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Abstract. Deep convolutional neural networks (DCNNs) have recently
been applied to Human pose estimation (HPE). However, most con-
ventional methods have involved multiple models, and these models
have been independently designed and optimized, which has led to sub-
optimal performance. In addition, these methods based on multiple
DCNNs have been computationally expensive and unsuitable for real-
time applications. This paper proposes a novel end-to-end framework
implemented with cascaded neural networks. Our proposed framework
includes three tasks: (1) detecting regions which include parts of the
human body, (2) predicting the coordinates of human body joints in the
regions, and (3) finding optimum points as coordinates of human body
joints. These three tasks are jointly optimized. Our experimental results
demonstrated that our framework improved the accuracy and the run-
ning time was 2.57 times faster than conventional methods.

Keywords: Human pose estimation · Neural networks · Multi-task
learning · End-to-end learning

1 Introduction

Human pose estimation (HPE) from images is a challenging task in computer
vision. It predicts the coordinates of human body joints in images. It has many
applications, such as those in gesture recognition, clothing parsing, and human
tracking. This task is still challenging due to camera viewpoints, complicated
backgrounds, occlusion, and running time. Image recognition has recently been
improved with deep convolutional neural networks (DCNNs) [1]. Krizhevsky
et al. [1] achieved the best recognition rate and attracted a great deal of attention.
State-of-the-art performance of HPE has also been achieved with DCNNs [2–10].
However, because the computational cost of DCNNs is very high, the number
of calculations should be reduced as much as possible. Furthermore, in order to
achieve state-of-the-art performance, end-to-end learned models should be used.

This paper proposes a novel end-to-end framework for HPE implemented
with cascaded neural networks. Figure 1 overviews the architecture of our frame-
work, which includes three tasks: (1) detecting region proposals [14] which
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Fig. 1. Overview of the proposed framework

include parts of the human body via region proposal networks (RPNs), (2)
predicting the coordinates of human body joints in region proposals via joints
proposal networks (JPNs), and (3) finding optimum points as the coordinates
of human body joints via joints regression networks (JRNs). These three tasks
are jointly optimized. We demonstrated the efficiency of our framework on the
Leeds sports pose (LSP) dataset [11]. Our experiments revealed that our frame-
work improved accuracy and reduced the running time compared to conventional
methods. The remainder of the paper discusses related works in Sect. 2, and then
introduces our framework in Sect. 3. The experimental results are presented in
Sect. 4. Section 5 concludes the paper.

2 Related Work

A number of different approaches using DCNNs have been proposed for HPE.
DeepPose [2] proposes a cascade of DCNNs-based pose predictors. Such a cas-
cade allows for increased precision of joint localization, which achieves very high
levels of accuracy. However, this model includes multiple DCNNs that are com-
putationally expensive, and each pose predictor is independently designed and
optimized. Chen et al. [10] use DCNNs to learn conditional probability for the
presence of parts. The conditional probability is also called a heat map. The
human pose is predicted using graphical models with prior knowledge such as
geometric relationships among body parts. However, the DCNNs and the graphi-
cal models are independently optimized. Yang et al. [12] propose a model, which
combines the DCNNs for generating a heat map with the graphical models,
and these models are jointly optimized. This approach also achieves high levels
of accuracy. However, generating a heat map requires the use of many DCNNs,
which leads to large computational costs. Wang et al. [13] propose a model which
handles two tasks: (1) it generates a heat map from depth images via a fully con-
volutional network (FCN) [15] and (2) it seeks an optimal configuration of body
parts via an inference built-in MatchNet [16]. However, MatchNet imposes large
computational costs due to the use of chains in multiple convolutional layers [17].



Real-Time Human Pose Estimation via Cascaded Neural Networks 243

Fig. 2. Representing a human body as a graph

3 Our Framework

This section presents our framework, which consists of three stages. The first
stage is region proposal networks (RPNs), the second stage is joints proposal net-
works (JPNs), and the third stage is joints regression networks (JRNs). These are
described in Subsects. 3.1, 3.2, and 3.3, respectively. In Subsect. 3.4, the multi-
task learning procedure of our model is described.

3.1 Region Proposal Networks (RPNs)

Our model predicts region proposals R via RPNs in the first stage. Region
proposals R denote a vector that consists of bounding boxes, which include
multiple parts of the human body. Region proposals R are obtained as follows:

R(I) =
(
B1, B2, . . . , BK

)
(1)
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(
bk1 , b

k
2 , b

k
3 , b

k
4

)
=
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p∈Pk

y(p), max
p∈Pk
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p∈Pk

y(p)
)
, (2)

where I denotes an input image, p denotes a joint number, and Pk denotes a set
of joint numbers. Here, 1 ≤ k ≤ K, K denotes the number of bounding boxes
which is set to eight, and x(p) and y(p) denote the coordinates of human body
joints with joint number p in the input image. Figure 2 outlines the relationship
between a joint number p and Pk. Figure 3 shows an example of the architecture
for RPNs, where feature map 1, 2, and 3 are used in joints proposal networks
(JPNs) as input.

We adopted two architectures which have been widely used for image classifi-
cation. The first was VGG-16 [18], and the second was GoogLeNet [23], because
these architectures have provided outstanding results for image classification.
For example, Faster-RCNN [14] predicts region proposals via VGG-16 [18] for
object detection. The performance impact of each RPNs architecture is described
in Sect. 4.
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Fig. 3. The architecture of RPNs by using VGG-16 [18]

3.2 Joints Proposal Networks (JPNs)

Our model takes feature maps and region proposals R as input in the second
stage, and it predicts joints proposals J via JRNs, where joints proposals J are
defined as the coordinates of human body joints in region proposals R. Joints
proposals J are obtained as follows:

J(I) =
(
J0, J1, J2 . . . , JK

)
(3)

J0 =
(
x(1), y(1), . . . , x(L), y(L)

)
(4)

Jk =
(
jk1 (p1), jk2 (p1), . . . , jk1 (ps(k)), jk2 (ps(k))

)
(5)

jk1 (p) = (x(p) − bk1)/(b
k
3 − bk1) (6)

jk2 (p) = (y(p) − bk2)/(b
k
4 − bk2), (7)

where 1 ≤ k ≤ K, p1, . . . , ps(k) ∈ Pk, bk1 , bk2 , bk3 , and bk4 denote vertices of
bounding box Bk defined in Eq. (2), and L denotes the number of human body
parts, which is set to 14 as described in Fig. 2.

Figure 4 shows the architectures for JPNs, which consists of four types of
networks. Network (a) takes a feature map from the middle layer in RPNs as
input, and predicts J0. Networks (b), (c), and (d) take feature maps from multiple
middle layers in RPNs and region proposals R as input, and predict J1, J2, . . .,
and JK .

The purpose of the region-of-interest (RoI) pooling layers [14] is to extract
the area indicated by region proposals R from feature maps and to produce a
fixed-length feature vector because full-connected (FC) layers [1] require it as
input. DeepPose [2] extracts the area from an input image. However, such an
approach requires many calculations using convolutional layers for the feature
extraction, which leads to large computational costs. In our model, the calcu-
lation is performed only once because the area is extracted from feature maps.
This approach is computationally efficient and suitable for real-time applica-
tions. Moreover, our model takes feature maps from multiple middle layers as
input to increase the resolution of feature maps. For example, feature maps with
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Fig. 4. The architecture of JPNs.

high resolution are required to calculate J4, J5, J6, J7, and J8, because B4, B5,
B6, B7, and B8 have a small area (see Fig. 3). On the other hand, feature maps
with high resolution are not required for calculating J1 because B1 has a large
area. Our model changes the number of feature maps depending on the size of
the bounding box. As shown in Fig. 4, Network (d) takes feature map 3, 2, and
1 as input. Network (c) takes feature map 3 and 2 as input. Network (b) and (a)
only take feature map 3 as input.

The purpose of the 1× 1 convolutional layers is to reduce the channel dimen-
sions of feature maps. They enable the training time to shorten by reducing the
dimensions. The Local Response Normalization (LRN) layers are used to align
the amplitude of feature maps in each convolutional layer.

3.3 Joints Regression Networks (JRNs)

Our model takes region proposals R and joints proposals J as input in the third
stage, and it predicts the coordinates of human body joints via JRNs. Figure 5
shows the architectures for JRNs, whose purpose is finding the optimum points
as human body joints.

These layers can be replaced with a linear function under ideal conditions, in
the case that region proposals R and joints proposals J are correct values. The
coordinates of human body joints are obtained as follows:

x(p) = (bk3 − bk1) j
k
1 (p) + bk1 (8)

y(p) = (bk4 − bk2) j
k
2 (p) + bk2 , (9)
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Fig. 5. The architecture of JRNs

where p denotes a joint number, bk1 , b
k
2 , b

k
3 , and bk4 denote vertices of bounding box

Bk defined in Eq. (2), and jk1 (p) and jk2 (p) denote elements of joints proposals Jk

in Eq. (5). However, as bk1 , b
k
2 , b

k
3 , b

k
4 , j

k
1 (p), and jk2 (p) fluctuate randomly, Eqs.

(8) and (9) do not work well. We used fully-connected (FC) layers [1] because
they are a nonlinear function that leads to universal approximation property [20].

3.4 Multi-task Learning

We define the loss function of the entire network as:

l(w1,w2,w3) = l1(w1) + l2(w1,w2) + l3(w1,w2,w3), (10)

where w1, w2, and w3 denote weight parameters in RPNs, JPNs, and JRNs.
l1(w1), l2(w1,w2), and l3(w1,w2,w3) correspond to the mean-squared-error
(MSE) [21] for RPNs, JPNs, and JRNs.

The loss function, l(w1,w2,w3), is minimized with respect to w1, w2, and
w3. We employ an Adaptive Moment Estimation (Adam) [27] to optimize w1,
w2, and w3. The entire algorithm for multi-task learning is summarized in
Algorithm 1. First, w1, w2, and w3 are initialized randomly in step 1. Then,
RPNs, JPNs and JRNs are independently optimized in step 2, 3, and 4. Finally,
the entire network is trained in step 5. Step 2, 3, and 4 are pre-training techniques
[22] to shorten training time in step 5. The end-to-end learning is performed in
step 5. The details about values of the several parameters are described in Sect. 4.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluated the proposed methods on well-known public pose esti-
mation benchmarks: Leeds sports poses (LSP) dataset [11] and Leeds sports
pose extended training (LSPET) dataset [12]. The LSP dataset consists of 1,000
training and 1,000 testing images, and the LSPET dataset consists of 10,000
training images. However, a lot of data are required for training DCNNs. We
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Algorithm 1. Optimize w1, w2, and w3

Input: Training Samples
(
I1,R(I1),J(I1)

)
. . .
(
IN ,R(IN ),J(IN )

)

Output: w1, w2 and w3

1: Initialize w1, w2 and w3 randomly.
2: w1 ← arg min

w1

l1(w1)

3: w2 ← arg min
w2

l2(w1,w2)

4: w3 ← arg min
w3

l3(w1,w2,w3)

5: w1,w2,w3 ← arg min
w1,w2,w3

l1(w1) + l2(w1,w2) + l3(w1,w2,w3)

also used our 3D-CAD models to increase the amount of data. The 3D-CAD
models consist of 11,000 training images that are automatically generated by
using open source 3D-CAD tools [28,29], and the human motions are created by
using the motion capture database [30]. We combined these datasets with the
LSP and the LSPET datasets. As a result, the combination contained 22,000
training images. Peng et al. [19] augment the training images with synthetic
images generated from 3D-CAD models for image classification. We used this
approach.

We augmented the training images to reduce overfitting by horizontally mir-
roring the images, rotating them through 360 degrees for every 9 degrees, crop-
ping them randomly, and injecting white noise into them. The final amount of
training samples was 5,000,000.

Metrics. We used widely accepted evaluation metrics called the percent of
detected joints (PDJ) [12], which calculates the detection rate of human body
joints, where a joint is considered as being detected if the distance between the
predicted joint and the correct joint is less than a fraction of the torso diameter.
The torso diameter is defined as the distance between the left shoulder and the
right hip. We also computed an Area-Under-the-Curve (AUC) to compare our
work with other approaches (see Figs. 6, 7, and 8).

Person-Centric/Observer-Centric. In person-centric [24] annotations, right/
left bodyparts aremarked according to the viewpoint of the person in an image. For
example, the right wrist of a person facing the camera is left in the image. However,
if the person faces away from the camera, it is right in the image. On the other hand,
in observer-centric [24] annotations, right/left body parts are marked regardless of
the viewpoint. Person-centric annotations are more difficult than observer-centric
annotations because it is necessary to recognize the viewpoint. The information
of the viewpoint is important for action recognition. Therefore, we used person-
centric annotations.

DCNN Architectures. We investigated two DCNN architectures in RPNs.
The first was VGG-16 [18] that consists of 16 convolutional layers and FC layers.
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Table 1. Running time on an Intel Xeon CPU at 3.50 GHz and a NVIDIA Tesla K40
GPU. Note that the Heat Map [12] only indicates the running time for generating a
heat map, and it does not include the processing time of other tasks.

Method Running time [s]

DeepPose [2] 0.18

Heat map [12] 0.50

Our work (VGG-16 [18]) 0.094

Our work (GoogLeNet [23]) 0.070

The second was GoogLeNet [23] that consists of three convolutional layers, nine
inception layers, and FC layers.

Implementation Details. All of our experiments were carried out on an Intel
Xeon CPU at 3.50 GHz and a NVIDIA Tesla K40 GPU. Our model was imple-
mented on the Chainer library [31]. In order to optimize our model, we used
pre-training models in Model Zoo [32] for fine-tuning [22]. The learning rate and
the batch size were set to 0.0001 and 24, respectively, for training RPNs, JPNs
and JRNs. On the other hand, the learning rate and the batch size were set to
0.00001 and 20 for the end-to-end learning. The total training time was about
2 weeks.

4.2 Experimental Results

Table 1 lists the running time results. Our model was 2.57 times faster than
DeepPose [2]. As described in Sect. 3.2, the conventional methods use a lot of
DCNNs that are computationally expensive. However, our model does not use
them, so the running time of our model was fast.

Figure 6 shows the PDJ results on the LSP dataset. We used person-centric
annotations for fair comparison with related work [2,25]. Our model achieved
the best performance compared with the conventional methods. Our results were
particularly better in the low precision domain. The AUC of our model was 7.34%
– 29.66% higher than that of DeepPose [2].

We analyzed how different RPNs architectures affected performance. Figure 7
shows the PDJ results with different RPNs architectures. Our best performance
was achieved by using the architecture of VGG-16 [18] in RPNs. The AUC of
VGG-16 [18] was 8.65% – 19.62% higher than that of GoogLeNet [23].

Figure 8 compares JPNs with JRNs. The PDJ of JRNs was higher than that
of JPNs, especially for ankle. The AUC was improved from 0.66% to 12.56%.
Here, we can observe that JRNs have an effect on improving accuracy. Figure 9
shows some pose estimation results.
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Fig. 6. PDJ comparison of our work and other approaches on the LSP dataset. The
solid lines and the dashed lines represent PDJ and AUC on the LSP dataset, respec-
tively. All results are from author’s papers, and these are the person-centric results.
The architecture of RPNs was VGG-16 [18]. Note that we adopted only person-centric
results as related work. For example, Chen and Yuille [10] and Yang et al. [12] used
observer-centric annotations, therefore these were excluded from comparisons.

Fig. 7. Influences of different RPNs architectures are plotted. The solid lines and the
dashed lines represent PDJ and AUC on the LSP dataset, respectively.
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Fig. 8. Figures compare JPNs with JRNs. Results for JPNs were calculated by using
output of network (a) in Fig. 4. The architecture of RPNs was VGG-16 [18]. The solid
lines and the dashed lines represent PDJ and AUC on the LSP dataset, respectively.

Fig. 9. HPE results we obtained. The first row shows the outputs of RPNs. The second
row shows the outputs of JPNs. The third row shows the outputs of JRNs.
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5 Conclusion and Future Work

We proposed a novel end-to-end framework for HPE implemented with cascaded
neural networks. We demonstrated the efficiency of our framework on the LSP
dataset [11]. As a result, our model achieved accuracy that was higher than
that of conventional models, and the running time was 2.57 times faster than
conventional methods.

As a future work, we plan to evaluate our method on other datasets, for
example, Frames Labeled In Cinema dataset (FLIC) [33], Kinect2 Human
Gesture Dataset (K2HGD) [13], and MPII Human Pose Dataset [34]. Further-
more, we apply other methods of speeding up HPE to our model, such as
binarized weights [26] or low rank approximation [17].

Acknowledgments. The authors would like to thank Professor Hironobu Fujiyoshi
at Chubu University for his forthright comments and valuable suggestions.
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