaluated as a suitable solution to deal
with this problem. We thus in this paper detail an empirical evaluation of
the BDI architecture, enhanced with a learning-based plan selection, to
address the Braess’ paradox. We describe the results of two simulations
configured to reproduce the paradox behaviour. Results indicate that
agents are able to soften the effects of the Braess’ paradox using only
local information, as opposed to existing alternatives, including when the
environment is dynamic.

Keywords: Braess’ paradox · Agent-based Modelling and Simulation ·
Traffic simulation · BDI architecture

1 Introduction

Traffic-related problems have been extensively investigated in the last decades.
They are fundamental problems in the society, because solving them not only
improves transportation but also address environmental issues. These traffic-
related problems are particularly observed in large city centres and metropolitan
areas, which tend to concentrate most of the vehicle fleet of a region, and range
from constantly emerging traffic jams to increased air pollution.

In order to provide solutions for these problems, software simulations arise
as a valuable resource, as they allow the replication of real-world scenarios in a
controlled environment without the constraints imposed by the need for a phys-
ical infrastructure of roads and vehicles. Agent-based Modelling and Simulation
(ABMS) [8,11] is a paradigm particularly suited for the development of these
simulations. It differentiates from the most conventional simulation paradigms
by being a bottom-up approach in which individuals of a scenario are modelled
as agents. It is thus possible to model heterogeneous scenarios comprising agents
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with behaviours that may vary in complexity and sophistication. The interac-
tions among these agents, or between them and their environment, originate the
(sometimes unexpected) phenomena one wants to observe and analyse.

The Braess’ paradox [3] is one of these phenomena. It states that in a sce-
nario with different routes from a given origin to a given destination in which
drivers choose their routes selfishly, the addition of a new route with reduced
commuting time may increase the drivers’ travel time. In such a scenario, the
driver’s preference for a route is specified by the road utility, which is based on
the time required to commute in that route. Such time is defined by a function
regarding the number of vehicles using the route in a given moment. Although
initially presented as a traffic-related problem, instances of the Braess’ paradox
can be found in several different domains, such as in chemistry and energy-related
scenarios [9,15], for example.

Several approaches were proposed in the context of ABMS to provide solu-
tions capable of softening or even solving this paradox [2,6]. Traditionally, simu-
lations of scenarios that reproduce this problem are modelled using reactive agent
architectures. However, this design choice can sometimes abstract and simplify
the complexity inherent to the human behaviour, which may compromise the
validity of such simulations regarding real-world situations. Moreover, most of
the existing approaches able to achieve promising results in this scenario require
information or resources that are not typically available in realistic situations,
such as the awareness of global travel time of agents. Despite the exploration
of multiple solutions to address this paradox, there are various approaches that
could still be explored to possibly mitigate limitations of existing work. An
example is cognitive agents, which have been widely investigated in the context
of multi-agent systems.

In this paper, we thus explore the use of cognitive agents to address the
Braess’ paradox. More specifically, we exploit an extension [4] of the well-known
BDI (Belief-Desire-Intention) architecture [14] for modelling drivers in our sce-
nario. This architecture structures an agent in terms of beliefs, desires (or goals)
and intentions. These mental attitudes represent, respectively, the information
an agent has about the world, the states of the world it wants to bring about, and
the goals an agent is committed to achieve and for which it has suitable plans.
When integrated into a reasoning cycle, these mental attitudes endow agents
with a flexibility that does not exist in purely reactive agents. Additionally, the
extended architecture used in this work makes agents able of learning the rela-
tionship between their context and the outcomes of their plans. Therefore, an
agent can predict plan outcomes based on its current context, and to select for
execution the plan expected to perform better according to agent preferences.
To assess the benefits provided by using these learning-based BDI agents in a
scenario that replicates the Braess’ paradox, we compare their behaviour against
agents with two different plan selection strategies.

The remainder of this paper is organised as follows. In Sect. 2, we present an
overview of ABMS and how existing approaches exploit it to address the Braess’
paradox, also introducing the extended BDI architecture used in this work. In
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Sect. 3, we describe the modelled problem and the setup of our simulations in two
different scenarios. The results of such simulations are presented and discussed
in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Background and Related Work

Modelling and simulation are two fundamental activities in research in several
application areas [12]. When combined, these activities allow researchers to study
phenomena that cannot be easily reproduced in the real world due to their
scale or even technical limitations, e.g. the disappearing of an entire civilisation.
These modelling and simulation activities comprise the development of a model,
i.e. a system representation, and its execution, respectively. There are different
approaches that provide guidelines on representing and executing models. Next,
we briefly overview that used in this work, followed by further background needed
to understand our work and a discussion regarding related work.

2.1 Agent-Based Modelling and Simulation

The Agent-based Modelling and Simulation (ABMS) paradigm is particularly
suited for modelling complex systems with emergent behaviour. Models based
on this paradigm rely on the specification of three main components: (i) the
set of agents; (ii) the environment; and (iii) the interactions among agents and
between agents and the environment. The first characterises the set of individu-
als that actively participate in a scenario. The behaviour of such individuals can
be separately specified so that a scenario with agents behaving heterogeneously
can be easily modelled. The second component concerns all other simulation ele-
ments, such as resources and elements without active behaviour [8]. Finally, how
the interactions among model elements are specified determines the dynamics of
a system. These interactions may originate the phenomena one aims to observe,
analyse or predict, and such generative nature characterises one of the main
features of the ABMS paradigm. The execution of a model, i.e. its simulation,
requires additional information, such as parameters indicating the number of
agents to be inserted in a system and how they must be initialised.

Building and simulating agent-based models become particularly useful for
the development of traffic simulations. In real world scenarios, the dynamics of an
entire traffic system emerge from individual drivers’ behaviour, which may vary
from driver to driver, and may involve complex reasoning processes. Therefore,
modellers can leverage the existence of a diversity of agent architectures to model
drivers with different characteristics. Moreover, agent-based simulations can have
their dynamics analysed from at least two viewpoints: one considering individual
agents, the other regarding the entire system [8]. It not only allows modellers to
validate what is being simulated but also provides a way of analysing how subtle
changes in drivers’ behaviour may impact the overall system. In fact, several
traffic-related problems have been replicated and studied by means of the use
of ABMS. Next, we present one of such problems, named the Braess’ paradox,
which we address in this paper.
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2.2 The Braess’ Paradox

The Braess’ paradox [3] consists of a counter-intuitive idea whose characteristics
have been widely investigated [1,13]. It states that, contrary to popular belief,
adding an extra route with reduced commuting time to a traffic network may
increase drivers’ travel time. Such phenomenon was firstly noticed by Dietrich
Braess in 1968 when analysing the scenario depicted in Fig. 1.

Fig. 1. The five-link network originally proposed by Braess et al. [3].

In this scenario, drivers must commute from a starting point S to an ending
point E. For this purpose, there are initially two possible routes: routes SAE
and SBE, passing by points A and B, respectively. Travelling by each route
link has a particular cost, which is defined according to a linear function directly
dependent on the number of vehicles on each link. Figure 1 depicts cost functions
in the original scenario, where n is the number of vehicles currently travelling on
a link. Considering six vehicles in the network and this initial four-link setup, it is
possible to notice that the user equilibrium (UE), i.e. the vehicle distribution in
which each route has the same cost and thus drivers have no incentive to change
their routes, is achieved when vehicles are equally distributed between routes
SAE and SBE—three vehicles for each route, taking 83 time units to commute
from S to E. Such vehicle distribution also corresponds to the system optimum
(SO) distribution regarding travel costs, i.e. the situation in which travel time
considering all drivers is minimised (in this case, 498 time units).

Although the SO remains the same, the addition of an extra link with reduced
cost that connects points A and B—thus leading to a new route SABE between
the start and ending points—modifies the UE. In this five-link setup, the system
reaches an equilibrium when the traffic is evenly distributed among the three
existing routes. In this scenario, the commuting time of each driver is 92 time
units, which is 9 time units higher than the scenario without the SABE route.
This increase in the final commuting time characterises the paradox. Table 1
presents the costs of each route as well as travel costs considering all drivers
associated with different vehicle distributions in the original scenario proposed
by Braess et al. [3].
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Table 1. Cost of routes and total cost for different vehicle distributions (N = 6).

Number of drivers Cost of route Sum of costs of all drivers

SAE SBE SABE SAE SBE SABE

3 3 0 83 83 70 498

2 2 2 92 92 92 552

6 0 0 116 50 70 696

0 6 0 50 116 70 696

0 0 6 110 110 136 816

The ABMS paradigm was adopted by several approaches whose aim is to
deal with the Braess’ paradox, ranging from the use of learning strategies to
the manipulation of the information provided to drivers. Klügl and Bazzan [7],
for example, proposed an approach for binary route choice based on reinforce-
ment learning, which can be adapted to scenarios that reproduce the paradox. In
their approach, agents decide which route to select based on the average of pre-
vious rewards obtained selecting those routes. The reward provided by a route
is inversely proportional to the travel time of an agent using it. Different agent
behaviours specified based on a user experiment—namely impulsive, propor-
tional and radical—were evaluated by Forno and Merlone [5]. These behaviours
vary according to the rate at which agents change their choices. Decisions are
based on the last travel time provided by each route. If a certain route pre-
sented a shorter travel time than the last route selected by an impulsive agent,
this agent can change to that route in the next iteration. Proportional agents,
in turn, have their changing rate proportional to the difference in travel time
between routes. Finally, radical agents tend to stick to their last choice. In their
simulations, homogeneous populations of these agents were unable to avoid the
effects of the paradox.

Simulations with better outcomes were presented by Bazzan and Klügl [2].
These simulations show how manipulating the information provided to agents
impacts traffic distribution. In their approach, a traffic control centre is respon-
sible for giving to drivers information about the current traffic situation, which
may or may not be accurate in order to avoid the effects of the Braess’ paradox.
Despite these positive results, this proposal depends on centralising, processing,
and distributing information regarding the entire network, which may be infeasi-
ble in realistic scenarios. Results obtained by Hasan et al. [6] were also promising.
They proposed a solution that relies on the existence of a social network traffic
application, which uses traffic-related information provided by agents to com-
pute route utilities. Thus, agents can use the application to make route choices.
Although being able to solve the paradox, we must highlight that this approach
requires substantial engagement from agents, which may be considered an issue
in a real world scenario.
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Although there are approaches able to solve (or at least mitigate the effects
of) the Braess’ paradox, there are issues that still need to be addressed. Some of
these approaches assume that agents have access to information regarding the
social impact of their choices and consider such information in a more altruistic
way when selecting their routes. However, these assumptions may be unrealistic.
First, because knowing the exact number of vehicles commuting in a route a
priori, particularly in large-scale scenarios, is impractical even with the current
availability of traffic density data. Second, altruism is not a typical characteris-
tic of drivers, which tend to act selfishly in every situation thus caring only for
their own performance (considering that there is no penalty for such behaviour).
Another issue is related to the fact that drivers are frequently modelled as reac-
tive agents, even with the existence of approaches proposing the use of cognitive
agent architectures as a suitable alternative to model their behaviour [10]. Next,
we overview one of these architectures, which provide agents with learning and
adaptive capabilities, and can potentially address the Braess’ paradox.

2.3 BDI Agents with Learning

The BDI architecture [14] is perhaps one of the most widely used agent archi-
tectures. It structures agents in terms of mental attitudes of beliefs, desires (also
known as goals) and intentions, which are integrated to several abstract functions
into a reasoning cycle. In this reasoning cycle, an agent updates its beliefs based
on the perception of external and internal events and updates its goals accord-
ingly. From the set of existing goals, it selects those it will commit to achieve
and transforms them into intentions. Finally, suitable plans able to achieve the
given intentions are selected and executed, and the cycle restarts. One of the
abstract functions comprising this reasoning cycle is the plan selection function,
which is responsible for the selection of suitable plans for execution. In typical
implementations of the BDI architecture, this function selects plans according
to a First In, First Out (FIFO) policy. However, it does not correspond to the
way humans reason when choosing how to act.

In a previous work [4], we extended the BDI architecture to provide agents
with a sophisticated plan selection strategy. Agents based on our approach are
able to learn how particular influence factors impact outcomes of plan execu-
tions. This knowledge is then used by agents to predict how plans are expected
to perform according to the current agent context. The plan selected for execu-
tion is that with an expected performance that best satisfies agent preferences
over given softgoals. This learning-based plan selection strategy comprises two
different stages. In the first, the agent selects plans randomly, collecting data
related to influence factors and plan outcomes. When there is enough collected
data, such an agent builds a prediction model for each of its plans. In the second
stage, it starts to select plans according to the predictions provided by existing
prediction models. Data is still being collected during this stage, and prediction
models are updated following a pre-specified update rate.
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3 Simulation Modelling

We investigate the use of this introduced learning-based plan selection strategy
to deal with the Braess’ paradox through two different simulations. The scenario
in which these simulations are placed comprises a five-link network similar to
that originally presented by Braess et al. [3]. The only difference relies on the
cost functions of each link, which are specified according to a system of equations
and inequalities proposed by Bazzan and Klügl [2] that, when solved, is able to
determine cost functions that reproduce the paradox for any given number of
vehicles. Figure 2 depicts the network and its cost functions, where n is the
number of vehicles currently travelling a link. It is possible to notice that, in this
scenario, commuting through links SB, AB or AE results in fixed travel costs.
These links may represent highways with several lanes in which travel time is not
affected by the number of vehicles commuting through them. Costs from links
SA and BE, in turn, are directly dependent on this number, and travel times
tend to increase as more vehicles use these routes. These links are the bottlenecks
of our network and may represent, e.g., bridges with limited capacity.

Fig. 2. The five-link network used in this work.

3.1 Standard Simulation

In the first simulation, we populate our network with 390 agents representing
drivers and their vehicles. This number of agents gives the conditions so that the
Braess’ paradox can occur in the proposed scenario. Considering the four-link
network (without the existence of the AB link), the UE and the SO vehicle dis-
tributions correspond to agents being balanced between the two existing routes
(SAE and SBE), i.e. 195 agents in each route with a travel cost of 110.5 time
units per agent. The addition of the fifth link (route SABE) changes the UE
to an even distribution among the three possible routes, i.e. 130 agents in each
route with a travel cost of 117 time units per agent. The SO distribution, in turn,
remains the same. Table 2 presents these distributions and their corresponding
travel costs.
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Table 2. Cost of routes and total cost for different distributions of drivers (N= 390).

Number of drivers Cost of route Cost over all drivers

SAE SBE SABE SAE SBE SABE

195 195 0 110.5 110.5 104 43095

130 130 130 117 117 117 45630

390 0 0 130 91 104 50700

0 390 0 91 130 104 50700

0 0 390 130 130 143 55770

Every driver in this simulation is modelled according to the extended BDI
architecture already presented. Therefore, each agent has a goal move(S,E),
which must be reached in order to move between points S and E. To achieve this
goal, there are three available plans, namely SAEPlan, SBEPlan and SABEPlan,
each of them representing one of the existing routes. When acting towards the
achievement of move(S,E), agents must aim for the satisfaction of the softgoal
Minimise Travel Time. To assess this, they monitor the travel time obtained
as the outcome from their plan executions. The learning-based plan selection
technique requires influence factors to be associated with outcomes, thus allow-
ing agents to learn how the former impacts the latter. In this simulation, agents
consider the number of agents in the entire network as such a factor. How-
ever, it is important to notice that such number of agents does not vary during
this simulation, thus being provided just to fulfil the need of the plan selection
technique for an influence factor.

As described in Sect. 2.3, the learning-based plan selection strategy can be
split into two stages. One, for collecting information, in which plans are randomly
selected. The other, for exploiting the knowledge obtained by selecting plans
according to predicted outcomes. In this simulation, the first stage is performed
in the first 50 executions of each plan. Thus, a linear regression model is used
to build the corresponding prediction models, which are updated every 250 plan
executions. To avoid local minima while in the second stage of the plan selection
process, agents are able to explore plans that may not have the best-predicted
outcomes in the current context. During this exploration activity, all suitable
plans have the same probability of being selected. Such exploration is specified
to occur in 5% of the executions of the plan selection. Table 3 summarises the
attributes of the learning-based plan selection strategy in this simulation.

3.2 Context-Dependent Simulation

The second simulation aims to investigate the behaviour of agents in a context-
dependent scenario. While the standard simulation described above has a fixed
number of agents in every episode, in this second simulation this number varies,
with each episode representing a day of the week with different traffic loads,
ranging from 150 to 510 agents (see Table 4). This traffic load variation allows
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Table 3. Additional attributes of the plan selection strategy.

Attribute Value

Initial data collection 50 plan executions

Prediction model update rate 250 plan executions

Exploration rate 5% of plan selections

Learning model linear regression

Table 4. Traffic load in different days of the week.

Day of the week Number of drivers

Monday 150

Tuesday 390

Wednesday 261

Thursday 390

Friday 510

us to observe how agents behave in four particular situations, which are described
as follows.

Episodes that represent Mondays have 150 agents commuting in our network.
Although the cost functions remain the same, the reduced number of agents
significantly impacts the UE and SO of the scenario. With such configuration, the
Braess’ paradox does not occur, given that choosing route SABE gives to agents
the shortest travel time compared to avoiding that route. However, although the
UE corresponds to all agents commuting through SABE, the SO distribution
regarding social cost can only be achieved with some agents travelling through
SAE and SBE and accepting a travel time greater than that obtained by others.
Table 5 presents costs for different distributions of a fleet with 150 agents.

In episodes representing Tuesdays and Thursdays, the number of agents is
the same as in the standard simulation, i.e. 390 agents. Characteristics of such
scenario configuration, which reproduces the Braess’ paradox, were already pre-

Table 5. Cost of routes and total cost for different distributions of drivers (N = 150).

Number of drivers Cost of route Cost over all drivers

SAE SBE SABE SAE SBE SABE

75 75 0 98.5 98.5 80 14775

50 50 50 101 101 85 14350

150 0 0 106 91 80 15900

20 20 110 104 104 91 14170

0 0 150 106 106 95 14250
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sented in Sect. 3.1. The paradox also occurs on Wednesdays, whose number of
agents commuting from S to E is 261. The difference is that, in this scenario,
the UE leads to a distribution in which almost every agent uses route SABE,
with a single agent travelling through each of the remaining routes. The SO dis-
tribution, in turn, requires an even distribution between routes SAE and SBE.
Table 6 presents these and other possible distributions as well as their corre-
sponding travel costs.

Table 6. Cost of routes and total cost for different distributions of drivers (N= 261).

Number of drivers Cost of route Cost over all drivers

SAE SBE SABE SAE SBE SABE

130.5 130.5 0 104.05 104.05 91.1 27157.05

87 87 87 108.4 108.4 99.8 27544.2

261 0 0 117.1 91 91.1 30563.1

0 261 0 91 117.1 91.1 30563.1

1 1 259 117 117 117 30537

Finally, in episodes representing Fridays, 510 agents travel between the start
and ending points. Although the paradox is still occurring in such configuration,
the increased number of agents impacts the UE in a way that it becomes close
to the SO. Therefore, a reasonable sub-optimal solution may arise naturally.
In UE, there are 500 agents equally distributed between routes SAE and SBE,
and 10 agents travelling through SABE. In the SO distribution, route SABE is
completely avoided. Table 7 presents some agent distributions and corresponding
travel costs.

Table 7. Cost for routes and total cost for different distributions of drivers (N = 510).

Number of drivers Cost of route Cost over all drivers

SAE SBE SABE SAE SBE SABE

255 255 0 116.5 116.5 116 59415

250 250 10 117 117 117 59670

170 170 170 125 125 133 65110

510 0 0 142 91 116 72420

0 0 510 142 142 167 85170

Agents in this context-dependent simulation are similar to those described
in Sect. 3.1, maintaining the same goal, softgoal, plans and outcome previously
specified, as well as the same additional attributes of the plan selection strategy
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(see Table 3). The only difference consists of influence factors. The number of
agents on the network is replaced by the day of the week, which is a factor
that impacts plan outcomes in our scenario, being also an information easily
provided in realistic scenarios.

4 Simulation Results

Both simulations described in Sect. 3 were executed for 50,000 episodes, each of
them representing one travel from S to E. For the first 5,000 episodes, only routes
SAE and SBE were available for use; therefore, agents are only able to perform
the two corresponding plans, i.e. SAEPlan and SBEPlan. In episode 5,001, the link
AB is added to the network, making route SABE available, and every agent is
able to perform the plan SABEPlan. It is important to notice that, when an agent
does not have a built prediction model for a particular plan, such plan receives
the same expected utility than the current best predicted plan. It motivates
agents to select such plan more often and build its prediction model as soon as
possible, but the best plan can still be selected. Next, we present results obtained
with our two simulations.

4.1 Standard Simulation

In our simulations, the distribution of vehicles in our network does not initially
follow any particular trend, as agents select their routes randomly. After existing
plans have their prediction models built, vehicle distribution approximates to
the SO (see Table 2), being almost balanced between routes. As expected, there
is a variance related to the exploration activity performed by some agents in
each episode. With the addition of the link AB to the network, several agents
start commuting through it (because this plan has the same probability of being
chosen as the plan with the best expected utility), and at some point they have
a prediction model built for the SABEPlan. However, due to this extensive use,
agents associate the route SABE with the longest travel times and start avoiding
it, returning to a distribution similar to that presented before the existence
of that route. Such phenomenon can be observed in Fig. 3, which depicts the
distribution of agents among the three routes along our simulation.

It is interesting to highlight what happens near episode 15,000. Although
agents avoid to use SABE almost completely, this route is still being used by a
few different agents in every episode, which is caused by the exploration activity
performed by some of them. In such situation, SABE provides a shorter travel
time than the other routes. Suppose that 10 agents are commuting through
SABE while the other 380 are evenly distributed between SAE and SBE. In such
an episode, those 10 agents will have a travel cost of 101 time units, which is lower
than the 109 time units spent by agents using the other routes. As this situation
repeats along the simulation and prediction models start to get updated, route
SABE becomes very attractive to an increasing number of agents, as can be seen
in Fig. 3. However, agents can recognise when such increase exceeds a threshold
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Fig. 3. Standard simulation: agent distribution between routes SAE, SBE and SABE.

in which SABE is no longer better than SAE or SBE, and they then abandon
this route. It leads to SABE providing a shorter travel time again, which attracts
more agents, resulting in a cyclic behaviour. This cycle tends to happen in shorter
intervals along the simulation, and can be observed in Fig. 3 near episodes 29,000
and 34,000, for instance. Therefore, agents end in a distribution that constantly
oscillates between the SO and the UE.

To evaluate the performance of our learning-based plan selection strategy in
this scenario, we measured the travel cost over all agents and compared it with
results from simulations using two different approaches for route selection. In the
first, which is referred to as greedy, agents have the information about the cost
functions of each route but not about the number of agents in the network. Thus,
agents always select the route providing the shortest travel cost regarding a single
vehicle. Such reasoning is similar to that presented by drivers that have different
available routes, know their corresponding lengths, and select that with the
shortest length disregarding possible traffic jams. The second approach, in turn,
provides agents with a plan selection strategy based on reinforcement learning.
In this case, the rewards (or costs) considered by an agent are the average times
obtained through previous travels in each route. It is important to note that
agents in these simulations are capable of exploring routes, as in our approach.
Figure 4 presents the comparison of these two approaches with ours. A careful
reader may notice that there are episodes in which the obtained global travel
cost is plotted below the SO line. It happens because in such episodes, few agents
may not process in time and commute after the others. Although such behaviour
impacts the immediate global travel time, it does not affects the results of the
overall simulation.

The greedy approach presents the worst performance regarding the global
travel costs. Given their characteristics, every agent tends to select SABE, over-
loading that route and having a high travel cost. Our approach, in turn, has the
best result considering the first ten thousands episodes after the addition of route
SABE, almost reaching the SO. After this initial period, its performance is com-
parable to that presented by the reinforcement learning approach. Such result is
due to the similar plan selection strategy performed by both approaches. In our
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Fig. 4. Standard simulation: global travel costs of our plan selection strategy (LNB)
compared with reinforcement learning (RNF) and greedy (GRD) approaches as well as
to the system optimum (SO) and user equilibrium (UE).

simulation, agents have a single influence factor whose value is fixed. Therefore,
outputs from prediction models correspond to the average outcome of previous
plan executions, which is exactly the same reward considered by agents on the
reinforcement learning approach. Despite this similarity, the global cost remains,
on average, bellow the one obtained in UE (44250.6 vs. 45630 time units, respec-
tively), indicating that agents provided with our learning-based plan selection
strategy are able to mitigate the effects of the Braess’ paradox. These results
are even more interesting when we consider that (i) they were achieved without
explicit communication among agents, (ii) agents do not know the social impact
of their actions, and (iii) agents are not aware of the cost functions of each route.

4.2 Context-Dependent Simulation

Our aim with the context-dependent simulation is to evaluate how agents adapt
to changes in their environment. On Mondays (150 agents on the route), agents
using our learning-based plan selection strategy are able to achieve a distribution
that performed better than the UE. This can be seen in Fig. 5, which shows the
global travel costs of our plan selection strategy (LNB) compared with reinforce-
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Fig. 5. Context-dependent simulation: Mondays.
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ment learning (RNF) and greedy (GRD) approaches as well as to the system
optimum (SO) and user equilibrium (UE) on Mondays. This result is slightly
worse than that presented by agents choosing routes using reinforcement learn-
ing, and comparable to that obtained by greedy agents. There are reasons that
justify such behaviour. First, to reach the SO distribution, some agents must
have a longer travel time by travelling through routes SAE and SBE. However,
as they act selfishly, no agent is willing to do so. In fact, the majority of agents
that choose SAE or SBE on Mondays are due to the exploration activity. Sec-
ond, the UE and SO distributions are very close regarding the global travel time
obtained in each of them. Therefore, given their selfishness, it seems reasonable
for agents to accept a very attractive reward that will have a small impact on the
final global travel time. Finally, agents commuting on Mondays are also the only
agents commuting in every day of the week. It is possible that such information
overlap impacts the outcome prediction and consequently the plan selection.

Mixing information from different days of the week is also evidenced by the
results of Tuesdays and Thursdays, which have the same number of agents (390)
but surprisingly distinct results. On Tuesdays, agents using our plan selection
strategy have their global travel time initially oscillating between the UE and
SO values. However, their performance decreases during the simulation, becom-
ing worse than the UE distribution for most of the time (Fig. 6). This can be
explained by the fact that some agents commuting on Tuesdays do not commute
in other days of the week. Therefore, their prediction models tend to be built
later than those from agents who commute throughout the week. In this par-
ticular case, what occurs is that agents who had their prediction models built
first tend to select SABE more often than those who did not (remember that
these agents commute on Mondays, in which SABE can be considered the best
choice). Added to the exploration activity, it results in a much higher number of
agents selecting SABE during the initial episodes. Such behaviour triggers the
cyclic phenomenon described in Sect. 4.1. The difference is that, in long term,
the number of agents attached to route SABE impacts the update of prediction
models of other agents, making them associate routes SAE and SBE with higher
travel times, and also migrate to SABE. The apex of such migration can be
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Fig. 6. Context-dependent simulation: Tuesdays.
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noticed near the episode 21,000. However, it is possible to observe that, during
the last ten thousand episodes, the amplitude of the global travel time starts to
reduce, slowly moving towards the UE.

On Thursdays, in turn, results are exceptionally good—agents are able to
achieve an almost optimal distribution for a long period of time. In fact, the
global travel time obtained by these agents is only greater than that from UE
near the episode 5,000, in which the link AB is recently added to the network
and thus very attractive to drivers. On average, global travel times were also
better than those obtained from greedy and reinforcement learning plan selection
strategies, as can be seen in Fig. 7. The difference between the results from
Tuesday and Thursday can be explained by the surrounding days of the day of
the week that we are analysing. As a regression model is built, and we represent
the days of the week as natural numbers, the behaviour in the surrounding days
affects the prediction regarding a particular day of the week.
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Fig. 7. Context-dependent simulation: Thursdays.

Good results were also obtained in episodes representing Wednesdays. As
described in Sect. 3.2, these episodes also replicate the Braess’ paradox. In this
context, agents have a behaviour similar to that presented on Thursdays, ini-
tially reaching an almost optimal distribution and then having a slightly decrease
in their performance as agents start the cyclic behaviour described in Sect. 4.1.
Actually, the implicit coordination to avoid the use of route SABE is facilitated
in this scenario. Differently from Tuesdays and Thursdays, the UE and SO dis-
tributions are completely different from each other. Therefore, even with some
agents regularly exploring SABE, the entire agent population does not become
attracted by that route. Such behaviour is depicted in Fig. 8.

On Fridays, in turn, the UE and the SO distributions are very similar, as can
be seen in Table 7. In general, agents present the same behaviour as in other days
that reproduce the paradox, initially reaching an almost optimal distribution and
gradually decreasing their performance. As we pointed out in Sect. 3.2, in this
particular scenario the UE corresponds to 10 agents selecting SABE while the
other 500 are equally distributed between routes SAE and SBE. Due to the
considerably high exploration rate (5%), there are often more than 10 agents
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Fig. 8. Context-dependent simulation: Wednesdays.

selecting that route. As a consequence, agents slightly move away from both UE
and SO distributions. Despite this particularity, agents using our approach had
still performed better than those using greedy or reinforcement learning plan
selection strategies, as presented in Fig. 9. In general, our cognitive agents are
able to adapt to different network configurations regarding traffic load, providing
social outcomes that are typically achieved only through the explicit awareness
of such social impact and in situations in which agents do not act selfishly.
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Fig. 9. Context-dependent simulation: Fridays.

Observing these simulations also allows us to point out some interesting
details. In some cases, the non existence of the Braess’ paradox in a given scenario
may influence the performance of sophisticated route selection techniques when
compared to the simpler ones. It occurs because, in this scenario, the best route
choice is commonly equivalent to the naive choice performed by these simpler
selection techniques. Sophisticated approaches, in turn, tend to look for complex
solutions that may be incorrect. Moreover, as the number of agents in a network
is modified, the UE and SO distributions also change. Therefore, comparing
travel times obtained from such distributions with those obtained from any other
distribution may be subjective. In a given scenario, for instance, reaching a
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distribution close to the user equilibrium can be a reasonable result if it is also
close to the optimum solution.

5 Conclusion

The Agent-based Modelling and Simulation (ABMS) paradigm has been a power-
ful solution for investigating scenarios that cannot be easily replicated in the real
world. Such paradigm is particularly suited for modelling and simulating traffic-
related problems, such as the Braess’ paradox. Although being able to soften or
even solve the paradox, existing agent-based solutions addressing this problem
typically model drivers as reactive agents, also requiring information that may
be infeasible to obtain in real world situations or relaxing some assumptions
concerning the paradox itself, e.g. drivers acting as altruistic agents.

In this work, we proposed the use of cognitive agent architectures as a suit-
able alternative to model driver behaviour and a potential solution to the Braess’
paradox. We exploited an extended BDI architecture that provides agents with
the ability of learning the relation between the context and the outcomes of
their choices. Results indicate that the use of cognitive agents is able to effec-
tively soften the effects of the Braess’ paradox. Our approach differentiates from
those existing given that there is no need for providing to agents additional infor-
mation, e.g. the awareness of the social impact of their choices, and no additional
engagement required from agents. A study on the impact of having several influ-
ence factors as well as different setups for the attributes of the learning-based
plan selection technique, e.g. prediction model update rate and exploration rate,
are subjects of future work.
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Abstract. We present a method for learning to interpret and under-
stand foreign agent communication. Our approach is based on casting
the contents of intercepted opponent agent communication to a bit-level
representation and on training and employing deep convolutional neural
networks for decoding the meaning of received messages. We empirically
evaluate our method on real-world data acquired from the multi-agent
domain of robotic soccer simulation, demonstrating the effectiveness and
robustness of the learned decoding models.

1 Introduction

Communication plays a central role in many multi-agent systems. The ability to
communicate with one another can, among others, enable agents to coordinate
their behavior or to overcome problems arising from partial state observability
by, e.g., sharing local observations with one another. While these usages of com-
munication adhere to cooperative multi-agents systems, it may be of importance
in an adversarial setting as well. More particularly, in an adversarial multi-agent
system it is very tempting to intercept the messages opponent agents exchange
and understanding them can bring about significant benefits for the eavesdrop-
ping agent.

In this paper, we focus on settings in which the communication within a team
of adversarial agents can be heard easily, but where the “language” used by those
opponent agents is unknown. Thus, the challenge for the listening agent is to
learn a model of the opponent agents’ communication which effectively allows
for interpreting the contents of messages received and to possibly act upon that
information. The basic idea of our approach is to leverage state of the art deep
learning techniques for recognizing the meaning of intercepted communication.
To achieve this we formalize the problem as a supervised learning problem and
develop a deep, bit-level convolutional neural network model that is trained on
real, non-encrypted, and non-compressed communication data. The application
area we are targeting is the domain of robotic soccer simulation where com-
munication across agents, like in real soccer, plays a crucial role. Besides this
multi-agent application, we are convinced that the basic ideas of our approach
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might be utilized also for other message-based tasks such as reverse engineering
or decoding data transfer in bus systems (like controller area networks).

We start this paper with some technical and algorithmic foundations and
a summary of relevant related work. In Sect. 3 we present in detail our prob-
lem modeling and learning approach, followed by an empirical evaluation of our
learned deep models (Sect. 4), applying them in the context of the competitive
multi-agent world of robotic soccer simulation. Finally, Sect. 5 concludes. Since
this paper makes use of quite some mathematical notation, the Appendix pro-
vides an overview of the most important symbols we use and a brief explanation
of their meaning.

2 Foundations

We start off by providing some basics of our multi-agent application domain,
simulated robotic soccer, before we continue to elaborate on foundations required
for our deep communication learning approach. Also, this section is meant to
provide references to related work.

2.1 Robotic Soccer Simulation

RoboCup [22] is an established international research initiative that aims at
fostering research in AI, intelligent robotics, and multi-agent systems. Annually,
there are championship tournaments in several leagues. Among these, the most
tactically advanced and richest in terms of behavioral complexity is the 2D Soccer
Simulation League, where two teams of simulated soccer-playing agents compete
against one another using the Soccer Server [15]. This software implements a
real-time soccer simulation system which puts into practice all aspects that are
of relevance to multi-agent systems research.

The Soccer Server allows autonomous software agents to play soccer in a
client/server-based style: The server simulates the playing field, communication,
the environment and its dynamics, while the clients are permitted to send their
actions once per simulation cycle to the server (each cycle lasts 100 ms). Then,
the server takes all agents’ actions into account, computes the subsequent world
state and provides all agents with (partial) information about their environment.

Robotic Soccer represents an excellent testbed for machine learning and,
particularly, for multi-agent tasks. Several research groups have dealt with the
task of learning parts of a soccer-playing agent’s behavior autonomously (e.g.
[5,12,16]) and even more have defined [9,20] and investigated [2,11,19] various
multi-agent related (sub-)tasks in robotic soccer. However, to the best of the
authors’ knowledge, the work we are presenting here is the first one that aims
at learning and understanding the contents of opponent communication.

2.2 Communication in Simulated Soccer

As outlined, decision making must be performed in real-time or, more precisely,
in discrete time steps: Every 100 ms the agents can execute a low-level action
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(like to dash, to kick the ball, turn their body or neck, or to point with their
arm into some direction) and the world-state will change based on the individual
actions of all players. Beyond these actions which influence the physical behavior
of the agent, each agent is additionally allowed to communicate. In many existing
multi-agent systems with communicating agents, the agents are allowed to use
a reliable, high-bandwidth, and low-cost communication [23]. By contrast, in
simulated soccer communication is unreliable, is restricted to low bandwidth,
and uses a single shared communication channel for all 22 agents, thus mimicking
the way spoken messages are transmitted and heard by humans in real soccer.

2.2.1 Technical Details
Direct agent-to-agent communication is strictly forbidden (more exactly, it would
be considered a fraud attempt during competitions). Instead, each agent is
allowed to broadcast a string of up to 10 characters in each time step. The
broadcast is received by the Soccer Server and will be conveyed to selected play-
ers in the next simulation cycle, implying that any form of communication in
soccer simulation is inherently delayed. Moreover, the communication channel is
shared which imposes the restriction that each player can hear only one message
from a teammate plus one from an opponent in each simulation step. The selec-
tion of the teammate and/or opponent to listen to can also be influenced by each
agent by focusing its listening attention to exactly one specific player (otherwise
random messages will be received). As a consequence, communication in soccer
simulation is inherently unreliable since no agent can ever be sure whether some
teammate has heard its say message or not. If all agents speak all the time, on
average two of every eleven messages will be heard.

2.2.2 Communication Examples
Given these restrictions, at RoboCup competitions some teams make more
intensive use of communication while others do less. Considering the amount of
information sent to the Soccer Server during an average game, the share of com-
munication data relative to the overall amount of information that needs to be
transmitted in order to control all simulated parts of the agent’s body is as high as

– 54% and 36% for former champion teams WrightEagle and Brainstormers/
FRA-UNIted, implying that each agent sends a message in each time step,

– 17% and 13% for last year’s finalists Gliders and Helios, meaning hat each
agent sends a say message in one of every six time steps on average.

Having a look at an excerpt of the text log file (created by the Soccer Server,
storing all actions and commands issued by all players) of the 2016 final match,
we can easily detect communicated say messages among other data transmitted
by the agents (Fig. 1). For example, we see that in time step 7 Helios’ agent #4
dashed with 60% power, while #6 kicked the ball. We also observe, that four
out of the six agents listed made use of communication by sending a 10-char say
message, though we have a hard time understanding its meaning.
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7,0 Recv Gliders2016_6: (dash 100)(turn_neck 41)(say "-EsQdKhGQI")
7,0 Recv HELIOS2016_4: (dash 60)(turn_neck -47)
7,0 Recv HELIOS2016_6: (kick 89.676 3.5062)(turn_neck 84)(attentionto off)(say "pawO7w4-v ")
7,0 Recv Gliders2016_9: (dash 100)(turn_neck -5)(say "fbkHkNRaZP")
7,0 Recv Gliders2016_1: (dash 100)(turn_neck 0)(attentionto our 6)
7,0 Recv HELIOS2016_9: (dash 100)(turn_neck -55)(say "RZvS?uDYKw")

Fig. 1. Excerpt of the text log file of RoboCup 2016’s final match.

2.3 Feed-Forward and Convolutional Neural Networks

Artificial neural networks are known for their excellent performance in different
areas of machine learning. They are frequently applied for classification, regres-
sion, prognosis, as well as in reinforcement learning tasks. Specifically, multi-layer
perceptron neural nets were shown to be universal function approximators [8].

In recent years, deep learning methods have witnessed significant improve-
ments and brought about a number of breakthroughs in classic AI tasks that
at times outperform human-level performance [14], including traditional multi-
agent scenarios with imperfect information [4]. Additionally, deep (convolu-
tional) neural networks as critic or actor in a reinforcement learning setting were,
in combination with more classic tree search algorithms, able to beat human
champions in challenging games like Go [18].

2.3.1 Multi-layer Perceptron Neural Networks
A multi-layer perceptron is a neural network whose units (neurons) are con-
nected in an acyclic graph. When calculating the activation of a neuron, we first
calculate the net input to this neuron which is a weighted sum derived from all
predecessor neurons’ activations and the corresponding connection weights. In
a second step, the net input to this neuron is passed through a differentiable
monotonous activation function (e.g. the tanh, the logistic sigmoid function, or
the rectified linear activation unit ReLu [7]), thus yielding the neuron’s output.

In a multi-layer perceptron neural network all of its neurons are arranged in
layers that are disjoint from one another in that there are no connections among
units within the same layer. Data is propagated through the network (forward
propagation) by providing inputs to the network’s first layer (input layer) and,
subsequently, calculating the activations of all neurons in all successive layers
(hidden layers) till the final, so-called output layer. For a given training set

P = {(xp, tp)|p ∈ {1, . . . , |P|}} (1)

of training patterns (xp, tp) with input vectors xp = (xp
1, . . . , x

p
m) ∈ R

m and
target values tp = (tp1, . . . , t

p
n) ∈ R

n, a multi-layer neural net can be trained using
one of the many variants of the back-propagation algorithm which essentially
performs a gradient descent-based adaptation of the net’s connection weights
such that the summed squared error between the net’s outputs under input of
pattern xp and the corresponding target values tp is minimized. For more basics
on neural networks the reader is referred to [6,17].
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2.3.2 Convolutional Neural Networks
Convolutional neural networks (CNNs, [13]) are a specialized type of neural
networks for processing data with a grid-like topological layout, like image data
where pixels form a 2D grid. CNNs differ from standard feed-forward neural nets
in that they use convolution as a special linear operation in some of their layers.
That operation is not limited to two-dimensional data, but can be applied to
one-dimensional problems as well, e.g. for time series data.

Discrete convolution over an input I ∈ R
m×n using a convolution kernel

K ∈ R
k×k with kernel size k produces a matrix S ∈ R

m×n whose entries S[i, j]
are defined as

S[i, j] = (K ∗ I)[i, j] =
m∑

p=1

n∑

q=1

I[i − p, j − q] · K[p, q]

This definition is a well-known operator in computer vision and it trivially
extends to one-dimensional data, if m = 1. In machine learning, the input is
usually an array of data (training examples) and the kernel’s entries are the
parameters that are adapted by the learning algorithm similar to what has been
described in Sect. 2.3.1. The linear output of convolution is then run through
a non-linear activation function such as tanh or ReLu. The output of the non-
linear activation is often followed by maximum or average pooling layers that
are meant to downsample the overall input, representing the output calculated
so far by some summary of it. Besides, it should be stressed that each convolu-
tional layer does not just employ a single, but a larger number of convolutional
kernels, also called filters, each of which represents its own representation for the
next layer of the network. Lastly, deep feed-forward neural networks do usually
employ a number of stacked convolutional layers as described before, followed
by one or more fully connected layer(s) to form the net’s final output(s). A com-
prehensive and more detailed introduction and overview of CNNs can be found
in [6].

3 Problem Modeling

As we saw in the previous section, intercepting opponent communication can be
done easily in robotic soccer simulation. The agent can simply put its listening
attention to a desired opponent and will receive its next say message in the subse-
quent simulation cycle given that the wire-tapped opponent has said something.
In this section, we describe our approach to interpreting and understanding the
contents of the received opponent message.

3.1 General Approach

Our goal is to pose the communication understanding task as a supervised learn-
ing problem. Generally, the to-be-predicted contents of a 10 char opponent say
message could contain anything, from an agent’s internal stamina state to high-
level results of reasoning about our team’s playing strategy. However, it is natural
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to assume that in a competitive application domain like robotic soccer any agent
is likely to frequently communicate such information that is most beneficial to its
teammates with respect to the real-time properties and the partial observability
of the simulation. Among such highly beneficial pieces of information are

1. the ball location and its velocity,
2. locations of teammates and opponent players,
3. pass announcements or requests,
4. locker room agreements and corresponding team strategy information

(e.g. formation, role assignments, player markings etc. [21]).

In the remainder of this paper, we are going to specifically address points 1. and 3.
In order to tackle these tasks with supervised learning we require a training data
set P (cf. Eq. 1) containing a substantial amount of training patterns (xp, tp).

Inputs xp are communicated messages C = (cs, . . . , c0) with maximal message
size S and s < S as well as with literals ci from an alphabet A which in our case is
the printable subset of ASCII-128 characters (cf. Fig. 1). Since the length of each
message is restricted to a length of S, the discrete set of possible communication
messages is

A = ∪S
i=0A

i.

In our targeted application domain it holds |A| ≈ 5.4 · 1019 since S = 10 and A
represents the set of 94 printable 7-bit ASCII characters (without quote sign).

Input Vector: A naive approach to learning a model for recognizing the contents
of opponent say messages would be to feed a numeric representation of each letter
ci into the first layer of the network. This approach could be expected to bring
about acceptable results already, if we could guarantee that the payload is never
spread across multiples letters. Given the limited communication bandwidth in
the type of multi-agent system we are considering, however, such an assumption
is unrealistic as it would, for example, be wasteful to use one full letter (7 bit)
for transmitting the unique number of some other agent for whose encoding 4
bit are sufficient.

By contrast, we suggest to define and utilize a bit-level representation for
any received say message C = (cs, . . . , c0) for the following reasons:

– Such a more fine-grained representation allows for capturing payload data
that is spread across multiple characters ci. Moreover, it allows for covering
chunks of information that start at arbitrary bit positions within C.

– Assuming that the communicating agents do not apply some kind sophis-
ticated encryption/decryption techniques, the bit representation is likely to
contain patterns that hint to the type of information contained (e.g. an iden-
tifier indicating it is a pass announcement) as well as bit patterns that contain
the details or parameters (e.g. the starting point or velocity of a pass).

– The bit-level representation enables the usage of convolutional neural net-
works to detect features (i.e patterns) within the bit sequence that makes it
possible to classify a message’s type, its contents or for doing regression on
the encoded parameters it contains.
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-1 1 -1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1binary

decimal 10 3 12

kernel K2 2 0 0 -1 -1

kernel K1 -1 -1 -1 1 1 1 0 1 -3 -1 -1 3 5 1 -1 1 -1 -3 -2 1

0 0 -2 4 0 4 -2 -4 -2 -2 0 2 0 3 2
*
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1 1 -1 5 1 1 -2 1 0 4 4 -2 -2 2 3 2max pooling

Fig. 2. One-dimensional Bit-level convolution

Given a new say message C ∈ A we use a function

b : A → {0, 1}B (2)

which maps C to a bit sequence b(C) of length B = S�log2 |A|� where A is
the underlying alphabet (in our application it holds B = 10�log2 94� = 70. In
Sect. 3.3.2, we will discuss possible concrete implementations of b.

Figure 2 visualizes our approach for an exemplary bit vector of length 15
containing some “identifiers”, including one represented by the decimal number
3 encoded as a 5-bit binary number. The figure also shows two 1D convolutional
kernels that might be understood as the result of learning. Apparently, K1 is
able to “detect” a possible location of the searched for identifier “3” in the bit
sequence, whereas K2 is obviously meant to recognize other bit features.

Target Values: In what follows, we distinguish between two different types of
learning problems that we want to tackle.

(a) Classification Problems: Here, we aim at the recognition of the type of
information that is contained in a say message C. Since each message can
contain multiple chunks of information (and these in an arbitrary order,
too), this amounts to a multi-label binary classification problem where
tp ∈ {true, false}l with l denoting the number of information chunks consid-
ered. If we, for example, aim at recognizing communicated ball information
(one class), pass announcements (one class) as well as player information
(one class for each player on the field) simultaneously, we arrive at l = 24.
In the experiments reported below, we focus on ball and pass classification
with l = 1 in each setting.

(b) Regression Problems: Assuming that our trained model in (a) states that a
certain piece P of information is contained in C (e.g. data about the ball’s
location), the next logical step is to also extract the details or parameters
of P. In the example of a ball location such details are its x and y position
on the field, in the case of a pass announcement it might be the unique
number of the receiving agent or the pass velocity. As a consequence, in this
setting the challenge for the trained model is to extract numerical data from
C which corresponds to a classical regression problem. Thus, tp ∈ R

l with l
taking a value that depends n the kind of information P contains.
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As far as the determination of exact target values tp is concerned, we have to
extract the relevant information from real simulated soccer matches. For exam-
ple, if we observe a pass being played by an opponent agent at time t, and if
this is accompanied by a say message sent by that player at t or shortly before
t, we have a high chance that this message contains a pass announcement and
that it, hopefully, carries more information about the intended pass.

3.2 Model Architecture

We use a deep neural network architecture that is identical for all settings and
learning tasks we are considering. As pointed out, input to the network is a
bit-level representation xp = b(C) of an opponent agent’s received say message
C containing B bits. The positive and negative level of each bit a mapped to −1
and 1, respectively, which prevents us from simply ignoring all zero bits in the
context of the convolutional operation (cf. Sect. 2.3.2).

The input is fed into a first convolutional layer of 128 one-dimensional con-
volutional filters of size 13, followed each by rectified linear activation units,
whose output is then handed on to a maximum pooling layer with a stride of
two. The second convolutional layer uses exactly the same layout as the first one
with the exception of reduced kernel sizes of seven, and is also followed by ReLu
activations and max pooling. The output of this layer is fed into a standard fully
connected layer with 512 hidden units whose outputs are linearly combined to
form the single (or multiple) output(s) of the net. The number of neurons in the
output layer depends on the specific learning task as described in Sect. 3.1. To
enforce regularization during learning we apply drop-out in the fully connected
layer [3] with a drop-out rate of 0.5.

3.3 Communication En-/Decoding

In order to define a suitable bit-level representation function b : A → {0, 1}B

(cf. Eq. 2) that maps an opponent say message C ∈ A to a bit vector, we need
to reflect about common ways for encoding some payload data efficiently in a
message of limited size S over a given alphabet A. This means, for a moment
(Sect. 3.3.1), we adopt the perspective of an opponent agent opp1 and compare
different approaches for defining a function encopp : D → A that encodes a
given tuple V = (v1, . . . vd) ∈ D of payload data, i.e. of numeric values vi, to
a maximally S-letter message C over alphabet A that can be decoded easily by
one of its teammates opp2 that receives C.

3.3.1 Encoding Payload Data as Say Message
As a general note, we make the fundamental assumption that all agents do
not apply any form of error detection or recovery since, on the one hand, the
communication channel (simulated by the Soccer Server) does not introduce
transmission errors and, on the other hand, agents are expected to maximize
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the amount of information transmitted (making check bits superfluous). Fur-
thermore, we proceed on the assumption that no agent performs any kind of
sophisticated data encryption which would render our entire approach useless.

(a) One Letter per Value: The most intuitive approach is to discretize the domain
Di = [dmin

i , dmax
i ] of vi to |A| values and map vi to its nearest representative

according to

encopp
i : Di → A with vi 	→ A

[⌊
|A| vi − dmin

i

dmax
i − dmin

i

⌋]

where A[j] provides access to the jth element of the alphabet. While easy to
implement, this approach is suboptimal as it allocates one letter to each vi and
disregards the requirements on the resolution. For example, using one character
for encoding a unique player number vi ∈ {1, . . . , 11} is wasteful, whereas for
conveying an x position on the field1 this approach would yield a rather coarse
discretization of steps with size 105

|A| which is 1.11 m for printable 7-bit ASCII
characters. It is unlikely that any of the existing robotic soccer teams is adopting
such a basic encoding approach.

(b) Information-Oriented Bit Allocation: A clearly more efficient approach is to
specify the required number of bits βi for each piece of information vi and to
then create a block code (without error correction) from it. Hence,

encopp
i : Di → {0, 1}βi with vi 	→ bin

(⌊
2βi

vi − dmin
i

dmax
i − dmin

i

⌋)

where bin takes a natural number, converts it to a binary number, and represents
it as a bit string of fixed length βi. From this, a trivial block code can be created
by simple string concatenation bs of the bit strings returned from each encopp

i ,
i.e. bsopp(V ) = ⊕iencopp

i .
Given, for instance, the data V = (v1, v2, v3) where v1 stands for one out

of a set of 32 identifiers and
(
v2
v3

)
represents the ball’s location. Then, five bit

are sufficient for encoding v1 whereas one might spend 1024 possible discrete
values (i.e. ten bit) for encoding the ball’s x location on the pitch and 512
discrete values (nine bit) for its y location. This yields a sufficiently accurate
resolution of 105

1024 = 10.3 cm and 68
512 = 13.3 cm in x and y direction, respectively.

Concatenating the three binary numbers yields a 24-bit string as shown in Fig. 3
for a payload extended by two more data fields.

(c) Fixed-Length Encoding: A straightforward approach for turning the block-
code bit string bsopp(V ) into a message C = (cS−1, . . . , d0) is to split it into pieces
of identical size σ, interpret each such piece as a natural number n, and to map it
to a character ci using some bijective index function idxA : A → {0, . . . , |A|−1}
(the “code”) such that n = idxA(ci).

1 Pitch size in 2D simulated soccer is 105 × 68 m.
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Given the size |A| of the alphabet, it is natural to set σ = �log2 |A|� and to
use only a 2σ-element subset of A. Knowing that |A| = 94 in our application, an
agent using this approach encodes each σ = 6 bit from bsopp(V ) by one character
from A (see Fig. 3, left-hand side).

(d) Base- |A| Encoding: The fixed-length encoding in (c) is still wasteful in
the sense that it does not fully exploit the available alphabet. The bit string
bsopp(V ) formed in (b), however, corresponds to a (possibly large) base-2 number
N2. Therefore, it is standing to reason to convert that number into a base-|A|
number and to simply employ that as the encoded message to be sent. Thus,

encopp : D → C with V 	→ base|A|(bsopp(V ))

where base|A| : {0, 1}
∑

i βi → C. A binary number N2 can be written in base
|A| as N2 = N|A| =

∑S−1
i=0 idxA(ci)|A|i. So, the function base|A| yields a string

base|A|(N2) = (cS−1, . . . , c0) over alphabet A with S denoting the maximal size
of a message. Here, again, idxA : A → {0, . . . , |A|−1} refers to the index assigned
to each letter from A (thus, depicting the agent’s code).

3.3.2 Bit-Level Representation of Say Messages
We now return to our agent’s point of view and, hence, to the question on how
to interpret intercepted communication.

Naive Bit-Level Representation: Given an opponent’s say message C =
(cs, . . . , c0), we can naively represent it as a bit vector using the individual char-
acters’ 7-bit ASCII code representation. Thus,

basc : A → {0, 1}B with (cs, . . . , c0) 	→ ⊕s
i=0asc(ci)

where asc(ci) returns the index of ci in the ASCII-128 table as a bit string
of length 7. This way, we might easily retain the structure contained in a say
message encoded using the fixed-length regime from above.

Base-|A| Bit-Level Representation: Instead of the naive approach, throughout
the rest of this paper, we are going to use the following more sophisticated
one in which we take account of the base-|A| encoding possibly applied by the
communicating agent. Here, we define

b|A| : A → {0, 1}B with (cs, . . . , c0) 	→ bin

(
S−1∑

i=0

idxA(ci)|A|i
)

where bin returns a bit string as defined in Sect. 3.3.1 (b) and idxA provides the
index of a letter in the code as introduced above.

For this approach to be applicable, we need to know the full contents of the
alphabet A used by the opponent agent. While we can infer the exact value of
|A| after having intercepted a sufficient number of messages, we have no chance
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Payload V=(v1,v2,v3,v4,v5)
v1 (β1=5)   enc1(v1) = 00011
v2 (β1=10) enc2(v2) = 0000010000
v3 (β1=9)   enc3(v3) = 000001000
v4 (β1=5)   enc4(v4) = 00100
v5 (β1=7)   enc5(v5) = 0000100

bsopp(V) = 0001100000100000000010000010000001002 = 6.476.038.66010

000110 000010 000000 001000 001000 000100

Fixed-Length Encoding with σ=6
(equal to base-64 encoding)

Base-73 Encoding

idxA(ci):     6              2              0             8              8              4
3·735 + 9·734 + 3·733 + 13·732 + 46·731 + 26·730

idxA(ci):    3            9            3             13             46            26

Payload V‘=(v1,v‘2,v3,v4,v5)
v1 (β1=5)   enc1(v1) = 00011
v2 (β1=10) enc2(v2) = 0000010001
v3 (β1=9)   enc3(v3) = 000001000
v4 (β1=5)   enc4(v4) = 00100
v5 (β1=7)   enc5(v5) = 0000100

bsopp(V‘) = 0001100000100010000010000010000001002 = 6.478.135.81210

000110 000010 001000 001000 001000 000100

Fixed-Length Encoding with σ=6
(equal to base-64 encoding)

Base-73 Encoding

idxA(ci):     6              2              8              8             8 4
3·735 + 9·734 + 8·733 + 42·732 + 12·731 + 34·730

idxA(ci):    3            9            8             42             12            34

1

1

1

8 8 42 12 34

bin(idxA(ci)):  0000011   0001001   0000011    0001101     0101110     0011010

bin(idxA(ci)):  0000011   0001001   0001000 0101010 0001100     0100010

Fig. 3. Influence of a single bit swapped under fixed-length and base-73 encoding:
although only the least significant bit in only one of the five values vi has changed
from V to V ′, the resulting encoded message looks totally different under base-73
while the Hamming distance is only one under fixed-length encoding.

of getting to know how the opponent agent’s code idxA is defined. In order to
get along with this we assume some arbitrarily chosen function idxA (e.g. with
character indices sorted identically to the asc function from above) and rely on
the learned deep representation of our approach to do the actual decoding work.

3.3.3 Encoding Remarks and Example
It is important to emphasize that the fixed-length encoding in Sect. 3.3.1 (c) is
a special case of the base-|A| encoding in (d) for |A| = 2σ. Accordingly, our
bit-level representation b|A| in Sect. 3.3.2 is capable of handling both of them.

We have, however, presented them separately in order to highlight that:

– For a message size of S = 10 over an alphabet A with |A| = 94 we find that
in (c) a payload of 60 bits can be transmitted per message. By contrast, in
(d) the payload is effectively as high as log2(9410 − 1) = 65.5 bit.

– In general, a base-κ encoding can be employed by the opponent agents with
any value κ ≤ |A|.

– If, however, κ is not a power of two, then this has severe implications for our
bit pattern recognition approach based on convolutional neural networks.

To understand the last of these three points, consider the example shown in
Fig. 3. Here, we have a tuple of payload data V that is altered by just the least
significant bit of v2 forming V ′. Under an opponent-side fixed-length encoding
(i.e. with κ a power of two) the encoded message changes by only one bit,
too, whereas for values of κ that are not a power of two (in the figure: κ =
73) the encoded message C is mutated heavily. As a consequence, payload data
with very similar contents is mapped to strongly differing say messages which
makes it difficult, if not impossible, for a convolutional neural network to learn
patterns within the data that do generalize across communicated messages. For
these reasons, it is essential to our approach to apply the base-|A| bit-level
representation b|A|, if the opponent agent has encoded its payload data using a
base-|A| encoding function encopp as outlined above.
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4 Empirical Evaluation

In the previous section, we have elaborated on different ways how opponent
agents might encode their payload data V ∈ D to a fixed-size message. Each
of the encoding functions is bijective and could be inverted easily by our eaves-
dropping agent, if it had access to the relevant parameters, i.e. to the alphabet
subset size |A| employed by the opponent, the values βi and σ, the composition
of the elements within V as well as the mapping between elements of A and
their numeric representation (i.e. the assumed ordering of characters within A
belonging to idxA). Since, however, we do not have access to the internals of the
opponent agent, it is a challenging task to learn a deep representation of them
which allows us to decode opponent agent messages.

4.1 Experiment Overview

As a proof of concept, we start with the task of eavesdropping and correctly
understanding the contents of out own team’s (FRA-UNIted) communication.
This is indeed a particularly straightforward task since we know the basic prin-
ciples of our communication and how they are implemented. After that, we will
put our focus on the communication of a selection of current top teams.

While we consider communicated ball information as part of our proof of
concept, the main focus of this evaluation is on eavesdropping information about
passes. In any case this includes both, classifying whether some message contains
a certain piece of information as well as, if it does, extracting the numeric details
of that information.

Our model has been implemented in Python using TensorFlow 1.0 [1] and
was trained on a single Intel i7 machine with two GeForce GTX1080 GPUs
using the Adam optimizer [10] with learning rate 10−4 minimizing the l2 loss
using stochastic gradient descent with a batch size of 64. A single epoch of
stochastic gradient descent requires approximately 1.5 ms on this hardware which
is a speed-up by a factor of ten compared to training on a CPU, only.

When applying a learned model on a standard PC with an i7 CPU (as it is
likely to be the case during competitions, for example), processing of a single
say message (forward pass through the deep convolutional neural network) takes
circa 0.5 ms on average using TensorFlow’s Python API. Given the time frame of
100 ms per time step imposed by the Soccer Server, the computational require-
ments of our approach in terms of evaluating a learned model do, therefore, not
represent an obstacle for a practical application under real-time requirements.

4.2 Proof of Concept: Ball Information

The communication system of our soccer-playing agents currently supports
8 different payload types including ball and ball holder information, pass
announcements and requests, information on individual players as well as free-
form messages. Our implementation employs the information-oriented bit alloca-
tion approach (cf. part (b) of Sect. 3.3.1) and can, thus, embed multiple payload
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Fig. 4. Uncovering ball information: classification accuracy achieved when trying to
predict whether some message contains ball data for different training set sizes subject
to neural network training epochs (left) and correctness of predicting ball position and
velocity information from the messages’ contents subject to increasing training set sizes
(right).

types in a single message. The agents employ a fixed-length encoding with σ = 6
(Sect. 3.3.1 (c)) using a 64-element subset of 7-bit ASCII characters as code.

In this section, we focus on communicated ball information which is a data
chunk of 36 bits that can be placed at an arbitrary position within a say message
(e.g. preceded by a pass request or followed by information about some other
player). It contains a 5-bit payload type identifier, the encoded ball position and
its velocity (each made up of an x and a y component) plus two 3-bit values
indicating the age of the position and velocity values.

Our data set P consists of 200k say messages recorded from a single player in
the course of more than thirty matches. 40k samples are left as an independent
test set. We investigate the effectiveness of learning for different training set sizes
sampled randomly from the remaining examples. Note that only a small subset
(5.8%) of these messages contains a ball information, i.e. P contains about 16
times as many negative examples as positive ones.

Figure 4 (left) shows that 500 samples are sufficient for obtaining an average
quality classifier, whereas about 3000 samples (i.e. the data from approximately
one half-time of a match) yield a classification of the type of the say message
with nearly zero error. As the right part of that figure shows, in order to also
accurately decode the contents of the ball information, most prominently its
position and velocity on the field, again the data collected within one half-time
is sufficient. For assessing the usefulness of the accuracy of the decoded data it
is worth noting that the domain of posx is [−52.5, 52.5] (in meters), of posy is
[−34, 34] (in meters), and of velx/y is [−3, 3] (in meters per time step).

4.3 Pass Classification

Next, we aimed at classifying whether messages contain pass announcements.
This time, however, we focused not just on our own team, for which we can
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Fig. 5. Pass classification: accuracy of detecting the membership of pass announcing
information in a say message subject to different opponent agents and to different
amounts of observed passes with accompanying messages.

create accurate class labels easily, but on a selection of current top-level teams2.
We made these teams play a series of matches, recording both, their passes
played as well as their entire communication. From this data we built a set P

+

of 20k positive training examples by associating any actual pass played with the
say message sent concurrently or shortly before the pass by the passing player.

Accordingly, the built training data set may contain wrong labels if, for exam-
ple, some player played a pass, but did not announce it and, instead, broadcast
some other information concurrently. Without knowing the internals of other
agents, it is difficult to quantify that level of noise, though we expect it to be
low since playing and announcing passes is a fundamental soccer skill that is
likely to be mastered nearly perfectly by any of the opponent agents considered.
Henceforth, all accuracy values reported refer to the classification performance
on independent training examples that originate from the same data distribution
including the same potential level of noisy labels.

In this series of experiments, we are also interested in assessing how many
passes need to be observed until a reliable classifier can be trained. Therefore, in
each run we selected a specific number p of samples from P

+ and joined it with
p negative examples (for which we used randomly selected say messages received
during non-pass situations), thus forming P. Again, 40k samples are left out as
an independent test data set on which all results reported are evaluated.

Figure 5 summarizes the results obtained after applying stochastic gradient
descent optimization after 5k epochs. Note that a random classifier, e.g. an
untrained net, would yield a classification accuracy of 0.5 due to our data set
compilation. Also, note that during an average match approximately 50 passes
(sometimes more) are played by a team. Thus, for any of the teams considered we
are able, for instance, to learn a pass announcement detector with an accuracy of
above ≈93% using the intercepted communication data from a single half-time.
The average accuracy using pass and communication data from a single game
(black series) is as high as ≈98% despite the fact that labels are possibly noisy.

2 Binaries of all contemporary teams are available at chaosscripting.net.
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4.4 Pass Regression: White and Black Box Experiments

The final stage of our experiments aims at decoding the payload data, i.e. the
exact numeric details, of messages that were previously classified as containing
pass information. Such details can contain the starting position p =

(
px

py

)
of the

pass, its velocity v =
(
vx

vy

)
or, eventually, the unique number of the intended

pass-receiving player.
To this end, we emphasize that the Soccer Server adds small random Gaussian

noise to all actions performed by the agents (e.g. to kicks that are intended to
play a pass) as well as, in each time step, to all movement vectors of objects
on the field (e.g. the velocity vector of the ball). As a consequence, each pass
actually played will most likely deviate slightly (in terms of its direction and
its speed) from the intended pass whose properties were communicated by the
pass-playing agent. Therefore, our training data set P contains inherently noisy
target values, since we build the data set from actually observed passes.

White Box Agents: Since it is straightforward to generate pass announcements
for agents of our team (as we do have access to their source code), we started by
building a dataset of 200k such pass-announcing messages that we could label
perfectly. We trained our decoder on 80% of the data, leaving 40k pass messages
as an independent test set. After 106 epochs of neural network training, i.e. after
about half an hour wall clock time, the error on the test set had dropped on
average to

(
0.34
0.50

)
for the pass start position and

(
0.03
0.04

)
for the velocity (units:

meters and meters per time step, respectively). Interestingly, even for much
smaller data sets (e.g. |P| = 5k, cf. Table 1) a decoding accuracy can be achieved
that would be sufficient for taking appropriate counter measures during a game.
Figure 6 visualizes the quality of the decoded information for FRA-UNIted as
well as for the (black box) agents from team Helios.

Black Box Agents: To create the necessary data sets for other opponent agents
(black box agents to whose source code we have no access), we made each agent
team considered play a series of 1000 simulated matches of soccer (each one
lasting 10 min wall clock time) during which we recorded their communication.
Again, our deep decoding model was trained using the same parameterization,
employing up to 20k examples in the training set and an independent test set
covering 40k passes.

As can be read from Table 1, outstanding results could be obtained for all
opponents considered with the exception of WrightEagle (no learning progress
w.r.t. p and v at all). Here, we found, however, that a pass announcement by
an agent from that team contains different pieces of data, namely the number of
the targeted pass-receiving teammate as well as the absolute value of the pass
velocity. Then, when modifying the labels of P accordingly, for a (extended)
training set of 50k passes we are able to achieve an error of the pass velocity
of 0.04 ± 0.05 meters per time step and an error in classifying the pass receiver
(one out of 11 classification) of 21.6%.
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Fig. 6. For two of the teams considered, 20 randomly chosen (not cherry-picked) passes
are visualized, opposing the real passes played and the information extracted from pass
announcing say messages that were sent by pass-playing agents and decoded using our
learned models.

Table 1. Average errors (in meters and meters per time step, respectively) and their
standard deviations for the decoded pass data (pass start position p, pass velocity v,
unique number r of pass receiver) intercepted from different opponent agent teams.

5 Conclusion

In this paper, we have presented an approach that aims at understanding foreign
agent communication using deep learning. Our learner intercepts fixed-size mes-
sages from opponent agents, casts their contents to a bit-level representation,
and uses deep convolutional neural networks to interpret the contents of the
message. Our work has been embedded into the multi-agent domain of robotic
soccer simulation. In our experiments, we have shown that our approach is capa-
ble of correctly classifying the type of the payload data contained in a message
as well as inferring numeric values therein. While we have shown that our app-
roach works well for recognizing ball and pass information, in future work we
aim at recognizing further categories of data communicated by opponent agents.
Our very next step, however, is to do the engineering work for integrating the
approach presented into our competition team in such a manner that it adheres
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to all real-time constraints of the soccer simulation domain and such that it can
be utilized during competitions.

Appendix

Notation and mathematical symbols used and their meaning in order of their
appearance.

P training data dmax
i upper bound of Di

xp input of pth training pattern βi number of bits used to encode vi
tp target value of pth training pattern bin mapping from natural number
C communicated message to binary
ci ith character in message bs mapping from payload tuple to
S maximal message size bit string
A alphabet idxA mapping from character to its

A[j] character at index j in alphabet index in the alphabet
A set of all formable messages σ number of bits mapped to one
b mapping from message to bit string character (fixed-length encoding)
B length of bit string base|A| mapping from binary number to
V tuple of payload data a base-|A| number
vi ith numeric value in payload data asc mapping from character to its
D domain of payload data index in the ASCII table

encopp encoding of payload data to message basc mapping from message to bit
⊕ concatenation of bit strings string using ASCII indices
Di domain of ith value in payload data b|A| mapping from message to bit

dmin
i lower bound of Di string using indices in alphabet

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
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Abstract. Current energy grids are moving toward utilization of renewable and
non-polluting energy sources. Micro-grids, as an emerging means for a localized
management, supervision, and control of energy production and consumption
are changing the traditional centralized grid topology, making it more dis-
tributed and autonomous. However, the fluctuating nature of renewable energy
systems make the energy demand control very complex. Hence, one of the
challenges in Micro-grid energy control and management is to handle any
deviation from the prior forecasted power generation/consumption by optimiz-
ing the usage of storage and backup generation units in a way that preserves the
users’ convenience level. The majority of the proposed optimization approaches
only use the centralized load shedding schemes, neglecting the effect of
inconvenience it may cause to the users. In this paper, we propose a Multi-agent
based decentralized algorithm for a residential grid-connected Microgrid. The
focus of our work is on how to handle possible power imbalance situations with
the help of an Autonomous Decentralized Multi-agent approach consisting of
user agents, storage agent, and grid agent considering the users’ consumption
preferences as an important factor in the decision making. We investigate the
application of our proposed algorithm over a PV-based Microgrid scenario.

Keywords: Multi-agent systems � Microgrid � Autonomous decision making �
Decentralized � Energy management

1 Introduction

The number of Micro-grid projects is increasing all over the world [1, 2].
Mannheim-Wallstadt Micro-grid in Germany, Bronsbergen Micro-grid in Netherlands,
and Kithnos islands Micro-grid in Greece are just a few examples of the Micro-grid
installations in Europe [2, 3]. There has been a lot of research going on in the field of
microgrid control and management specially in renewable energy based microgrids
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[4, 5]. One of the main control issues of microgrids with high dependency to renewable
sources of energy is dealing with the intermittency of these sources which makes the
energy demand control very complex. Hence, there should be a mechanism to handle
any deviation from the prior forecasted power generation/consumption by optimizing
the usage of storage, backup generation, and/or the power purchase from the main grid.
There have been some studies addressing the power imbalance issue in the power
electronic level using blind load curtailments to decrease the cost of imbalance han-
dling. However, considering the socio-economic factors such as consumers’ satisfac-
tion alongside the cost of energy may lead to intensive cooperation of users in so-called
demand-side management programs. Most of the existing research uses a centralized
approach in which utility functions are considered to represent user’s priorities for
certain appliances at the time of unforeseen event. The drawbacks of this strategy is
twofold, first, the centralized approach incurs a massive computational burden on the
system whereas all the calculations must be performed by one calculation unit. Sec-
ondly, modelling the utility functions for power appliances is user sensitive and
depends on the time of use as well; therefore, there is no consensus for power appli-
ances’ utility functions among the researchers in this field.

This paper proposes a decentralized autonomous multi-agent based algorithm for
handling unforeseen events in a smart microgrid consisting of a photovoltaic system as
the main power generation unit. In this methodology, the users’ inconvenience due to
load curtailment has been taken into account as a monetary cost integrated into the
power purchase cost from the main grid. Instead of using utility functions for modelling
the appliances, we use some ratings denoting the importance of usage for each user,
which will be sent to the microgrid control agent (MCA) and the MCA chooses the best
proposals using the proposed cost function model. The agents are able to communicate
within the iterations towards reaching the minimal cost for handling the situation.
Meanwhile we ensure that if load curtailment is applied there will be no satisfaction
drop in the community due to it, as the inconvenience is calculated in the costs and can
be paid to the respective users as incentives. The results obtained show the feasibility of
the proposed algorithm in a case based scenario developed for the evaluation.

2 Related Work

In fact, there is no standard way to model the utility functions of various appliances
belonging to different users. Some studies [6–8] have taken into account the power
consumption level of appliances as a measurement to demonstrate their utility.
A simple comparison between the power consumption of lighting and TV consumption
(roughly about 100 times the amount) may show the lack of these algorithms to model
users’ consumption preferences. Researchers also tried to model the utility functions of
the appliances based on their type [9, 10]. For instance, taking into account the ambient
temperature is a way to model air-conditioners and fans, regardless of their power
rating. However, even if all the utility functions of different appliances could be
described, it still should be individual users’ preferences that determines the priority of
consumption.
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The focus of this research is how to handle possible power imbalance situations
with the help of an Autonomous Decentralized Multi-agent approach, preserving the
users’ level of satisfaction. The aim is to choose an optimized combination of storage,
grid power purchase, and load curtailment (Fig. 1), taking into account the inconve-
nience caused by each combination to the consumers. Utilization of Multi-agent based
architectures in the Microgrid power management is of a paramount interest [11, 12] in
recent years. The concept of unified energy agent is proposed in [13, 14] in order to fill
the gap between the power engineering part of the energy grid and its higher control
levels such as the optimization and market functionalities. In this scheme, any com-
ponent of the energy grid can be represented by an agent and all the energy conversion
happening in the grid environment can be modeled using this Multi-agent based
demonstration of the energy grid [15–17].

In the proposed algorithm, user agents are responsible to reflect the respective
users’ preferences while hiding this information from the micro-grid control agent. It is
worth mentioning that authors in [18] proposed a decentralized algorithm which
considers the users’ level of inconvenience when load curtailment. They use a com-
bination of back-up diesel generation, PV generation, and load curtailment in order to
address the power mismatch issue in an isolated Microgrid. Unlike their work, in this
paper, we considered grid connection as an option of power trading and removed the
backup generation, as usage of diesel generation is not very common is German energy
grid. In the next section, the proposed autonomous decentralized multi-agent based
algorithm, which is designed to handle the power generation and consumption
imbalance, is explained. As a use-case, the application of the proposed decentralized
control technique is described in a given micro-grid scenario.

3 Problem Description

Finding an optimal schedule for electricity generation, consumption, and storage is
addressed as a solution for an optimization problem aiming to minimize the cost
function, mainly consist of the electricity cost. In contrast to the existing energy
management techniques, in this study we consider the users’ satisfaction drop

Power Imbalance

Excess in 
ElectricityShortage in Electricity

Purchase from 
the Grid

Use Stored
Energy

Perform Load
Curtailment

Store the
Excess

Decrease
Generation 

Sell back to 
the Grid

Fig. 1. Possible solutions for handling power imbalance situations
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alongside with the energy cost as a part of cost function. The optimal solution x� can be
generally described as:

x� ¼ argmf xð Þ ð1Þ

s:t:
g xð Þ� 0
hðxÞ ¼ 0

�

where f xð Þ is the cost function for the unforeseen event, and x consists of desecrate or
continuous variables. The constraints of the problem are represented using gðxÞ and
h xð Þ and the optimization must be performed subject to these constraints consisting of
information for load and generation units as well as the storage system. The maximum
and minimum power generation are defied as the constraints of generation units.
Maximum charging/discharging rates and total capacity are constraints for storage
units. Whilst the minimum and maximum power consumption of appliances are con-
sidered as constraints for load units. In case of any undesired event, the optimization
process will be performed on the related time-slot. The solution of the optimization
process will be applied to the Micro-grid system afterwards.

From the scheduling point of view loads can be generally categorized as control-
lable, which can be scheduled and non-controllable. The non-controllable appliances
(e.g. electric cooking) cannot be considered in the scheduling. The appliances which
consumptions are deferrable (such as washing machine) or power-level controlled (e.g.
air conditioner) can be taken into consideration. For a deferrable load the starting point
can be deferred over a specified period. The power-level controlled loads may alter
their power around the nominal power rating.

In the proposed methodology, PV system is considered as the main generation unit
of the Microgrid and also a 24 h power consumption of the load units are forecasted
and available. In this study, we only focus to handle power imbalance situations that
may occur due to any deviation from the forecasted PV power generation.

3.1 Power Imbalance Definition

We use the following terms in our definitions. Forecast Load, the consumption
timetable which shows the exact usage time for users’ appliance; Forecast PV, the
predicted power generation of PV systems for the next 24 h; Actual Load, the real-time
consumption monitored by users’ smart meters; Actual PV, the real-time PV
generation.

We refer to imbalance as any deviation of the Actual Load from the Forecast Load
or the Actual PV from the Forecast PV.

The aim of the proposed algorithm is to minimize the total daily cost of imbalance
handling by minimizing the cost of each time-slot, considering the user inconvenience
as cost.
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4 Proposed Mathematical Model

4.1 Mathematical Imbalance Model

In this section, we describe our proposed mathematical model of imbalance. We also
model the cost function of handling imbalance situation. The objective of the proposed
algorithm is to handle the imbalance by choosing an optimized combination of storage,
load curtailment, and purchasing power from the grid (Fig. 1), taking the inconve-
nience caused by each combination to the consumers into account. An example of the
combined solution is importing power from the main grid along with the load cur-
tailment. The amount of deviated energy form the forecast PV generation in timeslot
t is assumed to be as follows:

DEg ¼ Eg;f � Eg;a ð2Þ

where E, is the energy amount (kWh) with subscript g indicating PV generation while a
and f denote actual and forecast, respectively. There is another parameter in the model
showing the amount of stored energy (Estrg) that is preferred to be used at the time of
energy shortage. The amount of energy shortage (Eshrt) is required to be covered by the
grid. In case of excess in the electricity Eshrt is negative.

If the amount of energy shortage can be supplied from the stored energy or com-
pensated by conserving energy from load curtailment, we will not need to buy it from
the grid anymore. However, it will cause a drop in the respective users’ satisfaction
which should also be considered in the cost. Equation (3) shows the specific amount of
energy (Ecnsr) that can be conserved by load curtailment:

Ecnsr ¼
XN

u¼1

XM
i¼1

EuðiÞ ð3Þ

where N denotes the number of users affected by the load curtailment, M is total
number of appliances to be removed or re-scheduled, and EuðiÞ is the energy usage of
ith appliance of uth user. It is assumed that each household is equipped with a user agent
which can communicate with the MCA on behalf of the user by representing his/her
priorities in terms of cost. The priorities can be directly given to the agent or being
calculated by the agent itself through monitoring the time of use, power consumption,
etc. It is worth mentioning that the calculation of the user priorities is out of scope of
this research and we assume different costs representing the priorities of different users
in the simulations. Therefore, the new cost of importing power from the grid for
covering imbalance would be fgðEshrt � EcnsrÞ.
Model of Inconvenience. In case of load curtailment, there will be a change in sat-
isfaction of the users who are affected. This change is proportional to the importance of
the appliances for a specific user whose appliances are removed or rescheduled. As
mentioned before, the preference of individual users may vary, hence, every user
experience a different amount of satisfaction drop (Iu) which is formulated in Eq. (4)
for the uth user.
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Iu ¼
XM

i¼1
Iu;i ð4Þ

Overall change in the community’s satisfaction level is:

I ¼
XN

u¼1

XM
i¼1

Iu;i ð5Þ

where N is the number of users whose satisfaction are affected by the imbalance.

Cost Function of Power Imbalance. Equation (6) denotes the overall cost of
imbalance based on the calculation above:

CImb ¼ fImb Eshrt;Ecnsr; Ið Þ ¼ fgðEshrt � Estrg � EcnsrÞþ I ð6Þ

where fg Eð Þ, is returning the cost of importing electricity from the grid (€). The goal of
imbalance handling process is to minimize the cost function fImb. The amount of energy
shortage (Eshrt) and community satisfaction drop (I) are used in the iterations to
minimize the cost function.

5 Proposed Autonomous Decentralized Multi-agent Control
and Management System

In our proposed Autonomous Decentralized Multi-agent Control and Management
System (ADMCM), the main objective is to minimize the imbalance cost (CImb), in
each time-slot. The system consists of four main unit types namely, Micro-grid Control
Agent, User agent, Storage agent, and Grid agent.

In case of any power imbalance occurrence, the ADMCM communicate with the
User agents (UAs) to receive the monetary value of using each appliance from the
specific user’s perspective. If the curtailment is included in the optimal solution,
Micro-grid Control Agent (MCA) unit will curtail the load and pay the respective price,
based on the value determined by each user. User can always update the monetary
value of each appliance. Hence, the curtailment of the appliances is directly based on
the importance of them to the respective user at each time-slot.

The overall communication of the four unit types is described as follows:

• Micro-grid Control Agent (MCA) monitors the actual PV generation and actual
load, and calculates the amount of power imbalance at each time-slot (t). It also
dynamically communicates with user agents which reflect the users’ consumption
priorities and perform the optimization.

• User agent (UA) is responsible to reflect the respective user’s consumption prior-
ities to the MCA. It is physically connected to the appliances and can switch them
on and off upon request from MCA. Local optimization is performed by UA on the
level of user’s appliances.
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• Storage agent (SA) is physically connected to storage units and capable of charging
and discharging them. This agent communicates with MCA and receive the request
to control the storage units.

• Grid agent (GA) connect to the main grid in order to import or export the amount of
energy requested by MCA. The connection is to buy the power when the combi-
nation of PV generation and storage cannot solely serve the loads. Moreover, in
case of over generation, the excess energy can be sold back to the grid (Fig. 2).

5.1 Decentralized Algorithm Description

The main goal of the proposed algorithm is to minimize the imbalance cost (CImb) in
each time slot. At the beginning of the algorithm, the energy shortage (Eshrt) is checked.
The positive and negative value of Eshrt means the shortage and excess energy
respectively. dEstrg denotes the energy stored in each time slot t, and EstrgðtÞ shows the
accumulated stored energy in the battery until the time slot t. Importing power from the
grid is only done when the battery is run out of energy.

In case of energy shortage (Eshrt [ 0) the imbalance cost (CImb) and share of every
user in the cost are calculated. In contrast to centralized approaches user agents
(UAs) participate in the decision making in the decentralized algorithm. UA has to

Actual PV 
Genera on

Actual Load 
Demand

Storage 
Agent

Grid 
Agent

User 
Agent 1

User 
Agent 2

User 
Agent Nc

Micro-grid 
Control Agent

…

Fig. 2. The proposed autonomous decentralized algorithm
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reflect the priorities of the respective user in the form of utility values defined for each
appliance. It also should locally minimize the user cost and return the energy con-
servation (Ecnsr;u) and inconvenience cost (Iu) to the micro-grid control agent (MCA) as
a proposal. If any UA tries to misrepresent the inconvenience cost in the proposal sent
to the MCA, the chance of it being accepted will be very low. The reason is that the
MCA calculates the cost respective to all combinations of all proposals received from
the UAs and the minimum cost is the objective from which the optimal solution is
chosen. Hence, there is no incentive for the UAs to misrepresent their real inconve-
nience cost and the proposed algorithm is strategy proof. Based on the proposals
received from the user agents, the MCA calculates the minimum imbalance cost. MCA
ought to find the global minimum cost based on all possible combinations (comb) of
received Ecnsr;u and Iu values. Since the main goal of the proposed algorithm is to hide
the information about utility function of individual users’ appliances, the proposals are
simple numbers representing monetary values of consumption for the specific users on

Find optimal proposal 
based on user 

preference
( , )

MCA find the optimal combination of generation and 
curtailment considering the proposals

MCA calculates imbalance cost for each user ( )
MCA sends to all users and let them know about 

winning proposals
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Fig. 3. Schematic representation of the data communications between the MCA and agents in
the proposed decentralized imbalance handling algorithm
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a certain time-slot. Iterations of communication happen between MCA and UAs to
ensure global minimum costs. After performing the optimization and computing CImb

and user costs (CImb;u), MCA lets the users know about the share of cost and also the
acceptance or rejection of their proposals. The iterations advance until the CImb is not
greater than a given tolerance value (e). The same process is happening to the opti-
mizations at users’ level, a tolerance value is determined by each user (eu) at which the
algorithm stops the iterations.

The control signals are going to be sent by MCA to the storage agent (SA) and grid
agent (GA) when required (Fig. 3).

6 Case Study

In this section, we present the application of the proposed decentralized control tech-
nique in a Microgrid scenario. As mentioned earlier, in our model the consumption
preferences of the users may be different from each other. Therefore, the monetary
value of using the same appliances are not identical for different users. To show the
impact of users’ satisfaction in the final decision making we create a community
behavior including user types with various consumption preferences. Then, we create a
load forecast profile based on users load constraints defined, and a generation profile
based on the forecast PV electricity production. In the end, we create power imbalance
scenarios to show the application of our autonomous decentralized algorithm to handle
those power imbalance situations. The simulated Microgrid consists of 10 residential
units, photovoltaic generation system, battery storage, and grid connection possibility.

6.1 Model of User Behavior in Negotiation

In order to demonstrate the impacts of user preferences and behaviors on the negoti-
ation process and the hourly imbalance cost, three different user types are assumed as
shown in Table 1. Different user types present different monetary constraints and
different preferences for inconvenience and electricity cost to be paid. Type A refers to
the users for whom less imbalance cost incurred is relatively more important than the
inconvenience. Type B denotes the user who care about their inconvenience rather than
cost incurred. And Type C represent the user with normal preferences, i.e., their
constraint and preferences are around rational values based on the electricity retail price
from the grid. In the considered community, we assume to have 3 users for Type A and
B while 4 users are from Type C.

Table 1. User types with their preferences in the negotiation.

User type Maximum CImb;u [€] Iu
Ecnsr;u

[€/kWh]

Type A 0.05 0.5
Type B 0.5 4
Type C 0.12 1.5
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In the assumed power imbalance scenarios that will be described later, every user
will send a proposal consisting of the inconvenience cost and the respective energy to
be conserved by the user. In order to focus on the impacts of user behavior on the cost,
the basic consumption profile is assumed to be the same for all users.

6.2 Model of PV-Based Micro-Grid

The assumed Micro-grid consists of 10 households with anonymous appliances situ-
ated in a residential area. An array of Photovoltaic (PV) panels with the overall size of
9 kW is set to produce the needed energy, and with a possibility of grid connectivity,
serve the whole consumption. The given Micro-grid is equipped with a battery storing
system of 3 kW which is used to store the excess solar generation and discharge it later
in the evening (Fig. 4). Figure 4 shows the generation, storage and consumption
profiles for 24 h while the Microgrid is in its balanced condition, i.e., the PV generation
and load consumption are as forecasted. In this situation, the total energy generated by
PV is 57.548 kWh, the total load consumption is 56.259 kWh and the net energy
purchased from the grid is 2.667 kWh. It is worth mentioning that the grid connection
is very useful to handle the morning peak and sell back the excess of PV generation
which cannot be stored. It is widely accepted that the size of battery storage system
cannot be chosen more than a rational portion of renewable energy generation. In this
study the size of battery storage system has been considered as 30% of rated PV
generation. Also, the battery degradation due to charge and discharge cycles are
ignored in this study. In the designed balanced Microgrid system, the net energy
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Fig. 4. Assumed balanced Microgrid with load profile, PV generation, grid supply, and storage
energy.
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purchased from the grid covers only 4% of the total load consumption, and the other
96% is provided by the PV generation. The energy retail price for purchasing from the
grid is assumed to be flat at 0.3 € while the sellback price is fixed at 0.2 €. As an
example of showing cost calculations, the total cost incurred when the Microgrid is in
balanced situation is 2.09 € with the hourly profile shown in Fig. 5. For the simulation
set-up, we used MATLAB R2016b release. The simulations have been performed on a
PC with Intel (Core i7) processor with 24 GB RAM.

6.3 Power Imbalance Scenarios

The balance between the actual production and consumption is being monitored by the
control agent. In case of any imbalance between production and consumption, the cost
of handling the imbalance is calculated through the proposed decentralized algorithm
described in previous section.

In order to analyze the proposed algorithm, four imbalance scenarios are taken into
consideration. For the sake of simplicity, imbalance scenarios with 20, 40, 60 and 80%
of shortage in the PV generation, as shown in Fig. 6 are considered. More realistic
shortage model in PV generation which for instance, considers the cloud coverage
model are investigated in [19, 20]. The obtained cost for each imbalance scenario is
reported and compared with the cost of purchasing the shortage energy from the grid,
as shown in Table 2.
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Fig. 5. Hourly grid cost when the Microgrid is in balanced mode.
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6.4 Comparison of the Proposed Decentralized Algorithm
with Centralized Approaches

The key differences and benefits of the proposed autonomous decentralized solution in
comparison with the centralized control and management systems to handle power
imbalance are as follows:

For a centralized entity, it is needed to access all users’ information and have ability
to process it in a reasonable time, in order to reach a global optimum solution.
Implementing such a system which is capable of calculating the optimal imbalance
handling cost and performing the respective load curtailment at a reasonable cost and
time may be hard to achieve. In the proposed approach, each user agent autonomously
performs local optimizations and only needs to send the results as a proposal to the
microgrid agent. This will considerably reduce the overall decision time by permitting
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Table 2. The optimized cost obtained by the proposed decentralized algorithm for imbalance
scenarios.

PV generation shortage CImb proposed algorithm (€) CImb grid purchase (€)

20% shortage 1.26 1.73
40% shortage 3.61 4.43
60% shortage 5.57 7.88
80% shortage 8.38 11.33
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concurrent calculations. It also permits omitting the need for retrieving details about
users’ consumption behaviors.

Due to the lack of a standard approaches for modelling the utility functions of
various appliances of different users there is no realistic appliance utility function
model that properly considers all users’ consumption preferences. In contrast, the utility
functions of users’ appliances are either unknown or non-existent to the micro-grid
control agent in the decentralized case. It is the user agents’ liability to keep track of the
related consumers’ preferences and prioritize the appropriate load schemes.

The need for a sophisticated data communication structure is another issue of a
centralized approach. This and the need for extra programming in order to add any
agent to the system will make the reliability and scalability issues more severe. The
proposed decentralized approach, instead, works based on constricted necessary data
exchange. Moreover, the decentralized approach is able to easily adopt and embed a
new programmable agent in the system, such as a DER unit, user agent, etc.

7 Conclusion and Future Work

In this paper, we addressed one of the challenges in Micro-grid energy control and
management, which is to handle unforeseen events in a smart microgrid consisting of a
photovoltaic system as the main power generation unit, A Multi-agent decentralized
imbalance handling architecture was presented optimizing the overall imbalance cost,
considering different users’ power consumption priorities. Any deviation from the prior
forecasted power generation/consumption is compensated by optimizing the usage of
storage unit in a way that preserves the users’ convenience level. In this methodology,
the users’ inconvenience due to load curtailment has been taken into account as a
monetary cost integrated into the power purchase cost from the main grid. Instead of
using utility functions for modelling the appliances, we use some ratings denoting the
importance of usage for each user, which will be sent to the microgrid control agent
(MCA) and the MCA chooses the best proposals using the proposed cost function
model. The agents are able to communicate within the iterations towards reaching the
minimal cost for handling the situation. Meanwhile we ensure that if load curtailment is
applied there will be no satisfaction drop in the community due to it, as the incon-
venience is calculated in the costs and can be paid to the respective users as incentives.
The results obtained show the feasibility of the proposed algorithm in a case based
scenario developed for the evaluation.

We investigated the application of our proposed autonomous decentralized algo-
rithm in a PV-based Microgrid assuming various power imbalance scenarios. In order
to show the effect of users’ consumption preferences in the decision making, we created
Microgrid users’ community with various users’ consumption behavior and took into
account respective monetary values for the imbalance cost minimization. We compared
the effect of using our proposed decentralized imbalance handling with the case of not
having demand flexibility, over the simulation. The results show a considerable
reduction in the final imbalance handling cost compared with only compensating the
imbalance by importing power from the grid. Moreover, our proposed model made
participation of the users possible by taking into account the effect of their consumption
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preferences in optimization process. However, the strategy of choosing the best pro-
posals at the moment is exhaustive search which is not efficient if the number of
proposals is high and so as the number of their combinations. In this case, a very high
computational cost will be incurred if the optimal operation is required. One way to
tackle this problem is to propose an effective methodology for choosing the best
proposals at each iteration using a heuristic search algorithm which reduces the com-
putations significantly. In our future work, we will improve our imbalance handling
model trying to address this issue. Moreover, the impact of having more realistic
electricity price model and imbalance scenarios, storage optimization approaches, and
also using other storage and back-up generation technologies such as fuel cell on the
proposed model will be explored.
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Abstract. In this work we propose and investigate the use of collab-
orative reinforcement learning methods for resolving demand-capacity
imbalances during pre-tactical Air Traffic Management. By so doing, we
also initiate the study of data-driven techniques for predicting multiple
correlated aircraft trajectories; and, as such, respond to a need identi-
fied in contemporary research and practice in air-traffic management.
Our simulations, designed based on real-world data, confirm the effec-
tiveness of our methods in resolving the demand-capacity problem, even
in extremely hard scenarios.

1 Introduction

The current Air Traffic Management (ATM) system worldwide is based on an
time-based operations paradigm that leads to demand-capacity balancing (DCB)
issues. These further impose limitations to the ATM system that are resolved
via airspace management or flow management solutions, including regulations
that generate delays (and costs) for the entire system. These demand-capacity
imbalances are difficult to be predicted in pre-tactical phase (prior to operation)
as the existing ATM information is not accurate enough during this phase.

With the aim of overcoming these ATM system drawbacks, different initia-
tives, notably SESAR in Europe1 and Next Gen in the US2, have promoted the
transformation of the current ATM paradigm towards a new, trajectory-based
1 SESAR 2020, http://www.sesarju.eu/.
2 NextGen, https://www.faa.gov/nextgen/.
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operations (TBO) paradigm. In the future ATM system, the trajectory becomes
the cornerstone upon which all the ATM capabilities will rely on. The trajectory
life cycle describes the different stages from the trajectory planning, negotiation
and agreement, to the trajectory execution, amendment and modification. This
life cycle also provides new opportunities in terms of both information quality
and availability among ATM stakeholders, as it requires collaborative planning
processes, before operations. The envisioned advanced decision support tools
required for enabling future ATM capabilities will exploit trajectory informa-
tion to provide optimised services to all ATM stakeholders—Airspace users, Air
Navigation Service Providers, Network Manager, and so on.

The proposed transformation requires high-fidelity aircraft trajectory predic-
tion capabilities, supporting the trajectory life cycle at all stages efficiently. This
is also evidenced by the fact that improvements in trajectory prediction are fully
aligned with FlightPath 20503 goals, in particular with those related to societal
and market needs (with focus on improved, weather-independent arrival punctu-
ality), protecting environment and energy supply, and ensuring safety and secu-
rity. Single trajectory prediction refers to the process of predicting an individual
trajectory considering it in isolation from the overall ATM system. Accounting
for network effects and their implications on the execution of planned trajectories
of individual flights requires considering interactions among these trajectories;
moreover, it requires considering other operational conditions that influence the
actual trajectory of any flight.

State-of-the-art techniques for predicting flights’ trajectories, enable predic-
tions based on specific physical models of aircrafts’ movement, or on the exploita-
tion of historical trajectory data that are obtained from surveillance systems
(e.g., radar or ADS-B tracks) or directly from the aircraft (e.g., Quick Access
Records). Two important drawbacks of such prediction methods are that (a)
they are limited to single trajectory predictions, and (b) their prediction horizon
is a short time one. Indeed, the trajectories are predicted one-by-one based on
the information related to the individual flights, ignoring the expected traffic
at the prediction time lapse. Consequently, the network effect resulting from
the interactions of multiple trajectories is not considered at all, which may lead
to huge prediction inaccuracies. This is due to the complex nature of the ATM
system, which impacts the trajectory predictions in many different ways. Captur-
ing aspects of that complexity, and being able to devise prediction methods that
take the relevant information into account, would greatly improve the current
trajectory prediction approaches.

Against this background, our main objective in this paper is to demonstrate
how machine learning methods can help in refining single trajectory predictions
(learned from surveillance data linked to weather data and other contextual
information), considering cases where demand of airspace use exceeds capac-
ity, resulting to hotspots. This is referred as the Demand and Capacity Balance
(DCB) problem. In our work we study and determine the way trajectories are

3 “Flightpath 2050” European Commission. Available Online: http://ec.europa.eu/
transport/modes/air/doc/flightpath2050.pdf.
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affected due to the influence of the surrounding traffic (i.e., considering interac-
tions among individual predicted trajectories), taking into account an important
aspect of ATM system complexity.

Our overall, long-term goal is to deliver an understanding on the suitability
of applying data-driven techniques for predicting single and multiple correlated
aircraft trajectories. However, our focus in this article is on the DCB problem in
Air Traffic Management, whose solution takes place during the so-called “flights’
planning phase”, during which the eventual conflicts resolutions adopted by air-
traffic controllers in the actual flights are not taken into consideration. As such,
our immediate objective is to predict delays that are applied to the flight plans,
due to the demand and capacity imbalances occurring in hotspots.

To this end, this paper makes the following contributions:

– It formulates the DCB problem as an MDP.
– It proposes the use of specific collaborative reinforcement learning techniques

for tackling this problem.
– It presents evaluation results in simulated, varying traffic conditions based

on real-world data, showing the potential of our methods. All our methods
managed to successfully resolve the DCB problem i.e., to produce schedules
without any conflict seven in the hardest of our scenarios.

In the remainder of this paper we first state the operational context of our
research in detail, motivate our work and state the problem to be solved (Sect. 2).
Then in Sect. 3 we formulated the DCB problem in an MDP framework, and
present collaborative reinforcement learning methods of choice. In Sect. 4 we
present evaluation results for all our three methods. Section 5 presents relevant
work; and finally, Sect. 6 concludes the paper.

2 The Air Traffic Management Operational Context
and Motivation for Research

The operational scenarios for trajectory predictions considered in our research
agenda assume that the process of predicting traffic happens at the planning
phase (i.e., days before operation), as opposed to the tactical phase (i.e. in real-
time during operation). The scenarios are considered to be developed in a specific
geographical area (without affecting the generality of the solutions proposed),
and interests of different stakeholders, such as Air Navigation Service Providers
and airspace users, are taken into account: Air Navigation Service Providers
require resolving the demand-capacity imbalances efficiently, while airspace users
(e.g. airlines) aim to operate safely and efficiently without large delays.

Considering the ATM network effects and multiple trajectories prediction,
our objective is to demonstrate how machine learning methods can help in refin-
ing single trajectory predictions considering cases where demand of airspace use
exceeds capacity. Doing so, we aim to study and determine the way trajectories
are affected due to the influence of the surrounding traffic. During the planning
phase, conflict resolutions adopted by Air Traffic Controllers are not considered
at all, so the resulting trajectories are not conflict-free.
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2.1 The Demand-Capacity Balance Problem in ATM

The DCB problem (or process) considers two important types of objects in the
ATM system: aircraft trajectories and airspace sectors.

Aircraft trajectories are series of spatio-temporal points of the generic form
(longi, lati, alti, ti), denoting the longitude, latitude and altitude, respectively,
of the aircraft at a specific time point ti. At the same time, flight plans are
intended trajectories, which consist of events of flights crossing air blocks and
sectors, and flying over specific waypoints. Each event specifies the element that
is crossed (air block or sector), the entry and exit locations (coordinates + flight
levels), and the entry and exit times, or the time that the flight will fly over a
specific time. Other information such as estimated take-off time are specified,
and, in case of delay, the calculated take-off time.

Sectors are air volumes segregating the airspace, each defined as a group of
airlocks. These are specified by a geometry (the perimeter of their projection
on earth) and their lowest and highest altitudes. As an example, Fig. 1 depicts
projections of airblocks above Europe. Airspace sectorization may be done in
different ways, depending on sector configuration. Such a configuration deter-
mines the number of active (open) sectors. Only one sector configuration can
be active at a time. Airspace sectorization changes frequently during the day,
given different operational conditions and needs. This happens transparently for
flights.

Fig. 1. Airlocks in 2D: sectors are groups of adjacent airblocks.

The capacity of sectors is of utmost importance: this quantity determines the
maximum number of flights flying within a sector during a specific time interval.
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The demand for each sector is the quantity that specifies the number of
flights that co-occur (or predicted to occur) during a specific interval within a
sector. Demand must not exceed sector capacity for any time interval. There
are different types of measures to monitor the demand evolution, with the most
common ones being Entry Rate and Occupancy Count. In this work we consider
Occupancy Count.

The Occupancy of a given sector is defined as the number of flights inside
the sector during a selected period, referred as Occupancy Counting Period. In
turn, this Occupancy Counting Period is defined as a picture of the sector occu-
pancy taken every time step value along an interval of fixed duration: The Step
value defines the time difference between two consecutive Occupancy Counting
Periods. The Duration value defines the time difference between start and end
times of each Occupancy Counting Period. For instance, considering the exam-
ple in Fig. 2 for a specific sector, the occupancy counts corresponding to the set
of flights at different moments P with duration of 1 min and step of 1 min are:
(a) At P: 1, 2, 3; (b) at P+1: 1, 3, 4, 5; (c) at P+2: 3, 4, 6; and (d) at P+3: 4,
6, 7, 8.

Fig. 2. Occupancy step = 1min., Duration = 1min.

The DCB process is divided in three phases: Strategic, Planning and Tactical
Phase. The overall objective is to optimise traffic flows according to air traffic
control capacity while enabling airlines to operate safe and efficient flights.

Planning operations start as early as possible - sometimes more than one
year in advance. Given that the objective is to protect air traffic control service
of overload [5], this service is always looking for optimum traffic flow through
a correct use of the capacity, guaranteed: safety, better use of capacity, equity,
information sharing among stakeholders and fluency.

We consider the demand-capacity process during the pre-tactical phase. Pre-
tactical flow management is applied at least six days prior to the day of oper-
ations, and consists of planning and coordination activities. This phase aims
to compute the demand for the operations day, compare it with the predicted
airspace capacities on that day, and make any necessary adjustments to the flight
plans. Since our goal is trajectory prediction in a TBO environment, we consider
individual predicted trajectories instead of flight plans, in order to determine the
delay that should be imposed on them due to traffic. At this phase, trajecto-
ries are sent to the Network Manager who takes into account sector capacities
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to detect problematic areas. The main objective of this phase is to optimise
efficiency and balance demand and capacity through an effective organisation
of resources. In fact, DCB work today involves a collaborative decision mak-
ing process among stakeholders, resulting to a corresponding Air Traffic Flow
Control Management Daily Plan.

Tactical flow management takes place on the day of operations and involves
considering, in real time, those events that affect the Air Traffic Flow Con-
trol Management Daily Plan and make the necessary modifications to it. This
phase aims at refining the measures taken during the pre-tactical phases towards
solving the demand -capacity imbalances that may appear. Tactical flow man-
agement is not within the scope of our work.

Figure 3 shows a snapshot of the Air Traffic Flow Control Management
human-machine interface that is currently being used by the Network Man-
ager, for supporting collaborative decision-making between all stakeholders: This
snapshot shows the occupancy count of a specific sector in consecutive periods.

Fig. 3. Occupancy indicator. The y axis represents the occupancy count, and the x
axis time. Columns show occupancy counts, yellow line shows sustainable capacity and
orange line shows the peak capacity (Color figure online)

Concluding the above, our objective is to demonstrate how machine learning
methods can help in trajectory forecasting when planned demand exceeds sectors
capacity, taking into account interactions among trajectories, and thus traffic.
In this case, regulations of type C (i.e. delays) are applied to the trajectories.

2.2 Problem Specification

Let there be N trajectories in T that must be executed over the airspace in a
total time period of duration H (e.g. hours). The airspace consists of a set of
sectors, denoted by Sectors. Time can be divided in intervals of duration Δt,
equal to that of the Occupancy Counting Period.
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As already defined above, each trajectory is a sequence of timed positions in
airspace. This sequence can be exploited to compute the series of sectors that
each flight crosses, together with the entry and exit time for each of these sectors.
For the first (last) sector of the flight, i.e. where the departure (resp. arrival)
airport resides, the entry (resp. exit) time is the departure (resp. arrival) time.
However, there may exist flights that cross the airspace but do not depart and/or
arrive in any of the sectors of our airspace: In that case we only consider the
entry and exit time of sectors within the airspace of our interest.

Thus, a trajectory T in T is a time series of elements of the form:

T={(sector1, entryt1 , exitt1)....(sectorm, entrytm , exittm)},

where sectorl ∈ Sectors, l = 1, ...m.
For instance, considering the trajectories T1 and T2 in Fig. 4, these are spec-

ified as follows:

T1 = {(sector5, 10:00, 10:20), (sector2, 10:20, 10:45)}
T2 = {(sector1, 10:00, 10:05), (sector2, 10:05, 10:15), (sector7, 10:15, 10:25),

(sector12, 10:25, 10:35)}

Fig. 4. Example of trajectories crossing sectors

This information per trajectory suffices to measure the demand Dsi,p for each
of the sectors sectori ∈ S in the airspace in any Occupancy Counting Period p
of duration Δt.

Specifically, Dsi,p = |Tsi,p|, i.e. the number of trajectories in Tsi,p, where
Tsi,p = {T ∈ T |T = (. . . , (si, entryti , exitti), . . .), and the temporal interval

[entryti , exitti ] overlaps with period p}
For instance, considering the trajectories T1 and T2 crossing the sector s2 in

Fig. 4, it holds that Tsector2,p = {T1, T2}, with p=[10:10,10:15 ].
The trajectories in Tsectori,p are defined to be interacting trajectories for the

period p and the sector sectori.
Each sector sectori ∈ S has a specific capacity Csectori . The aim is to resolve

imbalances of sectors’ demand and capacity: These are cases where Dsectori,p >
Csi

, for any period p of duration Δt in H, in any sectori ∈ S. Δt equals to
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the Occupancy Counting Period duration. We refer to these cases as capacity
violation or demand-capacity imbalance cases, resulting to hotspots.

In case of capacity violation for a period p and sector sectori, the interacting
trajectories in Tsectori,p are defined as hotspot-constituting trajectories : one or
more of these trajectories must be delayed in order to resolve the imbalance in
sectori.

Clearly, imposing delays to trajectories may propagate hotspots to a subse-
quent time period for the same and/or other sectors crossed by that trajectory: In
any case, the sets of interacting trajectories in different periods and sectors may
change, and thus, in case of demand-capacity imbalances, hotspot-constituting
trajectories may change as well. This can be done in many ways, when different
trajectories delay. Having said that, we must clarify that the only type of change
in a trajectory that may be imposed by a regulation is “delay”: i.e., shifting the
entry and exit time for each sector by a specific amount of time. The sequence
of sectors crossed is not affected.

Towards the agent-based formulation of the problem, we consider the fol-
lowing: Each agent Ai is specified to be the aircraft (instrument) performing
a specific trajectory, in a specific date and time. Thus, we consider that agents
and trajectories coincide in our case and we may interchangeably speak of agents
Ai, trajectories Ti, or agents Ai executing trajectories Ti. Agents, as it will be
specified, have own interests and preferences, although they are assumed col-
laborative, and take autonomous decisions on their delays: It must be noted
that agents do not have communication and monitoring constraints given that
imbalances are resolved at the planning phase, rather than during operation.

Therefore agents have to learn joint delays to be imposed to their trajectories
w.r.t. the operational constraints concerning the capacity of sectors crossed by
these trajectories. It must be noted that agents have conflicting preferences since
they prefer to impose the smallest delay possible (preferably none) to their own
trajectory, while also executing their planned trajectories safely and efficiently.

Agents with interacting trajectories are considered to be “peers” given that
they have to jointly decide on their delays: The decision of one of them affects
the others. This implies that agents form “neighbourhoods” of peers, taking
also advantage of the inherent sparsity of the problem (e.g. a flight crossing
the north part of Spain, will never interact in any direct manner with a flight
crossing the southest part of the Iberian Peninsula). However, as mentioned
above, these neighbourhoods have to be updated when delays are imposed to
trajectories, given that trajectories that did not interact prior to any delay may
result to be interacting when a delay is imposed. Thus, a dynamic update of
peers’ neighbourhoods is necessary according to agents’ decisions.

Given an agent Ai the traffic for that agent is determined to be the trajec-
tories of all other agents forming its neighbourhood. More specifically:

Traffic(Ai)

= {Tj |Tj is a trajectory that interacts with the trajectory Ti executed by Ai for any

specific sector crossed by Ti and any time period within H }
= ∪(sector,·,·)∈Ti,pTsector,p
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A society of agents S = (T ,A, E) is modelled as a graph with one vertex
per agent Ai in A and any edge (Ai, Aj) in E connecting agents with interacting
trajectories in T . As pointed out above, the set of edges are dynamically updated
by adding new edges when new interacting pairs of trajectories appear.

N(Ai) denotes the neighbourhood of agent Ai, i.e. the set of agents connected
to agent Ai ∈ A including also itself: These are the peers of Ai.

The options available in the inventory of any agent Ai for contributing to
the resolution of hotspots may differ between agents: These, for agent Ai are
Di ⊆ {0, 1, 2, ...,MaxDelayi}. These are ordered by the preference of agent Ai to
any such option, according to the function γ(i) : Di → R. We do not assume that
agents in A−{Ai} have any information about γ(i): This represents the situation
where airlines set own options and preferences for delays even in different own
flights, depending on different circumstances. However, we expect that the order
of preferences should be decreasing from 0 to MaxDelayi. In this paper we ran
experiments assuming that Di = Dj , and thus MaxDelayi = MaxDelayj , and
γ(i)(d) = γ(j)(d). This assumption does not affect the generality of the proposed
methods, which may be applied to any other case. However, this issue requires
further investigation for agents to reach optimal solutions.

Considering two peers Ai and Aj ∈ N(i)−{Ai}, agents must select among the
sets of available options Di and Dj respectively, so as to increase their expected
payoff w.r.t. their preferences on options, and resolve the DCB problem.

This problem specification emphasises on the following problem aspects: (a)
Agents need to coordinate their strategies (i.e. chosen options to impose delays)
to execute their trajectories jointly with others, taking into account traffic, w.r.t.
their preferences and operational constraints; (b) agents need to explore and dis-
cover how different combinations of delays affect the joint performance of their
trajectories w.r.t. the DCB process, given that the way different trajectories do
interact is not known beforehand (agents do not know the interacting trajec-
tories that emerge due to own decisions and decisions of others, and of course
they do not know whether these interactions result to hotspots i.e., demand-
capacity imbalances); and (c) agents’ preferences on the options available may
vary depending on the trajectory performed, and are kept private.

3 Collaborative Reinforcement Learning Methods

3.1 The MDP Framework

Using the model of collaborative multiagent MDP framework [6,11] we assume:

– The society of agents S = (T ,A, E).
– A time step t = t0, t1, t2, t3, ..., tmax, where (tmax − t0) = H.
– A local state per agent Ai at time t, comprising state variables that cor-

respond to (a) the delay imposed to the trajectory Ti, ranging to the sets
of options assumed by Ai, and (b) the number of hotspots in which Ai is
involved in (for any of the sectors and time periods). Such a state is denoted
st

i. The joint state st
i,j of agents Ai and Aj at time t is the tuple of the state
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variables for both agents. This is generalised for any subset of agents in the
society. A global state st at time t is the tuple of all agents’ local states.

– The local strategy for agent Ai at time t, denoted by strt
i is the action that

Ai performs at that specific point: An action for any agent at any time point,
in case the agent is still on ground, may be, either impose a delay or not.
Thus, at each time point the agent has to take a binary decision. When the
agent flies, then it just follows the trajectory. The location (i.e. sector) of that
agent at any time point can be calculated by consulting its trajectory. The
joint strategy of a subset of agents A of A executing their trajectories
(for instance of N(Ai)) at time t, is a tuple of local strategies, denoted by strt

A

(e.g. strt
N(Ai)

). The set of all joint strategies for A ⊂ A is denoted StrategyA.
The joint strategy for all agents A at time t is denoted strt.

– The state transition function gives the transition to the joint state
st+1 based on the joint strategy strt taken in joint state st. Formally
Tr : State×Strategy → State. It must be noticed that although this transition
function may be deterministic in settings with perfect knowledge about soci-
ety dynamics, the state transition per agent is stochastic, given that no agent
has a global view of the society, of the decisions of others, while its neigh-
bourhood gets updated. Thus no agent can predict how the joint state can
be affected in the next time step. Thus, for agent Ai this transition function
is actually Tr : Statei ×Strategy{Ai} ×Statei → [0, 1], denoting the transition
probability p(st+1

i |st
i, str

t
i).

– The local reward of agent Ai, denoted Rwdi, is the reward that the agent
gets by executing its own trajectory in a specific joint state of its peers in
N(Ai), thus Traffic(Ai), according to the sectors’ capacities, and the joint
strategy of agents in N(Ai). The joint reward, denoted by RwdA, for a set
of peers A specifies the reward received by agents in A by executing their
actions in their joint state, according to their joint strategy.

The joint reward RwdA for A ⊆ A depends on the number of hotspots
occurring while the agents execute their trajectories according to their joint
strategy strt

A in their joint state st
A, i.e. according to their decided delays, and

also according to their preferences on the chosen delays. Formally:

RwdA(st
A, strt

A) = λ1 ∗ X(strt
A, st

A) + λ2 ∗ D(strt
A, st

A) (1)

where, X(strt
A, st

A) is equal to the total number of hotspots in which agents
in A are involved while executing their joint strategy in their joint state (i.e.
according to the delays decided up to t), D(strt

A, st
A) : sA → R, is a function

aggregating the preferences of agents on their chosen delays. The parameters
λ1 and λ2 are used for balancing between the interests of different stakeholders
towards reaching an optimum solution. Currently we have set λ1 = −100 and
λ2 is a very small number close to zero: Methods are indeed proved to be very
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sensitive to preferences on delays although they do favour small delays, and this
requires further investigation as part of our future work.

Thus, the reward received by any agent depends on (a) the sectors’ capacity
and the hotspots in which they participate, and on (b) their preferences on delays
while performing their trajectories jointly.

A (local) policy of an agent Ai is a function πi : Statei → Strategy{Ai} that
returns local strategies for any given local state, for Ai to execute its trajectory.
The objective for any agent in the society is to find an optimal policy π∗ that
maximises the expected discounted future return

V ∗
i (s) = maxπi

E[
∞∑

t=0

δtRwdi(st
i, πi(st

i))|πi)] (2)

for each state si, while executing its trajectory. δ ∈ [0, 1] is the discount factor.
This model assumes the Markov property, assuming also that rewards and

transition probabilities are independent of time. Thus, the state next to state s
is denoted by s′ and it is independent of time.

3.2 Collaborative Q-Learning Methods

Q−functions, or action-value functions, represent the future discounted reward
for a state s when deciding on a specific strategy str for that state and behaving
optimally from then on. The optimal policy for agents in s is to jointly make the
choice argmaxcQ

∗(s, str), maximizing expected future discounted reward.
The next paragraphs describe three collaborative reinforcement learning

methods that take advantage of the problem structure (i.e. interactions among
flights), considering that agents do not know the transition and reward model
(model-free methods) and interact concurrently with all their peers.

Independent Reinforcement Learners (Ind-Colab-RL): The independent learn-
ers Q-learning variant proposed in [7] decomposes the global Q-function into a
linear combination of local agent-dependent Q-functions. Each local Qi is based
on the local state and local strategy for agent Ai:

Q(s, a) =
∑|N |

i=1
Qi(si, stri)

Dependencies between agents, and thus the coordination graph, are defined
according to the agents’ society specified above. It must be pointed out that these
dependencies may be updated by adding new ones while solving the problem.
Each agent observes its local state variables.

A local Qi is updated using the global temporal-difference error, the difference
between the current global Q-value and the expected future discounted return
for the experienced state transition, using
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Qi(si, stri) := Qi(si, stri) +
α[Rwd(sN(Ai), strN(Ai)) + δmax′

aQ(s′
i, str

∗
i ) − Q(si, stri)](3)

where, str∗
i is the best strategy known to the agent for the state s′

i. It must
be noticed that instead of the global reward Rwd(s, str) used in [7], we use the
reward received by the agent, taking into account only the joint state and joint
strategy of its neighbourhood.

Edge-Based Collaborative Reinforcement Learners (Ed-Colab-RL): This is a vari-
ant of the edge-based update sparse cooperative edge-based Q-learning method
proposed in [8]. Given two peer agents performing their tasks, Ai and Aj , the
Q−function is denoted succinctly Qi,j(si,j , stri,j), where si,j with abuse of nota-
tion denotes the joint state related to the two agents, and stri,j denotes the
joint strategy for the two agents. The sum of all these edge-specific Q−functions
defines the global Q−function.

The update function in this case is as follows:

Qi,j(si,j , stri,j) = Qi,j(si,j , stri,j) +

α(
Rwdi(si, stri)

N(Ai)
+

Rwdj(sj , strj)
N(Aj)

+ δQi,j(s′
i,j , str

∗
i,j) − Qi,j(si,j , stri,j))(4)

where, str∗
i,j is the best joint strategy for agents Ai and Aj and for the joint

state s′
i,j . In this case this is approximated using the max-plus message-passing

algorithm [10]. Actually, given the society of agents (i.e. the coordination graph),
in order to compute the optimal joint action str∗, each agent Ai repeatedly sends
a message μij to its neighbors Aj ∈ N(Ai). The message μij can be regarded as
a local payoff function of agent Aj and is calculated as

μij(strj) = maxstri
{Qi(stri) + Qij(stri, strj) +

∑

k∈N(Ai)−Aj

μki(stri)}, (5)

The local Q-function for Ai is defined as in the Ind-Colab-RL update case above
(formula (3)). Agents decide on their best local strategy by computing

str∗
i = argmaxstri

(fi(stri) +
∑

j∈N(Ai)

μji(stri)) (6)

Agent-Based Collaborative Reinforcement Learners (Ag-Colab-RL): This is a
variant of the agent-based update sparse cooperative edge-based Q-learning
method proposed in [8]. As in Ed–Colab–RL method, given two peer agents
performing their tasks,Ai and Aj , the Q−function is denoted succinctly
Qi,j(si,j , stri,j), where si,j denotes the joint state related to the two agents,
and stri,j denotes the joint strategy for the two agents. The update function is
as follows:

Qi,j(si,j , stri,j) = Qi,j(si,j , stri,j) +

α
∑

k∈{i,j}

(Rwdi,j(si,j , stri,j) + δQk(s′
k, str∗

k) − Qk(sk, strk))
|N(Ak)| (7)
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where, str∗
k is the best strategy for agent Ak in state s′

k, k ∈ {i, j}. Agents,
compute their local Q-functions and their best local strategy as in the Ed −
Colab − RL method.

4 Experimental Results

We have performed a series of experiments in order to test and compare the
efficiency of the three collaborative Q-learning methods to resolving the DCB
problem in ATM. The efficiency is measured by means of the resulting number
of hotspots, the mean delay achieved and the distribution of interacting flights
in Occupancy Counting Periods – in conjunction to the number of learning
periods needed for methods to compute policies. To this purpose, we create
specific simulation scenarios of trajectories crossing an airspace. The scenarios
are artificial, but correspond to typical and difficult cases in the real world, found
in datasets provided by CRIDA, the Spanish Reference Centre for Research,
Development, and Innovation in ATM. They have been used during this phase
of our research in order to control the experimental settings and explore the
potential of the proposed methods.

For the simulation we consider that the airspace comprises a grid of sectors,
all having a specific capacity value (that could possibly differ from sector to
sector). Table 1 presents the data used in producing the experimental cases and
the parameter values used in all simulated runs.

Table 1. Parameter values used during the simulated experiments

Parameter Value

Grid structure of sectors 4 × 4

Capacity of sectors, C ∈ [4, 10]

Number of planes, N 100

Duration and step of occupancy counting period 6

Total time period duration H 180

Maximum delay 10

All three approaches follow an ε-greedy exploration strategy starting from
probability 0.8, which is gradually reduced in subsequent rounds. However the
Ind-Colab-RL differs from the other methods in that it initiates an ε-greedy
exploitation phase for 1000 rounds with high probability, while in a subsequent
phase of 1000 rounds, it does pure exploration. To evaluate the three approaches
in cases of varying difficulty, we modify the capacity of sectors (C), and the
number m of sectors that each flight crosses. Herein we report results only for the
most hard cases in the grid considered, where m ∈ [3, 4]. For every capacity value
C ∈ [4, 10], we generated 50 random experimental cases. Figure 5 shows the mean
value and the standard deviation of the final (after learning) number of hotspots,
as well as the mean delay for all flights and for all experiments performed.
According to the results and as shown in Fig. 5(a), all methods demonstrated
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Fig. 5. Comparative results: Plots illustrate (a) the number of hotspots and (b) the
mean delay estimated by each method in terms of various values of sectors’ capacity
(x-axis).

very similar behaviour wrt. hotspots’ eradication, with Ed − Colab − RL being
slightly more effective compared to others: The x-axis in Fig. 5(a) shows the
capacity of each sector, while y-axis shows the number of hotspots when agents’
strategies converge. When the capacity of sectors was greater than or equal to
7 all methods reached the optimum policy for the hotspot criterion. However,
an improvement in the ‘mean delay’ criterion is shown in Fig. 5(b) concerning
the edge-based and the agent-based collaborative RL approaches: x-axis in this
figure shows the varying capacity of each sector, and the y-axis shows the mean
delay achieved by each method. Ind−Colab−RL shows the worst performance,
while the performance of Ed−Colab−RL is similar to that of Ag−Colab−RL,
although the later is more consistent while the capacity of sectors increases.
This confirms that the proposed multi-agent formulation provides a promising
framework for tackling the DCB problem.

Figure 6 illustrates an example of the received learning curves by each
method, i.e. the number of hotspots and mean delay as estimated for 1000
episodes during learning (we set sector’s capacity as C = 7 to all cases). For the
Ind–Collab–RL method, these episodes are from the pure exploration phase.
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Fig. 6. Learning curves received by three methods in a setting considering sectors’
capacity equal to 7. The x-axis shows the number of the learning episode, while the
y-axis shows the number of hotspots and mean delay achieved in each episode.
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Fig. 7. An example of the distribution of interacting flights in Occupancy Counting
Periods (a) initially and (b) as produced by three methods

All methods were able to converge rapidly, achieving strategies with zero
hotspots to any sector, and with flights’ delay much less than the maximum
acceptable delay (which was 10 in all experiments). Finally, in Fig. 7 we present
an example of the distribution of hotspots (y-axis) in terms of Occupancy Count-
ing Periods in a number of 29 non-overlapping occupancy periods, each of dura-
tion equal to 6 time instants (e.g. 6 min). This was obtained by measuring the
interacting flights to a specific sector in different periods: (a) at the beginning
and (b) at the end of learning. As can be seen, our schemes manage to offer
strategies with significantly reduced hotspots (zero in these cases, given that
demand in any occupancy period is not greater than capacity).
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Fig. 8. Learning curves received by the three methods in a setting where N = 3000 and
sectors’ capacity C = 20. The x-axis shows the number of the learning episode, while
the y-axis shows (a) the number of hotspots and (b) the mean delay achieved in each
episode.
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Providing further evidence to the viability of the proposed methods, Fig. 8
shows the learning curves received by the three methods in a setting where
N = 3000 and sectors’ capacity C = 20, while the remaining parameters are as
specified in Table 1. In that figure the x-axis shows the number of the learn-
ing episode, while the y-axis shows the number of hotspots in each episode
(Fig. 8(a)) and the mean delay achieved per method (Fig. 8(b)). As it is seen
there, all methods converge fast, after only 60 episodes, resolving all imbalances.
Specifically, the Ag–Colab–RL method converges as fast as the Ind–Colab–RL,
but in a solution where the mean delay is lower than those achieved by the other
methods.

5 Related Work

Most works on agent-based modelling of the air traffic management system
focus on the tactical phase, and mostly to the problem of avoiding collisions:
These are mostly reactive approaches using probabilistic models [3] or geometric
approaches [9]. For instance, following an agent-based approach, [2,12] propose
decentralised methods for air traffic management application as well as for UAV
collision avoidance. The first work proposes a negotiation approach for agents
to find safe trajectories. Similarly in the second work agents, aiming to colli-
sion avoidance (tactical phase) following either an iterative p2p or a multi party
collision avoidance method.

Using the Brahms multi-agent simulation framework, authors in [14] study
the issues that affect the effectiveness of flow management in strategic planning.
Although no decision-making or planning abilities are provided, the paper pro-
vides interesting insights for modelling the problem and addressing inefficiencies.

Closely to our aims, [1] propose multiagent reinforcement learning methods
to reduce congestion through agents’ local actions. Each agent may perform one
of three actions: (a) setting separation between airplanes, (b) ordering ground
delays or (c) performing reroutes. Agents are related to fixed points (sectors’
entry points), while the hotspots are not guaranteed to be solved.

A recent work that provides Bayesian reinforcement learning (BRL) solu-
tions for collaborative multiagent settings, is that of [13]. Like [8], the approach
employs a variant of max-plus [10] for message-passing, but, crucially, it is able
to extend single-agent and centralized multi-agent Bayesian RL methods [4] in
collaborative settings by decomposing the coordination problem into regional
sub-problems. In future work, we intend to explore the applicability of that
paper’s ideas in our problem domain.

6 Concluding Remarks

This paper investigated a collaborative reinforcement learning framework for
strategic planning of flight trajectories, with the aim of minimizing total conflicts
and eliminating the effect of hotspots with minimum delays. The key aspect of
the proposed scheme is the formulation of the DCB problem in the Air Traffic
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Management as a collaborative multiagent MDP framework where the aircrafts
are treated as agents. Three multiagent RL schemes were studied, with their
preliminary results being quite promising.

Our primary aim is to further extend our work in a variety of challenging
issues. We intend to examine more systematically the generalization capabilities
of the proposed RL-based multi-agents scheme to more complex environments
and validate it in real operations.

This involves work in several interesting aspects: (a) Preparing datasets of
flight plans in specific periods (e.g. days) of varying traffic. Historical data on
flight plans do exist, including initial (unregulated) flight plans and their regu-
lated versions per flight. (b) Exploiting historical data to train our methods and
compute solutions using them, (c) tune/learn a reward model, and finally (d)
compare delays imposed by our methods to those imposed by domain experts in
real-life scenarios.

Of course the problem of resolving hotspots can be seen as a constraint opti-
misation problem (COP) and it is our aim to also compare the solutions produced
by reinforcement learning methods to those produced by COP methods.

Another direction for future work is to introduce alternative joint Q-functions
among agents taking into account geometric properties, and to exame different
forms of the reward function.

Acknowledgements. This work is supported by the DART project, which has
received funding from the SESAR Joint Undertaking under grant agreement No. 699299
under European Unions Horizon 2020 research and innovation programme. For more
details, please see the DART project’s website, http://www.dart-research.eu.

References

1. Agogino, A.K., Tumer, K.: A multiagent approach to managing air traffic flow.
Auton. Agents Multi-agent Syst. 24(1), 1–25 (2012)

2. Albaker, B.M., Rahim, N.A.: Unmanned aircraft collision avoidance system using
cooperative agent-based negotiation approach. Int. J. Simul. Syst. Sci. Technol.
11(4), 1–8 (2010)

3. Baek, K., Bang, H.: ADS-B based trajectory prediction and conflict detection for
air traffic management. Int. J. Aeronaut. Space Sci. 13(3), 377–385 (2012)

4. Chalkiadakis, G., Boutilier, C.: Coordination in multiagent reinforcement learning:
a Bayesian approach. Proc. AAMAS 2003, 709–716 (2003)

5. Eurocontrol: Air Traffic Flow and Capacity Management (ATFCM) (2011)
6. Guestrin, C.E.: Planning under uncertainty in complex structured environments.

Ph.D. thesis, Stanford, CA, USA, aAI3104233 (2003)
7. Guestrin, C.G., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning.

In: Proceedings of the ICML-2002 The Nineteenth International Conference on
Machine Learning, pp. 227–234 (2002)

8. Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff
propagation. J. Mach. Learn. Res. 7, 1789–1828 (2006). http://dl.acm.org/citation.
cfm?id=1248547.1248612

http://www.dart-research.eu
http://dl.acm.org/citation.cfm?id=1248547.1248612
http://dl.acm.org/citation.cfm?id=1248547.1248612


Learning Policies for Resolving Demand-Capacity Imbalances 255

9. Orefice, M., Di Vito, V., Corraro, F., Fasano, G., Accardo, D.: Aircraft con-
flict detection based on ADS-B surveillance data. In: 2014 IEEE Metrology for
Aerospace (MetroAeroSpace), pp. 277–282. IEEE (2014)

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

12. Sislak, D., Volf, P., Pechoucek, M.: Agent-based cooperative decentralized airplane-
collision avoidance. IEEE Trans. Intell. Transp. Syst. 12(1), 36–46 (2011)

13. Teacy, W.T.L., Chalkiadakis, G., Farinelli, A., Rogers, A., Jennings, N.R.,
McClean, S., Parr, G.: Decentralized Bayesian reinforcement learning for online
agent collaboration. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2012, vol. 1, pp. 417–424.
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land (2012). http://dl.acm.org/citation.cfm?id=2343576.2343636

14. Wolfe, S.R., Jarvis, P.A., Enomoto, F.Y., Sierhuis, M., van Putten, B.J.: A multi-
agent simulation of collaborative air traffic flow management. In: Multi-agent Sys-
tems for Traffic and Transportation Engineering, pp. 357–381. IGI Global (2009)

http://dl.acm.org/citation.cfm?id=2343576.2343636


Indoor Localization of JADE Agents
Without a Dedicated Infrastructure

Stefania Monica(B) and Federico Bergenti(B)

Dipartimento di Scienze Matematiche, Fisiche e Informatiche,
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Abstract. This paper describes and compares two of the algorithms for
indoor localization that are implemented in the localization add-on mod-
ule for JADE. Described algorithms perform localization of agents run-
ning on smart devices in known indoor environments using only received
WiFi signals from access points. First, distance estimates from access
points are computed using received signal strength in routinary network
discovery. Then, computed distance estimates are used to generate esti-
mates of the position of the smart device that hosts the agent using
one of described algorithms. The first algorithm, known as two-stage
maximum-likelihood algorithm, is a well-known technique and it is con-
sidered a point of reference to evaluate the performance of other algo-
rithms. The second algorithm, which has been recently introduced to
overcome numerical-instability problems of classic geometric algorithms,
works by turning localization into an optimization problem which is
effectively solved using particle swarm optimization. In order to show
the applicability of the proposed algorithms, the last part of the paper
shows experimental results obtained in an illustrative indoor scenario,
which is representative of envisioned applications.

1 Introduction and Motivation

Among the classic characterizations of agents, it is often said that agents are
situated entities that execute in an environment and that act on the environ-
ment to bring about their goals. Whether the environment is physical or not is
irrelevant, but agents executing in physical environments are traditionally called
robots, while the term software agents is used for agents executing in nonphysical
environments. Notably, such a distinction is quickly becoming obsolete because
of the concrete possibilities of implementing ubiquitous and pervasive computing
that smart devices [25] offer. Smart devices are now sufficiently powerful to eas-
ily accommodate useful software agents, and they also provide a direct contact
with the physical environment that agents can use to try to achieve their goals.
The link between software agents and smart devices is particularly close and
it dates back to more than 20 years ago, when the Foundation for Intelligent
Physical Agents (now IEEE FIPA, www.fipa.org) was established by a group
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of companies and research institutions that were driving the raise of ubiquitous
and pervasive computing at the time. In the research landscape that FIPA con-
tributed to create, it is worth recalling project Lightweight and Extensible Agent
Platform (LEAP) [1,6], which was launched by the European Commission in
1999 and was led by Motorola to bring the Java Agent and DEvelopment frame-
work (JADE) [2] to mobile devices with the help of Siemens, Broadcom, Telecom
Italia, British Telecom, ADAC and the University of Parma. Project LEAP had
a very challenging goal for the time because JADE needed to be severely scaled
down to meet the constraints that mobile devices of early 2000s imposed. The
objective of LEAP was finally achieved in 2001, when the results of the project
were fed back to the main development line of JADE and, since then, JADE has
been effectively used to host software agents on mobile devices.

Nowadays, smart devices offer adequate resources to host JADE containers
with minor restrictions [5], and the challenges pushed by the use of software
agents on mobile devices are now very different from those that project LEAP
faced in the past. In order to fully adhere to the metaphor of agents as sit-
uated entities, we need to provide agents with the possibility of sensing the
physical environment where they execute and of acting on the physical environ-
ment to achieve their goals. Smart devices are ideal candidates to substantiate
this metaphor because they offer sophisticated on-board sensors (e.g., compass,
gyroscope, and accelerometer) and actuators (e.g., high-resolution display, high-
fidelity speakers and vibration motor) that can be effectively used to provide
agents with a bidirectional link with the physical environment where they exe-
cute. Needless to say that the features of smart devices can be enriched using
ad hoc connectivity, which enables the use of external sensors and actuators.

Besides the enormous possibilities that they offer, smart devices are still
immature concerning their localization capabilities, which are essential to let
agents deliver so called location-aware services. It is common opinion that the
problem of outdoor localization can be considered (almost) solved because of
technologies, such as the Global Positioning System (GPS ), that allow estimat-
ing the position of a device with an acceptable accuracy [8]. On the contrary,
indoor localization is still an open problem and various approaches have been
studied in the literature to try to solve it. The use of Ultra-Wide Band (UWB)
technology seems very promising in this respect because it guarantees accurate
and robust indoor localization [11,28]. This is the reason why the use of UWB
technology for accurate indoor localization in industrial environments [17] and to
provide agents with indoor localization capabilities [14] has been already inves-
tigated. However, specific smart devices were needed to run those experiments
because UWB sensors were—and still are—not widely available, and a dedi-
cated infrastructure in the environment was demanded just to support local-
ization. In order to overcome the limitations that the need of specific devices
and of a dedicated infrastructure imposed, we looked for valid alternatives to
the use of UWB technology [15,16] and, in this paper, we present experimental
result in this respect. This paper is about recent developments of the indoor
localization capabilities of JADE agents hosted on ordinary Android devices,
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which use only ordinary WiFi infrastructures. In detail, in this paper we assume
that an agent hosted on a smart device is interested in acquiring accurate and
timely estimates of its dynamic position within a known indoor environment.
In addition, we assume that a set of known WiFi Access Points (APs) is avail-
able in the considered environment. The basic idea of the proposed method is
based on the possibility of estimating the distances between the smart device
and each AP by means of WiFi signals. The smart device does not need to be
connected to a WiFi network, nor does it require special access privileges, and
it only relies on signals that are used to discover available networks. The power
of such signals, as received from the smart device, is used to compute estimates
of the distance between the smart device and each responding AP. Such esti-
mates are then properly processed to estimate the position of the smart device,
which is immediately made available to the agent. We have already discussed the
architecture of the localization add-on module for JADE [14,16]. The module is
open to accommodate most of the algorithms that have been proposed in the
literature to solve localization problems [10,22], and in this paper we discuss
and compare the performance of two algorithms that ships with the module.
The first algorithm, called Two-Stage Maximum-Likelihood (TSML), is a classic
technique which is commonly considered a point of reference to evaluate other
techniques. The second algorithm, introduced in [18] for UWB technology, and
further improved in [19,21], addresses the numerical instability of TSML by turn-
ing the localization problem into an optimization problem solved using Particle
Swarm Optimization (PSO). Note that discussed algorithms are not necessarily
limited to JADE, and they can be adopted in completely different contexts, but
the current implementation assumes that agents are hosted in JADE containers.

This paper is organized as follows. The details of the range acquisition phase
are explained in Sect. 2, which also fixes notation and details the two discussed
algorithms. Section 3 shows experimental results obtained in a representative
indoor scenario, and it compares the performance of studied algorithms. Finally,
Sect. 4 concludes the paper and outlines future work.

2 Agent-Based Localization

We have recently implemented a specific add-on module for JADE to provide
agents with self-localization capabilities [14,16]. A discussion of the architec-
ture of the module, which is briefly summarized in [14], is not needed to detail
expected localization performance, which is the major topic of this paper. There-
fore, rather than focusing on the description of the internals of the module, in
this paper we provide an in-depth description of available localization techniques
together with an experimental evaluation of their performace.

2.1 Notation and Reference Scenarios

We consider scenarios where M WiFi APs are available and, in the rest of this
paper, their coordinates are denoted as

si = (xi, yi)T i ∈ {1, . . . ,M}. (1)
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We assume that the indoor environment is known to the agent, and, in particular,
we assume that the coordinates si of APs are known to the agent. Note that
from (1) it is evident that we consider bi-dimensional scenarios and, even if such
an assumption may seem restrictive and unrealistic, the approaches discussed
in this paper can be easily generalized to three-dimensional environments as
shown in [20]. In addition, [16] shows a generic technique to relate a localization
problem in a three-dimensional environment to a proper localization problem in
a bi-dimensional environment. Finally, note that APs are assumed to be static in
the environment, and this is the reason why they are often called anchor nodes.

The ranging capabilities that the smart device is requested to offer in order
to support discussed algorithms concern the possibility of measuring estimates
of the distances between the smart device where the agent is running, which
is denoted as Target Node (TN ) in the rest of this paper, and each one of the
M APs used for localization. Such distance estimates are obtained by analyz-
ing the average received power of WiFi signals traveling between the TN and
each responding AP during routinary network discovery. According to the Friis
transmission equation [11], the average received power P̄ (r) can be expressed as
a function of the distance r between a transmitter and a receiver. The explicit
expression of the Friis transmission equation is

P̄ (r) = P0 − 10β log10
r

r0
(2)

where P0 is the known power at reference distance r0 and β accounts for the
details of the transmission. By inverting (2), the value of r as a function of P̄ (r)
can be expressed as

r = r0 · 10− P̄ (r)−P0
10β . (3)

Hence, in order to derive an estimate of distance r between the TN and a generic
AP, it is sufficient to measure the average received power of the signal traveling
between them and to apply (3). Note that each range estimate can be associated
with the corresponding AP and with its coordinates. Actually, communications
between the TN and an AP during network discovery include the Basic Service
Set IDentification (BSSID) of the latter, which can be used to identify the
responding AP. Hence, assuming that each known BSSID can be associated
with the coordinates si of the corresponding AP, each distance estimate can be
related to the coordinates of the corresponding AP. This is a key assumption to
guarantee localization capabilities, which involve proper processing of acquired
range estimates and the knowledge of the coordinates of APs from which they
originated. Discussed localization algorithms use only the coordinates of APs
and range estimates acquired during routinary network discovery to compute
estimates of the position of the TN.

We denote the true position of the TN as u = (x, y)T . We remark that u is
supposed to be unknown and it is the vector to be estimated. Using this notation,
the true distance between the TN and the i−th AP is

ri = ||u − si|| i ∈ {1, . . . , M}. (4)
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The knowledge of true distances {ri}Mi=1, together with the knowledge of
the coordinates {si}Mi=1 of the APs, would easily determine the position of the
TN because the coordinates of the TN could be found by simply intersecting
the circumferences centered in {si}Mi=1 with radii {ri}Mi=1. Mathematically, this
translates into the solution of the following system of M quadratic equations

⎧
⎪⎨

⎪⎩

(x − x1)2 + (y − y1)2 = r21

. . .

(x − xM )2 + (y − yM )2 = r2M .

(5)

Unfortunately, since true distances {ri}Mi=1 between the TN and each AP
are unknown, localization can only be performed using the following system of
quadratic equations

⎧
⎪⎨

⎪⎩

(x̂ − x1)2 + (ŷ − y1)2 = r̂21

. . .

(x̂ − xM )2 + (ŷ − yM )2 = r̂2M ,

(6)

which is obtained from (5) by replacing the values of true distances {ri}Mi=1, with
their estimates, denoted as {r̂i}Mi=1. Due to errors on range estimates, the M
circumferences corresponding to the equations in (6) often do not intersect in a
single point and therefore a proper localization algorithm needs to be considered
to find an estimate of the position of the TN, denoted as

û = (x̂, ŷ)T . (7)

In order to derive a proper localization algorithm, let us first observe that
system (6) can be re-written as

1 ûT û + A û = k̂ (8)

where 1 is a vector with M elements equal to 1, k̂ is a vector whose i−th element
is r̂2i − (x2

i + y2
i ), and A is the following M × 2 matrix

A = −2

⎛

⎜
⎜
⎜
⎜
⎝

x1 y1

x2 y2
...

...
xM yM

⎞

⎟
⎟
⎟
⎟
⎠

. (9)

Algorithms to solve (8), based on least square techniques, on Taylor series expan-
sion, and on maximum-likelihood methods, are classic topics of the literature on
localization and they are described, for instance, in [26].
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2.2 The TSML Localization Algorithm

The Two-Stage Maximum-Likelihood (TSML) algorithm [12] starts from the
quadratic system (6), and, as suggested by its name, it is structured in two
cascaded phases. In order to describe the two phases of the algorithm, a specific
notation is needed. First, assuming a bi-dimensional environment, let us define
the Euclidean norm of the coordinates of the i−th AP as ai

ai = ||si|| =
√

x2
i + y2

i i ∈ {1, 2}. (10)

Moreover, let us define a new variable n̂, which is related to the estimated coor-
dinates of the TN, according to the following equation

n̂ = ||û||2 = x̂2 + ŷ2. (11)

Using such a notation, system (6) can be written as

G
1
ω̂1 = ĥ1 (12)

where

G
1

= −2

⎛

⎜
⎜
⎝

x1 y1 −1/2
...

...
...

xM yM −1/2

⎞

⎟
⎟
⎠ ω̂1 =

⎛

⎜
⎝

x̂

ŷ

n̂

⎞

⎟
⎠ ĥ1 =

⎛

⎜
⎜
⎝

r̂21 − a2
1

...
r̂2M − a2

M

⎞

⎟
⎟
⎠ . (13)

Observe that system (12) is written as if it was a linear system. However, recalling
(11), it is easily observed that the third component of ω̂1 is related to the first two
components. This is taken into account in the second phase of the algorithm.
In the first phase of the algorithm, system (12) is solved using a Maximum-
Likelihood (ML) approach, so that the solution vector ω̂1 can be expressed as

ω̂1 = (GT

1
W

1
G

1
)−1GT

1
W

1
ĥ1 (14)

where W
1

is a positive definite matrix. Observe that the simplest choice of W
1

is the identity matrix. Another possible explicit expression of W
1

is suggested
in [12], and it is based on a least square approach.

Given the explicit expression of ω̂1, it is possible to advance the algorithm
to the second phase, according to which another system of equations, related to
(6), is derived. In detail, in order to take into account the dependence of n̂ on
the first and second components of ω̂1, we consider the following system

G
2
ω̂2 = ĥ2 (15)

where

G
2

=

⎛

⎜
⎝

1 0
0 1
1 1

⎞

⎟
⎠ ω̂2 =

(
x̂2

ŷ2

)

ĥ2 =

⎛

⎜
⎝

[ω̂1]
2
1

[ω̂1]
2
2

[ω̂1]3

⎞

⎟
⎠ , (16)
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and [ω̂1]j in (16) denotes the j−th component of ω̂1. The system (15) can be
solved according to the ML technique and the unknown vector can be found as

ω̂2 = (GT

2
W

2
G

2
)−1GT

2
W

2
ĥ2 (17)

where W
2

is a positive definite matrix. As when solving (12), the simplest choice
of W

2
is the identity matrix, but different choices can be considered [26]. Given

the explicit expression of ω̂2, the estimate of the position of the TN is [26]

û = U
[√

[ω̂2]1,
√

[ω̂2]2
]T

(18)

where U = diag(sign(ω̂1)).

2.3 The PSO-Based Localization Algorithm

The literature proposes various algorithms to solve (8). All such algorithms may
suffer from numerical instability in correspondence of peculiar configurations in
space of APs, e.g., if APs are aligned [21]. In order to derive a more robust
algorithm, we proposed in [21] to reformulate (8) as an optimization problem
and we described a PSO-based approach to solve it, as outlined in the rest of
this section. Note that the original proposal was designed to work with UWB
signals, which are very robust to multipath noise. The implemented algorithm
was retargeted to use WiFi signals and, besides the use of different values for the
parameters of the PSO algorithm, it includes pre-filtering to mitigate multipath
noise. In order to outline a fair comparison between the PSO-based algorithm
and the TSML algorithm, pre-filtering is not considered in this paper.

Observe that (8) can be written as a minimization problem, according to

û = arg min
u

F (u) (19)

where F (u) represents the fitness function, which is computed as

F (u) = ||k̂ − (1 ûT û + A û)||. (20)

In order to solve the minimization problem (19), we propose to use the PSO
algorithm, which was introduced in [13]. According to such an algorithm, the set
of potential solutions to a minimization problem can be considered as a swarm
of particles whose positions and velocities are iteratively updated according to
proper rules. Such rules are inspired by biological phenomena like the movements
of birds in swarms. In the context of optimization problems, such rules are meant
to move all particles towards the position corresponding to the optimal solution
of the considered minimization problem.

In detail, the algorithm that we adopted to solve the minimization problem
(19) works as follows. First, the positions of particles are randomly initialized in
the search space, which, in our context, corresponds to the physical indoor envi-
ronment where the TN and APs are situated. The initial positions are denoted
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as x(i)(0), where i ∈ {1, . . . , S} is the index of the generic particle and S is the
number of particles. Analogously, the velocity of the i−th particle is initialized to
v(i)(0). After the initialization phase, positions and velocities of all particles are
updated at each iteration t ∈ N to simulate a swarm [24]. At the t−th iteration,
the velocity of the i−th particle whose position is x(i)(t), is updated according
to the following rule [27]

v(i)(t + 1) = ω(t)v(i)(t) + c1R1(t)(y(i)(t) − x(i)(t)) +

c2R2(t)(y(t) − x(i)(t)) i ∈ {1, . . . , S}
(21)

where, following [9],

– y(t) is the best position globally reached so far;
– y(i)(t) is the best position reached so far by the i−th particle;
– ω(t) is the so called inertial factor ;
– c1 is a positive real parameter called cognition parameter;
– c2 is a positive real parameter called social parameter; and
– R1(t) and R2(t) are independent uniform random variables in (0, 1).

From (21) it can be easily observed that the velocity of a particle at iteration
t + 1 is obtained as the sum of three addends. The first addend is related to the
velocity of the particle at previous iteration t, which is weighed according to the
inertial factor ω(t). The second addend is meant to move each particle towards
the best position it reached so far. We remark that such a best position is the
one which corresponds to the lowest value of the fitness function and, therefore,
y(i)(t) can be expressed as

y(i)(t) = arg min
z∈X(i)(t)

F (z) X(i)(t) = {x(i)(0), . . . , x(i)(t)}. (22)

Finally, the third addend aims at moving each particle towards the global best
position, namely the position which corresponds to the smallest value of the
fitness function among all positions reached by any particle in the swarm [24].
Hence, y(t) is expressed as

y(t) = arg min
z∈Y (t)

F (z) Y (t) = {y(1)(t), . . . , y(S)(t)}. (23)

Typically, the inertial factor ω(t) is chosen as a decreasing function of t, in order
to guarantee low dependence of the solution on the initial population and to
reduce the exploration ability of the swarm as the number of iterations increases,
making the method more similar to a local search in last iterations [27].

The velocities computed with (21) are used to update the positions of parti-
cles at each iteration according to the following rule

x(i)(t + 1) = x(i)(t) + v(i)(t) i ∈ {1, . . . , S}. (24)

From (24) it can be observed that the position of the i−th particle at iteration
t + 1 is simply obtained by adding v(i)(t) to its previous position.
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The execution of the PSO algorithm terminates when a stopping condition
is met. Possible stopping conditions are the reach of a maximum number of
iterations or the reach of a satisfying value of the fitness function. Once the
execution of the algorithm terminates, the solution is computed as the position
of the particle in the global best position, namely the particle with the lowest
value of the fitness function.

The generic PSO algorithm just outlined is used to solve the localization
problem formulated in (19). In order to obtain the experimental results shown
in the rest of this paper, the value of the inertial factor is set to 0.5, the values of
c1 and c2 are set equal and they are set to 2, the size of the population S is set
to 40, and the stopping condition corresponds to the reach of 50 iterations. Such
values proved to be effective for localization purposes using WiFi, and they are
different from values used for UWB. Illustrative experimental results concerning
the performance of the proposed PSO-based algorithm are shown in next section.

3 Experimental Results

In this section, experimental results obtained using discussed algorithms, as
implemented in the localization add-on module for JADE, are shown. Note
that in order to make a fair comparison, discussed scenarios are not meant to
emphasize how the PSO-based algorithm overcomes the well-known numerical
instability of geometric algorithms like the TSML algorithm. As a representative
scenario, we consider M = 4 APs in a square room whose sides are 4 meters
long. Note that implemented algorithms can be applied with a different num-
ber of APs and, in general, an increased number of APs typically improves the
performance of algorithms. The coordinates of APs expressed in meters are

s1 = (2, 0)T s2 = (0, 2)T

s3 = (4, 2)T s4 = (2, 4)T .
(25)

The performance of implemented algorithms are investigated with three TNs in
different positions, which can be expressed in meters as

u1 = (1, 1)T u2 = (2, 1)T u3 = (2, 2)T . (26)

The positions of TNs and of APs are shown in Fig. 1, where APs are marked with
red squares and TNs are marked with blue stars. For each TN, 100 localization
estimates are computed using the PSO algorithm. In the rest of this section, the
j−th position estimate of a TN is denoted as

û
(j)
P = (x̂(j)

P , ŷ
(j)
P ) j ∈ {1, . . . , 100}. (27)

The accuracy of the PSO-based algorithm is analyzed in terms of the distance
between the true position u of the selected TN, which is known, and its j−th
estimate û

(j)
P . Such a distance is

d
(j)
P = ||û(j)

P − u|| j ∈ {1, . . . , 100}. (28)
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Fig. 1. The positions of four APs (red squares) and of three TNs (blue stars) are shown.
The walls of the room are shown in black. (Color figure online)

Moreover, we are also interested in evaluating the average distance error of the
PSO-based algorithm, denoted as dPSO

avg , which can be computed as

dPSO
avg =

1
100

100∑

j=1

d
(j)
P . (29)

Similarly, 100 localization estimates based on the use of the TSML algorithm
are performed, and the j−th position estimate of the considered TN is

û
(j)
T = (x̂(j)

T , ŷ
(j)
T ) j ∈ {1, . . . , 100}. (30)

As done in the case of PSO-based position estimates, we are interested in eval-
uating the distances between the true position of the TN and the 100 position
estimates obtained using the TSML algorithm

d
(j)
T = ||û(j)

T − u|| j ∈ {1, . . . , 100}. (31)

Finally, the average distance error for the TSML algorithm can be computed as

dTSML
avg =

1
100

100∑

j=1

d
(j)
T . (32)

Let us start by considering experimental results obtained when the TN is
in position u1, which is denoted as TN1 in Fig. 1. Range estimates from each
AP are acquired and used to estimate the position of the TN according to the
PSO-based algorithm. This procedure is applied 100 times, thus obtaining 100
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Fig. 2. The values of distance errors corresponding to 100 estimates of the position of
the TN in u1 are shown when applying: the PSO-based algorithm (upper diagram),
and the TSML algorithm (lower diagram). The values of average distance errors in the
two cases are also shown with lines across diagrams.

position estimates {û
(j)
P }100j=1 for TN1. Distances {d

(j)
P }100j=1 between each position

estimate and the true position of the TN are evaluated according to (28). Such
values are shown in the upper diagram of Fig. 2, together with the average dis-
tance error dPSO

avg , which corresponds to 39 cm. From Fig. 2 it is also possible to

observe that distances {d
(j)
P }100j=1 are smaller than dPSO

avg in 65% of the cases, they
are larger than 1 m only 6 times (over 100), and they are always smaller than
1.2 m. According to the results in Fig. 2, the PSO-based algorithm can be consid-
ered sufficiently accurate for many reference applications (see, e.g., [7]). In order
to compare the performance of the PSO-based algorithm with that of a classic
algorithm, the TSML algorithm is also applied in the same scenario, leading to
100 (different) position estimates for TN1, denoted as {û

(j)
T }100j=1. The distance

between each position estimate and the true position of the TN is evaluated
according to (31) and denoted as {d

(j)
T }100j=1. The lower diagram of Fig. 2 shows

such values, together with the average distance error dTSML
avg , which is evaluated

according to (32) and it corresponds to 45 cm. The lower diagram of Fig. 2 also
shows that distances {d

(j)
T }100j=1 are smaller than dTSML

avg in 62% of the cases, they
are larger than 1 m only 6 times (over 100), and they are always smaller than
2 m. A comparison among upper and lower diagrams of Fig. 2 shows that posi-
tion estimates obtained according to the PSO-based algorithm are often more
accurate than those derived using the TSML algorithm. An accurate analysis
of results shows that the PSO-based algorithm performs better than the TSML
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Fig. 3. The values of distance errors corresponding to 100 estimates of the position of
the TN in u2 are shown when applying: the PSO-based algorithm (upper diagram) and
the TSML algorithm (lower diagram). The values of average distance errors in the two
cases are also shown with lines across diagrams.

algorithm in 65% of the cases. It is also possible to observe that the maximum
of distances {d

(j)
P }100j=1 related to the PSO-based algorithm is 1.15 m, while the

maximum of distances {d
(j)
T }100j=1 related to the TSML algorithm is 1.93 m.

Let us now consider the results obtained when the TN is positioned in the
point denoted as TN2 in Fig. 1, which is the point whose coordinates are named
u2 in (26). Range estimates from each AP are acquired and they are first used
to feed the PSO-based algorithm. This procedure is applied 100 times to obtain
100 position estimates {û

(j)
P }100j=1, which are used to evaluate the performance of

the PSO-based algorithm. Distances {d
(j)
P }100j=1 corresponding to the 100 position

estimates are evaluated according to (28), and they are shown in the upper dia-
gram of Fig. 3, together with the average distance error dPSO

avg , which corresponds
to 38 cm. Observe that the average distance is very close to that obtained in the
previous case. The upper diagram of Fig. 3 also shows that distances {d

(j)
P }100j=1

are smaller than dPSO
avg in 56% of the cases, they are larger than 1 m only 2 times

(over 100), and they are always smaller than 1.2 m. Such results, relative to the
TN positioned in u2, confirm that the proposed PSO-based localization algo-
rithm can be effectively applied to obtain position estimates which are accurate
enough for various applications.

As done in the first scenario, let us now apply the TSML algorithm to esti-
mate the position of TN2. The application of the TSML algorithm is repeated
100 times, thus leading to 100 position estimates {û

(j)
T }100j=1 for TN2. Distances
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{d
(j)
T }100j=1 between each of such position estimates and the true position of the

TN are evaluated according to (31), and they are shown in the lower diagram
of Fig. 3, together with the average distance error dTSML

avg , which corresponds

to 43 cm. The lower diagram of Fig. 3 also shows that distances {d
(j)
T }100j=1 are

smaller than dTSML
avg in 57% of the cases, they are larger than 1 m only 3 times, and

they are always smaller than 2 m. From a comparison among upper and lower
diagrams of Fig. 3, it is evident that the PSO-based algorithm often leads to
position estimates which are more accurate than those derived using the TSML
algorithm. Moreover, by properly analyzing obtained results, it is possible to
observe that in 60% of the cases distance estimates obtained with the PSO-
based algorithm are closer to the true position of the TN than those obtained
using the TSML algorithm. It is also possible to observe that the maximum
of distances {d

(j)
P }100j=1 related to the PSO-based algorithm is 1.15 m, while the

maximum of the distances {d
(j)
T }100j=1 related to the TSML algorithm is 1.73 m.

Let us now consider the TN positioned in u3, which corresponds to the center
of the room, as shown in Fig. 1, where it is denoted as TN3. In this configuration,
APs are all equidistant from the TN. First, range estimates from each AP are
acquired and they are used to formulate the localization problem, which is then
solved using the PSO algorithm. The same procedure is repeated 100 times, thus
leading to 100 position estimates {û

(j)
P }100j=1 for TN3. For all the 100 position

estimates, distances {d
(j)
P }100j=1 are evaluated and they are shown in the upper

diagram in Fig. 4. The same diagram also shows the average distance error dPSO
avg ,

which is equal to 18 cm. Observe that dPSO
avg in this configuration is less than a

half of the value obtained when performing the localization of TN1 or of TN2.
This is due to the fact that, in this case, APs are all quite close to the TN (with
a true distance of 2 m). On the contrary, when considering, for instance, the TN
positioned in u1, two of the four APs are more than 3 meters far from the TN,
and the larger is the distance, the less accurate are range estimates. From the
upper diagram of Fig. 4 it is also possible to observe that distances {d

(j)
P }100j=1 are

smaller than davg in 65% of the cases, and they are lower than 40 cm in 90%
of the cases. Moreover, all {d(j)}100j=1 are smaller than 1 m. From the results in
Fig. 4, it can be concluded that the performance of the PSO-based algorithm is
better than that obtained for the two previous positions of the TN.

Finally, the TSML algorithm is also applied in this scenario, obtaining 100
position estimates {û

(j)
T }100j=1 for TN3. Distances {d

(j)
T }100j=1 between each one

of such position estimates and the true position of the TN are shown in the
lower diagram of Fig. 4, together with the average distance error dTSML

avg , which
corresponds to 20 cm. The lower diagram of Fig. 4 also shows that distances
{d

(j)
T }100j=1 are smaller than dTSML

avg in 65% of the cases. A comparison among
upper and lower diagrams of Fig. 4 shows that also in this last case the PSO-based
algorithm is often (65% of the cases) more accurate than the TSML algorithm,
even though the difference is less evident than in previous cases.
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Fig. 4. The values of distance errors corresponding to 100 estimates of the position of
the TN in u3 are shown when applying: the PSO-based algorithm (upper diagram) and
the TSML algorithm (lower diagram). The values of average distance errors in the two
cases are also shown with lines across diagrams.

4 Conclusions

This paper discussed the performance of two localization algorithms that are
included in the localization add-on module for JADE to provide agents with the
possibility of acquiring dynamic estimates of their positions in known indoor
environments. Such algorithms use only the WiFi signals intended to let smart
devices discover available WiFi networks, as emitted from APs of the networks,
which are assumed to be static and located in known positions. No dedicated
infrastructure is needed to support localization, and smart devices are not even
requested to be connected to a WiFi network because only network discovery
messages are used. While other types of wireless technologies, such as UWB,
ensure more accurate and robust localization, WiFi has the advantage of being
already available in all realistic indoor scenarios. The discussed add-on module
for JADE can host a number of localization algorithms, and the main contribu-
tion of the paper is to discuss and compare two algorithms that have already been
implemented. Illustrative results presented in the last part of this paper show
that the performance of algorithms can be considered sufficiently good for many
applications. Possible envisaged applications of discussed techniques include
location-aware smart emergency applications [23], which are typically intended
for outdoor environments because they need accurate localization. In addition,
another interesting application area of discussed techniques regards location-
aware games [7], as envisioned, for instance, inside museums and exhibitions



270 S. Monica and F. Bergenti

to attract the interest of children, and to create personalized itineraries using
treasure hunts. Such games can be effectively implemented using the localization
add-on module for JADE discussed in this paper together with the Agent-based
Multi-User Social Environment (AMUSE ) [3,4], a recent evolution of JADE
that offers platform-level functionality to help developers in the implementa-
tion of social games. Future work on this topic involves further investigation
on the performance of discussed algorithms, especially regarding their expected
robustness.
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26. Shen, G., Zetik, R., Thomä, R.S.: Performance comparison of TOA and TDOA
based location estimation algorithms in LOS environment. In: Proceedings of the
5th Workshop on Positioning. Navigation and Communication (WPNC 2008), Han-
nover, Germany, pp. 71–78 (March (2008)

27. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation (ICEC), Washing-
ton, DC, pp. 69–73, July 1999

28. Zhang, J., Orlik, P.V., Sahinoglu, Z., Molisch, A.F., Kinney, P.: UWB systems for
wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)



A Holonic Multi-Agent System Approach
to Differential Diagnosis

Zohreh Akbari1(&) and Rainer Unland1,2

1 Institute for Computer Science and Business Information Systems (ICB),
University of Duisburg-Essen, Essen, Germany

{zohreh.akbari,rainer.unland}@icb.uni-due.de
2 Department of Information Systems, Poznan University of Economics,

Poznan, Poland

Abstract. Medical diagnosis has always been a crucial and sophisticated matter,
and despite its remarkable progresses, a reliable, cost-efficient, and fast computer-
based medical diagnosis is still a challenge. There are two main types of com-
puterized medical diagnosis systems: knowledge-based and non-knowledge-
based systems. While the challenge of scalability and maintainability are the main
shortcomings of the first group, the fact that the non-knowledge-based systems
cannot explain the reasons for their conclusions makes them less appealing too.
Moreover, even the most advanced systems fail to help the user in providing the
right input. This work discusses the feasibility of the use of Holonic Multi-Agent
Systems (HMASs) to tackle this problem, by performing differential diagnosis
(DDx), that can improve diagnostic accuracy, and moreover guide the user in
providing a more comprehensive input. The Holonic Medical Diagnosis System
(HMDS), as a Multi-Agent System (MAS), offers the necessary reliability and
scalability. By using Machine Learning (ML) techniques, it can also be
self-adaptable to new findings. Furthermore, since it aims to perform DDx and
tends to present the most likely diagnoses, the reasoning behind its output is also
always implicitly recognizable.While theHMAS approach to DDx is the practical
contribution of this work, the introduction of the ML techniques that support its
functionality and dynamics is its theoretical contribution. SwarmQ-learning, as an
off-policy reinforcement learning, is shown to be a perfect solution to this prob-
lem, and the Holonic-Q-learning technique is proposed, which can in general also
be applied to any HMAS.

Keywords: Holonic Multi-Agent System (HMAS) �Medical Diagnosis System
(MDS) � Reinforcement Learning (RL) � Self-organization � Swarm Q-learning

1 Introduction

Since 1950s, computer scientists have aimed to support and improve the health care
system. Clinical Decision Support Systems (CDSSs) link health observations with
health knowledge to influence health choices by clinicians for improved health care1.
Some comprehensive overviews on the CDSSs have been presented in [1, 2, 3].

1 Definition proposed by Robert Hayward of the Centre for Health Evidence.
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There are two main types of CDSSs [1]: Knowledge-based and Non-knowledge-
based. Contemporary knowledge-based CDSSs have their roots in early expert systems
and attempt to replicate the logic and reasoning of a human decision maker, reaching
firm decisions based on existing knowledge [3]. Opposed to this group, non-
knowledge-based CDSSs use a form of Artificial Intelligence (AI) called Machine
Learning (ML), which allows computers to learn from experiences and identify patterns
in the clinical data [1]. Such systems may be based on neural networks, genetic
algorithms, support vector machines, decision trees, or any other ML technology,
which learns to recognize patterns in data sets in a case-by-case proceeding [4].

Since the current ML based CDSSs cannot explain the reasons for their conclu-
sions, most clinicians do not use them directly, for reliability and accountability reasons
[1]. The most remarkable non-knowledge-based CDSSs are based on neural networks
and genetic algorithms [1]. The problems with neural networks include selecting the
best topology, preventing overtraining and undertraining, and determining the training
cases. The complexity of such problems also grows with the size of the neural net-
works. Regarding the genetic algorithm based CDSSs, again the complexity is a big
challenge. Moreover, the low rate of convergence and the lack of guarantee of finding
the global maxima make such approaches less appealing. The scalability and main-
tainability of knowledge based CDSSs, i.e. expert systems, has always been a chal-
lenging issue as well; since an extension of the rule-bases can cause serious problems
as the overall semantics and behavior of the rule base may get out of control. Therefore,
a reliable and easy scalable CDSS is needed that is capable of learning in order to
self-adapt to new findings, and can furthermore explain its reasoning. This work dis-
cusses the feasibility of the use of MASs to tackle this problem. This paradigm, with its
distributed architecture, is a promising solution to the shortcomings of the old methods,
and offers much more flexibility, adaptability and scalability. Although already a
number of attempts in applying MASs to CDSSs can be found in literature (Sect. 1.2),
this work suggests a completely new approach, i.e. the usage of HMASs (Sect. 2) in
order to perform Differential Diagnosis (DDx). In medicine, a DDx is the distin-
guishing of a particular disease or condition from others presenting similar symptoms
[5], which leads to more accurate diagnoses [6]. This systematic method is used to
identify the presence of a disease entity where multiple alternatives are possible, and
tries to gather enough evidence and supporting information to shrink the probability of
the other candidates. This is very critical, since a misdiagnosis may lead to delay in the
correct diagnosis, as well as exposure to inappropriate medication that can lead to
serious irrecoverable effects.

This work, in fact, concentrates on a specific type of CDSS, namely Diagnostic
Decision Support Systems (DDSSs) [2], that are developed to calculate an ordered list
of potential diagnosis for given signs and symptoms. Available systems, including the
state of the art (Sect. 1.2), mainly focus on finding the perfect link between the given
input and their health knowledge. However, prior to this process there should be a
precise method to guide the user in providing the right, all-encompassing input. This is
similar to what a physician does when listening to a patient. (S)he would carefully
listen to the symptoms explained by the patient, considers some potential diagnoses and
then tries to gather enough evidence and supporting information to shrink the proba-
bility of the other candidates by questioning some signs and symptoms that might have
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been simply ignored by the patient, or requesting the patient to undertake some medical
examinations. This process is called the History and Physical examination (H&P) and
is a critical component of a patient encounter in which information relevant to a present
complaint is obtained, by asking questions about family and personal medical history
and the organ systems examined in as great detail as necessary to manage the present
condition or evaluate–workup–the patient [7]. As the first step in the encounter with a
patient, H&P can narrow down the DDx list to a few possibilities based on the patient
data, i.e. the symptoms, the signs, and the medical history. The results of executive
physicals, e.g. laboratory and radiographic findings could then help to narrow down
this list even more. As the shortage of medical doctors is worsening in the recent years,
roles such as Physician Assistant (PA) and Nurse Practitioner (NP) have been intro-
duced in order to ease the problem. PAs and NPs are qualified to perform the H&P step,
diagnose medical problems and carry out necessary treatments mainly under the
supervision of a physician. Undertaking the H&P step, they would help the doctors to
be able to see more patients in a certain period of time, as they would just need to
review and asses the already prepared H&P report.

Although PAs and NPs are able to compensate for the shortage of doctors to some
extent, they don’t solve the problem completely. Both groups require a special formal
degree of education and years of experience; and moreover there is also never enough
number of PAs and NPs available. This is where AI could help. In fact, a system
capable of undertaking the H&P step, could save the physician time or even guide less
experienced nurses in performing this step. This system should be able to gather the
patient data and suggest some possibilities accordingly. Of course, special knowledge
and experience is needed to perform the H&P successfully, and here again DDx
concerns could keep the whole process focused. In fact, irrelevant questions and tests
should be ignored and every single piece of information should be used in order to
narrow down the possibilities. This study will show how a HMAS approach can simply
guide the system to perform this process based on DDx concerns.

The Holonic Medical Diagnosis System (HMDS) suggested in this work is based
on MASs and, hence, clearly offers the necessary reliability and scalability in CDSSs.
The possibility of applying ML techniques to MAS also makes it self-adaptable to new
findings. Furthermore, since it aims to perform DDx and tends to present the most
likely diagnoses as the result, the reasoning behind the output of the system is also
always implicitly visible for verification and control purposes of human beings.

1.1 Research Questions

As mentioned above, this research applies the advantages of HMASs to the field of
medical diagnosis. In order to take full advantage of the most attractive aspect of these
systems, i.e. the dynamics that such systems offer, these capabilities need to be sup-
ported by suitable ML techniques. Hence, in fact, the development of the HMDS,
which is capable of performing DDx, is the practical contribution of this work. On the
other hand, the introduction of ML techniques that support the functionality of this
system is the conceptual/theoretical contribution of this work.
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1.2 The State of the Art

According to the research questions, the state of the art of both medical diagnosis
systems and ML techniques for the HMASs will be covered in this section.

The State of the Art of the Medical Diagnosis Systems. This section tends to study
the IBM Watson (as the most powerful AI based system capable of performing medical
diagnosis), the Isabel (as the best known DDx generator), and the multi-agent based
MDSs.

IBM Watson. Watson is a cognitive computer system developed by IBM [8] that has
the capability of understanding natural language. Along with the advantages, the usage
of Watson has also some disadvantages [8] such as: high switching costs, long inte-
gration time, and time and effort-consuming learning phase. Several application areas
have been considered for Watson, including the healthcare. From the technical point of
view, Watson searches a large knowledge base, generates potential hypotheses, and
then initiates another search to collect evidence that supports them. Although Watson is
very powerful in performing this action, this process doesn’t necessarily guarantee that
it will conduct a DDx or guide the user to perform a focused H&P. So it is always
possible that the final strong deduction is based on some incomplete input. And even if
the system decides on a DDx (i.e., finds some relevant articles), this simple conclusion
might be the result of too many unnecessary operations.

Isabel. Isabel is a web based CDSS that facilitates diagnostic reminders and DDx [9,
10]. It is actually a knowledge-based system consisting of a knowledge base and an
inference engine, implemented using a commercially available software, Autonomy
[11], which utilizes Bayesian inference and Shannon’s principles of information theory
to generate pattern matching algorithms in order to enable sophisticated concept
extraction from documents [10]. A systematic review and meta-analysis of DDx
generators was conducted in [12] and according to this study, Isabel was associated
with the highest rates of diagnosis retrieval. However, as stated in [13] Isabel is still too
slow and its accuracy drops significantly if only limited information is available [14].
As Isabel fails to guide the user in performing a focused H&P, using this system it is
not infrequent to face the problem of limited information and hence poor accuracy.

Multi-agent Based MDSs. A survey on multi-agent based MDSs has been presented in
(Salem et al. [15]), and some notable multi-agent based MDSs are introduced in [16–
19]. These systems, in fact, combine the MAS technology with the earlier paradigms
and design neural network agents, expert system agents, and data mining agents.
Available multi-agent based MDSs are limited to some research works and are still not
in practical use. Following shortcomings can be mentioned for these systems:

1. The introduction of the neural network agents, expert system agents, and data
mining agents in these CDSSs has just slightly reduced the complexity problem and
hence increased the scalability and adaptability of the systems, however, each agent
is still facing the same old problems. Furthermore, keeping the agents simple
enough, i.e. limited to small group of diseases, the number of agents will increase,
and here again the interaction between the agents will be an issue.

A Holonic Multi-Agent System Approach to Differential Diagnosis 275



2. In these systems the MASs are just used to break down the problem into some
simpler ones, but the mechanism which derives the final diagnosis from the agents’
outputs is not using the maximum potential of the MASs.

3. Despite the learning abilities offered by MASs, there has never been a serious
attempt with this regard in multi-agent based MDSs, and most of the work is just
limited to a description of the architecture of the systems.

4. As is the case with Watson and Isabel, a focused H&P is here again missing.

The State of the Art of the ML Techniques for the HMASs. This section con-
centrates on the most remarkable Multi-Agent Learning (MAL) techniques, which have
been designed for the HMASs, together with their drawbacks:

1. Holonic MAL Based on Artificial Immune System [20]: This work presents an
adaptive agent architecture for HMASs with a learning mechanism, which is based
on artificial immune systems. The affinity between two holons can be calculated
only if they both react to the same problem. Therefore, the convergence rate is
relatively very low. Furthermore, the affinity is calculated based on the rewards,
however, in many systems such as in HMDS, this factor can be measured separately
and improve the accuracy.

2. Holonic MAL Based on Reinforcement Learning (RL) [21]: This work presents
a RL method for HMASs, however, it is originally designed for the purpose of
distributed problem solving and does not cover all the aspects of self-organization.
Furthermore, the convergence of the proposed learning method has not been proven
for all environments.

2 Holonic Multi-Agent Systems (HMASs)

The concept of agent-oriented programming was first introduced by Shoham in 1990
[22]. An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its delegated
objectives [23]. A MAS consists of a collections of individual agents, and its capability
is an emergent functionality that surpasses some of the capabilities of each of these
agents [24]. An interesting overview of MAS architectures is presented in [25]. This
section concentrates on one of the well-known MAS architectures, the HMAS.

2.1 An Introduction to the HMAS Paradigm

The field of MAS is a part of Distributed Artificial Intelligence (DAI) in the sense that a
MAS lends itself naturally to distributed problem solving, where each agent has the
characteristics of a distinct problem solver for a specific task. Many distributed
problems exhibit a recursive structure: an agent that solves the overall problem may
have a similar structure as the agents for the sub-problems, thus they should be
structured recursively. More generally, an agent that appears as a single entity to the
outside world may in fact be composed of many sub-agents and conversely, many
sub-agents may decide that it is advantageous to join into the coherent structure of a
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super-agent and, thus, act as a single entity. Agents consisting of sub-agents with the
same inherent structure are called holonic agents [24].

The term holon was originally introduced in 1967 by Koestler [26] in order to name
recursive and self-similar structures in biological and sociological entities. According
to [26], a holon is a natural or artificial structure that consists of several holons as
sub-structures. In contrast to sub-structures in Koestler’s framework, in HMASs all
entities are restricted to agents [24]. A holonic agent of a well-defined software
architecture may join several other holonic agents to form a super-holon; this group of
agents, i.e. sub-holons, now act as if it were a single holonic agent with the same
software architecture [24]. Depending on the level of observation, a holon can in fact
be seen as an organization of holons or as an autonomous atomic entity, i.e. it is a
whole-part construct, composed of other holons, but it is, at the same time, a com-
ponent of a higher level holon [27]. This duality is called the Janus Effect, in reference
to the two faces of a holon.

The organizational structure of a holonic society, or holarchy, offers advantages
that the monolithic design of most technical artifacts lack: They are robust in the face of
external and internal disturbances and damages, they are efficient in their use of
resources, and they can adapt to environment changes [24]. In fact, HMAS architecture
confines the environment and accordingly the responsibility of the agents in different
levels of holarchy. This will reduce the complexity of the system, ease the changes and
hence speed up the convergence rate. Obviously, all these advantages do not mean that
HMAS architecture is more effective than the other architectures introduces for MASs,
but specifically for the domains it is meant for. As stated in [24, 25] domains suitable
for holonic agents should involve actions that are recursively decomposable, exhibit
hierarchical structures, and include cooperative elements.

One of the most attractive characteristics of HMASs is the self-organization
capability. Self-organization is the autonomous continuous arrangement of the parts of
a system in such a way that best matches its objectives. This requires the holons to be
able to merge with other holons according to the compatibility they have to work
together [27]. ML techniques should be applied to this aspect of the HMASs in order to
guaranty its improvement. A generic framework for HMASs is presented in [27],
containing a generic engine that can guide the self-organization process. This research
will refine this engine in order to match the objectives of the HMDS.

2.2 A Generic Framework for Holonic Systems Modelling

This section aims to introduce the generic framework for HMAS modelling presented
in [27] that is not limited to any specific architecture or domain, and attempts to cover
all the aspects of a HMAS. It should be noted that this framework is not going to be
used as a modelling framework, but rather as a framework to consider all the aspects of
a HMAS. Furthermore, the self-organization engine, proposed by this framework, can
be used as a generic guideline to conduct the learning process in the HMDS.

The Important Aspects of a Holonic MAS. According to the framework the three
important aspects of a Holonic MAS are:
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1. Holon Structure and Management: A super-holon is an entity in its own right, but
it is composed by its members. This part of the framework considers how the
members organize and manage the super-holon.

2. Goal-Dependent Interactions: Super-holons are created with an objective and to
fulfill certain tasks. To achieve these goals/tasks, the members must interact and
coordinate their actions. The framework also offers means to model these aspects of
the super-holons’ functioning.

3. Dynamics: Dynamics are inherent characteristics of MAS. The framework con-
siders in particular two of the most attractive characteristics of Holonic MAS:
Merging (Creating and Joining a super-holon) and Self-Organization.

A Satisfaction/Affinity Based Self-organization Engine for HMASs. The second
component of the framework provides a generic engine that guides the holons in their
merging process. This engine is based on the roles suggested by the framework: Head,
Part, Multi-Part and Stand-Alone. The Head is the representative of the group. The Part
is played by those holons belonging to only one super-holon and Multi-Part by those
shared by more than one super-holon. The Stand-Alone represents, how non-members
are seen by an existing holon. The framework defines a set of possible transitions
between these roles, that represent the likely evolution of an entity inside its
super-holon. Adding conditions to these transitions can provide a guide to this evo-
lution. The framework proposes a specialization of the generic engine based on the
affinity and satisfaction between holons. The affinity measures, according to the
application’s objectives, the compatibility of two holons to work together toward a
shared objective, and the satisfaction measures the progress of the holon toward the
accomplishment of its current goal. The transition conditions should always be refined
to match the application’s objective and merging criteria.

3 Holonic Medical Diagnosis System (HMDS)

The HMDS, first introduced in [28–30], is a HMAS, consisting of medical experts
(holons). This structure is applied to this system in a way that allows the system to
perform DDx. The following sections will describe the HMDS covering all the different
aspects of the HMASs mentioned in Sect. 2.2.

3.1 The Architecture of the HMDS

In general, a medical diagnosis system may either rely on highly smart deliberative
agents as one extreme or on a large set of comparatively simple (reactive) agents as the
other extreme. The first means that agents need to fully understand at least their area of
expertise and need to have at least a basic understanding of the real world. This means
that agents need to rely on a deep-going knowledge and deduction model that usually
requires intensive computing power. The other extreme, which is chosen here, is to
keep agents extremely simple and to get the smartness out of the smart and sophisti-
cated interplay of extremely large amounts of simple agents as it is realized by swarm
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intelligence-based systems. The HMDS as a HMAS realizes an improved version of the
second approach. It consists of two types of agents: comparatively simple Disease
Representative Agents (DRA) as the fundament of the system on the lowest level and
more sophisticated Disease Specialist Agents (DSA) as decision makers on the higher
levels of the system (Fig. 1).

DRAs are atomic agents, thus, are not further decomposable and form the leaves of
the holarchy. Each DRA is an expert on a specific disease or even only on a different
appearance of it. It maintains a pattern store that contains the Disease Description
Pattern (DDP) – an array of possible signs, symptoms, and test results. Thus, in order to
join the diagnosis process, these agents only need to perform some kind of pattern
matching (i.e., calculating their Euclidean distance to the diagnosis request description
pattern). DSAs are holons consisting of numbers of DRAs and/or DSAs that rely on
similar sets of symptoms; i.e., represent similar diseases. This encapsulation, in fact,
enables the implementation of the DDx. DSAs can deal with a more or less broad
domain of instances of related diseases. The higher they are in the holarchy the more
general and broader their knowledge needs to be. A DSA on a higher level is assumed
to cover a superset of all sets of diseases that are represented by all its body agents on
the next lower level, however, on a more abstract level. For each DSA, a head is
defined for its lifetime, representing its members by providing the common interface to
the outside of the holon, i.e., to the next higher level in the holarchy.

The class diagram in Fig. 2 visualizes the different types of agents, their operations
(methods), and their relations. HMDSAgent classifier is the generalization of all of the
agents in the system. Of course, these agents will also implement some different
interfaces, however, they will all extend the HMDSAgent. As discussed already, there
are two types of agents in the HMDS, i.e., DRAs and the DSAs. Each DSA is rep-
resented by a head. This head will not be chosen from the available members, but will
be created for the lifetime of the holon, based on agent cloning (for more information
on agent cloning please refer to [31–33]). Agent cloning can be a comprehensive
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Fig. 1. DRAs and DSAs in HMDS (BB: Blackboard)
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approach to the problem of local agent overhead, and since the agents may leave their
super-holons, it can reduce the complexity of the system. The fact, that heads have
same functionalities and their creation is merely needed when a new super-holon is
being formed within an existing super-holon, indicates how agent cloning is a perfect
solution to the mentioned problems. For this purpose, each head is capable of cloning,
i.e., creating a copy of its code, and passing the relevant information to the new agent.

The holarchy has one root, in fact a DSA, which will play the role of the common
and exclusive interface to the outside world for the complete holarchy. Due to its
self-organization ability the system can start with this DSA, take all the DRAs as its
members, and then let the DSAs form automatically. Although this process is based on
the affinity and satisfaction, and at the beginning no information about the satisfaction
factor is available, it is still possible to initially form the DSAs based on the affinity,
i.e., the similarity between them. For this reason, the mentioned DSA accepts the initial
description of the diseases in form of DRAs, as its members, clusters them, and defines
for each of the clusters (i.e. super-holons) a head. This is repeated recursively until no
further clustering is necessary2. This step is not mandatory but can be performed once

Fig. 2. AUML class diagram for HMDS

2 The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [56] is one of the best
algorithms for this issue. In [57] a simple and effective method for automatically detecting the input
parameter of DBSCAN is presented, which helps best to deal with complicated data such as diseases.
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as the system is being defined and accelerate the self-organization. Later on, the system
can still refine its architecture using its self-organization technique.

The communication between agents is solely done via the blackboard of each DSA.
More information about blackboard systems is presented in [34, 35]. According to their
types, agents in HMDS also need to save a subset of the following data in their
memory: Respective symptoms, Super-holons and their corresponding Q-Values (see
Sect. 4.2), Sub-holons and their corresponding Q-Values, Diagnosis request, Inter-
mediate results of the diagnosis process. In addition, the members of the super-holons
need to have access to some of the data kept by their super-holons, and even share
some information with the other members of their super-holons. With this regard, the
super-holon’s functionalities can best be supported by blackboard systems.

3.2 The Functionality of the HMDS

In principle, the proposed system works as follows: When a request for a medical
diagnosis is sent to the HMDS it is actually received by the head of this holarchy (as
explained already above). This head receives the request as a specific combination of
signs, symptoms and medical test results and places it as an array on its blackboard.
Each agent of the system which has knowledge of this blackboard, i.e. any member of
this super-holon, can read the messages on this blackboard. A DRA’s reaction to a
request message is to send back its similarity to the request. However, based on the
provided information a DSA may decide that it wants to try to join the diagnosis
process or not. This will actually control the data flow in the holarchy. The decision is
made based on some simple statistical information about the DSA’s members. The head
knows its distance to each of its members. So, it just calculates its distance to the
request and in case the request is not an outlier, the head will decide to join the
diagnosis process. This means that it will read all the information from the blackboard
of its head and will place it on its own blackboard. Then the same process starts again
and repeats recursively until the request reaches the final level of the holarchy.

Results obtained by participating agents now flow the other way round from bottom
to the top of the holarchy. On their way up the results are sorted according to their
similarity. More precisely, each agent will send its final results, suggestions and
questions to its super-holon including: the top diagnoses together with all the signs,
symptoms or test results that are relevant from the agent’s point of view. This implies
that originally not provided relevant information may be requested from the user in a
second step. In fact, according to the DDx, the system may suggest the user to provide
more information or undertake specific medical tests to improve diagnostic accuracy.

A simplified example will be given here in order to demonstrate the system
functionality. Suppose a system of 20 diseases, and 40 different entries for the
DDP. This will form a 20� 40 matrix, whose entries are real numbers between 0 and
1, indicating the frequency of the characteristics under consideration in the DDP for
each of the diseases. The diagnosis request will be considered in form of an array with
40 entries, in which the chief complain, the claimed symptoms and the general signs
will be saved. The corresponding entries are set to 1 and the rest of the entries will be
set to 0.5 as a neutral entry. For the simplicity reasons suppose that after clustering the
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disease number 1 to 10 have formed DSA1, disease number 11 to 16 have formed
DSA2, and disease number 17 to 20 have formed DSA3.

In this example, the first diagnosis request contains the following signs and
symptoms: E6;E11;E18;E20;E32;E33;E39;E40. As this entry is no outlier to the sys-
tem’s members, it will be placed on its blackboard. All the members will then check if
they can provide any solutions and as seen in Fig. 3, DRA1 and DRA2 pass their most
possible diagnoses and the items under question to their head. The head will then put
them in order, extract the most possible ones and their corresponding questions. Fol-
lowing this stage, the user should try to provide the answers to the given questions, i.e.
the second input. In this example E12;E23; and E37 are present and hence set to 1 and
the rest of the questioned items are set to 0. After receiving this input the system is able
to provide a more precise diagnosis (see Fig. 4). The system actually narrows down the
items to be checked (in this case from 32 to 15). In real systems with many different
tests under consideration this difference can be of eminent importance.

3.3 The Self-organization in the HMDS

In the self-organization process of HMDS, the agents decide on their actions, i.e. to
leave, stay in or join a super-holon, according to the similarity between their symptoms
and some learned values (c.f. Sect. 4). In general, the decision making idea is based on
some statistical techniques for outlier detection, called the empirical rule [36], i.e. an

DSA0

DSA1 DSA3
DSA2

Initial DDx list:
D4=0.66, D10=0.62, D3=0.60,
D2=0.59, D6=0.59
Items to be controlled:
E4, E7, E12, E14, E17, E19, E22, E23,
E24, E27, E29, E30, E36, E37, E38

Initial DDx list:
D16=0.44, D11=0.40, D13=0.39, 
D15=0.39, D14=0.35
Items to be controlled:
E2, E3, E5, E7, E8, E13, E15, E16,
E19, E24, E25, E26, E27, E29, E30

Initial DDx list:
D4=0.66, D10=0.62, D3=0.60,
D2=0.59, D6=0.59
Items to be controlled:
E4, E7, E12, E14, E17, E19, E22, E23,
E24, E27, E29, E30, E36, E37, E38

Fig. 3. Initial DDx list based on the first input (D: Disease/E: Element of the DDP)

DSA0

DSA1 DSA3
DSA2

Revised DDx list:
D3=0.84, D4=0.72, D10=0.58, 
D1=0.58, D2=0.55

Fig. 4. Revised DDx list based on the second input
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agent may decide to join a holon if it’s not an outlier to its members, and may decide to
leave its super-holon in the opposite case.

4 Reinforcement Learning (RL) in HMASs

In HMDS, the holarchy is keeping track of the best decisions made by the system. This
process needs to be supported by some suitable ML techniques. Considering the nature
of the problem, the absence of desired input/output pairs, and the accessibility of a
dynamic environment, RL is the best match for the problem. Many different RL
techniques can be found in literature from which the best fitting one for the system is to
be chosen and adapted to the requirements; i.e., in order to apply RL to the problem, it
is first essential to model it in a way that the algorithms can be applied. For this reason,
the Markov Decision Processes (MDPs) framework [37, 38] is used [39].

Since RL algorithms do not assume a given model for the MDP, one of the key
issues while using them is that learners need to explore the environment in order to
discover the effects of their actions. This problem is usually known as exploitation-
exploration trade-off. Two basic ways exist to address this question. On-policy methods
estimate values of the policy that is currently being used and attempt to improve on this
policy. In contrast, in off-policy methods the agent uses a behavior function or control
function, which differs from the goal policy that is being learned. In this case the
process is often divided in a learning phase during which the optimal policy is learned,
and a control phase during which it is used for control [40]. An advantage of this
separation is that the estimation policy may be deterministic (e.g. greedy), while the
behavior policy can continue to sample all possible actions [41].

Table 1 lists a number of notable RL techniques. QL method, as an off-policy
technique, is an excellent candidate for the realization of the RL in the HMDS, and this
is also the case for most of the Multi-Agent RL (MARL) methods [49]. In fact, even
though among the mentioned RL techniques QL tends to converge a bit slower, it has
the capability to continue learning while changing policies and is more flexible if
alternative routes appear. This is only the case with off-policy methods, where even if
an agent changes its policy, the system is still able to use what it has learnt so far.
Since HMDS is a self-organizing system, consisting of several autonomous agents that
may have different policies and may even change their policies constantly, it is clear

Table 1. A number of notable RL techniques

RL technique Policy Year Reference

Actor-Critic (AC) On-policy 1983 [42]
Temporal Difference (TD) On-policy 1988 [43]
Q-Learning (QL) Off-policy 1989 [44]
R-learning Off-policy 1993 [45]
State-Action-Reward-State-Action (SARSA) On-policy 1994 [46]
Actor Critic Learning Automaton (ACLA) On-policy 2007 [47]
QV(k)-learning On-policy 2007 [47]
Monte Carlo (MC) for RL On-policy 2008 [48]
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that the usage of an off-policy technique is here essential. It should be noted that
R-learning is a variant of QL and also an off-policy technique, however, specifically for
non-discounted, non-episodic problems, and hence not suitable for the HMDS.

4.1 Q-Learning for Agent-Based Systems

A significant number of researches on learning in agent-based systems use RL. The
algorithms can be divided into three different classes: single-agent RL, multi-agent RL
(a combination of Game Theory and RL), and swarm RL (a combination of Swarm
Intelligence and RL). A comprehensive overview of single and multi-agent RL is
presented in [49]. Rather than developing complex behaviors for single individuals,
swarm intelligence-based RL investigates the emerging (intelligent) behavior of a
group of simple individuals that achieve complex behavior through their interactions.
Similar to single-agent RL, in swarm RL state transition functions are described by a
single agent’s action. On the other hand, similar to MARL, swarm RL recognizes other
agents’ actions, however, solely implicitly by considering their effects.

Most swarm RL algorithms are based on Ant Colony Optimization (ACO) and
pheromones: Ant-Q [50], Pheromone-QL (Phe-Q) [51], Swarm RL based on ACO
[52]. These techniques are all designed based on QL algorithms, however, applying
them to the self-organization of a HMAS has the following disadvantages: (1) In an ant
colony the ants will follow the pheromones because of their strength and not the type of
food they can expect at the end. In HMDS the latter plays a role, since the agents, that
are experts in special disease or group of similar diseases, are just interested in the trails
matching their specialty, (2) Most swarm RL algorithms consider a constant value as
the reward for each action, however, this value can indicate the satisfaction in the
HMDS and should be calculated each time the action is chosen.

4.2 Holonic-Q-Learning (HQL)

In holonic-QL, the Q-value is in fact measuring how good it is for a holon to be a
member (i.e. sub-holon) of another holon. In this case, the states are the existing holons
fhig and action hi indicates becoming a sub-holon of holon i.

Qt subðhÞ; hð Þ  1� atð ÞQt�1 subðhÞ; hð Þþ atðRt sub hð Þ; hð Þþ
c argmax
Qt�1 h;sup hð Þð Þ

ðQt�1 h; sup hð Þð Þ:Aff ðsub hð Þ; supðhÞÞÞÞ ð1Þ

where, at ¼ 1
1þ visitstðsub hð Þ;hÞ, c 2 ½0; 1Þ is the discount factor, and

Aff sub hð Þ; hð Þ ¼ 1� dðsub hð Þ;hÞ
maxdðsub hð Þ;hÞ. The reward is actually calculated by the head of a

super-holon. For this reason, each of the sub-holons will calculate their similarity, i.e.
affinity, to the final diagnosis. Then all the members with close affinity values will be
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awarded with the highest affinity value reported by the sub-holons. Any possible
sub-holon with an affinity value that is an outlier to the sub-holons’ affinity values will
not receive a reward. The head/super-holon will be rewarded by its own super-holon.

Convergence of the HQL. In order to prove the convergence of the HQL, an
approach similar to the one used for QL in [53] is followed here, which uses a theorem
on random iterative processes convergence [54, 55].

Theorem 1. A random iterative process Dnþ 1 xð Þ ¼ 1� an xð Þð ÞDn xð Þþ bnðxÞFnðxÞ
converges to zero w.p.1 if (i) The state space is finite, (ii)

P
n
an xð Þ ¼ 1;P

n
a2n xð Þ\1;

P
n
bn xð Þ ¼ 1;

P
n
b2n xð Þ\1, andE bn xð ÞjPnf g�E anðxÞjPnf guniformly

w.p.1, (iii) E FnðxÞjPnf gk kw\c Dnk kw, where c 2 ð0; 1Þ, and (iv) Var FnðxÞjPnf g
�Cð1þ Dnk kwÞ2, where C is some constant.

Here Pn ¼ fDn;Dn�1; . . .; Fn�1; . . .; an�1; . . .; bn�1; . . .g stands for the past at step n.
FnðxÞ, anðxÞ, and bnðxÞ are allowed to depend on the past insofar as the above con-
ditions remain valid. The notation jj:jjw refers to some weighted maximum norm.

Proof. See [55].

Theorem 2. Given a finite MDPðH;A; T;R; cÞ, the HQL algorithm, given by the
update rule (1) Converges w.p.1 to the optimal Holonic Q-function if (i) The state and
action spaces are finite, (ii)

P
t at s; að Þ ¼ 1 and

P
t a

2
t ðs; aÞ\1 uniformly w.p.1,

(iii) Var R st; atð Þf g is bounded, and (iv) 2c� c
0
\1; c:maxDQ� 1.

In order to prove Theorem 2, it is first essential to show that the optimal
Holonic-Q-function, i.e. Q�, is a fixed point of a contraction3 operator H, defined as:

Hqð Þ sub hð Þ; hð Þ ¼
X
h2H

T sub hð Þ; hð Þ
�
Rt sub hð Þ; hð Þ:

þ c argmax
q h;sup hð Þð Þ

q h; sup hð Þð Þ:Aff sub hð Þ; sup hð Þð Þ
�

This operator is a contraction in the sup-norm, i.e.

Hq1 �Hq2k k1 � c
0
q1 � q2k k1 ð2Þ

This inequality can be proven as follows:

3 A mapping T : X ! X is a contraction on a metric space ðX; dÞ, if there exists a constant c, with
0� c\1, such that d T xð Þ; T yð Þð Þ� c:dðx; yÞ for all x; y 2 X [58].
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Hq1 �Hq2k k1¼ max
hi;hj

X
hj2H Tðhi; hjÞ R1 hi; hj

� ������
þ c argmax

q1 hj;hkð Þ
q1 hj; hk
� �

:Aff hi; hkð Þ � R2 hi; hj
� �� c argmax

q2 hj;hkð Þ
q2 hj; hk
� �

:Aff hi; hkð Þ
3
5
������

� max
hi;hj

X
hj2H

Tðhi; hjÞ max DRþ cmax Dq½ �
������

������� max
hi;hj

X
hj2H

T hi; hj
� �

2cmax Dqj j

� max
hi;hj

c
0X
hj2H

T hi; hj
� �

q1 � q2k k1¼ c
0
q1 � q2k k1:

Proof of Theorem 2. Subtracting from both sides of the HQL update rule the quantity
Q� sub hð Þ; hð Þ and letting Dt sub hð Þ; hð Þ ¼ Qt sub hð Þ; hð Þ � Q� sub hð Þ; hð Þ, yields:

Dtþ 1 sub hð Þ; hð Þ ¼ 1� atð ÞDt sub hð Þ; hð Þþ at½Rt sub hð Þ; hð Þ
þ c argmax

Qt�1 h;sup hð Þð Þ
ðQt�1 h; sup hð Þð Þ:Aff ðsub hð Þ; supðhÞÞÞ � Q� sub hð Þ; hð Þ�

The algorithm can be seen to have the form of the process in Theorem 1 with bn ¼ an.
In order to verify that Ft sub hð Þ; hð Þ has the required properties, the third condition is
considered here first. Since Q� ¼ HQ�, E Ft sub hð Þ; hð ÞjPt½ � ¼ HQtð Þ sub hð Þ; hð Þ�
Q� sub hð Þ; hð Þ ¼ HQtð Þ sub hð Þ; hð Þ �HQ� sub hð Þ; hð Þ. It is now immediate from (2)
that E Ft sub hð Þ; hð ÞjPt½ �k k1 � c Qt � Q�k k1¼ c Dtk k1.

Finally,
Var Ft sub hð Þ; hð ÞjPt½ � ¼

E Rt sub hð Þ; hð Þþ c argmax
Qt�1 h;sup hð Þð Þ

ðQt�1 h; sup hð Þð Þ:Aff ðsub hð Þ; supðhÞÞÞ
 "

� Q� sub hð Þ; hð Þ � HQtð Þ sub hð Þ; hð ÞþQ� sub hð Þ; hð ÞÞ2
i
¼ E Rt sub hð Þ; hð Þð½

þ c argmax
Qt�1 h;sup hð Þð Þ

ðQt�1 h; sup hð Þð Þ:Aff ðsub hð Þ; supðhÞÞÞ � HQtð Þ sub hð Þ; hð ÞÞ2
i

¼ Var Rt sub hð Þ; hð Þþ c argmax
Qt�1 h;sup hð Þð Þ

ðQt�1 h; sup hð Þð Þ:Aff ðsub hð Þ; supðhÞÞÞjPt

" #

which due to the fact that R is bounded, verifies Var Ft sub hð Þ; hð ÞjPt½ � �C 1þ Dtk k2w
� �

For some constant C. Then, by Theorem 1, Dt converges to zero w.p.1. i.e. Qt con-
verges to Q� w.p.1. In order to assure the convergence of the HQL the learning step
should be repeated until maxDQ� 1

c.
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5 Conclusion

The first step to a successful diagnosis is a focused H&P, that can narrow down the
DDx list to a few possibilities. This paper discussed the feasibility of the usage of the
HMAS paradigm for this reason and proposes the HMDS. Additionally, also some ML
techniques were suggested that support the functionality and the dynamics of this
holonic system. Swarm QL, as an off-policy RL, is argued to be a good solution to this
problem, and the HQL technique is introduced, which can in general also be applied to
the self-organization of any HMAS. The convergence of this method is also proved
based on a well-known theorem on the convergence of the random iterative processes.
The implementation of the system is now in progress and future work will include the
complete implementation and validation of the system. The development process is
being carried out with the help of a MAS platform, Janus, that is fully implemented in
Java and provides a default implementation of holons using an organizational per-
spective. The programming language being used is the SARL agent-oriented pro-
gramming language that supports HMASs and is fully interoperable with Java.
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