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Abstract. Breast cancer is one of the most commonly diagnosed
cancer in women worldwide, and is commonly diagnosed via histopatho-
logical microscopy imaging. Image analysis techniques aid physicians by
automating some tasks involved in the diagnostic workflow. In this paper,
we propose an integrated model that considers images at different mag-
nifications, for classification of breast cancer histopathological images.
Unlike some existing methods which employ a small set of features and
classifiers, the present work explores various joint colour-texture features
and classifiers to compute scores for the input data. The scores at dif-
ferent magnifications are then integrated. The approach thus highlights
suitable features and classifiers for each magnification. Furthermore, the
overall performance is also evaluated using the area under the ROC
curve (AUC) that can determine the system quality based on patient-
level scores. We demonstrate that suitable feature-classifier combinations
can largely outperform the state-of-the-art methods, and the integrated
model achieves a more reliable performance in terms of AUC over those
at individual magnifications.

Keywords: Histopathological images · Joint colour-texture features ·
Receiver operating characteristics (ROC) · Area under the ROC curve
(AUC)

1 Introduction

Breast cancer (BC) is the most common type of cancer and the fifth most com-
mon cause of cancer mortality among women globally [1]. While, different types
of imaging technologies, have been employed for diagnosis of BC, histopathology
biopsy imaging has been a ‘gold standard’ in diagnosing breast cancer because
it captures a comprehensive view of effect of the disease on the tissues [2].

However, image examination by pathologists is often subjective and may not be
easily quantified. Thus, computer-aided diagnosis (CADx) systems provide valu-
able assistance for physicians and specialists. These help in overcoming the subjec-
tive interpretation and relieve some workload of pathologists. An important part
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of such CADx systems is the automation of image analysis to determine whether
a tissue sample is malignant or a benign. Due to automated image analysis some
tasks involved in diagnostic workflow can be made more efficient and precise.

However, automated image analysis can be challenging as inconsistency in
histopathology slide preparation such as differences in fixation, staining protocol,
non-standard imaging condition, etc. can cause variability in tissue appearance
(colour and texture). The texture variation is typically captured by classifiers
employing traditional texture features. To mitigate the effect of colour variabil-
ity, a straightforward approach is to use gray-scale images [3,4]. On the other
hand, a stain (or colour) normalization preprocessing can be performed, which
is typically a more sophisticated process involving methods such as histogram
matching, colour transfer, colour map quantile matching approach and spectral
matching etc. [5,6].

However, it is observed that some inter-image colour variation might be infor-
mative [5]. Similarly, recent research in digital histopathology has indicated sig-
nificance of colour information in quantitative analysis on histopathology [7,8].
As can be seen from Fig. 1, along with texture, colour information is also avail-
able in images which can be utilized to get a more discriminating representation.

From a machine learning perspective, various methods which do not employ
normalization have also been proposed [9–11]. Our proposed method falls in this
category where features are directly extracted from image (without normaliza-
tion). This follows the philosophy that instead of reducing the colour variation,
we learn the colour variation (along with the texture variation) as a part of the
classification process.

We believe that the colour-texture variability can be better captured with
joint colour-texture features [12]. Such features consider the mutual dependency
between colour channels and texture information. These features can be defined
with individual colour channels, or with correlated pairs of colour channels. Such
jointly defined colour-texture features can locally adapt to the variation in the
image content [13].

Fig. 1. Sample of histopathological images (first row: benign tumor, second row:
malignant tumor) from BreakHis dataset at magnification factor of 40X.
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In addition, different from existing works where a small set of classifier was
utilized, here a total of 22 classification frameworks experimented with. These
classification frameworks include Quadratic Discriminant, Subspace Discrimi-
nant, RUSBoosted Trees, Boosted Tree, Coarse Gaussian SVM, Weighted KNN
etc. We argue that such an exploration of joint colour-texture features and vari-
ous classifiers leads to the selection of better suited features and classifiers to this
specific problem. Due to space-constraints, we report the features and classifiers
which correspond to top five results for each image magnification.

1.1 Related Work

In recent years, a number of methods have been investigated for BC histopathol-
ogy classification. However, most of these method use traditional morphology
and texture features. Kowal et al. [14] utilized four different clustering algo-
rithms for nuclei segmentation and extracted 21-dimensional feature vector. In
[14], three different classifiers are reported for each clustering algorithm sepa-
rately. This s carried out on a dataset which contained 500 images of cytological
samples that were extracted from 50 patients. Filipczuk et al. [15] presented
a diagnosis system where nuclei were estimated by the Hough transform. Four
different classifiers trained on 25-dimensional feature vector was used for classi-
fication using 737 images of cytological sample which had drawn from the same
place as [14]. Based on above discussed methods, it is realized that for accu-
rate system nuclei should be segmented properly as subsequent analysis is based
on segmentation. However, segmentation of histological images is not a trivial
task and is prone to mistakes. Instead of relying on the accurate segmentation,
[16] investigated multiple image descriptors along with random subspace ensem-
bles and proposed two-stage cascade framework with a rejection option using a
dataset composed of 361 images. In another work [17], an ensembles of one-class
classifiers were assessed by the same authors on the same dataset.

The works in [9,10] also propose the use colour information in addition to
texture. Milagro et al. [9] combinations of traditional texture features and colour
spaces is considered. Furthermore, they have also considered different classifiers
such as Adaboost learning, bagging trees, random forest, Fisher discriminant and
SVM. In [10], authors utilized colour and differential invariants to assign class
posterior probabilities to pixels and then performs a probabilistic classification.
While our intuition of using colour information and a set of classifiers is simi-
lar to [9], our integrated joint colour-texture features also consider dependency
between colour channels and texture, rather than extracting traditional texture
features independently from colour channels. Moreover, unlike ours, and simi-
lar to the above discussed works, [9,10] do not consider experimentation with
respect to different optical magnifications, which is an important aspect [4]. Fur-
thermore, we report our results on a public benchmark dataset, unlike all the
above approaches.

With regards to the concern of benchmarking, it has been observed that
the dataset used in the above works are not publicly available to the scien-
tific community, and such datasets contain rather small number of images.
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Table 1. Detailed description of BreaKHis dataset

Magnifications Total Patient

40x 100x 200x 400x

Benign 625 644 623 588 2480 24

Malignant 1370 1437 1390 1232 5429 58

Total 1995 2081 2013 1820 7909 82

Spanhol et al. [4] introduced the BreakHis dataset which intended to take away
the impediment of publicly available data set. The BreakHis dataset contains
fairly large amount of microscopic biopsy images (7909) that were collected from
82 patients in four different magnifications (40x, 100x, 200x, 400x). The details
of dataset are provided in Table 1. Figure 1 shows the images of benign and
malignant tumor given in different magnifications.

In the same study, a series of experiments utilizing six different texture
descriptors and four different classifiers were evaluated and showed the accuracy
at patient-level. In [18], Alexnet [19] was used for extracting features, and clas-
sification was reported on image-level as well as patient-level, using this dataset.
Bayramoglu at el. [20] proposed a magnification independent model utilizing
deep learning and reported accuracies for both multi-task network which pre-
dicts magnification factor and malignancy (benign/malignant) simultaneously,
and single task network which predicts malignancy.

1.2 Salient Aspects of This Work

Considering that the area of BC histopathology image analysis is still an emerg-
ing one, as new approaches are developed, the evaluation and comparison among
such frameworks is of increasing importance from a clinical perspective. In this
context we consider the following aspects about methodology and evaluation
which drives our work.

(a) As implied above, there is scope for further exploration of suitable features
and classifiers for this problem, which can better capture the discriminative

Fig. 2. An Integrated model for BC image classification.
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information to address the classification task. Thus, in this work we look into
employing joint colour-texture features for this task.Motivated from [4],where
conventional texture features (GLCM, CLBP, PFTAS etc.) along with small
set of well known classifiers were utilized, in this work we explore a relatively
larger set of classifiers for the joint-color texture features. This provides their
comparative performance under one roof, and indeed, for some classifiers we
demonstrate an improved performance over the state-of-the-art.

(b) The above discussed methods yield a continuous value for a scoring, rather
than single value formaking decisions. In the discussedmethods [4,18], patient
and image level score were used as performance measures. However, it is also
important to convert a patient score to a decision (benign or malignant), using
a decision threshold on the patient-level scores, and finally comment on the
quality of the diagnostic test in the context of the accuracy of such patient-
level decisions. For such a quality check, the receiver operating characteristics
(ROC) curve that includes all the decision threshold, offers amore compressive
assessment. In diagnostic test assessment, area under the ROC curve (AUC)
can be used to judge the quality of approaches. A value of AUC that lies in
range 0 to 1, where 0 and 1 correspond to inaccurate and accurate test respec-
tively. A value of 0.5 for AUC indicates no discrimination, 0.7 to 0.8 is con-
sidered acceptable, 0.8 to 0.9 taken as fair or good or some time excellent test,
and more than 0.9 is considered as outstanding [21]. In light of this, we suggest
an integrated model using all magnifications (as elaborated below), that uses
the AUC as a performance measure.

(c) In some previous work [4,18] a model corresponding to each magnification
was built independently based on different combinations of features and
classifiers. We believe that instead of just relying on the individual scores
correspond to each magnifications, assessment of overall score calculated as
the ratio of total images classified to total images of patient, can also yield
useful information with respect to a beneficial decision. For instance, for
a patient who has large variation in scores, the decision cannot be made
reliably by just looking at the highest score. In this work, while we report
results on individual magnifications, we also suggest an integrated model
that makes use of all magnifications, and can yield a more reliable system in
terms of the AUC. Figure 2 depicts the proposed integrated model, wherein,
x1, x2, x3, and x4 are the total number of input images of four different mag-
nifications, and y1, y2, y3, and y4 are the corresponding classified images.

2 Methodology

In this section, we briefly discuss about the images descriptors and classifiers we
have utilized for this study.

2.1 Joint Colour-texture Features

In order to find suitable feature for each magnification various features are uti-
lized. Due to space constraints, we provide only a short introduction of features
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which are included in combinations that yields the top results. For more details
please refer [12].

1. Normalized colour space representation [22]: The matrix of complex
numbers (C1+iC2), where C1 and C2 are the normalized colour channel cho-
sen based on the range and average values of the colour channels is used to
extract textural (Gabor filter) features.

2. Multilayer coordinate clusters representation [23]: To describe the tex-
tural and colour content of an image, it splits the original colour image
into a bundle of binary images, where each binary image represents a colour
code based on a predefined palette (quantized colour space). Patches of such
binary patters are then clustered and the method computes the histograms
of occurrence of the binary patches based on the cluster centres. This process
is repeated for each layer, and the resulting histograms are concatenated.
Depending on, how many samples (n) are taken on each axis of the colour
space, resulting palettes (N=n3) will be 8, 27 and 64 levels.

3. Gabor features on Gaussian colour model [24]: The following two stages
are used to extract color-texture: (1) Measurement of color in transformed
space (based on a Gaussian colour model), (2) Utilization of Gabor filter bank
for texture measurement.

4. Complex wavelet features and chromatic features [25]: Dual Tree Com-
plex Wavelet Transform (DT-CWT) is applied to each color channel sep-
arately. The final feature vector is a concatenation of all DT-CWTS from
different channels.

5. Opponent colour local binary pattern (OCLBP) [26]: This is an exten-
sion of standard Local Binary Pattern (LBP) which developed as the joint
colour-texture operator for colour images. It is a concatenation of all LBPs
extracted from different channels including colour channels separately (intra
channel) and opponent colour channel ((c1, c2), (c1, c3) and (c2, c3)) jointly.

2.2 Classifiers

We explore various supervised classifiers, for which we provide a short description
below [27].

1. Support Vector Machine (SVM): It is a supervised machine learning
algorithm that learns a hyperplane which separates a samples of one class
from samples of other class with maximum margin. Depending on the type
of the kernel and, its scale that used to make the distinction between classes,
a variety of SVMs exists.
(a) Linear SVM
(b) Quadratic SVM (Quadratic kernel)
(c) Cubic SVM (Cubic kernel)
(d) Fine Gaussian SVM (Radial Basis Function (RBF) kernel, kernel scale

set to
√
P/4)
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(e) Medium Gaussian SVM (RBF kernel, kernel scale set to
√
P )

(f) Coarse Gaussian SVM (RBF kernel, kernel scale set to 2
√
P )

where P is the number of predictors.
2. Decision Tree: It is a top-down approach that uses a tree-like graph of

possible solutions including resource costs, and utility. Several variations of
tress are exist based on maximum number of splits utilized in the tree.
(a) Simple Tree (maximum number of splits is 4)
(b) Medium Tree (maximum number of splits is 20)
(c) Complex Tree (maximum number of splits is 100)

3. Nearest Neighbors Classifier: It does not make any underlying assump-
tions about the distribution of data. It locates the data into some clusters, or
groups and classified an unclassified point into the cluster for which it has a
higher probability of getting classified based on distance metrics. Depending
on number of neighbors and metric used, a variety of k-NN exists.
(a) Fine KNN (number of neighbors is set to 1, euclidean metric)
(b) Medium KNN (number of neighbors is set to 10, euclidean metric)
(c) Coarse KNN (number of neighbors is set to 100, euclidean metric)
(d) Cosine KNN (number of neighbors is set to 10, Cosine distance metric)
(e) Cubic KNN (number of neighbors is set to 10, cubic distance metric)
(f) Weighted KNN (number of neighbors is set to 10, distance based weight)

4. Discriminant Analysis: It assumes that different classes generate data
based on different gaussian distributions and predicts membership in a group
or category based on observed values. We consider two types of discriminant
analysis based on boundary type formed between classes.
(a) Linear Discriminant (linear boundaries)
(b) Quadratic Discriminant (non-linear boundaries such as ellipse, parabola)

5. Ensemble Classifier [28]: It is a set of classifiers trained to solve same prob-
lem and, their output are combined to classify a new sample. The employment
of logistics to make different schemes (combination) leads to different ensem-
ble methods:
(a) Boosted Tree
(b) Bagged Tree
(c) RUSBoosted Trees

3 Experimental Results and Discussion

For fair comparison with existing approach [4,18,20], we have randomly chosen
58 patients (70%) for training and remaining 25 for testing (30%). We train the
above mentioned classifiers using image representations of chosen 58 patients,
and also used five trials of random training-testing data selection. These trained
models are tested using remaining image representations of 25 patients. Due to
the disproportionate ratio of normal and abnormal cases, the same procedure is
repeated for five trails (each time different patients for training and testing are
chosen) and average results are reported. The discussed protocol is followed for
all magnification, i.e. same patients are used for training for all magnifications.
In subsequent subsections, we will discuss the evaluation metrics used to discuss
the present work, performance evaluation of each magnification as well as for
integrated model, AUC performance evaluation and performance comparison.
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3.1 Evaluation Metric

There can be various ways to evaluate the model when the observed variable
lies in continuous range (discussed in introduction section). In some previous
work [4,18], patient recognition rate (PRR) that further depends on patient
score (PS), and image recognition rate (IRR) were used to report the results.
The first measure takes the decision patient-level while second at image-level (i.e.
without using patient information) The definition of these measures are given as
follows:

PRR =
∑N

i=1 PSi

N
(1)

where N is the total number of patients (available for testing). The patient score
is define as follows,

PS =
Nrec

NP
(2)

Nrec and NP are the correctly classify and total cancer image of patient P
respectively.

IRR =
TCCI

TI
(3)

where, TCCI and TI are the total correctly classified image and total images
respectively.

In addition, we also employ the ROC curve and AUC computation [29] to
grade quality of the framework as a system for patient-level diagnosis.

3.2 Performance Evaluation

Tables 2, 3, 4 and 5 illustrate the performance of the models corresponding to
each magnification. For each magnification, results are reported for five best
combinations which are ranked based on the obtained patient score.

In proposed study, we compute the AUC based on the ROC obtained using
the patients scores. Hence, in Tables 2, 3, 4 and 5, we give more prominence to
the patient score. In each table, fourth and the fifth row shows the patient and
the image score obtained for top combinations and the corresponding features
and classifiers are given in the second and third row.

It is observed from the tables that, all the features are not appropriate for
same classifier. Hence, suitable combinations of features and classifiers are more
advantageous to quantify the images of different magnification.

We also suggest an integrated model, where we consider best feature-classifier
combination (based on the patient score) for each magnification. The integrated
model yields a patient-level score of 88.40% and image-level score of 88.09%. We
note that the integrated model is performing similar to the individual magnifi-
cations in terms of score. However, as we demonstrate next, the integration can
be considered more reliable, based on the AUC analysis.
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Table 2. Top 5 features and classifiers combination for 40x magnification.

Top 5

combination

Combination 1 Combination 2 Combination 3 Combination 4 Combination 5

Feature used Opponent

colour LBP

Normalized

colour space

representation

Multiple CCR

at level 8

Gabor feat. on

Gauss. col.

mod.

Multiple CCR

at level 27

Classifier used Linear SVM Subspace

Discriminant

Bagged Tree Linear SVM Simple Tree

Patient score 86.74±2.37 86.01± 1.62 86.23± 1.75 85.85± 1.41 84.32± 0.68

Image score 86.40±2.77 86.03± 1.82 85.39±2.96 85.69± 2.04 84.50± 2.62

Table 3. Top 5 features and classifiers combination for 100x magnification.

Top 5

combination

Combination 1 Combination 2 Combination 3 Combination 4 Combination 5

Feature used Gabor feat. on

Gauss. col.

mod.

Multiple CCR

at level 8

Multiple CCR

at level 27

Multiple CCR

at level 64

Normalized

colour space

representation

Classifier used Simple Tree Bagged Tree Boosted Tree Bagged Tree Simple Tree

Patient score 88.56±2.73 88.41± 1.68 87.34± 1.91 87.05± 3.79 87.13± 2.42

Image score 86.70±3.23 88.31± 2.99 87.81± 3.17 87.32± 4.49 85.60± 2.67

Table 4. Top 5 features and classifiers combination for 200x magnification.

Top 5

combination

Combination 1 Combination 2 Combination 3 Combination 4 Combination 5

Feature used Multiple CCR

at level 8

Multiple CCR

at level 64

Gabor feat. on

Gauss. col.

mod

Normalized

colour space

representation

Multiple CCR

at level 27

Classifier used Bagged Tree Simple Tree Subspace

Discriminant

Medium

Gaussian SVM

Simple Tree

Patient score 90.31±3.76 89.57± 4.62 88.51± 3.52 88.55± 3.61 88.04± 9.74

Image score 91.86±3.21 89.84± 3.85 88.82± 4.39 88.89± 3.58 88.75± 8.54

Table 5. Top 5 features and classifiers combination for 400x magnification.

Top 5

combination

Combination 1 Combination 2 Combination 3 Combination 4 Combination 5

Feature used Normalized

colour space

representation

DT-CWT Gabor feat. on

Gauss. col.

mod.

Gabor

chromatic

features

Multiple CCR

at level 8

Classifier used Linear SVM Coarse

Gaussian SVM

Coarse

Gaussian SVM

Coarse

Gaussian SVM

Medium

Gaussian SVM

Patient score 88.31±3.01 87.98± 3.99 86.83± 4.21 86.59± 6.38 85.87± 3.38

Image score 87.06±3.49 86.37 ±3.85 85.07 ±4.29 85.13± 5.67 85.41± 2.52
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Table 6. AUC comparison for different magnification.

Magnifications Integrated model

40x 100x 200x 400x

Area under the curve 69.97 74.15 71.93 74.24 81.96

Optimum threshold range 64.71–83.87 66.0–97.22 91.67–100 55.56–95.85 81.25–93.06

3.3 AUC Evaluation

As discussed in Sect. 1.2, it is important to take decisions on patients (rather
than images), and that ROC and the related AUC is an effective way to rate such
diagnostic systems. Here, we consider the same in context of reliability of the
test for patient-level decisions, by thresholding patient-level scores. Note that
this ROC computation on patient-level scores is different from the traditional
ROC analysis for in pattern classifiers (e.g. for image-level classification).

Table 6 details the value of AUC obtained for all magnification levels as well
as for integrated model. A threshold on the real-valued scores determines a final
label (benign or malignant). The ROC curve is computed using different values
of threshold. We also compute the optimal threshold for the ROC curve [30].
Table 6 illustrates the range of this optimal threshold estimated using five trials.

From the reported results in Table 6, it is clear that the AUC for models cor-
responding to single magnification, is lower than that for the integrated model,
thus ascertaining the good quality of inference of the integrated model. The value
of 81.92 for AUC for the integrated model signifies a good quality test [21]. We
also note that the variation of the optimum threshold among the five trials is
one of the lowest. This suggests that the integrated model yields a stable value
of the optimum threshold.

3.4 Performance Comparison

Table 7 compares the proposed method with state-of-the-art methods which use
same dataset and also the same protocol. We can observe from the table that,
except for the 40x magnification case, the proposed framework outperforms the
others approaches. Furthermore, one can also observe that the proposed work

Table 7. Performance comparison.

Methods & Score Spanhol et al. [4] Spanhol et al. [18] Bayramoglu et al. [20] Proposed

40x Patient level 83.8± 4.1 90.6±6.7 83.08± 2.08 86.74± 2.37

Image level NA 89.6 ± 6.5 NA 86.40± 2.77

100x Patient level 82.1± 4.9 88.4± 4.8 83.17± 3.51 88.56±2.73

Image level NA 85.0± 4.8 NA 86.70±3.23

200x Patient level 85.1± 3.1 85.3± 3.8 84.63± 2.72 90.31±3.76

Image level NA 84.0± 3.2 NA 91.86±3.21

400x Patient level 82.3± 3.8 86.1± 6.2 82.10± 4.42 88.31±3.01

Image level NA 80.8± 3.1 NA 87.06±3.49
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yields the least variance in scores. Thus, we demonstrate that suitable joint colour-
texture features and classifier combination are effective for BC histopathology
image classification.

4 Conclusion

This study proposes an integrated model over multiple magnifications for breast
cancer histopathological image classification. In this work, we employ a wide
range of joint colour-texture features and classifiers. We demonstrate that some
of these features and classifiers are indeed effective for a superior classification
performance. In addition, the present study also focuses on measuring the per-
formance of the integrated model based on the AUC criteria, and deduce that
the this yields better results than the classification at individual magnifications.
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