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Preface

Let’s imagine we have a block of gold and a pair of metal-cutting scissors, and we 
start cutting the gold into small pieces. The original block of gold is typically of 
millimeter dimension, i.e., macro or bulk material. If we keep on cutting the gold to 
smaller and smaller sizes, such that the smallest piece is 1 millionth in size of the 
original block, that dimension is a nanometer, and now that “nano” piece of gold is 
a nanomaterial. The properties of a nanomaterial are significantly different from its 
bulk counterpart. For example, bulk gold melts at above 1000  °C while a gold 
nanoparticle melts at around room temperature. Also, gold as we know it is yellow-
ish in color, but a nano-piece of gold is typically ruby red in color due to different 
light absorption properties. The fundamental discovery that material properties are 
different, and in many cases, better when nanostructured rather than as macroscopic 
particles has paved the way for a widespread interest in nanoscience.

Just to give a perspective, the thickness of an average human hair is about 
100,000 nm while the diameter of an atom is about 0.4 nm. Thus, nanotechnology, 
in essence, is really looking at the physical and chemical mechanisms of atoms and 
molecules, and more importantly, as presented in this book, strategies to control and 
engineer these properties to create new and advanced materials that can improve our 
lives. The 2010 Nobel Prize in Physics for the 2004 discovery of a two-dimensional 
nanomaterial of carbon called graphene with remarkable electrical, thermal, and 
mechanical properties catapulted the interest and scientific funding in nanomateri-
als, not only in the developed countries, but across the globe. Interestingly, several 
layers of graphene when put together make graphite, which is what pencils, that we 
so regularly use to write, contain.

The history of nanoscience dates back to 1959, when Richard Feynman gave his 
extensively referred talk on molecular machines with atomic precision. It was two 
decades later when Eric Drexler presented molecular nanotechnology concepts at 
MIT. Since then, research in nanomaterials has consistently found academic interest 
with the discovery of buckyball in 1985 by Smalley and his colleagues and the 1991 
discovery of carbon nanotubes by Ijima in Japan. Research in nanotechnology has 
grown exponentially over the last two decades, especially with significant commer-
cial interest in products containing nanoparticles. For example, several of our 
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 everyday products contain nanomaterials—many sunscreens contain zinc oxide and 
titanium oxide nanoparticles, nano-silver contained in bandages and dressings used 
to treat wounds and burns, nanoparticle suspensions in fluids used as coolants for 
cars—as well as for certain ambitious applications such as lightweight carbon nano-
tube containing composite materials for aerospace components, and atomically 
engineered metallic alloys for radiation-tolerant nuclear energy systems. Hybrid 
nanomaterials have had the major (almost 35%) share of the nanotechnology indus-
try focus, again certifying the importance of this technological field.

The progresses in nanomaterials are due to the cross-disciplinary efforts from 
scientists and engineers with a wide range of expertise in Physics, Chemistry, 
Biology, Mathematics, as well as Mechanical, Chemical, Materials, and Computer 
Engineering. The chapters in this book offer a strong flavor of the interdisciplinary 
nature of the research in nanomaterials. The six chapters of this book give detailed 
description of advanced nanomaterials including their synthesis, testing, and prop-
erties that are strongly associated with fundamental novelties in molecular mecha-
nisms. The authors, who are nationally and internationally renowned experts in 
nanomaterials, and their corresponding chapters provide an overview to the uniniti-
ated while a deeper understanding and knowledge to readers with specialized inter-
ests. The chapters are organized accordingly to the dimensionality of the principal 
nanomaterial discussed by the authors. In other words, Chaps. 1 and 2 discuss one-
dimensional nanomaterial (carbon nanotube), Chaps. 3 and 4 discuss two- 
dimensional nanomaterial (graphene and its analogs), Chap. 5 presents advances in 
nanostructured three-dimensional oxide interfaces, and Chap. 6 relates to progress 
in nanofluidic materials.

In Chap. 1, M. Tehrani and P. Khanbolouki discuss the different aspects associ-
ated with the synthesis, processing, characterization, and properties of carbon nano-
tubes. As mentioned earlier, these materials have captured the interest of scientists 
over two decades and their commercial relevance has triggered their use in combi-
nation with other materials for designer structures. The authors begin from the very 
fundamentals of carbon chemistry and sequentially explain the engineering pro-
cesses associated with developing these advanced materials. Their approach pro-
vides an easy read for the newcomers in this field, but also a comprehensive 
description of state-of-the-art technological aspects that would interest a specialist.

In Chap. 2, R. P. Sahu, I. K. Puri, and coauthors describe how carbon nanotubes 
in combination with magnetic nanoparticles have found significant interest and 
application in sensing opening new avenues for these nanomaterials. They meticu-
lously discuss the synthesis procedures that include different methods of function-
alization, and printable sensors that are magnetically and electrically responsive. 
The future of such advanced nanomaterials is extremely bright, to say the least, with 
unbound opportunities in supercapacitors, Lithium ion batteries as well as soft com-
posite materials with significantly improved and controllable material properties.

In Chap. 3, S. Hu, S. Das, and H. Monshat present the progresses in the use of 
two-dimensional materials in electrochemical energy storage devices. The motiva-
tion for the research is rooted in the superior performance of these nanomaterials 
relative to the traditional materials employed in such applications. The discussion 
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on supercapacitors builds organically from the previous chapter as the authors pres-
ent the fundamental contributions of defects and functional groups to the material 
properties. An important aspect underlined in the outlook includes further research, 
regulation, and awareness on the effect of nanomaterials on environment and health.

In Chap. 4, O. Sanchez and coauthors summarize the knowledge on new elemen-
tal two-dimensional materials analogous to graphene. The elements in group four of 
the periodic table have found a niche interest in nanomaterials, the idea being mim-
icking the nanostructural aspects of carbon in silicon, germanium, and tin. Although 
the research is still in its infancy, the authors review the achievements in synthesis 
of silicene, germanene, and stanene, and their corresponding structural, electronic, 
and thermal properties.

In Chap. 5, TeYu Chien takes us to a different yet related territory of nanomate-
rial interfaces. The author discusses the novel phenomena that arise at the contact 
zones of dissimilar bulk complex oxide materials. Although the materials are of 
larger dimensions, the electronic properties are governed by the nanoscale features 
at the interfaces of these advanced materials. While advanced synthesis techniques 
can create these materials, the recent progress in cross-sectional scanning probe 
microscopy has facilitated the characterization of the typically challenging interfa-
cial regions. The author provides a comprehensive background of the fundamentals 
of oxide materials, the properties at the interfaces that are investigated through 
state-of-the-art characterization, and next-generation applications that would bene-
fit from these complex materials.

In Chap. 6, B. Ma and D. Banerjee show how dispersion of nanoparticles in flu-
ids can enable improved properties for nanofluidic materials. The focus of the chap-
ter is on synthesis procedures associated with “nanofluids.” The considerable 
interest in these materials, albeit the controversies in the repeatability of their prop-
erties, requires a diligent synthesis protocol to facilitate desired functionality and 
material properties in such advanced fluids. The emphasis on the effect of synthesis 
conditions on the thermo-physical properties of nanofluids is particularly important 
for scalable manufacturing of these materials. In addition to providing fundamentals 
of nanofluids and their properties, the authors show how these futuristic liquids can 
be used for solar energy storage and power generation.

I sincerely express my appreciation to all the authors for sharing their knowledge 
and expertise through their respective chapters, and their impetus and interest 
towards the book. I thank Brian Halm, Michael Luby, and Nicole Lowary for 
extending this opportunity to me, and most importantly for their faith and patience 
through this process. I would also like to express my love and gratitude to my wife, 
Tanumita, for her love and support, and understanding my irregular work schedules, 
especially during the time that I was engaged with this book.

The support received through the National Science Foundation Award # CMMI-
1404938 and the Summer Faculty Fellowships at the Air Force Research Lab in 
2015 and 2016 are gratefully acknowledged.

Bethlehem, Pennsylvania, USA Ganesh Balasubramanian
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Chapter 1
Carbon Nanotubes: Synthesis, 
Characterization, and Applications

Mehran Tehrani and Pouria Khanbolouki

1.1  Introduction

To understand the structure and properties of carbon nanotubes (CNTs), one needs 
to understand carbon chemical bonds. Carbon atoms can bond to other atoms via 
SP3, SP2, or SP covalent bonds. For example, carbon atoms are bonded via SP3 
bonds (sharing their four valence electrons with four other carbon atoms) in dia-
mond. As a result, diamond is one of nature’s hardest materials and has an ultrahigh 
thermal conductivity of ~1000 W/mK [1]. As shown in Fig. 1.1, graphite consists of 
stacked sheets of SP2-bonded carbon atoms forming a honeycomb structure, that is, 
graphene. Graphene sheets interact with one another via weak van der Waals forces, 
and graphene layers slide easily over each other; thus, graphite is used as a lubri-
cant. Graphene itself, however, is super strong and stiff—five times stiffer and more 
than 100 times stronger than steel [2]. A CNT can be visualized as a seamless cyl-
inder of a rolled-up graphene sheet, as shown in Fig. 1.1b. CNTs are as strong and 
stiff as graphene and, like graphene, they possess very high electrical and thermal 
conductivity owing to the SP2 carbon bonds. CNTs can be categorized by the num-
ber of concentric walls in the individual structures: single-, double-, and multiwalled 
CNTs. Single-walled CNTs (SWCNTs) can have diameters from 0.4 to 4  nm. 
Multiwalled CNTs (MWCNTs) are concentric shells of SWCNTs with intertube 
spacing of 0.34 nm, and their diameters typically range from 1.4 to 100 nm. CNTs 
cannot currently be continuously grown; however, individual nanotubes as long as 
half a meter have been demonstrated [3].

CNTs were discovered in 1991 by Iijima [5], and scientists have since been 
exploiting their extraordinary mechanical and physical properties. CNTs are a 
promising candidate for many applications, including—but not limited to— 
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lightweight electrical wires, thermal interface materials, field-effect transistors, 
electrodes in energy storage and conversion devices, sensors and actuators, struc-
tural fibers and composites, and water desalination membranes [6].

1.2  Structure and Properties of CNTs

1.2.1  CNT Structure

As shown in Fig. 1.2, a CNT can be described by two directional indices (n, m). 
Directional indices (also described by the chiral vector, na1 + ma2) determine the 
rolling direction of graphene to form a nanotube, as well as the diameter, d, of a 
nanotube:

 
d

n mn m
=

+ +0 246 2 2.

p  
(1.1)

The angle between the chiral vector (n, m) and the horizontal vector (n, 0) in 
Fig. 1.2 is known as the chiral angle:

 

q =
+ +

-sin 1

2 2

3

2

m

n mn m  

(1.2)

The chiral angle takes a value between 0 and 30° for different types of nanotubes. 
Specifically, an armchair nanotube (n = m) has a chiral angle of 30°, a zigzag nano-
tube (n = 0, or m = 0) has a chiral angle of 0°, and a chiral nanotube (any other 
n or m) has a chiral angle between 0 and 30°. The CNT bandgap varies by its chiral-
ity from 0 to 2 eV. The bandgap of semiconducting CNTs is inversely proportional 
to the nanotube diameter [7]. An SWCNT is a semiconductor if n  −  m  ≠  3i 
(i = 1, 2,…) or metallic if n − m = 3j (j = 0, 1,…) [8]. For example, all armchair 
nanotubes are metallic, whereas zigzag nanotubes for which n − m ≠  3j exhibit 
semiconducting characteristics.

Fig. 1.1 Graphite, graphene [4] and different types of carbon nanotube: single walled, double 
walled and multiwalled carbon nanotubes. (a) graphite consists of stacked graphene sheets. (b) a 
single walled carbon nanotube can be regarded as a rolled graphene sheet. (c) A multi-walled and 
a single walled carbon nanotube

M. Tehrani and P. Khanbolouki
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1.2.2  Electrical, Thermal, and Mechanical Properties

Ballistic transport is the ability of a material to transport electrons or phonons 
through its medium, with almost no resistance or scattering. Defect-free CNTs are 
very promising in electrical and thermal applications because of their ballistic trans-
port ability over long lengths—with absence of electron/phonon scattering [9, 10]. 
As a result, they can carry high currents with almost no heating. The current- 
carrying capacity of metallic CNTs is expected to exceed 109 A/cm2—four orders of 
magnitude higher than that of normal metals [7]. Semiconducting nanotubes display 
different sets of properties that make them highly desired for superior field-effect 
transistors [11, 12]. Another extraordinary property of CNTs is their thermal con-
ductivity, ranging from 1000 to 6600 W/mK [13]. These values are 1–2 orders of 
magnitude higher than the thermal conductivities of metal, as well as natural dia-
mond (2000 W/mK). Phonons are mainly responsible for heat conduction in CNTs 
[13]. SWCNTs have also exhibited superconductivity below 5 K [14].

While individual nanotube conductivities are surprisingly high, contact resis-
tance between nanotubes, as well as between nanotubes and other materials, has 
made it difficult to translate individual nanotube properties to the micro- or mac-
roscale. For example, for individual nanotubes with a conductivity of 3000 W/mK, 
one, two, and three-dimensional CNT networks have thermal conductivities of 
approximately 250, 50, and 3 W/mK, respectively [15]. The reduced thermal con-
ductivities are due to the increased point contacts between individual CNTs in 
higher-dimensional networks, leading to increased interfacial thermal resistance 

Fig. 1.2 Chirality table for single-walled carbon nanotubes (SWCNTs)

1 Carbon Nanotubes: Synthesis, Characterization, and Applications
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(also called Kapitza resistance). Similarly, thermal conductivity of nanotubes can be 
degraded by defects in their structures [16].

Mechanical properties of individual CNTs and their interactions have been 
investigated both numerically and experimentally. They have a Young’s modulus of 
up to 1.4  TPa, 20–30% elongation to failure, and a tensile strength higher than 
100 GPa [17]. CNTs interact with each other via van der Waals interactions, and 
their interfacial shear strength is therefore only 0.24–1 MPa [18, 19]. In order to 
achieve a macroscale fiber made of CNTs, a highly packed, well-aligned, and opti-
mally interconnected assembly of ultralong and highly pure CNTs should be 
achieved. Great progress toward this goal has been made; however, there is still 
much room for improvement. For example, fibers consisting of dense, highly 
aligned, and short (microns-long) nanotubes have been manufactured. Such fibers 
have achieved strengths lower than 1–2 GPa, stiffness of ~100 GPa, elongations 
smaller than 1–2%, electrical conductivity of 6.7 × 106 S/m, and thermal conductiv-
ity of 1230 W/mK [20]. Millimeters-long nanotubes have also been assembled into 
fibers. Nanotubes in such fibers are not well packed, nor are they highly aligned in 
the fiber direction; however, they have retained strengths of up to 8 GPa and electri-
cal conductivity of 106 S/m [21]. Impurities, as well as voids, in these structures act 
as defects and degrade the mechanical performance of the resulting fibers. By engi-
neering interfaces in CNT fibers, toughness values of up to 1000 J/g (10 times that 
of spider silk) have also been reported [22]. The combination of high mechanical 
and electrical/thermal properties makes CNT fibers beneficial in many applications. 
As an example, Fig. 1.3 shows two CNT fibers that are strong enough to hold a lamp 
while being electrically conductive enough to supply the electricity.

Fig. 1.3 Carbon nanotube 
(CNT) fibers support a 
lamp and supply the 
electricity. (Photo by Jeff 
Fitlow, courtesy of Matteo 
Pasquali’s research group 
at Rice University)

M. Tehrani and P. Khanbolouki
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1.3  CNT Synthesis

Different synthesis methods have been developed for CNTs. Over the years, these 
methods have been improved and optimized to allow for control of the diameter and 
chirality, length, number of walls, crystallinity, and impurity. Other attempts have 
been focused on scaling up CNT production and continuous CNT growth. CNTs 
can be synthesized by several techniques such as arc discharge [23], laser ablation 
[24], sol-gel synthesis [25], the flame method [26, 27], and chemical vapor deposi-
tion (CVD), with CVD being the least expensive, easiest to scale, and most widely 
used one [28].

1.3.1  Carbon Arc Discharge

Iijima [5] utilized an arc discharge method to synthesize CNTs [23], leading to their 
discovery. A direct current (DC) is run between two vertical electrodes, which are 
placed in a reaction tube, and an arc discharge is generated between the electrodes. 
In this method, the thin anode electrode has small holes filled with a mixture of 
graphite and powder metals. The mixture gets vaporized by the discharge at high 
temperatures (1200 °C) and a flow of inert gas. SWCNTs grown using this method 
had an average diameter of 1 nm and were deposited on a collector downstream 
from the furnace. This method has the advantage of high yields but requires high 
energies and temperatures for sublimation of solid targets.

1.3.2  Laser Ablation of Carbon

Laser ablation is the process of evaporation or sublimation of a material heated by a 
laser beam. For synthesis of CNTs, Smalley et al. [24] used laser ablation of graph-
ite sources where carbon atoms were assembled into the form of nanotubes.

1.3.3  Flame Method

In this method, a hydrocarbon reacts with an oxidizer to produce a precursor mix-
ture that gets deposited on catalyst particles as CNTs. The growth substrate is posi-
tioned inside the flame, and the flame provides the required energy for the process 
[29]. It has been shown that the precursor in a flame synthesis process consists of 
oxygen and hydrogen, which have been speculated to have a positive influence on 
CNT growth in other methods [26, 27]. Fluid dynamics, mass transfer, and heat 
transfer each play a complex role in flame synthesis of CNTs [30].

1 Carbon Nanotubes: Synthesis, Characterization, and Applications
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1.3.4  Chemical Vapor Deposition

Its low cost (due to its relatively low operating temperatures), ability to control 
nanotube diameter and length, and scalability have made CVD the most readily 
available method for CNT synthesis. In CVD, nanotubes are grown from a catalyst 
particle. The catalyst is either on a substrate or formed in a gas flow inside a furnace. 
In particular, the precursor gases decompose, and CNTs are deposited on the cata-
lyst particles. The precursor gases are usually a source of carbon (such as alcohols 
[31], aromatic compounds, or hydrocarbons) mixed with hydrogen and an inert gas. 
The most frequently used carbon sources in this process are ethylene, acetylene, 
methane, carbon monoxide, and ethanol. Through the years, many additives have 
been introduced to promote growth (such as water, hydrogen, and oxygen) or to 
dope the CNTs (such as nitrogen [32], phosphorous [33], and boron-bearing gases 
[34]). Many research groups have come up with variations of CVD apparatus to 
achieve more controllability of CNT growth. Some of these methods are point-arc 
microwave plasma CVD [34, 35], floating catalyst CVD [36], alcohol-assisted CVD 
[37, 38], molecular beam CVD [39], hot filament CVD (cold wall) [40, 41] oxygen-
hydrogen-assisted CVD [42], water-assisted CVD (WACVD; a super growth method) 
[43, 44], fast- heating CVD [45], electric field CVD [46], low- pressure CVD [47], 
fluidized bed CVD [48], plasma-enhanced CVD [49], horizontal tube CVD, and a 
rotary tube furnace [50] (generally used for mass production). Among these, 
WACVD seems to be a cost-effective method for large-volume production of high- 
quality CNTs.

Although many parameters affect CNT growth, the catalyst is known to have a 
significant impact. Thus, preparation of the catalyst becomes of great importance 
for controlling the final CNT structure. For growing vertically aligned CNTs on a 
substrate, catalyst nanoparticles should be prepared prior to CNT growth. A variety 
of methods have been tried for preparing catalysts on substrates, such as the sol-gel 
technique [51], reduction of precursors [51], evaporation of a solution on the sub-
strate, self-assembly (micellar solution or the reverse micelle method) [51], metal 
organic CVD [47], dip coating [52], atomic layer deposition [53], spin coating, 
electroplating of nanoparticles from a salt solution, contact printing of nanoparticle 
solutions, physical vapor sputtering, and, finally, evaporation techniques [54]. 
Reducing the two-step process of preparing the catalyst substrate and synthesis of 
CNTs to a one-step process can significantly improve the cost and rate of produc-
tion. Reduction and breaking of precursor films into nanoparticles appears to be a 
promising approach for this purpose. Catalyst particles can also be generated in the 
growth tube. For example, in floating catalyst CVD, both the catalyst gas mixture 
and precursors are simultaneously introduced into the growth chamber. Catalyst 
nanoparticles are formed in the vapor phase, and nanotubes are grown from the 
catalysts and subsequently collected downstream.

Iron, cobalt, nickel, and their alloys have been extensively used to grow different 
types of nanotubes (i.e., single-, double-, and multiwalled CNTs). CNT synthesis 
with copper [55], gold [56], gadolinium, palladium [57], platinum [58], iridium 
[59], silver [60], rhenium, tungsten [61], yttrium [62], and molybdenum [63] cata-

M. Tehrani and P. Khanbolouki
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lysts has also been demonstrated. Some elements have been used for alloying, such 
as molybdenum, magnesium, germanium, silicon, and even carbon [63, 64]. CNT 
growth using oxides of some of these elements has also been demonstrated [65, 66].

The advantages and disadvantages of different CNT synthesis approaches are 
summarized in Table 1.1.

Grown nanotubes contain different amounts of impurities in the form of catalyst 
particles or amorphous carbon. Postprocessing and purification steps are therefore 
usually performed to increase their purity. Such nanotubes are usually short and 
highly entangled. CNTs as long as centimeters can be grown using CVD while 
keeping their alignment, as shown in Fig. 1.4. To better illustrate nanotubes synthe-
sis, CVD growth of vertically aligned CNTs is discussed here.

The growth substrate is usually a silicon wafer with hundreds of nanometers of 
thermally grown SiO2 on top. If desired, nanotubes can be grown only in predeter-
mined regions of this wafer. To this end, photolithography techniques can be used to 
create a pattern on the wafer. For example, a photoresist polymer is spin coated on 
the wafer and, by means of photolithography, a pattern is generated on it. The pat-
tern acts as a mask, covering certain areas, while allowing access to others where 
the catalyst will be deposited and nanotubes will be grown. A buffer layer (e.g., 
50 nm of Al2O3) and a catalyst film (e.g., 2 nm of Fe) is deposited on the wafer using 
a sputtering technique. The photoresist is then removed in the lift-off process. This 
wafer is ready for CNT growth.

CVD systems consist of a temperature/pressure-controlled furnace with a multi-
gas delivery system. An example of a CVD system is shown in Fig. 1.5, where high- 
purity ethylene, argon, and hydrogen are introduced through mass flow controllers 
(MFCs). The downstream of the furnace may be connected to a double bubbler 
system with oil as a trap.

The furnace is first purged with a mixture of hydrogen and argon. The catalyst 
film is then reduced, and nanoparticles are formed in the presence of hydrogen and 
argon, and at high temperatures. The carbon source, e.g., ethylene, is then intro-
duced into the system. By completion of the growth process, the ethylene feed is 
stopped, and the samples are removed after the furnace has cooled down. The fol-
lowing chart shows a representation of the process. A schematic of the growth pro-
cess is shown in Fig. 1.6.

Table 1.1 Comparison between primary methods of carbon nanotube (CNT) growth

Method Yield Quality Purity
Temperature 
(°C) Comments

Arc 
discharge

Low Low Low ~4000

Laser 
ablation

Low High Medium ~1200

Flame Low High Medium ~1500 Highest growth rates achieved
CVD High Medium Medium 100–1200 Greatest lengths achieved; 

more adaptable to a variety of 
structures

CVD chemical vapor deposition

1 Carbon Nanotubes: Synthesis, Characterization, and Applications
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1.3.5  CNT Growth Mechanisms

CNTs cannot be continuously grown yet. There have been many studies focused on 
underrating CNT growth and their self-termination growth mechanisms. In 2013, 
Zhang et  al. [3] successfully grew a 550  mm–long CNT in 2  h using the CVD 
method. The precursors consisted of CH4, H2, and H2O, and growth was carried out 
at 1100 °C. These results show the promising potential of CVD for achieving higher 
yields in manufacturing CNTs.

Recently, it was shown that with the traditional WACVD process, CNT forests 
can be grown to up to 2.17 cm [67]. Previously it was reported that water can pro-
long the lifetime of the catalyst nanoparticles [68]. Of course, a combination of 
parameters is involved in growing ultralong CNT forests, but, in theory, their syn-
thesis can be continued for as long as the catalyst nanoparticles preserve their activ-
ity. In addition, the catalyst lifetime depends on the synthesis conditions such as the 
temperature, pressure, annealing conditions, water vapor concentration, and carbon 
precursor.

Without understanding the mechanism of the CNT synthesis, it is almost impos-
sible to improve on the current methods to achieve more uniform structures with 
higher yields. Carbon dissolution–diffusion–precipitation [69] (similar to the 
vapor–liquid–solid process) is proposed to be one of the mechanisms involved in 
CNT growth, and some people believe there is more than just one mechanism 
involved in this process. The decomposition of the gaseous mixture is believed to 
happen mainly on the surface of catalytic nanoparticles, and formation of the CNTs 
occurs after diffusion of carbon atoms inside the catalysts. Thus, saturation of the 
nanoparticles is believed to be one of the mechanisms involved in termination of the 
process. Nucleation of the CNT base or cap is believed to happen adjacent to cata-
lyst particles; then comes the growth process, which can be continued for several 

Fig. 1.4 (a) Vertically aligned carbon nanotubes (VACNTs). (b) Patterned VACNTs on a wafer 
substrate

M. Tehrani and P. Khanbolouki
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hours or days, depending on the process; then suddenly the growth stops. By under-
standing the termination process, we would be able to more efficiently control the 
growth of CNTs, and it has been connected to many factors in the process.

A plethora of studies have shown that deactivation of the catalyst occurs gradu-
ally [35, 70–72] or suddenly [73–76]. An abrupt decrease in the growth rate has also 
been shown in various studies [77–81]. Some of these studies discussed their 
hypotheses for growth termination. However, a universal explanation for this 
 phenomenon would be more convenient if such a mechanism exists that can be 
applied to different procedures.

We can account for the following factors individually or in combination as sug-
gested mechanisms of the VACNT growth rate decrease and growth termination:

• The diffusion rate of the carbon feedstock into the CNT forest [42, 82]
• The diffusion rates of the carbon in and on the catalyst nanoparticles [83]
• Catalyst poisoning and formation of carbon structures and oxides on or in cata-

lyst nanoparticles [76, 84, 85]
• Ostwald ripening [86]
• Subsurface diffusion [87]
• CNT wall surface diffusion [88]
• Structure failure and van der Waals interactions of CNTs or covalent interaction 

of dangling bonds [89]

1.4  CNT Characterization

1.4.1  Individual CNTs

Nanotubes are usually characterized using scanning and transmission electron 
microscopy (SEM and TEM), Raman spectroscopy, and ultraviolet-visible near- 
infrared (UV-Vis-NIR) spectroscopy techniques. SEM is used to measure CNT 
length and morphology. TEM is used to determine the diameter and crystallinity of 
nanotubes. Raman spectroscopy is also an effective tool to study the structure of 

Fig. 1.5 Representative chemical vapor deposition (CVD) setup consisting of mass flow control-
lers (MFCs)
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CNTs by offering a quantitative measure of the CNT doping, crystallinity, and 
nanotube diameter. The ratio of the Raman D- to G-band (ID/IG), as shown in 
Fig. 1.7, is indicative of the CNT crystallinity, and the radial breathing mode can be 
correlated to the nanotube diameter and therefore its metallic or semiconducting 
nature [90]. If CNTs are dispersed in water, their UV-Vis-NIR absorption can be 
used to determine the ratio of metallic to semiconducting CNTs [91, 92]. A UV-Vis- 
NIR spectrum of well-dispersed semiconducting nanotubes is shown in Fig. 1.7, 
where the corresponding metallic peaks are missing.

1.4.2  CNT Structures

CNT assemblies possess a hierarchical structure across multiple length scales 
[93, 94]. In the simpler case of aligned CNT structures, as shown in Fig. 1.8, CNT 
structures (macroscale) in general consist of four building blocks at different length 
scales: (1)  individual CNTs (~1–100  nm, nanoscale); (2)  bundles (hundreds of 
nanometers, nanoscale)—several tightly bound side-by-side nanotubes; (3) fibrils >1 
micron, mesoscale)—several loosely bound side-by-side bundles; and (4) different 
cross-linking blocks. The morphology and connectivity of these hierarchical struc-
tures determine the mechanical and physical properties of the CNT architectures. 
Resolving the structure across different length scales is crucial for understanding 
the behavior of CNT structures.

Monitoring of CNT structures in solutions and in dried forms can be realized 
using both real space imaging (e.g., light or electron microscopy) and reciprocal 
space analysis (e.g., light, X-ray, or neutron scattering) [95]. The former is a very 
powerful technique to elucidate structures and morphologies on the nano- and 
micron-length scales. Microscopy techniques are difficult to apply to solutions and 
provide only a two-dimensional slice of CNT morphology in the dry form that may 
be different from it bulk. Also, microscopy does not contain sufficient statistical 
information of the three-dimensional structure of the material, as it probes only very 
small regions. Scattering, on the other hand, gives ensemble structural information 

Fig. 1.6 Catalyst layer annealing, nucleation, and growth
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averaged over relatively large volumes of the bulk sample, carrying detailed quanti-
tative information [96–98]. Microscopy and scattering are, however, complimentary 
and can resolve the structure of CNT structures at the nano- and microscales 
(1 nm < probe size < hundreds of microns).

In particular, the size and alignment of CNTs, bundles, and pores inside a fibril 
will be extracted.

Nanotube alignment and packing most significantly affect the mechanical, elec-
trical, and thermal performance of CNT structures. CNT alignment can be quanti-
fied using X-ray diffraction and Raman spectroscopy [20, 99, 100]. Polarized 
Raman spectroscopy also provides a useful probe to qualitatively measure CNT 
alignment by comparing the G-band intensity for parallely versus perpendicularly 
aligned sample directions [20, 101–103].

1.5  CNT Processing

Most CNT synthesis methods produce nanotubes with major amounts of impurities. 
These impurities are metal catalyst particles and amorphous carbon. Postacid treat-
ment is usually used to increase their purity at the cost of damaged nanotubes and 
an increased price. VACNTs grown on a substrate can achieve high purity levels 

Fig. 1.7 Left: Intensity vs. Raman shift (cm−1) spectrum for single-walled carbon nanotubes 
(SWCNTs) showing the radial breathing mode (RBM) and D and G peaks. Right: Ultraviolet- 
visible near-infrared (UV-Vis-NIR) spectrum for highly enriched semiconducting carbon nano-
tubes (s-CNTs). The metallic carbon nanotube (m-CNT) peaks are almost nonexistent, while the 
s-CNT peaks are sharp

1 Carbon Nanotubes: Synthesis, Characterization, and Applications
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without the need for postpurification. These nanotubes can be detached from the 
substrate, leaving the catalyst particles behind. Another approach to increase both 
the purity and crystallinity of CNTs is to subject them to elevated temperatures (up 
to 2500 °C) in an inert environment or a vacuum [104]. A crystalline defect has been 
shown to heal during such treatment, known as “graphitization.”

CNTs can be grown from 100  nm to a few centimeters, depending on their 
intended application. The nanoscale size of nanotubes and their high aspect ratio 
have made their processing overwhelmingly difficult. As such, nanotubes form an 
entangled network of agglomerates and bundles that are not easy to disentangle. 
CNTs are therefore grown to less than tens of microns because of the difficulty in 
processing longer nanotubes. Such short nanotubes can be subsequently dispersed, 
using methods discussed here, and used in different applications. One of the most 
effective means to prevent agglomeration and control alignment in CNTs is to 
anchor one end of them (during synthesis) to a substrate, thus creating a stable struc-
ture [105, 106]. As mentioned earlier, this approach is used in CVD synthesis of 
VACNTs. CNTs can also be grown to a few millimeters in a floating catalyst CVD 
reactor and assembled into a fiber sheet form downstream. This approach is also 
effective in controlling agglomeration of nanotubes and results in aligned CNT 
fibers or sheets. Although the last two approaches are effective in preventing 
agglomeration, for many applications, short and entangled CNTs are processed into 
usable forms.

Chemical dispersion of CNTs, using surface modifiers (surfactants), can aid in 
CNT dispersion in different mediums. In general, CNTs have a smooth and nonre-
active surface that does not interact with most solvents. Surfactants are usually 
amphiphilic molecules that wrap around or attach to nanotubes, thus enabling their 
dispersion. An amphiphilic has a hydrophilic polar head group and a hydrophobic 
tail group. The type of surfactant (cationic, anionic, nonionic, zwitterionic) is based 
on the head group charge [107]. For example, Triton X-100 is a nonionic surfactant 
used for dispersion of CNTs in aqueous solutions and can potentially enhance the 
bonding of CNTs to epoxy matrices [108, 109]. The surfactant forms a weak bond 
to the outer surface of the CNTs and allows for dispersion of the CNTs and separa-
tion of bundles into individual CNTs. Figure 1.9 depicts how a surfactant attaches 
to the outer walls of the CNTs.

Fig. 1.8 Hierarchical structures in (a) aligned carbon nanotube (CNT) sheets; (b) fibrils (loosely 
bound side-by-side assemblies of bundles); (c) bundles (tightly bound side-by-side assemblies of 
CNTs); and (d) individual CNTs

M. Tehrani and P. Khanbolouki
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The right amount of surfactant is needed to get the best dispersion. This amount 
is called the critical micelle concentration (CMC). Micelles are the self- organization 
of the surfactant molecules into small bundles. The CMC is the point at which the 
surfactant can adequately coat the tubes to disperse the bundles into individuals 
without forming micelles in the solution. An amount less than the CMC will not 
result in good dispersion and will leave bundles in the solution. Concentrations 
higher than the CMC will cause more bundles to form in the dispersion [108].

Another surface modification of CNTs is known as functionalization. There are 
different types of functionalization, including defect, covalent, and noncovalent 
functionalization [110]. The carboxyl functionalized nanotube is one of the most 
famous ones. Processes used to remove impurities in synthesized CNTs in return 
leave defects on the tubes in the form of -COOH groups (Fig. 1.10), [110]. Carboxyl 
groups alleviate van der Waals attractions between CNTs that cause bundling and 
can form covalent bonds to polymer matrices. The carboxyl groups that form on the 
CNTs are most commonly on the open ends, more so than on the outer walls, 
because of the higher concentration of defects on the ends. These defects make for 
better reactivity with the oxidation process [111].

Physical dispersion of CNTs is another effective approach for CNT dispersion. 
Physical approaches (Fig. 1.11) include a variety of methods: bath sonication, tip 
sonication, shear mixing, ball milling, and many others [110, 112, 113]. Physical 
and chemical approaches are usually used together to achieve better dispersion. 
Shear mixing draws the solution into a mixing head and pushes the solution through 
a narrow space between the rotor and the stator walls, shearing CNTs into uniform 
particles. The shear mixing does not damage the CNTs; it only breaks their agglom-
erates down into a uniform size. Once these agglomerates are broken down, the 
shear mixing process cannot aid in further dispersion and individualization of nano-
tubes. The product of shear mixing therefore contains bundles of CNTs, which can 
include hundreds to thousands of entangled CNTs. Usually, ultrasonication is 
needed to complete the dispersion of CNTs in a solution.

Tip sonication—compared with bath sonication—allows for a more focused and 
direct form of sonication. The tip sonicator has three major parts: the generator, 
converter, and probe/horn. Tip sonication is a direct form of sonication, where the 
probe is inserted directly into the solution. The probe vibrates while the tip expands 
and contracts during operation. The amount of expansion and contraction of the tip 
is the amplitude of the sonication [114]. This process creates the cavitation that is 
indicative of the sonication process. The cavitation bubbles create a high-energy 
stress wave upon bursting, which breaks down and unzips nanotubes from their 
bundles. When dispersed, nanotubes can rebundle if not stabilized. Bath sonication 
is more of an indirect form of sonication, where the sample is placed inside a water 
bath. The outer walls of the water bath cover a generator, which creates the  sonication 
energy. Bath sonication is less powerful than tip sonication but is a technique that 
can process larger sample sizes and is less likely to damage nanotubes. Bath sonica-
tion does not produce the best CNT dispersion possible. The sonication energy is 
strong enough to break up some CNT bundles but not strong enough to fully indi-
vidualize them (unless over extended periods of time and in very dilute CNT solu-

1 Carbon Nanotubes: Synthesis, Characterization, and Applications
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tions). However, it can prevent separated nanotubes from reagglomerating, while 
causing minimal damage to the CNTs. Both types of sonication cause damage to 
CNTs. Studies have shown that longer sonication times are beneficial to dispersion 
[115]. Intense sonication, however, causes too much damage and leaves CNTs 
unusable. A characterization step is required to check the dispersion of CNTs in the 
solution and ensure they are not damaged.

1.5.1  Nanocomposites

One of the first commercial applications of CNTs was electrically conductive poly-
mer nanocomposites. The addition of small amounts of CNTs to polymers (usually 
less than 2–3  wt%) causes the electrical conductivity of the polymer to rise to 
1–10  S/m (an increase of up to 15  orders of magnitude). When dispersed in 

Fig. 1.10 -COOH groups 
on the tube ends of a 
carbon nanotube (CNT)

Fig. 1.9 Surfactant on the walls of a carbon nanotube (CNT): side view (left) and cross-sectional 
view (right)

M. Tehrani and P. Khanbolouki
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polymers, nanotubes form an electrically conductive pathway. The better their dis-
persion is, the higher the resulting conductivity of the nanocomposites is. For exam-
ple, a low percolation threshold (the minimum amount of nanotubes required to 
increase conductivity by at least five orders of magnitude) of 0.005 wt% for well-
dispersed SWCNTs has been reported [116]. Similarly, CNTs can dramatically 
enhance the mechanical properties of polymers and even metals. This enhancement 
usually depends on the degree of dispersion, the CNT–matrix bonding that provides 
effective stress transfer, the intrabundle sliding within nanotubes ropes, and the pro-
cesses used for CNT dispersion.

Because of the many different ways in which researchers are dispersing CNTs 
into polymer matrices, there have been varying—and sometimes conflicting—stud-
ies of the mechanical properties of the resulting nanocomposites. Various solvents, 
surfactants, physical dispersion methods, and processes for CNT dispersion have 
been investigated. Moreover, depending on their synthesis method, CNTs can have 
different properties. Therefore, the best dispersion processes are the ones that 
achieve the best properties of the nanocomposites. In general, adding more than a 
2–3% loading of nanotubes to polymers makes their processing difficult, because of 
the significantly increased viscosity of the CNT–polymer mixture, and results in 
agglomeration of CNTs. Certain polymers can be used as both the matrix and the 
surfactant in polymer dispersion. When dispersed in a medium, CNTs can be fil-
tered to form a CNT paper or “buckypaper.” The properties of these papers are, 
however, orders of magnitude lower than those of individual nanotubes. For exam-
ple, careful purification and assembly of the nanotubes into buckypapers, and even 
their impregnation with polymers to improve stress transfer, have resulted in Young’s 
modulus values (<10 GPa) better than those of polymers (1–3 GPa) and far from 
those of metals or individual nanotubes [117, 118]. The improvement in the 
mechanical properties of polymers by addition of CNTs, although considered sig-
nificant over the base properties of the neat polymer, is far from the theoretical 
predictions. Despite the great promise of CNTs for many engineering applications, 
there is still no scalable method to effectively disperse nanotubes and transfer 

Fig. 1.11 Left to right: Shear mixer (http://www.silverson.com/us/products/batch-mixers/), tip 
(horn) sonicator (photo of Q500 Sonicator from Qsonica), and bath sonicator

1 Carbon Nanotubes: Synthesis, Characterization, and Applications
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stresses to them via a polymer matrix. These two limitations have greatly limited the 
widespread use of CNTs, especially for structural applications.

CNTs possess very high aspect ratios (e.g., 100–1000), making it very challeng-
ing to homogenously disperse them in a medium and subsequently prevent their 
agglomeration. As shown in Fig. 1.12, CNTs form highly entangled networks in 
both solutions (Fig. 1.12a) and polymeric matrices (Fig. 1.12b), which include CNT 
bundles rather than individual tubes. For example, neutron scattering analysis of 
nanocomposites, as shown in Fig. 1.12a, reveals that each bundle (as seen in the 
figure) consists of 50–100 CNTs.

Disentanglement of CNTs is possible only for very dilute solutions and requires 
both complicated chemical and physical dispersion approaches that damage CNT 
structures and break them into shorter tubes [90, 119–121]. As depicted in Fig. 1.13, 
proper chemical and physical dispersion techniques can result in relatively well- 
dispersed CNTs in a polymer matrix. There is, however, minimal control over how 
they assemble during drying or incorporation into a polymer matrix. The promise of 
CNTs would be delivered if they were individually dispersed in a matrix and point-
ing in desired directions [120]. The current techniques to disperse CNTs are, how-
ever, effective only at very low CNT loadings and, most importantly, do not provide 
a means to control their assembly [122–124].

1.5.2  CNT Fibers

Much effort has been devoted to producing aligned CNT structures (fiber, yarns, or 
sheets) in order to translate individual nanotube properties to the macroscale [21]. 
When normalized by weight, bulk CNT fibers surpass the properties of the best 
materials known to humans. For example, CNT fibers have exhibited specific 
(divided by weight) strength and stiffness values that are 10- and 4-fold higher than 
those of the strongest (T1000G) and stiffest (M60J) commercial carbon fibers [125], 
respectively. They have also achieved specific electrical and thermal conductivities 
in excess of the properties of copper [126, 127]. Three distinct and scalable routes 
to the manufacturing of such macroscale structures have been developed. The first 
approach—wet processing [126]—involves extrusion of a premade CNT solution 
through a spinneret into a coagulation bath, forming dense CNT fibers. CNTs are 
dispersed either in a strong acid (sulfuric and chlorosulfonic acids are the only 
nanotube solvents) or in other aqueous polymer solutions. Only fibers produced 
from acid solutions have better alignment and packing. The other two are solid-state 
methods—involving dry processing [128]—to spin CNT yarns or sheets directly 
from a floating catalyst CVD reactor or from a pregrown VACNT array. Both dry 
and wet processing techniques have obtained exemplary properties.

Wet-processed fibers (spun from a solution) consist of dense, highly aligned, and 
mostly catalyst-free nanotubes. Such fibers have achieved strengths lower than 
1–2 GPa, stiffness of ~100 GPa, and elongations smaller than 1–2%. These fibers 
nevertheless have the highest reported electrical and thermal conductivities among 
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CNT fibers. Only microns-long nanotubes can be processed using the existing wet 
processing methods [20]. Dry processing from floating catalyst CVD achieves fibers 
and sheets with suboptimal packing (voids) and alignment, and leaves catalyst and 
amorphous carbon impurities in the final structure [21, 129]. Despite these short-
comings, this method remains one of the most promising approaches to produce 
ultrastrong (up to 8 GPa) and ultraconductive (106 S/m) CNT structures. This is due 
to the long, high-quality, and small-diameter nanotubes synthesized using this 
method. The last method—dry processing from VACNTs—requires a specific type 
of VACNT: the so-called spinnable VACNT. Twisting, tension, or liquid shrinking 
during drawing have been shown to improve the alignment of CNTs in these fibers. 
They have achieved strength of up to 2 GPa and elongation of up to 7%. Although 
these properties make CNT fibers superior to structural fibers or materials, they are 
still an order of magnitude lower than individual CNT properties. There are many 
factors that contribute to this: (1) poor CNT packing and alignment; (2) CNT end 
junctions, which act as defects in aligned CNT structures; and (3) defects (catalyst 
and voids) that limit their electrical/thermal and mechanical performance [126, 
130]. Continuous growth of CNTs or manufacturing techniques that allow for pack-
ing and alignment of impurity-free and ultralong nanotubes are needed to fully 
unlock CNT potential. Engineering of CNT–CNT and CNT–polymer interfaces for 
improved stress transfer and electron/phonon transport are equally important to 
achieve superior CNT structures.

Fig. 1.12 (a) Carbon nanotube (CNT) bundles exhibiting considerable entanglement and agglom-
eration. (b) Scanning electron microscope (SEM) image of a nanocomposite containing 10 wt% 
CNTs. Bundles of CNTs form a random 3-dimensional (3D) network of CNTs in a polymer. Each 
bundle in this image consists of approximately 30–100 CNTs
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1.6  Semiconducting CNTs

Synthesis methods generally produce inhomogeneous mixtures that contain CNTs 
with various chiralities and diameters. The ratio is usually only one-third metallic 
CNTs (m-CNTs) to two-thirds semiconducting CNTs (s-CNTs). While m-CNTs are 
required for their high electrical conductivity, s-CNT are highly desired for superior 
field-effect transistors [11]. Methods for achieving s-CNTs have been widely devel-
oped and studied [131–138]. This is due to the high demand for smaller transistors 
and the high potential of CNTs to outperform current transistors [11]. Three 
approaches for producing s-CNTs exist: (1) direct synthesis [132, 133, 139, 140]; 
(2) postsynthesis separation of nanotubes [141, 142]; and (3) postsynthesis elimina-
tion of metallic nanotubes [133, 143–145]. Postsynthesis separation of CNTs can 
enrich their semiconducting or metallic portions by over 99%; however, current 
methods are intensely labor intensive, are expensive, are only applicable to microns- 
long nanotubes, and produce very small quantities of CNTs [142]. The most com-
mon methods for CNT separation involve gel-chromatography separation, 
density-based separation, hydrophobicity-based separation, and aqueous two-phase 
separation (ATP) [141, 142]. At similar diameters, metallic CNTs are more reactive 
than semiconducting ones because of their smaller ionization potential [133]. For 
example, gas-phase plasma hydrocarbonation selectively etches metallic CNTs, 
leaving semiconducting CNTs relatively unchanged [146]. Certain gases, catalysts, 
and substrates have also been shown to favor the growth of semiconducting CNTs 
[131–138]. Catalysts with active oxygen groups, for example, etch metallic CNTs 
and result in CVD-grown CNTs with high semiconducting purity.

Fig. 1.13 Fractography micrographs of (a) a nanocomposite exhibiting carbon nanotube (CNT) 
agglomerates and (b) good CNT dispersion
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1.7  CNT Applications

Owing to their high surface area and physical properties, CNTs have found applica-
tions in many areas including—but not limited to—hydrogen storage and electro-
chemical devices, filed emission, thermoelectrics [147], tissue engineering and drug 
delivery [148, 149], and nanoelectronics and sensing/actuating [6, 7]. CNTs have 
also been used in polymer composites for lightning strike protection, deicing, struc-
tural health monitoring, and electromagnetic shielding [6]. Besides polymer com-
posites, the addition of small amounts of CNTs to metals has been shown to improve 
both the tensile strength and the modulus [150]. Low densities, solution process-
ability, chemical stability, high flexibility in bulk forms, and sensitivity to surround-
ing mediums for sensing applications are just a few of these characteristics that can 
lead to advances in electronics, composite materials, biotechnology, and energy 
storage. On the other hand, various challenges remain to be resolved for achieving 
this goal in CNT-based device fabrication. Selective growth of CNTs of a specified 
size, chirality, and placement is still a subject of ongoing research. Addressing the 
challenges of growth, sorting, and assembly of high-purity CNT structures is of 
great importance. Higher growth yields and control over packing densities are cru-
cial for some applications. Provided that all of these goals are achieved, research 
also needs to be performed on the sustainability, environmental aspects, and life 
cycle of these newly developed devices. Moreover, alongside the experimental 
research and manufacturing developments, advances are needed in characterization 
techniques, with better understanding of the underlying theoretical relations of 
these new structures to device performance. The potential applications and chal-
lenges of CNTs are briefly summarized in Tables 1.1 and 1.2.
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Chapter 2
Synthesis, Characterization, and Applications 
of Carbon Nanotubes Functionalized 
with Magnetic Nanoparticles

Rakesh P. Sahu, Ahmed M. Abdalla, Abdel Rahman Abdel Fattah, 
Suvojit Ghosh, and Ishwar K. Puri

2.1  Introduction

Nanomaterials have a characteristic dimension of the order of 100 nm. They occur 
as compact materials or in dispersions. The deviation of their properties from those 
of bulk materials with the same chemical constituents has led to research across a 
wide range of applications. Various 1D nanomaterials include nanospheres, 
nanorods, nanobelts, nanorings, nanotubes, nanohelics, nanowires, and nanosheets, 
each with unique properties. Here, we discuss carbon nanotubes and magnetic 
nanoparticles and explain how their properties can be advantageously merged to 
overcome certain barriers and meet specific objectives.
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2.1.1  Carbon Nanotubes

Carbon nanotubes are anisotropic 1-D structures. After multi-walled carbon nano-
tubes were discovered using high-resolution transmission electron microscopy [1, 
2], research revealed the structure and properties of other types of CNTs, such as 
single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) along 
with carbonaceous nanomaterials like graphene. SWNTs consist of a single 1D gra-
phene sheet rolled into a tube with a diameter of 1–2 nm and a relatively high aspect 
ratio [2]. MWNTs consist of multiple graphene sheets rolled into cylinders of outer 
diameter 10–80 nm [3]. The structure of CNTs is revealed through the chiral vector 
c (expressed by two indices n and m) and the chiral angle θ. Figure 2.1 illustrates the 
three broad CNT types that depend on the rolling orientation of the chiral vector, 
namely (a) armchair (n = m), (b) zigzag (m = 0), and (c) chiral (n ≥ 0: m ≥ 0) nano-
tubes, where 0° < θ < 30°, i.e., θ is the chirality angle. The unique electrical proper-
ties of a CNT depend on its chirality and tube diameter. CNTs can be either metallic 
(armchair nanotubes) when |n − m| = 3q where q is an integer, or semiconducting 
for all other cases. The extraordinary electrical properties of SWNTs have pointed 
the way for fabricating novel electronics [4]. The shape and structure of a CNT 
results in a high axial thermal conductivity of 1750–5800 W m−1 K−1 at room tem-
perature [5]. The electrical resistivity of CNTs has been measured in the range 10−4–
10−3 Ω cm along with an exceedingly high current carrying capacity up to 109 A 
cm−2 [5–7]. CNTs have high thermal stability (up to 2800 °C in vacuum and about 
750 °C in air), high surface area (200–900 m2 g−1), low density (1–2 g cm−3), and 
high Young’s modulus (1–1.8 TPa) [3, 5, 6]. These properties make CNTs useful for 
sensors [8, 9], high strength materials [10], nanoelectronics [11, 12], fuel storage 
[13], energy storage [14], and biomedicine [15–18].

a1

a2

zigzag

armchair

chiral

0,0

( )1 2c = na + ma  = n,m

n,0

n,m

θ

Fig. 2.1 Schematic of the graphene sheet and the different structures of a nanotube that can be 
rolled based on the chiral vector c characterized by the indices n and m
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Commercially available CNTs are typically produced by chemical vapor 
 deposition [19–21], and are entangled and randomly oriented due to short-range van 
der Waals forces between adjacent CNTs. This entanglement diminishes the effec-
tive properties of CNTs [22–25]. Being nonpolar, the carbon atoms of CNTs have a 
high affinity toward nonpolar materials, such as organic solvents, oils, and hydro-
carbons. CNT’s hydrophobicity limits their dispersion stability with polar solvents 
and polymers [26, 27]. Pure CNTs are diamagnetic but those synthesized with metal 
nanoparticles as catalysts can exhibit ferromagnetic behavior due to the presence of 
the magnetic catalyst [28], which is easily lost during acid treatment.

The diamagnetic susceptibility of CNTs limits remote control, or action from a 
distance, using a magnetic field. The chemical inertness of CNTs poses a serious 
difficulty for synthesizing composites with materials that are important for device 
applications. Hence, CNT functionalization with MNPs is a strategy to chaperone 
the nanotubes, manipulate, and organize them on demand [29–33].

2.1.2  Magnetic Nanoparticles

The magnetic properties of MNPs are used in many applications, e.g., microwave 
absorption [34], electrochemical sensing [35], ferrofluids [36], energy storage [37], 
magnetic resonance imaging, and data storage [38]. Since these magnetic properties 
are dependent on MNP size and shape, as shown in Fig.  2.2, different synthesis 
methods have been explored, including microemulsion [39], thermal decomposition 
[40], co-precipitation [41], sol-gel [42], wet chemical [43], self-assembly [44], 
spray pyrolysis [45], solvothermal method [46], template directed [47], and 

Diameter

C
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Single domain
Multiple domain
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D1 D2

Fig. 2.2 Schematic representation of the change in coercivity with the size of a magnetic 
nanoparticle
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deposition [48]. Although the physical properties of MNPs are improved with a 
large surface area to volume ratio, their agglomeration is an important concern. The 
crystallinity and the degree of defects or impurities of MNPs depend on the method 
of synthesis, which influences their magnetic behavior [49].

The five basic types of magnetism are ferromagnetism, antiferromagnetism, fer-
rimagnetism, paramagnetism, and diamagnetism. Ferrimagnetism occurs for com-
pound materials, such as ferrites whereas the other types arise in pure elements. The 
spinning of electrons creates magnetic moments. Ferromagnetic materials have 
aligned magnetic moments that offer spontaneous magnetization in materials such 
as Fe, Ni, and Co. In antiferromagnetic materials, the magnetic moments are 
arranged in an antiparallel fashion so that the net magnetic moment is zero, a behav-
ior that is observed at low temperatures. Ferrimagnets retain their magnetization 
even in the absence of a field but have antiparallel magnetic moments similar to 
antiferromagnets that are of unequal magnitude. Materials with uncoupled magnetic 
moments display paramagnetism with a small positive magnetic susceptibility. 
Materials that are repelled by a magnetic field and have a slightly negative suscep-
tibility display diamagnetism.

The Weiss, or magnetic, domain is a volume of magnetic material in which all of 
the magnetic moments are aligned in the same direction. As the size of a ferromag-
netic nanoparticle decreases, its magnetization becomes more uniform until a 
dimension D2 when the domain walls within the particle disappear, resulting in a 
single domain. Further size reduction below D1 results in thermal fluctuations over-
coming the magnetic moment in the single domain so that the particle becomes 
superparamagnetic. Conversely, with an increase in particle size, the number of 
domain boundaries within a particle increases and thus its coercivity also decreases.

The repeatable synthesis of MNPs with a particular morphology and size is of 
consequence for monodisperse colloids. The magnetic response of MNPs to an 
external magnetic field can be utilized to tailor CNTs into aligned structures that 
harness their unique properties. The following section discusses recent advances of 
CNT functionalization with MNPs using different routes and the applications of the 
magnetized CNTs.

2.2  Functionalization of Carbon Nanotubes

The physical and chemical properties of CNTs can be enhanced in comparison to 
those of pristine CNTs by introducing external molecular groups or radicals on their 
surfaces [50]. These added functional groups improve the compatibility of CNTs 
with a dispersing medium and with solvents, polymer and organic molecules [51], 
improving the processability and solubility of the constituent CNTs. The introduc-
tion of a molecular group can either be through chemical (e.g., covalent interaction) 
or physical (e.g., van der Walls interaction, adsorption) means. Different CNT func-
tionalization methods are classified based on the chemistry involved and illustrated 
in Fig. 2.3.

R.P. Sahu et al.
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2.2.1  Covalent Functionalization

Several routes used to covalently functionalize CNTs include hydrogenation [52], 
electrochemical functionalization [53], thiolation [54], oxidative purification [55], 
halogenation [56], esterification [57], amidation [58], and cycloaddition [59]. 
Covalent functionalization allows functional groups to form covalent linkages on 
the carbon scaffold of nanotubes. CNTs inevitably contain defect sites during their 
production, which make the nanotubes susceptible to attack by reactive molecular 
groups. Acid treatment transforms defect sites into active molecular groups, such as 
COOH, C-OH, and C=O [51, 60] that are covalently attached to the CNT wall. 
Metal or metal oxide nanoparticles, charged polymer chains, and charged molecular 
groups can be covalently attached to these active sites, producing a strong bond in 
comparison to noncovalent functionalization, but at the expense of significant sur-
face destruction.

Fig. 2.3 Schematic of different methods of functionalizing SWNTs: (a) Single-walled carbon 
nanotube, (b) endohedral functionalization with, for example, C60, (c) covalent sidewall function-
alization, (d) defect-group functionalization, (e) noncovalent exohedral functionalization with sur-
factants, (f) noncovalent exohedral functionalization with polymers, and (g) metal plating of 
carbon nanotubes

2 Synthesis, Characterization, and Applications of Carbon Nanotubes Functionalized…



42

2.2.2  Noncovalent Functionalization

The drawback of covalent functionalization is the damage done to the CNT struc-
ture. Noncovalent functionalization involves weak dipole–dipole interactions, such 
as van der Waals forces between the CNT surface and an external molecule. 
Different noncovalently functionalized molecules include those of polymers, met-
als, and biological materials. Polymer chains can be wrapped around a CNT wall 
[61] and biomaterials, such as DNA and proteins, can be conjugated to it [62–66]. 
Both covalent and noncovalent functionalization are exohedral, where functional-
ization occurs on the outside of the CNT wall [67].

The organization of aligned long CNTs improves the bulk properties of a com-
posite material, e.g., by growing vertical and horizontal CNTs on catalyst coated 
substrates [68], production of CNT rolls through CVD [69], and spinning CNTs 
into yarns and sheets [70], but these methods are complicated and expensive. In the 
following section, different methods of decorating CNTs with MNPs, a more 
straightforward and inexpensive approach, are discussed along with the benefits 
arising from magnetized CNTs.

2.3  Covalent Functionalization of CNTs with MNPs

The remarkable thermal, mechanical, and electrical properties of CNTs have made 
them a promising material for a wide range of applications, including metal matrix 
composites, nanosensors, and reinforced polymer composites. These properties can 
be leveraged to form composite materials by embedding them into a polymer matrix 
[22, 71], particularly by aligning them in a particular direction [24]. CNTs are dia-
magnetic with a diamagnetic susceptibility χ of 10−5 emu g−1 [72, 73], making them 
resistant to manipulation with a magnetic field. However, magnetizing CNTs with 
superparamagnetic nanoparticles enables such a response, e.g., by intercalating 
them within CNTs [74–77], and synthesizing MNPs on the walls of CNTs [78–80]. 
The synthesis of ferritic nanoparticles is a convenient method of magnetizing CNTs 
since it requires inexpensive reagents and uses common laboratory apparatus. 
Ferritic nanoparticles can be synthesized on CNTs using several routes, such as 
surface imprinting of magnetite (Fe3O4) crystals [81], hydrothermal decomposition 
of iron compounds [82, 83], and in situ co-precipitation of ferrite crystals [84–86]. 
Surface imprinting requires a high-temperature autoclave whereas hydrothermal 
decomposition requires both a high temperature (~250 °C) and an inert environ-
ment. Co-precipitation is thus the most convenient method among these for decorat-
ing CNTs with ferritic nanoparticles.

R.P. Sahu et al.
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2.3.1  Co-precipitation of MNPs: Methodology

The co-precipitation of MNPs on CNTs is carried through two steps. CNTs are 
initially treated with strong oxidizing acids such as HNO3 and H2SO4. The NO3

−  and 
HSO4

−  radicals attack the C–C bonds at defect sites on the CNT surfaces that are 
formed during their production, forming functional groups, e.g., C=O, C-OH, and 
COOH. These active groups act as nucleation sites for the magnetite nanocrystals 
that are co-precipitated from a solution containing Fe2+ and Fe3+ ions [78, 87, 88].

A detailed and comparative study of decorating CNTs with magnetite nanopar-
ticles using HNO3, H2SO4, and a 1:1 mixture of HNO3 and H2SO4 has been per-
formed to determine the best practice to functionalize CNTs with minimum weight 
loss and higher magnetization density [89]. The effects of the intermediate stage of 
filtration and washing of the acid-treated CNTs are also investigated to understand 
its influence on the yield of the magnetized CNTs. Acid treatment of CNTs increases 
the oxygen content of the nanotubes. XPS analysis of different CNT samples with 
identical masses that have been treated with different acids is shown in Fig. 2.4. The 
increase in the oxygen content when CNTs are treated with a mixture of both acids 
is significantly higher than when individual acids are used for treatment, indicating 
severe structural damage to the CNTs, which consequently reduces their lengths. At 
the intermediate stage of washing, these shortened CNTs are washed away and lost 
to the filtrate. Attempts to skip the stage of washing during magnetizing CNTs 
resulted in acid residues in the sample which reacts with the iron ions in the  solution. 

Fig. 2.4 Comparison of acid-treatment routes. XPS analysis shows that treatment with HNO3 or 
H2SO4 leads to a moderate increase in oxygen content (4–5%) relative to pure CNTs (~2%). In 
contrast, treatment with a 1:1 mixture of the two acids produces a much higher (15.23%) oxygen 
content. Reprinted from [89] with permission from Elsevier
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As a consequence, undesired materials are found to be co-precipitated such as 
Akaganeite (Fe3+ O(OH, Cl), PDF No. 00-013-0157), magnetic iron oxide hematite 
(α-Fe2O3, PDF No. 00-032-0469), ferrous sulfate (FeSO4, PDF No. 00-042-0229) 
which compromised the magnetization ratio (MNP:CNT) of CNT. Table 2.1 lists 
the yield of CNTs, ferrite MNPs, magnetized CNTs, and the final magnetization 
weight ratio (γ) at different stages of decorating CNTs with MNPs that includes the 
acid treatment, washing, and drying. The filtration and drying step was found to be 
necessary after the acid treatment to avoid the co-precipitation of unnecessary non-
magnetic products.

The best decoration of CNTs with MNPs is observed when the CNTs are func-
tionalized using either HNO3 or H2SO4 and including an intermediate stage of filtra-
tion and drying. The functionalized mCNTs with the ferrite nanoparticles formed in 
the size range of 8.5–11.3 nm are superparamagnetic and their magnetic saturation 
is measured to be in the range of 34–38 emu g−1 [89–91]. The covalently functional-
ized CNTs can be then directed and aligned using external magnetic field.

2.3.2  Co-precipitation of MNPs: Conductive 
and Magnetoresponsive Colloidal Ink

Nanofluids are colloidal dispersions of nanoparticles in a liquid [92]. Substantial 
effort has been made to increase the conductivity of liquids using conductive fillers, 
e.g., nanoparticles, ionic liquids, and nanotubes. Typically, conductive nanofluids 
are suspensions of gold, copper, and silver nanoparticles but these are expensive and 
have low oxidation resistance and only fair dispersion [93]. CNTs have superior 
electrical conductivity and it has been shown that upon addition of just 0.5% (w/w) 
of CNTs to an aqueous medium, the electrical conductivity increases by an order of 
magnitude [94]. Use of CNTs and graphene to prepare conductive colloidal suspen-
sions has been reported but their agglomeration due to inter-CNT attraction poses a 

Table. 2.1 Yields of the various material phases, as a fraction of their stoichiometrically designed 
values

Material phase

HNO3 H2SO4

(HNO3:H2SO4) 
1:1 (v/v) HNO3 H2SO4

(HNO3:H2SO4) 
1:1 (v/v)

With the washing and drying stage
Without the washing and drying 
stage

CNTs 90.2% 91.6% 54% 100% 78% 82%
Fe3O4 100% 94% 85.2% 76.8% 31% 60%
mCNTs (total 
yield)

95.3% 92.8% 69.6% 88.4% 54.5% 71%

Fe3O4:CNTs 
(w/w)

1.11 1.03 1.58 0.77 0.39 0.73

The magnetization ratio γ is the ratio of Fe3O4:CNTs (w/w). The intended value of this ratio is unity 
for all samples. Reprinted from [89] with permission from Elsevier
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serious problem [95–98]. Temporary dispersions of CNTs are achieved by ultra-
sonication [99] but CNTs need to be functionalized with surfactant molecules in 
order to achieve long-term stability [100]. Ferrofluids are a type of nanofluids con-
sisting of MNPs that respond to a magnetic field [29, 30, 32]. MNPs coated with 
surfactant produce interparticle repulsion thus increasing their colloidal stability 
[97, 101]. Ferrofluids that can be manipulated using a magnetic field typically have 
poor electrical conductivity whereas CNT dispersions provide much higher electri-
cal conductivity. A method to combine the properties of both CNTs and MNPs 
allows the magnetic manipulation of conductive colloids that is useful for printing 
electronic circuits and sensors.

Magnetoresponsive conductive colloids are synthesized by co-precipitating 
MNPs on CNTs and dispersing them in aqueous phase [102]. The material content 
of the MNPs and the magnetization weight ratio are varied to study their influence 
on both of the electrical and magnetic properties of the dispersion. The MNPs are 
placed on CNTs by co-precipitation [89]. Three different MNPs that have co- 
precipitated on the CNTs for the magnetization weight ratio of unity are magnetite 
(S1), Mn-Cu-Zn ferrite (S2), and Cu-Zn Ferrite (S3). These MNPs are attached to 
the outside surface of CNTs via covalent bonds. The nanoparticles co-precipitated 
on CNTs, of 10–15 nm size, successfully decorate CNTs as is evident from Fig. 2.5. 
The XRD analysis shows that all the samples are crystalline with spinel structure. 
As the magnetization ratio increases, the decoration density of MNPs on CNTs 
increases with the nanoparticles occupying the available activation sites until a cer-
tain value when all the sites are occupied. The excess metal ions are then co- 
precipitated over the deposited layer of MNPs perpendicular to the axis of CNTs.

Magnetite has a high Curie temperature whereas Mn-Cu-Zn ferrite and Cu-Zn fer-
rite have lower Curie temperatures [103–105]. The magnetic property of the colloidal 
dispersion containing magnetic CNTs (mCNTs) can thus be tailored by changing the 
material of the co-precipitated MNPs. The hysteresis curve for the three different 
mCNTs shows a complete absence of coercive field (Fig. 2.6a), indicating that the 
nanoparticles are superparamagnetic at the room temperature. The magnetic satura-
tions Ms of the three specimens are measured to be 30.7, 10.5, and 16.6 emu g−1 for 
S1, S2, and S3 respectively. The sensitivities of each specimen to varying temperature 
are different for each sample, as shown in Fig. 2.6b. This demonstrates how the mag-
netic properties of functionalized CNTs can be tuned using different nanoparticles.

Tetramethylammonium hydroxide (TMAH: 25%) is used to suspend the function-
alized CNTs in the aqueous phase. TMAH, on one hand, increases the electrical con-
ductivity of the solution and, on the other hand, it acts as an ionic surfactant to stabilize 
the functionalized CNTs in a colloidal suspension. A schematic of the proposed rear-
rangement of the ions under the application of an electric field is shown in Fig. 2.6c. 
This polarization shortens the ion transport path and thus reduces the electrical resis-
tance of the suspension. The addition of 4 wt% of the mCNTs results in increased 
electrical conductivity of the colloidal suspension (cf. Fig. 2.6d), and the increase is 
different for different nanoparticles. This methodology of preparing magnetorespon-
sive and electrically conducting colloidal dispersions is useful for applications where 
a magnetic response must be coupled with the material electrical conductivity.
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2.4  Noncovalent Functionalization of CNTs with MNPs

2.4.1  Metal Plating of CNT

Functionalization of CNTs with MNPs allows their manipulation and alignment 
using a magnetic field. The electrical conductivity of the aligned CNTs still depends 
on the interfacial contacts between adjacent nanotubes. Researchers have 

Fig. 2.5 TEM images of samples S1–S3 (from top to bottom) confirm that all samples corre-
sponding to γ = 1 are successfully decorated with highly crystalline (but different) MNPs, synthe-
sized within the narrow size distribution of 10–15 nm. Reprinted from [102] with permission from 
Elsevier
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demonstrated deposition of metals or metal-based compounds over the nanotubes to 
decrease the contact resistance and also improve their resistance to oxidation [106]. 
Electroless plating of CNTs with metals like Ni, Cu, or Co can be performed under 
ambient conditions to produce uniform metal coatings. Electroless plating is a non-
destructive and rapid method to deposit metal, which is initiated by activation- 
sensitization process that introduces catalytic nuclei on the surfaces of CNTs. A 
reduction reaction for the metal ions on this new catalytic surface forms a coating 
layer composed of metal. The metal-coated CNTs thus possess superior hardness, 
wear resistance, high electrical conductivity, and magnetic properties. A continuous 
and uniform layer of nickel can be electroplated on the surface of CNTs in a water 
bath without sensitizing or activating the surface with catalysts [107].

We have provided a controlled process for plating nickel over CNTs using elec-
troless plating for different weight ratios of Ni:CNT (γe) [108], the schematic of 
which is shown in Fig. 2.7. Sensitization of CNTs using tin ions followed by activa-
tion with palladium ions reduces the nickel ions to nickel, which is deposited on the 
CNT outer surfaces. Nickel then acts as auto-catalyst that continues to reduce nickel 
ions until their complete depletion from the solution. This allows us to control the 
thickness of the deposited nickel layer over the MWNTs and thus their material 
properties.

Fig. 2.6 (a) Magnetic hysteresis curves of the dry powders show no evidence of remanence, i.e., 
the mCNTs are superparamagnetic. (b) For all samples, Ms decreases with increasing temperature. 
Magnetite (S1) has the strongest magnetization and weakest sensitivity to temperature, Mn–Cu–
Zn ferrite (S2) has the weakest magnetization while Cu–Zn ferrite (S3) has the strongest tempera-
ture sensitivity. (c) CNTs placed in an ionic medium between two electrodes charged by an electric 
field Ea polarizes and become oriented along the direction of the field. (d) Dissolving 10% (w/w) 
of tetramethyl ammonium hydroxide (TMAH) in DI water increases the electrical conductivity to 
90.5 mS cm−1. Dispersing 4% (w/w) of the different mCNTs in the TMAH solution enhances the 
electrical conductivity by 65–90%. Reprinted from [102] with permission from Elsevier
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The morphology and thickness of the deposited layer of nickel and its mechanical 
and magnetic properties depends on the Ni:CNT weight ratio in the reacting mixture. 
The magnetic property of the hybrid nanomaterial increases with nickel weight frac-
tion. As γe increases from 1 to 7, the magnetic saturation (Ms) and remnant magneti-
zation (Mr) increase from 4.1 and 0.51 emu g−1 to 9.5 and 1.01 emu g−1 respectively. 
The average elastic modulus E of the hybrid CNTs (γe = 7) measured using AFM in 
the radial direction shows a threefold increase over that for pristine CNTs. Figure 2.8 
shows the effect of nickel deposition on the elastic modulus of the CNTs, providing 
a solution to control it. The increase in elastic modulus is  attributed to the thickness 
of the nickel deposit over the CNT surfaces, which increases with γe.

2.4.2  Physical Attachment of MNPs on CNT

CNTs can be decorated by ferrites nanoparticles, which improve the optical, mag-
netic, and electrochemical properties of pristine CNTs. The vapor deposition of Ni 
atoms allows decoration of nickel nanoparticles on the CNT surfaces. The process 

Fig. 2.7 CNTs magnetized with Ni by electroless deposition. (a) MWNTs were catalyzed through 
two chemical treatment steps using acid solutions of SnCl2 for sensitization and PdCl2 for activa-
tion. Electroless deposition of Ni on the resulting activated MWNTs used a plating solution con-
taining nickel salt and reducing agent, where nickel ions accept electrons from the reducing agent 
to form metallic nickel through metal reduction

Fig. 2.8 AFM mechanical sketch up of samples S0, SN1, and SN2. Pure MWNTs (S0) had an 
average elastic modulus E∼13 GPa while Ni-MWNT samples for γe = 1 and 7 had values of E∼18 
(46% increase) and 59 GPa (370% increase), respectively. Increasing Ni:MWNT weight ratio γe 
enhances the measured modulus
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can be continued longer to coat the CNT with a layer of Ni [109]. The CNT surfaces 
can be sensitized and catalyzed to further reduce the metal ions to form nanoparti-
cles. Both metal plating and physical attachment of MNPs onto the surface of CNTs 
require several steps that are time-consuming and laborious. Each method of func-
tionalization has its advantages but CNT manipulation with a magnetic field is the 
objective, a simple one-step method is more desirable in comparison to a longer 
chemical route.

2.4.3  Entanglement of NiNP in CNT Network

Covalent functionalization of MNPs on CNTs often requires expensive chemicals 
and an experienced skillset. Entanglement of nickel nanoparticles (NiNP) in the 
matrix of CNTs using probe sonication is another novel method to create a magnetic 
ink [110]. Sonication of a dispersion of NiNPs and CNTs in kerosene (Fig. 2.9a) 
allows nickel to become entangled within the CNT network as shown in the TEM 
image (Fig. 2.9b). The high surface energy of NiNPs and pi-interactions are respon-
sible for the clustering of NiNPs and their conjugation with CNTs. The conjugated 
NiNP-CNT material responds as a bulk to a magnetic field, which is evident from 
Fig. 2.9a. The conjugated material shows moderate magnetization saturation value 
of 14.61 emu g−1 (Fig. 2.9c). The nanoparticles are individually superparamagnetic 
but with a coercive field the material becomes ferromagnetic due to the entangle-
ment of the nanoparticles responsible for inter-NiNP magnetostatic interactions for 
particles in close proximity. Prolonged sonication in most cases does not result in 
more homogeneously distributed NiNPs and thus is not necessary. Therefore, ade-
quate magnetization usually occurs within a few minutes. For this reason, mechani-
cal magnetization allows for rapid entanglement of NiNPs and offers one of the 
quickest methods to magnetize CNTs while forgoing harsh chemical pre-treatments 
familiar to other magnetization routes.

Fig. 2.9 Nickel nanoparticle entangled carbon nanotubes. (a) NiNPs and CNTs are dispersed in 
kerosene by probe sonication. The CNTs entangle the NiNPs, enabling the latter to act as magnetic 
chaperones without detachment or separation in a strong gradient magnetic field. (b) TEM images 
show clusters of NiNPs enmeshed in CNTs. (c) SQUID magnetometry shows that the NiNP-CNT, 
containing 33% (w/w) NiNPs, have a saturation magnetization Ms = 14.61 emu g−1, which is com-
mensurate with the mass fraction of nickel in the sample. Reprinted (adapted) with permission 
from [110]. Copyright (2016) American Chemical Society
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2.4.4  Printing Sensors with Magnetized CNT Ink

We printed the synthesized magnetic ink into U shapes over polydimethylsiloxane 
(PDMS) surface using an iron template and a permanent magnet. The iron template 
placed on the permanent magnet concentrates the magnetic lines of force, producing 
a high gradient magnetic field. This field concentrates the NiNP-CNTs and aligns 
them along the magnetic lines of force (cf. Fig. 2.10a). On drying of the solvent in 
the magnetic ink, the NiNP-CNTs are embedded in the PDMS matrix (cf. Fig. 2.10b). 
The embedded U-shaped NiNP-CNT network on PDMS forms a continuous electri-
cally conductive path, which we tested as an alternative to flexible sensors. It is an 
alternative to rigid conducting wires and appropriate for wearable electronics [111]. 
An easy, inexpensive, and facile fabrication method for flexible sensors using NiNP- 
CNT networks is used to fabricate strain gauge [112] and detect chemical and bio-
logical species [113, 114].

A simple voltage divider circuit is used to determine the response of the U-shaped 
NiNP-CNT network subjected to mechanical deformation, including both bending 
and elongation. The resistance of the NiNP-CNT circuit increases as the space 
between the interconnects increases and the percolation of the CNT network 
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Fig. 2.10 Magnetic printing with NiNP-CNT: (a) A U-shaped soft magnetic wire is used as a 
template. The wire produces localized gradients in the magnetic field, which settles the dispersed 
NiNP-CNT on the coverslip surface immediately adjacent to it. The kerosene is then evaporated by 
heating, yielding a U-shaped dense network of CNTs. The NiNP-CNT U network is placed inside 
a Petri dish, covered with liquid PDMS, and heated to cure the PDMS. The PDMS infiltrates the 
printed structure, and after curing, it lends a polymer matrix to the NiNP-CNT. (b) SEM image of 
a cross-section of such a structure reveals a ∼2.5 μm thick NiNP-CNT -PDMS composite network 
embedded in pure PDMS. (c) When the PDMS is peeled off, it forms a flexible and stretchable 
membrane with an embedded NiNP-CNT structure. Reprinted (adapted) with permission from 
[110]. Copyright (2016) American Chemical Society
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decreases. This increases the voltage, as shown in Fig. 2.11a, b. As the PDMS is 
relaxed, the distance between the interconnects reduces and the voltage gradually 
returns to its initial value. Continuous and cyclical mechanical deformation of the 
network leaves a permanent resistance change, as evident from Fig. 2.11b where the 
steady voltage on relaxation increases over the cycle. The printed NiNP-CNT net-
work also responds to the presence of oil since the PDMS, being oleophilic, absorbs 
oil, affecting the percolation of the CNT networks and thus changing the resistance 
of the circuit (cf. Fig. 2.11c). This method of printing sensors with magnetic ink is 
made possible by combining the unique properties of MNPs and CNTs using non-
covalent functionalization. The technique can be readily scaled up and integrated 
with existing nozzle-based printing of flexible circuitry and sensors that have com-
plex geometries.

2.5  Endohedral Functionalization of CNT with MNPs

A CNT is a nano-sized container that has a protective carbon shell to encapsulate 
nanomaterials within. Thus a CNT is a smart nanoscale carrier that can be filled 
with tailored materials for target applications such as memory devices, optical 
transducers, wearable electronics, and medicine. MNPs can be intercalated inside 
CNTs during the synthesis process using the chemical vapor deposition of metal-
locenes [76, 115]. External molecules are encapsulated by a capillary effect inside 

Fig. 2.11 The voltage drop V across the NiNP-CNT network rises when the block is subjected to 
(a) bending by displacement of the free end or (b) elongation of l = 100 μm, 150 μm, 200 μm, and 
250 μm and (c) when the sensor is held at the air–water interface in a beaker and ∼1 mL of oleic 
acid is dropped on the water, V rises when sensor contacts the oil. Reprinted (adapted) with permis-
sion from [110]. Copyright (2016) American Chemical Society
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the CNTs [61]. MNPs can also be added to a CNT dispersion and encapsulated 
within the nanotubes. The solvent carrying MNPs wets the inside volume of CNTs 
and, after drying, the MNPs remain encapsulated as shown in Fig. 2.12.

2.6  Future Outlook

The covalent and noncovalent functionalization of CNTs with MNPs has produced a 
new class of nanoscale that exploits the unique properties of both CNTs and MNPs. 
MNP-functionalized CNTs can be used to prepare polymer composites and bulk mate-
rials with enhanced mechanical, electrical, and thermal properties. The properties can 
be tuned, depending on the direction of alignment of the CNT network. The materials 
can also potentially be used in energy storage applications such as supercapacitors 
[116] and lithium ion batteries. Functionalized CNTs have high sensitivity toward the 
respective external stimuli which could be used to develop custom cost-effective sens-
ing platforms. Environmental sustainability demands the use of less hazardous func-
tionalizing agents which could replace the acids that are currently used to functionalize 
CNTs. Crack patterns of the deposited magnetized CNTs need further attention which 
might reduce the critical percolation threshold for the sensing activity.
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Chapter 3
2D Materials: Applications 
for Electrochemical Energy Storage Devices

Shan Hu, Suprem R. Das, and Hosein Monshat

3.1  Introduction

3.1.1  Brief Introduction of Electrochemical Energy Storage

As sustainable energy devices and systems are being emphasized and projected for 
addressing one of the most important grand challenges of the twenty-first century, 
research efforts on the two energy storage devices such as supercapacitor and battery, 
in conjunction with tremendous material discovery and innovation, have become 
ever intense and multidisciplinary. The motivation is largely to unify both the energy 
storage devices and to build higher energy efficient device and system for sustain-
able, clean energy applications. Fundamentally, while in a (electrolytic) capacitor the 
energy is stored electrostatically, a battery stores it via reversible electrochemical 
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reactions. Consequently, while a battery charges and discharges slowly (low power), 
it can store more energy per unit mass or unit volume of active materials (high energy 
density). On the other hand, a conventional (electrolytic) capacitor has high power 
but low energy density. Figure 3.1 shows the comparison between a capacitor and 
battery from these two metrics perspective (called a “Ragone Plot”) [1]. So ideally, 
an energy storage device with high power density (powers per volume, or powers per 
mass) as well as high energy density (energy per volume, or energies per mass) 
would unify the above two storage devices. Such an attempt along with multifunc-
tional materials and state-of-the-art device architecture would transform the new 
generation of devices toward high-energy and high-power applications.

Besides batteries and electrolytic capacitors, an emerging energy storage mecha-
nism, i.e., supercapacitors have demonstrated the potential for high-power and high- 
energy storage. Compared with batteries, supercapacitors can provide higher levels 
of electrical power and offer longer operating lifetimes. Furthermore,  supercapacitors 
experience no memory effect and are safer compared with batteries. They can 
deliver much more energy density than electrolytic capacitors. Electrostatic double- 
layer and pseudocapacitance are two main distinguished mechanisms for charge 
storage in supercapacitors. Pseudocapacitors that could undergo highly reversible 
surface redox reactions are able to store more charges than regular double-layer 
capacitors. High surface redox reactions rate brings both high energy density of 
lithium ion batteries as well as high power density of capacitors for supercapacitors. 
2D nanomaterials have recently been studied much due to their unique characteris-
tics and advantages as supercapacitor electrode materials.

3.1.2  Fundamentals of Energy Storage in Supercapacitors

Like a battery, supercapacitor consists of three essential components such as elec-
trodes, electrolyte, and separator. Based on unique charge storage mechanisms, the 
supercapacitors (SCs) can be divided into three categories: electrochemical double 
layer capacitors (EDLCs), pseudocapacitors (PCs), and hybrid capacitors (HCs). 
While an EDLC uses a non-Faradic mechanism (no chemical reaction, it involves 
purely physical processes such as surface physisorption), a PC uses a Faradic 
process (transfer of charge along the interface between electrolyte and electrode, 
associated with an oxidation–reduction reaction called a reversible redox reaction) 
and a HC uses both the mechanisms during the device operation.

3.1.2.1  Electric Double Layer Capacitors

Electric double layer capacitors (EDLC) rely on surface physisorption for charge 
storage. Figure 3.2 is the schematic of an EDLC during charging: anions and cations 
in the electrolyte accumulate at the electrode/electrolyte interfaces forming two 
electric double layers. Each electric double layer is equivalent to a capacitor, with 
capacitance given in Eq. (3.1)
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where ε is the dielectric constant of the electrolyte, A is the surface area of the elec-
trode/electrolyte interface, and d is the thickness of the electric double layer. The 
thickness depends on the concentration of the electrolyte and the size of electrolyte 
ions. With concentrated electrolyte, the thickness value is usually in the range of 
0.2–1 nm. Total capacitance of a supercapacitor cell (CCell) consisting of a positive 
and a negative electrode is given by Eq. (3.2)
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where CPE and CNE are the capacitances of the positive electrode and negative 
electrode respectively.
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To achieve high capacitance, porous materials with a high specific surface area 
(m2/g) are usually used as electrode materials for EDLC. Carbon-based materials, 
including activated carbon, carbon nanotubes, graphene, etc., are most studied 
EDLC electrode materials, due to their high conductivity, chemical robustness, and 
high specific surface area. It should be noted that only surface area that is accessible 
to ions in the electrolyte, i.e., the effective surface area, constitutes the electrode/
electrolyte interface and contribute to increasing the capacitance. It has been discov-
ered that EDLCs with mesoporous electrode materials outperform those made of 
microporous and macroporous materials in terms of specific capacitance, due to the 
existence of mesopores that are highly accessible.

3.1.2.2  Pseudocapacitors

In pseudocapacitors, surface physisorption and redox reaction work simultaneously 
for charge storage.

Figure 3.3 shows the charge storage at the anode and cathode of a pseudocapaci-
tor during charging. Similar to an EDLC, electric double layers build up at the 
electrode/electrolyte interface. What is unique to pseudocapacitor is that charges 
can cross the electrode/electrolyte interface to participate in redox reaction at the 
electrodes. Due to the coexistence of two storage mechanisms, the total capacitance 
of a pseudocapacitor includes faradic capacitance (capacitance due to redox reac-
tion) and the electric double layer capacitance. The former is usually more than an 
order of magnitude higher than the later. Electrode materials for pseudocapacitors 
include conducting polymers and transition metal oxides, for example, RuO2, 
MnO2, Co3O4, etc. The redox reaction storage mechanism of pseudocapacitors is 
similar to that of batteries. The difference is that in pseudocapacitor redox reactions 

Fig. 3.2 Schematic of a charged electric double layer capacitor consisting of two porous elec-
trodes, a separator, and electrolyte: d is the thickness of the electric double layer
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take place at the surface or near the surface of the electrode, whereas in batteries 
reactions in bulk electrode dominate. Since surface/near-surface reaction is faster 
than bulk reaction, pseudocapacitors have higher charging/discharging speed than 
batteries.

3.1.2.3  Asymmetric Hybrid Capacitors

EDLC and pseudocapacitor each have their own pros and cons. Pseudocapacitors 
have higher energy density, whereas EDLCs have higher power rate (i.e., charging/
discharging rate) and better cyclic stability. To combine the advantages of EDLCs 
and pseudocapacitors, asymmetrical hybrid capacitors have been proposed. In an 
asymmetrical cell, one electrode relies on EDL for charge storage and the other elec-
trode is made of electrode materials that undergo redox reaction with the electrolyte 
or electrolyte that undergoes redox reaction at the surface of the electrode (Fig. 3.4).

3.2  2D Materials for Electrochemical Energy Storage

Graphene and molybdenum disulfide (MoS2), two classic 2D materials with unprec-
edented thickness control down to single atomic layer and/or unit cell layer, have 
shown a long list of rich physical, electrical, mechanical, optical, thermal, and 
chemical properties. These, in turn, have shown the tremendous possibilities of their 
usage in a wide range of applications. Although both of them have 2D molecular 
structures, fundamentally they have the following differences: (1) graphene consists 
of a one atom thin, honeycomb lattice of sp2 bonded carbon atoms (it is an organic 

Fig. 3.3 Schematic of the anode and cathode of a pseudocapacitor during charging, showing the 
electric double layer at the electrode/electrolyte interface and the charge transport across this inter-
face (A: anode material. C: cathode material. R: product of reduction reaction. O: product of oxida-
tion reaction. e−: electron)
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membrane) whereas MoS2 is often expressed as inorganic-analog of graphene that 
consists of single atomic sheet of molybdenum sandwiched between two atomic 
layers of sulfur (henceforth referred as single unit-cell layer); (2) the associated 
electronic band structure—whereas graphene has linear band structure with excep-
tionally high electron Fermi velocity (VF ~ c/300, with c being speed of light in 
vacuum) and mobility, MoS2 is more of a semiconductor with parabolic band struc-
ture and with a finite bandgap (1.2  eV bulk indirect bandgap that transitions to 
1.8 eV of direct bandgap in monolayer limit). Lack of electronic bandgap in gra-
phene, although provides low effective mass and high carrier mobility, makes it 
unsuccessful for demonstrating efficient electronic switch whereas MoS2 becomes 
a candidate of choice for the future electronic switch. Figure 3.5 shows the sche-
matic diagram of single layer/single unit-cell layer of each of these two 2D crystals 
with associated band structures (band structure of MoS2 is shown in 2H crystal sym-
metry, 2H-MoS2 is semiconducting). However, the common feature between these 
two materials is their ability to be isolated down to single atomic layers starting 
from bulk form due to weakly held van der Waal’s interlayer coupling. Recently, 
1T-MoS2 with excellent electrical conductivity has been discovered as a separate 
phase material with the potential of supercapacitor applications [2]. 

Although it is not fully clear at this point for a possible pathway toward commer-
cialization and the field is still in its infancy, the energy storage performance of gra-
phene, MoS2 and other 2D materials in transition metal dichalcogenide (TMD) 
family provide a rich testbed for a potential replacement of existing technologies due 
to the following reasons: (1) they possess layered van der Waal stacked structures 
with promising electronic and mechanical properties which allow electroactive spe-
cies (ions) such as lithium, sodium, potassium, iodine, etc., to intercalate and de-
intercalate from the structure; (2) tremendous flexibilities in combining them with 

Fig. 3.4 Schematic of the anode and cathode of a hybrid supercapacitor during charging, showing 
the electric double layer forming at the cathode and the surface redox reaction at the anode (R: 
product of reduction reaction. O: product of oxidation reaction. e−: electron)
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other nanomaterials and nanostructures for exploring composite/hybrid structures 
with multifunctional properties; (3) exploiting bottom-up approaches to achieve 
various nano-architecture for enhanced functionalities; (4) easy functionalization of 
various foreign adsorbates to combined manipulation of surface enhanced properties and 
performance reliability; and (5) high theoretical specific surface area of 2000 m2/g.

3.2.1  2D Materials for Supercapacitor Applications

Graphene has been used by numerous researchers as electrode materials for super-
capacitor, mainly due to its excellent electrical conductivity, high surface area, and 
ability to undergo surface functionalization. Applications can be found in electric 
double layer capacitors, pseudocapacitors, and hybrid capacitors.

As discussed in Eq. (3.1), the capacitance of an EDLC depends on the specific 
surface area (SSA) of electrode materials and the effective SSA is the surface acces-
sible to ions in the electrolyte. With graphene’s theoretical SSA of 2000 m2/g, the 
ideal attainable capacitance should be 500 F/g. However, the practically obtained 
values are only half of this ideal value at the best. The reason is that part of the sur-
face area of graphene is from micropores (with pore diameter < 2 nm), which is 
often hard or non-accessible for ions. To increase the effective SSA, researchers at 

Fig. 3.5 The schematic diagram of the monolayers of (a) graphene and (b) molybdenum disulfide. 
In a typical graphite (HOPG) and MoS2 crystal, these atomic layers are stacked vertically by van 
der Waal interaction, making these suitable for atomic layer isolation; (c) The “linear” band struc-
ture of single layer graphene (SLG) with sharp cone at the center called the “Dirac point”. It is 
because of this special band structure of graphene, it acquires numerous special characteristics in 
electrical, optical, mechanical, chemical, and thermal properties; (d) The parabolic, direct band 
structure of 2H-MoS2 single layer with electronic band gap along K-Γ crystal direction
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University of California Los Angeles [3] have developed a method to create meso-
pores in graphene by etching the graphene oxide (a precursor for graphene) with 
hydrogen peroxide to create mesopores and later reduced the “holey” graphene 
oxide into holey graphene framework (HGF) (Fig. 3.6). The HGF was later com-
pressed into HGF film and directly used as supercapacitor electrodes. The specific 
capacitance 278 F/g achieved from HGF-based supercapacitor was among the best 
reported so far for graphene based EDLC, demonstrating the importance of meso-
porosity for EDL-based storage. A fully packaged device stack can deliver gravi-
metric and volumetric energy densities of 35 Wh kg−1 and 49 Wh L−1, respectively, 
approaching those of lead acid batteries.

Fig. 3.6 Holey graphene framework (HGF) for high-performance supercapacitors. (a) Schematic 
of fabrication process of the HGF and HGF films. (b) a photograph of the as-fabricated HGF. (c) 
SEM image of the porous structure of the HGFs. Scale bar, 1 μm. (d, e) TEM image of the HGF 
(d) and non-holey graphene (e), showing many more mesopores in the HGF than non-holey coun-
terpart. Scale bar, 10 nm. f. A photograph showing HGFs before and after mechanical compression 
with the flexibility of the compressed HGF film shown in the inset. (g) Cross-sectional SEM image 
of the compressed HGF film. Scale bar, 1 μm
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Besides activating the surface of graphene to increase effective SSA, researchers 
also developed graphene composite with other carbon nanomaterials such as acti-
vated carbon and carbon nanotube. Zheng et al. [4] synthesized graphene/activated 
carbon nanosheet composite with high SSA (2106 m2 g−1) for making supercapaci-
tor electrode, exhibiting high specific capacitance up to 210 F g−1 in aqueous elec-
trolyte. Its energy density can reach 22.3 Wh kg−1, which is much higher than that 
of conventional supercapacitors based on activated carbon (5–6 Wh kg−1).

Another strategy to enhance the specific capacitance of graphene-based superca-
pacitor besides pursuing large surface area is adding redox active species to the 
graphene electrode to introduce pseudocapacitance for charge storage. 
Pseudocapacitance can be enabled by surface functional groups of graphene. 
Common redox reaction induced by surface functional groups are summarized in 
Table 3.1. It should be noted that these functional groups only have redox activity 
under the appropriate electrolyte pH value. Among them, carboxylic groups and 
hydroxyl groups undergo redox reaction as shown in Table 3.1 in basic electrolyte 
(pH  >  7). Pyrone-like groups, Quinone-like groups, and Chromene-like groups 
show redox activity in acidic electrolyte (pH < 7). Lactone group is a special case 
which undergoes redox reaction in both acidic and basic electrolytes.

Besides surface functionalization, pseudocapacitance can be enabled in 
graphene- based supercapacitor by loading the graphene with redox-active nanoma-
terials, including transition metal oxide, hydroxides, (oxy)hydroxide, and  conductive 
polymer. In the resulting nanocomposite, graphene acts as conductive framework 
that provides direct electron transport path to/from the redox-active additives.

Wang et al. directly synthesized Ni(OH)2 nanoplates onto graphene via a hydro-
thermal method and the resulting powder-form nanocomposite was made into elec-
trode using polytetrafluoroethylene as binder. The nanocomposite electrode was 
tested in a three-electrode system with the Ni(OH)2/graphene as working electrode, 
Ag/AgCl as reference electrode, and platinum wire as counter electrode. High spe-
cific capacitance of ~1335 F g−1 was obtained, which is much higher than the specific 
capacitance of a graphene-based EDLC [10]. However, it should be noted that the 
1335 F g−1 represents the electrode’s specific capacitance, rather than the  cell- level 
capacitance. For practical application, what matters is the cell-level capacitance, i.e., 
the CCell. As given in Eq. (3.2), cell-level capacitance depends on the capacitance of 
both positive electrode and negative electrode. To achieve high CCell, the graphene/
Ni(OH)2 needs a matching positive or negative electrode with equally high or even 
higher specific capacitance. Similar graphene nanocomposites for pseudocapacitor 
have been reported for V2O5, RuO2, MnO2, Co2O3/Co3Co4, etc. [11–15]. In all cases, 
electrode-level-specific capacitances are consistently higher than that of EDLC.

Compared with graphene, MoS2 is used less often as active materials for superca-
pacitors mainly due to the fact that MoS2 is a semiconducting material with poor 
electrical conductivity. Nevertheless, when integrated with conductive materials, 
MoS2 still provides several advantages as active materials for supercapacitor elec-
trodes: (1) its 2D structure provides the large surface areas; (2) the molybdenum 
centers of MoS2 allow for strong coordination with nitrogen atoms in conducting 
polymers such as polyaniline (PANI) or polypyrrole (PPy), which benefits control-
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lable growth of conducting polymers onto the 2D nanosheet surfaces; (3) the Mo 
element in MoS2 nanosheets possesses a range of oxidation states from +2 to +6, and 
could undergo reversible redox reactions, which give rise to additional pseudoca-
pacitance. Therefore, a combination of MoS2 with conductive polymers is a rational 
choice for developing supercapacitor electrodes with exceptional energy density and 
power density. Tang et al. [16] started with natural MoS2 crystals which consist of 
stacks of single-layer MoS2 nanosheets and used subsequent lithium intercalation 
and ultrasonication to exfoliate with natural MoS2 into single layer MoS2 nanosheets 
to fully expose the surface area of MoS2. Then the exfoliated MoS2 nanosheets were 
added into pyrrole monomers and cooled down to 5 °C while stirring for 30 min, 
followed by polymerization for 12 h. The product was collected by filtration and 
mixed with carbon black and PTFE binders to produce supercapacitor electrodes. A 
symmetric supercapacitor with exactly the same MoS2/PPy electrodes was built and 
a specific capacitance of 695 F g−1 was achieved at the cell level (capacitance normal-
ized to the total mass of active materials at two electrodes). With a cell voltage win-
dow of 0.9 V, energy density of 83.3 Wh kg−1 was achieved at a power density of 
3332 W kg−1. Interestingly, this work also prepared graphene/PPy nanocomposite 
and demonstrated that the electrochemical performance of MoS2/PPy electrode is 
better than that of graphene/PPy, possibly due to the fact that the graphene was not 
exfoliated and hence stacking of graphene could lead to the loss of effective specific 
surface area in the graphene/PPy nanocomposite.

3.3  Challenges and Outlook

There have been considerable efforts in the last decade on 2D materials (graphene 
and beyond graphene) research. It includes fundamental research understanding 
the nanoscale physics of these materials to translating them for enormous proto-
type laboratory scale applications. When it comes to the research reports, technol-
ogy disclosures, as well as start-up companies, 2D graphene, MoS2, and other 
members of TMD are top recognized for their energy storage and energy conver-
sion applications. In spite of this incredibly large efforts and progresses on energy 
storage applications for graphene, MoS2, and other members of TMD family, 
reports on their pathway toward large-scale industrial prototyping and commer-
cialization are sparse and a benchmarking with existing technology is rare. In our 
belief, in addition to the roadmap of 2D materials, an independent roadmap and a 
benchmarking for 2D material energy storage device are of prime importance. Due 
to sp2 bonding in planar hexagonal honeycomb carbon, exceptionally good elec-
tronic conductivity (for transport) and exceptionally good thermal conductivity 
(for thermal managements), graphene is likely going to continue as the major can-
didate for innovation and graphene- based supercapacitors have more likelihood to 
reach commercialization stage in near future.
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3.3.1  Challenges

Ongoing research on 2D materials continues to demonstrate improved energy 
storage performances. However, most of these 2D material-based systems still only 
exist in research labs. Several issues need to be resolved by researchers in this field 
to promote the wider adoption of 2D materials into practical applications. The first 
issue is the cost of material. The price of high-purity graphene and MoS2 is still far 
from cost-effective, mainly due to the lack of effective approach to synthesize them 
in scalable quantities. The second issue is the lacking of understanding on the envi-
ronmental and health effect of 2D materials and the absence of regulation. Recently, 
much research effort has been devoted to close this knowledge gap and the regula-
tion regarding the use of 2D materials is expected to be established based on the 
research findings. The third issue is the stability of 2D materials, particularly for 
MoS2 and other members of TMD. Although they have the capability of hosting 
other ions to intercalate, it is at the expense of their stability in the crystal structure. 
Repeated charging and discharging of the devices employing solely these materials 
leads to structural instability and poor performance (e.g., poor power density and 
cycling in supercapacitors, poor energy density, and cycling in battery). Effective 
approaches to stabilize the 2D materials are an ongoing research effort.
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Chapter 4
Graphene Analogous Elemental van der Waals 
Structures        

Oswaldo Sanchez, Joung Min Kim, and Ganesh Balasubramanian

4.1  Elemental Structure

Although the atomic arrangements of Group IV elements follow the hexagonal hon-
eycomb structure of graphene, only the carbon-based material forms a perfect pla-
nar layer. The other elements construct buckled hexagonal structures, as seen in 
Fig. 4.1 [1]. In Fig. 4.1a it is possible to see the buckled structure arrangement, 
where some of the atoms in a unit cell demonstrate a planar separation. There are 
different possible lattice arrangements that appear from this buckling behavior. 
These structures are illustrated in Fig. 4.1b, where the planar separation, or buckling 
distance, is designated by δ. From the image, the “Flat” structure demonstrates the 
planar structure found with graphene. For the boat and washboard structures, it has 
been found that they are unstable and will converge to the flat structure, while the 
chair structure demonstrates a greater stability than even that of the flat structure [2]. 
Table 4.1 below contains the lattice and buckling parameters for select Group IV 
elemental sheets.
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Fig. 4.1 (a) Buckled hexagonal crystal structure of 2D elemental sheets (X = Si, Ge, and Sn). 
Darker shaded atoms are at a slightly higher horizontal plane than the lighter shaded atoms. (b) 
Various hexagonal buckled structures of X.  The buckling parameter  δ is the vertical distance 
between the two planes of X atoms

Table 4.1 Structural and elemental features

C Si Ge Sn

Lattice constant a (nm) 0.2468 0.3868 0.4060 0.4673
Bond length d (nm) 0.1425 0.2233 0.2344 0.2698
Buckling parameter δ (nm) 0 0.045 0.069 0.085
Effective electron mass M* (m0) 0 0.001 0.007 0.029
Fermi velocity of carriers VF (106 ms–1) 1.01 0.65 0.62 0.55
Energy gap Eg (meV) 0.02 1.9 33 101

Electronic quantities for Group IV elements are derived from hybrid exchange-correlation func-
tional HSE06 calculations with the inclusion of spin orbit coupling [Table [1]] [Data [2]]

4.2  Silicene

The discovery of graphene and the tremendous advancements in this field of research 
have fueled the effort of searching for similar two-dimensional materials composed of 
Group IV elements, especially with silicon, via theoretical and experimental approaches.
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4.2.1  Synthesis

One of the most fundamental but also greatest challenges comes with finding the 
proper way of synthesizing these 2D materials. Silicene does not seem to exist in 
nature, nor is there a solid phase as there is with graphene [3]. The synthesis of 
graphene has been possible via exfoliation of bulk graphite due to weak interlayer 
interactions [4]. Unfortunately, this is not the case for silicon, and for this reason, 
exfoliation methods utilized in synthesizing single-layer graphite could not gener-
ate pure 2D silicon layers [3, 4]. To get 2D silicon layers, researchers must consider 
the growth or synthesis of silicon with more sophisticated methods [3]. Among the 
methods, the most widely spread one is to deposit silicon on metal surfaces which 
do not interact strongly with the Si atoms or form compounds [3]. Many have suc-
cessfully synthesized Silicene on Ag (111) via epitaxial growth [3, 5, 6]. This is 
particularly effective due to the interactions, or lack thereof, between Ag and Si. 
Davila [7] describes that Ag and Si “form atomically abrupt surfaces without inter-
mixing”. Figure 4.2 demonstrates a scanning tunneling microscopic (STM) images 
of a buckled silicene layer on Ag (111) as synthesized by Vogt et al. [3]. There has 
also been success in synthesizing buckled silicene on Ir (111) [4].

Fig. 4.2 Silicene on Ag (111) surface: Filled state STM images of (a) Ag (100) surface and (b) 
silicene on Ag. (c) Schematic overlay describing the observed STM images in (a) and (b) [taken 
from [1] which reproduced it from [3]]

4 Graphene Analogous Elemental van der Waals Structures
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4.2.2  Structural Properties

The planar honeycomb structure in silicene has an imaginary frequency in the 
Brillouin zone from the phonon mode analysis. During the structure optimization 
on a 2 × 2 supercell, there is a tendency to make a cluster in the high-buckled struc-
ture. For all kinds of silicene structures, the variation of binding energy remains 
constant. The surface of silicene is very reactive because of its weak interatomic 
bonds [8]. This makes silicene readily absorb chemical species, which forms chemi-
cal bonds with silicene [9]. Because of this, modification is adopted for the surface 
of silicene with transition metals. For example, with the existence of Ti and Ta in 
puckered silicene, the material becomes a planar structure while NbSi2 shows the 
largest mechanical stiffness. For reducing reactiveness from the surface of silicene, 
doping is also used as an alternative. The buckling in silicene is largely influenced 
by the carrier concentration [8] (Fig. 4.3).

4.2.3  Electronic Properties

Similar to graphene, the π bands of silicene are also not connected to the bands 
because of its planar and orbital symmetries [10]. As far as bands are concerned, the 
crossings between π bands and σ bands, which occur in graphene, do not occur in 
silicene due to the lowered down valence bands in silicene [11]. The π band main-
tains its form as in graphene, however, when the π* band approaches Γ from the KΓ 
and the MΓ directions, the band changes [11]. Compared to graphene, the electrons 
move slower in silicene. The longer atomic distance makes for weaker π bonds in 
silicene compared to that in graphene because π bonds usually involve the conduc-
tion property in each material. It can be shown from Fig. 4.4 that the property is 
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symmetry at K point. The π bands are weakened at K. Electrons around the K point 
should behave as Dirac massless fermions due to the presence of the Dirac cone in 
both structures. Compared to the fermi velocities of graphene (106 m/s), fermion 
velocities in Si (111) (104 m/s) and silicene (105 m/s) are slower. This is because the 
π interaction is weak in Si(111) and silicene [11].

4.2.4  Thermal Properties

From the previous studies, it is well-known that graphene has ultra-high thermal 
conductivities of 3000–5000 WmK−1 [14]. Compared to it, the recent studies on 
silicene show that the in-plane thermal conductivity of silicene at room temperature 
is in the range of 20–60 WmK−1, which is almost 20% of that of bulk silicon, as 
extrapolated from the linear relation in Fig. 4.5 [15]. Comparably low thermal con-
ductivity enables silicene to be more suitable to the purpose of thermoelectric fig-
ure. The large reduction in thermal conductivity of silicene compared to bulk silicon 
could be attributed to the increased phonon-surface scattering in low-dimensional 
semiconducting nanostructures. From these findings with excellent electric 

Fig. 4.4 (a) The variation of binding energy as a function of lattice constant for PL, LB, and HB 
honeycomb silicene and germanene and (b) the band structures of PL and LB silicene and 
 germanene [13]
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transport properties, silicene is suitable for the thermoelectric materials utilized in 
power generators or refrigeration applications.

The thermal conductivity of silicene is largely affected by the strain. With further 
increasing strain, the thermal conductivity starts to decrease. To explain this concept, 
at tensile strain of 0.12, the thermal conductivity drops more than 30% compared to 
the strain-free value, as seen in Fig. 4.6 [16]. For graphene, the thermal conductivity 
of graphene shows the state of decreasing all the way. However, the effect of strain in 
silicene shows small increase at the beginning phase [16]. This behavior of silicene 
could be attributed to the initial buckled configuration. The buckled configuration 
would be less buckled at small tensile strains, and this is because of bond rotation. As 
a result, we can get in-plane stiffness and an increase in the thermal conductivity in 
silicene [16]. Furthermore, it is also known that defects influence the thermal con-
ductivity, from the studies on graphene. Among the defects, vacancy defects are quite 
unavoidable in 2D materials during growth and processing, and those defects are 
usually led by stress, irradiation, and sublimation [17]. Vacancy defects are lattice 
sites that in, a perfect crystal, would be occupied, but instead remain vacant. They not 
only affect electronic properties significantly, but also cause lattice vibrations local-
ized around the defects. The localized vibration means that phonon thermal conduc-
tion will be reduced in both graphene and silicene, but similar research is still rarely 
performed in the field of silicene [17]. Increasing the concentration and size of the 
vacancy defects significantly reduces the phonon thermal conductivity of silicon 
nanosheets. In addition, not only the values of thermal conductivity, but also its 
anisotropy is influenced by the edge shape of vacancy clusters. This is considered 
important because of the chiral-angle tailoring of the thermal conductivity of silicene 
sheets [17]. Meanwhile, Isotope doping provides an efficient method to tune the 

Fig. 4.5 The inverse of thermal conductivity, λ, versus the inverse of system size, L, for bulk sili-
con (28Si) and silicene (28Si). The thermal conductivity of the infinite system can be obtained by 
linear extrapolating to 1/L = 0 [figure from [16]]
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thermal conductivity of nanomaterials. To get a result, Isotope doping is simulated by 
MD simulations. According to the simulation, the thermal conductivity of graphene 
and silicon nanowires can be dramatically reduced even at a low doping percentage. 
Moreover, ultra-low thermal conductivity can be achieved if the dopants are arranged 
into a superlattice structure, as in Fig. 4.7. Isotope doping has the advantage that it 
would not affect the electronic properties of the nanostructures since all the isotopic 
atoms have the same electronic structure. Researchers indicate that the bigger the 
mass difference between isotope atoms, the larger the reduction in thermal conduc-
tivity [16]. The maximum reduction in thermal conductivity is counted for 10 and 
23% for Si and Si doping, each [16]. In addition, the graph of this result shows some-
what U-shaped change as the thermal conductivity correlated with the concentration 
of doping atoms. The thermal conductivity decreases initially to a minimum and then 
increases as the doping concentration changes from 0 to 100% [16]. The minimum 
of the thermal conductivity occurs at the doping concentration of around 50%. The 
randomly doped atoms can be considered as distributed impurities in the pure Si 
silicene lattice [16]. Those impurities cause the phonon scattering and localization of 
phonon modes, thus reducing the phonon group velocity. Therefore, the thermal con-
ductivity decreases with increasing doping concentration. However, when the doping 
concentration is above 50%, the doped atoms become the main part of the lattice 
structure and the Si atoms become the impurities, as seen in Fig. 4.8 [16]. As a result, 
the phonon scattering and phonon-modes localization reduce with increasing doping 
atoms. Consequently, the thermal conductivity increases with increasing doping con-
centration from 50 to 100% [16]. Moreover, ultra-low thermal  conductivity can be 
achieved if the dopants are arranged into a superlattice structure. Isotope doping has 
the advantage that it would not affect the electronic properties of the nanostructures 
since all the isotopic atoms have the same electronic structure. In addition to possible 

Fig. 4.6 Normalized thermal conductivity (λ/λ0) of silicene as a function of tensile strain (L−L0)/L0 
in the X (armchair) and Y (zigzag) directions. The thermal conductivities increase at small strains 
and decrease at large strains [figure from [16]]
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application for power generator and refrigerator, silicene can be used as a molecule 
sensor. Silicene can chemically absorb nitrogen-based molecules. NO2 has the larg-
est absorption energy of −1.12 and −1.53 eV per molecule for two absorption con-
figurations, whereas the absorption energies of NO and NH3 range from −0.46 to 
−0.60 eV per molecule [18]. The charge carrier concentrations of silicene are larger 
than that on graphene. These findings indicate that silicene is a potential candidate 
for a molecule sensor with high sensitivity for NH3, NO, and NO2 (Fig. 4.9).

4.3  Germanene

One of the novel graphene analogous materials gaining attention is germanene. This 
material is often connected and compared to silicene when reported in the literature. 
However, published experimental work on the material is comparably less than that 
on silicene. This is to be expected, as much of the current electronics technologies 
involve either silicon, germanium, or a combination of the two. Because of this, 
silicene and germanene offer opportunities for easy integration to current technolo-
gies, as opposed to graphene which would require significant modification before it 

Fig. 4.7 (a) The atomic configuration of silicene with ordered doping (isotope superlattice), 
where the two different colors represent different isotopes. (b) Thermal conductivity of ordered 
doped silicene as a function of the percentage of doped isotope atoms [figure from [16]]
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could be successfully implemented [1]. This, in turn, brings great appeal to investi-
gations on properties and behaviors of silicene and germanene.

4.3.1  Synthesis

Germanene synthesis is even more novel than that of silicene. While Ag has been 
established as the common substrate for silicene synthesis, the use of Ag would not 
be plausible for germanene synthesis. At room temperature, Ge reactions with Ag 
form an Ag2Ge alloy [22]. Because of this phenomenon, alternative substrates have 
been investigated and discovered. Davila et  al. [7] hypothesized that the answer 
would lie in finding a material that demonstrated a similar behavior with Ge, as that 
of Ag with Si (with no intermixing); the material that was found to fit these criteria is 
Au (111) [7]. Once Au was identified as a suitable substrate, the same process of dry 
epitaxial growth used for the silicene growth was implemented to grow germanene 
on the gold substrate. As Davila et al. [7] expected, the germanene growth was found 

Fig. 4.8 (a) The atomic configuration of silicene with random doping, where the two different 
colors represent different isotopes. (b) Thermal conductivity of randomly doped silicene as a func-
tion of the percentage of doped isotope atoms [figure from [16]]
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to be comparable to the silicene formation on Ag substrates. Continuous germanene 
layers have also been successfully synthesized on Al (111) [21] and Pt (111) [19, 23].

Unfortunately, the current synthesis methods do not cater to free standing ger-
manene [24]. Miro et al. [24] mention that germanane (GeH) does not need a sub-
strate to be stable; however, as of now, the synthesis of single-atom germanene is 
limited to a few substrates [25].

4.3.2  Structural Properties

Currently, the structure stability, electronic and vibrational properties have been inves-
tigated via ab initio calculations [26, 27]. As increased interatomic distance, the bond-
ing between atoms in germanene is significantly weaker than that in graphene. This 
makes less energy distributions between the bonding and antibonding orbitals. It 
affects the structure of germanene. Because the band structure is deduced from planar 

Fig. 4.9 STM images of germanene sheets grown by several research groups. For comparison, all 
the images have the same size of 4 nm × 4 nm. (a) STM image of germanene √19 × √19 super-
structure on Pt (111). (V = 1 V and I = 0.05 nA) [19], (b) STM image of the germanene √3 × √3 
superstructure on Au(111) (V = −1.12 V and I = 1.58 nA; the Au(111) √7 × √7 unit cell is out-
lined in black) [7], (c) STM image of the germanene honeycomb layer on Ge2Pt cluster (V = −0.5 V 
and I  =  0.2  nA) [20], and (d) STM image of the germanene 3  ×  3 superstructure on Al(111) 
(V = −0.7 V and I = 0.3 nA) [21] [figure from [8]]
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germanene as can be seen from Fig. 4.10, the low lying antibonding is staying around 
Γ-point. It results in a finite density of state at the Fermi level. It is not preferable for 
its energy, so that achieving a buckled structure by expanding buckling (the vertical 
separation between two sub-lattices) of the low point group is highly recommended. 
The vertical distance between two sub-lattices is decided by a balance between the 
electronic and elastic energies. For free standing germanene, the buckling is ranged 
from 0.64 to 0.74 Å, and even the value becomes bigger than 2 Å at the total energy 
landscape. This structural property can be altered by interactions with other substrates. 
Like graphene, there is also the opening of a band gap induced by the symmetry in 
sub-lattice of supported germanene [25]. Matusalem et al. [26] found that a lower 
stability is obtained when in the graphene-like arrangement, and it becomes more 
stable in the honeycomb dumbbell arrangement. Acun et al. [25] reported DFT calcu-
lations on the buckled honeycomb structure of germanene and found it to be a 2D 
Dirac fermion system (this has yet to be validated by experiment). This leads to the 
hypotheses that the quantum spin Hall effect would be present at accessible tempera-
tures [25]. This poses graphene as a promising 2D topological insulator [28].

4.3.3  Electronic Properties

Germanene possesses a semi-metallic band alignment and is predicted to possess 
similar electronic properties as silicene, including massless Dirac fermions [29, 30].

4.3.4  Thermal Properties

Currently, there are no available literatures focusing solely on thermal conductivi-
ties. This can be expected, as the main use of germanium, and silicon, applications 
involve thermoelectric properties. These studies are not normally found with gra-
phene because the high thermal conductivity implies poor thermoelectric 

Fig. 4.10 Electronic band structure of germanene calculated using DFT for different values of the 
buckling ∆. Zero energy corresponds to the Fermi energy. Blue circles denote the antibonding band 
crossing the Fermi energy at low buckling values
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properties. Yang et al. [31] report on thermal conductance when investigating the 
thermoelectric figure of merit, however, since the values are evaluated implement-
ing ab initio the system size is very limited. Molecular dynamics simulations would 
allow for an evaluation of thermal conductivity for larger system sizes.

Unfortunately, there are currently no molecular dynamics studies investigating 
thermal conductivities or the effects of defects on the thermal properties. Of course, 
these results require validation by experiment, however, as mentioned previously, 
current synthesis methods do not cater to free standing germanene so such investi-
gations are unavailable (Fig. 4.11).

4.4  Stanene

Another Group IV graphene analogous material gaining popularity is stanene. An 
appealing characteristic of stanene stems from the fact that bulk tin is metallic, so 
there is an interest in exploiting those favorable electronic properties [14]. One of 
the appealing characteristics at this time is the potential for stanene to be established 
as a topological insulator [15, 33]. Essentially, this means good electrical conduc-
tion with minimal energy loss due to waste heat. This opens the potential for imple-
mentation of this material in electrical circuits.

4.4.1  Synthesis

The novelest synthesis discussed in this paper is that of monolayer tin. Unlike silicene 
and germanene, there are very few reports of successful synthesis of stanene. While 
the synthesis of 2D stanene has presented a challenge, there is a report of atomically 
thick free-standing few-layer stanene (FLS) that are characterized optically with 
UV–Vis absorption [34]. Also, Zhu et al. [32] present successful fabrication of sta-
nene with molecular beam epitaxy (MBE) on Bi2Te3 (111). This success opens the 
possibility of experimentally investigating and validating the current theoretical and 
computational models that have been developed for stanene (Fig. 4.12).

4.4.2  Property Analysis

Due to the novelty of stanene, the available data are limited when it comes to experi-
mental information. Since stanene synthesis is still an area of open investigations, the 
availability of samples to perform experiments is essentially nonexistent. Due to this, 
much of the available information has resulted from theoretical or computational anal-
ysis. Even then, since the focus has been mainly on silicene, and to a lesser extent, 
germanene, the knowledge available involving stanene is sparse at the moment. There 
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are reports available involving first principle, density functional theory, and Boltzmann 
transport equation calculations to analyze the thermal and mechanical properties of 
stanene [36, 37]. There are even some who are expanding into investigating the tuning 
of material properties of stanene. Garg et  al. [38] performed DFT calculations to 
investigate the band gap opening in stanene by patterned B-N doping and then imple-
mented MD simulations to confirm the stability of the structure.

4.4.3  Structural Properties

van den Broek et al. [14] presented first-principle DFT calculations to investigate 
the structural, mechanical, and electrical properties of 2D hexagonal tin. First- 
principle molecular dynamics calculations determined the monolayer to be ther-
mally stable at temperatures up to 700  K.  Mojumder et  al. implemented MD 

Fig. 4.11 Atomic structures of stanene on Bi2Te3. (a) Top view (upper) and side view (lower) of 
the crystal structure of stanene. (b) RHEED pattern of stanene film. (c) RHEED intensity as a func-
tion of growth time. The blue arrow marks the deposition time for stanene. (d, e) STM topography 
of Bi2Te3 (111) (d) and Sn films of more than single biatomic layer coverage (e). The correspond-
ing deposition time is marked by the black arrow in (c). (f) Height line profile in (e). (g) Large- 
scale STM topography of stanene film. (h) Zoom-in STM image of stanene. (i) Atomically resolved 
STM image of stanene. (j, k) Height line profiles in (g) and (i). (l) Atomically resolved STM image 
of top and bottom atomic layers of stanene. Blue dots mark the lattice of the top Sn atoms. Red dots 
mark the lattice of the bottom Sn atoms. The two lattices do not coincide. (m) Height line profile 
in (l) [figure taken from [32]]
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Fig. 4.12 (a) Band structure of stanene and (b) DOS for different values of applied strain in the 
presence of SOC [figure taken from [35]]
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simulations with the embedded atom model to analyze mechanical properties of 
stanene. The resulting investigation showed that increased temperature causes a 
reduction in the fracture strength and strain on stanene. It was also notable that uni-
axial loading in the zigzag direction presented a higher fracture strength and strain 
than that of armchair direction loading, while no noticeable difference was found 
for biaxial loading [39].

4.4.4  Electronic Properties

Stanene and germanene are very similar and are often compared to silicene together. 
As was the case for germanene, stanene has a slightly metallic band alignment and is 
also predicted to possess electronic properties like those found in silicene [29, 30].

4.4.5  Thermal Properties

Another area of interest in these 2D materials involves the thermal properties. If 
there is any hope of establishing stanene as a legitimate option for real applications, 
the thermal properties must be investigated. While information is limited, there have 
been some significant studies published on the matter. Peng et al. [37] presented an 
analysis of phonon transport in stanene via first principles calculations and phonon 
Boltzmann transport equations to evaluate the material’s thermal conductivity. In 
fact, this analysis coincides with the results obtained by Nissimagoudar et al. [36] 
and establishes stanene as the material with the lowest thermal conductivity among 
all the Group IV materials. The latter report also mentions the potential for thermal 
conductivity to be tuned by adjusting the sample size and applying rough surfaces 
on the edges.

At this time, the analysis on thermal conductivity remains limited to pure sta-
nene. Currently, there appears to be a lack of information on the effects of defects 
on thermal conductivity. Also, there are currently no molecular dynamics simula-
tions available that model the thermal conductivity in this material. This can be 
attributed to the fact that there has not been a parameterization of suitable potentials 
for MD simulations.
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Chapter 5
Nanostructured Oxides: Cross-Sectional 
Scanning Probe Microscopy for Complex 
Oxide Interfaces

TeYu Chien

5.1  Background

Charge transportation in materials has drawn the attention of physicists since the 
electronic nature of materials was observed—even before the electron was discov-
ered (in the year 1897 by J. J. Thomson). In a material, electrons dwell in an envi-
ronment full of ions and electrons. The many-body nature of the electronic properties 
in materials has proven that the modeling of the electronic properties is a very dif-
ficult task. Surprisingly, the Drude model, in which the electrons in metals were 
modeled as an electron gas without interactions (free electron gas), has described 
electronic properties for simple metals very well [1], despite the many-body nature 
of electrons in metals. Soon after the discovery of the Pauli exclusion principle for 
electrons, Sommerfeld applied quantum mechanics and the Fermi-Dirac distribu-
tion for the free electron gas model. With the more accurate modification, the 
Sommerfeld theory resolved some puzzles that had been thrown out by the Drude 
model, such as the Wiedemann-Franz law [1]. However, it still ignored the 
many- body nature of the electrons in metals. A more complicated model is needed 
for materials with strong interactions between electrons and other degrees of freedom, 
such as spin, lattice, and orbital. Beyond metals, theories based on weak correla-
tions and interactions could also describe semiconductors very well. Over decades, 
the semiconductor physics worked very well to describe and predict the physical 
properties and behaviors of modern electronic devices.

Recently, since materials with strong electron correlation and interactions 
become the materials of the interest, semiconductor physics faces the fate of re- 
examination [2]. Great varieties of functionalities have been observed in complex 
oxide materials. For examples, colossal magnetoresistance (CMR) [3], supercon-
ductivity (SC) [4], ferroelectricity (FE) [5–7], and multiferroics (MF) [8] have been 
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observed in complex oxides. The goals of the thriving studies in complex oxide 
materials are focused on utilizing and manipulating the macroscopic properties, 
such as dielectric constant, superconductivity, and magnetism, of the materials for 
commercial use. One of the approaches is focused on understanding the aforemen-
tioned microscopic phenomena (CMR, SC, and MF) and further controlling/manip-
ulating the macroscopic behaviors.

On the other hand, due to the spatially confined environment and broken transla-
tional symmetry, the electron correlations and interactions become very sophisti-
cated in nanoscale materials. In two-dimensional (2D) environment, such as the 
surfaces of solid materials, structural [9], electronic [10], spin [11, 12], and orbital 
[13] reconstructions were observed as the consequence of the new lowest energy 
configurations with the presence of the spatial confinement and the broken transla-
tional symmetry. Not surprising, in addition to surfaces, these reconstructions 
(charge [2], spin [14], lattice [15], and orbital [16]) have also been observed at 
interfaces, where the spatial confinement and the broken symmetry still prevail. 
As depicted in Fig. 5.1, in addition to the spatial confinement and the broken trans-
lational symmetry, the elemental/chemical control at the interfaces acts as another 
important factor to affect the interfacial phenomena. Unlike the unchangeable spa-
tial confinement and broken translational symmetry, the elemental/chemical control 
at interfaces provides an ideal way of engineering interfacial properties. A similar 
role is found for the interfaces of semiconductors, which have taken advantages of 
the interfacial properties in semiconductors for decades in the modern electronic 
devices. The search for next-generation electronic devices will depend on the under-
standing and further controlling the behavior at interfaces in next-generation 
materials, such as complex oxide materials.

There are two challenges to fully understand the physics at interfaces of complex 
oxides. The first challenge is the fabrications of the high-quality interfaces of complex 
oxides. Though the high-quality interfaces of semiconductors have been  routinely 

Broken
Translational
Symmetry  

Spatial
Confinement 

Emerging Physics
at Interfaces 

Elemental/Chemical
Control 

Fig. 5.1 Schematic of the 
relationships among the 
broken translational 
symmetry, spatial 
confinement, and 
elemental/chemical 
engineering with the 
emerging physics found at 
interfaces
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synthesized, the control of the high-quality complex oxide interfaces is not trivial. 
The main issues were mainly coming from the complexity of the thermal dynamics 
and kinematics involving transition metals and oxygen during growth. With decades 
of efforts, nowadays, oxide molecular beam epitaxy (MBE) [17], and pulsed laser 
deposition (PLD) [18, 19] are the two most successful ways of synthesizing high-
quality complex oxide thin films. With the high-quality thin film synthesis available, 
high-quality interfaces may be achieved.

The second challenge is the lack of appropriate tools for probing the buried inter-
faces with required spatial resolution as well as the capability of measuring physical 
properties simultaneously. For example, high-resolution cross-sectional transmis-
sion electron microscopy (HR-XTEM) could provide excellent spatial resolution, 
down to atomic or even subatomic resolution, but lack information about the elec-
tronic density of states (DOS) near Fermi energy. On the other hand, synchrotron 
x-ray magnetic circular dichroism (XMCD), synchrotron X-ray magnetic linear 
dichroism (XMLD), and electronic transport measurement could provide informa-
tion on physical properties but are techniques averaging over a large measuring 
area. What is needed for the aforementioned novel interfacial phenomena is a tool 
with excellent spatial resolution as well as the ability to extract physical properties. 
Among the available tools, various types of scanning probe microscopy (SPM) are 
the ideal groups of techniques that meet these requirements. On one hand, SPM is 
known for high spatial resolution, ranging from tens of nm down to subatomic reso-
lution. On the other hand, various types of SPM provide a wide array of capabilities 
of probing many different kinds of physical properties. For examples, scanning tun-
neling microscopy and spectroscopy (STM/S) provides the capability of probing 
local electronic DOS (LDOS) with atomic resolution in real space. Conducting 
atomic force microscopy (cAFM) is capable of probing local conductance with tens 
of nm resolution. With these available tools, however, the major challenge for using 
the SPM to study the interfaces is how to prepare samples for SPM to probe the 
buried interfaces. One of the approaches is to prepare the samples in cross-sectional 
geometry to expose the region of interests—interfaces—for SPM measurements. 
Here, we will briefly review the history of the recent developments of XSPM 
on complex oxide materials followed by many successful cases of XSPM 
measurements.

5.2  Complex Oxides and Complex Oxide Interfaces

One of the most studied families in complex oxides is the Ruddlesden-Popper (RP) 
series oxides, which have a common chemical formula as AO(ABO3)n. Four atomic 
structures of the RP series oxides are shown in Fig. 5.2. Basically, the structures of 
the RP series are composed of “n” layers of octahedron, BO6, separated by a spacer, 
AO/AO stacking, in between. For examples, A2BO4 (n = 1) has single-layer octahe-
drons between two spacers; A3B2O7 (n = 2) has double-layer corner-shared octahe-
drons between two spacers; and ABO3 (n = ∞) has infinite corner sharing octahedrons 
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without the spacer. With the common structures, the RP series oxides could exhibit 
great varieties of functionalities by merely changing the elements A and B.  For 
example, CMR effects in manganese-based perovskite oxides (La1-xCaxMnO3 or 
La1-xSrxMnO3) [3, 20], SC in copper-based oxides (La2-xSrxCuO4) [4], FE in titanium- 
based oxides [6], and MF in BiFeO3 [8] were reported.

The great varieties of the functionalities found in the complex oxides are due to 
the highly coupled environment. To be clear, the interactions between electrons are 
referred as “electron correlation” or “correlation” in short; the interactions between 
electrons and other degrees of freedom are referred as “coupling”. In materials with 
weak correlations, as mentioned above, Fermi gas model for describing the elec-
tronic properties is very successful. In Fermi gas model, the coupling between the 
electrons with other degrees of freedom, such as phonons and spin waves, are also 
neglected. In fact, for complex oxides, with the highly coupled and correlated envi-
ronments, charge, orbital, spin and lattice degree of freedoms are mingled severely 
(Fig. 5.3). In complex oxides, weak correlation and coupling are no longer valid and 
further understanding, experimentally and theoretically, is required for complex 
oxide materials prediction. Some theoretical [2, 21, 22] and experimental [23–28] 
efforts have been embarked toward re-evaluating and understanding the strong 
interactions and coupling in complex oxides microscopically.

Fig. 5.2 Schematics of crystal structures of RP-series perovskite materials with n = 1, 2, 3, and ∞ 
in AO(ABO3)n
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The properties of the complex oxides could be controlled at least by, but not 
limited to, (1) element changing [29]; (2) element substitution/doping [20, 30–34]; 
(3) amount of oxygen vacancies [33–36]; (4) strain [37]; (5) temperature [29, 34]; 
and (6) radiation illumination [38]. For example, as mechanism (1), the conductivity 
of the RENiO3 could be tuned by changing the rare earth (RE) elements [29], where 
LaNiO3 is metallic at all temperatures studied [29]. On the other hand, the element 
substitution (mechanism (2)) could determine the magnetic phases of La1- xCaxMnO3 
[20] and La1-xSrxMnO3 [30–32] and the superconducting temperature of Bi2Sr2-

xLaxCuO6 and of La2-xSrxCuO4 [33]. For mechanism (3), in complex oxides, the 
oxygen vacancies are generally considered as doping. The conductivity could 
induce with the presence of the oxygen vacancies in the otherwise insulating SrTiO3 
[34, 39]. Oxygen vacancies in YBa2Cu3O7-δ (YBCO) also play a role as hole-doping 
to tune the charge carrier density hence the superconducting transition temperature 
[33]. It is worth noting that both element substitution (mechanism (2)) and oxygen 
vacancies (mechanism (3)) could be seen as a way of doping. The ferroelectricity 
could be induced by with the mechanism (4)—strain—in the otherwise ferromag-
netic EuTiO3 [37]. And finally, example of the mechanism (5) was reported as the 
two-dimensional electron liquid could be created on the bare SrTiO3 surfaces by 
illuminating with ultraviolet irradiation [38].

When combining two different complex oxide materials together, extraordinary 
properties or phenomena could emerge at the interfaces. For example, two- 
dimensional electron gas was reported at the interfaces of two band insulators, 
LaAlO3/SrTiO3 [40], or Mott insulator and band insulator, LaTiO3/SrTiO3 [2]; 
Superconductivity was reported at LaAlO3/SrTiO3 interfaces [41] and at La2CuO4/
La1.55Sr0.45CuO4 interfaces [42]. The interplay between superconductor and 
 ferromagnetic materials, such as YBa2Cu3O7-δ/La2/3Ca1/3MnO3, shows the complex 
interactions between the cooper pairs and ferromagnetic materials near the inter-

Fig. 5.3 Schematic describes the interplays among the four various degrees of freedom in com-
plex oxide materials

5 Nanostructured Oxides: Cross-Sectional Scanning Probe Microscopy for Complex…



102

faces [24]. In short, the rich functionality found in complex oxide families and their 
interfaces is a playground for engineering novel devices as well as for discovering 
interesting physics. The key for microscopic understanding of the above-mentioned 
properties and/or phenomena is to have a proper tool/technique that has the capabil-
ity of extracting physical properties with superior spatial resolution. The superior 
spatial resolution requirement has already limited the tool/techniques to be some-
what “microscopy”. In addition, the requirements of the capability of measuring 
physical properties further narrow the techniques/tools down to various types of 
scanning probe microscope (SPM).

5.3  Cross-Sectional Scanning Probe Microscopy 
and Challenges for Complex Oxide Materials

The key to use SPM for an interfacial study is to create the cross-sectional view of 
the interfaces. In general, issues on probing complex oxide interfaces in cross- 
sectional geometry using SPM could be considered in two aspects: (1) the tools (in 
SPM family); and (2) the methods for creating the cross-sectional view of the com-
plex oxide interfaces. Each of the aspects puts limits on what could be measured and 
special set-ups might be necessary for successful studies.

First, the main differences among different types of SPMs are the spatial resolu-
tion, the extracted information, and the sample preparation requirements. For exam-
ples, scanning tunneling microscopy and spectroscopy (STM/S) has atomic or 
sometimes subatomic spatial resolution, but the samples are required to be conductive 
for the tunneled electrons being conducted away. The information obtained by STM/S 
is typically the topography and the electron local density of states (LDOS). On the 
other hand, conducting atomic force microscopy (cAFM) could be used for materials 
that are conductive, non-conductive or even mixed, but the spatial resolution is always 
limited to the tip apex size, typically in the order of 10 nm. The information obtained 
by cAFM is mainly the morphology and the local conductance. Electrochemical 
strain microscopy (ESM) measures the electrochemical reactivities with lateral spa-
tial resolution in the order of 10 nm. STM, cAFM (including AFM) and ESM are the 
SPM techniques that have successful measurements on the complex oxide interfaces 
reported in the literature. Other types of SPM techniques potentially suitable for 
cross-sectional complex oxide measurements are: piezoresponse force microscopy 
(PFM), which may be used to study the piezoresponse at the complex oxide interfaces 
and/or domain walls; Kelvin probe force microscopy (KPFM) for visualizing the 
work function evolution across the interfaces of dissimilar complex oxide materials; 
magnetic force microscopy (MFM) for probing the magnetic domain across the inter-
faces of the complex oxides with magnetic interactions; scanning tunneling potenti-
ometry (STP) for studying the equipotential profile across the complex oxide 
interfaces while an external bias was applied across the interfaces; and synchrotron 
X-ray scanning tunneling microscopy (SXSTM) [43–49] with elemental resolving 
power to study ion diffusion profile or composition in cross-sectional view.
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Second, different methods to create the cross-sectional view of the interfaces for 
the SPM measurements have their own advantages and disadvantages. Traditionally, 
to prepare suitable surfaces for SPM studies, many methods have been used, includ-
ing sputtering/annealing, polishing/annealing, and cleaving. Readers who are inter-
ested in these aspects of sample preparation please refer to reviews written by 
Bonnell et al. [50, 51]. Up to date, several successful methods have been reported 
for XSPM measurements: (1) fracturing; (2) polishing; (3) focused ion beam mill-
ing [23, 27, 52–55]. Each method has its own advantages/disadvantages as well as 
suitable SPM techniques. For example, fracturing could create contamination-free 
cross-sectional interfaces with a poor understanding of how the fracturing process 
affects the fractured results in atomic scale near the interfaces. Polishing is 
relatively easy to handle, however, contaminations and heat generated by the 
polishing procedure may be present. Focused ion beam milling could create a nicely 
controlled cross-sectional view of the interfaces, however, is more time-consuming 
and may have the intermediate level of contaminations.

Even for those successful methods of creating cross-sectional interfaces for SPM 
measurements, optimizing the preparation procedure is still under investigation. 
Take fracturing method as an example, the understanding of the fracturing/cleaving 
process of the materials of interests is important to precisely control the resulting 
fractured/cleaved topography, especially the regions near the interfaces. The frac-
turing process and results are determined by the fracturing dynamics and fracturing 
toughness. Microscopically, it has also been pointed out that the crack propagation 
is entirely determined by atomic-scale phenomena at the atomically sharp crack tips 
by breaking the inter-atomic bonds, one at a time at each point of the moving crack 
front [56]. In fact, the fracturing/cleaving properties of the complex oxides are rela-
tively unexplored and could vary from one to another. For example, layered RP 
series materials will be cleaved at certain atomic layers (cleavage planes) and result 
in atomically flat surfaces when a shear force or tensile force applied on the samples 
along in-plane or out-of-plane directions, respectively. On the contrary, ABO3 
(n = ∞) materials do not have cleavage planes and will be “fractured”, instead of 
“cleaved”, with macroscopically rough surfaces, such as conchoidal fracturing mor-
phology [57, 58], upon the application of a shear force. Interestingly, despite the 
macroscopic roughness seen in optical and electron microscopes [58], the existence 
of the atomic terraces with one unit cell or half unit cells terrace steps were revealed 
by STM measurements of SrTiO3 [58–60]. Though the layered perovskites have 
cleavage planes, it is important to note that the cleavage planes are usually not 
aligned with the cross-sectional geometry, makes them still non-cleavable (though 
different manner) for XSPM studies.

The reported controllable fracturing process for perovskite complex oxide mate-
rials was done by first dicing the samples followed by in-situ fracturing prior to the 
STM/S measurements under ultrahigh vacuum (UHV) environment [24, 25, 58–
62]. The sample thickness was either 1.0 mm or 0.5 mm in the studies done with 
Nb:STO [24, 25, 58–62] while the dimension of the samples were ~8 × 2 mm2 or 
~8  ×  1  mm2, respectively. The dicing depth could be precisely controlled to the 
range from 50 to 70% of the thickness by using a precision dicing saw. The diced 
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samples are mounted mechanically and rigidly with a set of home-built clamps 
where the notch is aligned with the top surface of the clamps. Then the samples are 
fractured in-situ by moving the mounted samples against a cleaver in the UHV 
chamber, as shown in Fig. 5.4 [61, 62].

On the other hand, polishing and focused ion beam milling are the other methods 
reported to successfully create a cross-sectional view of the complex oxide inter-
faces [53–55, 63]. There are no detail studies about how the preparation parameters 
affect the resulting cross-sectional surfaces of the materials. In general, one expects 
contamination and/or heat damage for the samples prepared by the polishing 
method, while contamination and time consumption for the focused ion beam mill-
ing method. Further efforts are needed to gain insights on how to extend the use of 
these methods for XSPM measurements.

Hereafter, we will start to discuss what has been reported on complex oxide 
interfaces using above-mentioned preparation methods and their findings for pushing 
the understanding of complex oxide interface physics forward.

5.3.1  Controlled Fractured Surfaces of Nb-Doped SrTiO3

5.3.1.1  Dual Terminations on the Fractured Nb-Doped SrTiO3

One of the first reported fractured complex oxide materials probed by SPM is 
Nb-doped SrTiO3 (Nb:STO) [58–60]. This study not only served as a testing trial for 
finding fracturing parameters for subsequent interfaces studied [23–25, 61, 62], but 
also revealed interesting fractured surfaces that deserve further investigation. This 
surprising observation was the well-ordered dual terminated (SrO and TiO2 termi-
nated surfaces) striped on the fractured Nb:STO surfaces [59, 64].

Fig. 5.4 Schematics of the sample-fracturing method for XSTM/S measurements preparation. (a) 
Before the fracturing with sample shape and relationship with the clamps on the sample holder. (b) 
The process of fracturing

T. Chien



105

As discussed above, perovskites with ABO3 chemical formula do not have cleavage 
planes. For materials without cleavage planes, such as glass, it is known that the 
fractured morphology is composed of few distinct types: mirror, mist, hackle, and 
conchoidal lines [65]. These features are macroscopically visible by optical micro-
scope or even by naked eyes, indicating the roughness of the fractured surface is at 
least in the order of few hundreds nanometer or even in micrometer scales. The 
question is: do the fractured surfaces of crystalline perovskites exhibit similar mac-
roscopic morphological features, and if so, what are the microscopic morphological 
features imaged by STM? In order to answer this question, Chien et al. performed a 
survey of the fractured Nb-doped SrTiO3 (Nb:STO) surfaces ranging from microm-
eter scale all the way down to nanometer scale, using various imaging techniques 
(optical microscopy (OM), scanning electron microscopy (SEM), and scanning tun-
neling microscopy (STM)) [58]. As shown in Fig. 5.5, by performing the controlled 
fracturing process at room temperature (RT), the fractured Nb:STO surfaces exhibit 
hundreds of micrometer roughness macroscopically, observed by profilometer, and 
the rough surfaces were clearly visible in optical and electron microscopes [58]. 
Conchoidal lines, mirror-like morphologies are observed in macroscopic scale (OM 
and SEM), which is similar to the fractured surfaces of glasses [65]. On the other 
hand, in nanometer scale as shown in Fig. 5.6, integer and half-integer unit-cell high 
steps were observed in STM images, indicating the mixed SrO and TiO2 terminated 
surfaces [58]. In fact, the mixed terminated surfaces are expected, since there are no 
relative strong/weak bonded layers in the STO structure. As illustrated in Fig. 5.6h, 
no matter where the cracking appears in the crystal structure, the SrO and 
TiO2 terminated surfaces will appear on either side of the fractured pieces [64]. 
The surprising findings are that the two types of terminations formed long range, 
ordered stripes, which are first reported by Guisinger et al. [59].

As illustrated in Fig. 5.7a, the fractured morphology of Nb:STO shows two sets 
of fracturing patterns. One is curved, which is similar to the fractured surfaces 
due to local stress-field (conchoidal fractures) [65]. The other one is straight, which 
is found to be perpendicular to [100] crystalline directions (fracturing direction). 

Fig. 5.5 (a) Optical microscope image; (b) SEM image; and (c) height profile of the fractured 
Nb:STO single crystal. The contour plot of the height profile was also plotted with the optical 
microscope and SEM images. Reproduced from J Vac Sci Technol B 28, C5A11 (2010), with the 
permission of AIP Publishing
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The length of the stripes was found to be in micron scale, while the widths are in the 
range of 10–20 nm scale [59, 64]. With the presence of these two types of fracturing 
features, one can find that the step heights change: when crossing the curved steps 
the step heights are integer unit-cell height; while when crossing those straight steps 
the step heights are half-integer unit-cell height, as seen in Fig. 5.7b. In other words, 
the surface terminations change from SrO to TiO2 (or from TiO2 to SrO) when 
crossing straight steps and remain the same while crossing curved steps. Furthermore, 
the two terminations exhibited distinct roughness: one is found be 0.2 nm (rough 
surface) and the other is 0.05 nm (smooth surface) [59]. The dual termination pic-
ture is further confirmed with dI/dV mapping and spectra measurements. As shown 

Fig. 5.6 (a–f) STM topography measured at locations indicated in (g) the SEM images of a frac-
tured Nb:STO sample. Reproduced from J Vac Sci Technol B 28, C5A11 (2010), with the permis-
sion of AIP Publishing. (h) Atomic arrangement in the single crystal Nb:STO showing that the 
fracturing is expected to result in mixed terminated surfaces. Reproduced from Appl Phys Lett 
100, 031601 (2012), with the permission of AIP Publishing
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in Fig. 5.7c, the two different terminations exhibited dI/dV  contrast in the mapping 
mode and clearly different dI/dV  spectra (Fig. 5.7d). Note that the dI/dV  signal is 
correlated to the electron local density of state (LDOS) and the STM is a surface- 
sensitive measurement. By comparing with density functional theory calculations 
[66, 67], the two terminations could be assigned as that the rough region is SrO and 
the smooth region is TiO2 terminated surfaces [59]. The origin of the appearance of 
the straight fractured steps is still unclear. However, since it is straight relative to the 
crystalline directions, one possible explanation is the result of the “slip bands”, 
formed during the bending introduced by fracturing force. Further experiments are 
needed to confirm this hypothesis.

Fig. 5.7 (a) STM topography texture with dI/dV mapping color of the fractured Nb:STO surfaces. 
Reprinted with permission from ACS Nano 3, 4132 (2009). Copyright 2009 American Chemical 
Society. (b) STM topography showing two kinds of roughness on the fractured Nb:STO surfaces. 
The side view of the atomic arrangement along with the line profile showing the change of the 
types of roughness is accompanied by the change of half integer unit cell—meaning change of 
termination. (c) The dI/dV mapping along with the STM topography exhibited very straight termi-
nation boundaries. (d) The measured dI/dV point spectra on the two different types of termination 
showing distinct on-set bias in the conduction band minimum. This comparison of the dI/dV 
spectra to calculate PDOS of STO results in the assignment of the terminations for the observed 
topography. (b–d) Reprinted with permission from Adv Funct Mater 23, 2565 (2013). Copyright 
2013 WILEY-VCH Verlag GmbH & Co
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5.3.1.2  Terrace Widths Control and Atom Manipulations 
on the Fractured Nb-Doped SrTiO3 Surfaces

The fractured Nb:STO surfaces were found to be controllable in certain ways—tem-
perature control and electronic bias manipulations. First, it has been reported that 
the cleaving temperature could control the resulting cleaved surfaces for the layered 
perovskites (Sr2RuO4) [68]. In particular, Pennec et al. compared two Sr2RuO4 sam-
ples cleaved at 20 and 200 K and revealed that the one cleaved at 20 K shows much 
fewer point defects [68]. Considering step edges as one type of defects, lower frac-
turing temperatures are expected to create fewer steps (larger terrace). Indeed, 
Chien et al. demonstrated that the large terraces (~500 nm width) could be achieved 
by fracturing Nb:STO at ~50 K, as shown in Fig. 5.8a [60], compared to the small 
terraces (~20 nm wide) on the room temperature fractured counterpart (Fig. 5.7a). 
The large terrace created on the low-temperature fractured Nb:STO has roughness 
of ~0.2 nm, which is similar to SrO terminated surfaces in the room temperature 
fractured Nb:STO. Another possible explanation is that the fracturing behavior of 
Nb:STO at 50 K is different from that at room temperature due to different struc-
tural phases. Note that STO goes through structural phase transition at ~105 K from 
high temperature cubic phase (Pm 3 m (Oh

1 )) to low temperature tetragonal phase 
(I4/mcm ( D h4

18 )) [69]. Further temperature-dependent fracturing experiments will 
shed light on getting insights on the temperature effects on fracturing Nb:STO.

On the other hand, atom manipulations were reported for many different types of 
surfaces using STM tip and were also reported for the fractured Nb:STO surfaces 
[60]. The SrO terminated surface on the large terraces is the ideal playground for the 
manipulation by electric field applied at the STM tip-sample junction. With the set 
point of 1.4 V; 50 pA for imaging, the ability of the tip manipulation as a function 
of the electric pulse bias and duration is shown in Fig.  5.8a for topography and 
Fig. 5.8b for STS contrast [60]. By analyzing the topography and the dI/dV  map-
ping, the depths and widths of the holes, threshold condition of creating holes, and 
the threshold of seeing observable dI/dV contrast change are summarized in 
Fig.  5.8c. Further testing revealed that the tip-sample electric field pulses could 
remove the SrO clusters away from the sample surfaces onto the tip or into the 
vacuum, leaving holes with half-integer unit cell height changes (~0.2 nm) [60]. 
The change of the STS contrast is originated from the exposed underlying TiO2 
terminated surface after the SrO clusters are removed [60]. It is interesting to note 
that the change of STS contrast, as shown in Fig. 5.8b, does not always follow the 
topography change. This was explained by the finite tip size effect and Smoluchowski 
smearing effects [60].

In addition to the hole creation (positive bias manipulation), the negative bias can 
re-deposit the SrO clusters from the tip back to the desired locations on the surfaces 
[60]. As shown in Fig. 5.8d–f, the holes can be refilled by the negative pulse proce-
dure while the tip is positioned to the hole. The cluster deposition could be done 
anywhere on the surfaces as long as the tip was previously treated with the positive 
bias pulses (attracted SrO clusters on it). This further indicates that the tip can be 
conditioned by the negative bias pulses as the process to clean tip. This is very 
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Fig. 5.8 (a) STM topography and (b) dI/dV mapping of STM-tip-modified fractured Nb:STO 
surfaces. Surface modifications were done with a systematically changed tip-sample bias and dura-
tion, as labeled in the images. (c) The results of the analysis of the dot features on the modified 
Nb:STO surfaces. (d, e) The STM topography of the hole and protrusion in the hole on the Nb:STO 
surfaces due to opposite polarities of the tip-sample bias. (f) The line profiles of the hole and the 
protrusion in the hole shown in (d, e). Reproduced from Appl Phys Lett 95, 163,107 (2009), with 
the permission of AIP Publishing
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important information for experiments aiming for probing the interfaces, which 
requires long moving distances that could degrade the tip.

5.3.1.3  Morphology Control of Fe Deposited on the Fractured Nb-Doped 
SrTiO3 Surfaces

Though the formation mechanism is unclear, the dual terminated stripes found on 
the fractured Nb:STO could be further used as templates for subsequent material 
depositions. As demonstrated by Chien et al., the striped, dual-terminated Nb:STO 
surfaces were used to control the morphology of the Fe films deposited on it [64]. 
As-deposited Fe films exhibit nano-dots morphology with an average dot size/sepa-
ration to be around 3.7 ± 1.0 nm. Upon annealing at 650 °C for 10 min., the Fe film 
morphology changed dramatically into two distinct types, as shown in Fig. 5.9. One 
is a dome shape with an average diameter of 8 nm; while the other is a larger (10–
15 nm) plateau-like islands. It is believed that this change of the morphology upon 
annealing is driven by the interfacial energy difference between Fe/SrO and Fe/TiO2 
interfaces [46]. The change of morphology on the stripe-patterned substrate upon 
the annealing was ruled out with the annealing experiment before the Fe is 

Fig. 5.9 (a, b) The STM topography of the deposition of Fe on fractured Nb:STO, which has 
strip-like dual terminations on the fractured surfaces. (c–e) The line profiles indicated in (b) show-
ing the height change and lateral features of the dome shape and plateau shape Fe clusters. 
Reproduced from Appl Phys Lett 100, 031601 (2012), with the permission of AIP Publishing
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deposited. This finding points to the possibility of creating novel striped features of 
materials in the order of tens of nm scale. Further experiments on this directions 
may be fruitful of creating new material systems.

5.3.2  Oxygen Vacancies and Their Migration of the Ion- 
Irradiated SrTiO3 Surfaces

Oxygen vacancy is one of the most important factors of controlling oxide proper-
ties. Probing the oxygen vacancy profile in depth is crucial for the further under-
standing of the physical phenomena at surfaces and interfaces. Ion irradiation or 
sputtering processes followed by post-annealing are common methods of cleaning 
solid material surfaces for various purposes. Naively, for oxides, one would assume 
the post-annealing process could heal the surface structures after the damages made 
by the ion-irradiations and is when the oxygen vacancies formed. However, Herranz 
et al. performed a cross-sectional conducting atomic force microscopy (XcAFM) 
measurement and revealed that the high concentration of the oxygen vacancies was 
induced ~50 nm near the surfaces after the Ar+ irradiation on STO [70]. Furthermore, 
the oxygen vacancies could further diffuse into the materials up to micrometer scale 
[70]. In the Herranz’s study, the oxygen vacancy-induced conductance was mapped 
with XcAFM.  As shown in Fig.  5.10, at depth  ~  50  nm, lowest resistance was 
revealed, which is induced by the oxygen vacancies created by the ion irradiation. 
The resistance map also showed a gradual increase with length scale up to few 
micrometers, which is believed due to the oxygen diffusion length scale into the 
materials [70]. This finding pointed out that the preparation procedure for perovskite 
oxides should be carefully considered for subsequent purposes. The oxygen vacancy 

Fig. 5.10 XcAFM image of ion irradiated STO in cross-sectional geometry. A highly conductive 
region is visualized at ~50 nm depth after the ion irradiation. In addition, a decreased resistance 
when moving away from the surfaces is found to be in the range of few micrometers scale. This 
long range low resistance regions are considered as the evidence of the oxygen vacancy diffusion 
into the materials after the ion irradiation. Reproduced from J Appl Phys 107, 103704 (2010), with 
the permission of AIP Publishing
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near the oxide hetero-interfaces has recently been considered as one of the major 
engineering topic for controlling complex oxide interfacial phenomena. This 
method could potentially be used to study the oxygen vacancy profile across the 
oxide hetero-interfaces.

5.3.3  Band Diagram Mapping Across the Interfaces 
of La2/3Ca1/3MnO3/Nb-Doped SrTiO3 by XSTM/S

The first successful XSTM/S measurement on perovskite complex oxide interfaces 
was achieved by Chien et al. on La2/3Ca1/3MnO3/Nb-doped SrTiO3 (LCMO/Nb:STO) 
system [23]. The sample preparation used in this study is the controlled fracturing 
process describe earlier. One of the key issues for getting nice interface regions after 
fracturing is the fracturing direction. Since the fracturing is done by introducing a 
bending strain by moving the scribed samples against a rigid cleaver, the fulcrum 
side of the sample is subject to be severely damaged. Thus, the film/interface side of 
the sample cannot be placed as the fulcrum side. On the other hand, if the film/
interface is placed on the initial cracking side, since there is no initial weak notch, 
the fracturing results are also not satisfied. The best way of doing the fracture would 
then be dicing the samples from the side, which damaged some part of the film, but 
leaves the rest of the film intake. Then fracture the samples from sideways. The 
geometry of the fracturing, diced side, and the sample orientations are shown in 
Fig. 5.4. After the fracture is successful, the next challenge is to find the interfaces 
with the STM tip. This problem can basically be resolved by having a scanning 
electron microscopy (SEM) in the STM system, so that the tip position could be 
easily manipulated to land on the region near the interfaces. However, since the 
typical STM system does not have an SEM with it, the STM tip can only land on the 
fractured surfaces using optical microscope equipped in STM system with knowing 
hundreds of micron meters away from the interfaces. When “walking” toward the 
interfaces, the tip moving speed should be kept slow while having the constant cur-
rent feedback loop on since the fractured surfaces may have significant height 
change beyond the range of the z-piezo movement capability. In the case of Nb:STO, 
parameters of the set point as 3.0 V and 50 pA are found to be working well while 
the cruising speed is set to be 100 nm/s. The tip-sample distance is subject to be 
adjusted in micron scale during the long walk.

Figure 5.11 shows the STM, STS, and SEM images of the fractured LCMO/
Nb:STO interfaces. In Nb:STO region, the dual-terminated surfaces extended all the 
way to the interface, as shown in Fig. 5.11b, where the dI/dV  contrast can be used 
to distinguish SrO and TiO2 terminated regions [59]. In LCMO region, the surface 
does not show clear terraces with steps. This is likely related to the strained LCMO 
and/or the strain relaxation during the fracturing [23]. The STS contrast at 3.0 V 
could be explained with the dI/dV point spectra on LCMO, SrO, and TiO2 termi-
nated Nb:STO surfaces, as shown in Fig. 5.11d. At positive bias, the spectral weight 
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is similar for three types of surfaces; while the SrO terminated surface has slightly 
higher value at 3.0 V, which makes it to be brightest in Fig. 5.11b. It is also clear that 
in the negative bias region, the spectral weight of LCMO is much higher than that 
of STO (both SrO and TiO2 terminated surfaces) due to the smaller energy gap in 
LCMO. Thus, it would be clear to distinguish LCMO from STO in STS using nega-
tive bias. However, since the DOS of STO is very low in negative bias, the scanning 
is not stable while maintaining constant current. Instead, Chien et  al. measured 
30  ×  30 grid dI/dV spectra in a region near the interface with the scale of 
300 nm × 300 nm. Using this grid spectrum, the spatial dI/dV contrast at −2.5 V 
could be reproduced, as shown in Fig. 5.12a. The locations of the interfaces then can 
be easily identified. Furthermore, the grid dI/dV spectra could be averaged into dif-
ferent spectra as a function of the distance to the interfaces. By analyzing the data, 
the conduction band minimum (CBM) and valence band maximum (VBM) at each 
location could be extracted. In other words, the electronic band diagram across the 
interface could be mapped directly from the experimental XSTM/S data, as shown 
in Fig. 5.12b. One of the striking results from this XSTM/S study is that the bands 

Fig. 5.11 The interfacial region of LCMO/Nb:STO measured with (a) STM topography; (b) dI/dV 
mapping; and (c) SEM. The locations of the interfaces are clearly visible. (d) The dI/dV point spec-
tra measured on LCMO, and two different terminations on Nb:STO were plotted. LCMO exhibited 
a clear smaller energy band gap compared to Nb:STO materials. Reprinted with permission from 
Phys Rev B 82, 041101(R) (2010). Copyright 2010 American Physical Society
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in LCMO and in Nb:STO are aligned in the CBM (unoccupied states), while the 
VBM (occupied states) are not aligned. This band alignment at the CBM was not 
expected by transport measurements along with semiconductor physics modeling 
[71]. This indicates that the re-examination of the validation of using semiconductor 
physics, which is based on weak correlation and coupling assumption, on strongly 
correlated/coupled complex oxide materials is needed. Note that there is no observ-
able band bending near the interfaces longer than 10 nm, which is the spatial resolu-
tion in the data [41]. Nevertheless, one important message from this study is that the 
XSTM/S could be utilized for studying the band diagram across the interfaces of 
complex oxides.

5.3.4  Highly Mobile Two-Dimensional Electron Gas 
at Interfaces of LaAlO3/SrTiO3 by Cross-Sectional 
Conducting AFM and STM

In the recent decade, two-dimensional (2D) electron gas (2DEG) has been observed 
at LaAlO3/SrTiO3 (LAO/STO) interfaces [28, 40, 41, 53, 54, 72, 73], which opened 
a research field aiming at complex oxide interface engineering and physics. Two 
interfacial configurations are found to be crucial to induce this 2DEG: (a) STO ter-
mination and (b) LAO thickness. In the former, the interfacial configurations have 
to be [LaO]+[AlO2]− planes on [SrO]0[TiO2]0 or [LaO3]3−[Al]3+ planes on 
[SrO3]4−[Ti]4+ for (001) or (111) orientation, respectively, to induce the 2DEG [74]. 
For the later, the grown LAO film needs to at least exceed certain critical thickness, 

Fig. 5.12 (a) dI/dV mapping at −2.5 V reconstructed from dI/dV point spectra taken in an array 
near the LCMO/Nb:STO interfaces. (b) The averaged dI/dV point spectra as a function of the dis-
tance away from the LCMO/Nb:STO interfaces. The conduction and valence band edges were 
extracted and plotted in the figure. Reprinted with permission from Phys Rev B 82, 041101(R) 
(2010). Copyright 2010 American Physical Society
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typically ranging from 3 to 8 unit cells depending on the crystal orientation, to have 
this 2DEG to be created [75]. The mechanism of the formation of the 2DEG at the 
LAO/STO interfaces is still controversial. Three major and most popular explana-
tions are: (1) polar catastrophe [15]; (2) oxygen vacancies [72]; and cation interdif-
fusion [76, 77]. One of the first direct evidences of the existence of the 2DEG at 
LAO/STO interfaces was the use of the cross-sectional conducting atomic force 
microscopy (XcAFM) measurements [53, 54], where high conductive interfaces 
were revealed. The successful XcAFM measurements were achieved by preparing 
the LAO/STO samples through gluing two samples face-to-face together and then 
polishing in cross-sectional geometry [53], as shown in Fig. 5.13a, b. The resistance 
mapping in cross-sectional geometry on LAO/STO system revealed two important 
information for clarifying the 2DEG mechanism. First, as shown in Fig. 5.13c [53], 
the metallic electron gas was first confirmed at the LAO/STO interfaces within the 
length scale of ~7 nm at room temperature. In this sample, the oxygen vacancy was 
eliminated by in-situ annealing in an oxygen-rich environment [41]. Based on this 
controlled oxygen vacancy elimination sample, the oxygen vacancy-induced con-
ductance was excluded. On the other hand, in the oxygen-deficient STO samples, as 

Fig. 5.13 (a) Schematic of XcAFM measurements for LAO/STO interfaces. Two LAO/STO sam-
ples were glued face-to-face followed by polishing prior to XcAFM measurements. (b) XAFM 
topography showing the locations of the LAO, STO, and glue. (c) Resistance mapping measured 
simultaneously with the AFM topography. A highly conductive region with thickness of ~7 nm was 
revealed at the LAO/STO interfaces. Oxygen vacancies were eliminated during the sample growth. 
(d) Resistance mapping in cross-sectional geometry with LAO thin film grown on oxygen- deficient 
STO substrate. Similar highly conductive interfaces are revealed. In addition, a micrometer scale 
lower resistance regions are observed due to the oxygen vacancies. Reprinted with permission 
from Nat Mater 7, 621 (2008). Copyright 2008 Nature Publishing
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shown in Fig.  5.13d, STO showed conductive nature over a length scale up to 
micrometers. For samples with low oxygen vacancy concentration, the STO exhibit 
insulating nature [53]. Furthermore, the temperature effects on the spreading of the 
2DEG at the LAO/STO interfaces were reported. The spreading of the 2DEG is 
increased and yet is still confined within ~10 nm scale at low temperature (~8 K) 
[54] compared to the RT counterparts. This short range of the spreading of the 
2DEG is contrary to the prediction of ~50 nm scale in the oxygen vacancy scenario 
[72], further supporting the intrinsic nature of the 2DEG found at the LAO/STO 
interfaces.

On the other hand, the band diagram across the LAO/STO interfaces was reported 
by using XSTM/S through fracturing preparation methods [26]. The most difficult 
obstacle for using STM/S to study LAO/STO interfaces is the fact that both LAO 
and STO are insulators; while STM/S requires conductive materials for the tunneled 
electrons to be conducted away from the tunneling locations. Huang et al. overcame 
this obstacle by using Nb:STO as the substrate to grow high-quality STO thin film 
followed by LAO thin film, and covered by a metallic SrRuO3 capping layer [26], as 
shown in Fig. 5.14a. By measuring STS spectrum point-by-point across the LAO/
STO interfaces, Huang et al. revealed a band diagram across the interfaces showing 
the existence of electric field inside 5-unit-cell-thick LAO thin films, as can be seen 
in Fig. 5.14b, c [26]. What would be interesting to see is to make the similar mea-
surements while applying external electric bias across the LAO/STO interfaces with 
the LAO thickness slightly above or below the critical thickness (3 or 4 unit cells) 
to observe how the internal electric field in LAO layer evolves accordingly. This 
type of measurements could provide greater insights into how to modify and control 
the observed 2D electron gas at LAO/STO interfaces [78].

5.3.5  Domain Walls in BiFeO3 and Interfaces of BiFeO3/
Nb-Doped SrTiO3 Studied by XSTM/S

One of the most important functionalities in complex oxide materials is the multi-
ferroics, in which more than one ferroic properties are presented in the systems. For 
example, BiFeO3 (BFO) has ferroelectric and ferromagnetic properties coexist in 
one phase [8, 79–81]. The ferroelectric and ferromagnetic type of multiferroics 
(magnetoelectric multiferroics) suggests possible applications, such as transducers, 
attenuators, filters, field probes, and data recording devices based on electric control 
of magnetization and vice versa [82]. BFO is one of the most studied single-phase 
magnetoelectric multiferroic materials. BFO has electric polarization directing 
along diagonal of the pseudo-cubic/rhombohedral axis; while the easy axis of the 
magnetic polarization is perpendicular to the electric polarization, as shown in 
Fig. 5.15 [79]. Based on the symmetry of the crystal structure, these polarization 
directions have same local minimum energy. In other words, in BFO materials, the 
eight polarization directions (positive and negative of four diagonal directions) are 

T. Chien



117

energetically degenerate. The possible angles between each pair of the polarization 
directions are 71°, 109°, and 180° [79]. Similar to PbZr1-xTixO3 (PZT) films, when 
BFO thin films are grown on cubic substrate, such as STO, domain patterns may 
develop with either {100} (109° domain wall) or {101} (71° domain wall) boundar-
ies upon cooling from growth temperature (above Curie temperature, when the 
materials are in cubic paraelectric phase) to RT (below Curie temperature, when the 
materials are in rhombohedral ferroelectric phase) [83]. Possible domain patterns in 
the thin films on STO can be expected [52]. This orientation of the domain patterns 
is visible in the cross-sectional view of the thin films.

Domain walls in ferroic materials are considered as two-dimensional (2D) topo-
logical defects [52], which play an important role in determining the functionality 
of the crystals [84]. For example, the ferroelectric polarization and magnetization 
could be controlled by both magnetic and electric fields, respectively, in GdFeO3 
[85]. In BFO, the domain walls in BFO are the sources of the exchange bias interac-
tion between the BFO and the adjacent ferromagnetic metal layer [86]. The 109° 
domain walls were reported to be the contribution for uncompensated spins [87] and 
were reported to be able to enhance the electrical conductivity in BFO [88, 89]. To 

Fig. 5.14 (a) Schematic of XSTM/S measurements on the LAO/STO system. In particular, 
Nb:STO and SRO were used as conductive substrate and capping layer, respectively, to study the 
interfaces of the insulating LAO and STO materials. (b) dI/dV point spectra taken across the inter-
faces were observed by the XSTM/S measurements. (c) Electronic band diagram across the LAO/
STO interfaces are extracted from experimental data. Reprinted with permission from Phys Rev 
Lett 109, 246,807 (2012). Copyright 2012 American Physical Society
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gain further insights on the origin of the high conductivity at the domain walls in 
BFO, Chiu et al. utilized STM/S to study the domain walls in as-grown BFO from 
cross-sectional geometry [52]. The types of domain walls—71° DW and 109° 
DW—could be easily distinguished from each other in STS contrast mapping based 
on the orientation of the domain walls in cross-sectional geometry. By measuring 
dI/dV point spectra along a line crossing the domain walls, the band edges and the 
band gaps are extracted experimentally for both types of domain walls [52]. It is 
revealed that the 109° domain walls exhibited observable lower energy gaps at the 
domain walls, which have a length scale of ~2–3 nm. It is argued and believed that 
the lower band gaps found at the 109° domain walls are the origin of the high con-
ductivity associated with this type of domain walls.

Since BFO has ferroelectric polarization properties and the XSTM/S has the 
ability to map out the electronic band diagram across an interface, Huang et  al.
demonstrated that the band bending at the BFO/Nb:STO interfaces could be con-
trolled by the BFO polarization configurations [27]. As shown in Fig. 5.16 [27], two 
BFO/Nb:STO samples with down polarized (P-down) and up polarized (P-up) are 
prepared for XSTM/S measurements. The as grown BFO/Nb:STO thin film has a 
P-down polarization; while the P-up samples were prepared by applying an up- 
direction static electric field on the as grown BFO/Nb:STO thin films. The band 

Fig. 5.15 Schematics of the crystal structures of BFO and their electric polarization orientations. 
(a) The crystal structure and one of the ferroelectric orientation. (b–d) The relationships between 
the other ferroelectric orientations with the first one shown in (a). Three distinct angles between 
the ferroelectric orientations are 71°, 109°, and 180°. Reprinted with permission from Nat Mater 
5, 823 (2006). Copyright 2006 Nature Publishing
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diagrams across the BFO/Nb:STO interfaces of these two samples were mapped out 
by the XSTM/S.  The altered electronic band bending near the BFO/Nb:STO 
 interfaces were clearly observed, as shown in Fig. 5.16c, d. The widths of the deple-
tion regions were found to be changed from 17.0 nm for P-down to 1.9 nm for P-up 
samples; while the built-in potentials were found to be changed from 1.0  V for 
P-down to 0.2 V for P-up samples. The key message in this study is that the XSTM/S 
is an ideal tool not just to study the band diagram across the interfaces of complex 
oxide, but it could be actively used as the tool to study the electronic structures upon 
the external stimuli. This opens the door for using XSTM/S to wider applications 
and material systems.

5.3.6  Short Range Charge Transfer at Interfaces 
of YBa2Cu3O7-δ/La2/3Ca1/3MnO3 Superlattice by XSTM/S

The interactions between ferromagnetic materials (FM) in contact with the super-
conducting materials (SC) have invoked a long history of research [90]. The main 
focus was on the interplay between the ferromagnetic order and the formation of the 
singlet cooper pairs in superconductors. The former favor the parallel spins while 

Fig. 5.16 (a) Schematic showing how the polarity of the ferroelectric polarization in BFO thin 
film may affect the charge distribution near the interfaces in contact with Nb:STO. (b) Points 
where dI/dV spectra were measured across the BFO/Nb:STO interfaces. (c, d) The dI/dV spectra 
taken as function of the distance away from the BFO/Nb:STO interfaces with the ferroelectric 
polarization orientation pointing down and up, respectively. The corresponding electron band 
bending was revealed through the visualization of the electronic band diagram across the BFO/
Nb:STO interfaces. Reproduced from Appl Phys Lett 100, 122903 (2012), with the permission of 
AIP Publishing
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the later favors the anti-parallel spins. The competing orders near the interfaces of 
the SC and FM result in lowering the superconducting transition temperature due 
to the diffusion of the FM ordering into the SC; while, on the other hand, the super-
conducting current may propagate through the FM with certain thickness [91, 92]. 
The understanding of the FM/SC interplay between elemental FM and conventional 
SC was well understood [90]; while that in oxide-based FM/SC is still controversial 
on many topics. One of the heavily debated topics is the length scale of the charge 
transfer across the interfaces [16, 24, 93].

The charge transfer length scale at the YBa2Cu3O7-δ/La2/3Ca1/3MnO3 (YBOC/
LCMO) interfaces was studied and directly revealed by Chien et al. using XSTM/S 
[24]. This is achieved by probing the built-in potential, a resulting consequence of 
the charge transfer between two dissimilar materials across the interfaces. As shown 
in Fig. 5.17a, b, Chien et al. successfully probed the YBCO/LCMO superlattice in 
cross-sectional geometry [24]. By measuring the point-by-point dI/dV spectra 
across many interfaces shown in Fig.  5.17a, b, the band diagrams across the 
interfaces were revealed. Furthermore, the charge transfer length scale across the 
YBCO/LCMO interfaces were visualized by analyzing the spatial evolution of the 
dI/dV spectra, as shown in Fig.  5.17c. Interestingly, depending on the growth 
sequence, the charge transfer length scale across the YBCO/LCMO interfaces is 
found to be ~0.26 nm and ~0.96 nm for YBCO on LCMO and for LCMO on YBCO, 

Fig. 5.17 (a) XSTM topography of the YBCO/LCMO superlattice. Nanometer height changes across 
different materials were observed. (b) The dI/dV mapping recorded simultaneously with the topogra-
phy measured in (a). YBCO and LCMO could be unambiguously distinguished with the dI/dV con-
trast. (c) dI/dV point-by-point spectra measured across interfaces with different growing 
sequence—YBCO on LCMO or LCMO on YBCO. The electronic structures exhibited different spa-
tial transition length scales, however all are under 1 nm in both cases. (d) The STEM with EELS data 
revealed that the different transition length scales found in dI/dV spectra were originated from the 
different atomic intermixing depending on the growing sequence. Reprinted with permission from Nat 
Commun 4, 2336 (2013). Copyright 2013 Nature Publishing
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respectively. This difference in charge transfer length scales in different growth 
sequences was further explained by the different levels of ionic intermixing across 
the interfaces which were confirmed by scanning transmission electron microscopy 
(STEM) and electron energy loss spectroscopy (EELS) data, as shown in Fig. 5.17d 
[24]. Note that the interface roughness depends on the sequence of growing which 
has been reported in many other hetero-oxide systems [94–96]. These results 
indicate that the length scale of the charge transfer between YBCO and LCMO is in 
the order of 1 nm or less [24], which is considered as the short range charge transfer 
scenario. This study demonstrates that the XSTM/S technique could be used to 
directly resolve the charge transfer length scale across the interfaces of dissimilar 
materials, and the results of this study put an upper limit of the charge transfer 
length scale for YBCO/LCMO material systems to be ~1 nm, which could be fur-
ther used to understand the proximity effects in the oxide-based FM/SC interfaces.

5.3.7  Schottky Built-in Electric Field Altered Fracture 
Toughness in Nb:STO at Interfaces in Contact 
with LaNiO3

Electric field effects on mechanical properties are rarely explored in solid materials. 
Based on the different conductivity nature of the materials, varieties of mechanisms 
were proposed to explain the electric field altered mechanical property. For exam-
ple, conductive materials will screen electric field to result in zero field inside them, 
thus (1) change of the valence electron density [97], and (2) the escape of vacancies 
from the grain interior to the grain boundary [98, 99], were proposed to explain the 
electric field effects on the mechanical properties in conductive materials. However, 
there is no overall consensus among different conductive materials in different 
reports [97–103]. For polar materials, such as ZnS, (3) the interactions between the 
electric field and the charged dislocations are responsible for the decreases of the 
hardness [104]. On the other hand, in non-polar materials, such as SiO2, (4) the 
change of the inter-atomic bond lengths due to the dielectric response (

 
P Ee= ε χ0 ) 

results in the increase of the hardness [105]. And finally, for piezoelectric materials, 
such as lead zirconate titanate (PZT), (5) the domain switching due to the electric 
field results in decreasing the fracture toughness [106]. All of above reports were 
focused on bulk materials. There is no discussion for the mechanical properties of 
nano-materials upon the applications of the electric field. This type of topic is very 
important for nanoelectromechanical system (NEMS) devices, in which strong 
electric fields are typically utilized in controlling the nano-materials. At complex 
oxide interfaces, the strong built-in electric field may also play an important role in 
altering the mechanical properties near the interfaces. To reveal this effect, Chien 
et al. chose the LaNiO3/Nb:STO system to perform the XSTM/S, in which a fractur-
ing process was inherent in the sample preparation [62].
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STO is neither a polar nor a piezoelectric material, but it has a strong electric 
field and temperature-dependent permittivity [107]. This property implies that the 
polarization density, 


P , has a nonlinear function with respect to the electric field. 

Since the polarization density is directly related to the atomic displacement in a unit 
cell, the inter-atomic bond length is expected to be directly affected by the applica-
tion of the electric field, hence the change in mechanical properties, such as fracture 
toughness. On the other hand, LaNiO3 (LNO) is a metallic oxide material at all 
temperature tested [29]. Thus, a Schottky barrier with the strong built-in electric 
field at the LNO/Nb:STO interfaces is expected.

This subtle change of the mechanical properties has been observed in Nb:STO 
in contact with metallic LNO using XSTM/S [62]. Following the reported controlled 
fracturing procedure of XSTM/S for complex oxides, a trench-like morphology 
was revealed at the interfaces of Nb:STO in contact with LNO, as shown in 
Fig. 5.18a. The trench has a depth of ~0.6 nm, which equals to 1.5 unit cell height, 
and a width of ~6 nm, which was found to be closely related to the depletion width 
formed at the Nb:STO/LNO interfaces. The built-in potential was also visible in 
the dI/dV mapping measured simultaneously with the topography, as shown in 
Fig. 5.18b. The dI/dV contrast measured at 3.0 V is highest in the trench and gradu-
ally decay into the Nb:STO substrate. The subtle changes in the dI/dV signals in 
Nb:STO as a function of the distance to the interfaces could be easily observed in 
Fig. 5.18c. The band diagram, hence the Schottky barrier profile, was revealed by 
the point-by-point dI/dV spectra taken across the LNO/Nb:STO interfaces, as 
shown and depicted in Fig. 5.18d. With in-depth analysis, Chien et al. concluded 
that the spatial evolution of the electric field in the depletion region is the origin of 
the alteration of the atomic bond length, hence the mechanical property—fracture 
toughness—of the Nb:STO near the interfaces. The same mechanism of the non-
linear response of the polarization density is also argued to be responsible for the 
observed dielectric dead layer reported at the interfaces of STO in contact with 
various types of the metallic film [108].

5.3.8  Interfaces of Y-Doped BaZrO3/NdGaO3 by Cross- 
Sectional Electrochemical Strain Microscopy (XESM)

Ion migration phenomenon is one of the many interesting and useful phenomena of 
perovskite oxides related to the applications in the fuel cell field. Among the 
perovskite materials, Y-doped BaZrO3-δ (BZY) has shown excellent chemical stabil-
ity [109, 110] as well as high protonic conductivity (higher than oxygen ion conduc-
tors) in the temperature range of 300–600 °C [111], which are promising for the 
applications in protonic fuel cells. Later, very high values of conductivities in BZY 
thin film (tens of nm) grown on (110) NdGaO3 (NGO) have been reported in the 
temperature range of 550–600  °C [112]. The very high lattice mismatch (10%) 
between the film and the substrate suggests that the heavily strained interfaces may 
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be a key parameter to tailor defect densities in thin epitaxial films. To address this 
issue, Yang et al. utilized the electrochemical strain microscopy (ESM) to study the 
BZY/NGO interfaces in both in-plane and cross-sectional geometry [113].

The BZY/NGO samples were fractured prior to the XESM measurements 
(Fig. 5.19a) and the height variation of the fractured surfaces was determined by 
AFM to be in the order of ~10 nm. The ESM technique utilizes an SPM tip as an 
electrode in electrochemical reaction. When a sufficiently high tip-sample bias is 
applied, the electrochemical reaction is activated, in which the mobile ionic species 
between the tip and sample junction could be generated or annihilated. The electro-

Fig. 5.18 (a) STM topography of LNO/Nb:STO in cross-sectional geometry. A topographic 
trench is clearly observable with width of ~6 nm and depth ~ 0.6 nm. (b) dI/dV mapping recorded 
simultaneously with the topography. The trench exhibited highest contrast and gradually decays 
into the substrate. (c) dI/dV point spectra measured at three locations indicated in (a). The similar-
ity between the spectrum B and C infers that the trench is the Nb:STO. (d) Schottky barrier is 
visualized by the dI/dV point spectra measured point-by-point across the LNO/Nb:STO interfaces. 
Reprinted with permission from Sci Rep 6, 19017 (2016). Copyright 2016 Nature Publishing
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chemical reaction thus changes the local molar volume to induce electrochemical 
strain in 2–5  pm level [114, 115]. Using the XESM on BZY/NGO, Yang et  al. 
clearly observed higher electrochemical activities near the interfaces compared to 
the film regions, as shown in Fig. 5.19b, c. This same picture has been confirmed by 
the in-plane ESM measurements where the thinner BZY (20 nm thick) film exhib-
ited higher electrochemical ESM responses compared to the 300 nm thick counter-
part. With the probing depth of 20 nm of the ESM technique, this result is in a 
consistent picture with the XESM measurements—the interfaces of BZY and NGO 
are indeed showing extraordinary electrochemical activities. These high electro-
chemical activities associated with the BZY/NGO interfaces was confirmed to be 
associated with the high density of structural dislocations found near the interfaces, 
which were observed by the high-resolution scanning TEM (STEM), as shown in 
Fig.  5.19d. In this study, the authors successfully established the correlations 
between the high electrochemical activities and the misfit dislocations at the BZY 
and NGO interfaces. Similar phenomena have been reported in other systems, such 
as STO/MgO interfaces [116], which could be possibly further confirmed by the 
XESM technique.

Fig. 5.19 (a) Schematic of XESM measurements on the BZY/NGO interfaces. (b) The electro-
chemical activity mapping near the BZY/NGO interfaces showed clearly the highest electrochemi-
cal activities right at the interfaces. (c) ESM response point spectra measured at the three locations 
indicated in (b). (d) High structural dislocation density was also revealed by high-resolution TEM 
near the BZY/NGO interfaces. Reprinted with permission from Nano Lett 15, 2343 (2015). 
Copyright 2015 American Chemical Society

T. Chien



125

5.3.9  Interfaces of La0.65Sr0.35MnO3/SrTi0.2Fe0.8O3 Created 
by Focused Ion Beam Milling

Contrast to the methods by fracturing and polishing, Kuru et al. utilized focused ion 
beam (FIB) milling to expose the interfaces of La0.65Sr0.35MnO3/SrTi0.2Fe0.8O3 (LSM/
STF) superlattices for STM measurements [55]. The choice of LSM and STF was 
based on their potential applications in fuel cell field and their distinct electronic 
properties [117, 118], which could lead to discernable STM measurements. The FIB 
is tuned to hit the sample surface with a shallow angle to create an inclined surface 
with the interfaces in the superlattice exposed for STM measurements without 
going to cross-sectional geometry. The exposed interfaces were probed by both 
AFM and STM in which the two composited layers exhibit distinct morphology. In 
AFM, LSM layers have a roughness of ~2 nm; while the STF layers have less than 
1 nm roughness. This was attributed to the different sputtering efficiency on differ-
ent materials upon the FIB milling. More interestingly when comparing STM 
topography to the AFM topography, the STF layers exhibit dips with the depths to 
be in the order of ~10 nm in STM. Since AFM is sensing the atomic force directly, 
while the STM has an electronic origin, it is most likely that the AFM topography 
represents the true morphology, while the STM topography revealed the contrast 
due to the different electronic properties. This hypothesis was further explained by 
the measured I–V spectra in STF and LSM regions. At 0.5 V, LSM shows much 
larger tunneling current than STF does. When moving from LSM into STF regions, 
the tip has to move closer to the STF surfaces to maintain constant current feedback, 
thus dip appears in STF regions in STM topography. The authors argued that the 
surfaces obtained by the FIB do not show significant damage. This work demon-
strated an alternative way to prepare interfaces for STM measurements without 
going into cross-sectional geometry. This method greatly eases the needs of skills of 
measuring samples in cross-sectional geometry and the possibility of degrading the 
tip after the long moving from the land point to the interfaces (typically few to tens 
of micrometers distance) in cross-sectional measurements.

5.3.10  Interfaces of La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 Created 
by Focused Ion Beam Milling

The FIB preparation method for interfacial STM studies was also used in 
La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 (LSC113/LSC214) multilayers [63]. The interests of 
this material system originated from the faster oxygen reduction reaction (ORR) 
kinetics in the LSC113/LSC214 hetero-interfaces compared to single phases of either 
LSC113 or LSC214 at 500 °C [119, 120]. It is very technically important to search for 
materials or material systems with high ORR activity below 700 °C for solid oxide 
fuel cells (SOFCs) applications. LSC113 has been studied intensively as the cathode 
material for the applications of SOFCs due to its high electric and ionic conductivity 
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[121, 122]. The ORR activity on LSC113 is found to be limited by the availability 
and the mobility of the surface oxygen vacancies [123]. LSC214, however, exhibits 
undesired low electrical conductivity but desired high oxygen diffusion kinetics 
[124]. Though the high ORR activities were reported in the LSC113/LSC214 hetero- 
interfaces, the microscopic understanding is still limited.

To gain insights into the mechanism of this LSC113/LSC214 multilayers exhibiting 
extraordinary ORR activities, Chen et al. utilized FIB to prepare samples for STM 
studies [63]. The two structural phases were clearly distinguished from each other 
based on the tunneling spectroscopy measurements. Both LSC113 and LSC214 showed 
energy gaps at room temperature. In particular, LSC113 has a smaller gap, consistent 
with the higher conductivity, compared to the LSC214 counterpart. Interestingly, the 
tunneling spectra measured at elevated temperatures (250–300 °C) exhibited zero 
band gaps (metallic phase) in both LSC113 and LSC214 regions. For comparison, in 
the single-layer LSC214 thin film, finite energy gaps were measured at the same 
elevated temperatures, indicating the zero band gaps found in multilayer is a result 
of the influence of the neighboring LSC113. Chen et al. explained it as the result of 
the interactions of the oxygen vacancies across the LSC113/LSC214 interfaces. This 
result indicates that the electronically activated (toward metallic behavior) LSC214 at 
intermediate temperature may have overcome the disadvantage of the low electronic 
conductivity in the single-phase LSC214 materials. The vicinity to the LSC113 serves 
an important factor to activate LSC214 electronically. This observation and the pro-
posed mechanism provide a great insight on how the LSC113/LSC214 interfaces may 
have extraordinary ORR activities and how STM can provide insightful information 
in the SOFC field.

5.4  Summary and Perspectives

This article reviews recent developments of the XSPM measurements on complex 
oxide interfaces with a focus on the research topics that could be studied with XSPM 
in an unprecedented insight. Among the reported studies, polishing, FIB milling, 
and fracturing are the three major methods successfully preparing the interfacial 
regions for XSPM measurements. Various types of SPM, based on the research 
topics, have been utilized: STM, cAFM, and ESM.  In addition to the measured 
topography, STM/S could also reveal local electronic properties, in particular the 
electronic LDOS; cAFM can probe the local conductance profiles; and ESM could 
measure the local electrochemistry reactivity. The spatial resolutions are proven to 
be in the typical SPM resolution—10 nm down to atomic resolution depends on the 
techniques and the samples. With these capabilities, reported topics of interests 
using XSPM include: two-dimensional electron gas at LAO/STO interfaces; elec-
tron band alignment at LCMO/Nb:STO interfaces; lower electronic band gap at 
domain walls in BFO; band bending under different ferroelectric polarization con-
figurations on BFO/Nb:STO; short range charge transfer between superconducting 
YBCO and ferromagnetic LCMO interfaces; Schottky electric field induced 
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mechanical properties change; high interfacial electrochemical reactivity at BZY/
NGO interfaces; LSM/STF interfaces with FIB; and oxygen vacancy-related elec-
tronic modification in LSC113/LSC214 multilayers. All of these successful examples 
pioneered the way toward a brand new way of studying interfacial phenomena using 
various types of SPM in cross-sectional geometry. What is expected is the further 
expansion of using SPM in cross-sectional geometry for a wider variety of material 
systems, such as solar cell material systems [125, 126]. Combination of SPM with 
external stimuli, such as electric field, magnetic field, light illumination, mechanical 
stress, and so on are also expected to provide unprecedented views on the interfacial 
science. With the increasing interests in the novel interfacial phenomena found in 
complex oxide interfaces, XSPM will provide unique information toward under-
standing the underlying physics not accessible by other experimental techniques.
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Chapter 6
A Review of Nanofluid Synthesis

Binjian Ma and Debjyoti Banerjee

6.1  Introduction

Nanofluids are stable colloidal suspensions of nanoparticles in a chosen solvent 
(base fluid). The dimension of “nano-” entities is strictly defined by ISO/TS 27687 
as a particle with at least one representative dimension (e.g., diameter, thickness, or 
length) ranging in size from 1 to 100  nm. This conventional definition of the 
nanoparticle is commonly agreed among nanotechnology researchers. The classifi-
cation of dimension less than 100 nm arises from the phenomena that the surface 
area to volume ratio increases rapidly as the size of the particle is diminished. As a 
result, the material properties of these novel nanoparticles often deviate signifi-
cantly and anomalously from their bulk (conventional) values due to the dominance 
of surface effects (e.g., from interfacial interactions and dominant contributions 
from surface energy). In other words, nanoparticles exhibit unique properties which 
are drastically different from their bulk characteristics. In-depth studies on the 
transport mechanisms responsible for these anomalous behaviors are still a bur-
geoning topic in contemporary literature.

The concept of nanofluid was first proposed by Choi and Eastman [1] in 1995. 
They observed an anomalous enhancement in the thermal conductivity when a 
small percentage of copper nanoparticles were dispersed in water. Subsequently, 
various combinations of nanoparticles and liquids have been studied for enhancing 
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transport phenomena and thermophysical properties (e.g., thermal conductivity, 
specific heat capacity, and viscosity). Typical materials used for synthesizing nano-
fluids are metals (copper, aluminum, gold, etc.), inorganic oxides (iron oxide, zinc 
oxide, silicon dioxide, etc.), carbon-based materials (CNT, graphene, fullerene, 
etc.), and other ceramics (aluminum nitride, PNP, cellulose, etc.). A popular choice 
for solvents includes water, glycols, ionic liquids, organic liquids, and refrigerants. 
Other liquids explored in the literature include lubricants, oils, biofluids, emulsions, 
fuels (e.g., kerosene), alcohols, molten salt eutectics, etc.

Despite the vast range of materials that have been explored in the literature for 
synthesizing nanofluids, the general concept of dispersing nanoparticles in the base 
fluid is to enhance certain material properties of the base fluid for achieving 
enhanced performance in a chosen application. For example, high thermal conduc-
tivity is desired in the heat transfer applications (often at the expense of higher vis-
cosity and pump penalty) while improved load-carrying capacity and non-Newtonian 
rheological behavior are preferred in lubrication applications (with a concomitant 
ability to dissipate heat rapidly). On the other hand, pump penalty is of secondary 
consideration in thermal energy storage (TES) applications—where the material 
cost ($/kWht) and enhanced specific heat capacity are of primary importance. Hence 
the desired fluid properties are motivated by the chosen application which in turn 
mediates the choice of the synthesis protocol for a specific nanofluid. Thus, it is 
crucial to establish a library of synthesis protocols for the select set of nanofluids for 
target properties (and applications).

Another important issue and common concern in nanofluids application is the 
long-term stability. The current architecture in nano-manufacturing is well- 
developed which allows us to synthesize nanoparticles with different size, shape, 
and structure. However, keeping nanoparticle suspended uniformly in the base fluid 
for long enough time is still a challenging task. Various approaches have been 
explored to increase the stability of suspensions. These approaches have largely 
yielded short-term improvement but no conclusive studies exist for ensuring long- 
term stability. One key idea in keeping nanoparticle suspensions stable for long time 
periods is to prevent them from agglomerating (which is primarily induced by 
Brownian motion-mediated collision and coagulation). Some of the typical strate-
gies utilized for ensuring long-term stability will be discussed in subsequent 
sections.

One last major consideration in nanofluid synthesis is the cost ($/kg and $/kWht) 
and feasibility of scaling-up synthesis to large volumes. Such topics of engineering 
significance are often neglected in fundamental research but are key to the commer-
cial success of nanofluids, if this technology were to penetrate conventional and 
novel engineering applications. The engineering economics of nanosynthesis, scale-
 up, and cost will therefore be explored briefly in this review.
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6.2  Nanofluid Synthesis Protocols

Nanofluids are typically synthesized by either two-step method or one-step method.
The two-step method, as the name suggests, consists of two separate processes 

for synthesizing nanoparticles (or commercially procured) and dispersing the pro-
cured nanoparticles into base fluid. Such methods are being extensively used in 
nanofluid research due to its simplicity. Proper choice of synthesis protocol can 
enable better stability as well as control over precision and size of nanoparticles in 
the suspension. Nanomaterials used in this method are usually procured commer-
cially, typically in the form of dry powders. With advances in synthesis techniques 
for nanoparticles, large-scale production of nanoparticles with good precision in 
size and shape has been achieved by commercial vendors (e.g., using combustion 
synthesis techniques). The techniques used for making nanoparticles include 
mechanical methods (milling, grinding, etc.), physical methods (physical vapor 
deposition, inert gas condensation, etc.), and chemical synthesis (sol-gel process, 
solution combustion, electrolysis, combustion synthesis, etc.). Depending on the 
requirements of the chosen applications, different synthesis protocols can be 
selected to deliver the specification for nanomaterials with the desired constraints 
for size and shape. This review will be limited to discussion of dispersion protocols 
rather than the synthesis of nanoparticles in the form of dry powders. Excellent 
reviews are available in the literature on the topic of the nanoparticle synthesis (e.g., 
by C. N. R. Rao [2]). These synthesis protocols for nanoparticles in the form of dry 
powders are categorized into: (a) top-down, and (b) bottom-up techniques. The 
reader interested in this topic can consult this reference (and similar reviews avail-
able in the literature).

The primary bottleneck of the two-step method is that appropriate dispersing 
technique is needed to ensure the stability of the nanoparticle suspensions in the 
solvent/fluid phase. Due to the high surface energy nanoparticles inherently form 
unstable suspensions in liquids and have a strong tendency to agglomerate (which is 
primarily caused by Brownian motion mediated collision of nanoparticles in the 
suspension). Various strategies are used for mitigating mutual collision of nanopar-
ticles in the suspension and preventing (or minimizing) the tendency for agglomera-
tion. Typical methods used for preventing agglomeration of nanoparticles include 
ultrasonic agitation, additives to control pH (e.g., buffer solutions), and functional-
ization of the nanoparticle with surfactants or chemical groups (such as amines or 
silanes) to promote better dissolution in the solvent phase by hydrogen bonding and/
or ionic interactions. Ultrasonic agitation often provides limited payback since the 
nanoparticle suspensions typically settle and precipitate from the solution under 
gravity. The remaining approaches are intrusive methods since they often cause 
significant alteration of the chemical composition of the solvent phase. The details 
of nanofluid stabilization will be discussed in the later section. However, the two- 
step method often fails to deliver long-term stability of the synthesized nanofluids.

The one-step method relies on the generation of nanoparticles in-situ in the sol-
vent phase from precursors. In other words, the synthesis and dispersion of 
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 nanoparticles happen simultaneously in the solvent phase. As a result, the propen-
sity of agglomeration of the nanoparticles generated in-situ is minimized. The one-
step method can be implemented by either a physical technique (e.g., direct 
evaporation and condensation) or chemical technique (e.g., chemical decomposi-
tion). However, it is more difficult to control the morphology of the particles pre-
cisely as small variations in the designed synthesis conditions (temperature, time, 
feeding rate, etc.) can drastically alter the properties of the synthesized nanofluids 
due to variation in nanoparticle size distribution and stability. Thus, it is very impor-
tant to understand, model, and optimize the synthesis conditions to enable better 
control over the transport mechanisms (e.g., homogeneous or heterogeneous nucle-
ation of the nanoparticles from the precursors as well as growth and subsequent 
agglomeration of the nanoparticles generated in-situ). It should be noted that if the 
generation of the nanoparticle is a distinctly separate process from the dispersion 
step, such methods are categorized as a two-step process.

6.2.1  Two-Step Method

For most nanofluid synthesized via two-step method, commercial nano-powders 
supplied by manufacturers were used directly. The preparation process itself is 
rather straightforward: the nanoparticles are first dispersed in the base fluid and then 
stabilized by different approaches. However, depending on the material of the 
nanoparticle and base fluid, the dispersion process could be either “spontaneous” or 
“non-spontaneous”. In the former case, the nanoparticles would readily spread out 
in the base fluid and remain in the stable suspension state, while in the latter case, 
the nanoparticles tend to stay together unless external forces are applied. Such vari-
ation gives rise to the difference in the nanofluid preparation procedure.

In general, the nanofluids tend to be more stable if there is a strong affinity 
between the nanoparticles and liquid molecules and a strong repulsive force between 
nanoparticles. A good example for illustrating particle–solvent interaction would be 
the dispersion of TiO2 in water. Due to the proximity of acidic and basic sites on the 
surface of different TiO2 crystals (with/without defects), water molecules are found 
to get absorbed and dissociated on TiO2 surfaces, with hydroxyl groups binding to 
surface Ti atom and H atoms binding with the bridging O atom [3–6]. Such feature 
allows the TiO2 nanoparticles to form strong bonding with the water solvent, which 
reduces their possibility of coagulation in the suspension and enhances the stability 
of the nanofluid consequently. The dispersion of CNTs in water, on the contrary, 
goes to another extreme. Carbon by nature is almost purely aromatic and non-polar. 
They possess strong van der Waal forces between each other and high level of 
hydrophobicity. Thus, CNTs have a strong tendency to form agglomerates with the 
neighboring groups in common organic and aqueous media unless coated with 
some stabilizing agent/function group [7, 8].
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Strong repulsive forces could also help keeping nanoparticle apart from each 
other, thereby increasing their stability in suspensions. Such forces could come 
from the electric double layer (charged stabilization) or absorbed polymeric mole-
cules (steric stabilization) on the particle surface. Adjusting pH is a typical method 
for enhancing nanofluid, as the higher concentration of H+/OH− in the system 
increases surface charge density, and thus brings higher electrostatic potentials 
between particles [9]. Adding appropriate ionic compound could induce similar 
sterilization effect, as the ions transfer their charges to the nanoparticle surface and 
hence increase electrostatic stabilization [10].

The intermolecular potentials have a direct impact on the collision frequency of 
nanoparticles in the liquid environment. Apart from this, the stability of nanofluid is 
also dependent on the probability of merging upon collision, which is closely linked 
to the specific surface energy of the nanoparticles. From chemical thermodynamic 
point of view, a high specific surface energy is representative of an unstable state, in 
which the particles will try to minimize its free energy by forming large aggregates 
and reduce surface areas. For example, conducting (metal) nanoparticles possess 
very high specific energy of metal surfaces (1000~2000 mJ/m2) in comparison with 
other organic and inorganic materials (~20 mJ/m2 for teflon and 462 mJ/m2 for sil-
ica) [11]. This results in high instability of “original” metallic nanofluids such that 
the freshly dispersed nanoparticles would agglomerate and precipitate readily in 
short time [12].

The point here is that the preparation of nanofluid via two-step method is more 
than simply mixing the particles with the fluid. Considerable efforts should be 
focused on how to obtain “stable” nanofluid with additional procedures before, dur-
ing, and after the mixing process. Such practices are determined by the materials 
used in nanofluid preparation as well as the experimental conditions. Here, we will 
briefly summarize the two-step process used for preparing different nanofluids. 
More details on the different approaches for enhancing nanofluid stability will be 
discussed below. A general compilation of two-step nanofluid preparation can be 
found in the appendix for readers’ reference.

Typical nanoparticles used in nanofluids are metallic (Cu, Ag, Au, Al, Fe), 
ceramic (CuO, Al2O3, Fe3O4, SiO2, TiO2, ZiO2, AlN, SiN), or carbon-based (single/
multi-walled CNT, graphene, C60). The typical base fluid used include water/water- 
soluble molecular liquid (water, ethylene glycol, ethanol), oil (PAO, silicon oil, 
engine lubrication oil), and ionic liquid ([Bmim][PF6], [HMIM]BF4, molten salt). 
The table below summarizes the stability level of the corresponding nanofluids 
without any stabilizing agent/surface functionalization. It represents the inherent 
dispersibility of the nanoparticles in base fluids (Table 6.1).

Table 6.1 Stability of nanoparticles in different fluids

Without treatment Water/water-soluble molecular liquid Oil Ionic liquid

Metallic Poor Moderate Good
Ceramic Moderate Good Very good
Carbon Very poor Poor Moderate
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6.2.2  One-Step Method

Although two-step method has been used widely in the nanofluid research commu-
nity, the issue of agglomeration in the mixed nanofluid has promoted the exploration 
of the one-step method in which the synthesis and dispersion of nanoparticles are 
performed simultaneously. Depending on the nature of the synthesis approach, they 
could be classified into either physical or chemical method.

6.2.2.1  Physical Methods

The advantage of physical synthesis methods in comparison with chemical pro-
cesses is the absence of solvent contamination in the process of nanoparticle genera-
tion. Evaporation-condensation is a typical physical approach for preparing 
nanofluids in one step, but other methods are also available.

Physical Vapor Deposition

Physical vapor deposition is a broad category of methods used for nanomaterial 
synthesis, in which nanoparticles were formed by direct condensation of the target 
metal vapor in contact with a flowing liquid. Different particle concentration and 
diameter can be achieved by controlling the vapor release and liquid flow rates. 
Such methods originated from the gas evaporation method used for preparing fine 
metal particles in the inert gas environment [13], and has been improved and adapted 
for producing monodispersed nanoparticles in the liquid environment. Akoh [14] 
synthesized ferromagnetic metal oxide (Fe3O4, CoO, and NiO)-based nanofluid by 
the so-called VEROS (Vacuum Evaporation onto a Running Oil Substrate) method 
in which particles were generated in oil with an average diameter of 2.5 nm. Wagner 
[15] prepared silver and iron nanofluids in oil using a similar approach involving 
magnetron sputtering. Eastman [16] prepared Cu/ethylene glycol nanofluid by 
evaporating the source metal into cooled liquid using resistive heating (10 nm Cu 
nanoparticles were produced in EG with 0.5% volume concentration and little 
agglomeration was observed).

The nanofluid synthesis via conventional PVD chamber requires low vapor pres-
sure base fluid and high power for metal vaporization. Localized high temperature/
heat flux technique can be used for achieving more efficient and convenient nano-
fluid synthesis. Exploding wire method (also known as pulsed wire explosion, 
pulsed-wire evaporation method) is one common technique used for creating metal 
vapor with localized high energy input [17]. Lee [18] used pulsed-wire evaporation 
technique for preparing ethylene glycol-ZnO nanofluid. In their experiment, a 
pulsed high-voltage DC power was used to induce a non-equilibrium overheating in 
a thin Zn wire. The pure metal evaporated within microseconds and condensed into 
small-size particles (<100 nm) after coming into direct contact with the EG. Park 
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[19] synthesized three different metallic nanofluids including Ag, Cu, and Al 
nanoparticles in three kinds of fluids: water, ethanol, and ethylene glycol using the 
electric explosion method. The author reported that higher energy leads to the 
decrease in the size of metallic nanoparticles. Similar methods were also used for 
preparing copper [20–22], silver [22–25], iron [22], gold [26], alumina [27], and 
titania [28] nanofluids.

Nanofluid synthesis with the aid of plasma is also a promising approach due to 
multiple advantages of this method—including the simplicity of the experimental 
design. The plasma could be generated either in the air or in the fluid. Chang [29] 
fabricated Al2O3 nanofluid by a modified plasma arc system. In the system, bulk 
metal was vaporized by high-temperature plasma arc and cooled by pre-condensed 
deionized water. The rapid cooling process prevented the growth of particle size 
which produced stable nanofluid with fine particles (25–75 nm). Teng [30] prepared 
organic nanofluid using a similar system, in which carbon was vaporized in a plasma 
chamber and cooled by deionized water to form fine carbon nanoparticles (244–
284 nm). It should be noted that if pure metallic nanofluids are desired, the plasma 
should be generated in an inert gas environment to avoid the metal vapor from being 
oxidized.

Nanofluids can also be prepared directly by solution plasma in which the target 
material gets vaporized and condensed instantly. For submerged arc plasma meth-
ods, a selected metal is heated and vaporized by arc sparking between two elec-
trodes immersed in dielectric liquids. The metallic aerosol then immediately 
condenses into nanoparticles under the cooling effect of the flowing liquid. Tsung 
[31] first used the arc-submersed system for synthesizing copper nanoparticle sus-
pensions in de-ionized water (DIW). Cu nanoparticles with either coarse or fine 
bamboo leave structures (<200 nm) were generated by changing the environmental 
pressure during synthesis. The technique was adopted and improved for preparing 
stable TiO2 [32], CuO/Cu2O [33], silver [34], and nickel [35] nanoparticle suspen-
sion by the same research group, in which nanoparticles with different morpholo-
gies were manufactured by changing electric current, arc pulse-duration/off time 
and dielectric liquids. Saito and Akiyama [36] have made a thorough compilation of 
available nanomaterial synthesis techniques using solution plasma, where the source 
materials, reaction media, and electrode configurations are discussed in detail.

Laser ablation in the liquid is another simple and effective way of vaporizing 
metal solids and synthesizing nanofluids in one step. The method works by focusing 
a high-power laser at the submerged solid surface for an appropriate time until the 
solid melts and vaporizes above ablation threshold. Meanwhile, a thin liquid layer 
near the solid surface will also vaporize with the metal. The expansion of liquid and 
conversion to vapor fractures the metal into nano-sized drops, which are later super-
cooled by the surrounding liquid and transformed into nanoparticles [37]. Phuoc 
[38] synthesized Ag-deionized water nanofluid using multi-beam laser ablation (the 
synthesized nanoparticles were observed to be stable for several months). It was 
found that both laser intensities and multi-beam ablation can increase the ablation 
rate and promote the reduction of the nanoparticle size. Kim [39] prepared bare 
Au-water nanofluid using single-pulsed laser beam (λ = 532 nm). The average size 
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of the nanoparticles ranged from 7.1 to 12.1 nm and the nanofluid samples were 
observed to be stable for 3 months after synthesis. The volume concentration of the 
synthesized nanofluids was 0.018%. The one-step laser ablation technique has also 
been used to synthesize a variety of nanofluids with different nanoparticles includ-
ing: Cu [40], Al [41], Sn [42], Si/SiC [43], CuO [44], Al2O3 [45], and carbon parti-
cles [46, 47]. Compared to other methods, laser ablation in the liquid is a rather 
simple and “green” (environmentally friendly) technique for synthesizing nanoflu-
ids in water or other organic liquids under ambient conditions. More details on the 
fundamental mechanism and fabrication process of nanomaterials via laser ablation 
in liquid were reported by Zeng [48].

Wet Mechano-Chemical Techniques

The top-down approach for synthesizing nanoparticles via purely mechanical 
actuation (i.e., crushing, milling, and grinding) is an economical, simple, and envi-
ronmentally benign alternative for synthesizing various nanofluids. With the 
extensive development and use of high-energy ball milling (HEBM), synthesis of 
ultrafine nanoparticles has been proven to work for a number of materials [49–51]. 
Inkyo [52] prepared a well-dispersed suspension of TiO2 nanoparticles in methyl 
methacrylate (MMA) with 5% mass fraction using beads milling and centrifugal 
bead separation. Particle size distribution between 10 and 50  nm was achieved 
using 660 min milling time, and the nanoparticles remained in stable suspension 
with no sedimentation after 24 h. Harjanto [53] prepared TiO2-water nanofluids 
through the one-step process in which titania nanoparticles were milled together 
with distilled water in a vial placed in a planetary ball mill. The concentrated nano-
fluid solution synthesized in this process was diluted into different concentrations 
and stabilized using ultrasonic stirrer and oleic acid served as a surfactant. The 
average nanoparticle size was in the range of 24.1–27.2 nm and good stability was 
confirmed from the measured values of absolute zeta potential. Nine [54] prepared 
well-dispersed Cu/Cu2O-water nanofluid using low energy ball milling in aqueous 
solution by varying the ball size and milling period. Samples that have been ground 
for 30 min by 1 mm balls and for 60 min by 3 mm balls were reported as stable 
colloids after performing sedimentation tests for over 7 days. Almasy [55] pre-
pared ferrofluids with particle size of 10–15  nm using vibrating ball mill with 
industrial magnetite powder. It was observed that the wet-milled magnetite sus-
pension had a higher saturation magnetization than that obtained in the relatively 
rapid co-precipitation synthesis. Wet mechanochemical methods may be preferred 
in certain practical situations for preparing nanofluids due to their simplicity, but 
scaling-up these synthesis techniques for large-scale manufacturing is still 
challenging.
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6.2.2.2  Chemical Methods

One-step synthesis of nanofluids via chemical methods involves the generation and 
dispersion of target nanoparticles using a single-step or a series of chemical reac-
tions (i.e., reduction, decomposition, etc.) from certain precursors. The process is 
usually performed in liquid environments and is known as wet chemistry method. 
Compared to the physical methods, wet chemistry routines are generally cheaper, 
require minimal instrumentation and are easier to implement, especially for scaling-
 up these synthesis techniques for large-scale manufacturing as well as for mass 
production. Also, very precise control over monodispersed nanostructures is achiev-
able by proper choice of the chemistry of the synthesis protocols.

Chemical Reduction Method

Chemical reduction method has been used for nanofluid preparation by a number of 
researchers. Liu [56] prepared Cu-water nanofluid using copper acetate as precursor 
and hydrazine (N2H4) as reducing agent. The nano-suspension with monodisperse 
Cu particles (50–100 nm) was formed by slowly adding a predetermined quantity of 
hydrazine solution into copper acetate solution by constant stirring. Garg [57] syn-
thesized copper nanofluids in ethylene glycol using a similar method except for the 
addition of sodium hydroxide as an additional reactant. The mean nanoparticle size 
was measured to be 200 nm. Kumar [58] prepared stable non-agglomerated copper 
nanofluids by reducing copper sulfate pentahydrate with sodium hypophosphite as 
reducing agent in ethylene glycol as base fluid by means of conventional heating. 
The process was fast and cost-competitive. Shenoy [59] employed a different one- 
step reduction routine for preparing copper nanofluids, in which copper nitrate was 
reduced by glucose in the presence of sodium lauryl sulfate. The nanofluid was 
found to be stable for a minimum of 3 weeks, and the method was reported to be 
reliable, simple, and cost-effective.

Other types of nanofluids have also been synthesized using chemical reduction 
methods. Tsai [60] prepared aqueous gold nanofluid by the reduction of aqueous 
hydrogen tetrachloroaurate (HAuCl4) with trisodium citrate and tannic acid. Au 
nanoparticles with different sizes were obtained by changing the amounts of tetra-
chloroaurate, trisodium citrate, and tannic acid. Xun [61] prepared stable silver 
nanofluid in kerosene by first extracting silver nitrate in nonpolar solvent by thio- 
substituted phosphinic acid extractant Cyanex 302, and then reducing Ag+ solid. 
Salehi [62] prepared silver nanofluids using a different approach, in which silver 
nitrate was reduced by sodium borohydride and hydrazine using polyvinylpyrrol-
idone (PVP) as the surfactant. It should be noted that the chemical reduction 
method only works for a very limited number of metallic particles which are chem-
ically inert.
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Precipitation Method (Ion Exchange)

Nanoparticles can be synthesized in various liquids by interactions between differ-
ent ions at a controlled rate. Cao [63] prepared 5 nm ZnO nanorods in ethanol by 
adding sodium hydroxide into zinc acetate dehydrate (Zn(Ac)2·2H2O) solution at 
room temperature. It was found that the size and shape of nanorods with different 
size and shapes can be tuned via simply altering NaOH concentration and reaction 
time. Darezereshki [64] prepared maghemite (γ-Fe2O3) nanoparticles by mixing the 
FeCl3/FeCl2·4H2O solution and theNH3·H2O solution with vigorous stirring for 2 h. 
The average particle size was observed to be 45 nm. Manimaran [65] prepared cop-
per oxide nanofluids by mixing copper chloride with sodium hydroxide in deionized 
water along with heating and magnetic stirring. The precipitates were observed to 
have an average size of 20  nm with very little agglomeration. Chakraborty [66] 
synthesized Cu-Al layered double hydroxide nanofluid via the one-step method. 
The nanoscale precipitation was formed by the dropwise addition of NaOH solution 
into the aqueous mixture solution of Cu(NO3)2·3H2O, Al(NO3)3·9H2O, and NaNO3. 
The particles were observed to form clusters with size ranging from 86 to 126 nm in 
the suspension, and the nanofluid was found to be stable with high zeta potential 
value. Nanoparticles were also synthesized by the precipitation method first and re- 
dispersed in the fluid later after additional treatment (i.e., centrifugation, washing, 
calcination) [67–70]. Such methods should not be categorized as the one-step 
method as the synthesis and dispersion processes were not conducted 
simultaneously.

Sol-Gel Method (Hydrolysis)

Sol-gel process is a widely used technique for synthesizing nanoparticles with dif-
ferent size and scale of gel networks. The reaction mechanism involves two stages: 
(1) hydrolysis reaction of the precursor in which the functional binders of the pre-
cursors are substituted with the hydroxyl group; and (2) polycondensation reaction 
in which the hydroxyl group of monomers gets connected and forms continuous 
network [71]. Most nanofluid literature involving sol-gel process have adopted a 
two-step method for preparing the nanofluid samples, in which the nanoparticles 
were first generated from precursors, separated out from the reacting liquid, calci-
nated, and re-dispersed into the targeting base fluid [72–78]. However, there are also 
few cases where the nanofluid is prepared directly via the sol-gel method. Kim et al. 
[79] prepared stable silica nanofluid in water using TEOS as precursor, ethanol as 
solvent, DI water for hydrolysis reaction, and ammonium hydroxide as base cata-
lyst. The particle size was approximately 30 nm, 70 nm, and 120 nm by controlling 
the ammonium hydroxide concentrations at 0.28  mol, 0.42  mol, and 0.56  mol, 
respectively. Jing [80] prepared highly dispersed silica-water nanofluid samples 
using a similar one-step sol gel process. Nanofluids with particle sizes of 5, 10, 25, 
and 50 nm were fabricated by first bending H2O, NH3 and alcohol, and then adding 
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TEOS with different quantities. The main issue with preparing nanofluid by sol-gel 
in one step is the contamination from excess reacting chemicals.

Emulsion-Polymerization

Emulsions are dispersed systems with two immiscible liquids (i.e., oil and water) in 
which liquid droplets are dispersed in a liquid medium. When micro/nano-emulsion 
materials are mixed, the reactant exchange from the dissolved molecules in each 
liquid could potentially promote precipitation reactions in the nanodroplets, which 
is then followed by nucleation, growth, and polymerization of the nanoparticles 
[81]. Han [82] developed a one-step, nanoemulsification method to synthesize the 
indium/polyalphaolefin (PAO) nanofluid. In the test, an indium pellet was first 
added to the PAO oil in a reaction vessel heated to 20 °C above the indium melting 
temperature. A PAO aminoester dispersant was injected into the reaction vessel, 
which also acts as a stabilizer to prevent nanoparticle coagulation. The emulsion 
was then exposed to high-intensity ultrasound radiation for more than 2 h until a 
stable nanofluid was formed. Kim [83] prepared biphasic nano-colloids of 
poly(dimethyl siloxane) (PDMS) and an organic copolymer (methyl acrylate co- 
methyl methacrylate co-vinyl acetate) in aqueous solution via emulsification and 
polymerization route. The particles were observed to have 170 nm size with a spa-
tial resolution of 8 nm achieved in the STEM images. Pattekari [84] prepared stable 
nano-encapsulation of poorly soluble anticancer drug in water using a sonication 
assisted layer-by-layer polyelectrolyte coating (SLbL). In the experiment, polyan-
ion solutions were added into the drug powder-contained DI water. The process 
involves simultaneous breaking down of the drug powder by ultrasonication and 
formation of polycation/polyanion shell by polymerization. The average size of the 
encapsulated particles was in the 100–200 nm range. A similar method was adopted 
by Lvov [85] for producing aqueous nanocolloids of encapsulated drug particles 
with 150–200 nm diameter. It should be noted that nanoscale synthetic polymer in 
solution has been widely used in biomedical applications. The more frequently used 
terminology in biotechnology literature is “nanocolloid”, but the concept is essen-
tially same as nanofluids.

Microwave-Assisted Reaction

The use of microwave irradiation has been adopted in various studies for promoting 
nanoparticle formation in liquids via chemical reactions. Such methods were found 
to be fast and efficient for preparing nanofluids in one-step synthesis protocols com-
pared to other chemical routes. Zhu [86] prepared copper nanofluids by reducing 
CuSO4·5H2O with NaH2PO2·H2O in ethylene glycol under microwave irradiation. 
Most of the Cu particles are about 10 nm in diameter, and the nanofluid was found 
to be stable for more than 2 weeks in the quiescent state at 120 °C. Nikkam [87] 
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fabricated Cu nanofluids in diethylene glycol (DEG) base liquid, by heating up 
Cu(Ac)2·H2O–DEG mixture in microwave oven with PVP as a stabilizer. The aver-
age nanoparticle size produced was 75 ± 25 nm. Singh [88] prepared stable silver 
nanofluid in ethanol by reduction of AgNO3 with polyvinylpyrrolidone (PVP), used 
as the stabilizing agent, using microwave radiation. Ag nanoparticles with size rang-
ing from 30 to 60 nm were produced with different salt-to-PVP ratio and microwave 
irradiation duration. Habibzadeh [89] prepared SnO2 nanofluid in water by the 
microwave-induced chloride solution combustion synthesis (CSCS) method, in 
which SnCl4, sorbitol, and ammonium nitrate were heated up to combustion tem-
perature by microwave irradiation. The average particle size was 69 and 153 nm for 
two different samples. Jalal [90] synthesized zinc oxide nanoparticles in ionic liquid 
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [bmim][NTf2], 
by microwave decomposition of zinc acetate precursor.

Microwave irradiation can provide a rapid synthesis technique by uniform heat-
ing of reagents and solvents which helps to accelerate the chemical reaction of the 
metal precursors as well as the nucleation of nanoparticles in the solution. Such 
features result in monodispersed nanostructures which is beneficial for nanofluid 
synthesis.

Other Methods

Researchers have also considered various other approaches for generating nanopar-
ticles in base fluids. Teng [91] developed an oxygen-acetylene flame synthesis sys-
tem to fabricate nanocarbon-based nanofluids (NCBNF) through a one-step method. 
In the system, the O2-C2H2 flame was served as a carbon source, and the generated 
smoke was cooled and condensed by water mist to form NCBNF. Kim [92] devel-
oped an one-step electrochemical method for producing water-based stable carbon 
nano colloid (CNC) without adding any surfactants at the room temperature. Carbon 
nanoparticles were formed by applying electric power to the graphite anode and 
stainless steel cathode immersed in a DIW bath. The samples were observed to be 
stable for 30 days and the average size of the suspended nanoparticles was measured 
to be ~15 nm. Phase transfer method has been developed for preparing homoge-
neous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were 
successfully transferred from water to n-octane after modification by oleylamine. 
Kang [93] prepared high-quality carbon nanotube in water by dipping red-hot (> 
800 °C) graphite rods into cool water repeatedly. The multiwall nanotubes synthe-
sized in-situ were found to have an inner diameter between 5 and 10 nm and outer 
diameter between 30 and 50 nm.
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6.3  Nanofluid Stabilization

Stabilization is the most important issue in nanofluid research and applications, as 
the properties of nanofluids could be drastically affected by the clustering and 
aggregation of nanoparticles. Clustering of nanoparticles in fluid is a natural and 
spontaneous process due to the strong Brownian motion of liquid molecules which 
promote collision between nanoparticles, while the high surface energy of nanopar-
ticles promotes adhesion after collisions [94]. In these clusters, the nanoparticles 
could be held together by either weak physical bonds (intermolecular forces) which 
are readily broken apart by external forces, or tight chemical bonds (which are dif-
ficult to separate). In the previous case, the process is usually reversible as the size 
of cluster can be reduced easily by means of ultrasonication or stirring. In the latter 
case, the clustering process is irreversible as very strong forces (i.e., high energy 
ball milling) are needed to break down the agglomeration [95]. In many cases, 
nanoparticle precipitates are “weak” agglomerates which can be easily re-dispersed 
into fine nano-suspensions. In other cases, stable agglomerated particle clusters 
could still be dispersed uniformly in the suspensions for long times without sedi-
mentation. Hence, the concept of “stable” nanofluid should be clarified into differ-
ent applications and scenarios.

6.3.1  Characterization of Stability

Although there is no standardized protocol for quantitatively evaluating the level of 
stability of particle dispersion in nanofluid/noncolloid, three methods have been 
generally used by different researchers for characterizing and analyzing the stability 
of nanofluids.

6.3.1.1  Sedimentation and Centrifugation Methods

Sedimentation method is the simplest and most straightforward method for charac-
terization of nanofluid stability. Certain quantity of nanofluids is dispensed into a 
specific container and the process of nanoparticle sedimentation in the suspension 
is observed over time. In most studies, a time frame will be reported as an indicator 
for the stable duration for the sample nanofluid, during which no or little visual sedi-
mentation of particles can be observed visually [57, 96–111]. Many of these studies 
have also recorded the particle precipitation process using cameras, while few other 
studies have tried to measure the particle sedimentation quantitatively by recording 
the drop in solid–liquid interface height [112], thickness of particle sedimentation 
[113], nanoparticle densities at different height in the nanofluid [110], etc. One sig-
nificant drawback of the sedimentation method is that it could be extremely time- 
consuming as some nanofluids were found to be stable over 12 months [114]. In 
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order to evaluate the nanofluid stability faster, centrifugation methods have also 
been used by a variety of studies, in which visual investigation of sedimentation of 
nanofluids was performed using a dispersion analyzer centrifuge. Singh [88] con-
firmed the stability of silver nanofluid by centrifuging the nanofluid sample at 
3000 rpm for 10 h. Mehrali [115] prepared graphene nanoplatelets (nanofluids) in 
distilled water with different mass concentrations. The author observed little sedi-
mentation on the bottom of test tubes after the samples were centrifuged at 6000 rpm 
for 5–20 min. Fang [116] prepared deep eutectic solvent-based graphene nanofluids 
and confirmed the stability by centrifugal process (5000–20,000 rpm) for 30 min.

6.3.1.2  Zeta Potential (Electro Kinetic Potential)

Zeta potential is the electrostatic potential between bulk fluid and particle surface 
induced by the particle surface charge. This indicates the interaction energy between 
particles, and is in many cases responsible for the stability of particles toward coag-
ulation [117]. Generally speaking, high absolute value of zeta potential means 
stronger repulsive force between nanoparticles, and hence indicates better stability 
of nanofluids. Typically, a colloid is considered unstable, moderately stable, stable 
and highly stable with zeta potential values less than 30 mV, between 30 and 40 mV, 
between 40 and 60 mV, and greater than 60 mV, respectively [118]. Measurement of 
zeta potential is a well-developed technique with standardized protocols [119]. The 
process itself is fast and easy through a variety of commercially available equip-
ment. Hence, this is widely used for characterizing the stability of nanofluids under 
different conditions [53, 66, 97, 104, 106, 120–122].

6.3.1.3  Spectral Absorbency Analysis

In typical spectral absorbency analysis, the intensity of radiation absorption passing 
through a target sample is measured for different frequencies. It is possible to char-
acterize the particle size distribution of nanoparticles in nanofluid using absorbance 
spectrum, since the optical properties of small nanoparticles depend on their mor-
phology (i.e., size and shape). UV–Visible spectroscopy has been adapted for use as 
a simple and reliable method for monitoring the stability of various nanoparticle 
solutions including gold [123], copper [124], Al2O3 [124–126], ZnO [127], CuO 
[128], SiO2 [128], TiO2 [89, 125, 129], CNT [130], etc. The analytical prediction of 
the particle size from the spectrum could be achieved using the well-known theory 
of Mie by Kreibig and Genzel [131]. In general, as the particles become less stable 
(agglomerate or precipitate), the original extinction peak will decrease in intensity 
due to the depletion of the fine stable nanoparticles, and often the peak will broaden 
or a secondary peak will form at longer wavelengths due to the formation of 
aggregates.
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6.3.1.4  Electron Microscopy and Dynamic Light Scattering

One straightforward approach for monitoring the nanofluid stability is to measure 
the particle size at different time intervals. Scanning/transmitting electron micro-
scope (SEM/TEM) can capture fine image of nanoparticles with resolution down to 
nanometer scale. The distribution of particle size and evolution of particle coagula-
tion can be directly visualized by observing the particle images. Dynamic light scat-
tering is another commonly used technique for determining particle size in 
suspension/solution. The process is fast and easy and does not require separation of 
nanoparticle from the solvent.

6.3.2  Approaches for Enhancing Stability

6.3.2.1  Mechanical Mixing

Mechanical mixing has been widely used in nanofluid preparation for attaining bet-
ter stability. It is a fast and efficient way for breaking down agglomerated clusters 
and keeping individual particles separated from each other.

Ultrasonication

Ultrasonication is one of the most commonly used mechanical mixing methods for 
improving the dispersion stability of nanofluids, in which the longitude sound wave 
travels through the nanofluid suspension and induces strong oscillations of mole-
cules in the system. Such agitated motion promotes distortion of nano-agglomerates 
which breaks them into finer particles. Depending on the type of ultrasonicator 
used, the sonication wave can be applied by either direct or indirect means. In the 
direct sonication case, a sonication probe is immersed directly into the suspension 
and the sonication energy is released into the liquid without physical barriers. In the 
indirect sonication case, the colloidal mixture is usually contained in a vessel which 
is partially immersed in a sonication bath. The sonication wave was generated on 
the surface of the bath or chamber, which then travelled through the bath liquid and 
passed through the container wall before it finally reached the suspension sample. 
The detailed procedure for performing ultrasonic dispersion of nanofluids was dis-
cussed in an NIST protocol by Taurozzi and Hackley [132], in which they have 
recommended direct sonication over indirect sonication due to the higher effective 
energy output. However, there is not enough experimental data in support of such 
claims, as considerable number of reports have used sonication bath for preparing 
nanofluids which showed good stability over time. Nevertheless, since appreciable 
amount of sonication energy was absorbed by the suspension container, it generally 
requires more time and power for bath-sonicator (indirect) for achieving good dis-
persion compared to the probe-sonicator (direct). As significant amount of heat is 
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released in the ultrasonication process, a shorter sonication period could potentially 
lower the risk of nanofluid degradation due to overheating, unless a cooling system 
is incorporated in the ultrasonicator. Generally speaking, the maximum duration of 
probe sonication is in a time scale of few minutes, while the maximum duration of 
bath sonication can be extended to more than 24 h.

As stated in the NIST protocol [132], sonication is a highly system-specific dis-
persion procedure, and suggested that the optimum parameter for sonication power 
and time varies from sample to sample. The determination of the optimum sonica-
tion parameters is a trial-and-error process, in which the researcher should start by 
referring to literature studies of similar particle–liquid combinations. However, it 
should be kept in mind that even with the same type of material and particle concen-
tration, the optimum ultrasonication time could be different due to the difference in 
experimental conditions.

High-Pressure Homogenizer (HPH)

HPH is a powerful and effective method to produce homogenous particle dispersion 
in liquid, by forcing the nanofluid flowing through a narrow valve under high- 
pressure conditions. Typical processing pressure of HPH ranges between 20 and 
100 MPa, in which the high shear stress ruptures large agglomerates into small and 
fine particles. The effect of pressure on nanofluid stability has not been studied 
thoroughly, but it has been shown in few studies that nanofluid prepared via HPH 
exhibits smaller particle size and hence better stability compared to ultrasonication 
and other mechanical approach [133, 134]. Hwang et al. [133] examined the TEM 
images of carbon black (CB) nanoparticles in water-based nanofluid stabilized 
using stirrer, ultrasonic bath, ultrasonic disruptor, and HPH. It was found that only 
HPH method can provide sufficient energy to break the particle clusters. Fedele 
et  al. [134] examined average particle size of three different nanofluid samples 
(CuO/TiO2/SWCNH - H2O) dispersed via ball milling, ultrasonication and HPH at 
4 and 15 days after synthesis. It was observed that nanofluid stabilized with HPH 
has the lowest level of agglomeration. However, it is worth noting that very few 
studies have used HPH for synthesizing nanofluids in which the stability enhance-
ment was only verified in small time scales (less than a month). It is not clear if PHP 
is really more effective in preventing nanoparticle agglomeration in longer term 
compared to that of ultrasonication approaches.

6.3.2.2  Dispersant

The addition of dispersants (also referred to as surfactants) is an easy and economic 
approach for enhancing the stability of nanofluids. The dispersing agents are usually 
amphiphilic organic molecules with both hydrophobic tail and hydrophilic head 
group. These dispersants will attach to the surface of the nanoparticle due to the 
mutual affinity, which helps increase the contact at the interface between the solid 

B. Ma and D. Banerjee



151

particle and base fluid. In addition, the tail of the attached dispersant works as a 
steric barrier which prevents the particles from agglomerating. Such effect is known 
as steric hindrance and inhibits the coagulation of nanoparticles in the suspensions. 
The absorbed layer also enhances zeta potential and promotes electrostatic stabili-
zation effect [135].

The selection of suitable dispersant is dependent on the particle and base fluid. It 
is suggested that water-soluble surfactants should be used if the base fluid is the 
polar solvent, while oil-soluble surfactants should be used if the base fluid is non- 
polar [136]. Such characteristics are usually represented by the hydrophilic–lipo-
philic balance (HLB) value of the surfactant, which describes the balance of the size 
and strength of the hydrophilic and hydrophobic groups of the surfactant. It has 
been reported that surfactants with HLB values greater than 10 have the higher 
affinity in aqueous solutions, while those with HLB values less than 10 are more oil 
soluble [137]. One example of oil soluble surfactant is oleic acid, which has 
extremely low HLB value of one and has been extensively used in the preparation 
of non-polar nanofluids (i.e., transformer oil, silicone oil, kerosene, etc.). The typi-
cal example of water-soluble surfactants is sodium dodecyl sulfate (sodium lauryl 
sulfate, SDS) with a high HLB value of 40. It has been used in the preparation of 
various kinds of water-based nanofluids.

Still, it should be noted that the choice of the surfactant does not necessarily have 
to be consistent with the HLB-based principle. Parametthanuwat et al. [138] pre-
pared aqueous silver nanofluid using oleic acid as dispersing surfactant, which 
showed effective enhancement of the nanofluid dispersion. Also, most surfactants 
are organic chemicals which easily degrade at elevated temperatures. Hence, the use 
of surfactants should be performed in accordance with the actual experimental 
requirements.

6.3.2.3  pH Control

Adjusting pH value can significantly improve the stability of the nanofluids by 
changing the zeta potential of the system. By moving away from the isoelectric 
point (IEP), the surface charge of nanoparticles increases due to the more frequent 
attachment of surface hydroxyl group. The highly ionic charged state effectively 
keeps particles apart and hinders agglomeration due to the mutual electrostatic 
repulsive forces. In practice, such adjustment is usually performed with careful 
addition of acidic or alkaline chemicals (i.e., HCl or NaOH). For each different 
nanofluid mixture, there exists an optimum pH condition, at which the absolute 
value of zeta potential is maximized to ensure that the most stable conditions for the 
nanofluids are attained. For example, the maximum zeta potential for Cu-H2O, 
Al2O3-H2O, and SiC-H2O nanofluid systems is attained at pH = 8.5~9 [139, 140], 
pH  =  8 [9], and pH  =  10 [141], respectively. Such values are dependent on the 
nanoparticle-fluid system and should be obtained experimentally from parametric 
studies.
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6.3.2.4  Surface Modification

Nanoparticle surfaces can be modified to include different functional groups which 
enable them to be dispersed in the base fluid. These functional groups could effec-
tively enhance the wettability of the solid–liquid interface, reduce the surface energy 
of the target nanoparticle and van der Waals forces between particles. Wet chemistry 
method is the most commonly used approach for performing surface functionaliza-
tion, in which the target nanoparticle is soaked in the reactant for long enough time 
at desired temperatures. For example, silica nanoparticles can be grafted with silane 
groups directly by mixing with trimethoxysilane and stirring vigorously for 48 h at 
70 °C [142]. CNTs can be functionalized with carboxyl and hydroxyl groups by 
submerging in sulfuric/nitric acid solution [143]. These functionalized nanoparti-
cles showed superior dispersion in nanofluids compared to that of their pristine 
forms. Plasma treatment is another surface functionalization approach, in which the 
target nanoparticles are functionalized by exposing to a continuous wave of dis-
charged plasma of the desired gas. The technique has been used to coat copper and 
CNT surfaces with various polar groups which help to enhance their dispersion in 
water [144, 145].

6.4  Summary

Nanofluids have received tremendous attention in the last 2~3 decades due to their 
superior properties. They have been reported as promising engineering materials to 
be used in various applications and industries. However, the exploration of nanoflu-
ids has still been mainly limited in laboratory-scale studies. Regardless of the 
increasing number of research papers and patents relating to nanofluids, the com-
mercialization of nanofluids in the real industrial world has not been successful as 
the research community anticipated [146]. There are many challenges for applica-
tion of nanofluids in industries, among which the two most critical issues are the 
long-term stability of nano-suspensions and the prohibitive cost of nanofluid manu-
facturing in large quantities. These issues are closely linked with the synthesis pro-
cess of nanofluids, as it has been shown that the stability of nanofluids is greatly 
dependent on the preparation procedure. The cost issue of nanofluids is significant 
in real world application, since most nanoparticles are very expensive comparing to 
the base fluid. Even at low concentrations (i.e., 1.0%), the material cost of nanoflu-
ids could be four or five times that of the base fluid. Consequently, in-situ synthesis 
of nanofluids from cheap materials/precursors is crucial for practical applications. 
Despite extensive research on nanofluids, a standard set of procedures for nanofluid 
synthesis should be developed with proven stability of both morphology and mate-
rial properties. Due to the complex nature of transport mechanisms in nanofluids, 
the accomplishment of such goals would require a comprehensive and systematic 
study for better comprehension and verification of the contradictory research results.

B. Ma and D. Banerjee



153

 Appendix: Nanofluid Two-Step Synthesis

6.4.1  Metallic Nanoparticle-Based Nanofluids

Metallic nanoparticle-based nanofluids have drawn much interest due to the high 
thermal conductivity of metals. It is expected that the metallic suspensions can 
enhance the thermal transport properties of conventional heat transfer fluids which 
makes them suitable for heat exchanger applications.

 Copper Nanofluids

The use of copper nanoparticle in nanofluids is appealing since copper has relatively 
high resistance to corrosion. Xuan and Li [96] prepared both water-Cu and oil-Cu 
nanofluids using the two-step method in which copper nanoparticles of about 
100 nm diameter are directly mixed in water and mineral oil. For water-based nano-
fluid, laurate salt at 9% concentration was used as a dispersant which was observed 
to hold the water-Cu suspension stable for 30 h in a stationary state with minimal 
amounts of clustering. For oil-based nanofluids, oleic acid at 22% concentration 
was dispersed in the nanofluid to stabilize the suspension followed by ultrasonica-
tion for 10 h. The oil-Cu nanofluid was proved to be stable for 1 week with no sedi-
mentation. Li [97] prepared aqueous copper nanofluid by mixing copper nanoparticle 
(~25 nm) in purified water at 0.1% concentration (with and without dispersant under 
different pH conditions). He observed that the addition of CTAB dispersant 
enhanced the stability of water-Cu suspensions by reducing the diameter of copper 
nanoparticles from 5560 to 130  nm. The nanofluid sample without dispersants 
quickly agglomerated, while the sample with dispersant remained stable with no 
sedimentation after 1  week. The water-Cu nanofluid samples showed maximum 
zeta potential value at pH = 9.5 which indicates that the suspension exhibits better 
dispersion in slightly basic environments. Saterlie [147] prepared water-Cu nano-
fluid by first synthesizing copper nanoparticles (~100 nm) in-situ using chemical 
reduction method and then re-dispersing them in water. The nanofluid was stabi-
lized by adding SDBS as dispersing agent and ultrasonication for 50 min. He found 
that by increasing the Cu particle loading from 0.55 to 1.0%, several agglomerates 
are formed in the nanofluid with nanoparticle size increasing from 120 to 800 nm.

Surfactant-free copper nanofluids were also explored in various studies. Lu [148] 
prepared surfactant-free water-Cu and ethanol-Cu nanofluids by mixing copper 
nanoparticles (~20 nm) with the base fluid at 0.2–2% concentration and ultrasoni-
cating for 10 h. The nanofluids were tested in a flat capillary pumped loop and sedi-
mentation of nanoparticles observed on the heated surface. However, the morphology 
of the working nanofluid was not examined after the test. Kole [98] dispersed cop-
per nanoparticles (~40 nm) in distilled water at 0.5% concentration with ultrasoni-
cation for 10 h. The suspensions remained stable for more than 15 days with no 
significant sedimentation. Garg [57] prepared EG-Cu nanofluids by synthesizing 
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copper nanoparticles using a chemical reduction method, with water as the solvent, 
and then dispersing them in ethylene glycol using a sonicator. The particle loading 
is 2.0% and no sedimentation was observed after a few days.

It is difficult to compare these different studies and draw a general conclusion on 
the effect of dispersing agent and ultrasonication toward the stability of nanofluid 
samples, since the nanofluid samples are synthesized under different conditions 
with different material characteristics. The stability of nanofluids is very sensitive to 
the variation in the size of the nanoparticles, concentration, pH, ultrasonication 
time, surfactant, etc. It is also important to notice that most studies have only shown 
stable nanofluids for the limited period (from few hours to 1 week). That suggests 
preparing stable samples of copper nanofluids via two-step methods to be used in 
long-term duty-cycles is still a challenging research topic.

 Gold and Silver Nanofluids

Gold and silver nanoparticles have also been used in many studies due to their 
unique optical, electrical, and thermal properties (i.e., high electrical conductivity, 
stability, and low sintering temperatures). Such properties make them desirable in 
wide range of applications including diagnostics, antibacterial agents, heat transfer 
fluids, and optical fluids [149].

Preparation of gold nanofluids via two-step method is rare as most gold nanoflu-
ids were synthesized directly in the target base fluid from chemical reduction 
approach [150–154]. Silver nanofluids can be prepared by mixing manufactured 
silver nanoparticles in the base fluid. DisKang [155] prepared water/EG-Ag nano-
fluids at 0.1–0.4% volume fraction by dispersing silver nanoparticles (8–15 nm) 
into fluids without additives or stabilizers and ultrasonicating for 3 h. The nanofluid 
was generally stable for 1 day. Oliveira [156] prepared stable water-Ag nanofluid 
with 0.15% volume loading and 80 nm diameter nanoparticles using high-pressure 
homogenizer. The stabilization was achieved by placing the mixture in the high- 
pressure homogenizer and circulating for 30 min at 400–500 bars. The nanofluids 
were visually verified to be stable for at least 6 months. Hwang [133] prepared sili-
cone oil-Ag nanofluid by dispersing produced silver nanoparticles in the base fluid 
with the assistance of various physical treatment techniques. With primary particle 
size of 35 nm and particle weight loading of 0.5%, he found that without any treat-
ment, Ag nanoparticles were highly agglomerated in the pure fluid with an average 
nanoparticle size of 335  nm. Such values were reduced drastically to 182  nm, 
147 nm, 66 nm, and 45 nm, after using stirrer, an ultrasonic bath, an ultrasonic dis-
ruptor, and a high-pressure homogenizer, respectively. Warrier [157] prepared 
water-Ag nanofluid at the concentration of 1 and 2% with nanoparticle size of 20, 
30, 50, and 80 nm, respectively. The suspension was stabilized by both polyvinyl-
pyrrolidone (PVP) at a concentration of 0.3% and ultrasonication process (while no 
settlement was observed for 2 h) after synthesis. Parametthanuwat [158] prepared 
water-Ag nanofluid at a concentration of 0.5% by repeated magnetic stirring and 
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ultrasonicating after the addition of oleic acid (OA) (at concentration of 0.5, 1, and 
1.5%) and potassium oleate surfactant (OAK+). It was found that the OAK+  exhibited 
good adsorption on the silver nanoparticles which helped improve the colloidal sta-
bility and non-precipitation period of the silver nanoparticles for up to 48 h.

Gold and silver nanofluids are typically synthesized via one-step method due to 
their inherent simplicity and competitive costs. It is worth noticing that these 
nanofluids were shown to be stable over several months—just by physical 
treatment.

 Aluminum Nanofluids

Aluminum nanoparticles are of great interest in a variety of fields due to their high 
enthalpy of combustion and rapid kinetics. These characteristics make them favor-
able in fuel engineering field including alloy powder metallurgy parts for automo-
biles and aircrafts, rocket fuel, igniter, smokes, and tracers [159]. The study of 
aluminum nanofluid is limited as they are easily oxidized into alumina. Boopathy 
[160] prepared aluminum nanoparticles (~150 nm) by mechanical milling and dis-
persing them in distilled water and engine oil with 0.025% volume loading. The 
nanofluids were stabilized using 1% sodium lauryl (Dodecyl) sulfate as dispersant 
followed by 10 min of ultrasonication at 20 kHz and for 30 min of magnetic stirring 
at 1500  rpm. Teipel [161] prepared aluminum nanofluid using paraffin oil and 
HTPB as the base fluid. The Al particles (~80 nm) were dispersed by stirring for 
several hours and using ultrasound homogenizer before the suspension was tested 
for rheological measurements.

Aluminum nanopowders can react with water at high temperature (400–600 °C) 
to generate hydrogen which enhances fuel combustion [162]. Such feature promotes 
studies on aluminum nanofluid used in combustion and fuel. Kao [163] prepared 
aqueous aluminum nanofluid for diesel fuel combustion by producing emulsified 
nano-aluminum (40–60 nm) liquid using both ultrasonic vibrator and agitator. The 
work did not discuss the stability of the aluminum suspension. Gan [99] prepared 
aluminum nanofluid in n-decane and ethanol fuels with 80 nm Al nanoparticles at 
10% mass loading by stirring the mixture vigorously and ultrasonication in an ice 
bath for 5 min. He observed that the suspension of n-decane/nano-Al remains stable 
for 10 min while ethanol/nano-Al can last for 24 h without obvious sedimentation. 
Xiu-tian-feng [164] synthesized stable jet fuel-Al nanofluids with 1.0% mass load-
ing by modifying the surface of aluminum nanoparticles with various chemicals. It 
was found that oleic acid is the most effective surface modification agent which 
keeps the suspension stable for more than 2 weeks.

The use of aluminum nanoparticles in fuels and combustion requires high enough 
concentration for achieving considerable contribution to the energy content. Thus, 
the stabilization of the nano-mixture suspensions for long enough time is crucial for 
them to be utilized in liquid fuels.

6 A Review of Nanofluid Synthesis



156

 Iron Nanofluids

Iron nanomaterials are of great interest as iron is among the most useful magnetic 
materials as well as the most abundant and widely used elements on earth. Doping 
iron nanoparticles in fluid manifest both fluid and magnetic properties which open 
new area of applications in electronic device, spacecraft propulsion, material sci-
ence, biomedical instruments, and so on [165, 166]. Hong and Yang [167] prepared 
iron nanofluids with ethylene in which the Fe nanocrystalline powder (~10 nm) was 
first synthesized by chemical vapor condensation process and then re-dispersed in 
the base fluid with 0.2, 0.3, and 0.4% volume loading using ultrasonication (20 kHz). 
They observed an increment in thermal conductivity of the nanofluid with increas-
ing sonication time from 10 to 70 min and ascribed it to the improved stability of 
suspension with prolonged sonication. Sinha [168] prepared EG-iron nanofluid by 
synthesizing iron nanopowders from chemical reduction method and mixing them 
in the base fluid under 50 min ultrasonic irradiation in concentrations of 1.0 vol.%. 
Agglomeration of nanoparticles was observed since the nano-crystallite sizes of the 
powders were below 20 nm while the average particle size in the fluid was around 
500 nm. Xuan and Li [169] prepared magnetic iron nanofluid by directly dispersing 
Fe nanoparticles (~26  nm) into deionized water with the volume percentage of 
range from 1.0 to 5.0%. The suspension was stabilized using 1.0–6.0 vol.% sodium 
dodecylbenzenesulfonate as activator and the nanosamples showed good stability 
from few hours to 1 week. Gan [170] studied the combustion of iron nanofluid fuels 
prepared from dispersing iron nanoparticles (25  nm) in n-decane/ethanol with 
5–20 wt.% concentration by hand mixing and ultrasonication. The nanofluid was 
stabilized with 0.5  wt.% sorbitan oleate as surfactant and mixture remains sus-
pended for few hours.

Although pure iron exhibits better saturation magnetization, they are highly toxic 
and very sensitive to oxidation without appropriate surface treatment. In contrast, 
iron oxide nanoparticles are less sensitive to oxidation and, therefore, can give a 
better and stable performance [171].

 Other Metal Nanofluids

Quite few other metal nanoparticles were also explored for synthesizing energy- 
efficient nano-suspensions. Naphon [172] prepared titanium nanofluid by mixing 
21 nm Ti nanoparticles in de-ionized water and alcohol using an ultrasonic homog-
enizer. The nanofluid was tested in heat pipe without characterization on the suspen-
sion stability. Chopkar [173] prepared Al2Cu and Ag2Al dispersed nanofluids using 
the two-step method, in which Al2Cu (20–30 nm) and Ag2Al (30–40 nm) nanopar-
ticles were first produced by mechanical alloying using a high energy planetary ball 
mill followed by dispersing these particles into ethylene glycol and water with vol-
ume fractions from 1.0 to 2.0%. The suspension was homogenized by intensive 
ultrasonic vibration and magnetic stirring with the addition of 1.0 vol.% oleic acid 
as surfactant. The sample showed good stability with some tendency of 
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agglomeration during the test. However, metal nanoparticles were found more likely 
to be oxidized at even low temperature [12] which brings instability in the hydro-
thermal performance. Besides, metal nanofluids suffer from the issue of quick sedi-
mentation and fouling which makes it challenging to use them in practical 
applications [174, 175].

 Oxide Nanoparticle-Based Nanofluids

Oxide nanomaterials have been intensively used in modern nanotechnology. Their 
unique physicochemical properties have opened up applications in nanoelectronics, 
sensors, optics, catalysts, biomedicine, etc. [176–180]. Preparation of nanofluids 
using oxide nanoparticles via two-step methods is discussed below.

 Copper Oxide Nanofluids

Copper oxide nanoparticles are used in diverse applications with a range of useful 
properties such as high electric/thermal conductivity, electron correlation effect, 
high atom efficiency, etc. [181, 182]. Choi and Eastman [183] first studied copper 
oxide nanofluid in water and ethylene glycol, in which they dispersed CuO (~20 nm) 
nanoparticles produced by gas condensation in the base fluid directly by shaking 
thoroughly. It was observed that Cu nanoparticles agglomerated into large particles 
(~100 nm) which could still form the stable suspension in the liquid. Kwak [184] 
prepared copper oxide nanofluid in ethylene glycol using 10–30 nm Cu nanoparti-
cles at 0.001–1% volume fraction dispersed by ultrasonication. It was found that 
sonication for 9  h gives the best dispersion and the suspension was stable for 
100 days. Namburu [185] prepared copper oxide nanofluid in EG–water mixture 
(60:40) with a particle size of 29 nm and volume concentration increasing from 1 to 
6%. The nanofluid mixture was stirred and agitated thoroughly for 30 min with an 
ultrasonic agitator for ensuring uniform dispersion. Kulkarni [186] did a similar 
study by mixing CuO nanoparticles (~29 nm) in deionized water with 5–15% vol-
ume fraction. The uniform mixture of nanoparticles in water was attained by thor-
ough stirring and ultrasonicate agitation for half an hour. Li and Peterson [100] 
prepared water-CuO nanofluid with 29 nm diameter and 2–10% volume fraction. 
The powder and base fluid were blended by immersing in an ultrasonic bath for 3 h 
and the suspensions were found to be very stable, with essentially no sedimentation 
over 7 days. Karthikeyan [101] prepared water/EG-CuO nanofluid using monodis-
persed CuO particles of 8 nm diameter. The suspension was homogenized by using 
an ultrasonic horn for 30 min without the addition of surfactant. The study found 
that the nano-mixture remained stable for more than 3 weeks with particle volume 
concentration below 1%. Above 1% volume concentration, sedimentation in CuO 
nanofluid was observed. Rashin [102] prepared copper oxide-coconut oil nanofluid 
using 20  nm CuO nanoparticles with 0.5–2.5% mass concentration. The 
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nanoparticles were dispersed by only 1 h ultrasonication and the suspension remains 
stable for 7 days after which the sedimentation starts. Kole [103] prepared stable 
nanofluid by dispersing 40 nm spherical CuO nanoparticles in gear oil with volume 
fraction ranging between 0.5 and 2.5%. The mixture was stabilized by mixing with 
oleic acid, intensive ultrasonication for 4 h and magnetic agitation for 2 h. Although 
aggregation of CuO nanoparticles was identified with average cluster size ~7 times 
of the primary diameter, the suspension was stable for more than 30 days without 
visual sedimentation. Sahooli [120] studied the effect of pH and surfactant concen-
tration on the stability of CuO nanoparticles (4 nm, 1.0 wt.%) in the water-based 
nanofluid. He proposed that the suspension zeta potential and absorbency were 
maximized at pH = 8 and 0.095 wt.% PVP, which is the optimum condition for 
obtaining most stable nanofluid. However, the average particle size measured with 
PVP surfactant was 63 nm indicating clustering of the nanoparticle.

In general, it was found that the copper oxide nanofluids can be quite stable for 
moderate time period without the presence of the surfactant, if the nanoparticle 
concentration is low. The time scale for non-sedimentation could vary from few 
days to months depending on the ultrasonication and stirring condition. Aggregation 
of ultrafine nanoparticle is inevitable in CuO nanofluid but the nanoscale cluster can 
still be stable in the mixture suspension.

 Alumina (Al2O3) Nanofluids

Alumina nanoparticles are among the most widely used due to their abundance and 
low cost of mass production. The use of alumina nanoparticles in different base 
fluids has drawn considerable interest in applications including electronic cooling, 
deep drilling, thermal energy storage, etc. [187]. Beck [188] dispersed 20 nm diam-
eter alumina nanoparticles in ethylene glycol with mass fraction ranging from 3.26 
to 12.2%. The nanofluid was stabilized by ultrasonic mixing for several minutes and 
the suspension remained uniform during the experiments. Timofeeva [189] pre-
pared nanofluids of alumina particles in water and ethylene glycol with three differ-
ent particle size (11, 20, and 40 nm) and two different volume concentration (0.01% 
and 0.1%). The mixture was sonicated continuously for 5–20 h in an ultrasonic bath 
and highly agglomerated nanoparticles were observed in the experiments. It was 
found that particle with smaller diameter tends to form larger agglomerates and the 
agglomeration size increases with time as the sample ages. However, nanosamples 
were still found to be stable in both water and ethylene glycol. Esmaeilzadeh [190] 
prepared water-alumina nanofluid using 15 nm Al2O3 nanoparticle with 0.5 and 1% 
volume fractions. The mixture was stabilized through a 4 h process of ultrasonica-
tion and electromagnetic stirring. No sedimentation was observed throughout the 
testing period. Sarathi [191] dispersed 50 nm Al2O3 nanoparticles in distilled water 
by magnetic stirring for 3 h and ultrasonication for few hours. Sedimentation of 
particles was still observed after the sonication and stirrer was used during the 
experiment to minimize the sedimentation.
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Use of surfactant and pH control can significantly enhance the stability of alu-
mina nanofluid. Sharma [192] prepared stable water-Al2O3 nanofluid by mixing 
SDBS with one-tenth the mass of the nanoparticle (~47 nm) in the suspension. The 
nanofluid was observed to be stable for over a week if the volume concentration is 
less than 3%. With higher concentration, some sedimentation was observed. Teng 
[193] prepared water-Al2O3 fluid using 0.3 wt.% chitosan as the dispersing agent. 
The mixture with 0.5, 1.0, and 3.0 wt.% Al2O3 nanoparticles showed good suspen-
sion for 1 month during which the sample was placed statically. Jung [121] prepared 
water-based alumina nanofluid using a horn-type ultrasonic disrupter for 2 h. The 
nano-suspensions with 0–0.1 vol% Al2O3 nanoparticles (45 nm) were observed to 
be stable for more than 1 month with/without the addition of polyvinyl alcohol sur-
factant. Khairul made a more comprehensive study on the effects of surfactant 
toward the stability of Al2O3 nanofluid. He used different weight fractions from 0.05 
to 0.2% of the dispersant SDBS to stabilize the water-Al2O3 (10 nm) nanofluid with 
nanoparticle weight ratio in the range of 0.05–0.15%. It was found that aggregation 
of nanoparticle still presents in the fluid, but 0.1% SDBS gives lowest mean aggre-
gation size and maximum zeta potential which is an indication of good stability. Ho 
[194] prepared 0.1–4 vol.% water-Al2O3 nanofluid with the particle size of 33 nm. 
The nano-suspension was stable for at least 2 weeks after magnetic stirring for 2 h. 
and adjusting pH value to 3. Jacob [195] used similar method prepare stable suspen-
sions of Al2O3 nanoparticles (~50 nm) in de-ionized water with 0.25, 0.5, and 1% 
volume. The mixture was stabilized by adjusting the pH value away from the iso-
electric point and sonication for 5–6 h.

In general, it was found that the alumina nanofluids only exhibit short-term sta-
bility with mechanical stabilization methods. The stabilization period was enhanced 
to months if appropriate amount of dispersant was used.

 Titanium Dioxide Nanofluids

Titanium dioxide is being widely used in various consumer goods and products 
including cosmetics, paints, dyes, plastics, drugs, etc. Nanoscale TiO2 has high dif-
fraction index and strong light scattering capability which makes them highly used 
in radiation protection productions, photocatalyst and photovoltaic [196–200]. The 
use of TiO2 nanoparticle in nanofluid is promising due to its excellent chemical/
physical stability and low cost from commercial manufacturers.

Ding and Wen [201] dispersed 30–40 nm TiO2 nanoparticles in distilled water 
with 0.024% volume concentration. The stabilization of nanoparticles in water was 
realized by (1) cleaning of the bottles in ultrasonic bath; (2) adjusting the pH of the 
base liquid to pH = 3; (3) ultrasonification of the bottles containing dispersion for 
15  min; and (4) shear mixing of the dispersion under the homogenizer for 
30–180 min. The dispersion was found to be very stable for at least a couple of 
weeks without visually observable sedimentation. Murshed [202] prepared titanium 
dioxide nanofluid by dispersing TiO2 nanoparticles in rod-shapes of ∅10 nm × 40 nm 
(diameter by length) and in spherical shapes of ∅15 nm in deionized water. The 
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nanoparticles were dispersed uniformly using ultrasonic dismembrator for 8–10 h 
with/without 0.01–0.02 vol.% oleic acid and CTAB surfactants. It was found that 
nanoparticles agglomerated into large clusters without surfactant, and adding sur-
factant brought better stability which is indicated by the increment in nanofluid 
thermal conductivity. Turgut [203] prepared water-based TiO2 nanofluid with parti-
cle size of 21 nm and particle volume concentration from 0.2 to 3%. The mixture 
was homogenized using ultrasonic vibration which breaks down the agglomera-
tions. Yue-fan [204] prepared titanium dioxide colloidal suspension by dispersing 
TiO2 nanoparticles (<20 nm) in transformer mineral oil with 0.003–0.05 g/L con-
centration. The particles were dispersed by just ultrasonic route and the suspension 
was stable for 24 h. He and Jin [205] prepared aqueous TiO2 nanofluid by dispersing 
20 nm diameter dry titanium dioxide nanoparticles in distilled water with 1.0, 2.5, 
and 4.9% mass concentration. The mixture was stabilized by first applying ultra-
sonication for 30 min, then processed in a medium-mill and finally adjusting the pH 
value to 11. The particle size distribution after each process stage was ~500 nm, 
~120 nm, and ~95 nm while the nanofluids were found to be very stable for months. 
Charkraborty [206] prepared 0.1 wt.% water-based TiO2 nanofluid using dry parti-
cles with size in the range of 30–50 nm. The nanofluid was homogenized by high 
shear mixer which breaks down the agglomerate and addition of 0.01 wt.% surfac-
tant which ensures longer stability. Fedele [207] studied the characterization of 
water-based nanofluids containing TiO2 (~72 nm) nanoparticles in mass concentra-
tions ranging between 1 and 35%. The nanofluids were stabilized using 1–5 wt.% 
acetic acid as dispersant with 1 h sonication. The mean diameter of the static suspen-
sion decreases to around 51 nm after 35 days, indicating a partial precipitation. Such 
value returned to 76 nm after re-sonication for 1 h, suggesting the absence of further 
aggregation in the suspension. Said [208] dispersed 21 nm TiO2 spherical particles 
in distilled water with 0.1% and 0.3% volume concentration. The homogenous dis-
persed solution was obtained after adding PEG 400 dispersant with two times the 
mass of the particles and passing through 30 cycles in a high-pressure homogenizer. 
No visual sign of aggregation and sedimentation was observed for a period of a 
month. Muthusamy [209] prepared stable titanium dioxide nanofluid by dispersing 
50 nm diameter TiO2 particles in ethylene glycol with 0.5, 1.0, and 1.5% volume 
concentration. The suspension was stabilized by merely mechanical stirring process 
and proved to be stable for more than 3 weeks with ~220 nm local clusters.

The titanium dioxide nanofluid exhibits relatively good stability (from few weeks 
to months). Different stabilization conditions were required for achieving optimum 
dispersion depending on the base fluid and particle characteristics.

 Zinc Oxide Nanofluids

Zinc oxide is also among some of the widest used nanomaterials with its good elec-
trical, electrochemical, and structural properties [210, 211]. ZnO nanoparticles 
exhibit in various form (particle, rod, thin film) and can be used in 
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electroluminescent devices, chemical sensors, solar cells, etc. [212]. Zhang [213] 
prepared water-based zinc oxide nanofluid with 20 g/L concentration by dissolving 
ZnO nanoparticles (60–200 nm) in distilled water, sonicating for 30 min and mill-
ing for another 3  h. The average particle size increased slightly from 198.4 to 
225.9 nm after being stored for 120 days, indicating good stability of the nano-
suspension over time. Yu [214] dispersed dry ZnO nanoparticles (10–20  nm) in 
ethylene glycol with volume concentration ranging from 0.2 to 5%. The nanofluid 
was stirred and sonicated continuously for 15 min to 12 h. It was found that the 
average particle size decreases rapidly in the first 3 h and remained 210 nm after-
ward. The measured average particle size in the formulated nanofluids is much 
larger than the size of primary particles indicating ultrasonification was not able to 
break the agglomerates completely. Sagadevan [215] prepared ZnO nanoparticles 
(15–20 nm) first by solvothermal reaction and dispersed them in polyvinyl alcohol 
with magnetic stirring process and ultrasonic vibrator for 5 h. The dispersed mix-
ture was clear and stable for up to 2  weeks. Esfe and Saedodin [216] prepared 
EG-ZnO nanofluid using 18  nm ZnO nanoparticles with volume concentration 
ranging from 0.25 to 5.0%. The suspensions were subjected to ultrasonic vibrator 
for 3–5 h in order to get a uniform dispersion and a stable suspension. Subramaniyan 
[104] prepared water- ZnO nanofluid by dispersing 0.1%–0.4 wt.% ZnO nanopar-
ticles in water using ultrasonication for 20 min. It was found that ZnO nanofluids 
with 0.3 wt.% showed highest stability with the maximum zeta potential values. 
Visual sedimentation showed that 0.3 wt.% nanofluid is stable for 20–24 h without 
any trace of sedimentation but all the other fluids settle within 6–12 h. Raykar and 
Singh [105] synthesized water-soluble ZnO nanoparticle (non-spherical, 100–
150 nm) via chemical precipitation method and dispersed them in deionized water. 
The mixture was sonicated for 1 h with the addition of acetylacetone as dispersant. 
The nanofluid was found to be stable over 9 months to 1 year. Suganthi and Rajan 
[106] prepared stable ZnO–water nanofluids with particle volume concentrations in 
the range of 0.25–2  vol.%. They dispersed ZnO nanoparticles (35–45  nm) into 
water with sodium hexametaphosphate (SHMP) surfactant under high shear 
homogenization for 20 min, followed by ultrasonication for 180 min. The high col-
loidal stability was verified by high absolute value of zeta potential as well as visual 
observation. Saliani [107] dispersed ZnO nanoparticles (4.45 nm) in glycerol with 
the aid of a magnetic stirrer. Ammonium citrate with the same mass of nanoparti-
cles were used as a dispersant to enhance the stability of the nanofluids, and the 
suspensions were stable for at least several months with no sedimentation observed 
during the period.

It is noticed that the stability of zinc oxide nanofluids could be significantly 
enhanced by adding proper surfactant which could be potentially helpful for using 
them in the long-term application.
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 Iron Oxide Nanofluids

Iron oxide nanoparticles have attracted considerable interest due to their superpara-
magnetic properties and their potential biomedical applications arising from its bio-
compatibility and non-toxicity [217]. Asadzadeh [108] dispersed 0.05  vol% and 
0.1 vol.% Fe3O4 nanoparticles (<50 nm) in ethylene glycol using vigorous mechani-
cal agitation and ultrasonication for 1 h. The suspension was stable for 12 h without 
observable sedimentation. Sheikhabahai [109] prepared Fe3O4 nanofluid using EG–
water mixture (50 vol.%-50 vol.%) with 0.02–0.1% particle volume loading. The 
50 nm diameter Fe3O4 nanoparticles were added into the base fluid gradually under 
ultrasonic mixing for an hour. The nanofluid was stabilized with another hour of 
sonication and no sedimentation was observed for 8 h. Sundar [110] prepared water- 
based nanofluid using 36 nm Fe3O4 nanoparticles at 0.02, 0.1, 0.3, and 0.6% volume 
concentrations. The particles were uniformly dispersed in the base fluid at pH value 
of 3 with 2 h sonification. The uniform dispersion of the nanoparticles is established 
by visual observation for nanoparticle sedimentation and measuring the densities of 
nanofluid at different locations in the container. Župan and Renjo [111] prepared 
water-based ferrofluids by dispersing 50 nm diameter Fe3O4 nanoparticles in deion-
ized water using ultrasonic bath for 90 min. The sonified colloid was stable for 1 h 
without dispersant or activating agent. However, visible sedimentation was observed 
in the bottom of the suspension after 24 h. Phuoc and Massoudi [218] dispersed 
Fe2O3 nanoparticles (20–40  nm) in deionized water with 0.2  wt.% 
Polyvinylpyrrolidone (PVP) or Poly(ethylene oxide) (PEO) as surfactant. The sus-
pension was homogenized by magnetic mixing and ultrasonication for 30 min. It 
was observed that these nanofluids could remain stable for 2 weeks if the particle 
concentration is less than 2% and less than 1 week if the concentration is higher. 
Goshayeshi [219] prepared γ- and α-Fe2O3/Kerosene nanofluids with 2.0% volume 
concentration. The nanoparticles were added into the base fluids with oleic acid 
surfactant and stirred constantly, followed by 5 h sonication. The Fe2O3 nanoparti-
cles could readily disperse in organic solvent and the suspension was stable for 
10 days. Salari [220] prepared aqueous iron oxide nanofluids by dispersing 0.1–
0.3 wt.% Fe3O4 nanoparticles (~20 nm) into the water using motorized magnetic 
stirrer with speed of 250 rpm for 30 min. The suspension was stabilized by adding 
0.1 vol.% nonylphenol ethoxylate surfactant into DIW, ultrasonication for 30 min 
and adjusting pH values. The most stable nanofluid was obtained when pH = 8.43 
and the suspension was stable for 25 days.

It can be seen from various studies that the iron oxide nanofluids exhibit rela-
tively shorter stabilization period (less than a month) even with pH control and 
surfactant.

 Silicon Dioxide Nanofluids

Silicon dioxide nanoparticles are of great interest in a variety of biomedical applica-
tions due to their stability, low toxicity and capability for functionalization with 
different molecules and polymers [221]. Fazeli [222] prepared water-SiO2 
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nanofluids by dispersing 18 nm silica nanoparticles in distilled water with 3.5, 4, 
4.5, and 5% volume concentration. The suspension was stabilized using ultrasonic 
bath for 90 min without any surfactant and the nanofluids were stable for a period 
of 72 h without any visible settlement. Jin [223] prepared 0.005–0.1% mass fraction 
silica nanofluid in mineral oil using 10–20 nm size SiO2 nanoparticle. The particles 
were dispersed uniformly in the base fluid using magnetic stirring for 15 min and 
ultrasonication for 2 h. The 0.005% and 0.01% silica nanofluids were found to be 
stable for around 1 month, for the 0.02% silica nanofluid the stability of the suspen-
sion was reduced to 2 days, and the 0.1% silica nanofluid was stable for less than 
24  h. Rafati [224] prepared silica nanofluid using a mixture of deionized water 
(75 vol.%) and ethylene glycol (25 vol.%) as the base fluid. SiO2 nanoparticles with 
14 nm average size were dispersed in the base fluid with 0.5, 1.0, and 1.5% volume 
concentration using ultrasonication. The nanofluids showed great stability even 
after 1 week. Noghrehabadi [225] dispersed 12 nm SiO2 nanoparticles in water with 
1% mass concentration using vertical mixer and ultrasonication for 60 min. The 
nanofluid was homogenized in ultrasonic bath every day to break down the agglom-
eration and minimize the sedimentation. Sharif [226] prepared polyalkylene glycol-
SiO2 nanolubricant by dispersing 30 nm SiO2 nanoparticles in the base fluid using a 
magnetic stirrer for 1  h, and then surged using ultrasonic bath vibrator for 2  h. 
Minimum sedimentation was observed 1 month after the preparation of nanofluid 
with 0.2–1.5% volume concentration. Liu and Liao [227] prepared silica nanofluid 
in both water and alcohol. SiO2 nanoparticles with 35 nm average diameter were 
dispersed in the base fluid with 0.2–2% mass concentration. The nanofluids were 
mixed with 0.5 vol.% SDBS surfactant and surged in super-sonic water bath for 
12 h. The experimental results showed that the stability and uniformity of nanoflu-
ids were good at least in 1 month. Zhang [122] studied the influence of ultrasonica-
tion, dispersants, and pH on the stability of water-silica nanofluids. The nanofluids 
were prepared by dispersing 1.0 wt.% SiO2 nanoparticles (~50 nm) in water with 
mechanical force agitation, ultrasonication, and addition of SDBS. It was found that 
the silica clusters were effective dispersed with average size of 63 nm in suspension 
under the sonication power of 500 W and sonication time of 120 min. The maxi-
mum absolute zeta potential was attained with SDBS concentration of 1.0% and pH 
value of 9.5. The good stability was also verified with long-term test in which the 
particle size remained unchanged after 7 days. Yang and Liu [114] prepared stable 
water-based nanofluid by dispersing surface-functionalized SiO2 nanoparticles 
(30  nm) in water with 10% mass fraction. The nanofluid was kept stable for 
12  months. Bagwe [228] prepared silica nanoparticles with different functional 
groups (including carboxylate, amine, amine/phosphonate, polyethylene glycol, 
octadecyl, and carboxylate/octadecyl groups) in water and studied their aggregation 
behavior in water. It was found that the nanoparticles prepared with appropriate 
amount of amine/phosphonate functional group were stable for more than 8 months 
in aqueous solution.

The silica-based nanofluids have relatively low stability using only physical sta-
bilization method. The addition of surfactant has some marginal effect on the 
improvement of the stability, but surface modification could effectively make silica 
nanoparticles sustain much longer in the suspension environment.
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 Organic Nanofluids

Organic nanoparticles exhibit superior electric and thermal properties owing to their 
unique metal lattice or graphite structures, and have attracted attention for a wide 
range of applications in different fields. Dispersing carbon-based nanoparticles in 
liquid has not been as easy as other nanoparticle, as carbon-based particles have a 
strong tendency to agglomerate due to the strong intermolecular force. It has shown 
that pristine CNTs will precipitate rapidly in most of fluids even with prolonged 
sonication [229]. Consequently, surfactant and surface modifications have been 
used in almost all carbon-based nanofluid preparations.

Wen and Ding [230] prepared the stable aqueous suspension of MWCNT with 
0–0.84% volume concentration. The prepared sample was stabilized following a 
sequence of steps involving: (1) ultrasonicating CNT sample in water bath for 36 h; 
(2) dispersing CNT in distill water with 20% by weight of sodium dodecyl benzene 
sulfonate (SDBS) with respect of CNTs; (3) ultrasonicating mixture in water bath 
for 24 h; (4) treating suspension with high-speed magnetic stirrer for 1 h. The aque-
ous CNT nanofluid was found to be very stable from months without sedimentation. 
Wusiman et al. [231] prepared MWCNTS in aqueous suspension with surfactant 
SDBS and sodium dodecyl sulfate (SDS). They changed the MWCNT concentra-
tion from 0.1 to 1 wt.%, with CNT/surfactant ratio varied from 1/1 to 4/1. The sus-
pension was only subjected to ultrasonic mixing for 20 min and the samples with 
3/1 CNT-surfactant ratio was found to be most stable for more than 1 month without 
sedimentation. SDBS was found slightly superior than SDS in their study with bet-
ter thermal performance. Rashmi et al. [232] prepared aqueous dispersion of CNTs 
in the presence of gum arabic (GA), with concentrations of CNT and GA varying in 
the range of 0.01–0.1 wt.% and 0.25–5 wt.% respectively. The mixture was homog-
enized at 28,000 rpm for 10 min and further sonicated in water bath for 1–24 h. It 
was found that the optimum concentration of GA varies from 1.0 to 2.5 wt.% with 
increasing CNT concentration, and the nanofluid was found to be stable for more 
than 40 days. Quite few other surfactants have also been tested to show effective 
enhancement on the suspension stability of CNT nanofluid including polyvinylpyr-
rolidone (PVP) [233], hexadecyltrimethyl ammonium bromide (CTAB) [234], chi-
tosan [235], and gemini surfactant [236]. The optimum concentration for each 
surfactant is dependent on its own property and the interaction with the carbon 
molecules.

Pre-treating CNTs in acid endows them with carboxylic acid and hydroxyl 
groups, which could effectively prevent the CNTs from aggregating over time [237]. 
Osorio et al. prepared functionalized CNTs by soaking CNTs in three different acid 
environments for 2 h: (1) H2SO4/HNO3/HCl; (2) H2SO4/HNO3; and (3) HNO3. The 
treated CNTs were dispersed in water and the subsequent sedimentation over 
20 days showed the good stability of the sample soaked in multi-acid environment. 
Zhang et al. [238] prepared water-soluble CNTs by the introduction of potassium 
carboxylate (−COOK) using potassium persulfate (KPS) as oxidant. The KPS- 
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treated SWNTs was dispersed in deionized water with ultrasonic water bath and 
found to be stable over 1 month. Narisi et al. [239] prepared stable CNT nanofluid 
in water using a combination approach of surface functionalization, surfactant, and 
ultrasonication. The CNTs were first treated with KPS oxidant, and then dispersed 
in water with 0.25 wt.% SDS undergoing 45 mins’ ultrasonication using both probe 
and bath ultrasonicator. The average particle diameter was examined using dynamic 
light scattering which remained constant (~200 nm) 2 months after preparation.

Although we have been discussing CNT-based nanofluid here, the concept and 
preparation method is quite similar for graphene/graphene oxide/fullerene-based 
nanofluid. Owing to their common surface properties, the dispersing method is 
widely acceptable between different types of carbon nanoparticles.

 Special Nanofluid (High/Low Temperature)

For very high-temperature and low-temperature nanofluid, the preparation of nano-
fluid involves special steps as the mixing process cannot be performed in room 
environment. These nanofluids are usually based on materials which are not in liq-
uid form at room temperature and atmospheric pressure (i.e., molten salt, liquified 
gas, low temperature refrigerant).

 High-Temperature Nanofluid

For materials which are in the solid state at room environment, the preparation of 
nanofluid is usually performed by first dissolving the target material in a room tem-
perature liquid (usually water), then dispersing nanoparticle in the solution, and 
finally evaporating water out and heating the composite to high temperature where 
it transformed into liquid. A typical example is the molten salt-based nanofluid 
which melts at temperature more than 200 °C. Shin and Banerjee [240] prepared 
silica nanofluids in alkali chloride eutectic. They first dissolve all chloride salt in 
distilled water, then dispersed 1.0 wt.% SiO2 nanoparticle via ultrasonication bath 
for 100 min, and evaporated water in the vial on a hot plate at 200 °C until dried 
completely. The nanofluid showed good stability as particle size remained constant 
after repeated DSC cycling tests. Jo and Banerjee [241] prepared graphite nanofluid 
in molten carbonate salt using gum arabic as the surfactant. In his study, the surfac-
tant and graphite nanoparticle were first dispersed in distilled water with 2 h sonica-
tion, then require amount of K2CO3 and Li2CO3 were dissolved in the suspension 
liquid with additional 3 h sonication. The final mixture was transferred to a petri 
dish and heated on a hot plate at 100 °C until fully dehydration. The nanomaterials 
showed good dispersibility with consistent thermophysical property measurements 
from repeated tests. Most other molten salt nanofluid preparations [242–246] have 
followed the same procedure used by Shin and Jo.
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 Low-Temperature Nanofluid

Most of the widely used refrigerants are in vapor state under room environment 
(i.e., R134a, R410a). Hence, preparing well-dispersed nanofluid using these materi-
als is usually accomplished by first dispersing nanoparticle in a secondary fluid, and 
then putting the dispersed fluid into the refrigeration system before the refrigerant 
fills the test loop. Bi et al. [247] mixed TiO2 nanoparticle into R134a by first dispers-
ing the nanoparticle into mineral oil via conventional approaches, then put the mix-
ture into the compressor to let the refrigerant mixing with the nanoparticle. Jwo 
et al. [248] followed a similar approach to mix Al2O3 nanoparticles in R134a using 
POE oil. Subramani and Prakash [249] prepared SUNISO 3GS oil-based nanolubri-
cant with 0.06 wt.% Al2O3 nanoparticle which is stable for 3 days without coagula-
tion or deposition. They then filled the nanolubricant in the compressor where it 
mixes with R134a.

In certain cases, nanoparticles can be added directly into the low temperature 
liquid as well. Anderson [250] dispersed MWCNT into liquid oxygen (LOX) by 
tipping the nanoparticles into the LOX gently and slowly. It is mentioned that great 
cares were taken at this point to avoid micro-scale boiling. The dispersion was then 
performed by ultrasonicating the mixture with a pre-cooled probe sonicator for 20 s. 
However, the study on cryogenic nanofluid is rather limited, which may be due to 
the inherent technical difficulty and narrow application field.
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