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Preface

We are very happy to present the contributions accepted for the 17th international
Conference on Computer Analysis of Images and Patterns (CAIP 2017), which was
held at Ystad Saltsjöbad, Ystad, Sweden, August 22–24.

CAIP 2017 was the 17th in the biennial series of conferences, which is devoted to
all aspects of computer vision, image analysis and processing, pattern recognition, and
related fields. Previous conferences were held, for instance, in Valletta, York, Seville,
Münster, Vienna, Paris, etc. The contributions for CAIP 2017 were carefully selected
based on a minimum of two but mostly three reviews. Among 144 submissions 72
were accepted, leading to an acceptance rate of 50%.

The conference included a tutorial on “Pose Estimation” by Anders G. Buch and a
workshop on “Recognition and Action for Scene Understanding” (REACTS). Three
keynote talks provided by world-renowned experts in the area of robotics (Markus
Vincze), machine learning (Christian Igel), and image and video processing (Alan
Bovik) were additional highlights.

The program covered high-quality scientific contributions in 2D-to-3D, 3D vision,
biomedical image and pattern analysis, biometrics, brain-inspired methods, document
analysis, face and gestures, feature extraction, graph-based methods, high-dimensional
topology methods, human pose estimation, image/video indexing and retrieval, image
restoration, keypoint detection, machine learning for image and pattern analysis,
mobile multimedia, model-based vision, motion and tracking, object recognition,
segmentation, shape representation and analysis, and vision for robotics.

CAIP has a reputation of providing a friendly and informal atmosphere, in addition
to high-quality scientific contributions. We focused on maintaining this reputation, by
designing a stimulating technical and social program that was hopefully inspiring for
new research ideas and networking. We also hope that the venue at Ystad Saltsjöbad
contributed to a fruitful conference.

We thank the authors for submitting their valuable work to CAIP. This is of course
of prime importance for the success of the event. However, the organization of a
conference also depends critically on a number of volunteers. We would like to thank
the reviewers and the Program Committee members for their excellent work. We also
thank the local Organizing Committee and all the other volunteers who helped us
organize CAIP 2017.

We hope that all participants had a joyful and fruitful stay in Ystad.

August 2017 Michael Felsberg
Anders Heyden
Norbert Krüger
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Abstract. Location is an elemental problem for mobile robotics due
the importance of determining a position of the robot in space. This
knowledge along with the environment map are basic information for
robot mobility. In this paper, a new approach for navigation and loca-
tion of mobile robots on topological maps using classification with reject
option in attributes obtained from a Structural Co-occurrence Matrix
(SCM) is proposed. Furthermore, we compare our approach with oth-
ers state-of-the-art extractors, such as Statistical Moments, Gray-Level
Co-occurrence Matrix (GLCM) and Local Binary Patterns (LBP). Struc-
tural Co-Occurrence Matrix was evaluated with the Average, Gaussian,
Laplacian and Sobel filters. Regarding to classifiers, Bayesian classifier,
Multilayer Perceptron (MLP) and Support Vector Machines (SVM) were
analyzed. The descriptors Scale Invariant Feature Transform (SIFT) and
Speed Up Robust Features (SURF) were also used. According to results,
SCM was the fastest feature extractor with 0.117 s and accuracy of 100%
in navigation test, showing the relevance of our approach in the mobile
robot localization.

Keywords: Robot localization · Topological maps · Classification with
reject option · Structural co-occurrence matrix

1 Introduction

Mobile robotics is a growing and challenging area of research, with applications
in different activities, and mobile robot location is one of major difficulties in this
field. In [1], a image descriptor is proposed with approach in problem of real-time
scene context classification on mobile devices as in robot navigation systems, for
example. In [2], a scene categorisation engine in which the holistic representation
of the scene is built exploiting features extracted on discrete cosine transform
(DCT) domain is proposed and also represents a solution to the problem of
location and navigation of mobile robots.
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-64689-3 1



4 S.P.P. da Silva et al.

There are two main types of methods to localization and mapping of mobile
robots, geometric and topological. In geometric method, the entire navigation
environment is depicted in a coordinate system, as in [3]. On the other hand,
in topological method the total space is configured in a graph, not restricted
to inflexible geometric information, as presented in [4]. There is also the hybrid
approach, where both techniques described before are employed simultaneously,
as in [5].

Localization of a mobile robot in the environment is paramount for its nav-
igation. To achieve this, several technologies can be employed, according to the
environment considered. In outdoor environments, the Global Positioning Sys-
tem (GPS) is a precise form of navigation and can be used for place recogni-
tion [6]. However, in indoors environments, this system is not suitable for the
application [7] and, because of that difficulty, other alternatives were conceived.
Some of the most commonly used processes for locating indoor mobile robots are
ultrasonic, Radio Frequency Identification (RFID), Wireless Local Area Network
(WLAN), inertial navigation and image recognition [8]. Image recognition has
been increasingly exploited because they do not suffer sound interference, such as
ultrasound, or coverage limit, similar to Bluetooth [9]. In addition, image-based
systems do not require changes in the environment.

In this paper, a new approach for navigation and localization about the
images analyzed of mobile robots on topological maps using classification with
reject option in attributes obtained from a structural co-occurrence matrix
(SCM) is proposed. SCM is a rotation-invariant feature extraction technique
reasoned on a structural concept using co-occurrence statistics, presented as
advantage to introduce a previous knowledge about the images analyzed, enhanc-
ing the details detection [10]. Furthermore, we perform a study among several
feature extractors and classifiers consolidated in the literature, emphasizing the
robustness and efficiency according to accuracy and processing time because
these properties are fundamental in recognition systems aimed at applications
in the real world. An high-resolution camera, GoPro R©, was employed for robot
navigation in an indoor environment. The results show that SCM obtained an
average accuracy of 100% during navigation and extraction time of 0.117 s.

2 Review Feature Extraction Techniques

In this work, a region of interest (ROI) is composed of the entire image. Based on
ROI, the attributes are extracted to be subsequently applied in the classification
through machine learning techniques. Next, a brief presentation of the feature
extraction techniques used is presented.

The Gray-Level Co-occurrence Matrix (GLCM) is based on a method created
by Haralick [11], where his main focus is on texture analysis. The method consists
of a second order statistical process, once the co-occurrences between pairs of
pixels is analyzed, [11]. GLCM is a square matrix that stores references of the
relative intensities of the pixels belonging to an image [11].

Local Binary Patterns (LBP) are intelligible and powerful texture descriptors.
The elementary LBP operator, created by [12], binds a label to each of the
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measured pixels. This label corresponds to a binary number. The determination
of the label mentioned is performed by comparing the value of each pixel next to
the pixel under analysis, considering a fixed radius and the value of a threshold,
which is stipulated based on the value of the central pixel, for which the label is
defined [12].

Moments can be interpreted as scalar-type quantities, whose purpose is to
describe an application, in addition to extracting its main characteristics [13].
Thus, they emphasize relevant parameters for the identification of the object of
interest. Statistical Moments (SM) stands out as a very useful technique for the
extraction of attributes in images, detailing the spatial ordering of the points
belonging to the image or surface of interest [14].

Scale Invariant Feature Transform (SIFT) is a descriptor of characteristics
developed by [15]. SIFT is invariant to scale and rotation and partially invariant
to change in lighting. This method presents another great advantage, which
consists in obtaining specific attributes, allowing its compaction with a large
database of images.

Speed Up Robust Features (SURF) is a descriptor established by [16] to detail
strategic points in images. This technique is considered an improvement of the
SIFT because it consists of a more efficient implementation of this descriptor
[16]. SURF is robust to noise and invariant to the rotation, these characteristics
can be very relevant in scene recognition.

Structural Co-occurrence Matrix (SCM) is a rotation-invariant method based
on co-occurrence statistics focused on the structural analysis of discrete signals
by considering the connection between low-level structures of two discrete n-
dimensional signals [10]. This method organizes, in a two-dimensional histogram,
co-occurrences between structures of the input signals. In other words, SCM
consists of a matrix that stores differences of the structures of two input signals
[10]. In the image analysis, SCM easily perceives the structural differences, even
in cases where the image histograms are similar [10]. SCM also provides prior
knowledge about images considered, increasing its ability to detect details [10].

3 Review Machine Learning Techniques

The attributes obtained from the feature extractors are used to classification. In
this section, the machine learning methods employed for this purpose are briefly
described.

Bayesian Classifier is qualified as a statistical type and used for the classifica-
tion of objects according to the probability that each one of them will fit a given
class [17]. Consists of a supervised machine learning method and based on the
Bayes Decision Theory [17]. Bayesian classifier labels the samples by calculating
the a posteriori probability, based on conditional densities and a priori proba-
bilities. Gaussian or normal density is one of the most used density functions
because it provides a low computational cost, besides molding itself to several
applications [17].

Multi-layer Perceptron (MLP) is a combination of perceptrons for solving
nonlinearly separable problems. In the input layer, the vector formed by the
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information to be analyzed is shown to the network, giving impulses that will
multiply later in the following layers [18]. The responses from each neuron of
the hidden layers will represent the inputs of the consecutive layer and thus,
through the links between the neurons, the impulses travel and are estimated by
their corresponding weights [18]. Results on the neurons connected to the output
are determined according to an activation function. By this process, therefore,
a conclusive solution in the output layer is found, from the vector considered in
the input layer [18].

Support Vector Machines (SVM) is a classifier based in the Theory of Statis-
tical Learning idealized by [19]. The primary function of SVM is to define classes
with surfaces that increase the distance between them. This technique delimits
linearly the models in space and their inputs are transformed into a vector of
large features. These models are called Support Vectors. In essence, the SVM
was developed to solve binary issues, however, it also presents methods for solv-
ing multiclass issues [20]. However, because it becomes complex when applied to
multiclass problems, approaches such as one-versus-one [21] and one-versus-all
[21] are examples of SVM variations for this purpose.

4 Methodology

In this section, the methodology adopted to localize the robot in topological
map using classification with reject option from Structural Co-occurrence Matrix
is described. The navigation and location system begins with the capture of
the image. After that, feature extraction is performed and the feature vector is
created. In this paper, SCM, Statistics Moments, GLCM and LBP are evaluated.
The feature vector generated in previous step is used to perform the recognition
of the environment. In the classification step, MLP, SVM and Bayesian classifier
are evaluated. Both SIFT and SURF were analyzed separately. Figure 1 shows
an overview of the proposed approach.

Fig. 1. Flowchart of the proposed approach to mobile robot navigation.
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We used a robot with an high resolution camera, GoPro R©, to locomotion
in indoor environment, in this case an apartment, see Fig. 2(c). This environ-
ment was chosen because the features which contribute to the localization and
navigation of the mobile robot using an approach based on computer vision.

Regarding to the topological map, the nodes were numbered 1 to 6. Pictures
were taken of strategic points relatives to classes numbered 1 to 15. The paths
of the robot are represented by the edges in the map. Figure 2(a) presents the
topological map of the environment and Fig. 2(b) shows your perspective view.

Fig. 2. Topological map of the environment: (a) top; (b) perspective view; and (c) the
autonomous mobile robot.

We evaluated the Structural Co-occurrence Matrix with two low-pass filter,
Average and Gaussian, and two high-pass filter, Laplacian and Sobel. Statistical
Moments was assessed with order 0, 1, 2 and 3. The distance D = 1 and direction
θ = 0 was used for the calculation of GLCM. In LBP, uniform pattern is utilized.
The amount of attributes generated by each feature extractor was 10, 14, 59 and
8, respectively, by SM, GLCM, LBP and SCM.

In training phase of the classifiers, hyper-parameters for SVM and MLP are
selected using 10-fold cross-validation. SVM is learned using the range [2−2, 211]
for the hyper-parameters and grid search, with a linear and radial basis kernel
(RBF). MLP is optimized using Levenberg-Marquardt and validated on a range
of hidden units from 1 to 50. Normal or Gaussian probability density function
is used in the Bayesian classifier.

We adopted ten distinct routes in the apartment to the navigation evaluation.
Table 1 shows the commands used to move the robot, as well, start and end
locations. Figure 3(a) exemplifies the route 9 from Table 1. In this route, the
robot begins at class 2 (node 3) and receives two commands to go straight ahead,
after other command to turn right. Next, the robot turn right and receives more
two commands to go straight ahead. Finally, the robot turn left and reaches class
3 (node 3).

The reliability of the classifier in some decision systems can be increased if
an element that is not considered sufficiently reliable is automatically rejected as
in [22]. In [23], distance information of the topological map are used to improve
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Table 1. Commands to move the robot and the start and end points used in the
navigation. Go straight ahead (GSA), turn left (TL), turn right (TR) and turn 180
degrees (T180).

Route Start (Class) Commands End (Class)

1 8 GSA, GSA, GSA 4

2 1 GSA, GSA, TR 9

3 5 GSA and TR, GSA, GSA 12

4 5 GSA, GSA, GSA and TR, TL 10

5 8 GSA, GSA and TL, GSA, GSA 12

6 13 GSA, GSA and TL, GSA, T180, GSA 1

7 8 GSA, GSA, TL, GSA, GSA 12

8 9 TR, GSA, GSA and TL, GSA, T180, GSA and TL 3

9 2 GSA, GSA and TR, TR, GSA, GSA and TL 3

10 12 T180, GSA, GSA and TL, GSA, T180, GSA, GSA, GSA 10

automatically classification step, which is called localization with reject option.
In this approach, the result from each classifier is a sorted sequence, wherein the
first class is the most likely to be the sample and so on. In this paper, we adopted
the localization with reject option along with a Structural Co-occurrence Matrix
to extract the features of the environment during the mobile robot navigation.
Figure 3(b) depicts a alleged situation to demonstrate the functioning of classifi-
cation with reject option in the proposed approach. Robot is located in the place
referring to class 13 (node 6) and commands are sent so that it goes to class 15
(node 5). After arriving in class 15 (node 5), the response given by the classifier
indicates a high probability of the place being class 9 (node 1) followed by the
probability of being of class 15 (node 5), which can lead to a wrong localization.
Therefore, the first suggestion of classification would be ignored by the reject

Fig. 3. (a) Demonstration of route 9. (b) Alleged situation with operation of reject
option.
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option and the next suggestion would be chosen because it is impracticable to
reach desired class directly from initial position considered.

Another important contribution of this paper is production of an image data-
base which can still be used in future works. The database is composed of 600
images, 40 images per class, with resolution of 4000× 3000 pixels. The database
is available at http://lapisco.ifce.edu.br/?page id=252. In order to ascertain the
performance of each classifier and confront them by means of a consolidated
process, we used two evaluation metrics, Accuracy (Acc) and F1-Score (F1S).

5 Results

In this section, we present the results achieved by our approach for robot local-
ization in topological maps using classification with reject option from Structural
Co-occurrence Matrix and others feature extraction techniques. Firstly, the influ-
ence of feature extractors along with the classifiers in the images was discussed.
Subsequently, the navigation tests were performed. The results of the navigation
tests were obtained from 10 executions of each of the routes.

Table 2 shows the average and standard deviation values for F1-Score and
Accuracy obtained by the machine learning and feature extraction techniques
using the images of the environment. The experiments were computed on an
iMac 2.5 GHz processor Core i5 with 4 GB RAM.

According to Table 2, the combination that obtained the highest Acc and F1S
was the Statistical Moments with Bayesian classifier, with 99.94% in both. In
general, the results have reached values greater than 95%. Regarding to feature
extraction techniques, LBP was the best method with Acc and F1S above 99%,
including the combination with SVM using linear kernel.

Another important analysis is about the computational cost, once the prob-
lem is a real application. Table 3 presents accuracy, training time, testing time
and attribute extraction time, which are important indicators for embedded
applications. Bayesian classifier obtained the shortest training times, with 0.003 s
when combined with SCM-Sobel and Statistical Moments and 0.004 s when com-
bined with SCM-Average. With regard to testing time, Bayesian classifier also
obtained the shortest times, with 47.3µs and 49.5µs when associated with Sta-
tistical Moments and SCM-Gaussian, respectively. SIFT and SURF descriptors
were the slowest, taking 38111630.3µs and 3432554.7µ respectively to finish test
step.

In the last column of Table 3, we can note that SCM was the fastest among
applied feature extractors, obtaining extraction time of 0.117 s and 0.118 s in
their versions with Gaussian and Sobel filter and with Average and Lapacian
filter, respectively. The values of the extraction times of the SCM are highlighted
in bold in Table 3.

Finally, a navigation test using methods was performed. Figure 4 shows the
results of the navigation test, considering average accuracy with and without
reject option obtained by the feature extractors and classifiers. It is important
to mention that a route is considered correct if the classification system finds

http://lapisco.ifce.edu.br/?page_id=252
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Table 2. F1-Score (F1S) and Accuracy (Acc) obtained by features extraction and
classifiers.

Feature Classifier Setup F1S (%) Acc (%)

SCM-Avg Bayes Normal 99.00± 0.65 99.00± 0.66

MLP 95.42± 3.72 95.08± 4.62

SVM Linear 84.00± 4.37 84.58± 4.03

RBF 98.43± 0.99 98.42± 1.00

SCM-Gau Bayes Normal 99.02± 1.13 99.00± 1.17

MLP 93.74± 4.40 92.33± 6.13

SVM Linear 88.56± 1.98 88.58± 2.08

RBF 97.20± 2.34 97.17± 2.40

SCM-Lap Bayes Normal 99.25± 0.73 99.25± 0.73

MLP 96.20± 2.34 95.58± 3.38

SVM Linear 92.88± 2.01 92.75± 2.19

RBF 96.99± 0.89 97.00± 0.90

SCM-Sob Bayes Normal 99.26± 0.98 99.25± 1.00

MLP 96.66± 5.56 95.42± 8.56

SVM Linear 95.74± 1.49 95.75± 1.49

RBF 98.43± 1.13 98.42± 1.14

SM Bayes Normal 99.94± 0.21 99.94± 0.21

MLP 97.71± 3.10 98.00± 2.32

SVM Linear 96.03± 2.08 96.12± 1.99

RBF 98.71± 1.14 98.71± 1.16

GLCM Bayes Normal 96.82± 0.99 96.83± 1.00

MLP 98.95± 1.04 98.96± 1.01

SVM Linear 98.05± 1.06 98.08± 1.02

RBF 98.30± 0.94 98.29± 0.95

LBP Bayes Normal 99.58± 0.51 99.58± 0.51

MLP 98.88± 3.04 99.17± 2.16

SVM Linear 99.42± 0.72 99.42± 0.72

RBF 99.62± 0.51 99.63± 0.50

SIFT 99.36± 0.97 99.37± 0.94

SURF 96.86± 2.43 97.03± 2.27

all classes along the route. When we analyze navigation results in Fig. 4, we
can observed that SCM-Average along with Bayesian classifier and SVM (RBF)
obtained 100% accuracy and reject option confirmed the path as well as SCM-
Laplacian and Statistical Moment combined with Bayesian classifier.

We can still observe that localization with reject option also increased accu-
racy of all combinations of methods. For example, average accuracy of the
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Table 3. Accuracy (Acc), training time, testing time and feature extraction time for
all features extraction in real environment obtained by the best classifiers.

Classifier Acc (%) Training time (s) Testing time (µs) Extraction time (s)

SCM - Average

Bayes (Normal) 99.0± 0.7 0.004± 0.0 67.9± 19.7 0.118±0.01

MLP 95.1± 4.6 16.089± 3.2 121.8± 4.9

SVM (Linear) 84.6± 4.0 187.713± 94.5 51.0± 0.3

SVM (RBF) 98.4± 1.0 1.564± 0.2 56.7± 0.6

SCM - Gaussian

Bayes (Normal) 99.0± 1.2 0.829± 2.6 49.5± 7.1 0.117±0.01

MLP 92.3± 6.1 83.889± 30.3 125.0± 15.6

SVM (Linear) 88.6± 2.1 841.101± 106.7 49.2± 0.5

SVM (RBF) 97.2± 2.4 1.380± 0.1 55.3± 1.8

SCM - Laplacian

Bayes (Normal) 99.2± 0.7 0.059± 0.2 81.147± 14.45 0.118±0.01

MLP 95.6± 3.4 21.213± 7.6 133.5± 8.1

SVM (Linear) 92.8± 2.2 34.291± 5.0 50.6± 1.1

SVM (RBF) 97.0± 0.9 0.482± 0.0 60.0± 2.5

SCM - Sobel

Bayes (Normal) 99.2± 1.0 0.003± 0.0 51.2± 4.5 0.117±0.01

MLP 95.4± 8.6 46.905± 24.3 119.9± 2.3

SVM (Linear) 95.7± 1.5 4.703± 1.6 50.5± 1.7

SVM (RBF) 98.4± 1.1 0.446± 0.0 93.1± 4.3

Statistical Moments

Bayes (Normal) 99.9± 0.2 0.003± 0.0 47.3± 3.2 0.165± 0.01

MLP 98.0± 2.3 3.334± 0.6 305.4± 4.6

SVM (Linear) 96.1± 2.0 162.444± 21.6 3917.9± 72.2

SVM (RBF) 98.7± 1.2 1.039± 0.1 5196.6± 51.2

GLCM

Bayes (Normal) 96.8± 1.0 0.005± 0.0 65.6± 4.5 0.494± 0.03

MLP 99.0± 1.0 11.713± 3.9 351.3± 9.8

SVM (Linear) 98.1± 1.0 6.509± 1.3 3973.7± 40.3

SVM (RBF) 98.3± 1.0 0.486± 0.0 5393.9± 66.7

LBP

Bayes (Normal) 99.6± 0.5 0.007± 0.0 108.8± 70.5 0.311± 0.02

MLP 99.2± 2.2 5.626± 0.8 403.2± 186.5

SVM (Linear) 99.4± 0.7 0.731± 0.1 4251.7± 49.3

SVM (RBF) 99.6± 0.5 0.418± 0.0 5216.4± 53.7

SIFT 99.4± 0.9 181.310± 1.5 38111630.3± 902798.9 15.654± 0.33

SURF 97.0± 2.3 40.732± 0.3 3432554.7± 219154.8 3.091± 0.01
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Fig. 4. Average accuracy of route testing obtained by the feature extraction techniques
and classifiers with and without reject option.

SCM-Average and SCM-Sobel both with SVM (Linear) was less than 50%
and 80%, respectively, and with reject option reached 100%. In other words,
our approach of classification with reject option from Structural Co-occurrence
Matrix proves to be effective and reliable for mobile robotic navigation. Accord-
ing to the detailed results by route without and with the reject option present in

Table 4. Accuracy by route obtained from the feature extraction techniques and clas-
sifiers without reject option.

Feature Classifier Setup Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8 Route 9 Route 10

S
C
M
-A

v
g Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

MLP 100.0±0.0 70.0±48.3 90.0±31.6 80.0±42.2 80.0±42.2 90.0±31.6 100.0±0.0 80.0±42.2 100.0±0.0 70.0±48.3

SVM
Linear 50.0±52.7 80.0±42.2 90.0±31.6 70.0±48.3 30.0±48.3 60.0±51.6 40.0±51.6 10.0±31.6 30.0±48.3 30.0±48.3
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

S
C
M
-G

a
u Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 80.0±42.2 80.0±42.2 100.0±0.0

MLP 100.0±0.0 100.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 0.0±0.0

SVM
Linear 100.0±0.0 90.0±31.6 50.0±52.7 70.0±48.3 20.0±42.2 100.0±0.0 60.0±51.6 30.0±48.3 50.0±52.7 50.0±52.7
RBF 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 80.0±42.2 100.0±0.0 100.0±0.0 80.0±42.2 80.0±42.2 100.0±0.0

S
C
M
-L
a
p Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

MLP 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 50.0±52.7 100.0±0.0 80.0±42.2 80.0±42.2 90.0±31.6 80.0±42.2

SVM
Linear 60.0±51.6 90.0±31.6 80.0±42.2 90.0±31.6 30.0±48.3 50.0±52.7 60.0±51.6 80.0±42.2 80.0±42.2 20.0±42.2
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 80.0±42.2 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0

S
C
M
-S
o
b Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0

MLP 100.0±0.0 80.0±42.2 60.0±51.6 100.0±0.0 90.0±31.6 100.0±0.0 50.0±52.7 100.0±0.0 90.0±31.6 80.0±42.2

SVM
Linear 90.0±31.6 50.0±52.7 60.0±51.6 90.0±31.6 70.0±48.3 90.0±31.6 50.0±52.7 100.0±0.0 80.0±42.2 60.0±51.6
RBF 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

S
M

Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MLP 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 80.0±42.2 90.0±31.6 100.0±0.0 90.0±31.6 80.0±42.2 90.0±31.6

SVM
Linear 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 90.0±31.6 60.0±51.6 100.0±0.0 60.0±51.6 70.0±48.3 40.0±51.6
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 70.0±48.3 90.0±31.6 90.0±31.6 80.0±42.2 100.0±0.0 80.0±42.2

G
L
C
M

Bayes Normal 100.0±0.0 70.0±48.3 80.0±42.2 80.0±42.2 80.0±42.2 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 70.0±48.3
MLP 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 80.0±42.2 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6

SVM
Linear 100.0±0.0 90.0±31.6 80.0±42.2 100.0±0.0 90.0±31.6 100.0±0.0 80.0±42.2 80.0±42.2 80.0±42.2 80.0±42.2
RBF 100.0±0.0 80.0±42.2 80.0±42.2 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6

L
B
P

Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0
MLP 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0

SVM
Linear 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 80.0±42.2 80.0±42.2 100.0±0.0 100.0±0.0

SIFT 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0

SURF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 70.0±48.3 90.0±31.6 90.0±31.6 80.0±42.2 100.0±0.0 80.0±42.2
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Table 5. Accuracy by route obtained from the feature extraction techniques and clas-
sifiers with reject option.

Feature Classifier Setup Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8 Route 9 Route 10

S
C
M
-A

v
g Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

MLP 100.0±0.0 80.0±42.2 100.0±0.0 90.0±31.6 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

SVM
Linear 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

S
C
M
-G

a
u Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0

MLP 100.0±0.0 100.0±0.0 0.0±0.0 0.0±0.0 100.0±0.0 0.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 0.0±0.0

SVM
Linear 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0
RBF 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0

S
C
M
-L
a
p Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

MLP 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 70.0±48.3 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 80.0±42.2

SVM
Linear 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 80.0±42.2 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0

S
C
M
-S
o
b Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

MLP 100.0±0.0 80.0±42.2 60.0±51.6 100.0±0.0 90.0±31.6 100.0±0.0 60.0±51.6 100.0±0.0 90.0±31.6 80.0±42.2

SVM
Linear 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
RBF 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

S
M

Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MLP 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6

SVM
Linear 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 80.0±42.1 70.0±48.3
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 70.0±48.3 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6

G
L
C
M

Bayes Normal 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6
MLP 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6

SVM
Linear 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
RBF 100.0±0.0 80.0±42.1 90.0±31.6 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6

L
B
P

Bayes Normal 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0
MLP 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 100.0±0.0

SVM
Linear 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0
RBF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 90.0±31.6 90.0±31.6 100.0±0.0 100.0±0.0

SIFT 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

SURF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 70.0±48.3 100.0±0.0 90.0±31.6 100.0±0.0 100.0±0.0 90.0±31.6

Tables 4 and 5, respectively, we can verify that average accuracy was from 87.8%
to 97.5% with the localization with reject option.

6 Conclusion

In this work, we proposed an novel approach for localization and navigation of
mobile robots in topological maps using classification with reject option from
Structural Co-occurrence Matrix (SCM). SCM is a method of feature extrac-
tion that consists on a structural perspective using co-occurrence statistics [10].
This feature extractor is rotation-invariant and has the advantage of inserting
a prior knowledge about the images analyzed, optimizing the details detection
[10]. Furthermore, we performed an evaluation among others feature extractors
and machine learning techniques consolidated in the interest task.

Adopting the same requirements used in [23] and considering the results of the
our approach, we can conclude that SCM is a suitable feature extractor to robot
localization in topological maps using classification with reject option. SCM
obtained the shortest extraction time, finalizing its task in 0.117 s, and accuracy
of 100% in the navigation tests when combined with Bayesian classifier, SVM
(linear) and SVM (RBF). Furthermore, reject option confirmed or increased
accuracy of all SCM combinations, demonstrating to be an effective and reli-
able solution for navigation of mobile robots. For example, SCM-Average and
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SCM-Sobel both with SVM (Linear) were less than 50% and 80%, respectively,
to 100% of accuracy when considered reject option.

Another important contribution of this paper is the creation of a image data-
base, which can be used in future works to evaluate others machine learning and
feature extraction techniques for localization and navigation task. About future
work, other machine learning technique that can be applied is the Optimum
Path Forest (OPF) presented in [24], in addition to incorporating other types of
filters to SCM.

References

1. Farinella, G.M., Rav̀ı, D., Tomaselli, V., Guarnera, M., Battiato, S.: Representing
scenes for real-time context classification on mobile devices. Pattern Recogn. 48(4),
1086–1100 (2015)

2. Farinella, G.M., Battiato, S.: Scene classification in compressed and constrained
domain. IET Comput. Vis. 5(5), 320–334 (2011)

3. Jiang, R., Yang, S., Ge, S.S.: Geometric map-assisted localization for mobile robots
based on uniform-Gaussian distribution. IEEE Robot. Autom. Lett. 2(2), 789–795
(2017)

4. Jiang, J.-H., Le, H.-L., Shie, S.-C.: Lightweight topological-based map matching
for indoor navigation. In: 30th International Conference on Advanced Information
Networking and Applications Workshops AINA, pp. 908–913, March 2016

5. Ferreira, J.F., Amorim, I., Rocha, R.P., Dias, J.: T-SLAM: registering topological
and geo-metric maps for robot localization in large environments. In: IEEE Inter-
national Conference on Multisensor Fusion and Integration for Intelligent Systems
MFI, pp. 392–398, August 2008

6. Lee, W., Chung, W.: Position estimation using multiple low-cost GPS receivers for
outdoor mobile robots. In: 12th International Conference on Ubiquitous Robots
and Ambient Intelligence, pp. 460–461. IEEE, October 2015

7. Diop, M., Ong, L.Y., Lim, T.S.: A computer vision-aided motion sensing algorithm
for mobile robot’s indoor navigation. In: 14th International Workshop on Advanced
Motion Control, pp. 400–405. IEEE, April 2016

8. Song, Z., Jiang, G., Huang, C.: A survey on indoor positioning technologies. In:
Zhou, Q. (ed.) ICTMF 2011. CCIS, vol. 164, pp. 198–206. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-24999-0 28

9. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey.
J. Intell. Rob. Syst. 53(3), 263–296 (2008)

10. Bezerra, G.L., Ferreira, D.S., Rebouças, P.P., Sombra, F.N.: Rotation-invariant
feature extraction using a structural co-occurrence matrix. Measurement 94(2),
406–415 (2016)

11. Haralick, R.M., Shanmugam, K.S., Dinstein, I.: Textural features for image classi-
fication. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)
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Abstract. Hyperspectral imaging increases the amount of information incorpo-
rated per pixel in comparison to normal RGB color cameras. Conventional spec-
tral cameras as used in satellite imaging use spatial or spectral scanning during
acquisition which is only suitable for static scenes. In dynamic scenarios, such
as in autonomous driving applications, the acquisition of the entire hyperspec-
tral cube at the same time is mandatory. We investigate the eligibility of novel
snapshot hyperspectral cameras which capture an entire hyperspectral cube with-
out requiring moving parts or line-scanning. Captured hyperspectral data is used
for multi class terrain classification utilizing machine learning techniques. Prior
to classification, the data is segmented using Superpixel segmentation which is
modified to work successfully on hyperspectral data. We further investigate a
simple approach to normalize the hyperspectral data in terms of illumination,
which yields vast improvements in classification accuracy, preventing most errors
caused by shading and other influences. Furthermore we utilize Gabor texture
features which add spatial information to the feature space without increasing the
data dimensionality in an excessive fashion. The multi-class classification is eval-
uated against a novel hyperspectral ground truth dataset specifically created for
this purpose.

Keywords: Hyperspectral imaging · Terrain classification · Spectral analysis ·
Autonomous vehicles

1 Introduction and Motivation

Spectral imaging is defined by acquiring light intensity for pixels in an image. Each
pixel stores a vector of intensity values, which corresponds to the incoming light over a
defined wavelength range. Typically, researchers utilize sensors like these on Landsat,
SPOT satellites or the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sys-
tems. These line scanning sensors provide information of the Earth’s surface and allow
static analysis. This area has been firmly established for many years and is essential
for several applications like earth observation, inspection and agriculture. Additionally
onboard realtime hyperspectral image analysis for autonomous navigation is an exciting
and promising application scenario. But this topic is relatively unexplored because the
established hardware is only capable of capturing static scenes. This is due to the scan-
ning requirements for constructing a full 3-D hypercube of a scene. Using line-scan
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 16–27, 2017.
DOI: 10.1007/978-3-319-64689-3 2
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cameras, multiple lines need to be scanned, while with cameras using special filters,
several frames have to be captured to construct an spectral image of the scene. The
slow acquisition time is responsible for motion artifacts which impede the observa-
tion of dynamic scenes. Therefore, new sensor techniques and procedures are needed
here. This drawback can be overcome with novel highly compact, low-cost, snapshot
mosaic (SSM) imaging cameras, which are able to capture a whole spectral cube in
one shot. The capture time is considerably shorter than that of filter wheel solutions
allowing to capture a hyperspectral cube at one discrete point in time. Utilizing these
sensors, it is possible to use hyperspectral camera systems on unmanned land vehicles
and utilize them for continuous terrain classification while moving. Most classifiers for
spectral classification treat hyperspectral data as a set of spectral measurements and do
not consider spatial dependencies. So the data is classified only based on their spectral
information. These approaches discard information associated with correlations among
neighboring pixels. Joint spectral and spatial classification techniques seem reasonable
to address these disadvantages.

In this paper we investigate the use of snapshot mosaic hyperspectral cameras on
unmanned land vehicles for drivability analysis and evaluate different spectral and con-
textual features for hyperspectral classification based on the data we captured. We make
use of established supervised classifiers to recognize different classes like drivable,
rough and obstacle which can bee seen as terrain recognition or environmental per-
ception based on spectral reflectances.

The remainder of this paper is organized as follows. In the following section an
overview of common algorithms for feature extraction and spectral classification is
given. Then our general setup is presented in Sect. 3. Our feature extraction and classi-
fication approach is described in detail in Sects. 4 and 5. And in Sect. 6 we present our
results on our new hand-labeled dataset. Finally a conclusion of our work is given in
Sect. 7.

2 Related Work

The standard procedure for image-based terrain classification is defined by capturing
regular RGB images and trying to identify different classes, like Chetan et al. [9] did.
They used color information and local binary patterns (LBP) in combination with differ-
ent supervised classifiers. Additionally, in recent years, hyperspectral classification has
been under active development. Hyperspectral data allows for a more detailed insight
into the composition and nature of materials like plants and soil than standard RGB data.
Although there are some unsupervised classification algorithms in literature, we focus
on supervised classification for the moment, because it is more widely used as shown by
Plaza et al. [21]. Most supervised classifiers suffer from the Hughes effect [14], espe-
cially when dealing with high-dimensional hyperspectral data. To deal with this issue,
Melgani et al. [18] and Camps-Valls et al. [5] introduced support vector machines with
adequate kernels for hyperspectral classifications. Supervised techniques are limited by
the availability of labeled training data and suffer from the high dimensionality of the
data. While recording data is usually quite straightforward, the precise and correct anno-
tation of the data is very time-consuming and complicated. Therefore semi-supervised
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techniques have come up to fix this as proposed by Camps-Valls et al. [7]. Jun et al.
[16] presented a semi-supervised classifier that selects non-annotated data based on its
entropy and adds it to the training set. The classification of hyperspectral data reveals
several important challenges. There is a great mismatch between the high dimensional-
ity of the data in the spectral range, its strong correlation and the availability of anno-
tated data, which is absolutely necessary for the training. Another challenge is the cor-
rect combination and integration of spatial and spectral information to take advantage
of features from both these domains.

In various experiments by Li et al. [17] it was observed that classification results can
be improved by investigating spatial information in parallel with the spectral data. Dif-
ferent efforts have been made to incorporate context-sensitive information in classifiers
for hyperspectral data [21]. Fauvel et al. [10] fuse morphological and hyperspectral data
to enhance classification results. As a consequence, it has now been widely accepted
that the combined use of spatial and spectral information offers significant advantages.
To integrate the context into kernel-based classifiers, a pixel can be simultaneously
defined both in the spectral domain and in the spatial domain by applying a correspond-
ing feature extraction. Contextual features are achieved, for example, by the standard
deviation per spectral band. This leads to a family of new kernel methods for hyper-
spectral data classification reported by Camps-Valls et al. [6] and implemented using a
support vector machine. Brown et al. [4] used principal component analysis for dimen-
sionality reduction and proposed an extension of the well known SIFT descriptor, called
multi-spectral SIFT (MSIFT) for scene category recognition. Salamati et al. [22] inves-
tigated different combinations of SIFT and spectral information to enhance recognition
accuracy. An alternative approach to combining contextual and spectral information is
the use of Markov random fields (MRFs). They exploit the probabilistic correlation of
adjacent labels [23].

In comparison there is only little research in literature on hyperspectral classifica-
tion utilizing terrestrial spectral imaging, where data was not captured from an earth
orbit or an airplane but from cameras which where mounted on land-based vehicles.
One example is the vegetation detection in hyperspectral images as demonstrated by
Bradley et al. [2], who showed that the use of the Normalized Difference Vegetation
Index (NDVI) improves classification accuracy. Namin et al. [20] proposed an auto-
matic system for material classification in natural environments by using multi-spectral
images consisting of six visual and one NIR band. The combination of RGB and hyper-
spectral data, using the same hyperspectral snapshot cameras we use, was evaluated by
Cavigelli et al. [8] on data with static background and a very small dataset utilizing deep
neural nets.

3 Sensor Setup

In this work we used the MQ022HG-IM-SM4X4-VIS (VIS) manufactured by Ximea
with an image chip from IMEC [12] utilizing a snapshot mosaic filter which has a per-
pixel design. The filters are arranged in a rectangular mosaic pattern of n rows and m
columns, which is repeated w times over the width and h times over the height of the
sensor. These sensors are designed to work in a specific spectral range which is called
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Fig. 1. Raw image VIS camera with visible mosaic pattern. And a schematic representation of a
hypercube.

the active range which is 470–620 nm for the current sensor. The VIS camera has a
mosaic pattern with nVIS = 4,mVIS = 4. Ideally every filter has peaks centered around
a defined wavelength spectrum with no response outside. However contamination is
introduced into the response curve and the signal due to physical constraints. These
effects can be summarized as a spectral shift, spectral leaking, and crosstalk and need
to be compensated.

Therefore the raw data captured by the camera needs a special preprocessing. We
need to construct a hypercube with spectral reflectances from the raw data. This step
consists of cropping the raw-image to the valid sensor area, removing the vignette and
converting to a three dimensional image, which we call a hypercube. Reflectance cal-
culation is the process of extracting the reflectance signal from the captured data of an
object. The purpose is to remove the influence of the sensor characteristics like quantum
efficiency and the illumination source on the hyperspectral representation of objects.
We define a hypercube as H : Lx ×Ly ×Lλ → IR where Lx, Ly are the spatial domain
and Lλ the spectral domain of the image. A visual interpretation of such a hypercube
is displayed in Fig. 1b. The hypercube is understood as a volume, where each point
H(x,y,λ) corresponds to a spectral reflectance. Derivated from the above definition a
spectrum χ at (x,y) is defined as H(x,y) = χ, where χ ∈ IR|Lλ| and |Lλ| = n ·m. The
image with only one wavelength, called a spectral band H(z) = Bλ=z, is defined as fol-
lows: Bλ : Lx ×Ly → IR. This image contains x = (x,y) the wavelength sensitivity λ
for each coordinate.

4 Classification Framework

For the evaluation of the different features, the image data is first segmented using the
SLIC-Superpixels algorithm [1]. This technique joins pixels to a segment based on dis-
tance in color and image space. As it is proposed for RGB images, conversion to CIE-
LAB color space is recommended to model human perception when measuring color
similarity. As aesthetic properties aren’t relevant for classification, the euclidean dis-
tance of the spectral vectors is used as the measure of similarity. Segmentation ensures
homogeneous classification results and redundantizes post-processing. A representative
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Fig. 2. RGB simulation of a hyperspectral image overlayed with the segmentation mask. The edge
length is set to 15 pixels, resulting in segments covering approximately 225 pixels each.

segmentation result is shown in Fig. 2. The classifier used for evaluation is the Random
Forest algorithm [3]. The image data was recorded using the VIS camera mounted on
a car combined with several other sensors. For training and verification purposes the
images need to be accordingly annotated. The other sensor’s recorded data is supposed
to be fused with the classification results in further works.

5 Extraction of Hyperspectral Features

Our main purpose in this work is the classification of hyperspectral data with k bands,
utilizing spatial and spectral dimensions. To obtain good results and improve classifi-
cation, features need to be extracted, which contain additional information to the raw
spectra in the hypercube. A major source of error is the variable illumination of the
scene, because our sensor measures reflectance values which change with illumination
changes. So in practice classifiers are trained and may be used on data that shows differ-
ent illumination situations. By using the normalized spectrum as a feature, we reduce
the influence of scene illumination and other irregularities by making use of the hyper-
spectral counterpart to the log-chromaticity representation of RGB images [11]. In the
RGB case, normalization of the values of pixel χ by the geometric mean

χM(x,y) = 3

√
3

∏
i=1

Bi(x,y) (1)

of it’s components at position (x,y) is recommended. In the hyperspectral case, the
number of bands is much higher, which can cause numerical instabilities, computation
of the high-order roots being the cause. Instead the normalization by the sum of the
spectrum’s n values

χS(x,y) =
n

∑
i=1

Bi(x,y) (2)
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can be used [13]. Logarithmizing isn’t necessary for the feature extraction, as the partic-
ular axis in the resulting feature space wouldn’t gain in variance. Hence the normalized
spectrum at image position (x,y) is computed as

B ′
k(x,y) =

Bk(x,y)
χS(x,y)

(3)

for each spectral band k. Additionally, the sum of all the spectrum’s components χS is
added to the feature vector to represent it’s brightness.

To extend the feature space using the textures present in the images, a gabor filter
bank is used. Each filter kernel is generated by modulating a gaussian by a sine and
cosine term [19]. That way a set of uniformly spread kernels in orientation, scale and
frequency are generated. Scale and frequency are inversely proportional. The higher the
frequency of the kernel, the lower the scale, the bandwidth of the gaussian is chosen.
This ensures the best possible trade-off between localization in frequency space and
image space. For the available images, 6 orientations for the kernels with 6 combina-
tions of scale and frequency each were used. The resulting filter bank can be seen in
Fig. 3. In natural environments textures representing the same material are often ori-
ented differently, for example blades of grass may be sloped to the side instead of
standing straight. For that reason, the coefficients of the same frequency and scale but
different directions are combined. Only the maximum coefficient of the multiple ori-
entations for each frequency and kernel scale will be added to the feature vector. With
6 scales used for each orientation, 6 features per spectral band would amount to the
feature vector. With the large number of available spectral components in hyperspec-
tral images, it may still exhibit excessively high dimensionality. The dataset used for
training and classification, which mainly shows dirt and tarmacked roads in rural areas,
holds little difference in texture between the various channels. For that reason, a set of
grayscale gabor-features is computed instead of applying the filter bank to each band
individually. The underlying grayscale image representation is composed of the mean
of the spectral components for each image position.

To obtain a more abstract texture feature, the ripple and granularity are taken into
account. Based on the same filter bank and the same grayscale input image, for each
combination of frequency and scale the maximum coefficient of the available orien-
tations is extracted. Then the standard deviation between that maximum and the mean
coefficient of the available orientations is computed and added to the feature vector. Sur-
faces with considerable ripple will result in a high value for the respective frequency.
Low values occur when the pictured surface exhibits smooth or coarsely granular tex-
ture, so it shows no distinguishable orientation. In combination with the grayscale gabor
features a wide range of possible texture situations can be represented in the feature
space.

Additionally domain knowledge can be used to improve classification accuracy. The
image situation for a driving vehicle shows constant conditions, for example sky is typ-
ically in the upper part of the image, while navigable terrain will not be found there.
Including gravity-based information can support classification by modeling these con-
ditions [15]. The probabilities of all possible class affiliations for each y-coordinate are
extracted from the available ground truth images and stored in a lookup table. For feature
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Fig. 3. Filter kernels computed for the gabor texture features.

extraction, the probabilities for individual class affiliations for the image position’s y-
coordinate is read off the lookup table and stored in the feature vector. This feature is
restricted to the particular scenario described. Other navigation situations, like flight
control of a drone, exhibit different vertical arrangements of scene components. Nev-
ertheless it was used to show how it affects the other features’ classification accuracy
when paired with them. The proposed features are extracted from a segmented image as
described in Sect. 4. The samples for the gabor based texture features and the gravity-
based ones are picked from the center of the particular segment. The center pc is defined
using the 1st order moment as in

pc =
1
n

n

∑
i=0

pi (4)

for the n 2-dimensional coordinates p in image space that make up the segment. It
can also be understood as the center of mass. For the normalized spectrum, the seg-
ment’s sample isn’t extracted from the center, but computed for each pixel and then the
mean value for each band is returned. So we obtain an 32-dimensional feature vector
for every segment if all features are used, the normalized spectra consisting of the 15
normalized bands and the sum of all bands. Both gabor features contribute six variables,
as six scales and frequencies are available in the filter bank. The gravity-based feature
offers a variable for each class to be recognized, totaling in 4 variables in our case.

6 Evaluation

As far as we know, there is no publicly available data set with hyperspectral data
recorded by the MQ022HG-IM-SM4X4-VIS camera, which uses snapshot mosaic tech-
nique to acquire hyperspectral data. So we had to build a new dataset on our own, which
will be published in the near future. We equipped a standard car with the camera man-
ufactured by Ximea and collected a total of ≈200GB of data driving through suburban
and rural areas, from which we selected a subset for labeling hyperspectral data. The
dataset was labeled in terms of drivability as illustrated in Fig. 4b. The main classes are
drivable, rough and obstacle. In addition a sky class was introduced, because it is an
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important part of our scene and defines the border of the terrain. It consists of more
than 1750000 sky, 1890000 drivable, 1070000 rough and 2910000 obstacle samples.
During the labeling process not all image pixels have been assigned classes. This is
due to the fact that border areas between materials are not unambiguously assignable.
The feature extraction is realized as previously described in Sect. 5. The classifier used
for evaluation is the Random Forest algorithm [3], which has proven to be successful
in previous experiments [24]. For training, every fifth image in the available set was
labeled and used to extract features. This way the training data represents the different
possible image situations. The rest of the images was classified using all the different
feature vectors. The overall accuracy is computed as h/p, with h being the sum of all
correctly classified pixels in all images and p being the total population, made up of
all labeled image pixels. Pixels that lack a label are classified as well, but for quan-
titative evaluation they need to be discarded. When merely using mean spectra of the
segments as features, classification fails in some places due to different sources of error.
In Fig. 4c the misinterpretation of shadows as obstacles and the sky’s reflection on the
engine hood as actual sky can be seen. The classification using the normalized mean
spectra performs much better in the particular image showed in Fig. 4d. Shaded areas
are recognized correctly in most cases and other details match the ground truth better
as well. The overall accuracy of this classifier was 91.38%, while the one using the
plain mean spectra of the segments achieved 88.92% mean accuracy for the available
images. A lot of these images contain less challenging lighting situations, which explain
the smaller difference in overall accuracy compared to the one displayed in Fig. 4.

Feature vectors as proposed in this work:

A Plain spectra
B Normalized spectra
C Grayscale gabor
D Ripple and granularity
E Normalized spectra and gravity-based feature
F All proposed features

Feature vectors as proposed by Namin et al. [20]:

G GLCM
H GLCM and plain spectra
I Plain spectra, std. deviation in segment, GLCM and fourier features

The other proposed features perform rather poor if they are used exclusively. The
gravity-based feature can in no way represent the scene’s content, while the grayscale
gabor feature reaches an overall accuracy of 79.52%. The ripple and granularity feature
performs similarly with 80.46% accuracy. Because the plain coefficients spring from
image data that hasn’t been normalized, they also depend on actual brightness. That
causes the classification to misinterpret shaded areas just like the plain mean spectra. In
combination with the normalized spectrum, better classification results can be achieved.
The texture features offered only minor improvements, while the combination of nor-
malized spectra and the gravity-based feature exceeded the other possible combinations
at 94.82% accuracy. However, the classification results also show errors, that originate
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Fig. 4. Comparison of classification using plain mean spectra, normalized mean spectra, and com-
binations of features. For the plain mean spectra the accuracy for the shown image was 85.3%.
Normalized mean spectra improved the accuracy to 95.8% in this case. The combination of nor-
malized mean spectra and gravity-based feature offers 97.78%, the combination of all features
97.28% for the shown image. Annotations for navigability analysis are as follows: Green rep-
resents good and yellow fair navigability. Red shows obstacles and blue areas picture the sky.
(Color figure online)

from the use of this feature. In particular, a lot of segments that are on similar height
with the engine hood are classified as obstacles. The reason for this is that in training
data the aforementioned engine hood is annotated as obstacle as well. The classification
results in Fig. 5 all show that artifact on the right side of the engine hood. Generally, the
gravity-based feature might translate poorly to other image situations.

For comparison, some of the features described in [20] were implemented and used
for classification in the same fashion. The overall accuracy of 83.48% is worse than the
one achieved with simple mean spectra. There are multiple reasons: Shadows weren’t
treated like in the original paper by annotating them in training. The results shown in
Fig. 5 confirm that, as most shadowed areas are classified as obstacles. Furthermore,
the feature used for vegetation recognition [2] isn’t available because the VIS camera
used in this work doesn’t detect infrared light. These two approaches were essential for
the great results that were attained. Also 15 instead of 7 bands in total were available
and computing the GLCM for all of them might not add relevant information. Finally
the features described in [20] are computed on neighborhood blocks for each pixel.
As we used segmentation and created only one feature vector for each segment, for
comparison, in this work the kernel sizes of the fourier features and the neighborhood
to consider in GLCM were limited to the size of the segment. The scale of these was
smaller than the block size proposed by Namin et al. [20], just as the input images are
smaller than theirs. Especially the fourier features might yield better results on higher
resolution images (Tables 1, 2 and 3).
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Fig. 5. Comparison of classification results. The columns show an RGB representation of the
hyperspectral input image, the ground truth, the feature vector proposed by [20] and the combi-
nation of normalized spectra and the gravity-based feature presented in this work.

Table 1. Comparison of accuracies achieved in classification using different feature vectors.

Feature set A B C D E F G H I

Accuracy 88.92% 91.38% 79.52% 80.46% 94.82% 94.68% 81.15% 83.17% 83.48%

Table 2. Precision

Class Feature vectors

A B C D E F G H I

Sky 82.02% 83.95% 75.24% 75.11% 89.17% 89.65% 80.45% 81.42% 81.94%

Drivable 81.18% 84.48% 69.53% 69.58% 86.09% 85.76% 67.39% 75.08% 74.70%

Rough 66.41% 66.31% 49.67% 52.34% 66.68% 64.48% 59.34% 54.78% 56.11%

Obstacle 67.97% 70.26% 65.39% 66.38% 74.01% 74.56% 63.44% 64.58% 64.52%
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Table 3. Recall

Class Feature vectors

A B C D E F G H I

Sky 97.22% 97.67% 94.18% 92.63% 98.26% 98.15% 88.42% 94.55% 94.22%

Drivable 89.63% 93.88% 70.65% 74.12% 97.10% 97.20% 84.21% 78.79% 78.58%

Rough 76.16% 79.72% 65.39% 67.02% 83.75% 83.64% 64.99% 73.76% 73.37%

Obstacle 88.03% 90.12% 81.39% 82.12% 95.41% 95.09% 80.36% 81.93% 83.23%

7 Conclusion

Both spectral and spatial information have been investigated for classification of hyper-
spectral images captured with snapshot mosaic cameras. The proposed features are easy
to extract, which allows their use in real-time terrain classification. Based on the cap-
tured hyperspectral data we were able to precisely distinguish road or drivable areas
from non-drivable areas like rough terrain or obstacles. This could greatly enhance
terrain classification performance. Especially the use of the normalized mean spectra
improved the overall accuracy in a way that would enable actual navigation. Although
the proposed gabor texture features didn’t improve the accuracy enough to justify their
use, the extraction of ripple and granularity turned out be an efficient way to reduce the
dimensionality in feature space while retaining relevant information for classification.
In other scenarios and situations, or used on the normalized data as well, the texture
features might be more powerful. The adaption of a segmentation algorithm that has
been widely used on RGB images for hyperspectral data has been shown and yielded
satisfying results.

Further work might validate the benefit of classification on segmented images, espe-
cially when the results need to be fused with data from other sensors. For better com-
parability with other approaches that extract features from hyperspectral data, both the
features proposed here and the ones from referenced work need to be validated on a
data set that is fully compatible.
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Abstract. We present a novel method for stixel construction using a
calibrated collinear trinocular vision system. Our method takes three
conjugate stereo images at the same time to measure the consistency
of disparity values by means of the transitivity error in disparity space.
Unlike previous stixel estimation methods that are built based on a single
disparity map, our proposed method introduces a multi-map fusion tech-
nique to obtain more robust stixel calculations. We also apply a polyno-
mial curve fitting approach to detect an accurate road manifold, using the
v-disparity space which is built based on a confidence map, which further
supports accurate stixel calculation. Comparing the depth information
from the extracted stixels (using stixel maps) with depth measurements
obtained from a highly accurate LiDAR range sensor, we evaluate the
accuracy of the proposed method. Experimental results indicate a signif-
icant improvement of 13.6% in the accuracy of stixel detection compared
to conventional binocular vision.

1 Introduction

Vision-based driver assistance systems (VB-DAS) contribute to the current tran-
sition process towards autonomous vehicles. They are already widely used in
current modern cars [1]. Cameras are one type of sensors that are commonly
installed in modern cars. In particular, stereo vision contributes to systems that
aim at distance measurements, surface modelling, or object detection [2]. This is
important, for example, for scene analysis [3], feature descriptors [4], optimising
learning time [5], or for reducing processing efforts in general [6].

In 2009 a novel “super-pixel representation” has been proposed for urban
road scenes. The method is known as stixel (from “stick elements”). It groups
vertically space cubes which belong to an on-road object [7]. The representa-
tion yields a highly efficient modelling of scene objects in urban traffic environ-
ments [9]. Recently, joint stixel representations, combining semantic data and
depth, are proposed to integrate both categories in terms of a joint optimized
scene model [10].
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 28–40, 2017.
DOI: 10.1007/978-3-319-64689-3 3
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Fig. 1. A stixel world for a scene in KITTI’s residential dataset [11]. Top-left: Dispar-
ity map using an SGM-variant visualized by applying a color key. Top-right: Improved
disparity map. Bottom-left: Stixels on a ground plane using binocular vision (red rec-
tangles indicate missing stixels). Bottom-right: Proposed stixel estimation. (Color figure
online)

To construct a “stixel world” (see Fig. 1), multiple independent techniques
may have to be cascaded.1 These may include mapping disparities into occu-
pancy grids, ground manifold estimation, object height detection, and finally
stixel extraction.

The free space is a region in the ground manifold “without any obstacle” [13],
i.e. regions ahead of the ego-vehicle where this vehicle may potentially drive
in, for example, in the next few seconds. Free-space and stixel calculations are
closely related to each other; the existence of a stixel excludes free space at this
place; stixels are “sitting” on the ground manifold, and the free space is a subset
of the ground manifold. The detection of free-space is important for intelligent
transportation control [14]. It is also crucial for collision avoidance for the ego-
vehicle (i.e. the vehicle in which the system is operating in) and assisting a blind
pedestrian [32].

Having VB-DAS as a core component over other active sensors, many
advanced driver assistance systems (ADAS) demonstrate prominent develop-
ments in this area (e.g. [15]). An ADAS provides a better understanding of
the environment in order to improve traffic safety and efficiency [16].

Accuracy of stixels requires a disparity signal of “good” quality; this quality
often decreases in cases of occlusions or textureless image patches [17]. Unfor-
tunately, these issues are common in traffic scenes, thus more efforts are needed
to improve disparity signals, also aiming at more reliable free-space estimation
and stixel calculations.

A binocular vision system depends on calculated disparity values which
are calculated by implementing stereo matching algorithms [12,18] on images
obtained by a left and right camera.

Since noisy 3D points have a considerable impact on free-space detection, it is
very important to identify unreliable disparity values before they are transformed
into 3D space and used for stixel estimation. Therefore, we consider the use of

1 We adopt a semi-global matching (SGM) algorithm [12] for disparity calculation.
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confidence maps (see [19] for different options for such maps) with the aim of
improving stixel segmentation.

The remainder of this paper is structured as follows. Section 2 addresses work
closely related to stixel estimation. In Sect. 3, the proposed approach is described
in detail. In Sect. 4, experimental results are given and discussed. Section 5
concludes.

2 Related Work

We briefly discuss work on stixel extraction. Stixels are a compact represen-
tation towards semantic segmentation of traffic scenes; space elements above
neighbouring pixels at the same depth are vertically grouped [20], according to
an estimated object height at those pixels. Apparently, stixels are like rectan-
gular thin columns on the ground manifold defined on a regular grid. A stixel
starts at the top at a detected object surface and ends at the bottom on the
level of the ground manifold. Free space (for the ego-vehicle) is a subset of the
ground manifold not covered by stixels.

Rapid stixels describe techniques which enhance stixel extraction by reducing
computational costs. In [23], a direct stixel computation is proposed by chang-
ing the parametrization from disparity space into pixel-wise cost volumes for
speed improvement. In [21], the authors use deep convolution neural networks
for free-space detection using monocular vision, while obstacle detection and
stixel estimation are done using stereo vision. Fast stixel computation without
depth maps is proposed in [22]; it allows high-speed pedestrian detection up to
200 fps.

Color fusion models compute stixels using stereo images, and also involve
a combination of color appearance and depth cues for free-space and obstacle
detection. Such methods have been presented in the stixel segmentation litera-
ture [17,24,25]. Their implementation can be done by using low-level fusion of
depth or semantic information in the stixel generation process. Scharwächter et
al. employed pixel classification by random decision forests [24], while in [25]
semantic information via object detectors is used for a suitable set of classes.
Yet another method to improve stixels is by using low-level appearance models
in an on-line self-supervised framework; see [17].

Stereo confidence-based methods, on the other hand, use confidence estima-
tion within the stereo-matching process to replace spurious disparity matches
by interpolating surrounding disparity values at these locations; see [26–28] for
examples. In [26], the authors incorporate three confidence measures, namely
the näıve peak-ratio (PKRN), the maximum-likelihood measure (MLM), and
local curve (LC) information into stixel representations. The stereo confidence
measures use stereo confidence cues based on an extended Bayesian approach.
In [28], an ensemble learning classifier is adopted to increase accuracy in stereo-
error detection. In [27], histogram-sensor models are explored to model on a
real-world application using a global formulation of 3D reconstruction through
an occupancy grid.
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Rapid-stixel methods may have some drawbacks; they may suffer from low-
depth accuracy which affects stixel extraction negatively. In order to perform
stixel segmentation, an adopted colour fusion model might not be suitable due
to shortages highlighted in [10]. With promising results achieved by adopting
confidence information, this paper proposes the following:

1. altogether a low-cost architecture for reducing false-positives in stixel estima-
tion,

2. in particular the use of a confidence measure derived from trinocular stereo
matching, and

3. a method for performance evaluation of stixel estimation assuming the avail-
ability of LiDAR data.

3 Stixels in Trinocular Stereo Vision

We consider a trinocular calibrated video recording system which allows us to
perform stereo matching on one of the three possible camera pairs. Thus we
may have up to three different left-right disparity maps; they may be fused and
warped to a selected reference camera (one of the three). Based on the fused (and
thus enhanced) disparity map, the ground manifold (i.e. a generalisation from a
plane) is estimated using a v-disparity technique. This is followed by detections
of base- and top-points of stixels applying means of membership voting and
a cost image. In a final step, base- and top-points are used for extracting the
stixels.

3.1 Transitivity Error in Disparity Space

Given a collinear m-camera configuration, we have m(m−1)/2 left-right dispar-
ity maps. It has been shown that the accumulative transitivity error among these
maps can be effectively used as a confidence indicator on a stereo matcher [29].
Let (u, v) ∈ R

2 denote a pixel location in left-image coordinates. A dispar-
ity map δ : R2 → R

+
0 finds its corresponding pixel in right-image coordinates

(u − δ(u, v), v). A disparity map can therefore be used to define the warping of
a function M : R2 → R as follows:

φ(M, δ)(u, v) = M(u − δ(u, v), v) (1)

The warping function φ is used to construct the concatenation of two disparity
maps

τ(δ01, δ12)(u, v) = δ01(u, v) + φ(δ12, δ01)(u, v) (2)

where δ01 and δ12 are the disparity maps with respect to camera pairs (0, 1) and
(1, 2), respectively, in a trinocular configuration.

Let δ̄02 = τ(δ01, δ12) be a combined disparity map, and δ02 the explicitly
computed one for camera pair (0, 2). We define our new, say, trinocular confidence
measure by

Γ (u, v) =
1

‖δ02(u, v) − δ̄02(u, v)‖ + 1
(3)
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Fig. 2. Trinocular confidence and free space. Top row: Trinocular stereo pair from the
KITTI road dataset. Bottom left: TED-based disparity. Bottom middle: Red and blue
pixels indicate high and low confidence values, respectively. Bottom right: Calculated
free-space (using v-disparity, confidence map, and polynomial curve fitting). (Color
figure online)

where the absolute difference ‖δ02(u, v) − δ̄02(u, v)‖ is the transitivity error in
disparity space (TED). See Fig. 2 for an example of this confidence indicator; δ̄02
is also called the TED-based disparity.

3.2 Detection of Base-Points of Stixels

Our stixel calculation works on TED-based disparities. We propose a new poly-
nomial curve-fitting technique to identify the lower envelop in the common v-
disparity space. This identification supports the base-point calculation of stixels.
We consider base-points b1, b2, ..., bNcol of obstacles in row v.

The v-disparity map is computed by accumulating pixels with the same dis-
parity value in one row v, 1 ≤ v ≤ Nrow, of the disparity map:

V (v, d) = card{u : 1 ≤ u ≤ Ncol ∧ int(δ(u, v)) = d} (4)

where 0 ≤ d ≤ dmax defines the quantized disparity range for δ in the Nrow×Ncol

disparity map; int is the nearest integer.
In Eq. (4), each element in the disparity map is considered equally. In this

work we propose to use a weighted sum of our trinocular confidence values:

V (v, d) =
∑

1≤u≤Ncol ∧ int(δ(u,v))=d

Γ (u, v) (5)

Here, elements with higher TED-based confidence become more influential.
The next step is to extract a ground manifold from the generated v-disparity

map. The ground manifold is identified with an approximated lower envelope in
the v-disparity space.

Assuming a ground plane, a Hough transform is used in [30,31] to detect a
lower envelop function in form of a straight line in the v-disparity space. In order
to construct this envelop function, the method starts at first with a lower and
upper envelop. The envelop estimation is based on calculating the intensity sum
of all pixels along a considered curve in the v-disparity image, and then selecting
the envelop for which this sum becomes a minimum.
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Fig. 3. Demonstration of v-disparity. Left: Common cardinality-based v-disparity map.
Middle: Novel TED-based v-disparity map. Right: Detected curve using polynomial
fitting.

Considering that a road surface is not a perfect plane, and possibly also more
irregular in slope changes than a continuous curve, we consider polynomial curve
fitting for extracting best fits to the v-disparities, defining a polynomial as being
our envelop function; see Fig. 3 for an example.

In general, there is always room for improvements in curve fitting. (A ground
manifold also remains to be approximated to some degree only when assuming
identical height across one image row v.) We apply a polynomial curve fitting
technique to find the coefficients of a polynomial P (x) of degree n that best fits
the lower envelop in the v-disparity image:

y = P (x) = anxn + an−1x
n−1 + . . . + a1x + a0 (6)

where a0, a1, . . . , an are the coefficients, and the degree n is selected according
to accuracy requirements for the algorithm. In order to generate the coefficients
of the polynomial according to the degree specified, we need to compute a least-
square polynomial for a given set of data. Following the least-square principle,
we obtain the parameters a0, a1, . . . , an, which minimize the total square error:

E(a0, a1, . . . , an) =
m∑

i=1

[
yi − (anxn + an−1x

n−1 + . . . + a1x + a0)
]2

(7)

where m ≥ n is the number of samples. The optimal coefficients can be solved
linearly.

The computed curve then defines a value dR(v) for row v, and function dR

altogether estimates for “on-road disparities”. The profile is used to find the base
points bu of obstacles in column u, following [31].
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3.3 Detection of Top-Points of Stixels

The height of obstacles (which “stand” on the ground manifold) is obtained by
seeking an ideal segmentation between foreground and background disparities.
The height-of-obstacle calculation begins with selecting membership votes. Next
we estimate a cost image to approximate t1, t2, ..., tNcol , the upper boundary of
obstacles based on the method proposed by [20]. Briefly, the membership values
rely on the selection of every disparity of each column from the disparity for its
member to the foreground obstacle.

A membership value can be positive if it does not exceed the maximum
distance of the expected obstacle disparity; otherwise it will be negative. This
Boolean representation brings the challenge to identify a threshold value for the
distance; if this value is too large then all disparities will be chosen from the
foreground membership, and vice-versa. Therefore, the application of Boolean
membership in continuous variation is a better alternative with an exponential
function of the form

M(u, v) = 21−ε(u,v) − 1 (8)

where

ε(u, v) =

⎡

⎣ d̂u − δ(u, v)

d̂u − Z−1
(
Z(d̂u) + �Z

)

⎤

⎦
2

(9)

where d̂u = δ(u, bu) is the disparity of an obstacle’s base point in column u, and
Z is the disparity-to-depth conversion function; �Z as a defined soft constraint
range in depth.

Fig. 4. Stixel world on KITTI data. Left: Membership votes. Middle: Cost image (data
term). Right: Extracted stixels. (Color figure online)

A visualization of membership votes is illustrated in Fig. 4. Green represents
true positives (belonging to an object), pale-blue shows free-space, and blue
shows true negatives (background).

From the membership values, the cost image is computed as follows:

C(u, v) =
v−1∑

j=1

M(u, j) −
bu∑

j=v

M(u, j) (10)

Note that row 1 is on top of the image, and row Nrow at the bottom. Thus,
both sums evaluate in each column u membership above bu only. The function C
essentially decides the cost of dividing [1, bu] into two intervals, namely [1, tu −1]
(i.e. the background) and [tu, bu] (i.e. the foreground), in each column.

A result of the membership cost image, used for the height segmentation,
is shown in Fig. 4, middle. The figure shows the height cost of foreground and
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background disparities. As can be seen, there are bright values which show a
high likelihood for performing a foreground-background separation.

The obstacles’ top-points t1, t2, ...tNcol are obtained from the computed cost
image C following the approach proposed in [20], i.e. dynamic programming is
used for approaching a minimum when all the pixels in [tu, bu] are close to the
target disparity while the remaining in [1, tu − 1] are far away from the target.

3.4 Stixel Extraction

By combining base-points b1, b2, ...bNcol found in Sect. 3.2 and top-points
t1, t2, ...tNcol found in Sect. 3.3, we extract the stixels.

In this paper we adopt a column grouping technique proposed in [7,8].
Given w ∈ N

+ as a predefined width of stixels, every w neighbouring columns
are grouped across the whole image, resulting in 	Ncol

w 
 non-overlapping stix-
els in one row. For the i-th stixel we have a set of w base-points Bi =
{bui

, bui+1, ..., bui+w−1} and a set of w top-points Ti = {tui
, tui+1, ..., tui+w−1}

where ui = (i − 1)w + 1.
The rectangle spanned from column u = ui to u = ui + w − 1 and row

v = min(Ti) to v = max(Bi) defines the scope of a stixel. Instead of using only
base-points’ disparities, we integrate all the disparities within the scope to yield
a more robust estimate of the stixel’s depth zi, by means of a histogram-based
regression technique proposed in [7] with w set to 5 pixels.

Figure 5 shows resulting stixels. The colours of the stixels encode the distance
to the ego-vehicle. Red-scale colours represent objects farther away. Stixels of

Fig. 5. Qualitative results using KITTI residential (first column), road (second col-
umn), and city (third column) data. First row: LiDAR projection. Second row: Stixel
map. Third row: Stixels estimated using binocular stereo and ground plane. Fourth row:
Stixels estimated using trinocular stereo and ground plane. Fifth row: Stixels estimated
using TED-based disparities and polynomial ground manifold approximation.
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“minor height” have been ignored. The figure illustrates that a stixel represents
the height of the first “substantial” obstacle facing the ego-vehicle along a view-
ing direction.

4 Experimental Results

This section evaluates the performance of three methods for stixel detection:
binocular-based occupancy grid (i.e. assuming a plane as ground manifold) stix-
els, trinocular-based occupancy grid stixels, and stixels using TED-based dis-
parities on a polynomial manifold.

We selected 655 stereo images from KITTI’s city, residential, and road
datasets which include cars, pedestrians, trees, and traffic signals. Previous lit-
erature states challenges in evaluating stixels using KITTI data. The challenges
are given by a lack of annotated road images, or a lack of stixel ground truth.
It is also of limited relevance to evaluate the quality of the 3D reconstruction
subjectively based on manually observed disparity images.

Since 3D laser scanners are accurate as reference sensors, we employ the
Velodyne LiDAR data obtained by a 3D laser scanner which are publicly avail-
able [11].

We evaluate all stixels in every frame individually for understanding the
efficiency of the proposed trinocular stixels in terms of distance errors. This
comprises several processes:

1. Generate a stixel map which forms stixels above the ground manifold, as
shown in Fig. 5 (third to fifth row) for “dominating” stixels.

2. Project LiDAR points (Xj , Yj , Zj) into image coordinates (uj , vj). Such an
exemplary LiDAR point projection is also illustrated in Fig. 5 (second row).
The projections are used to build a LiDAR-stixel correspondence function
βij , where βij = 1 if LiDAR point j hits stixel i, otherwise βij = 0.

3. The degree of correspondence of these images verifies the accuracy of the
estimated stixels. Hence, the comparison of LiDAR depths with corresponding
stixel depths form the error measurement using the root-mean-square error
computed by

RMSE =

√∑Nstx
i=1

∑Npts
j=1 βij(zi − Zj)

2

Nhit
(11)

where Nstx and Npts represent the number of stixels and LiDAR points, respec-
tively, and Nhit is the number of non-zero elements in β.

Figures 5 and 6 demonstrate qualitative and quantitative results, respectively.
city and residential data differ from road data by also showing pedestrians,
cyclists, and sometimes cyclists having a baby stroller. As shown in Fig. 6, the
error rate is constant from frames 1 to 50 while it drops for frames 50 to 80 due
to unexpected interference by a cyclist. A similar pattern is noted after frame
80 till frame 150. After that, the error rate fluctuates roughly at the first road
junction (frame 155) shows a different pattern of traffic while it increases again
at the end of the data sequence due to a round-about.
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Fig. 6. The error rates represent the difference of distances between LiDAR data and
stixels, shown for the three methods. Top-left: Error rate on residential data. Top-
right: Error rate on city data. Bottom: Error rate on road data.

This occurs for all the three methods. Detection using binocular stereo on a
plane shows the highest error rate and the highest false-positive rate too, due
to degrading disparities. Detection using trinocular stereo on a plane performs
better than the binocular stereo method. Our proposed method (TED-based
trinocular and polynomial ground manifold) covers more valid disparities com-
pared to others, and appears to be insensitive to slope changes. It outperforms
others regarding a smaller rate of false alarms.

On the residential data, the error rate for all three methods was less com-
pared to the city data. The used data show a car parked on the side of the
road, houses, and road junctions. The accuracy of the stixels detected via the
trinocular+plane method in frame 60 is very close to the one using trinocular-
TED+polynomial. For the two standard methods (binocular or trinocular on
plane), there are a few stixels that were not detected at the visible end of the
road; see Fig. 5. They were successfully detected via the proposed trinocular-
TED+polynomial. The road data show the effectiveness of the proposed method.
It can perform better than the other two methods when dealing with open road
situations. In summary, the experimental analysis illustrates an improved robust-
ness of the proposed trinocular-TED+polynomial method across various data
sets. Low texture, or changes in the slope of road surfaces are in particular cases
where our method is more robust in detecting stixels.

5 Conclusions

This paper proposed a novel method for stixel construction. The stixels, built
using TED-based disparities provided by trinocular vision, have been found to
provide better accuracy over conventional binocular ones, especially when also
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using polynomial ground-manifold approximation. Our method uses a confidence
map, which can vote for consistent disparity values within a trinocular stereo
analysis process. Our method also includes a polynomial curve-fitting method
for road geometry which is insensitive to slope changes. The main advantage
of our work is to produce a low-cost architecture for reducing false-positives in
stixel estimation.

In order to test our method, we used more than 600 frames including road,
city, and residential data from KITTI. The verification has been done using
LiDAR range data to verify the accuracy of the proposed method. We compared
the proposed method with two ground-plane-based standard methods (i.e. using
binocular or simply unified trinocular disparities).
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Abstract. This paper presents a new object tracking algorithm, which
does not rely on offline supervised learning. We propose a very fast and
accurate tracker, exclusively based on two complementary low-level fea-
tures: gradient-based and color-based features. On the first hand, we
compute a Generalized Hough Transform, indexed by gradient orienta-
tion. On the second hand, a RGB color histogram is used as a global
rotation-invariant model. These two parts are processed independently,
then merged to estimate the object position. Then, two confidence maps
are generated and combined to estimate the object size. Experiments
made on VOT2014 and VOT2015 datasets show that our tracker is com-
petitive among all competitors (in accuracy and robustness, ranked in
the top 10 and top 15 respectively), and is one of the few trackers run-
ning at more than 100 fps on a laptop machine, with one thread. Thanks
to its low memory footprint, it can also run on embedded systems.

1 Introduction

Object tracking is a very popular task in computer vision. Basically, the goal
is to accurately localize one defined object (the target) in a video. Among dif-
ficulties, we can cite object deformation, motion change, rotation, scaling or
those linked to the context (illumination change, occlusion, camouflage, camera
motion). Applications such as human-computer interaction or augmented reality
require reactive algorithms, so the computational cost may be a critical issue.

For efficiency, our tracker is based on very light methods, and combines low-
level shape and color features. It is a model-free tracker, meaning that the offline
training is done only at the first frame of the sequence. The gradient orientation
is computed and used as an index of a Generalized Hough Transform (GHT) [2].
A RGB histogram is used to represent the color aspect of the target object, and
distinguish it from the background. These two parts are processed independently,
and merged to finally estimate the object location. They are complementary:
the original GHT is robust to illumination, but weak against scale and rotation,
unlike the color histogram model.

By testing and evaluating our tracker on VOT2014 and VOT2015 [15,16],
we show that this combination leads to high performance in terms of accuracy
and robustness. Moreover, by associating low-level features and light algorithms,
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 43–54, 2017.
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our tracker can run at more than 100 fps on a laptop machine, without explicit
multithreading. It is one of the fastest among all competitors, while being ranked
second among real-time trackers in terms of accuracy and robustness criteria
from VOT2015. Its lightness also makes it suitable to embedded systems.

This paper is organized that way: after a short state-of-the-art of object
tracking, we will explain our method. Finally, we will show some results obtained
in the academic datasets.

2 Related Work

Given a sequence, object tracking consists in estimating the state of one target
object at each frame. This state can be its center, its bounding box or its silhouette.
Many works have addressed the tracking problem, and we refer to Yilmaz’ survey
for a coverage of the task [25].

Structurally, our tracker belongs to the class of trackers combining different
methods [1,3,9,18,24]. Among recent works, STAPLE [3] is related to our tech-
nique: it combines correlation and color histogram model to provide an effective
and fast tracker. As we are using the GHT in its original form, our template-
part tracker is simpler and lighter than Bertinetto’s, as it only requires gradient
computation (instead of HOG features [5]). Duffner’s PixelTrack [9] is also close
to our tracker: it combines a GHT with a foreground/background color model
into a very fast tracking algorithm (above 100 fps).

The VOT committee annually proposes a dataset to evaluate and rank track-
ers [14–16]. In this challenge, the most accurate trackers are based on Convo-
lutional Neural Network [19,20] and correlation filters [3,7]. If we focus on the
fastest algorithms of VOT15 challenge, Vojir’s tracker [23] based on the Mean-
shift [4] proposes decent accuracy, with a speed far beyond real-time. Maresca
[18] proposes a fast tracker based on estimation of object motion, obtained by
the combination of several light trackers.

Our proposed tracker is based on very low-level features and lightweight oper-
ations: color histogram and GHT. Color histogram is popular in object tracking
[4,21,23], since it is fast and robust to scale and in-plane rotation changes.
The GHT is an extension of the Hough Transform [8], used to detect arbitrary
shapes. It consists in considering some elements of this shape (pixels, patches)
and, according to their local appearances, make them vote for potential posi-
tions of the shape center. The estimated center is then determined by the loca-
tion that has accumulated the highest number of votes. The GHT is robust to
illumination changes and to camouflage issue, compensating some weaknesses
of the color-based model. In tracking context, the main issue of the GHT is
the robustness to scale and rotation changes. However, several authors proposed
Hough-based trackers [9–11,17] by modifying the original GHT, or using com-
plementary methods. Amongst Hough-based trackers, only Hua [13] outperforms
our algorithm, but is 100 times slower. However, his algorithm essentially relies
on a HOG-based detector, which estimates several candidates locations, and the
Hough Transform is only used to discard wrong candidates. PixelTrack [9] is at
a same order of magnitude in speed, but much less accurate and robust.
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In the last VOT challenges [14,15], few trackers belong to the category of real-
time trackers (21 competitors among 132), with diverse performances in accuracy
and robustness. In this category, our method is one of the fastest (more than
100 fps), but also one of the most accurate and robust (only beaten by [23]).
Compared to slower tracker, ours is still competitive: ranked in the top 15 for
both criteria in VOT2015 [15] and ranked in the top 10 in VOT2014 [16].

Our state representation is based on a bounding box. Given a frame t, the
aim is to estimate the bounding box Bt = (ct, wt, ht) of an object O, where each
parameter is respectively: bounding box’s center, width and height.

3 Our Contribution

First, we explain how to initialize our tracker. Second, we deal with state esti-
mation. As position is estimated before scale, we will explain these two steps in
different sections. Third, we explain the model updating process.

3.1 Initialization

Our tracker is initialized at the first frame I0, with a manually set bounding box
B0. Let I(B) be the restriction of an image I to any subset of pixels B.

First, the target RGB histogram H0 of I0(B0), with nc × nc × nc bins, is
generated (nc = 12). Ht will denote the target RGB histogram at the frame t.

Second, for the geometrical model, let M0 and Φ0 be the gradient magni-
tude and orientation of I0(B0). The goal is to initialize the R-Table R (which
will be updated over the time), indexed by no = 16 orientations. It consists
in considering all pixels p ∈ I0(B0), for which M0(p) > εM (εM = 70.0) and
whose quantified gradient orientation is θp, then to store in R(θp) the couple
(−→u = −→pc0, ω−→u ), which is the displacement from p to the bounding box center c0,
and ω−→u = 1.0 a default weight value.

3.2 Estimation of Position

Given an image It from a sequence, our tracker first estimates the object center,
then its scale. We will explain these two steps independently.

On the one hand, we perform a basic GHT. As during initialization, it requires
to evaluate gradient image from It, keep pixels p whose gradient magnitude is
above εM , and quantify its orientation as θp. Then, for each couple (−→u , ω−→u ) ∈
R(θp), p votes for all displacements p + −→u with the weight ω−→u . More formally:

HTt(p) =
∑

q

∑

(−→u ,ω)∈R(θq)

ω · δ(p, q + −→u ) (1)

with δ the Kronecker function. Finally, when all pixels have voted, the created
map (the Hough Transform) HTt emphasizes the most probable locations of
the object center, with respect to the geometrical model. The GHT is performed
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Fig. 1. Position tracking diagram.

under its simplest form, unlike [9] who indexes their R-Table using gradient and
color features and [11,17] who use machine learning classifiers.

We then blur HTt (3×3 discrete Gaussian filter), in order to add robustness
to deformation. The GHT is intrinsically robust to illumination change (conser-
vation of the orientation), but not to scaling (pixels votes spread away from the
center) nor to rotation (pixels vote according to the wrong list in the R-Table).

On the other hand, to exploit the color model, we define foreground and back-
ground areas. We use the color model histogram Ht−1, and build a background
histogram Hbck

t . These features have the advantage to compensate for the GHT
weaknesses, and vice-versa. Given the last estimated bounding box Bt−1, let St

be the background area, defined by all pixels inside the bounding box of center
ct−1, and dimension (α · wt−1, α · ht−1) (α = 2.0), excluding Bt−1. From St, we
build Hbck

t . Then, for every pixel p ∈ (Bt−1 ∪St), let qp
t be its quantified color in

It. As proposed in [21], we define the foregroundness with respect to the object
O, knowing the object color histogram Ht−1 and the background color model:

F(Ht−1,Hbck
t )

O (p) =

{
Ht−1(q

p
t )

Ht−1(q
p
t )+Hbck

t (qp
t )

if p ∈ (Bt−1 ∪ St)

0 otherwise
(2)

F(Ht−1,Hbck
t )

O (p) indicates how probably p belongs to the target. Unlike [21], we
do not combine Eq. 2 with a distractor-aware model, as we aim to remain as
simple as possible. Compared to PixelTrack [9], this method only needs a model
histogram and no prior information about background. Then, given a bounding
box B of size (wt−1, ht−1) inside (Bt−1 ∪St), let Sc,t(B) be the normalized score
evaluating whether the target is inside B:

Sc,t(B) =

∑
p∈B F

(Ht−1,Hbck
t )

O (p)
wt−1 · ht−1

(3)

This formulation is simpler than Possegger’s [21], who proposed a method to
discard distractors. We also use a prediction map, that indicates the likelihood
to find ct at x, given Bt−1:

ΠBt−1
t (x) = exp(

−(x − ct−1)2

2 · min(wt−1, ht−1)
2 ) (4)
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Finally, for all pixels x, we define Mt such as Mt(x) = HTt(x) · Sc,t(Bx) ·
ΠBt−1

t (x) with Bx the rectangle centered in x of size (wt−1, ht−1). From Mt, we
finally estimate the object position ct as follows:

ct =

⎧
⎨

⎩
argmax

x
(Mt(x)) if maxx(Mt(x)) �= 0

ct−1 + −−−−−→ct−2ct−1 otherwise
(5)

The second case of Eq. 5 assumes that, when the support of HTt and Sc,t are
disjoint, the target is translating with a vector −−−−−→ct−2ct−1. We choose a pixel-wise
multiplication to merge our two trackers, unlike STAPLE [3] who used a weighted
average. In that way, we do not have to deal with the difference of magnitude of
HTt and Sc,t, and to adjust a weight. We also differ from PixelTrack [9], where
the final position is obtained by linear combination of the centers estimated
by the GHT on one hand and the color segmentation map on the other hand.
Figure 1 describes all steps for our position estimation.

3.3 Estimation of Scale

The second step consists in estimating object scale.
On the one hand, from the GHT, let us define the backprojection map BPt,

for all pixels p fulfilling conditions to be stored in the R-Table:

BPt(p) =

∑
(−→u ,ω)∈R(θp)

Mt(p + −→u )

|R(θp)| (6)

with |R(θp)| the cardinality of R(θp). The approach is similar to Duffner’s one
[9]. However, Duffner only backprojects the peak of the GHT, while we consider
the sum of the voted positions for all pixels. In both cases, the made assumption
is that the higher the backprojection is, the more likely it belongs to the target.

On the other hand, we consider F(Ht−1,Ht
bck)

O , defined Eq. 2, as a color confi-
dence map. Then, let BFt be the final confidence map:

BFt = 0.5 · (BPt + F(Ht−1,Ht
bck)

O ) (7)

Figure 2 illustrates these maps. Then, inspired by Possegger [21], we consider
the set of object pixels OPt = {p|BFt(p) > 0.5} ∪ Rt, with Rt a safe foreground
area defined as the rectangle centered on ct, of size (β ·wt−1, β ·ht−1) (β = 0.20).
From OPt, we only retain the connected component that contains ct, to discard
isolated pixels that could generate scale overestimation. Finally, we estimate a
potential bounding box by computing the bounding box B̄t of this connected
component. Then, we reject bounding box sizes whose relative area variation
with respect to Bt−1 is above 5%. Otherwise, we update object’s size using the
same aspect ratio, as follows:

Xt = λt · Xt−1 (8)
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Fig. 2. Cropped frame from car1 from VOT2015, with the ground truth in blue. Back-

projection map BPt and pixel color likelihood map F
(Ht−1,H

bck
t )

O are complementary:
while the first one indicates which border pixels are more likely to belong to the target,
the second one gives high results for pixels of car’s back. (Color figure online)

Fig. 3. Scale estimation diagram.

with X ∈ {w, h} and λt = min(1.05,max(0.95, A(B̄t)
A(Bt−1)

)) (A being the area
operator). Figure 3 summarizes scale estimation operations. Finally, to prepare
the updating process, let SGt be the shape and color-based confidence map such
that SGt(p) = BFt(p) if p ∈ Bt, and 0 otherwise.

3.4 Model Update

The last step consists in updating the model, knowing the estimated bounding
box Bt. To update the color model, let Ho

t be the color histogram of It(Bt) and
μc = 0.05 the color updating rate:

Ht = (1 − μc) · Ht−1 + μc · Ho
t . (9)

To update the R-Table R, we start by reducing all displacement weights:

∀θ,∀(−→u , ω−→u ) ∈ R(θ), ω−→u ← (1 − μg) · ω−→u (10)
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Then, considering the confidence map SGt, and the object center ct, for all pixels
p ∈ Bt with gradient orientation θp, we consider the displacement −→v = −→pct, with
a weight equal to μg · SGt(p). Then, we consider two cases:

– if −→v is in R(θp), we increment its weight by μg ·SGt(p) (μg = 0.05), in order
to reinforce the most relevant elements of the R-Table

– otherwise we add an entry into R(θp) with the weight μg · SGt(p)

Finally, for each index of the R-Table, we keep only the NR = 200 displacements
with the strongest weights, to limit computational and memory cost.

4 Experiments

Before dealing with experiments on academic datasets, we will detail our imple-
mentation setup.

4.1 Implementations Details

Our algorithm is developed using C++ and the OpenCV 2.4.9 library, and tested
on a laptop at 2.4 GHz, without explicit multithreading. In terms of implemen-
tation, iterative pixel access is done using image pointers, and image histogram
computation is done using Look Up Table. At frame t, our tracker only processes

Fig. 4. The first line illustrates failures due to the transparency of the glove (ground
truth in blue, tracker output in red), making its color similar to the chair. The GHT
still performs correctly (sharp peak on the second image). On the second line the GHT
fails due to the rotation of the book: the peak disappears from HT1 to HT2. (Color
figure online)
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area centered in ct−1, and of size two times the last bounding box area. To eval-
uate the map Sc,t, we use integral images. Otherwise, no major algorithmic
optimization has been done.

In terms of memory footprint, target’s informations, composed of the color
histogram (nc

3 = 123 floating point numbers), the R-Table (n0 ·NR ·2 ·4 integers
for displacements and n0 · NR · 2 floats for weights) and the two last states (4
integers for coordinates and scales), resulting, with our set of parameters, in a
memory footprint of about 45 ko. This quantity is independent of target’ size.
It is however negligible compared to the number of temporary images: 2 8-bit
images (gradient orientation and magnitude maps), 1 RGB image (the sub-image
in which we are tracking the target) and 5 32-bit images (float) (HTt, BPt, Sc,t,

F(Ht−1,Hbck
t )

O and BFt), which depends on object’s size (and its associated search
window): for a 100×100 object’s size, the footprint will reach 2 Mo. Considering
the speed obtained experimentally, we are convinced that our method is suit-
able embedded systems. All parameters have been tuned for the best trade-off
between performance and speed on VOT2015 [15]. For experiments case, we will
denote as CHT the position tracker only, and CHTs our complete tracker.

4.2 Results on VOT 2014 and VOT 2015

Each year, the VOT committee proposes a dataset to test and evaluate trackers.
Each frame from each sequence is labeled according to its difficulty (occlusion,
camera motion, size, motion or illumination change). Evaluation criteria are:

– Accuracy: based on overlap measure O(GTt, Bt) = GTt∩Bt

GTt∪Bt
, with GTt the

ground truth at the frame t
– Robustness: given by the number of failures (frames where O(GTt, Bt) = 0)
– Speed: based on a normalized speed (EFO units, see [15])

The VOT committee provides results of all competitors, and a toolkit to eval-
uate and rank trackers. For all experiments, we use the function report challenge
to get weighted mean rank (based on ranks for all difficulties), pooled rank (based
on all sequences), expected overlap, and speed. We also compute ranking with
the whole set of results, but only display those of relevant trackers. Results for
VOT2014 and VOT2015 are summarized Table 1.

VOT2014 [16] is a dataset composed of 25 sequences, and results for 40
trackers are available. We choose to show our results compared to DSST [6]
(VOT2014 winner), Hough-based trackers [9,17,18] and real-time trackers [9,12,
18,22]. Amongst Hough-based trackers, our method is as well ranked as Matflow,
combining Matrioska [17] and bdf [18], but is 6 times faster (in EFO units). In
the real-time trackers category, ours is the second fastest one, beaten by FoT [22]
but our method is much more robust. KCF [12] is more accurate and robust than
our method, but is slower. Globally, our tracker is well ranked (top 10 among
40 competitors) but is one of the tracker proposing the best trade-off between
effectiveness and speed. Surprisingly, our position-only tracker (CHT) and our
complete one have similar performance in terms of accuracy and robustness, but
the complete one is faster (probably due to object size reduction).
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Table 1. Results in VOT2014 and VOT2015 for different trackers. The smaller the
rank, the better the tracker. Real-time trackers appear in bold.

VOT2014

Tracker Weighted mean rank Pooled rank Expected
overlap

Speed

Accuracy Robustness Accuracy Robustness (EFO) (fps)

CHTs 8.83 4.33 6 9 0.2960 129.77 159.21

CHT 8.42 4.08 6 9 0.2916 109.75 134.65

DSST [6] 1.83 4.33 1 3 0.3693 5.80 13.07

Matrioska [17] 9.83 12 6 9 0.2671 10.20 21.88

bdf [18] 10.67 7.50 10 9 0.3097 46.82 100.45

Matflow [17,18] 8.67 3.17 6 4 0.3120 19.08 40.94

FoT [22] 7 18.17 6 22 0.2859 114.64 306.52

PTp [9] 25.33 11.17 30 9 0.2519 49.89 127.87

KCF [12] 2 4.67 1 5 0.3641 24.23 63.42

VOT2015

CHTs 12.67 13.67 13 17 0.2606 103.89 111.22

CHT 13.83 15.67 13 20 0.2615 101.91 109.10

Staple [3] 1 4.33 1 5 0.345

ASMS [23] 7.50 11 2 13 0.2353 115.09 142.26

bdf [18] 29.33 32 27 43 0.2054 200.24 78.43

FoT [22] 19.50 42.50 16 53 0.1934 143.62 177.53

DSST [6] 4.0 23.67 1 38 0.2707 3.29 4.47

DAT [21] 13.73 17.33 6 20 0.2428 9.82 14.87

HT [11] 20 28.50 13 43 0.2045 0.91 0.56

Matflow [17,18] 22.17 27.33 23 43 0.2098 81.34 31.86

MDNET [20] 1 1.33 1 1 0.3789 0.87 0.97

sPST [13] 1.67 4.50 1 5 0.3134 1.03 1.16

VOT2015 challenge is composed of 60 sequences and results for 62 com-
petitors are available. Compared to MDNET [20], VOT2015 winner based on
CNNs, and STAPLE [3] (results from author’s website, without speed results)
our tracker is less effective, but faster (being lighter, and knowing that the author
mentioned 80 fps on a 4.0 GHz CPU, we expect our method to be faster than
STAPLE). Compared to STAPLE, our shape-based tracker relies on the GHT,
with gradient computation only, while STAPLE requires a more complex algo-
rithm (correlation-based tracker using HOG features). Amongst real-time track-
ers [18,22,23], our tracker is one of the few above 100 EFO, and is only beaten by
Vojir’s extension of Meanshift [23] in rankings and speed, but with slightly higher
expected overlap. Otherwise, we are better ranked than other real-time trackers.
We perform better than other Hough-based trackers [11,17], including Matflow,
which was on par with our tracker in VOT2014, but excluding sPST [13], which
is 100 times slower and relies on an object detector. Compared to Possegger [21],
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Fig. 5. Results from VOT2014 and 2015. White bounding boxes are ground truth, red
ones are obtained with our tracker. The two first images are cropped from sphere and
torus sequences from VOT2014 (PixelTrack in blue, and MatFlow in green). The two
last are cropped from birds2 and motocross sequences from VOT2015 (DAT in blue,
and STAPLE in green). (Color figure online)

Fig. 6. Expected overlap and number of failures for our complete tracker, and for
partial versions (position tracking only, Hough only and Color only). (Color figure
online)

from which our color part tracker is inspired, we demonstrate the usefulness of
the Hough part, since, in weighted mean ranking, our method is slightly more
robust. Some results are shown Figs. 4 and 5. We also used VOT2015 to see
performances of each part of the tracker (Hough and color ones). In both cases,
the loss of performance is dramatic, as we can see on Fig. 6, where we show the
results of different versions in terms of expected overlap (the higher, the better)
and failures (the lower, the better) for several difficulties, both obtained on the
set of frames concerned by the difficulties.
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5 Conclusion

In this paper, we proposed a tracker working without offline training and tracking
arbitrary objects. Unlike most state-of-the-art trackers, our method is based on
a very low level representation. First, our geometrical model is only based on
gradient, through a GHT. Then, an object color histogram is used to generate
a map indicating the likeliness of the pixel to belong to the object. These two
operations, done independently, are combined to estimate object center. Second,
from the two features, we generate two confidence maps, and merge them in
order to estimate the object size. The final confidence map is built from the
fusion of these two maps and used to update the object geometrical and color
models. Our whole tracker relies on computationally efficient operations, and
performs tracking task beyond real-time (about 100 fps) with a low memory
footprint. Experiments were done on recent academic dataset [15,16], for which
our tracker is ranked in the first third for accuracy and robustness. It is also one
of the fastest from VOT2014 and VOT2015 challenges. Thanks to its speed and
low memory footprint, our algorithm can be implemented on embedded systems,
combined with other trackers to improve accuracy and robustness or with object
detection or background subtraction to automatically initialize tracked regions.
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Abstract. Discriminative Correlation Filter (DCF) based methods have
shown competitive performance on tracking benchmarks in recent years.
Generally, DCF based trackers learn a rigid appearance model of the tar-
get. However, this reliance on a single rigid appearance model is insuffi-
cient in situations where the target undergoes non-rigid transformations.
In this paper, we propose a unified formulation for learning a deformable
convolution filter. In our framework, the deformable filter is represented
as a linear combination of sub-filters. Both the sub-filter coefficients and
their relative locations are inferred jointly in our formulation. Experi-
ments are performed on three challenging tracking benchmarks: OTB-
2015, TempleColor and VOT2016. Our approach improves the baseline
method, leading to performance comparable to state-of-the-art.

Keyword: Visual tracking

1 Introduction

Generic visual object tracking is the computer vision problem of estimating
the trajectory of a target throughout an image sequence, given only the initial
target location. Visual tracking is useful in numerous applications, including
autonomous driving, smart surveillance systems and intelligent robotics. The
problem is challenging due to large variations in appearance of the target and
background, as well as challenging situations involving motion blur, target defor-
mation, in- and out-of-plane rotations, and fast motion.

To tackle the problem of visual tracking, several paradigms exist in litera-
ture [13]. Among different paradigms, approaches based on the Discriminative
Correlation Filters (DCF) based framework have achieved superior results, evi-
dent from recent the Visual Object Tracking (VOT) challenge results [13,14].
This improvement in performance, both in terms of precision and robustness,
is largely attributed to the use of powerful multi-dimensional features such as
HOG, Colornames, and deep features [5,10,20], as well as sophisticated learning
models [8,9].

Despite the improvement in tracking performance, the aforementioned state-
of-the-art DCF based approaches employ a single rigid model of the target.
c© Springer International Publishing AG 2017
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However, this reliance on a single rigid model is insufficient in situations involv-
ing rotations and deformable targets. In such complex situations, the rigid fil-
ters fail to capture information of the target parts that move relative to each
other. This desired information can be retained by integrating deformability in
the DCF filters. Several recent works aim at introducing part-based informa-
tion into the DCF framework [16,18,19]. These approaches introduce an explicit
component to integrate the part-based information in the learning. Different to
these approaches, we investigate a deformable DCF model, which can be learned
in unified fashion (Fig. 1).

In many real-world situations, such as a running human or a rotating box,
different regions of the target deform relative to each other. Ideally, such infor-
mation should be integrated in the learning formulation by allowing the regions
of the appearance model to deform accordingly. This flexibility in the track-
ing model reduces the need of highly invariant features, thereby increasing the
discriminative power of the model. However, increasing the flexibility and com-
plexity of the model introduces the risk of over-fitting and complex inference
mechanisms, which degrades the robustness of the tracker. In this paper, we
therefore advocate a unified formulation, where the deformable filter is learned
by optimizing a single joint objective function. Additionally, this unified strategy
enables the careful incorporation of regularization models to tackle the risk of
over-fitting.

Fig. 1. Example tracking results of our deformable correlation filter approach on three
challenging sequences. The circles mark sub-filter locations and the green box is the
predicted target location. The red boxes (in the middle and lower rows) show the base-
line predictions. The sub-filter locations deform according to the appearance changes
of the target in the presence of deformations. (Color figure online)
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Contribution. We propose a unified framework for learning a deformable con-
volution filter in a discriminative fashion. The deformable filter is represented
as a linear combination of sub-filters. The deformable filter is learned by jointly
optimizing the sub-filter coefficients and their relative locations. To avoid over-
fitting, we propose to regularize the sub-filter locations with an affine defor-
mation model. We further derive an efficient online optimization procedure to
infer the parameters of the model. Experiments on three challenging tracking
benchmarks suggest that our method improves the performance in challenging
situations.

2 Related Work

In recent years, Discriminative Correlation Filters (DCF) based tracking meth-
ods have shown competitive performance in terms of accuracy and robustness on
tracking benchmarks [13,22]. In particular, the success of DCF based methods is
evident from the outcome of the Visual Object Tracking (VOT) 2014 and 2016
challenges [13] where the top-rank trackers employ variants of the DCF frame-
work. In DCF framework, a correlation filter is learned from a set of training
samples to discriminate between the target and background appearance. The
training of the filter is performed in a sliding-window manner by exploiting the
properties of circular correlation. The original DCF based tracking approach by
Bolme et al. [3] was restricted to a single feature channel and was later extended
to multi-channel feature maps [10–12]. Most recent advancement in DCF based
tracking performance is attributed to including scale estimation [6,15], deep fea-
tures [7,20], spatial regularization [8], and continuous convolution filters [9].

Several recent works have shown that integrating the part-based informa-
tion improve the tracking performance. The work of [18] introduces a part-based
approach where each part utilizes the kernalized correlation filter (KCF) tracker
and argues that partial occlusions can effectively be handled by adaptive weight-
ing of the parts. The work of [16] tracks several patches, each with a KCF, by
fusing the information using a particle filter to estimate position, width and
height. Lukezic et al. [19] introduces a sophisticated model with several parts
held together by a spring-like system by minimizing an energy function based
on the part-filter responses.

Our approach: Different to aforementioned approaches, we propose a theoret-
ical framework by designing a single deformable correlation filter. In our app-
roach, the coefficients and locations of all sub-filters are learned jointly in a
unified framework. Additionally, we integrate our deformable correlation filter
in a recently introduced state-of-the-art DCF tracking framework [9].

3 Continuous Convolution Operators for Tracking

In this work, we propose a deformable correlation tracking formulation. As a
starting point, we use the recent Continuous Convolution Operator Tracker (C-
COT) formulation [9] due to two main advantages compared to current tem-
plate based correlation filter trackers. Firstly, the continuous reformulation of
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the learning problem benefits from a natural integration of multi-resolution deep
features and continuous-domain score map predictions. Secondly, it provides an
efficient optimization framework based on the Conjugate Gradient method. For
efficiency, we also employ components of its descendant tracker ECO [4].

For a given target object in a video, the C-COT discriminatively learns a
convolution filter f that acts as an instance-specific object detector. Different
from previous approaches, the filter f is viewed as a continuous function repre-
sented by its Fourier series coefficients. The detection scores are computed by
first extracting a D-dimensional feature map x from the local image region of
interest. Typically, the sample x consists of HOG or multi-resolution deep convo-
lutional features. We let xd[n1, n2] denote the value of the d-th feature channel
at the spatial location (n1, n2) in the feature map. The continuous scores in
the corresponding image region are determined by the convolution operation
Sf{x} =

∑D
d=1 fd ∗ Jd{xd}, where Jd{xd} is an interpolation operator mapping

the samples from the discrete to the continuous domain.
The filter f is trained in a supervised fashion, given a set of sample feature

maps {x1, x2, . . . , xC} and corresponding label score maps {y1, y2, . . . , yC}, by
minimizing the objective,

ε(f) =
C∑

c=1

αc‖Sf{xc} − yc‖2 +
D∑

d=1

‖wd · fd‖2. (1)

The first term penalizes classification errors of each sample using the squared
L2-norm. The sample c is weighted by the positive weight factor αc, which is
typically set using a learning rate parameter. The second term deploys a con-
tinuous spatial regularization function wd, that penalizes high magnitude filter
coefficients to alleviate the periodic boundary effects. Element-wise multiplica-
tion is denoted as ·. The label score function yc is generally set to a Gaussian
function with a narrow peak at the target center. Note that a sample feature
map xc contains both target appearance and the surrounding background. The
filter is hence trained to predict high activation scores at the target center and
low scores at the neighboring background. In practice, training and detection is
performed directly in the Fourier domain, utilizing the FFT algorithm and the
convolution properties of the Fourier series.

As related methods, the C-COT method works in two main steps. (i) When a
new sample is received, the target position and scale are estimated, i.e. Sf{x} is
calculated using the estimated filter f for different scales using a scale pyramid.
The new target state is then estimated as the position and scale that maximizes
the detection score. (ii) To update the model, a sample (xc, yc) is first added
to the training set, where xc is extracted in the estimated target scale. The
filter is then refined by minimizing the objective (1). This is done by using
conjugate gradient to solve the arising normal equations. We refer to [9] for
further details. To enhance the efficiency of the tracker, we further deploy the
factorized convolution approach and update strategy recently proposed in [4].
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4 Method

Here, we introduce a deformable correlation filter tracking model. A classic DCF
contains an assumption that the target is rigid and will not rotate. The filter
can handle violations to this assumption if a significant part of the target still
fulfills it, or by using features with sufficient invariance. Examples of such model
violations are sequences showing humans running or a change of perspective. By
dividing the filter into sub-filters which can move relative to each other, they
can fit more accurately onto a smaller part of the target. A standard DCF may
choose to discard or weigh down information about a moving part whereas our
approach allows one sub-filter to focus on this information explicitly, and move
with that part. By writing the filter as a linear combination of sub-filters we can
optimize a joint loss over all the sub-filter coefficients and the sub-filter positions
jointly.

4.1 Deformable Correlation Filter

We construct a deformable convolution filter as a linear combination of trainable
sub-filters. The filter becomes deformable by allowing the relative locations of
the filters to change along to the target transformations. Formally, we denote
the sub-filter with fm and let pc,m = (pc,m

1 , pc,m
2 ) be its relative location in the

frame c. The filter f at frame c is obtained as a linear combination of the shifted
sub-filters,

f(t1, t2) =
M∑

m=1

fm(t1 − pc,m
1 , t2 − pc,m

2 ). (2)

We jointly learn both the sub-filter coefficients fm and their locations pc,m by
minimizing a joint loss,

ε(f, p) = ε1(f, p) + ε2(f) + ε3(p), (3)

where each term is described below.

Classification Error. The loss for the discrepancy between the desired
response and the filter response for sample xc is

ε1(f, p) =
C∑

c=1

αc‖Sf{xc} − yc‖2, (4)

where αc is the weight for sample c. From the translation invariance of the
convolution operation and the definition (2), the classification scores can be
computed as,

Sf{xc}(t1, t2) =
M∑

m=1

Sfm{xc}(t1 − pc,m
1 , t2 − pc,m

2 ). (5)

The score operator Sfm{xc} is defined as described in Sect. 3.
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Spatial Regularization. A spatial regularization of the filters enforces low
filter coefficients close to the edges,

ε2(f) =
M∑

m=1

D∑

d=1

‖wm,d · fm
d ‖2, (6)

where wm,d is the continuous spatial regularization function for filter m. We
assume different spatial regularization functions for the different sub-filters as
it may be desireable for the sub-filters to track regions of different size. In our
experiments, by using two different spatial regularizations where one is much
tighter, we let one sub-filter track the whole target while the others track smaller
patches. Please note that ε2(f) does not depend on the sub-filter positions.

Regularization of Sub-filter Positions. To regularize the sub-filter positions,
we add a deformable model that incorporates prior information of typical target
deformations. In this work, we use a simple yet effective model, namely that
the current sub-filter positions are related to their initial positions by a linear
mapping. The resulting regularization term is thus given by,

ε3(p) = λp

M∑

m=1

‖pc,m − Rp1,m‖2. (7)

Here, pc,m is the position of sub-filter m in frame c, and R ∈ R
2×2 is a trans-

formation matrix. In our experiments we use a full linear transform, which is
optimized jointly during the learning. λp is a parameter determining the regu-
larization impact. This part of the loss does not depend on the sub-filter coeffi-
cients.

4.2 Fourier Domain Formulation

The optimization is performed in the Fourier domain using Parseval’s formula.
This results in a finite representation of the continuous filters using truncated
Fourier series.

Let ·̂ denote the Fourier coefficients for any given, sufficiently nice function.
By linearity of the Fourier transform

Ŝf{xc}[k1, k2] =
M∑

m=1

β[k1, k2] ̂Sfm{xc}[k1, k2] (8)

where
β[k1, k2] = e−i2πpc,m

1 k1/T1e−i2πpc,m
2 k2/T2 (9)

and

̂Sfm{xc}[k1, k2] =

(
D∑

d=1

f̂m
d [k1, k2]Ĵd{xc}[k1, k2]

)

. (10)
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Given C samples, we optimize the filter in the C-COT framework. The
objective 3 is minimized by using Parseval’s formula. We get the corresponding
objective

ε(f, p) =
C∑

c=1

αc‖Ŝf{xc}− ŷc‖2 +
M∑

m=1

D∑

d=1

‖ŵm,d ∗ f̂m
d ‖2 +λp

M∑

m=1

‖pc,m −Rp1,m‖2

(11)
which will be minimized by an alternate optimization strategy where we itera-
tively update the sub-filter coefficients and positions.

4.3 Updating the Filter Coefficients

The Fourier coefficients are truncated such that for feature dimension d only the
Kd first coefficients are used (resulting in 2Kd + 1 coefficients in total for that
dimension). Also define K = maxd Kd. To minimize the functional we rewrite
it as a least squares problem which can be solved via its normal equations.
The normal equations are then solved using conjugate gradient. Let ·H be the
conjugate transpose. We define a block matrix with C × MD blocks

A =

⎛

⎜
⎝

A1

...
AC

⎞

⎟
⎠ , Ac =

(
Ac,1 . . . Ac,M

)
, Ac,m =

(
Ac,m,1 . . . Ac,m,D

)
(12)

where Ac,m,d is a diagonal matrix of size K · K × Kd · Kd

Ac,m,d = diag

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β[−Kd,−Kd]Ĵd{xc}[−Kd,−Kd]
...

β[−Kd,Kd]Ĵd{xc}[−Kd,Kd]
...

β[Kd,Kd]Ĵd{xc}[Kd,Kd]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (13)

Further define

f̂ =

⎛

⎜
⎝

f̂1
...

f̂M

⎞

⎟
⎠ , f̂m =

⎛

⎜
⎝

f̂m
1
...

f̂m
D

⎞

⎟
⎠ , f̂m

d =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

fm
d [−Kd,−Kd]

...
fm

d [−Kd,Kd]
...

fm
d [Kd,Kd]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)

and

ŷ =

⎛

⎜
⎝

ŷ1

...
ŷC

⎞

⎟
⎠ . (15)
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Lastly, let Γ denote a diagonal matrix containing the learning rate αc, of size
CK ×CK; and W denote a Toeplitz matrix corresponding to summation of the
convolutions with wm,d. Using these definitions the objective becomes

ε(f, p) =
C∑

c=1

αc‖Acf̂ − ŷc‖2 + ‖W f̂‖2 + ε3(p). (16)

We discard ε3(p) while minimizing the objective over f , as it will be addressed
in the next step. The objective is then minimized by solving

(AHΓA + WHW )f̂ = AH ŷ (17)

using the method of conjugate gradient.

4.4 Displacement Estimation of the Sub-filters

The sub-filters are moved by minimizing the objective with respect to the sub-
filter positions. This problem is not convex, and we resort to gradient descent
utilizing Barzilai-Borwein’s method [1]. The perk of their method is that the
steplength is adaptive. The gradient is found as

d

dpc,m
ε(f) =

d

dpc,m
ε1(f) +

d

dpc,m
ε3(p) (18)

where

d

dpc,m
ε1(f) = 2(Ŝf{xc} − ŷc)e−i2πpc,m

1 k1/T1e−i2πpc,m
2 k2/T2 ̂Sfm{xc}

(−i2πk1/T
−i2πk2/T

)

(19)
and

d

dpc,m
ε3(p) = 2λp(pc,m − Rp1,m). (20)

Note that ε2(f) does not depend on the sub-filter positions, and hence the deriv-
ative with respect to the sub-filter positions is zero. In our experiments we let
R be either the identity matrix, or an affine transform. The translation part of
the affine transform is handled during the target position estimation described
in Sect. 3. Hence the affine transform can be considered equivalent to a linear
transform. The linear transform is estimated in each step of gradient descent
using a closed form expression. This is done by rewriting the problem as an
over-determined linear system of equations and solve it via its normal equations.

5 Experiment and Results

We validate our approach by performing comprehensive experiments on three
tracking benchmarks: OTB-2015 [22], TempleColor [17] and VOT2016 [13].
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5.1 Implementation Details

In our experiments we employ two types of features: Color Names, and “Deep
Features” extracted from the Convolutional Neural Network (CNN). We use the
network VGG-m and extract features from the layers Conv-1 and Conv-5. We
use different number of sub-filters depending on the target size. We employ a
“root-filter” which is a subfilter that is always centered around the target and
utilizes both shallow features and deep features from a CNN. The locations of the
sub-filters are continuously updated and has a strong regularization to enforce
locality. We test different feature sets for these sub-filters. The sub-filters are
initialized in the first frame where they are placed in a grid. We use λP = 3·10−6

on VOT2016 and TempleColor datasets, and use λP = 3 ·10−4 on the OTB-2015
dataset. We use the same set of parameters for all videos in each dataset.

5.2 Baseline Comparison

We perform baseline comparisons on the OTB-2015 dataset with 100 videos.
We compare different features for the sub-filters, and different regularization for
their positions. We evaluate the tracking performance in terms of mean overlap
precision (OP) and area-under-the-curve (AUC). The overlap precision (OP) is
calculated as the fraction of frames in the video where the intersection-over-
union (IoU) overlap with the ground truth exceeds a threshold of 0.5 (PASCAL
criterion). The area-under-the-curve (AUC) is calculated from the success plot
where the mean OP is plotted over the range of IoU thresholds over all videos.

Table 1 shows the results of the baseline and proposed approach with the sub-
filter positions regularized either with an affine transform, or the identity trans-
form (Sect. 4.4). The proposed approach based on an affine transform provides
improved tracking performance. This shows that regularization of the sub-filter
positions is important and using an affine transform is superior compared to

Table 1. Baseline comparison on the OTB-2015 dataset with the two different reg-
ularizations of the sub-filter positions. The affine transform provides the best results.

Baseline, no deformability Affine Identity

Mean OP 83.2 83.9 83.4

Mean AUC 68.4 69 68.5

Table 2. Baseline comparison on the OTB-2015 dataset when using different set of
features for the sub-filters.

Baseline Shallow + CN Shallow Shallow + Deep Deep CN

Mean OP 83.2 83.6 83.5 83.6 83.9 83.9

Mean AUC 68.4 69 68.9 68.9 69 68.8
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Fig. 2. Success plots on the OTB-2015 (left) and TempleColor (right) datasets, com-
pared to state-of-the-art. The AUC score of each tracker is shown in the legend. We
show slight performance increases on both datasets.

Fig. 3. Attribute-based comparison on the OTB-2015 dataset. Success plots are shown
for six attributes. Our approach achieves improved performance compared to existing
trackers in these scenarios.

an identity transform. Table 2 shows the baseline comparison when using differ-
ent set of features. The deep features provide improved performance. However,
performance comparable to deep features is also achieved by using colornames.

5.3 State-of-the-Art Comparison

OTB-2015. Figure 2 (on the left) shows the success plot for the OTB-2015
dataset which consists of 100 videos. The area-under-the-curve (AUC) score for
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each tracker is represented in the legend. Among existing approaches, the C-
COT tracker [9] achieves an AUC score of 68.2%. It is worth to mention that
the recently introduced ECO tracker [4] achieves the best results with an AUC
score of 70.0%. However, the ECO tracker also employs HOG features together
with colornames (CN) and deep features. Instead, our deformable convolution
filter approach achieves competetive performance without using HOG features,
with an AUC score of 69.0%. Figure 3 shows the attribute based comparison on
the OTB-2015 dataset. All videos in the OTB-2015 dataset are annotated with
11 different attributes. Our approach provides the best results on 7 attributes.

5.4 TempleColor

Figure 2 (on the right) shows the success plot for the TempleColor dataset con-
sisting of 128 videos. The SRDCF tracker [8] and its deep features variant (Deep-
SRDCF) [7] achieve AUC scores of 51.6% and 54.3% respectively. The C-COT
tracker yields an AUC score of 58.1%. Our approach improves the performance
by 1.4% compared to the C-COT tracker.

5.5 VOT2016

The VOT2016 which consists of 60 videos compiled from a set of more than 300
videos. On the VOT2016 dataset, the tracking performance is evaluated both in
terms of accuracy (average overlap during successful tracking) and robustness
(failure rate). The overall tracking performance is calculated using Expected
Average Overlap (EAO) which takes into account both accuracy and robustness.
For more details, we refer to [14]. Table 3 shows the comparison on the VOT2016
dataset. We present the results in terms of EAO, failure rate, and accuracy. Our
approach provides competetive performance in terms of accuracy and provides
the best results in terms of robustness, with a failure rate of 0.70.

Table 3. State-of-the-art in terms of expected area overlap (EAO), robustness (failure
rate), and accuracy on the VOT2016 dataset. The proposed approach show a slight
decrease in EAO but a slight improvement to failure rate.

SRBT

[13]

EBT

[23]

DDC

[13]

Staple

[2]

MLDF

[13]

SSAT

[13]

TCNN

[21]

C-COT

[9]

ECO [4] Proposed

Our

EAO 0.290 0.291 0.293 0.295 0.311 0.321 0.325 0.331 0.374 0.368

Fail. rt 1.25 0.90 1.23 1.35 0.83 1.04 0.96 0.85 0.72 0.70

Acc 0.50 0.44 0.53 0.54 0.48 0.57 0.54 0.52 0.54 0.54

6 Conclusions

We proposed a unified formulation to learn a deformable convolution filter. We
represented our deformable filter as a linear combination of sub-filters. Both the
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coefficients and locations of all sub-filters are learned jointly in our frame-
work. Experiments are performed on three challenging tracking datasets: OTB-
2015, TempleColor and VOT2016. Our results clearly suggest that the proposed
deformable convolution filter provides improved results compared to the baseline,
leading to competitive performance compared to state-of-the-art trackers.
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Abstract. Head operated interfaces offer touchless interaction with
electronic devices for physically challenged people who are unable to
operate standard input equipment. The great challenge of such interfaces
is text entry. Most existing approaches are based on camera mouse where
the on-screen keyboard is operated by the pointer controlled with head
movements. Movements of the head are also employed to cycle through
keys or their groups to access the intended letter. While the process of
direct selection requires substantial precision the traverse procedure is
time consuming. The main contribution of this paper is proposition of the
Two-Letters-Key Keyboard for touchless typing with head movements.
The solution offers substantial acceleration in accessing the desired keys.
The typing proceeds with directional head movements and only two con-
secutive moves are required to reach the expected key. No additional
mechanisms (like eye blink or mouth open) are required for head typing.

Keywords: Touchless typing · Typing with head movements · Virtual
keyboard · Gesture interaction · Human-computer interaction

1 Introduction

New assistive technologies are required for physically challenged people to pro-
vide information access and means for operation in the electronic world. Through
advanced interfaces people with motion impairments can achieve computer-
mediated communication with others. They can increase own independence in
their daily lives. One of the option here is the head operated interface. Other
include: eye tracking [1], speech recognition [2], brain computer interfaces [3].
The price level of these solutions is far too high for many individuals. However,
despite the existence of low-cost alternatives [4], the choice of the appropriate
interface is largely dependent on the form of disability. In this paper, the atten-
tion is focused on head operated interfaces and computer vision techniques.

Head operated interfaces largely focus on conventional mouse replacement.
User’s head movements are captured and translated into the motion of a pointer
in the Graphical User Interface (GUI). Rotation and translation of the head are
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denoted as rigid motions [5]. The second group, the non-rigid motions, includes
actions like [5]: eye winks, cheeks twitch, mouth movements (opening, closing,
stretching) etc. The non-rigid motions are predominantly used for the selection
process. With the help of the above means the complete pointer manipulation can
be achieved and the special term - camera mouse - has been adopted here [5,6].

Based on the above concept some interfaces have already been reported in
the scientific literature. In [5] and [6] the mouse cursor navigation is obtained
by 3D head pose. Some of the proposed solutions concentrated on tracking only
user’s facial features. The position of user’s nostrils related to the face region has
been used for mouse movements in [7,8]. The mouse control based on the image
plane position of the eyes can be found in [9,10]. Clicking events, in turn, are
obtained with different non-rigid motions and examples include: eye blinks [6,8,
9], mouth shape changes [5,10–12] or brows movements [12]. Interesting approach
is presented in [6] where the clicking events are obtained on the base of the
distance between the user’s head and a camera.

The process of typing with head movements is possible by the combination of
the camera mouse and an on-screen keyboard. Modern operating systems offer
soft keyboards (usually with the QWERTY layout) as the substitution for a
physical keyboard. The typing is achieved through direct pointing of the key
followed by the confirmation procedure. Another possibility is provided by the
traverse procedure where consecutive keys or groups are accessed after the rigid
motion detection. In the first case, the process of direct selection is difficult and
requires substantial precision. The main drawback with the cycle method is the
time required to reach subsequent characters.

In this paper, a novel technique for touchless typing with head movements is
introduced. It allows to reach the base key with only two steps. This is substantial
improvement to existing solutions and it directly derives from the 3-Steps Key-
board proposed in [13]. The main concepts of the 3-Step Keyboard are quoted in
Sect. 3 after the overview of reduced interaction keyboards presented in Sect. 2.
In Sect. 4 the main concepts of the Two-Letters-Key Keyboard for predictive
touchless typing with head movements are proposed. The details of user interac-
tions and their recognition with computer vision methods are provided in Sect. 5.
The summary and final conclusions are included in Sect. 6.

2 Limited Interaction Typing

Human-computer interaction based on head movements may be the only option
for some people. Free head movements suit well for camera mouse approach.
However, when typing with direct pointing of the keys using the on-screen key-
board the precision problems arise. For this reason, free and unconstrained move-
ments are reduced to only four primary directions: up (U), down (D), left (L)
and right (R). First pair of directions are achieved with the upward and down-
ward nod gestures. The horizontal direction can be obtained with rotary head
movements or shift movements. Limiting the number of possible moves to the
four main directions forces the change in the approach to typing. Captured head
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movements are used for traversing through individual keys or groups (rows or
columns). Such approach requires many steps to reach the intended letter. This
concept is popular and some solutions have already been reported in the litera-
ture [14] or made available for public as open source projects [15,16].

Typing with head movements limited to the four main directions resembles
in principle the four-key text entry method. This form of typing is applied with
game controllers, TV remotes and not so long ago has been a standard in pagers.
The input mechanism requires from the user to press physical directional keys to
navigate the on-screen keyboard. The directional keys are usually used to move
some kind of visual indicator. Additional key for pressing is compulsory here.
It should be noticed that different combinations of directions lead to specific
letters depending on the initial position (previously entered character). Another
approach, however, is possible. The idea is to assigning codes (specific combi-
nation of directions) to symbols. Such procedure has two advantages. First, no
additional key for pressing is necessary. Second, each character is accessed in the
same way regardless of the initial position resulting from previously typed letter.
The main question concerns the most efficient coding system which reduces the
number of key presses. The extensive analysis of this problem appears in [17]
where a family of reduced-key keyboards is proposed.

Considering the typing process with directional movements on four-key key-
board, four alternatives can be accessed in the first step. In the two-steps pro-
cedure there are 16 possibilities (4× 4) and with another succeeding step - 64
(16× 4). The English alphabet consists of 26 characters. There are also sup-
plementary symbols (e.g.: space, punctuation marks) and the typing requires
additional special-function keys (like backspace). Nonetheless, considering the
4-choice base and the lack of any predictive technique or dictionary support the
typing of any character requires at least 3 steps. This is the case when fixed
length codes are employed. It is however possible to minimize the average num-
ber of steps (key-presses identified with directional movements) per character
using the variable code length. This way, frequent symbols get shorter codes and
those occurring less frequently get longer codes. [17] uses Huffman coding to
assign minimized key sequences to letters and average value of 2.321 key presses
is achieved in the proposed H4-Writer method. The H4-Writer uses four direc-
tions as the base and the shortest combinations consists of 2 directions but the
longest require 5 directions. The E character, for example, is achieved with UU
(double up movement) in the H4-Writer technique, while the Z is accessed with
the DRLLL combination.

Different number of combinations of motion might be unusual. However,
such approach has been popular and the multi-tap on a mobile phone keyboard
is the best example. It requires consecutive taps to reach successive letters on
the same key. Finally, this technique has been replaced with the T9 approach
where dictionary support allowed a single press on the ambiguous key. This
example shows that significant acceleration of typing speed is possible with the
usage of predictive techniques and the dictionary support. For this reason, in
this paper we propose to improve the recently proposed the 3-Steps Keyboard
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(a reduced interaction interface for touchless typing with head movements) with
the dictionary support. The contribution allows further reduction in the number
of head movements from 3 to 2.

3 3-Steps Keyboard Overview

In [13] new concept to touchless text typing with head movements has been
proposed. The keyboard has the form of a single row with vertically translated
alphabetically arranged characters presented in Fig. 1.

Fig. 1. The layout of the reduced interaction 3-Steps Keyboard [13]

The letters form two-levels distinctive groups. They are arranged in four
main groups. The first and fourth group are located on the same level. The
two middle groups are shifted, one upward and the other downward [13]. The
displacement indicates the direction which has to be selected to reach each group.
This way, the first group is selected with the left-direction movement, the second
with the up movement, the third with the down movement, and the fourth with
the movement to the right [13]. After the choice of an individual group, other
groups are deactivated. Further interactions continue within the selected group
and employ the same procedure. Each subgroup is translated in the same manner
as main groups and consist of only two letters. Hereby, the second directional
movement leads to the pair of characters. All remaining pairs are deactivated
and the user has to select the appropriate letter from the pair with left or right
directional movement. After that, the keyboard returns to the initial appearance
and all the keys are activated again. The procedure of letter selection includes
three steps. Figure 2 quotes an example where the A character is typed with
three movements (i.e. LUL).

The base character can be reached with only three steps in the 3-Steps Key-
board. The access to other symbols or control keys is also provided. The extreme
buttons represents backspace and space. Dot, comma and enter are also avail-
able for direct selection. Numbers and other symbols are accessed by switching
the keyboard state (accomplished by the second key and LLR combination of
movements) [13].

4 Two-Letters-Key Keyboard Interface

In the 3-Steps Keyboard presented in [13] the main concept is the 3-steps inter-
action which allow to reach any base character. Figure 3 presents the modified
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Fig. 2. Examplary interaction: letter ‘A’ transcription with the LUL combination of
movements

version where two letters have been combined in individual keys. Similar con-
cept has already been applied in the QWERTY layout and the RIM BlackBerry
7100t is an example of finished product. The adjacent letters in RIM BlackBerry
7100t (i.e. Q and W, E and R, and so on) are merged into one physical button.
Such approach introduces ambiguity since same combinations might produce
different correct words. It must be noticed, however, that the ambiguity level
in keyboards containing two letters per key is much smaller compared to well-
known T9 predictive text technology introduced for mobile phones. In mobile
phone keyboard each key represents three or four letters. Three key-presses on
the mobile phone keyboard produces at least 27 (3× 3× 3) unique combinations
of initial strings while the keyboard including two letters on the key produces
only 8 combinations.

User interaction with Two-Letters-Key Keyboard for touchless typing with
head movements is very similar to the one present in the 3-Steps Keyboard
(described in brief in Sect. 3). The main difference is the exclusion of the third
step. Only two consecutive movements are required to reach the expected key.
In the first step, with directional head movement, the user selects one of the four
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Fig. 3. Layout of the proposed Two-Letters-Key Keyboard with 2-steps access

groups of letters. Then, with another directional movement a subgroup of two
letters is selected and this finishes the procedure of key selection. User proceeds
to next letter selection and at the same time the word generator engine provides
suitable suggestions. If the expected word appears it can be selected without
typing subsequent characters. The interaction details are provided further.

Comparing the layout of the modified version with the original 3-Steps Key-
board less special keys are available. With the RD sequence of movements in the
Two-Letters-Key Keyboard the ‘1#’ key is accessed. It switches the keyboard
state and allows typing other symbols and numbers. This issue, however, is not
considered in this paper. The extreme left button represents backspace. It is
accessible with two consecutive movements to the left LL. The extreme right
button - accessed with the RR sequence - has a special meaning. It moves the
interaction to the suggestion panel.

Figure 4 presents the window of created prototype. The keyboard is located
at the bottom part (it is deactivated). The middle part contains a panel of
suggested words and the text box is placed in the upper part. The screenshot
presents the state of the interface after the user moved head in the following
sequence: LDDLURDLDR. This sequence denotes subsequent keys: ‘CD’, ‘OP’,
‘MN’, ‘OP’, ‘UV’. As the result of this interactions the intended word computer
appeared as the third suggestion, visible in the middle panel. The user could
have continued typing next letters. However, with two movements to the right
RR the user has been transferred to the suggestion panel where with the down
movement D the proper suggestion has been selected. The suggestion panel con-
tains four elements which are accessible with one of the directional movements.
Hence the mutual displacement of the elements suggesting the proper direction
of movement. After the user makes a choice the appropriate suggestion is briefly
highlighted and the current string placed between vertical bars (in the upper
text box) is replaced with that suggestion, space is added automatically and a
single vertical bar presenting cursor appears.

The inference of words, in the created prototype, is based on the dictionary
analysis. During typing each key provides the possibility of two letters. Consec-
utive keys generate new strings which are dictionary validated. If a given combi-
nation does not create a proper word it is removed. As the writing progresses the
number of potential words decreases. All suggestions are sorted according to the
length and the shortest are presented for the user. Finally, when the word sugges-
tion engine fails, it is possible to switch to the original 3-Steps Keyboard (through
the ‘1#’ key accessed with RD movements). The introduction of sentence’
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Fig. 4. Created prototype interface of Two-Letters-Key Keyboard

level suggestions appears now as the most valuable improvement here. It requires
more complex prediction model and this issue is left as the future work.

For the task of dictionary analysis the United States (US) English dictionary
provided for the OpenOffice suite has been utilized. The employed version of
en US.dic consisted of 52890 entries. This is typical dictionary and statistics
on length of words are provided in Fig. 5. The seven-letter words are the most
common (7944 entries). Words containing from 6 to 9 letters constitute more
than half of the dictionary (29156 entries).

Fig. 5. Word length statistics

To validate the proposed approach some experiments have been performed.
The set of short phrases provided in [18] have been used to check the efficiency
of the dictionary support mechanism in typical everyday life texts. No problems
have been reported and intended words appeared properly as suggestions. The
typing speed was measured during experiments conducted by 9-person group of
computer science students on the human-computer interaction course. People
with disabilities are the main target of this interface, however in the initial
experiments there were no handicapped participants. After the brief acquain-
tance, the fastest typist were able to type with speed reaching 20 CPM (chars
per minute). On average the acceleration of 19.23% compared to the original
3-Steps Keyboard has been achieved.
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5 The Control Routine

The interaction with the proposed keyboard interface is based on recognition
of the user actions performed with the head. The fundamental task in the con-
trol routine is the face detection followed by a tracking procedure. The detec-
tion of faces has been an active research area for the past two decades and
despite the existence of very good solutions it still remains interesting and chal-
lenging. It evolved from relatively simple approaches like those based on skin
colour [19], through classifiers based on AdaBoost learning applied to different
types of low-level descriptors (Haarlike features, Histogram of Oriented Gradi-
ents, Local Binary Patterns, etc.) [20,21], to methods based on deep learning [22].
New imaging techniques, beyond the visible spectrum, are also considered in the
context of face detection [21].

The procedure of face detection and tracking in the presented solution does
not differ from the one employed in [13]. It consists of well known Viola and
Jones approach [20] in the first step. Then, the face region is analyzed and
distinctive feature points are selected for tracking using the minimum eigenvalue
algorithm. Those points are then tracked with the Kanade-Lucas-Tomasi (KLT)
feature-tracking procedure. The counterpart for each point is searched in the new
frame. Outliers are excluded with the MSAC algorithm [23]. The matched pairs
are employed to calculate the geometric transformation which is then applied to
the bounding box of the previous face localization. Figure 6 on the left presents a
user in typical office environment with the result of face detection and distinctive
feature points selected for tracking. Face centre is denoted with horizontal and
vertical black lines.

Fig. 6. Result of face and distinctive feature points detection (left), schematic repre-
sentation of vertical (middle) and horizontal (right) movements

The centre of the bounding box serves for the steering purposes. Four direc-
tional head movements have to be recognized. It is assumed that the user makes
up and down directional movements with the upward or downward rotary nod
gesture, presented schematically in the middle image of Fig. 6. These gestures are
natural and can be performed with ease. More possibilities exist with horizontal
movements (the right image of Fig. 6). Similarly as with vertical moves the left
and right directions can be achieved with the rotary movements. Our investi-
gations, supported by the feedback from participants who tested the interface,
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proved that horizontal rotary head movements are the fastest and the easiest to
perform. Some users, however, complained that during this form of movement
they are forced look at the screen at an angle which is uncomfortable. Alterna-
tively, horizontal head movements can be accomplished with head shift or tilt.
Shift movements are the hardest to perform and the tilt in this group is best
balanced. Finally, it is the user who chooses the preferred form of interaction. All
variants of movements are available in the interface. From the 9-person group of
participants 4 have selected the rotary movements, 2 preferred the tilt operation
and 1 has chosen the shift variant. Two remaining participants could not made
a decision and one of them used alternately tilt with rotary movements while
the second opted for tilt and shift movements.

When applying the face detection and tracking procedure for the steering
purposes some issues have to be addressed. The first one concerns free move-
ments. In head operated interfaces it is difficult to differentiate the steering
movements from those casual. When user remains in the neutral position the
reference centre is continuously adapting to small involuntary head movements.
The typing is triggered when the motion parameters exceed specified thresh-
olds. However, when no other action follows it is assumed that no steering was
intended, the user has taken a more comfortable position, and new reference
centre is calculated.

It must be noticed that during horizontal head movements with the tilt app-
roach the change in the abscissa coordinate is expected. Unfortunately, the ordi-
nate coordinate of the head centre also changes in the tilt case. The problem
has been resolved with the simple procedure where the motion detection in a
given direction automatically locks the competitive direction (the direction with
a higher value of shift wins).

In the 3-Steps Keyboard after each directional movement the return to
the center position was expected. In the Two-Letters-Key Keyboard another
improvement is proposed. To simplify and accelerate the interaction the return
to the center is not compulsory and the diagonal movements are allowed. For
the example, the standard procedure for accessing the ‘AB’ key requires the
left gesture with the return to the centre followed by the up gesture with the
return to the centre. In the improved procedure, after performing the left gesture,
user can directly move diagonally to the up position (the procedure, where the
direction with a higher value of shift wins, still applies here). After the second
gesture the return to the centre is compulsory. Hereby, each key requires two
directional movements after which the head should return to the approximate
centre position.

When new key is selected the face detection and tracking procedure is
restarted and new reference centre is calculated. The whole process is imper-
ceptible by the user and there are following reasons for justification of such
operation. First, there are some variations in the head centre location after the
return to the neutral area. Second, there is a problem of accumulative error dur-
ing tracking. Finally, some points can be lost during tracking a face which is not
a rigid object and can change its shape. The forced face detection, new feature
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points selection and the update of the reference centre coordinates prevent from
the above threats.

6 Conclusions

The main contribution of this paper is the proposition of the Two-Letters-Key
Keyboard for touchless typing with head movements. Most existing approaches
requires substantial precision when operated on the camera mouse routine or
suffer from time consuming process when operated with the traverse procedure.
The proposed interface offers substantial acceleration in accessing the desired
keys. Only two consecutive moves are required to reach the expected key. The
proposed interface is based on the recently proposed the 3-Steps Keyboard and
improves the original by the elimination of the third step. In the Two-Letters-
Keys Keyboard each key consists of two letters and is accessed with two direc-
tional movement. The problem of ambiguity has been solved with the dictionary
support which provides the predictive typing. The suggestion panel consists of
four suggestions achievable with a directional moves. Since the switch to the
suggestion panel requires two movements (RR), the whole process of suggested
word selection requires three directional movements. It is worth noting that no
additional mechanisms (like eye blink or mouth open) are required for head typ-
ing. Finally, the minor improvement in the proposed solution is the introduction
of diagonal movements which eliminates the need of return to the center in most
cases.

The main target of the presented interface are people with disabilities. In the
initial experiments there were no handicapped participants. We are planning
to perform evaluations with target users in the future. Another study, we want
to perform, is the use of eyetracker to analyze the subjective performance and
perception of the interface. The last but not least, left as the future work, is the
introduction of sentence level suggestions. We hope that further improvements
will make the interface better for those in need.
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Abstract. This research study proposes a new approach to group activ-
ity recognition which is fully automatic. The approach adopted is hierar-
chical, starting with tracking and modelling local movement leading to
the segmentation of moving regions. Interactions between moving regions
are modelled using Kullback-Leibler (KL) divergence. Then the statistics
of such movement interactions or as relative positions of moving regions
is represented using kernel density estimation (KDE). The dynamics of
such movement interactions and relative locations is modelled as well
in a development of the approach. Eventually, the KDE representations
are subsampled and considered as inputs of a support vector machines
(SVM) classifier. The proposed approach does not require any interven-
tion by an operator.

Keywords: Group activity recognition · Streaklines · Moving regions ·
Kullback-Leibler divergence · Kernel density estimation · SVM

1 Introduction

Human activity recognition has received considerable attention, by modelling
and identifying the movement of isolated individuals. Nevertheless, many human
activities take place in a social context of interaction with other people. Most
human activity recognition methods start with extracting local features from
video sequences which are then modelled either syntactically or statistically
and the resulting modelling data is fed into a machine learning classifier. More
recently, this area evolved towards detecting anomalies in the videos representing
human activity, such as by using dynamic texture models [1], and Markov ran-
dom fields [2]. An observational approach, detecting new activities in the scene,
by using the Kullback-Leibler (KL) divergence from a dictionary of pre-observed
events was proposed in [3,4].

Following behaviour studies resulting from the complexity of modern life
lead to the requirement of contextual modelling of human activities instead of
that of simple movements by individual persons. Group activity requires more
complex descriptions of how people interact with each other and with their
surroundings. In the study by Ni et al. [5] group activities are recognized using
manually initialized tracklets while a heat-map based algorithm was used for
c© Springer International Publishing AG 2017
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modelling human trajectories when recognising group activities in videos in [6].
A statistical approach of modelling data acquired by a multi-camera system
was used in [7] and a hierarchical semantic granularity approach was employed
for group activity in [8]. Movement trajectories have been represented as either
histograms of features extracted from tracklets [10] or as Gaussian processes
modelling time-series of movement trajectories [11]. Such approaches rely on
either the training of a pedestrian detector for each scene, or on the manual
annotation of trajectories.

This research study describes an automatic method for group activity recog-
nition by modelling the inter-dependant relationships between human activity
characteristic features over time. Features representing medium-term tracking
of moving regions are extracted using the method from [12] leading to the seg-
mentation of compactly moving regions. The interdependency between moving
regions is represented by evaluating the relative movement and location between
pairs of segmented moving regions. Kernel Density Estimation (KDE) is then
used to model the statistics of the movement, location, as well as their evo-
lution in time, representing the dynamics of such interactions between moving
regions. The group interaction model keeps track of stationary pedestrians by
automatically marking the locations where these stop and then when they start
an activity again. Section 2 describes the features used for representing moving
regions, while the statistical modelling is provided in Sect. 3. Section 4 describes
the classification approach. Section 5 provides the experimental results on two
group activity datasets while Sect. 6 draws the conclusions.

2 Modelling Human Interactions

The proposed methodology for group activity recognition has three main process-
ing stages: estimating streaklines of movement, modelling moving regions and
their dynamics and group activity recognition. Optical flow estimation leads to
tracking of regions of movement in the image [13,14]. Streaklines [12], similarly
to the approach from [14], represent the smooth movement of particles of fluid.
Modelling streaklines relies on the Lagrangian framework for fluid dynamics,
ensuring the robustness and the continuity of movement estimation. Unlike in
the approach from [12], where streaklines are computed for each pixel, in this
research study each streakline is associated with a block of pixels of fixed size
by computing the marginal median of all streakline vectors located in a specific
region. A streakline consists of several vectors head-to-tail located along a local-
ized trajectory of movement which is then fit by a first degree polynomial for
smoothing.

The general assumption is that movement in the scene corresponds to moving
people, but interactions with other moving objects such as vehicles is accounted
for in this model as well. Firstly, we begin by segmenting the streakflow field
into distinctly moving regions. The Expectation-Maximization (EM) algorithm,
assuming Gaussian Mixture Models (GMM) is used for segmenting and mod-
elling each inter-connected region. The number of clusters and the centers of
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the Gaussian functions are initialized using the modes of the streakline flow his-
tograms. A two-step approach is adopted for movement segmentation in order to
address the effects of perspective projection, which are mostly observed in the
case of video sequences acquired with wide-angle lens cameras located at low
heights. The assumption is that in the upper part of the video frames, objects
and their motion is smaller than in the lower part, due to the perspective of the
scene. In the first step, the segmentation is performed in order to estimate the
height of the moving objects, which is used to derive a scaling factor. In the sec-
ond step, the segmentation is repeated by considering this scaling factor, applied
to the movements estimated from the video sequence, according to the location
of its corresponding moving region in the scene. The motion Mi of region i is
then scaled by a factor si:

M
′
i = siMi, (1)

where s represents the perspective projection scaling factor estimated for the
given scene from the video sequence. Each moving region is therefore represented
by a GMM, defined by its mean and variance.

3 Modelling Interactions Between Moving Regions

The key characteristics of group activities are often present in the interdependent
relationship between the people present in the scene as well as between them
and the surroundings. The general assumption is that moving regions correspond
to human activities and in the following we model the relationship between
such regions. In the first instance, we compute statistical differences between
streakflow distributions AI(t) and AJ(t), corresponding to two moving regions
I(t) and J(t) at time t by

M(I(t), J(t)) = e− DSKL(AI(t)||AJ(t))

σm (2)

where DSKL(AI(t)||AJ(t)) is the symmetrized KL divergence between the local
statistics of streaklines corresponding to the moving regions I(t) and J(t) at
time t, [3] and σm is a scaling factor for movement differences. The background
is considered as one of the regions as well. The calculation of equation (2) results
in a value within the range [0, 1] which models the inter-dependancy between
regions I(t) and J(t). For example, individuals moving in completely opposite
directions will have M(I(t), J(t)) = 0, whilst individuals moving in the same
direction and at the same speed will have M(I(t), J(t)) = 1. These are then
concatenated to form a vector representing the inter-dependant group relation-
ships of the streakflows at a particular time t.

A similar approach is adopted for the locations of the moving regions by form-
ing distributions of location coordinates corresponding to each moving region,
including the background. The distributions of relative locations for the people
from the scene, both moving or stationary, is modelled as well. The characteristic
parameters of GMMs in this case correspond to the location, size and approxi-
mative size and shape of each moving region. Similarly to Eq. (2), we model the
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interaction between two GMMs CI(t) and CJ(t) representing the moving regions
I(t) and J(t) at time t, as:

D(I(t), J(t)) = e− DSKL(CI(t)||CJ(t))

σl (3)

where σl represents the characteristic scale parameter for locations. Similarly
to the streakflow model, this provides a value in the range [0,1] representing
the spatial relationship between the two moving regions. For example, individ-
uals characterised by moving regions I(t) and J(t) at time t, located far apart,
will have D(I(t), J(t)) = 0, whilst individuals located closer together will have
D(I(t), J(t)) = 1. A vector, representing all the inter-relationships of locations
for the group activity at time t, is then formed as shown in Fig. 1(a).

Fig. 1. Modelling the inter-dependencies of moving regions in both space and time.

We also model the dynamic changes of relative differences between moving
regions over subsequent frames by computing the differences between all streak-
flow models M(I(t), J(t)) = 1 at time t and those identified at other times t+n.
These are computed as in Eq. (2), except that the models are now calculated
across subsequent sets of frames. A vector of streakflow differences represent-
ing all the inter-dependant relationships of streakflow models between the time
instances t and t + n is then formed. The same modelling of dynamic changes
is applied for changes in the relative distances between the locations, sizes and
shapes of the moving regions by using inter-distances D(I(t), J(t)) = 1 from
(3) at times t and t + n. Another issue addressed in this research study is the
modelling of people who become stationary after they have moved through the
scene. If there is no movement detected in a particular area and its neighbouring
surroundings of the scene where motion was previously detected, during p con-
secutive frames, this indicates that a previously moving region ceased to move.
Such stationary regions are characterised by their location and by zero motion.
Finally, when movement occurs again in the region of a stationary person, then
such regions are considered to be moving again as components of the group
activity model. The dynamic model is illustrated in Fig. 1(b).
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4 Classifying Types of Interactions Between People

Kernel Density Estimation (KDE) is a non-parametric representation which pro-
vides a good model for complex data such as those defining human interactions.
On the other hand KDE smoothes the data representation reducing the uncer-
tainty when compared to assuming a certain parametric statistical model. The
bandwidth parameters of the bi-variate Gaussian kernel are used to help control
the smoothing effects of the kernel density estimator. In this study, we use the
bivariate KDE method employing diffusions on data representations, proposed
in [16], which considers a Gaussian kernel, and uses an automatic bandwidth
selection method.

A discrete representation of the resulting KDE’s for each set of features
is represented on a grid of fixed size K × K. By using a fixed grid size for
representing the movement in the scene, the locations of the regions of movement,
dynamics of movement and their region locations, we implicitly apply a data
normalization, because such data representations do not depend on the frame
size or on the actual number of frames. Such KDE’s are then sampled and used
as a feature vector representing the characteristics of the group activity taking
place in the given video sequence. The feature vectors are then used to train a
Support Vector Machine (SVM) algorithm, having K2 inputs, while the outputs
separate each group activity.

5 Experimental Results

In the following we provide the experiments when considering two databases
containing group interaction videos: NUS-HGA [5], and Colective [9] datasets.
This first data set consists of six different group activities collected in five dif-
ferent sessions containing 476 video sequences, each session representing staged
actions. Initially, streaklines are extracted for blocks of size 14× 14 over 10 con-
secutive frames. The motion is segmented and each moving region is represented
by the Gaussian Mixture Model (GMM) of streakflows vectors and their loca-
tions GMM. Figure 2 shows an example of the estimated streakflows, motion
histograms, and the moving region segmentation for the fight activity from the
NUS-HGA dataset. In this particular activity, movement is intense and chaotic.
In Fig. 2b the solid green bars correspond to peaks of the histogram, while the
solid red bars are entries with the height below 15% of the maximum bar height
which are eventually removed for not being significant enough in the context
of the scene’ movement. The moving regions are well segmented and the small
regions obtained in region 1 of Fig. 2c help characterize the smaller atomic events
performed in the group, for example pushing or kicking which usually happens
during the fighting activity.

We account for the perspective projection effects, where smaller movements in
smaller segmented regions would correspond to movements detected from farther
away in the scene. The segmentation is done in two stages, where during the first
segmentation stage a scaling factor is calculated and then the motion is scaled
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Fig. 2. Example of streakflows, histograms of flow and the moving regions before and
after segmentation on a fight sequence from the NUS-HGA dataset. In (b) “n” refers
to the number of histogram peaks. (Color figure online)

accordingly and the scene resegmented. The detection of the stationary regions
detector is applied considering the number consecutive frames for estimating
the streaklines as p = 25. Two examples of detecting stationary pedestrians are
shown in Fig. 3 for the Talking and Gathering activities. In Figs. 3a and c the
pedestrians are still moving and therefore their corresponding moving regions
are properly detected. In Figs. 3b and d the individuals have stopped and their
stationary regions are properly detected.

The streakflow movement model, streakflow dynamics, location and location
dynamics relationship differences are computed as described in Sect. 3, consider-
ing the scaling parameters σm = 15, σl = 550 for motion and location differences
respectively, and σm = 17.5, σl = 650 for the motion and location dynamics.
The number of frames, considered for the dynamic window from Sect. 3, is set
to n = 13. The bivariate kernel density estimation from [16] is computed over a
fixed grid size of 16 × 16. Representations of the KDEs using Gaussian kernels
for various human interaction activities are shown in Figs. 4a–f when consid-
ering motion estimation and segmentation, and in Figs. 4g–l when modelling
the locations of moving regions. The gathering motion shown in Fig. 4f displays
a diversity of differences in movement, which is expected as some individuals
are gathering coming from different directions. The Walking activity location
differences, shown in Fig. 4e, are all close to 1. This implies that the individu-
als are tightly grouped, which is expected in the Walk in Group activity. The
Gather activity location differences shown in Fig. 4l display clear transitions
between locations situated far apart leading to closer-together locations. This
is expected, as the gathering activity involves individuals coming from far away
towards gathering in a tight group at the end of the activity.

For classification purposes, the density estimations are subsampled and fed
into the classifier. The motion and location features represent complimentary
information and can be combined for the final activity classification. We use
SVM with the RBF kernel as a classifier, considering the parameters C = 2.83
and γ = 0.00195 for the SVM margin and kernel bandwidth. For all experiments,
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Fig. 3. Identifying when pedestrians stop during the video frames showing gathering
and talking activities from the NUS-HGA dataset.

we follow the evaluation protocol described in [5], where the NUS-HGA dataset
is split into 5-fold training and testing.

The Collective dataset [9] consists of 6 different activities: Gathering, Talk-
ing, Dismissal, Walking Together, Chasing and Queueing. The dataset consists
of 32 video sequences, where each video sequence contains multiple examples
of each activity. The video sequences are recorded using a hand-held camera,
and therefore the perspective distortion is quite strong in the scenes from this
dataset. The spatio-temporal segmentation of these video sequences takes place
into blocks of 20×20 pixels by 10 frames, where the streaklines are extracted for
each block of 10 frames. Examples of the streakflows and movement segmenta-
tion are shown in Fig. 5 for the Chasing and Gather activities. In both cases, the
moving regions are well segmented, particularly in the chasing example where
the chaser and chasee are segmented separately despite forming one connected
region moving in the same direction. The next step involves applying the sta-
tionary pedestrian detector as in Sect. 2, assuming the number of prior frames
used as p = 25. The videos from the Collective dataset show different activities,
displaying transitions from one activity to another, including times when peo-
ple are stationary. Such situations are identified and an example of transitions
through activities is shown in Fig. 6. Initially, as in Fig. 6a, the pedestrians are
moving towards each other performing the gathering activity. People are even-
tually gathered together towards the end of this activity, and the transition to
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Fig. 4. KDEs and histograms representing motion dynamics in (a)–(f) and for location
in (g)–(l) for the NUS-HGA dataset.

the talking activity is evident in Fig. 6b. The stationary people detection has
successfully recorded the locations of the individuals when stopping, as seen
in Fig. 6b. Finally, after a period of time, the individuals begin to move again
performing the dispersing activity shown in Fig. 6c. In Fig. 6c, the new moving
regions are detected replacing the previously identified stopped regions which
are no longer present.
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Fig. 5. Examples of streakflow and segmentation from the Collective dataset.

Fig. 6. Pedestrians transitioning through various activities in the Collective dataset.

In the following, the human activity features, representing the streakflow
differences, streakflow dynamics, location differences and location dynamics are
computed for each moving region as described in Sect. 3. The scaling parameters
are σm = 15 and σl = 450 for motion features and location features, respectively,
while the size of the dynamic window for the motion dynamics and location
dynamics is n = 5. Then, the data is represented over time using KDE, as
described in Sect. 4, over a grid size of 8×8, using the 2-column feature matrices
as input data. The grid-based representation of the KDE is then used as input
to the SVM classifier with the RBF kernel.

For the tests on the Collective dataset we divide the dataset into 3 subsets for
3-fold training and testing according to the tests in [9]. We split the sequences
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Fig. 7. Confusion matrices for the recognition results of the proposed method when
combining all features modelling movement, location distribution and their dynamics
as well on (a) NUS-HGA, resulting in 90% classification accuracy and (b) Collective
dataset, resulting in 79.7% accuracy. (c) The confusion matrix for Colective dataset
when using [11], resulting in 80.3% classification accuracy.

Table 1. Group activity recognition results on the NUS-HGA and Collective datasets

Method NUS-HGA dataset (%) Collective dataset (%)

Localized causalities [5] 74.2 –

Group interaction zone [17] 96.0 –

Multiple-layered model [11] 96.2 80.3

Monte Carlo Tree Search [18] – 77.7

Collective activities [8] – 79.2

Motion 86.2 75.4

Location 87.1 64.3

Motion dynamics 91.6 76.8

Location dynamics 92.6 71.6

Motion+Location 94.5 76.5

Motion Dynamics+Location
Dynamics

97.1 78.4

Motion+Location+Motion
Dynamics+Location
Dynamics

98.0 79.7

during training and testing into short sequences of 60 frames for the evaluation
and then calculate the average recognition accuracy across all classes. Confusion
matrices for all features combined are compared to the approach from [11] as
shown in Fig. 7. The results for the Queuing activity are not that good because
that stationary pedestrians forming queues are not moving at all for the duration
of the sequence, and therefore are not detected. However, it can be observed from
Fig. 7 that the results of the proposed methods show a greater consistency across
all the other activities then other approaches.
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Comparative results are provided in Table 1 for NUS-HGA and Collective
datasets. The location features provide a better recognition result than the motion
features while the results for the dynamics models for motion and location empha-
sise their importance for the Group activity recognition. The combination of all
features account for movement, location, as well as the dynamics of both move-
ment and location, and gives the best result of 98% for the NUS-HGA dataset.
The group interaction method from [17] does not evaluate the results using the
5-fold training and testing as suggested in [5] for the NUS-HGA dataset. The pro-
posed methodology, which is fully automated, provides a clear improvement of
about 2% over the best other approach for the NUS-HGA dataset. For the Collec-
tive dataset, the proposed method is comparative to the state-of-the-art and supe-
rior to the other methods when not considering the queuing activity. The motion
and movement dynamics outperform the location inter-dependency features, while
the dynamic features outperform their equivalent frame-by-frame features. Sim-
ilarly to the results on the NUS-HGA database, the best results for the Collec-
tive dataset are achieved when combining all features. However, all the other com-
parative methods are not fully automatic and use some form of human interven-
tion during the experiments. Meanwhile, the proposed methodology is completely
automatic and does not require any human intervention.

6 Conclusion

A completely automatic approach for modelling interactions between people is
proposed in this paper. Streakflows of localized movement along several frames
are estimated from the video sequence. Statistical distributions of vectors form-
ing streakflows, as well as their locations are represented using kernel density
estimation (KDE) and are used in order to identify compactly moving regions.
We also consider the dynamics of change in the streakflows and in the locations
of the moving regions. The relative movement of each moving region with all
the other moving regions, including the background, is then represented statis-
tically. Scaling is used in order to mitigate the effects of perspective projection
in the scene, while the dynamics of change in the moving regions considers the
timing when people are stationary. Eventually, SVM with RBF kernels, consid-
ering sampled KDE representations of movement, location, and their dynamics,
as inputs, is used as a classifier.
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felix.jaremo-lawin@liu.se

Abstract. Semantic segmentation of 3D point clouds is a challenging
problem with numerous real-world applications. While deep learning has
revolutionized the field of image semantic segmentation, its impact on
point cloud data has been limited so far. Recent attempts, based on
3D deep learning approaches (3D-CNNs), have achieved below-expected
results. Such methods require voxelizations of the underlying point cloud
data, leading to decreased spatial resolution and increased memory con-
sumption. Additionally, 3D-CNNs greatly suffer from the limited avail-
ability of annotated datasets.

In this paper, we propose an alternative framework that avoids the
limitations of 3D-CNNs. Instead of directly solving the problem in 3D,
we first project the point cloud onto a set of synthetic 2D-images. These
images are then used as input to a 2D-CNN, designed for semantic seg-
mentation. Finally, the obtained prediction scores are re-projected to the
point cloud to obtain the segmentation results. We further investigate the
impact of multiple modalities, such as color, depth and surface normals,
in a multi-stream network architecture. Experiments are performed on
the recent Semantic3D dataset. Our approach sets a new state-of-the-
art by achieving a relative gain of 7.9%, compared to the previous best
approach.

Keywords: Point clouds · Semantic segmentation · Deep learning ·
Multi-stream deep networks

1 Introduction

The rapid development of 3D acquisition sensors, such as LIDARs and RGB-D
cameras, has lead to an increased demand for automatic analysis of 3D point
clouds. In particular, the ability to automatically categorize each point into a
set of semantic labels, known as semantic point cloud segmentation, has numer-
ous applications such as scene understanding and robotics. While the problem
of semantic segmentation of 2D-images has gained a considerable amount of
attention in recent years, semantic segmentation of point clouds has received
little interest despite its significance. In this paper, we propose a framework
for semantic segmentation of point clouds that greatly benefits from the recent
developments in semantic image segmentation.
c© Springer International Publishing AG 2017
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With the advent of deep learning, many tasks within computer vision have
seen a rapid progress, including semantic segmentation of images. The key factors
for this development are the introductions of large labeled datasets [2] and GPU
implementations of Convolutional Neural Networks (CNNs). However, CNNs
have not yet been successfully applied for semantic segmentation of 3D point
clouds due to several challenges. In contrast to the regular grid-structure of
image data, point clouds are in general sparse and unstructured. A common
strategy is to resort to voxelization in order to directly apply CNNs in 3D. This
introduces a radical increase in memory consumption and leads to a decrease in
resolution. Additionally, labeled 3D data, which is crucial for training CNNs, is
scarce due to difficulties in data annotation.

In this work, we investigate an alternative approach that avoids the afore-
mentioned difficulties induced by 3D CNNs. As our first contribution, we propose
a framework for 3D semantic segmentation that exploits the advantages of deep
image segmentation approaches. The point cloud is first projected onto a set
of synthetic images, which are then used as input to the deep network. The
resulting pixel-wise segmentation scores are re-projected into the point cloud.
The semantic label for each point is then obtained by fusing scores over the dif-
ferent views. As our second contribution, we investigate the impact of different
input modalities, such as color, depth and surface normals, extracted from the
point cloud. These modalities are fused in a multi-stream network architecture
to obtain the final prediction scores.

Compared to semantic segmentation methods based on 3D CNNs [17], our
approach has two major advantages. Firstly, our method benefits from the abun-
dance of the already existing data sets for image segmentation and classification,
such as ImageNet [2] and ADE20K [28]. This significantly reduces, or even elim-
inates the need of 3D data for training purposes. Secondly, by avoiding the large
memory complexity induced by voxelization, our method achieves a higher spa-
tial resolution which enables better segmentation quality.

We perform qualitative and quantitative experiments on the recently
introduced Semantic3D dataset [6]. We show that different modalities contain
complementary information and their fusion significantly improves the final seg-
mentation performance. Further, our approach sets a new state-of-the-art perfor-
mance on the Semantic3D dataset, outperforming both classical machine learn-
ing methods and 3D-CNN based approaches. Figure 4 shows an example seg-
mentation result using our method.

2 Related Work

The task of semantic point cloud segmentation has received an increasing amount
of attention due to the rapid development of sensors capable of capturing high-
quality 3D data. RGB-D cameras, such as the Microsoft Kinect, have become
popular for robotics and computer vision tasks. While RGB-D cameras are more
suitable for indoors environments, terrestrial laser scanners capture large-scale
point clouds for both indoors and outdoors applications. Both RGB-D cameras
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and modern laser scanners are capable of capturing color in association with
the 3D information using calibrated RGB cameras. Besides visualization, this
additional information is highly useful for automated analysis and processing of
point clouds. While color is not a necessity for our approach, it alleviates the
task of semantic segmentation and enables the use of large-scale image datasets.

Most previous works [1,7,11,13,16] in 3D semantic segmentation apply
a combination of (i) hand-crafted features, (ii) discriminative classifiers and
(iii) spatial smoothness models. In this setting, the construction of discriminative
3D-features (i) is arguably the most important task. Popular alternatives include
features based on the 3D structure tensor [1,7,11,26], histogram-based descrip-
tors [7,11,16] such as Spin Images [10] and SHOT [21], and simple color features
[11,16,26]. The classifiers (ii) are often based on maximum margin methods
[1,13] or employ random forests [7,11,16]. To utilize spatial correlation between
semantic labels (iii), many methods apply graphical models, such as the Condi-
tional Random Field (CRF) [1,13,26].

Recently, deep convolutional neural networks (CNNs) have been successfully
applied for semantic segmentation of 2D images [15]. Their main strength is
the ability to learn high-level discriminative features, which eliminates the need
of hand-designed representations. The rapid progress of deep CNNs for a vari-
ety of computer vision problems is generally attributed to the introduction of
large-scale datasets, such as ImageNet [2], and improved performance for GPU
computing.

Despite its success for image data, the application of CNNs to 3D point
cloud data [9,20,27] have been severely hindered due to several important fac-
tors. Firstly, a point cloud does not have the neighborhood structure of an
image. The data is instead sparse and scattered. As a consequence, CNN-based
methods resort to voxelization strategies of the underlying point cloud data
to enable 3D-convolutions to be performed (3D-CNNs). Secondly, voxelization
have several disadvantages, including loss of spatial resolution and large memory
requirements. 3D-CNNs are therefore restricted to small volumetric models or
processing data in many smaller chunks, which limits the use of context. Thirdly,
annotated 3D data is extremely limited, especially for the 3D semantic segmen-
tation task. This greatly limits the power of CNNs for semantic segmentation of
generic 3D point clouds.

In contrast, our approach avoids these short comings by projecting the point
cloud into dense 2D image representations, thus removing the need for voxeliza-
tions. The 2D images can then be efficiently processed using 2D convolutions.
Also, performing segmentation in image space allows us to leverage well devel-
oped 2D segmentation techniques as well as large amount of annotated data.

3 Method

In this section we present our method for point cloud segmentation. The input
is an unstructured point cloud and the objective is to assign a semantic label
to each point. In our method we render the point cloud from different views by



98 F.J. Lawin et al.

projecting the points into synthetic images. We render color, depth and other
attributes extracted from the point cloud. The images are then processed by
a CNN for image-based semantic segmentation, providing a prediction scores
for the predefined classes in every pixel. We make the final class selection from
the aggregated prediction scores, using all images where the particular points
are visible. An overview of the method is illustrated in Fig. 1. A more detailed
description is provided in the following sections.

Fig. 1. An overview of the proposed method. The input point cloud is projected into
multiple virtual camera views, generating 2D color, depth and surface normal images.
The images for each view are processed by a multi-stream CNN for semantic segmen-
tation. The output prediction scores from all views are fused into a single prediction
for each point, resulting in a 3D semantic segmentation of the point cloud.
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3.1 Render Views

The objective of the point cloud rendering is to produce structured 2D-images
that are used as input to a CNN-based semantic segmentation algorithm. A
variety of information stemming from the point cloud can be projected onto the
synthetic images. In this work we particularly investigate the use of depth, color,
and normals. However, the approach can be trivially extended to other features
such as HHA [5] and other local information extracted from the point cloud. In
order to map the semantic information back to the 3D points, we also need to
keep track of the visibility of the projected points.

Our choice of rendering technique is a variant of point splatting [24,29], where
the points are projected with a spread function into the image plane. While other
rendering techniques, such as surface reconstruction as in [12], require demanding
preprocessing steps of the point cloud in 3D space, splatting could be completely
processed in image space. This further enables efficient and easily parallelizable
implementations, which is essential for large-scale or dense point clouds.

Splatting-based rendering is performed by first projecting each 3D-point xi of
the point cloud into the image coordinates yi of a virtual camera. The projected
points are stored along with their corresponding depth values zi and feature
vectors ci. The latter can include, e.g., the RGB-color and normal vector of the
point xi. The projection of a 3D-point is distributed by a Gaussian point spread
function in the image plane,

wi,j = G(yi − pj , σ
2). (1)

Here, wi,j is the contributed weight of point xi to pixel j in the projected image.
It is obtained by evaluating an isotropic Gaussian kernel G with scale σ2 at
the pixel location pj . In order to reduce computational complexity, the kernel

Fig. 2. Example of rendering output. Left: color image. Right: label image.
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is truncated at a distance r. However, point spread functions, which originate
from different surfaces, may still intersect in the image plane. Thus, the visi-
bility of the projected points needs to be determined to avoid contributions of
occluded surfaces. Moreover, the sensor data may contain significant foreground
noise, such as scanning artifacts, which complicates this task. The challenge is
to exclude the contribution from the noise and the occluded surfaces in the
rendering process.

In traditional splatting [29], the resulting pixel value is obtained from the
weighted average of the point spread functions in an accumulated fashion, using
the weights wi,j . If the depth of a new point significantly differs from the current
weighted average, the pixel depth is either re-initialized with the new value if
the point is closer than a specific threshold, or discarded if it is further away
[29]. However, this implies that the resulting pixel value depends on both the
threshold value and the order in which the points are projected. Furthermore,
noise in the foreground will have significant impact on the resulting images, as
it is always rendered.

Similar to the method proposed in [19], we perform mean-shift clustering
[24] of the projected points in each pixel with respect to the depth zi weighted
with wi,j using a Gaussian kernel density estimator G(d, s2), where s2 denotes
the kernel width. Starting from the depth value d0i = zi for each point i ∈ Ij
that contributes to the current pixel j, Ij = {i : ‖pj − yi‖ < r}, the following
expression is iterated until convergence

dn+1
i =

∑
i∈Ij

wi,jG(dni − zi, s
2)zi

∑
i∈Ij

wi,jG(dn − zi, s2)
. (2)

The iterative process determines a set of unique cluster centers {dk}K1 from
the converged iterates {dNi }i∈Ij . The kernel density of cluster center dk is given
by,

vk =

∑
i∈Ij

wi,jG(dk − zi, s
2)

∑
i∈Ij

wi,j
. (3)

We rank the clusters with respect to the kernel density estimates and the
cluster centers,

sk = vk +
D

dk
. (4)

Here, the weight D rewards clusters that are near the camera. It is set such that
foreground noise and occluded points are not rendered. We chose the optimal
cluster as k̃ = arg maxk sk and set the depth value of pixel j to the corresponding
cluster center dk̃. The feature value is calculated as the weighted average, where
the weight is determined by the proximity to the chosen cluster,

ck̃ =

∑
i∈Ij

wi,jG(dk̃ − zi, s
2)ci

∑
i∈Ij

wi,jG(dk̃ − zi, s2)
. (5)
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Since the indices i ∈ Ij of the contributing points i are stored, it is trivial to
map the semantic segmentation scores produced by the CNN back to the point
cloud itself.

An example of the rendering output is shown in Fig. 2.

3.2 Deep Multi Stream Image Segmentation

Following the current success of deep learning algorithms we deploy a CNN-
based algorithm for performing semantic segmentation on the rendered images.
We consider using multiple input modalities, which are combined using a multi-
stream architecture [23]. The predictions from the streams are fused in a sum
layer, as proposed in [4]. The full multi stream network can thus be trained end-
to-end. However, note that our pipeline is agnostic to the applied image semantic
segmentation approach.

In our method, each stream is processed using a Fully Convolutional Network
(FCN) [15]. However, as previously mentioned, any CNN architecture can be
employed. The FCN is based on the popular VGG16 network [22]. The weights
in each stream are initialized by pre-training on the ImageNet dataset [2]. In
this work, we investigate different combinations of input streams, namely color,
depth, and surface normals. While the RGB-stream naturally benefits from pre-
training on ImageNet, this is also the case for the depth stream. Previous work
[3] has shown that a 3-channel jet colormap representation of the depth image
better benefits from pre-training on RGB datasets, such as ImageNet. Finally,
we also consider surface normals as input to a separate network stream. For this

Fig. 3. Illustration of the proposed multi-stream architecture for 2D semantic segmen-
tation. Each input stream is processed by a Fully Convolutional Network [15]. The
prediction scores from each stream are summed to get the final prediction.
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purpose, we deploy an efficient algorithm for approximate normals computation,
which is based on direct differentiation of the depth map. An illustration of the
multi-stream architecture is shown in Fig. 3.

3.3 Score Fusion

The deep network outputs a prediction score for each class for every pixel in the
image. The scores from each rendered view are mapped to the corresponding
3D points using the indices i ∈ Ij as described in Sect. 3.1. We fuse the scores
by computing the sum over all projections. Finally, the points are assigned the
labels corresponding to the largest sum of scores.

4 Experiments

4.1 Dataset

We conduct our experiments on the dataset Semantic3D [6], which provides a set
of large scale 3D point clouds of outdoor environments. The point clouds were
acquired by a laser scanner and include both urban and rural scenes. Coloriza-
tion was performed using a cube map generated from a set of high-resolution
camera images. In total, the dataset contains 30 separate scans and over 4 billion
3D-points. The points are labeled with 8 different semantic classes: man-made
terrain, natural terrain, high vegetation, low vegetation, buildings, hard scape,
scanning artifacts, and cars.

4.2 Experimental Setup

View Selection. In order to fully cover the point clouds in the rendered views,
we collect images by rotating the camera 360◦ around a fix vertical axes. For each
360◦ rotation, we use 30 camera views at equally spaced angles. For each point
cloud, we generate four such scans with different pitch angles and translations
of the camera, resulting in a total of 120 camera views. To maintain a certain
amount of contextual information, we remove images where more than 10% of
the pixels have a depth less than five meters. Furthermore, images with less than
5% coverage were discarded.

Network Setup and Training. For the training we generated ground truth
label images by selecting the most commonly occurring label in the optimal
cluster from Sect. 3.1. An example is shown in Fig. 2. In addition to the 8 provided
classes, we also included a 9th background class to label empty pixels, i.e. pixels
without any intersecting point spread functions. We generated training data from
the training set provided by Semantic3D [6], consisting of 15 point clouds from
different scenes. Our training data set consists of 3132 labeled images including
color, jet visualization of the depth, and surface normals.
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We investigate the proposed multi stream approach using color, depth and
surface normals streams as input. In order to determine the contribution of each
input stream we also evaluate network configurations with a single stream. Since
some point clouds may not have color information we also investigate a multi
stream approach without the color stream. All network configurations are listed
in Table 1.

Table 1. Network configurations with input streams in the left column

RGB D N RGB+D+N D+N

Color X X

Depth jet X X X

Surface normals X X X

All network configurations were trained using the same training parameters.
We trained for 45 epochs with a batch size of 16. The initial learning rate was
set to 0.0001 and divided by two every tenth epoch. Following the recommenda-
tions from [14], we used a momentum of 0.99. The networks were trained using
MatConvNet [25].

Fig. 4. Qualitative results. Top: input point clouds. Bottom: Segmentation output
using our proposed RGB+D+N network.

4.3 Results and Discussions

We evaluated our method for the different network configurations on the reduced
test set provided by Semantic3D. The test set consists of four point clouds, con-
taining 80 million points in total. All points are assigned a class label j, which is
compared to the ground truth label i. A confusion matrix C is constructed, were
each entry cij denotes the number of points with the ground truth label i that
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are assigned the label j. The quantitative measure provided by the benchmark
[6] is the intersection over union for each class i, given by

IoUi =
cii

cii +
∑

j �=i cij +
∑

k �=i ckj
. (6)

The over all accuracy is also provided and is given by

IoU =
∑

i cii∑
j

∑
jk cjk

. (7)

The evaluation results are shown in Table 2. The single-stream network with
RGB and surface normals as input performs significantly better than the single-
stream depth network. However, the three streams seem to provide complemen-
tary information, and give a significant gain in performance when used together.
Our best multi-stream approach significantly improves over the previous state-
of-the art method [8]. Also our multi-stream approach without the color stream
obtains results comparable to the previous state-of-the-art, showing that our
method is applicable even if color information is absent. Interestingly, even our
single-stream approaches with only RGB or surface normals as input achieves a
remarkable gain compared to the 3D-CNN based VoxNet [6]. Figure 4 shows some
qualitative results on the test set using our multi-stream RBG+D+N network.

Note that we are using a simple heuristic for generating camera views, and a
basic segmentation network trained on limited data. Yet, we obtain very promis-
ing results. Replacing these blocks with better alternatives should improve the
results even further. However, this is outside the scope of this paper.

Table 2. Benchmark results on the reduced test set in Semantic3D [6]. IoU for cate-
gories (1) man-made terrain, (2) natural terrain, (3) high vegetation, (4) low vegetation,
(5) buildings, (6) hard scape, (7) scanning artefacts, (8) cars.

Avg IoU OA IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8

TML-PCR [18] 0.384 0.740 0.726 0.730 0.485 0.224 0.707 0.050 0.000 0.150

DeepNet [6] 0.437 0.772 0.838 0.385 0.548 0.085 0.841 0.151 0.223 0.423

TLMC-MSR [8] 0.542 0.862 0.898 0.745 0.537 0.268 0.888 0.189 0.364 0.447

Ours RGB 0.515 0.854 0.759 0.791 0.720 0.335 0.857 0.209 0.123 0.326

Ours D 0.262 0.662 0.281 0.468 0.395 0.179 0.763 0.006 0.001 0.000

Ours N 0.511 0.846 0.815 0.622 0.679 0.164 0.903 0.251 0.186 0.470

Ours RGB+D+N 0.585 0.889 0.856 0.832 0.742 0.324 0.897 0.185 0.251 0.592

Ours D+N 0.543 0.872 0.839 0.736 0.717 0.210 0.909 0.153 0.204 0.574

5 Conclusion

We propose an approach for semantic segmentation of 3D point clouds that
avoids the limitations of 3D-CNNs. Our approach first projects the point cloud
onto a set of synthetic 2D-images. The corresponding images are then used as
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input to a 2D-CNN for semantic segmentation. Consequently, the segmentation
results are obtained by re-projecting the prediction scores to the point cloud.
We further investigate the impact of multiple modalities in a multi-stream deep
network architecture. Experiments are performed on the Semantic3D dataset.
Our approach outperforms existing methods and sets a new state-of-the-art on
this dataset.
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Abstract. The detection of curvilinear structures is an important step
for various computer vision applications, ranging from medical image
analysis for segmentation of blood vessels, to remote sensing for the iden-
tification of roads and rivers, and to biometrics and robotics, among
others. This is a nontrivial task especially for the detection of thin or
incomplete curvilinear structures surrounded with noise. We propose a
general purpose curvilinear structure detector that uses the brain-inspired
trainable B-COSFIRE filters. It consists of four main steps, namely non-
linear filtering with B-COSFIRE, thinning with non-maximum suppres-
sion, hysteresis thresholding and morphological closing. We demonstrate
its effectiveness on a data set of noisy images with cracked pavements,
where we achieve state-of-the-art results (F-measure = 0.865). The pro-
posed method can be employed in any computer vision methodology that
requires the delineation of curvilinear and elongated structures.

Keywords: Line detection · Curved lines · Non-linear filtering ·
COSFIRE · Crack delineation

1 Introduction

The detection of curvilinear and elongated structures is of great importance in
image processing due to its application to numerous problems. The delineation
of blood vessels in medical images, the detection and measure of cracks in walls
and roads for damage estimation, the segmentation of river and roads in aerial
and satellite images to prevent disasters or accidents are few applications of
algorithms for the detection of curvilinear patterns.

In the literature, various approaches for curvilinear structure detection were
proposed, for which a survey was recently published in [5]. Existing methodolo-
gies range from parametric methods to approaches based on filtering techniques
or region growing, point processes and machine learning. For instance, the Hough
transform is a parametric method, which converts an input image to a parameter
space where line or circle segments can be detected. It requires a mathematical
model of the patterns of interest. Different elongated structures, such as lines,
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circles and Y-junctions, require different mathematical models to transform an
image into the particular parameter space where the patterns of interest can be
distinguished.

Approaches based on filtering techniques employ local derivatives in a multi-
scale analysis [7] or model the profile of elongated structures by means of a
two-dimensional Gaussian kernel [10]. Region-growing that considers multi-scale
information about width, length and orientation of lines was proposed in [14].
In [15], mathematical morphology and tracking techniques were combined with a-
priori information about the line network of interest. These methods are intuitive
but require a-priori structural information about the patterns of interest.

Despite their high computational complexity, point and object processes were
proposed to detect line networks in images, especially in applications of road
and river detection in aerial images. Methods in this group are based on track-
ing elongated structures by simulation of complex mathematical models. In [11],
a line network is considered as a set of interacting line segments which are
reconstructed by object processes. Point processes based on the Gibbs model
and Monte Carlo simulations were introduced in [12,25], respectively. In [6,24],
point processes were combined with a graph-based representation and classi-
fication to improve the accuracy of segmentation. Point processes and graph-
based approaches require high computational resources, consequently reducing
the applicability to high resolution images.

In the last group, there are methods that employ machine learning tech-
niques. They are based on the construction of pixel-wise feature vectors and the
use of classifiers to decide whether a pixel is part of an elongated structure or
not. In [16], the responses of multi-scale Gaussian filters were used in combina-
tion with a k-NN classifier, while in [19] a feature vector was constructed with
the responses of a bank of ridge detectors. In [18], the coefficients of multi-scale
Gabor wavelets were used to form a feature vector and to train a Bayesian clas-
sifier. Recently, a convolutional neural network trained with image patches of
lines was proposed in [13]. These methods are more complex than filtering-based
approaches and require long training time. Furthermore, the classifiers can be
trained only when ground truth is available, which is not always possible or
prohibitively expensive to obtain.

In this work, we present a method for the detection of curvilinear structures,
composed of four steps: 1. B -COSFIRE filtering, 2. thinning with non-maximum
suppression, 3. hysteresis thresholding and 4. morphological closing. The basic
idea of the B -COSFIRE filters, that we originally proposed for retinal vessel
segmentation in [4,21], is inspired by the functions of simple cells in area V1 of
visual cortex selective to elongated patterns of certain widths and orientations.

The B -COSFIRE filter is trainable as its structure is not fixed in the imple-
mentation, but it is learned in an automatic configuration process performed
on a prototype pattern. The concept of trainable filters was introduced in [3]
and employed in image analysis [2], object recognition [8] and adapted to audio
analysis [23]. The trainability of the COSFIRE approach concerns the learn-
ing of the structure of the filters directly from prototype patterns. This aspect
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Fig. 1. High-level architecture of the proposed curved line operator. A rotation-tolerant
B-COSFIRE filter responds to lines of preferred width and length. Thinning, hysteresis
thresholding and morphological closing are performed to obtain the final elongated and
curvilinear binary structures.

can be considered a kind of representation learning. Similarly to deep learning
but considering a single training sample at time, it aims at avoiding a feature
engineering process and building adaptive pattern recognition systems.

We perform experiments on a publicly available data set, namely Crack PV14
data set [26] and compare the resulting performance to those of existing methods.
We show the effectiveness of the proposed method for the detection of curvilinear
and elongated structures, the robustness of B -COSFIRE filters to incomplete
lines, noise and tortuosity, and their application in a pipeline for crack detection
in pavement and road images.

The paper is organized as follows. In Sect. 2 we present the proposed curved
line operator. In Sect. 3 we describe the Crack PV14 data set and the exper-
imental protocol that we followed, compare the results that we achieved with
the ones reported in the literature and discuss certain aspects of the proposed
method. Finally, we draw conclusions in Sect. 4.

2 Method

2.1 Overview

In Fig. 1, we show the main steps of the proposed curved line detector. The
architecture for the detection of curvilinear and elongated patterns, which we
apply to the detection of cracks in pavement and road images, is composed of
four steps: 1. B -COSFIRE filtering, 2. thinning with non-maximum suppression,
3. hysteresis thresholding and 4. morphological closing.

Below we present the B -COSFIRE filter and show how it is incorporated into
the proposed curved line operator that is suitable for the detection of cracks in
roads and walls.

2.2 Configuration of a B-COSFIRE Filter

A B -COSFIRE filter takes input from of a group of Difference-of-Gaussians
functions DoGσ, with the outer Gaussian function having standard deviation σ:

DoGσ(x, y) =
exp

( − x2+y2

2(0.5σ)2

)

2π(0.5σ)2
− exp

( − x2+y2

2σ2

)

2πσ2
(1)
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In [17], it was shown that for the above function the maximum response is elicited
for a spot with a radius of 0.96σ or a line with a width of 1.92σ. Based on this
finding we set the outer standard deviation σ = w/1.92 where w is the preferred
width of the line of interest.

The structure of a B -COSFIRE filter, i.e. the positions at which we consider
the DoG responses, is determined in an automatic configuration process on a
given prototype pattern. For details about the configuration we refer the reader
to [4]. We configure a B -COSFIRE filter on a prototype line structure of width
w, length l and orientation φ. The result of the configuration is a set Bw,l,φ:

Bw,l,φ = {(0, 0), (λ, φ), (λ, 2π−φ)} ∪ {(ρi, φ)} ∪ {(ρi, 2π−φ)} (2)

where λ = �(l−1)/2� and ρi = ηi with i = 1, . . . , �(λ−1)/η�−1. φ is the preferred
orientation of the line. The two-tuples in the set Bw,l,φ indicate the positions
(distances and polar angles) with respect to the B -COSFIRE filter support cen-
ter at which we take the responses of a center-on difference-of-Gaussians (DoG)
filter. The parameter η (with 1 ≤ η ≤ λ) represents the pixel spacing between
the considered DoG responses. When η = 1 we configure a tuple for every loca-
tion along a line with preferred width w, length l, and orientation φ, and when
η = �(l − 1)/2� (i.e. the maximum possible value) the resulting filter consists of
only three tuples: the tuple (0, 0) that refers to the DoG response at the center,
and the two tuples (�(l − 1)/2�, φ) and (�(l − 1)/2�, 2π − φ) that refer to the
farthest distances on both sides of the support. The selectivity of a B -COSFIRE
filter increases with decreasing η value.

2.3 Response of a B-COSFIRE Filter

The response of a B -COSFIRE filter Bw,l,φ(x, y) is computed in four steps,
namely filter-blur-shift-combine.

In the first step we filter an input image I with the DoG kernel DoGσ=w/1.92

and denote the resulting image by C:

C(x, y) =
∣
∣
∣
∣

3σ∑

x′=−3σ

3σ∑

y′=−3σ

I(x, y)DoGσ(x − x′, y − y′)
∣
∣
∣
∣

+

(3)

where the operation |.|+ denotes half-wave rectification, recently also known as
rectifying linear unit (ReLU).

Then, in order to allow for some tolerance with respect to the preferred
positions we blur the DoG responses by a nonlinear blurring operation that
consists in a weighted maximum. The weighting is given by a Gaussian function
whose standard deviation σ′

i increases linearly with an increasing distance from
the support center of the B -COSFIRE filter: σ′

i = σ′
0 + αρi. The values σ′

0 and
α are parameters and regulate the tolerance to deformations of the prototype
pattern.

In the third step, we shift the i-th blurred DoG response by a vector (ρi, 2π−
φi). In this way, all involved DoG responses meet at the same location, that is
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the support center of the concerned B -COSFIRE filter. We denote by sρi,φi
(x, y)

the blurred and shifted DoG response at the location (x, y) of the i-th tuple:

sρi,φi
(x, y) = max

x′,y′
{C(x − x′ − Δx, y − y′ − Δy) Gσ′

i
(x′, y′)} (4)

where Δx = −ρi cos φi and Δy = −ρi sinφi.
Finally, we denote by rBw,l,φ

(x, y) the response of a B -COSFIRE filter, which
we compute by geometric mean:

rBw,l
(x, y) =

( |Bw,l|∏

i=1

sρi,φi
(x, y)

)1/|Bw,l|
. (5)

2.4 Orientation Bandwidth and Tolerance to Rotation

The orientation bandwidth of a B -COSFIRE filter is controlled by the parame-
ters σ′

0 and α. In the example of Fig. 2, the B -COSFIRE filter that is selective
for lines of length 59 pixels achieves an orientation bandwidth (full width at 75%
of the maximum) of circa π/8 radians, for σ′

0 = 5 and α = 1.
We configure a set β = {Bw,l,φ=θ | θ = 0, π/8, . . . , 7π/8} of B -COSFIRE fil-

ters with eight orientation preferences. With a bandwidth of circa π/8 radians,
a set of eight B -COSFIRE filters with equidistant orientation preference is suffi-
cient to respond to lines in any orientation. We denote by r̂β(x, y) and Φβ(x, y)
the rotation-tolerant response and the orientation map of the rotation-tolerant
B -COSFIRE filter:

r̂β(x, y) = max{rBw,l,φ=0(x, y), rBw,l,φ=π/4(x, y), . . . , rBw,l,φ=7π/8(x, y)} (6)

Φβ(x, y) = argmax
φ

{rBw,l,φ=0(x, y), rBw,l,φ=π/4(x, y), . . . , rBw,l,φ=7π/8(x, y)} (7)

2.5 Binary Map with Thinning and Hysteresis Thresholding

In order to obtain a binary map of curvilinear structures, we apply a thin-
ning and hysteresis thresholding operations to the response map of the rotation-
tolerant B -COSFIRE filter. We use the thinning algorithm described in [9] that
takes as input the response map r̂β(x, y) and the orientation map Φβ(x, y) and
applies non-maximum suppression to thin areas in the response map, where the
responses are non-zero, to one pixel wide candidate points belonging to curvi-
linear structures.

The hysteresis thresholding requires a low and a high threshold parameter
values, denoted by tl and th, respectively. We set tl = 0.5th according to [9]. The
resulting binary image depends on the given high threshold th: the lower that
value the more line pixels in the binary image as less responses are suppressed. In
Fig. 2d we show the thinned and binarized response map of the proposed curved
line operator applied to the image in Fig. 2a.

We finally perform a morphological closing operation, with a 3 × 3 square
structuring element, so as to fill eventual small gaps in the detected lines.
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Fig. 2. (a) An input image (of size 300× 300 pixels) containing a circle with a circum-
ference of radius 100 pixels and a line width of 5 pixels. (b) The response map obtained
by the B-COSFIRE filter Bw=5,l=59,φ=0. For σ′

0 = 5 and α = 1 the orientation band-
width at 75% of the maximum is circa π/8 radians. (c) The rotation-tolerant response
map with eight orientations and (d) the thinned and binary image.

3 Experiments

3.1 Data Set

We carried out experiments on a publicly available data set of pavement images
called Crack PV14 [26]. This data set is composed of 14 images taken with
a laser range imaging appliance, mounted on the back of a car. We show an
example image in Fig. 3a. The images are distributed in BMP format and have
resolution of 200 × 300 pixels. Each image is provided together with a manually
annotated image that serves as ground truth for performance evaluation, Fig. 3b.
The ground truth annotation for each image is a one-pixel wide line-network that
delineates the center-line of the cracks.

Fig. 3. (a) Example image of a pavement crack with (b) Its corresponding manually
annotated ground truth. (c) The response of a rotation-tolerant B-COSFIRE filter and
(d) The final thinned and binarized output image.
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As an example, we show the response of a rotation-tolerant B -COSFIRE
filter applied to the image in Fig. 3a and its thinned an binarized version in
Figs. 3c and d, respectively.

3.2 Evaluation

In order to assess the performance of the proposed method and compare it with
those of other approaches, we compute the precision (Pr), recall (Re) and F-
measure (F) for each image in the Crack PV14 data set, as follows:

Pr =
TP

TP + FP
,Re =

TP

TP + FN
,F =

2 · Pr · Re

Pr + Re
, (8)

where TP are true positive pixels, FP are false positives and FN are false neg-
atives. For each image we compute these three measurements for values of the
threshold th from 0 to 1 in steps of 0.01. Then, we compute the average F-
measure F̄ for each threshold value on the whole data set and choose the value
of th that contributes to the highest F̄ value.

According to [26], we consider some tolerance when computing the perfor-
mance measures to compensate for some imprecision in the ground truth. If the
Euclidean distance d of a detected crack point to the nearest crack point in the
ground truth is lower than a value d∗, we consider that point as a true posi-
tive, otherwise it is a false positive. The points of the ground truth that are not
detected within a distance d∗ in the output image are considered false negatives.
As suggested in [26] we set d∗ = 2. Furthermore, we evaluate the overall per-
formance of the proposed approach by plotting the Precision-Recall curve. This
curve shows the trade-off between the Precision and Recall metrics as the value
th for the hysteresis thresholding varies.

3.3 Results and Discussion

Using this approach, we obtained an average F-measure F on the Crack PV14
data set equals to 0.865 (with a standard deviation of 0.0975). In Fig. 4 we plot
the Precision-Recall curve obtained by the proposed method. On the same plot
we indicate the points that correspond to the results achieved by other methods.
The points corresponding to the CrackTree [27] and FoSA [1] approaches are
considerably below our curve, and hence they are much less effective than our
method. The point that represents the average results reported in [26] is slightly
above the Precision-Recall curve, which may indicate a better performance than
our method. In order to clarify these indications, we evaluated the statistical
significance of the results that we obtained with respect to the ones achieved
by other methods by means of a paired t-test statistic. It turns out that there
is significant statistical difference between the results of our method and those
obtained by CrackTree and FoSA, but no statistical difference with respect to
the ones obtained by Zou et al. [26]. Although we achieved comparable results
with the ones obtained by the method of Zou et al., the proposed approach is
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Fig. 4. Precision-Recall curve achieved by the proposed approach on the Crack PV14
data set. The point ♦♦♦ corresponds to the results of the FoSA method (Pr = 0.8045,
Re = 0.6896), the point ��� to the results of the CrackTree method (Pr = 0.7972, Re =
0.7441), while the point ◦ to the ones of Zou et al. [26] (Pr = 0.8254, Re = 0.9253).

based on a general algorithm for delineation of curvilinear structures in images,
while other approaches are designed to solve a specific problem.

In Table 1 we report the F-measure that we obtained for each image in the
Crack PV14 data set and compare them with the ones obtained by other meth-
ods. The results that we report are obtained by setting the hysteresis threshold
th equal to 0.49, the one that contributed to the best overall results.

The curved line operator based on B -COSFIRE filters that we propose can
be employed in image processing pipelines that require the delineation of elon-
gated structures. In this work, we demonstrated the effectiveness of the proposed
operator in the application of crack detection in images with noisy pavements.

The configuration parameters of a B -COSFIRE filter determine its selectivity
for lines of given width, length and orientation. For our experiments, we chose
these values in a way that the configured filter is selective for average character-
istics of the patterns of interest (i.e. the cracks) in the application at hand. We
configured a single B -COSFIRE filter with the following parameters: w = 6.34,
l = 29, η = 2, σ0 = 2 and α = 1, which we determined by a grid search on 50%
of the images in the Crack PV14 data set.

In contrast to existing approaches for line detection, the B -COSFIRE filters
are not restricted to the detection of elongated structures. They can be config-
ured to be selective for any pattern of interest in an automatic configuration
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Table 1. Detailed F-measure values achieved by the proposed approach in comparison
with the ones obtained by other methods. The statistical significance of the F-measure
difference with other methods is evaluated with a paired t-test statistic (h = 0 indicates
that the difference is not statistically significant while h = 1 statistical significance).

F-measure per image in the Crack PV14 data set

Image Ours Zou et al. [26] CrackTree [27] FoSA [1]

1 0.899 0.916 0.751 0.721

2 0.867 0.872 0.614 0.64

3 0.97 0.874 0.79 0.728

4 0.822 0.845 0.764 0.722

5 0.886 0.944 0.70 0.691

6 0.95 0.747 0.708 0.729

7 0.818 0.937 0.648 0.623

8 0.836 0.886 0.682 0.698

9 0.69 0.867 0.695 0.70

10 0.99 0.892 0.892 0.808

11 0.668 0.906 0.898 0.858

12 0.854 0.893 0.883 0.835

13 0.872 0.639 0.739 0.679

14 0.982 0.913 0.966 0.901

F 0.865 0.866 0.766 0.738

σF 0.0975 0.0811 0.1057 0.0821

Results of paired t-test statistic

h – 0 1 1

p-value – 0.9608 0.0131 0.0015

step that is performed on a given prototype pattern. This possibility is a kind of
representation learning, which involves the construction of a data representation
learned directly from training data. Similarly to deep learning and in contrast
with traditional pattern recognition approaches, the COSFIRE approach avoids
engineering of hand-crafted features and allows for the construction of flexible
and adaptive pattern recognition systems.

One can configure filters that are selective for curvilinear structures of differ-
ent sizes or shapes and combine their responses in order to improve the perfor-
mance of the concerned method. As an example, in [4] we demonstrated how the
responses of a B -COSFIRE filter selective for vessels and one for vessel-endings
were combined to improve the quality of the vessel delineation. Alternatively,
machine learning techniques proposed in [20,22], based on genetic algorithms and
learning vector quantization, can be utilized to select and combine the responses
of the most discriminant filters from a large set of pre-configured ones.
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One of the strengths of the B -COSFIRE filter approach is the tolerance
it uses in its application phase, which is controlled by the parameters σ0 and
α. This accounts for generalization capabilities and robustness with respect to
variations of the patterns of interest.

The characteristics of the B -COSFIRE filters, namely the possibility of com-
bining the responses of filters selective for structures with different characteris-
tics, the automatic configuration step, which is explained in detail in [4], and
the tolerance introduced in their application phase, make them a flexible tool for
image processing and pattern recognition. The B -COSFIRE filters can be used
for the design and implementation of systems which can be easily adapted and
applied to various problems.

For the processing of a single image in the Crack PV14 data set (of 200×300
pixels), our straightforward Matlab implementation takes an average time of
0.3575 s (with a standard deviation of 0.0228) on a machine with a 2.7 GHz
processor. The processing of a B -COSFIRE filter is, however, parallelizable and
hence the efficiency of the proposed approach can be further improved.

Fig. 5. (First row) Four stimuli (of size 300×300 pixels) of dashed circles with radii of
100 pixels and line width of 5 pixels, together with added Gaussian noise. The small
arcs along the circumference are separated by (a, b) 3◦ and (c, d) 5◦ and the Gaussian
noise in each image has zero mean and a variance of 0.2 in (a, c) and 0.5 in (b, d).
(Second row) The corresponding rotation-tolerant response maps of the B-COSFIRE
filter. (Third row) The final thinned and binarized output maps with th = 0.75.
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3.4 Robustness to Noise, Incomplete Lines and Tortuosity

Figure 5 provides insights about the robustness of the proposed method to noise
and incomplete lines. In the first row we use four stimuli with dashed circles
added with Gaussian noise of different variance. For each response map of the
rotation-tolerant B -COSFIRE filter (second row) we compute the signal-to-noise
ratio SNR = 20 log10(As/An), where As is the average of all responses along the
circumference of the circle in the input image, and An is the average of all the
other responses. The thinned and binarized results presented in the last row
demonstrate the robustness of the proposed method.

Fig. 6. (a) A synthetic image (of size 500 × 300 pixels) with Gaussian noise (zero
mean and variance of 0.2) superimposing a curvilinear structure that follows a one-
dimensional Gabor function. (b) The response map of a B-COSFIRE filter and (c) its
thinned and binarized output (th = 0.75).

We also demonstrate the robustness of the proposed method with respect to
tortuosity. In Fig. 6a we illustrate a stimulus with different degrees of tortuosity
surrounded with Gaussian noise and in Fig. 6(b–c) we show the response map of
the B -COSFIRE filter and the final binary output.

4 Conclusions

The detector of curvilinear and elongated structures that we propose is highly
effective in noisy images. We achieve state-of-the-art results (F-measure equals to
0.865) on the Crack PV14 benchmark data set of images with noisy and cracked
pavements. The proposed method is also very robust to incomplete lines and
to linear structures with high tortuosity. The operator can be incorporated in
computer vision applications that require delineation of curvilinear structures.
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Abstract. Motion segmentation is the task of classifying the feature tra-
jectories in an image sequence to different motions. Hypergraph based
approaches use a specific graph to incorporate higher order similarities
for the estimation of motion clusters. They follow the concept of hypoth-
esis generation and validation. For the sampling of hypotheses, a high
probability of selecting clean samples, i.e. samples consisting of points
from the same cluster, is desired. Many approaches use spatial proximity
to build an auxiliary graph for the sampling. But, spatial proximity is
often not sufficient to capture the main affinities for motion segmenta-
tion. Thus, we introduce a simple but effective model for incorporating
motion-coherent affinities into the auxiliary graph. The evaluation on
two state of the art benchmarks shows that the hypotheses generated
from the resulting hypergraphs lead to a significant decrease of the seg-
mentation error. Additionally, less computation time is required due to
a reduced hypergraph complexity.

1 Introduction

Motion segmentation algorithms classify feature trajectories in an image
sequence to a number of motions. Most approaches are multi-frame meth-
ods [1,4,6,22]. They take trajectories from many frames (e.g. 30) as input. On
the other hand, there are two-view methods [8,13,15,20,22] which use corre-
spondences of only two frames as input. In practice, it is often impossible to
establish a sufficient number of trajectories on moving objects with large trajec-
tory length. Often, a short response time is desired. Thus, our aim is to solve the
motion segmentation task using small trajectory lengths, such as 3–10 frames.
The clustering of trajectories can be used estimate the three-dimensional geom-
etry of the scene including moving objects [5].

Recently, hypergraph based methods have been proposed for clustering tasks,
such as motion segmentation [9,16,22], geometric model fitting [21,22] or face
clustering [16]. A hypergraph contains higher order similarities instead of pair-
wise similarities. This approach results in more accurate results with the same
number of samples. In contrast to previous approaches [2,10] where only small
degrees for hyperedges are used, recent approaches employ large hyperedge

c© Springer International Publishing AG 2017
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Fig. 1. Feature distribution for the example cars5 from the Hopkins155 bench-
mark [19] (left) and for the example van from the MPTV benchmark [8] (right).
For cars5, feature points on different objects mostly have large spatial distances while
for van, features all features show small spatial distances, but different motion vectors.

degrees [16,22]. Using large degrees of hyperedges yields better clustering accu-
racy because more information of the relationship between vertices is included.
To incorporate large hyperedges, the approach [16] makes use of a special sam-
pling technique [14,18]. Therefor, a neighborhood structure is required which
guides the hypothesis sampling. The neighborhood structure is encoded in the
auxiliary graph. In [16], the auxiliary graph is based on spatial proximity. The
idea is that adjacent trajectories are likely to belong to the same motion segment.
Thus, it is advantageous that they share the same hyperedge. Sampling from
these hyperedges guarantee a relatively high probability of selecting candidates
from the same motion segment, so-called pure hyperedges. Experiments [16]
show superior performance of large hyperedges for the applications face cluster-
ing (Yale face database [7]) and motion segmentation (Hopkins155 data set [19]).

For the evaluation of motion segmentation approaches the well known
Hopkins155 benchmark [19] is widely used. It consists of image sequences and
trajectory data together with ground truth information providing the motion
segmentation result (cf. Figure 1, left: red, green, and yellow colors indicate three
motion segments). All trajectories in the Hopkins benchmark consist of points
which are visible in every frame of the sequence. Trajectories which discontinue
within the sequence were deleted from the data set. Thus, only large trajec-
tory lengths are provided in the benchmark. Since its publication in 2007, many
approaches result in low segmentation errors on the Hopkins data set.

The MPTV benchmark [8] includes eight challenging sequences. Like in
Hopkins155, a ground truth labeling of the trajectories is provided. In contrast
to Hopkins155, feature tracks may start and end in any frame. Thus, trajecto-
ries of arbitrary length are included in MPTV. For applications such as motion
estimation from a camera mounted on a car, short trajectories are of special
importance since long trajectories are rarely available on moving objects.

We propose a method for building the auxiliary graph which incorporates
the motion of a trajectory instead of using spatial proximity only [16]. The new
auxiliary graph leads to improved hypotheses which lead to a decrease of the
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segmentation error on both benchmarks. Furthermore, less computation time is
required since the complexity of the graph is reduced. The extension is evalu-
ated on Hopkins155 and MTPV. For the evaluation, the sequences are divided
into subsequences of length fs to provide results for limited trajectory length.
Trajectories which are visible in each image of the subsequence are included in
the evaluation. This leads to a large number of experiments for each sequence.
For MPTV, this step is necessary since the trajectories have arbitrary length.

To summarize, the contributions of this paper are as follows:

– an improved method for the generation of the auxiliary using motion cues
from the trajectory data

– the evaluation on two reference benchmarks [8,19] based on limited trajectory
lengths

– the evaluation of the applicability of the benchmarks [8,19] since Hopkins155
only includes long trajectories while MTPV provides arbitrary trajectory
lengths

In the following Sect. 2, the hypergraph based approach of motion segmentation
is introduced. In Sect. 3, the new auxiliary graph is presented. Section 4 shows
experimental results. In Sect. 5, the paper is concluded.

2 Motion Segmentation Based on Hypergraphs

We briefly review the reference method proposed in [16]. An overview diagram is
shown in Fig. 2. Based on the input data matrix X and a neighborhood measure,
the auxiliary graph is generated. This graph guides the generation of hyperedge of
the hypergraph G(t) at iteration t. The hypotheses are generated using the RCM
(Random Cluster Model) [14] and Swendsen-Wang sampling [18]. The sampling
procedure is designed for larger than minimal subsets and a large hyperedge
degree [14]. After several iterations, the motion segmentation result is achieved
based on a minimal subspace approximation error resulting from the subspace
estimation.

Fig. 2. Motion segmentation using hypergraphs (cf. Sect. 2). The hypotheses are gener-
ated using the auxiliary graph as neighborhood structure. The proposed neighborhood
measure which incorporates motion affinities exchanges the spatial proximity proposed
in [16] in the box with the dotted border. It leads to improved hypotheses.
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Hypergraphs. A hypergraph H = (V,E) consists of a set of vertices V and a
set of hyperedges E. In a weighted hypergraph H, a weight w(e) is associated
with each hyperedge e. The degree of a hyperedge δ(e) is defined as the number
of vertices in edge e. The degree of a vertex d(v) is the sum of all weights of
the hyperedges incident with vertex v. If all hyperedges have the same degree r,
the hypergraph is a r-uniform. A two-uniform hypergraph describes a common
graph in which an edge connects two vertices.

2.1 Auxiliary Graph

For the RCM sampling, a spatial neighborhood structure is required. This struc-
ture is represented as a graph G. In [16], the spatial proximity, i.e. the Euclidean
distance of trajectory vectors, is encoded in G.

Initially, mean subtracted coordinates of the trajectory vectors are computed
from the data matrix X. In the case of motion segmentation, X consists of all point
coordinates of a trajectory in the images. The graph is built by firstly using a
PCA on the trajectory vectors to reduce the data dimension to dim (default:
dim = 5) followed by a k-nearest-neighbor algorithm (default: k = 3). The k-
nearest-neighbor employs the Euclidean distance for each vector in the reduced
data matrix Y = {yi}N

i=i. Two vertices vi, vj are connected if vj is a k-nearest
neighbor of vi and vice versa. The distance between two data points determines
the weight pe of the edge e connecting these points as follows [16]:

pe = exp

(
−||yi − yj ||2

2σ2
e

)
(1)

The weight pe indicates the probability of regarding two data points of the same
structure. σe is computed as the standard deviation of the nearest neighbor
distances in Y. The auxiliary graph shares the same vertices as the hypergraph
G0 = (V,E0).

2.2 Hypothesis Generation Using RCM

Hypothese are generated using the Random Cluster Model (RCM) [14] as well as
Swendsen-Wang sampling (SWS) [18]. The RCM provides the partitioning of the
auxiliary graph while SWS is an enhanced Monte Carlo sampling procedure [12].
The Swendsen-Wang approach [18] introduces a binary bond variable d ∈ {0, 1}
for each edge e which can be turned on (d = 1) or off (d = 0). The vector
f = {fi}N

i=1 represents labels of the vertices, f ∈ {1, . . . , K}. A realization of
(f, d) effectively partitions the vertices into a set of connected components. Each
connected component is a subset of V such that all the bond variables between
vertices in the component are turned on. Additionally, vertices in a connected
component must have the same label. This leads to the graph G(t) = (V,E(t))
with E(t) = {e = <i, j>|f (t)

i = f
(t)
j } at iteration t.

In [16], the vector f and the samples d are updated alternatingly. Given
f , a number of samples d provides a set of hyperedges. Given the hyperedges,
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Fig. 3. Calculation of the dominant motions from a set of feature correspondences.
The three dominant motions in this example are marked with red color. (Color figure
online)

f is updated using NCut [17,23]. Each subcluster is a set of vertices connected by
bond variables that have been turned on. Subclusters with a size less than a given
hyperedge size D (D = 10 by default) are removed. The newly generated subset is
added to the set of all generated hyperedges. The iterative process is terminated
when either the labels f do not change significantly, or a maximum number
of iterations is reached. Initially, the bond variables d ∈ {0, 1} are determined
probabilistically by comparing a random number r ∈ [0; 1] with the edge weight
pe (cf. Eq. (1)). If r ≤ the edge probability pe, the bond variable is turned on.

2.3 Subspace Estimation

In the last step of each iteration, the subspace error of the current labeling f is
determined. The weight w(e) of a hyperedge e is calculated as:

w(e) =

{
exp(−r2(v,φs)

2σ2 ) if v /∈ s

0 otherwise
(2)

Here, s is a sampled D−1 tuple, and v is an arbitrary vertex in V . φs is the model
fitted in a least squares manner on s, and r(v, φs) is the residual of v with respect
to φs. The parameter σ is problem dependent and needs to be tuned [16]. It is
determined as the sigma which gives the lowest subspace approximation error [3].

3 Auxiliary Graph Based on Dominant Motions

The input data for the auxiliary graph is given by the trajectories of all fea-
ture points in the current image Ik to the corresponding features in image Ik−s.
The auxiliary graph serves as initialization for the hypergraph G(0). Edges in
the graph between differently moving objects should be avoided. The reference
algorithm [16] employs spatial proximity to generate the auxiliary graph. We
argue that this is not an appropriate measure as shown in the example input
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Fig. 4. Visualization of two dominant motions. The trajectories classified as in the
histogram bins as dominant motions are marked with yellow and red color, respectively.
The image subsequences is taken from the van sequence [8], cf. Fig. 1, right. (Color
figure online)

sequence van in Fig. 4. Many data point pairs have a low spatial distance from
each other but belong to different motions, e.g. points on the trees in the back-
ground are near to points on the upper region of the van. But, their motion
vectors are very different from each other (one motion pointing to the left, the
other pointing to the right). Thus, the motion of the trajectories should be
incorporated in the computation of the auxiliary graph.

The proposed approach determines the dominant motions in the scene. The
main idea is borrowed from the task of computing the main orientation for scale
invariant features, such as SIFT [11]. In SIFT, the main orientation of a texture
patch surrounding a feature is estimated using orientation histograms build from
the angles of gradients. The angles are grouped into bins and the maximum is
determined. The maximum gives the dominant orientation of a feature.

For our task of computing the dominant motions in the scene, we extend this
idea to two dimensions, angle φ and length l of a trajectory. The two dimensional
histogram array of size dφ ×dl is shown in Fig. 3. The angle φ is determined from
corresponding points xi−s = (xi−s, yi−s)T , xi = (xi, yi)T as φi = tan−1( yi−yi−s

xi−xi−s
)

while the length li is li = |xi − xi−s|. The lengths li are normalized using the
maximum length of all trajectories. All correspondences are grouped into a two
dimensional histogram array as shown in Fig. 3. Then, local maxima are deter-
mined (marked with red color in Fig. 3). The feature correspondences included
in the maximum bin determine the dominant motion of the object. A thresh-
old value Mthres ensures that a dominant motion has at least Mthres entries.
Otherwise, it is discarded. The dimensions of the 2D histogram are given by
parameters dφ and dl. In Fig. 3, dφ = 8 and dl = 3 are illustrated while in all
experiments in this paper dφ = 10 and dl = 4 are used. The number of minimum
bin entries for a dominant motion is set to Mthres = 8.

The dimensions of the 2D histogram are given by parameters dφ and dl. In
Fig. 3, the configuration dφ = 8, dl = 3 is shown while in all experiments in
this paper dφ = 16 and dl = 8 are used. The threshold Mthres for the minimal
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number of trajectories to build a dominant motion cluster is set to Mthres = 5.
An example for the determination of a dominant motion is shown in Fig. 4. The
trajectories of the dominant motion induced by the moving van is marked with
red color while the dominant motion of the background is shown with yellow
trajectories.

The information of trajectories located on the extracted dominant motions
are incorporated in the generation of the auxiliary graph such that vertices in the
auxiliary graph which belong to different dominant motions are not allowed to
share an edge in the hypergraph (cf. Sect. 2). Thus, no hypotheses are generated
from points on different dominant motions. This leads to a decreased number
of samples required for accurate segmentation results. Furthermore, the hyper-
graph has reduced complexity which leads to smaller computation times. Both
improvements are evaluated in the following section.

4 Experimental Results

The performance of the proposed approach is evaluated on the Hopkins155 [19]
and the MTPV benchmark [8]. Both benchmarks provide image sequences
together with annotated feature tracks as ground truth information. The bench-
marks do not contain outliers. While the trajectories in the Hopkins155 bench-
mark consist of points visible in every frame of the sequence (up to 53 frames),
feature tracks may start and end in arbitrary frames in MTPV [8].

For the evaluation, the matlab code provided by the authors of [16] is used.
The proposed approach using motion-coherent affinities is implemented as an
extension of this code. We focus on the performance with limited trajectory
lengths. For all evaluations, subsequences with a fixed number fs, fs = 3, . . . , 10
of consecutive images are generated. Then, all trajectories of length fs in this
subsequence are used as input data. To get a sufficient number of experiments per
sequence, the next subsequence starts with a frame distance of fd (fd = 2 used

Fig. 5. Visualization of the auxiliary graphs for Pulak et al. [16] (left) and the proposed
method (right). Edges between the bus (blue) and the background (red) are not estab-
lished by the proposed method since their motions differ. Even spatially long edges are
possible for small subgraphs. The image example is taken from the bus sequence [8].
(Color figure online)
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Table 1. Segmentation error [%] on benchmark Hopkins155 [19] for Pulak et
al. [16] and the proposed method. Bold numbers depict the lower error.

fs Mean Median

reference proposed reference proposed

3 7.96 7.03 0.84 0.67

4 5.76 5.32 0.0 0.0

5 4.94 4.71 0.0 0.0

6 4.64 4.36 0.0 0.0

7 3.79 3.61 0.0 0.0

8 4.03 3.58 0.0 0.0

9 3.76 3.75 0.0 0.0

10 3.87 3.83 0.0 0.0

for all experiments). As the results are based on random samples, 50 runs with
random initializations are employed. The segmentation error is defined as [19]:

segmentation error =
# of misclassified points

total # of points
(3)

Additionally to the segmentation error mean, we report the median val-
ues. The segmentation results for Hopkins155 and MTPV are subsumed in
Tables 1 and 2, respectively. Generally, the mean segmentation error decreases
with increasing fs. While the improvement of the proposed method is small for
Hopkins155, its performance is significantly better for the MPTV benchmark. The
decrease in the mean segmentation error is larger than 30% for fs ∈ {4, . . . , 10}.
For fs = 7 the largest gain of 41% is achieved.

Table 2. Segmentation error [%] on benchmark MTPV [8] for Pulak et al. [16]
and the proposed method. Bold numbers depict the lower error.

fs Mean Median

reference proposed reference proposed

3 26.96 21.06 32.27 22.60

4 21.30 14.20 22.83 0.51

5 19.91 12.69 17.87 0.29

6 18.27 12.60 9.74 0.30

7 19.01 11.09 12.30 0.23

8 18.66 12.09 10.75 0.25

9 17.46 11.18 1.21 0.24

10 16.83 11.16 1.87 0.24



Motion-Coherent Affinities for Hypergraph Based Motion Segmentation 129

Fig. 6. Mean segmentation error [%] on the MTPV benchmark for each individual
sequence with varying length of input trajectories fs. In blue (solid line) the refer-
ence method [16] is shown, while in red (dashed line) the proposed auxiliary graph is
employed. Note that the y axes have different scalings. (Color figure online)

Fig. 7. Median of segmentation error [%] on the MTPV benchmark for each indi-
vidual sequence with varying length of input trajectories fs. In blue (solid line) the
reference method [16] is shown, while in red (dashed line) the proposed auxiliary graph
is employed. Note that the y axes have different scalings. (Color figure online)

Obviously, the reference auxiliary graph leads to a much lower probability of
sampling pure hyperedges from the input data MTPV. Since only trajectories
with a large lengths are included in Hopkins155, the spatial proximity appears to
provide a suitable metric for the auxiliary graph. This is not the case for MTPV
since trajectories with short lengths are not excluded from this data set. Thus,
trajectories on differently moving objects may have a small spatial distance in
the images (cf. Fig. 5). This is often the case in applications using trajectory
data extracted from natural sequences since trajectories with small length are
required to capture moving objects. Thus, we can conclude that:

(1) our approach provides significantly improved results for the MTPV bench-
mark

(2) Hopkins155 may not be a suitable benchmark for the evaluation of motion
segmentation approaches if short trajectory lengths are of interest.

The MTPV results for different trajectory lengths fs are shown in Figs. 6
and 7 in detail. For 6 of the 8 sequences, the proposed method leads to a
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significant decrease in the segmentation error. For the other 2 sequences (boat
and raffles), the results are comparable. The sequence boat leads to small seg-
mentation errors for both approaches. The sequence raffles fails for both meth-
ods. The proposed approach can not recover the motion because too few trajec-
tories are located on the object and no dominant motion can be established.

The computation times are shown in Table 3. They are measured on a
3.20 GHz AMD Processor with Matlab2016. On the one hand, the computa-
tion time is heavily dependent on the number of trajectories. On the other, it is
dependent on the complexity of the hypergraphs built at each iteration. As the
hypergraphs resulting from the proposed auxiliary graph are less complex, the
computation times are much smaller compared to the reference.

Table 3. Mean Computation time in seconds for a segmentation process for Pulak
et al. [16] and the proposed method. Bold numbers depict better values. The influence
of fs, fs ∈ {3, . . . , 10}, on the computation time is negligible.

Benchmark Mean Median

reference proposed reference proposed

Hopkins 8.83 s 2.49 s 5.53 s 2.12 s

MPTV 7.98 s 4.30 s 4.26 s 2.75 s

5 Conclusions

Hypergraph based approaches for motion segmentation reduce the number of
required samples by exploiting higher order similarities for the hypothesis gen-
eration. The reference method proposed by Pulak et al. [16] uses an auxiliary
graph which guides the sampling process. The auxiliary graph is based on spatial
proximity of the trajectories.

The approach proposed in this paper uses a simple but effective scheme to
combine motion direction and length of the trajectories for the determination
of an improved auxiliary graph. Thus, less samples are required for accurate
segmentation results.

The evaluation of the approaches employs two benchmarks, the well-known
Hopkins155 and the MTPV benchmark. While for Hopkins155, the proposed
approach provides similar results regarding classification accuracy, it decreases
the segmentation error significantly for MTPV. Since only long trajectories are
included in Hopkins155, spatial proximity is an adequate measure to discrimi-
nate differently moving objects. It is shown that this measure is suboptimal for
the MTPV benchmark. The proposed auxiliary provides a significantly lower
segmentation error of up to 41%. Additionally, the computation time decreases
since the resulting hypergraphs have reduced complexity.
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Abstract. Aerial video images can be stitched together into a common
panoramic image. For that, the global motion between images can be
estimated by detecting Harris corner features which are linked to corre-
spondences by a feature tracker. Assuming a planar ground, a homogra-
phy can be estimated after an appropriate outlier removal. Since Harris
features tend to occur clustered at highly structured 3D objects, these
features are located in various different planes leading to an inaccurate
global motion estimation (gme). Moreover, if only a small number of fea-
tures is detected or features are located at moving objects, the accuracy
of the gme is also negatively affected, leading to severe stitching errors
in the panorama.

To overcome these issues, we propose: Firstly, the feature correspon-
dences are weighted to approximate a uniform distribution over the
image. Secondly, we enforce a fixed number of correspondences of high-
est possible quality. Thirdly, we propose a temporally variable tracking
distance approach to remove outliers located at slowly moving objects.

As a result we improve the gme accuracy by 10% for synthetic data
and highly reduce the structural dissimilarity (DSSIM) caused by stitch-
ing errors from 0.12 to 0.035.

1 Introduction

For the visualization of aerial videos, e. g. captured from Unmanned Aerial Vehi-
cles (UAVs) in a nadir view (orthorectified video), one common approach is to
stitch the video images together to a panoramic image by mosaicking. For the
generation of this panorama, each video image is registered into a common coor-
dinate system. Since GPS/IMS systems can not provide a satisfactory accuracy,
the global motion has to be estimated from the video images. One common app-
roach is the detection of features, e. g. Harris Corner features [4] in one video
image and its correspondence in the preceding image (feature correspondence)
by a KLT feature tracker [16]. Assuming a planar ground and thus a uniform
motion of detected feature points, RANSAC [2] can be used to remove feature
correspondences not matching the global motion (outliers). From the remaining
feature correspondences (inliers), a homography can be estimated. However, for a
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 135–147, 2017.
DOI: 10.1007/978-3-319-64689-3 11
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small number of detected features – e. g. due to unstructured, blurry or low qual-
ity content – and small local displacements of moving objects between images
(e. g. for pedestrians), RANSAC is not able to remove wrong correspondences
anymore. Thus, a reliable estimation of a projective transform representing the
global motion of the surface of the earth in the video is not possible. Moreover,
features are often detected on non-planar structures, e. g. houses or trees whose
motion does not match the motion of the ground plane of the scene. Further-
more, those features tend to be spatially clustered, which is known to negatively
influence the quality of the global motion estimation [3]. Figure 1 shows an exam-
ple of a wrong stitching based on the global motion estimation (gme) from [8]
and using a standard mosaicking approach like [7,10].

Fig. 1. Panoramic image from 3000 images of the self-recorded Soccer sequence and
magnifications in (b).

In this paper we propose different methods to increase the quality of the
global motion estimation, which are mainly based on the usage of weighted
features. To prevent an over-proportional weighting of feature clusters at highly
structured areas in the image (like 3D objects), we propose to approximate a
uniform distribution of the features in the entire image, considering the detected
feature positions (Subsect. 3.1). In order to provide enough features for a reliable
motion estimation, we propose to use a high, fixed number of features of highest
possible quality (Subsect. 3.2). To further improve the quality of the resulting
estimation, we rely on tracking over long temporal distances in order to remove
features positioned at (slowly) moving objects which are not detected as outliers
by a common RANSAC in case of small motion (Subsect. 3.3).

The remaining paper is organized as follows: Sect. 2 gives a short overview of
global motion estimation for aerial videos. In Sect. 3 we describe our proposed
robust long-term mosaicking approach. Our weighting algorithm for RANSAC
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which approximates a uniform distribution of the features in the image is intro-
duced in Subsect. 3.1. Furthermore, we introduce a straight forward approach
for detecting sufficient high quality features in the image in Subsect. 3.2. The
tracking over long temporal distances is explained in Subsect. 3.3. In Sect. 4 we
present experimental results for synthetic as well as real-world data, using the
structural dissimilarity DSSIM [12] as quality metric. Finally, Sect. 5 concludes
the paper.

2 Related Work: Global Motion Estimation
for Aerial Videos

A lot of research has been done for the reliable estimation of the global motion
in video sequences. Typical approaches are based on defining discriminative fea-
tures like SIFT/SURF [1], Harris corners [4], mser [6] etc. in one video image
[9,15,20,22], the generation of trajectories for these features (e. g. by feature relo-
cation [16], dense [14] or sparse optical flow [11]), and finally the estimation of the
global motion according to an assumed scene model, e. g. using RANSAC [2].

In this work we extend the global motion estimation framework from [9] which
is designed for the usage onboard of UAVs with limited energy and processing
power. We also rely on KLT tracking of Harris corners, which are highly efficient
to be computed compared to other features like SIFT or SURF. Whereas the
common approach consisting of feature detection, RANSAC and least-square-
minimization works well for a lot of applications, it fails for certain conditions as
outlined above based on the example from Fig. 1. Thus, we aim at the improve-
ment of the global motion estimation using RANSAC for videos captured from
UAVs with low translational movement and slowly moving objects in the scene,
e. g. in an aerial police surveillance scenario for soccer games.

3 Robust Long-Term Global Motion Estimation
for Aerial Videos

Assuming the surface of the earth to be planar – which is valid for flight altitudes
of several hundred meters – we can project one camera image Ik into the pre-
vious image Ik−1 using a homography Hk−1

k which is described by a projective
transform with 8 parameters �ak = (a1,k, a2,k, . . . , a8,k)�:

Hk−1
k =

⎛
⎝

a1,k a2,k a3,k

a4,k a5,k a6,k

a7,k a8,k 1

⎞
⎠ . (1)

We can calculate the transformed pixel coordinates (xk−1, yk−1) in image
k − 1 from the image coordinates (xk, yk) in image k:

xk−1=
a1,kxk + a2,kyk + a3,k

a7,kxk + a8,kyk + 1
, yk−1=

a4,kxk + a5,kyk + a6,k

a7,kxk + a8,kyk + 1
. (2)
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Fig. 2. Video image from the Soccer sequence with inliers and their trajectories (yel-
low lines) after KLT & RANSAC. The inliers are highly clustered at 3D structures
(trees/houses) on the left (white ellipse). Moreover, a correspondence located at a player
was errouneously considered as inlier (red circle). (Color figure online)

However, for a reliable homography estimation, the detected feature corre-
spondences have to be located in one plane which becomes even more important
for the projection of several video images into one common panoramic image.
This plane optimally should be the ground plane, i. e. the feature correspon-
dences have to be located on the surface of the earth. Whereas RANSAC is
often capable of removing correspondences not matching the global motion, it
may fail in removing correspondences not matching the global motion of the
ground plane, if from the set of all correspondences C the amount of correspon-
dences located on the ground J ∈ C (inliers) is small compared to the amount
of correspondences located on various different planes O ∈ C (outliers). As a
consequence, the estimated plane does not reflect the real ground plane which
leads to an estimated global motion not reflecting the true motion of the sur-
face of the earth. If O � J (Fig. 2, white ellipse), the ground plane estimation
becomes instable, resulting in stitching errors (Fig. 1).

3.1 Weighted Feature-Based Global Motion Estimation

Since only a few high quality features are typically located in unstructured areas
(e. g. on the lawn in our example) compared to the number of features located at
3D structures (e. g. trees or houses), the former features have to be considered
stronger within the least-square optimization in order to retain a homography
representing the real global motion. Based on this idea, we formulate the least-
squared minimization problem for the set of inliers J as:

min
∑
j∈J

(
(x̃j,k−1 − xj,k−1)2 + (ỹj,k−1 − yj,k−1)2

)
· (Wj,k)2, (3)
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where (x̃j,k−1, ỹj,k−1) are the estimated coordinates and Wj,k is a weighting
function in dependence of xj,k and yj,k. Based on Eqs. (3) and (2) we build a
linear equation system which can be solved with a least-squares approach.

The weighting function Wj,k is modeled with an instance reweighting app-
roach, such that a uniform distribution pe(x, y) of the feature correspondences
is approximated over the entire image.

The real feature distribution pfeat(x, y) in the image for the (discrete) feature
positions with the kernel function K is given as:

pfeat,k(x, y) =
1
J

J∑
i=1

K(x − xi,k, y − yi,k). (4)

We approximate K by a Gaussian probability density function (pdf) pg(x, y)
to model the neighborhood of each feature [18]:

pg(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
(5)

As suggested in [13], we define the variances σx and σy being the mean value
of the pairwise distances of all feature correspondences and κ being a scaling
factor:

σx = σy = κ · 2
J2

J∑
j=1

j−1∑
i=1

√
(xi − xj)2 + (yi − yj)2 (6)

The weighting function Wj,k finally is calculated by dividing pt by pfeat
[17,19], i. e. the weighting for each feature is the reciprocal of the real feature
distribution:

Wj,k =
pe

pfeat,k(xj,k, yj,k)
= J · 2πσxσy∑J

i=1 exp
[
− 1

2

(
(xj,k−xi,k)2

σ2
x

+ (yj,k−yi,k)2

σ2
y

)] (7)

3.2 Increase of the Number of Features with Highest Possible
Quality (“More Features”)

The approximation of a uniform distribution of the feature correspondences over
the entire image as described in the last subsection leads to highly improved
global motion results. However, if only a small number of features can be detected
e. g. due to bad input image quality or unstructured areas, an accurate solution
for the global motion can not be determined.

Therefore, we propose to include a predefined minimum number of Har-
ris features in the global motion estimation, always using the best available
detected features. First, we calculate the Jacobian matrix and its lowest eigen-
value for each image pixel and sort them in a list. As a second step, we select the
n-best features from the sorted list, with n being a predefined number of features.
These n features are fed into subsequent motion estimation steps (RANSAC and
homography estimation).
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3.3 Variable Tracking Distance

Whereas we focused on the improvement of feature correspondences based on
their spatial position in the image in Subsect. 3.1 and on the number of detected
features in Subsect. 3.2, feature correspondences located at slow moving objects
may not be recognized as wrong correspondences and thus not be removed as
outliers by RANSAC (Fig. 2, red circle). As a consequence, these correspondences
negatively influence the accuracy of the homography estimation. To overcome
this issue, we propose to increase the temporal distance d between the images
used for the homography estimation. Thereby, local motion tends to be larger
and RANSAC is more likely able to remove features located on moving objects
as outliers. Furthermore, to reduce drift as it may occur in image-to-image-based
approaches, we aim at tracking against one specific image (reference image) as
long as possible. Whereas in general it is beneficial to have a larger temporal
tracking distance d, it may be disadvantageous, if the temporal distance between
the images becomes too large. In such a case, KLT may not be able to reliably
find correspondences due to shape changes or rotations which impairs the fea-
ture correspondence accuracy. Thus, we propose to use a constraint variable
tracking distance d between the images. Summarizing, we aim at using one spe-
cific reference image for the estimation of homographies of several consecutive
video images, whereas we limit the temporal distance to a predefined maximum
value dmax and try to prefer large tracking distances. For each image k, we first
calculate the distance d:

d = (k mod
dcurrref

2
) + 1 +

dcurrref

2
, (8)

with dcurrref being an intermediate tracking distance (initialized to dmax for each
image). The first term of Eq. (8) selects the same reference image as long as
possible, whereas the last term enforces high tracking distances. Assuming a
linear global motion, we approximate an estimated homography H̃k−d

k = Hk−d
k−1 ·

Hk−2
k−1 from already known homographies and transform all features from the

current image using this H̃k−d
k . Then we check, if the following conditions are

fulfilled:

1. Are enough transformed features located within the area of image Ik−d?
2. Is the intersection area of images Ik and Ik−d large enough?

If at least one of these conditions is violated, we halve dcurrref and restart again
with the computation of d. If all conditions are fulfilled, we use a guided tracking
for the generation of accurate feature correspondences. For that, we apply the
extrapolated homography H̃k−d

k to all features in image Ik and use the result
as seed position for the KLT search, resulting in accurate correspondences. The
latter are used for the subsequent outlier removal and for the estimation of the
improved, final homography Hk−d

k .
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4 Experiments

We present results for synthetic data in the Subsect. 4.1 before we evaluate our
approach in detail for camera captured (real world) data in Subsect. 4.2.

4.1 Synthetic Data

In order to show that our method reliably improves the homography estimation,
we generated a synthetic scene. We defined an array containing 30 × 17 blocks,
each of size 64×64 pixels, which is approximately the size of one hdtv resolution
image. For each block we randomly defined if it is supposed to be a block con-
taining 3D structure (“house block”) or not, and limited the amount of house
blocks to 25%. In order to simulate a unequal feature distribution, we randomly
draw a predefined mean number of feature positions nh = [0 . . . 50] for the house
blocks (green) and for the non-house blocks (blue) nn = 4 (Fig. 3).

Fig. 3. Visualization of a synthetic image with “house blocks” (green), non-house
blocks (blue) and randomly drawn features (white dots) and their simulated move-
ment (white arrows). (Color figure online)

Furthermore, we manually generated homography parameters asynk
similar

to those which we observed in real multicopter videos (Table 1).

Table 1. Example synthetic homography parameters asynk
.

k ak,1 ak,2 ak,3 ak,4 ak,5 ak,6 ak,7 ak,8 ak,9

1 1 0 0.6 0.0001 1 −0.5 0 0 1

2 1 0 −0.8 0 1 −2.8 0 0 1

3 1 0 −0.1 0 0.9999 0.1 0 0 1

4 1 0 0.6 0 1 0.7 0 0.0001 1

...
...

30 1 0 −0.6 0 1 0 0 0 1

The feature points from the current image Ik were transformed according to
the synthetic homographies. We simulated motion parallax effects by moving all
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features on house blocks after the global motion compensation in the direction of
the image center by m pixels. Since m should correspond to the motion parallax
which can be observed in real scenes, we linearly increase m dependent on its
distance to the image center up to a maximum of m = 50 pixels (which is a
realistic motion parallax to be observed for high 3D structures and relatively
low flight altitudes). Afterwards we applied zero-mean Gaussian noise with a
variance of σ2 = 2 pel to all feature positions.

Finally we used the synthetic scene as input for the motion estimation system,
one time without and one time with our proposals, and compared the accuracy
of the estimated homographies. For the improvement measure we applied each
estimated homography to the corner pixels of the image and calculate the errors
compared to the projected point position using the real homography parameters
asyn. We varied the mean number of features nh located in each house block
between 10 . . . 50. The average error at the corner points was decreased from
10.1 to 9.0 pel which corresponds to 10.6% for nh = 10 and from 18.1 to 16.4
pel for nh = 50 (9.4%).

4.2 Camera Captured Videos

In this subsection we present results for real world data. Since the amount of test
sequences providing a nadir view of the camera and containing 3D structured
areas as well as plain areas is limited (although it may be the predominant view
for aerial surveillance missions from UAVs), we recorded a test sequence of a
soccer game (Soccer sequence) and present detailed results for this sequence. To
underline the versatility of our proposals, we also provide results for the 1500 m
sequence from the TNT Aerial Video Testset (tavt) [5,9]. We will show that we
can improve the homography estimation leading to subjectively highly improved
results in panoramic images, especially in terms of line consistency.

Fig. 4. Structural dissimilarity (DSSIM) [12] values (smaller is better) of reconstructed
video images from panoramic image for different numbers of features for the Soccer
sequence.

We generate a mosaic from the videos based on the estimated homogra-
phies. From this, we reconstruct video images again as described in [7,10]. For
the quality measure we reconstruct video images from the mosaic and compare
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them image-wise with the input sequence. Due to the image reconstruction from
the mosaic, no motion parallax is contained in the reconstructed video images.
Thus, we cannot rely on a psnr-based quality evaluation but use the struc-
tural dissimilarity (DSSIM) [12] instead. The structural dissimilarity is based on
the well-known structural similarity (SSIM) [21] and lies between 0 (identical
images) and ∞ (no similarity). It reflects the subjective impression in terms of
cross-correlation between both images (structure), luminance similarity as well
as contrast similarity.

Quality measures for the self-recorded Soccer sequence and the 1500m
sequence from the data set TAVT [5,9] are presented in Table 2 and in Fig. 5
for each proposed method alone and all combinations.

Table 2. Results of different methods for the Soccer sequence, 3000 images ((∗): manual
reference only for 100 images) and the 1500 m sequence from TAVT [5,9].

Sequence Soccer seq. DSSIM 1500 m seq. DSSIM

Method Mean Max Mean Max

Manual reference 0.036(∗) 0.060(∗) — —

Baseline (w/o proposed methods) 0.120 0.146 0.067 0.156

Weighting of correspondences 0.123 0.151 0.066 0.155

More features 0.094 0.129 0.065 0.133

Weighting & more features 0.094 0.128 0.064 0.133

Variable tracking 0.054 0.079 0.062 0.094

Weighting & variable tracking 0.045 0.071 0.063 0.099

Weighting & more feat. & var. track. 0.035 0.051 0.061 0.088

From the detailed results it is obvious, that our proposed weighting algorithm
can improve the quality of the global motion estimation, if enough features are in
the image (Weighting & more features in the tables: 0.120 to 0.094 for the Soccer
sequence, Fig. 5c, 0.067 to 0.064 for the 1500 m sequence). Simulations for the
hdtv resolution Soccer sequence lead to an optimal value of about n = 1050
features (Fig. 4), which is in the range of n = [900 . . . 1200] we found as optimal
number of features also for other sequences we tested. If the number of features
is too small, we only can observe small average gains (0.067 to 0.066 for the
1500 m sequence) or even small (average) losses (0.120 to 0.123 for the Soccer
sequence, Fig. 5a) if – like in the latter case – not enough features of high quality
are contained due to a low image quality. Thus, the combination of weighting
and more features is always beneficial for low as well as for high quality videos.
The usage of a variable tracking distance is recommendable in any case, since
it improves the line accuracy by enforcing tracking against one reference image
for several video images. Thus, drift is highly reduced and the objective and
subjective results are improved on average (0.120 to 0.054 for the Soccer seq.,
0.067 to 0.062 for the 1500 m sequence) as well as for the maximum DSSIM
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Fig. 5. Subjective comparison of different proposed methods and combinations for the
self-recorded Soccer sequence.

Fig. 6. Final panorama using all proposed improvements for global motion estimation
with uniform distribution and weight of κ = 0.575. (b) magnifications.

values (0.146 to 0.079 for the Soccer sequence, Fig. 5d, 0.156 to 0.094 for the
1500 m sequence). This holds also true for the combined approaches with the
variable tracking (Figs. 5e and f).

Combining our approaches, we observe that we highly improve the DSSIM

from 0.12 to 0.035 for the Soccer sequence. Our combined methods even
slightly outperform a manually generated reference, which matches the sub-
jective impression. For the 1500 m sequence we achieve an improvement from
0.067 to 0.061 in terms of mean DSSIM. Although the average gain for the latter
sequence is smaller than for the Soccer sequence, the maximal structural dissim-
ilarity was drastically reduced (Soccer seq.: 0.146 to 0.051; 1500 m seq.: 0.156 to
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Fig. 7. Subjective results for the 1500 m sequence from the TAVT data set [5,9].

0.088) which results in smaller maximal distortions leading to subjectively much
more pleasing results, especially in terms of line accuracy (Figs. 5f and 7b). In
Fig. 6 we present the final long-term panoramic image after the fully automatic
processing of 3000 images. A subjective impression for the 1500 m sequence is
shown in the magnifications from the panoramic image in Fig. 7.

5 Conclusions

In this paper, we aim at a robust global motion estimation for UAV captured
ortho-videos which contain distinct 3D structures (e. g. houses, trees) as well as
real ground.

We propose to tackle the problem of a unequal feature correspondence distri-
bution over the image by introducing a weighting function which approximates
a uniform distribution over the image. In order to provide enough features also
in scenarios with only a small number of high-quality features, we additionally
propose to use a high but fixed number of features based on the feature quality.
Finally, our third contribution is to track over long temporal distances with a
variable tracking distance. The benefits of this approach are twofold: firstly, we
use the same reference image for several images which reduces drift. Secondly,
the motion of small and slow moving objects can more likely be removed by an
outlier removal (RANSAC).

We show, using synthetic data, that our feature correspondence weighting
proposal improve the estimation accuracy by up to 10% for realistic assumptions.
For camera captured data, the resulting panoramic images which were generated
based on the estimated global motions were improved and provide much better
and virtually drift free reconstruction of linear structures (e. g. lines at a Soccer
play ground). The structural dissimilarity (DSSIM) for reconstructed images
from the panoramic image was highly reduced, e. g. from 0.120 to 0.035 on
average for the self-recorded Soccer sequence.
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Abstract. We introduce multilinear dimension-reduction and classifi-
cation methods for video image sequences. Tensor-to-tensor projection
methods for spatio-temporal data are derived as dimension-reduction
methods using the three-mode tensor representation. The tensor-to-
tensor projection methods transform a tensor to a product of smaller ten-
sors. Furthermore, we construct efficient and robust multiclass classifiers
for multilinear forms by using tensorial expressions of spatio-temporal
video sequences.

1 Introduction

We introduce multilinear pattern recognition methods for video image sequences.
Sequences of video images, such as gait sequences and images of temporal MRI,
are spatio-temporal sequences. These sequential data are expressed as three-
mode tensors in spatio-temporal spaces. Multilinear forms allow us to deal with
three-mode tensors without embedding a vector space, which is a traditional data
space for pattern recognition. The tensor-to-tensor projection (TTP) methods
for multilinear forms were derived as dimension-reduction methods. The TTP
methods transform a tensor to a product of smaller tensors. For the construction
of a TTP, tensor decompositions give the bases of tensor subspaces. Using these
tensor subspaces, we construct classifiers for tensorial data.

For the dimension reduction of tensors, tensor-based PCA methods have
been proposed [1–4]. As an extension of principal component analysis to higher-
order tensors, tensor principal component analysis (TPCA) has been proposed
[1]. By adding an uncorrelation constraint [2], a sparsity constraint [3] and a
nonnegativity constraint [5] to TPCA, TPCA has been further extended. How-
ever, closed-form formulations do not exist for the decompositions. Therefore,
decompositions are generally based on iterative procedures. For the construction
of classifiers, supervised tensor learning frameworks have been proposed [6–8].
As an extension of linear discriminant analysis, multilinear discriminant analysis
has been proposed [6]. Also, as an extension of linear support vector machines
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to tensors, a support tensor machine has been proposed [7,8]. These methods
are basically two-class classifiers.

By reorganising TPCA methods in the manner of ref. [9], we introduce mul-
tilinear projections for video image sequences. The linear projection for an n-
mode unfolded matrix is an n-mode product of a tensor. We obtain a multilinear
dimension-reduction method by applying a linear dimension-reduction method
for vector data to each unfolded tensor as an n-mode tensor projection. Since
an n-mode tensor projection is commutative, we have a unique representation
of a TTP as an extension of a linear dimension-reduction method for vector
data. In this paper, we introduce the three-dimensional discrete cosine trans-
form (3DDCT) as an approximation of three-mode TPCA. Furthermore, we
introduce multiclass linear classifiers, a tensor subspace method (TSM) [9] and
a mutual tensor subspace method (MTSM) [10] for video image sequences. In
numerical examples, by combining tensor-based dimension reduction and mul-
tilinear classifiers, we demonstrate the efficient and robust recognition of image
sequences. In these examples, we adopt image sequences of gait patterns in the
OU-ISIR dataset [11].

2 Tensor Expression and Processing

We briefly summarise the multilinear projection for multidimensional arrays from
ref. [12]. A tensor M ∈ R

m×n, which is a matrix, is expressed as ((xij)) for
1 ≤ i ≤ I1, 1 ≤ j ≤ I2. Therefore, as an extension of the matrix, a third-order
tensor is defined in R

I1×I2×I3 . A third-order tensor is expressed as X = ((xijk))
with three indices 1 ≤ i ≤ I1, 1 ≤ j ≤ I2, 1 ≤ k ≤ I3. i, j, k denote the
mode of the tensor X . For X , the n-mode vectors, n = 1, 2, 3, are defined as
the In-dimensional vectors obtained from unfolding of X by varying index in
while fixing all the other indices. For n = 1, 2, 3, the matricising of X along the
n-mode vectors of X is defined as

X(1) ∈ R
I1×I23 , X(2) ∈ R

I2×I13 , X(3) ∈ R
I3×I12 , (1)

where I23 = I2 × I3, I13 = I1 × I3, I12 = I1 × I2 and the column vectors of X(n)

are the n-mode vectors of X . For example, 1- and 2-mode vectors are column and
row vectors of X , respectively. Therefore, the column vectors of X(1) and X(2)

are the column and row vectors of X , respectively. Figure 1 shows an example of
n-mode matricising for a third-order tensor. The 1-, 2- and 3-mode products of
matrices U (1) ∈ R

P1×I1 , U (2) ∈ R
P2×I2 and U (3) ∈ R

P3×I3 and a tensor X are
given by

X ×1 U (1) = X̂ (1), X̂ (1)
(1) = U (1)X(1), (2)

X ×2 U (2) = X̂ (2), X̂ (2)
(2) = U (2)X(2), (3)

X ×3 U (3) = X̂ (3), X̂ (3)
(3) = U (3)X(3), (4)

where X̂ (1)
(1) , X̂ (2)

(2) and X̂ (3)
(3) are matricised tensors of X̂ (1), X̂ (2) and X̂ (3), respec-

tively. Therefore, n-mode products of X are achieved by matricising tensor,
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computing the product of the matricised tensor with a matrix and tensorising
the results of the product. For two matrices U and V , n-mode and m-mode
tensor products are commutative [13], that is,

X ×n U ×m V = X ×m V ×n U . (5)

We define the inner product of two tensors X1,X2 ∈ R
I1×I2×I3 by

〈X1,X2〉 =
I1∑

i1

I2∑

i2

I3∑

i3

X1(i1, i2, i3) · X2(i1, i2, i3). (6)

Using this inner product, the Frobenius norm of a tensor X is

‖X‖F =
√

〈X ,X〉 = ‖vec X‖2, (7)

where vec and ‖·‖2 are the vectorisation operator and Euclidean norm of a tensor,
respectively. For the two tensors X1 and X2, we define the distance between
them as

d(X1,X2) = ‖X1 − X2‖F. (8)

Although this definition is a tensor-based measure, this distance is equivalent to
the Euclidean distance between the vectorised tensors X1 and X2.

As the tensor X is in the tensor space R
I1 ⊗ R

I2 ⊗ R
I3 , the tensor space

can be interpreted as the Kronecker product of three vector spaces RI1 ,RI2 ,RI3 .
To project X ∈ R

I1 ⊗ R
I2 ⊗ R

I3 to another tensor Y in a lower-dimensional
tensor space R

P1 ⊗ R
P2 ⊗ R

P3 , where Pn ≤ In for n = 1, 2, 3, we need three
matrices {U (n) ∈ R

In×Pn}3n=1. For a tensor, a multilinear projection maps the
input tensor data from one space to another space. Using the three matrices, the
TTP is given by

Y = X ×1 U (1) ×2 U (2) ×3 U (3). (9)

This projection is established in three steps, where at the nth step, each n-mode
vector is projected to a Pn-dimensional space by U (n). Figure 1(b) shows an
example of a 1-mode linear projection for a third-order tensor. Figure 1(c) shows
the procedure used to project third-order tensors.

3 Decompositions and Dimension Reductions

A third-order tensor X ∈ R
I1×I2×I3 , which is the array X ∈ R

I1×I2×I3 , is
denoted as a triplet of indices (i1, i2, i3). We set the identity matrices Ij , j =
1, 2, 3 in R

Ij×Ij . Here we summarise higher-order singular value decomposition
(HOSVD) [14] for third-order tensors. For a collection of tensors {Xi}N

i=1 ∈
R

I1×I2×I3 satisfying the zero expectation condition E(Xi) = 0, we compute

X̂i = Xi ×1 U (1)� ×2 U (2)� ×3 U (3)�, (10)

where U (j) = [u(j)
1 , . . . ,u

(j)
Ij

] that minimises the criterion

J− = E
(
‖Xi − X̂i ×1 U (1) ×2 U (2) ×3 U (3)‖2F

)
(11)
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Fig. 1. (a) Matricising of a third-order tensor showing 1-, 2- and 3-mode unfoldings of
the third-order tensor X ∈ R

4×5×3. (b) 1-mode projection that projects X ∈ R
4×5×3

to a lower-dimensional tensor Y ∈ R
3×5×3. (c) Multilinear map that consists of three

linear projections.

with respect to the condition U (j)�U (j) = Ij .
Eigendecomposition problems are derived by computing the extremes of

Ej = Jj + tr((Ij − U (j)�U (j))Σ(j)), j = 1, 2, 3, (12)

where we set
Jj = E

(
‖U (j)�Xi,(j)X �

i,(j)U
(j)‖2F

)
. (13)

For matrices M (j) = 1
N

∑N
i=1 Xi,(j)X �

i,(j), j = 1, 2, 3, the optimisation of Jj

derives the eigenvalue decomposition

M (j)U (j) = U (j)Σ(j), (14)

where Σ(j) ∈ R
Ij×Ij , j = 1, 2, 3, are diagonal matrices satisfying the relation-

ships λ
(j)
k = λ

(j′)
k , k ∈ {1, 2, . . . ,K} for

Σ(j) = diag(λ(j)
1 , λ

(j)
2 · · · , λ

(j)
K , 0 · · · , 0). (15)

For the optimisation of {Jj}3j=1, there is no closed-form solution to this maximi-
sation problem [14]. Algorithm 1 is the iterative procedure of multilinear prin-
cipal component analysis (MPCA) [1]. For Algorithm 1, we have the following
property.

Property 1. [9] MPCA without iteration is equivalent to HOSVD if the dimen-
sions of a projected tensor are coincident with those of each mode of the original
tensor.
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For pk ∈ {ek}K
k=1, we set orthogonal projection matrices P (j) =

∑kj

k=1 pkp�
k

for j = 1, 2, 3. Using these {P (j)}3j=1, the low-rank tensor approximation [14] is
given by

Y = X ×1 (P (1)U (1))� ×2 (P (2)U (2))� ×3 (P (3)U (3))�, (16)

where P (j) selects kj bases of projection matrices U (j). The low-rank approxi-
mation using Eq. (16) is used for compression in TPCA.

Algorithm 1. Iterative method for third-order tensors
Input: A set of tensors {Xi}N

i=1. The dimension of projected tensors {kj}3j=1.
A maximum number of iterations K. A small number η.

Output: A set of projection matrices {U (j)}3j=1.
1: Compute the eigendecomposition of a covariant matrix.

M (j) = 1
N

∑N
i=1 Xi,(j)X �

i,(j), where Xi,(j) is a j-mode unfolded Xi, for j = 1, 2, 3.
2: Construct projection matrices by selecting eigenvectors corresponding to

the kj largest eigenvalues for j = 1, 2, 3.
3: Compute Ψ0 =

∑N
i=1 ‖Xi ×1 U (1)� ×2 U (2)� ×3 U (3)�‖F

4: Iteratively compute the following procedure.
for k = 1, 2, . . . ,K.

for j = 1, 2, 3.
Update U (j) by decomposing the matrix.∑N

i=1(X ×ξα
U (ξα)� ×ξβ

U (ξβ)�)(X ×ξα
U (ξα)� ×ξβ

U (ξβ)�)�,
where ξα, ξβ ∈ {1, 2, 3} \ {j}, ξα �= ξβ

end
Compute Ψk =

∑N
i=1 ‖Xi ×1 U (1)� ×2 U (2)� ×3 U (3)�‖F

if |Ψk − Ψk−1| < η.
break

end

For HOSVD for third-order tensors, we have the following theorem.

Theorem 1. The compression computed by HOSVD is equivalent to the com-
pression computed by TPCA.

(Proof) The projection that selects K = k1k2k3 bases of the tensor space spanned
by u

(1)
i1

◦ u
(2)
i2

◦ u
(3)
i3

, ij = 1, 2, . . . , kj for j = 1, 2, 3, is

(P (3)U (3) ⊗ P (2)U (2) ⊗ P (1)U (1))

= (P (3) ⊗ P (2) ⊗ P (1))(U (3) ⊗ U (2) ⊗ U (1)) = PW ,
(17)

where W and P are the projection matrix and a unitary matrix, respectively.
Therefore, HOSVD is equivalent to TPCA for third-order tensors. �

Furthermore, we have the following theorem.

Theorem 2. The HOSVD method is equivalent to the vector PCA method.
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(Proof). The equation

Y = X ×1 (P (1)U (1))� ×2 (P (2)U (2))� ×3 (P (3)U (3))� (18)

is equivalent to

vecY = (P (3)U (3) ⊗ P (2)U (2) ⊗ P (1)U (1))�vecX = (PW )�vecX . (19)

(Q.E.D.)
This theorem implies that the 3DDCT is an acceptable approximation of
HOSVD for third-order tensors [9] since this is an analogy of the approxima-
tion of PCA for two-dimensional images by the two-dimensional discrete cosine
transform [15].

In our application, an n × n × n digital array is directly compressed by the
3DDCT-II [16,17] with order O(n3). If we apply the fast Fourier transform to
the computation of the 3DDCT-II, the computational complexity is O(n log n).

4 Classifiers

4.1 Tensor Subspace Method

We introduce the linear TSM for third-order tensors [9]. Setting U (j), j = 1, 2, 3,
to be orthogonal projections, for a collection of matrices {Xi}M

i=1, such that
Xi ∈ R

I1×I2×I3 and E(Xi) = 0, the solutions of

{U (j)}3j=1 = arg max E
(‖X ×1 U (1)� ×2 U (2)� ×3 U (3)�‖F

‖Xi‖F

)
(20)

with respect to U (j)�U (j) = I for j = 1, 2, 3 define a trilinear subspace that
approximates {Xi}M

i=1. Therefore, using projection matrices {U
(j)
k }3j=1 obtained

as the solutions of Eq. (20) for the kth category, if a query tensor G satisfies the
condition

arg

(
max

l

‖G ×1 U
(1)�
l ×2 U

(2)�
l ×3 U

(3)�
l ‖F

‖G‖F

)
= {U

(j)
k }3j=1, (21)

we conclude that G ∈ Ck, k, l = 1, 2, . . . , NC , where Ck and NC are the tensor
subspace of kth category and the number of categories, respectively. For the
practical computation of projection matrices {U

(j)
k }3j=1, we adopt the iterative

method of MPCA described in Algorithm 1.

4.2 Mutual Tensor Subspace Method

We define a classifier for two tensor subspaces. For each of NC categories
of volume data, we set a collection of third-order tensors {Xi}M

i=1, such that
Xi ∈ R

I1×I2×I3 and E(Xi) = 0. For the kth category, we have an orthogonal pro-
jection by {Uk,j}3,Nc

j=1,k=1, which satisfies Eq. (20). For the practical computation
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of bases of tensor subspaces, we use MPCA. We have a collection of query ten-
sors {Gi′}M ′

i′=1. Using projection matrices {U
(j)
k }3,Nc

j=1,k=1, we have the projected
tensor

Ai′ = Gi′ ×1 U
(1)�
k ×2 U

(2)�
k ×3 U

(3)�
k . (22)

Furthermore, assuming that queries belong to one of the NC categories, we have
orthogonal projection matrices {Vj}3j=1, which are given by Eq. (20), for a tensor
subspace of queries. This orthogonal projection gives the projected tensor

Bi′ = Gi′ ×1 V (1)� ×2 V (2)� ×3 V (3)�. (23)

For a tensor subspace Ck of a category and a tensor subspace Cq of queries, we
define the dissimilarity of subspaces d(Ck, Cq) by

E
(
‖Ai′ ×1 PU

(1)
k ×2 PU

(2)
k ×3 PU

(3)
k − Bi′ ×1 PV (1) ×2 PV (2) ×3 PV (3)‖2F

)
, (24)

where a unitary matrix P selects bases for each mode of tensors. Therefore,
using the dissimilarity given by Eq. (24), if queries {Gi′}M ′

l=1 satisfy the condition

arg
(

min
l

d(Cl, Cq)
)

= Ck, (25)

we conclude that {Gi′}M ′
i′=1 ∈ Ck(δ) for k, l = 1, 2, . . . , NC.

5 Numerical Examples

To evaluate the numerical relationship between HOSVD and the 3DDCT, we com-
pute recognition rates using OU-ISIR treadmill dataset A [11]. Figure 2 shows
examples of sequences of silhouette images from two categories in the OU-ISIR
dataset. Table 1 summarises the sizes of the tensors of the OU-ISIR dataset. For the
compression of the silhouette-image sequences, we use HOSVD and the 3DDCT.
For the practical computation of HOSVD, we use the iterative method described in
Algorithm 1 [1]. If we set the number of iterations to 0 in Algorithm 1, we have the
three-dimensional version of HOSVD. If we set the number of bases to the size of
the original tensors in Algorithm 1, we call the method the full projection (FP). If
we set the number of bases to less than the size of the original tensors in Algorithm
1, we call the method the full-projection truncation (FPT).

Table 1. Sizes and number of frames of the resampled OU-ISIR dataset. �class and
�data/class represent the number of classes and the number of data in each class,
respectively.

�class �data/class Tensor size Reduced tensor size

OU-ISIR 34 9 128 × 88 × 90 32 × 32 × 32
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(a) Person #001” (b) Person #128” 

Fig. 2. Examples of sequences of silhouette images, which are binary images whose
pixel values are 0 or 255. The figures illustrate the 1st, 11th, 21st, ..., 81st silhouette
images of sequences of two people walking at different speeds. Each sequence consists of
90 silhouette images of four steps. The resolution of these silhouette images is 128×88
pixels. For each sequence, we manually selected the first and last frames of the sequence.

Fig. 3. Comparison of CCRs for three types of compressed tensor. For the compression
of tensors, we use Algorithm 1 and the 3DDCT. In Algorithm 1, we respectively adopt
sizes of 128×88×90 and 32×32×32 for the computation by the FP and FPT. For the
three types of compressed tensor of 32×32×32, we apply 10 iterations of Algorithm 1.
In (a)-(c), the horizontal and vertical axes represent the compression ratio and CCR,
respectively.

First, we compute the cumulative contribution ratios (CCRs) of the eigen-
values obtained by 10 iterations of Algorithm 1 for compressed tensors. For the
compression of the tensors from 128 × 88 × 90 to 32 × 32 × 32, we adopt the
FP, the FPT and the 3DDCT. Figure 3 shows the CCRs of each mode for the
three types of compressed tensor. Figure 4 summarises the computational time
required for dimension reduction. The tensors compressed by the 3DDCT give
larger eigenvalues than those compressed by the FP and FPT with a smaller
number of bases. The FP and FPT give the same CCRs for each mode. The
computational time of the 3DDCT is smaller than those of the FP and FPT.

Then, we compute the recognition rates of sequences of silhouette images
using the TSM and MTSM. In this validation, we use the original sizes of the
tensors and compressed tensors for comparison. For the compression, we adopt
the HOSVD, the FP, the FPT and the 3DDCT. Using these four methods, we
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Fig. 4. Computational time for dimension reduction for third-order tensors. (a) Com-
putational time for construction of projection matrices for 306 sequences of silhouette
images. (b) Mean computational times for projecting images to low-dimensional tensor
space. In (a) and (b), the vertical and horizontal axes represent the computational time
and compression ratio, respectively.

Fig. 5. Recognition rates of gait patterns for original and compressed tensors. We adopt
the reduced sizes of 32 × 32 × 32, 16 × 16 × 16 and 8 × 8 × 8. (a)–(c) Recognition rate
obtained by the TSM for the three reduced sizes. For compression, we use HOSVD, the
FP, the FPT and the 3DDCT. In (a)–(c), the horizontal and vertical axes represent
the compression ratio and CCR, respectively. For the original size D = 128 × 88 × 90
and the reduced size K = k × k′ × k′′, the compression ratio is given as D/K.

compress the tensors to the sizes 32 × 32 × 32, 16 × 16 × 16 and 8 × 8 × 8. The
OU-ISIR dataset contains sequences of images of 34 people with nine different
walking speeds. We use the sequences with walking speeds of 2, 4, 6, 8 and
10 km/h for learning data and the sequences with walking speeds of 3, 5, 7
and 9 km/h for test data. The recognition rate is defined as the successful label
estimation ratio for 1000 label estimations. In each estimation of a label for a
query, categories and queries are randomly chosen from the test dataset. For the
1-, 2- and 3-modes, we evaluate the results for multilinear subspaces with sizes
from one to the dimension of the compressed tensors.

Figures 5 and 6 show the recognition rates obtained by the TSM and MTSM,
respectively, for the four compression methods with three different sizes of the
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Fig. 6. Recognition rates of gait patterns for compressed tensors obtained by the
MTSM. We adopt the reduced sizes of 32 × 32 × 32, 16 × 16 × 16 and 8 × 8 × 8. For
compression, we use HOSVD, the FP, the FPT and the 3DDCT. (a)–(i) Recognition
rates for the three reduced sizes. (a)–(c), (d)–(f) and (g)–(i) show the recognition rates
for the case of using one query, two queries and three queries, respectively. In (a)–(i),
the horizontal and vertical axes represent the compression ratio and CCR, respectively.
For the original size D = 128 × 88 × 90 and the reduced size K = k × k′ × k′′, the
compression ratio is given as D/K.

compressed tensors. For the images of size 32×32×32, the recognition rates for
all four types of compressed tensor obtained by the TSM and MTSM are almost
coincident when the compression ratio is higher than 103. When the compression
ratio is less than 103, for the TSM and MTSM, the recognition ratio of the FPT
is higher than those of HOSVD, the FP and the 3DDCT. The recognition ratio of
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the 3DDCT is lower than those of the other methods since the silhouette images
are binary images. For the images of sizes 16 × 16 × 16 and 8 × 8 × 8, when we
use the TSM, although the recognition rates for the four types of compressed
tensor are almost the same, the recognition rates are smaller than those for the
original tensors. This recognition property depends on the size of the images,
and the images used for the comparison are too small to evaluate our methods
of recognition. However, when we use the MTSM with more than one query,
even for the size of 16 × 16 × 16, we can obtain the same recognition rates as
those for the size of 32 × 32 × 32. In all cases, HOSVD and the FP give the
same recognition rates. These results imply that the decomposition for the FP
is independent of the number of iterations.

From all the numerical examples, we conclude that even for sequences of
binary silhouette images, the 3DDCT gives an acceptable approximation of
HOSVD, the FP and the FPT in the context of tensor-based pattern recog-
nition. Furthermore, in these methods, changes in the energies of the projected
tensors and the CCRs of the eigenvalues in the decomposition of tensors are
not important in the context of pattern recognition. Moreover, using a tensor
subspace of two or more queries, we can achieve more accurate recognition of
gait patterns than that based on only one query.

6 Conclusions

For the dimension reduction of spatio-temporal data, we introduced tensor-
based dimension-reduction methods based on the equivalence between three-
mode TPCA and HOSVD for volumetric data. Furthermore, we introduced the
3DDCT as an approximation of HOSVD for spatio-temporal data. Moreover, for
the recognition of tensor data, we introduced two multiclass classifiers based on
tensor subspaces.

For the performance evaluation of the 3DDCT in tensor-based methods, we
evaluated the performance of the 3DDCT and HOSVD. Our numerical exam-
ples illustrated that the 3DDCT can be an acceptable approximation method
for HOSVD in the recognition of volumetric data if we adopt the Euclidean
distance as the metric of the pattern space. Furthermore, observations of the
properties of the iterative algorithm showed that the accuracy of the recognition
of volume data is independent of the number of iterations in MPCA. Moreover,
the numerical examples showed that our proposed classifiers can achieve the
accurate recognition of multiclass volume data.

This research was supported by “Object oriented data-analysis for under-
standing and recognition of higher-dimensional multimodal data” by grant for
Scientific Research from JSPS, Japan.
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Abstract. An important application in surveillance is to apply com-
puterized methods to automatically detect anomalous activities and then
notify the security officers. Many methods have been proposed for anom-
aly detection with varying degree of accuracy. They can be characterized
according to the approach adopted, which is supervised or unsupervised,
and the features used. Unfortunately, existing literature has not eluci-
dated the essential ingredients that make the methods work as they do,
despite the fact that tests have been conducted to compare the perfor-
mance of various methods. This paper attempts to fill this knowledge
gap by studying the videos tested by existing methods and identifying
key components required by an effective unsupervised anomaly detection
algorithm. Our comprehensive test results show that an unsupervised
algorithm that captures the key components can be relatively simple
and yet perform equally well or better compared to existing methods.

1 Introduction

In recent decades, surveillance cameras have been widely used in public places
to monitor human activities and provide security measures. A security officer
typically has to monitor a dozen or more surveillance videos at the same time.
Most of the time, there is no significant anomalous activity, which tends to lower
the guard of the officer. After monitoring for long hours, he can get tired and
miss important events that happen suddenly. Therefore, automatic detection
of anomalous activities by computerized methods has attracted much research
effort. These methods can also be used for criminal investigation to sieve through
video archives to detect anomalous activities that have happened in the past.

Many methods have been proposed for anomaly detection with varying degree
of accuracy.They can be characterized according to the approach adopted,which is
supervised [1–16] or unsupervised [17–21], and the features used, which range from
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 160–171, 2017.
DOI: 10.1007/978-3-319-64689-3 13



On the Essence of Unsupervised Detection of Anomalous Motion 161

Fig. 1. Sample frames from test videos. (a) UCSDped1, (b) UCSDped2, (c) Subway
entrance, (d) Subway exit, (e) UMN, (f) PETS2009 scene 1, (g) PETS2009 scene 2.

low-level optical flow to high-level multiple object trajectories. Unfortunately,
existing literature has not elucidated the essential ingredients that make the meth-
ods work as they do, despite the fact that tests have been conducted to compare the
performance of various methods. For example, test results (Sect. 4) seem to sug-
gest that there is no significant advantage in offline training performed by super-
vised methods compared to well-crafted unsupervised methods. It is also uncertain
whether the time taken to process high-level features necessarily leads to better
detection accuracy. This situation makes it difficult to optimize the methods for
real-time online detection and efficient video archive analysis.

This paper attempts to fill this knowledge gap by studying the videos tested
by existing methods and identifying key components required by an effective
unsupervised anomaly detection algorithm. We have chosen to investigate unsu-
pervised method instead of supervised method for the following reasons: (1)
Unsupervised method does not require tedious and time-consuming manual
labeling of training data. (2) It does not require an offline training phase. There-
fore, it can be more easily extended to handle new normal and abnormal motion
patterns that have not happened in the past. (3) Without the need of offline
training, it can be more easily adapted to real-time online applications by imple-
menting incremental algorithms. We focus on surveillance videos of pedestrians
captured by stationary cameras because they are widely tested in the literature.
Our comprehensive test results on these videos show that an unsupervised algo-
rithm that captures the key components can be relatively simple and yet perform
equally well or better compared to existing methods.

2 Existing Methods

Regardless of the approach, all existing methods begin by extracting features
from the input videos and then making detection decisions based on the features.
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The extracted features include optical flow [1,7,8,17,18], histogram of optical
flow (HOF) [2,4,14–16,19,20], histogram of oriented gradient (HOG) [4,14], 3D
SIFT [4,21], histogram of edge orientation [16], descriptors of intensity, gradi-
ent, object persistence, motion direction, optical flow orientation, speed, etc.
[6,9,12], structural descriptors based on HOF [19], particle advection based on
optical flow [3,13], tracked interest points or targets [3,7,19,20], dynamic texture
[5,11], and pedestrian regions [19]. In addition, auto-encoder neural network has
also been used to extract features from video images [1,10,14]. These features
may be extracted for image pixels [3,7,13,17], 2D spatial regions [1,2,5,6,8,10–
12,15,16,18–20] or 3D spatio-temporal regions [4,6,9,14,15,21] of the video.
Simple features, such as optical flow and intensity gradient, take much less time
to extract compared to features extracted by complex algorithms, such as pedes-
trian detection and multiple target tracking [19,20]. Auto-encoders can extract
features efficiently but it takes a large amount of time to train them.

Existing methods for detecting anomalous motion in surveillance videos can
be grouped into two categories: supervised and unsupervised. Supervised meth-
ods [1–16] typically work in two phases: training and testing. In the training
phase, these methods use labeled training data to train a classifier or a proba-
bilistic model. Various algorithms have been used for training, including SVM
[1,7], conjugate Bayesian analysis [2], EM [3,5,11–13], Gaussian process regres-
sion [4], Bayesian network propagation [6], recurrent neural network [10], and
sparse reconstruction [15]. Methods that use k-nn [9,16] do not need the train-
ing phase. Methods that model simple probability distributions such as Gaussian
distributions [8,14] have a simple training phase that estimates the distribution
parameters. In the testing phase, trained classifier or probabilistic model is used
to classify features as normal or abnormal. Well-trained supervised methods can
be accurate. Moreover, their testing phases are typically efficient enough for real-
time applications, provided the features can be extracted efficiently. However,
manual labeling of training data is tedious and time-consuming. Therefore, it is
difficult to extend supervised methods to include new scenario.

Unsupervised methods [17–21] typically group extracted features into clusters
without relying on labeled data. The clustering algorithms that have been used
include hierarchical cluster merging [18], k-means [20], online weighted clustering
[20], and fuzzy probabilistic clustering [21]. After clustering, these methods label
dominant clusters (i.e., clusters with the most members) as normal and the other
clusters as abnormal. The threshold for deciding which clusters are dominant is
empirically set. The methods of [17,19], on the other hand, do not perform clus-
tering. Instead, the method of [17] performs line intersection to detect the center
of crowd dispersion, and the method of [19] measures dissimilarity between fea-
tures to detect anomalies. Unsupervised methods do not require manually labeled
training data and do not perform offline training. Therefore, they can be easily
extended to handle new normal and abnormal motion. Moreover, unsupervised
methods that use incremental algorithms are very suitable for real-time online
applications.
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The above methods have been tested on one or more of the following surveil-
lance videos on pedestrians (Fig. 1):

• UCSDped1 [22]: 36 videos, tested in [1,4–6,8–13,15,16,19–21].
• UCSDped2 [22]: 12 videos, tested in [5,8,11–16,19–21].
• Subway [8]: 2 videos in 2 scenes, tested in [4–6,8,9,12,15,21].
• UMN [23]: 3 videos in 3 scenes, tested in [2,3,5,7,9,13–15,17–19].
• PETS2009 [24]: 8 videos in 2 scenes, tested in [2,3,13,18].

For UCSDped1, UCSDped2, UMN, and PETS2009, the walking pedestrians con-
stitute the dominant motion and they are regarded as normal. Abnormal motion
is elicited by carts, cyclists, skaters, escaping humans, etc., which move at faster
speeds. That is, normal and abnormal motion in these videos differ primarily
in motion speed. On the other hand, for Subway, the passengers entering and
existing the subway gates in an orderly manner constitute the dominant motion
and are regarded as normal. Passengers who move along directions other than
entering or exiting the gates are regarded as abnormal. That is, normal and
abnormal motion in these videos differ primarily in motion direction.

3 Unsupervised Anomaly Detection

Our research goal is to identify the essential ingredients for effective unsupervised
detection of anomalies in pedestrian surveillance videos. To achieve this goal, we
apply the principle of Occam’s razor: given several equally effective alternatives,
we choose the simplest alternative. Therefore, we call our method OCCAM.
Similar to unsupervised methods based on clustering, OCCAM consists of three
stages: (1) feature extraction, (2) features clustering, and (3) cluster labeling.

3.1 Feature Extraction

Analysis of common test videos used in existing work (Sect. 2) shows that normal
and abnormal motion may be differentiated by either motion speed or motion
direction alone, depending on the test videos. Therefore, OCCAM uses motion
speed or motion direction as the feature. It applies the method of [25] to extract
trajectories of distinctive image feature points. This method samples feature
points at multiple spatial scales and tracks feature points using median filtering
to obtain optical flow. Stationary feature points and those with large displace-
ments between two consecutive frames are removed to reduce tracking error.
Tracked feature trajectories have a fixed length l, and long trajectories are split
into short trajectories of length l. Trajectories with length shorter than l are
removed because they are insignificant.

Let {xi(t), . . . ,xi(t+l)} denote the trajectory of feature point pi, i = 1, . . . , n,
from frame t to t + l, where xi(t) is the position of pi in frame t. Then, the
direction θi and speed si of feature point pi are computed as the direction and
magnitude divided by trajectory length of the vector xi(t + l) − xi(t).
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In UCSDped1 videos, humans and other objects move toward or away from
the camera resulting in noticeable perspective distortion. As a result, objects
nearer to the camera appears to move faster than those further from the cam-
era even though they may move at the same actual speed. To overcome this
distortion, the feature points are projected onto the ground plane using an esti-
mated homography. Then, the speeds of the feature points are computed after
projection.

3.2 Feature Clustering

Feature clustering is performed on either motion speed or motion direction. Let
us denote the extracted feature values as fi, i = 1, . . . , n. Since the features are
1-D, the simplest way to cluster fi is to divide the feature value range (minimum
to maximum) into m equal intervals, and regard each interval as a cluster Cj ,
j = 1, . . . ,m. Then, features fi can be clustered efficiently into their respective
clusters in a fixed O(n) time. Each cluster Cj is characterized by the cluster size
|Cj | and the cluster center, which is the average feature value f̄j of the features
in Cj . This simple and efficient clustering method ensures that the intra-cluster
differences are much smaller than the inter-cluster differences.

After clustering, normalized cluster size Sj and normalized cluster center Fj

are computed for each cluster Cj . Let us denote the dominant cluster, the cluster
with the largest size, as C+ and the largest feature value as f∗. Then, Sj and
Fj are computed as follows:

Sj = |Cj |/|C+|, Fj = f̄j/f∗. (1)

Therefore, these normalized values range between 0 and 1. Each cluster Cj is now
characterized by a characteristic vector of two components, namely normalized
cluster size Sj and normalized cluster center Fj .

3.3 Cluster Labeling

Unlike existing methods, OCCAM labels the clusters into three types: normal,
abnormal, and ambiguous. The ambiguous clusters allow the normal and abnor-
mal clusters to be separated as widely as possible. Since the characteristic vectors
of the clusters are 2-D, 2-D k-means clustering is used to group the clusters Cj

into three groups Gh, h = 1, 2, 3.
First, k-means clustering is initialized as follows: The center of group G1

is initialized as the characteristic vector of the dominant cluster C+. Similarly,
the abnormal group G2 is initialized with the cluster C− whose cluster center
is the furthest from that of C+ because C− is most likely to be abnormal.
The ambiguous group G3 is initialized with the cluster that is approximately
equidistant to C+ and C−.

Next, k-means clustering is executed to group the remaining clusters Cj into
the three groups Gh. The distance between a cluster and a group is measured in



On the Essence of Unsupervised Detection of Anomalous Motion 165

terms of the Euclidean distance between their characteristic vectors. After clus-
tering, all the clusters in group G1 are labeled as normal, those in G2 abnormal,
and those in G3 ambiguous. In addition, the abnormal cluster that is nearest to
G1 is re-labeled as ambiguous so as to widen the separation between normal and
abnormal clusters.

After cluster labeling, the features fi in abnormal clusters are labeled as
abnormal features. The corresponding trajectory positions xi(t) of fi are labeled
as abnormal feature points. Finally, the video frames that contain abnormal
feature points are labeled as abnormal frames.

4 Experiments and Discussions

4.1 Data Preparation and Procedure

Five sets of common test videos discussed in Sect. 2 were used in the experiments,
namely UCSDped1, UCSDped2, Subway, UMN, and PETS2009. For OCCAM,
motion directions were extracted from Subway video whereas motion speeds were
extracted from the other videos. Next, feature clustering and cluster labeling
were performed to detect abnormal feature points and abnormal frames. Then,
true positive rate (TPR), false positive rate (FPR), and accuracy of detected
abnormal frames were computed.

To determine a suitable value for the number of clusters m in the feature
clustering stage, a test was performed on one video each from UCSDped1, UCS-
Dped2, PETS2009 scene 1 and PETS2009 scene 2 test sets with varying values
of m. The test shows that OCCAM achieves the overall highest accuracy with
m = 10. Therefore, m is set to 10 for all the tests.

4.2 Benefit of Ambiguous Clusters

This test illustrates the benefit of having ambiguous clusters. A variant of
OCCAM, denoted as OCCAM−, was tested such that its cluster labeling stage
ran k-means clustering with k = 2 for normal and abnormal groups, without
ambiguous group. Existing methods also label their clusters as either normal
or abnormal, without ambiguous clusters. Both OCCAM and OCCAM− were
tested on the common test videos discussed in Sect. 2. True positive rate (TPR)
and false positive rate (FPR) were measured for the detected abnormal frames.

Table 1 compares the results of OCCAM and OCCAM−. For all test videos,
OCCAM’s TPR is slightly smaller than that of OCCAM−, but OCCAM’s FPR
is significantly smaller than that of OCCAM−. That is, by regarding some clus-
ters as ambiguous, OCCAM makes significantly fewer false detections than does
OCCAM− without significantly sacrificing its true detection rate.

4.3 Performance Comparison

OCCAM’s results are compared with all of the existing methods discussed in
Sect. 2. These methods belong to the following categories:
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Fig. 2. Performance comparison. 14 methods are available for comparison on (a) UCS-
Dped1 videos and 10 methods on (b) UCSDped2 videos. Supervised methods (dashed
lines), unsupervised methods (solid lines).

• Supervised: AMDN [1], BM [2], CI [3], GPR [4], H-MDT-CRF [5], IBC [6],
IEP [7], LMH [8], Local-KNN [9], LSTM [10], MDT [11], MPPCA [12], OF
[13], SF [13], Sabokrou [14], SRC [15], and STMC [16]. [13] tested both OF
and SF methods.

• Unsupervised: DC [17], FF [18], OADC-SA [19], OWC-MTT [20], and STC [21].
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Fig. 3. Performance comparison. 6 methods are available for comparison on (a) Subway
entrance video and 2 methods on (b) Subway exit video. Supervised methods (dashed
lines), unsupervised methods (solid lines).

Most of these methods were tested only on some of the test videos. The test
results on UCSDped1, UCSDped2, and Subway were reported as ROC curves.
For the test results on UMN, some papers reported ROC curves whereas others
reported only accuracy. For PETS2009, only accuracy was reported. ROC curves
are not reported for H-MDT-CRF [5] on UCSDped1 and UCSDped2, LMH [8]
and MPPCA [12] on Subway, and Sabokrou [14] on UMN. Therefore, they are
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Table 1. Benefit of ambiguous clusters. OCCAM (O) has slightly smaller TPR, but
significantly smaller FPR compared to OCCAM− (O−).

Test videos TPR FPR

O O− O O−
UCSDped1 0.887 0.982 0.214 0.741

UCSDped2 0.957 0.994 0.154 0.677

Subway Entrance 0.835 0.942 0.152 0.773

Subway Exit 0.850 0.967 0.136 0.634

UMN 0.910 0.999 0.002 0.818

PETS2009 Scene 1 0.892 0.973 0.079 0.482

PETS2009 Scene 2 0.987 0.999 0.125 0.395

Fig. 4. Performance comparison on UMN video. 7 methods are available for compari-
son. Supervised methods (dashed lines), unsupervised methods (solid lines).

not included in our ROC graphs. The ROC curves reported in this paper are
plotted using either the test results provided by the authors or a software that
traces the curves’ points presented in existing papers.

For UCSD (Fig. 2) and UMN videos (Fig. 4), OCCAM is among the best
performers compared to existing methods. For the Subway videos (Fig. 3),
OCCAM’s performance is comparable to those of existing methods that are far
more complex than OCCAM. For the same FPR, OCCAM achieves the high-
est TPR compared to existing methods for UCSDped2 (Fig. 2b), Subway exit
(Fig. 3b), and UMN (Fig. 4), the 3rd highest TPR for UCSDped1 (Fig. 2a), and
the 4th highest TPR for Subway entrance (Fig. 3a). In applications where high
FPR is tolerable, OCCAM can run as OCCAM− without ambiguous clusters.
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Table 2. Performance comparison on UMN and PETS2009 videos. OCCAM has the
highest overall accuracy. (S) Supervised method, (U) unsupervised method.

Method Type UMN PETS2009 PETS2009

scene 1 scene 2

OCCAM U 0.98 0.91 0.99

BM [2] S 0.96 0.89 0.94

CI [3] S 0.88 0.60 0.93

SF [13] S 0.85 0.59 0.85

SRC [15] S 0.85 – –

DC [17] U 0.96 – –

FF [18] U 0.81 0.38 0.88

Then, OCCAM− achieves TPR of close to 1.0 for all test cases. Figures 2, 3
and 4 also show that existing unsupervised methods can perform as well as or
better than supervised methods.

Some existing papers reported only accuracy on UMN and PETS2009 videos.
Table 2 shows that OCCAM is more accurate than these methods for both UMN
and PETS2009.

For UCSDped1 and UCSDped2 videos, Li and Mahadevan [5,11] also pro-
posed a pixel-level criterion to measure the spatial accuracy of detected abnormal
frames. This error measure depends on the number of detected abnormal pixels in
an abnormal region. Since OCCAM detects only selected pixels in these regions
instead of the whole regions, pixel-level criterion is not appropriate for OCCAM.
Instead, this paper measures spatial accuracy in terms of precision, which is
the percentage of detected abnormal pixels that are true positives. OCCAM
achieves abnormal pixel detection precision of 0.72 for UCSDped1 and 0.78 for
UCSDped2. Moreover, most of the false positive pixels are located around the
abnormal regions. On the other hand, the spatial precision of OCCAM− on
UCSDped1 and UCSDped2 is, respectively, 0.37 and 0.40, which is much lower
than that of OCCAM. Therefore, ambiguous clusters are important for OCCAM
to achieve high spatial accuracy in detecting abnormal pixels.

5 Conclusions

This paper investigated the essential components required for effective unsuper-
vised detection of anomalies in surveillance videos of pedestrians. It shows that
relatively simple but well-designed unsupervised algorithm like OCCAM can per-
form as well as or better than existing supervised and unsupervised methods. In
particular, simple but informative features such as motion direction and motion
speed are sufficient for achieving high TPR with low FPR. Moreover, inclusion
of ambiguous clusters in the cluster labeling process reduces FPR significantly
without sacrificing TPR much. At the same FPR, OCCAM achieves among the
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highest TPR compared to existing methods. It also has the highest accuracy
for UMN and PETS2009 videos compared to existing methods that reported
only accuracy. In applications where high FPR is tolerable, OCCAM can run as
OCCAM− without ambiguous clusters. Then, OCCAM− achieves TPR of close
to 1.0 for all test cases. With ambiguous clusters, OCCAM’s spatial precision
of detecting abnormal pixels is also very high. In general, OCCAM and existing
unsupervised methods can perform as well as or better than supervised methods.
Therefore, our research results can serve as a useful benchmark for testing new
algorithms and for developing more advanced algorithms that require features
other than motion speed and direction.
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Abstract. Deep learning has been considered a hallmark in a num-
ber of applications recently. Among those techniques, the ones based on
Restricted Boltzmann Machines have attracted a considerable attention,
since they are energy-driven models composed of latent variables that
aim at learning the probability distribution of the input data. In a nut-
shell, the training procedure of such models concerns the minimization
of the energy of each training sample in order to increase its probability.
Therefore, such optimization process needs to be regularized in order to
reach the best trade-off between exploitation and exploration. In this
work, we propose an adaptive regularization approach based on temper-
atures, and we show its advantages considering Deep Belief Networks
(DBNs) and Deep Boltzmann Machines (DBMs). The proposed app-
roach is evaluated in the context of binary image reconstruction, thus
outperforming temperature-fixed DBNs and DBMs.

1 Introduction

In the last years, deep learning-driven techniques have been the foremost fea-
ture learner tools for a number of applications, that range from object detec-
tion to speech recognition, just to name a few. Such techniques are based on
the hierarchical-oriented mechanism of the human brain, which learns different
levels of information at each processing step. Convolutional Neural Networks
(CNNs) [1], Deep Belief Networks (DBNs) [2], and Deep Boltzmann Machines
(DBMs) [3] appear to be the most used techniques concerning the deep learning
paradigm.

Deep Boltzmann Machines and Deep Belief Networks extend the well-known
Restricted Boltzmann Machines (RBMs) to deeper representations, since they
are composed of RBMs stacked on top of each other. In a nutshell, RBMs are
stochastic neural networks composed of an input and a latent (i.e. hidden) layer,
being the latter one in charge of learning the probability distribution of the
input data. Roughly speaking, DBNs and DBMs differ in the way the upper
layers interact, thus leading to slightly different formulations.
c© Springer International Publishing AG 2017
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The main problem related to deep architectures concerns the large amount of
data that is required for learning purposes; otherwise, the technique may over-
fit the data. As a consequence, a number of works have focused on mitigating
such drawback, such as regularizing techniques [4,5] and parameter fine-tuning
[6–10]. An interesting approach related to RBM-based techniques concerns work-
ing on the “stability” of the convergence process to prevent overfitting. Recently,
Li et al. [11] studied the influence of different temperatures during DBN learning
procedure, and later on Passos and Papa [12] conducted a similar work, tough
in the context of Deep Boltzmann Machines. Both studies agreed that temper-
ature helps preventing overfitting, where the lower the temperature values, the
better the results. The aforementioned works concluded that low temperature
values lead to higher sparsity levels, thus contributing to the regularization of
the network. As a matter of fact, sparsity is somehow analogous to dropping out
neurons, i.e. one can switch neurons “on” or “off”, forcing the network to adapt
under such circumstances.

Basically, the problem of learning weights in the RBM training procedure
aims at minimizing the energy of each training sample, which leads us to
increasing its probability. Therefore, the training procedure of RBMs and related
approaches is nothing more than an optimization process. In this work, we bor-
row the idea from meta-heuristic-based optimization processes, which aim at
finding the best trade-off between exploitation and exploration. The first term
refers to improving the solutions around the neighborhood of a given sample
(local search), meanwhile exploration focuses on improving the solution in far
away locations (e.g. global search). At the very beginning of the optimization
process, meta-heuristic techniques usually converge faster (high exploration),
thus decreasing the step-size (high exploitation) along the iterations in order to
avoid overshooting the global/near-global optimum.

Therefore, we propose to use an adaptive temperature-based schema, where
the temperature (step-size) decreases along the training procedure, thus sim-
ulating the behaviour of exploitation and exploration found out in many
meta-heuristic techniques. We showed the proposed approach can outperform
temperature-fixed DBNs and DBMs in the context of binary image reconstruc-
tion for some situations, or it can be at least competitive to them. Additionally,
the adaptive-driven approach does not need a fine-tuning step since it requires
the minimum and maximum temperature values only, which are considerably
less sensitive and easy to set than the temperature value itself.

In this paper, we also considered two different formulations to control the
temperature values. The remainder of this paper is organized as follows. Section 2
presents the theoretical background related to RBMs, DBNs and DBMs, while
Sect. 3 discusses the temperature-based approaches used in this work. The
methodology and experiments are presented in Sects. 4 and 5, respectively, and
Sect. 6 states conclusions and future works.
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2 Deep Boltzmann Machines

In this section, we briefly explain the theoretical background related to RBMs
and DBMs.

2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines are energy-based stochastic neural networks
composed of two layers of neurons (visible and hidden), in which the learning
phase is conducted by means of an unsupervised fashion. A näıve architecture of
a Restricted Boltzmann Machine comprises a visible layer v with m units and a
hidden layer h with n units. Additionally, a real-valued matrix Wm×n models
the weights between the visible and hidden neurons, where wij stands for the
weight between the visible unit vi and the hidden unit hj .

Let us assume both v and h as being binary-valued units. In other words,
v ∈ {0, 1}m e h ∈ {0, 1}n. The energy function of a Restricted Boltzmann
Machine is given by:

E(v,h) = −
m∑

i=1

aivi −
n∑

j=1

bjhj −
m∑

i=1

n∑

j=1

vihjwij , (1)

where a e b stand for the biases of visible and hidden units, respectively.
The probability of a joint configuration (v,h) is computed as follows:

P (v,h) =
1
Z

e−E(v,h), (2)

where Z stands for the so-called partition function, which is basically a normal-
ization factor computed over all possible configurations involving the visible and
hidden units. Similarly, the marginal probability of a visible (input) vector is
given by:

P (v) =
1
Z

∑

h

e−E(v,h). (3)

Since the RBM is a bipartite graph, the activations of both visible and hid-
den units are mutually independent, thus leading to the following conditional
probabilities:

P (v|h) =
m∏

i=1

P (vi|h), (4)

and

P (h|v) =
n∏

j=1

P (hj |v), (5)
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where

P (vi = 1|h) = φ

⎛

⎝
n∑

j=1

wijhj + ai

⎞

⎠ , (6)

and

P (hj = 1|v) = φ

(
m∑

i=1

wijvi + bj

)
. (7)

Note that φ(·) stands for the logistic-sigmoid function.
Let θ = (W,a, b) be the set of parameters of an RBM, which can be learned

through a training algorithm that aims at maximizing the product of probabili-
ties given all the available training data V, as follows:

arg max
Θ

∏

v∈V
P (v). (8)

One can solve the aforementioned equation using the following derivatives over
the matrix of weights W, and biases a and b at iteration t as follows:

Wt+1 = Wt + η(P (h|v)vT − P (h̃|ṽ)ṽT ) + Φ︸ ︷︷ ︸
=ΔWt

, (9)

at+1 = at + η(v − ṽ) + αΔat−1

︸ ︷︷ ︸
=Δat

(10)

and

bt+1 = bt + η(P (h|v) − P (h̃|ṽ)) + αΔbt−1

︸ ︷︷ ︸
=Δbt

, (11)

where η stands for the learning rate, and α denotes the momentum. Notice the
terms P (h̃|ṽ) and ṽ can be obtained by means of the Contrastive Divergence [13]
technique, which basically ends up performing Gibbs sampling using the training
data as the visible units. Roughly speaking, Eqs. 9, 10 and 11 employ the well-
known Gradient Descent as the optimization algorithm. The additional term
Φ in Eq. 9 is used to control the values of matrix W during the convergence
process, and it is formulated as follows:

Φ = −λWt + αΔWt−1, (12)

where λ stands for the weight decay.
Hinton et al. [2] proposed a learning algorithm concerning DBNs, which are

essentially a collection of RBMs stacked on top of each other. The algorithm
is pretty straightforward, and it consists into performing the tradicional RBM
learning procedure for each layer, being the output of the current layer the input
to the next. Once you reach the top, you can perform a fine-tuning step by means
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of the well-known backpropagation algorithm using an extra layer with the labels
of the training samples.

2.2 Deep Boltzmann Machines

Learning more complex and internal representations of the data can be accom-
plished by using stacked RBMs, such as DBNs and DBMs. In this paper, we are
interested in the DBM formulation, which is slightly different from DBN one.
Suppose we have a DBM with two layers, where h1 and h2 stand for the hidden
units at the first and second layer, respectively.

The energy of a DBM can be computed as follows:

E(v,h1,h2) = −
m1∑

i=1

n1∑

j=1

vih
1
jw

1
ij −

m2∑

i=1

n2∑

j=1

h1
i h

2
jw

2
ij , (13)

where m1 and m2 stand for the number of visible units in the first and second
layers, respectively, and n1 and n2 stand for the number of hidden units in the
first and second layers, respectively. In addition, we have the weight matrices
W1

m1×n1 and W2
m2×n2 , which encode the weights of the connections between

vectors v and h1, and vectors h1 and h2, respectively. For the sake of simplifi-
cation, we dropped the bias terms out.

The marginal probability the model assigns to a given input vector v is
given by:

P (v) =
1
Z

∑

h1,h2

e−E(v,h1,h2). (14)

Finally, the conditional probabilities over the visible and the two hidden units
are given as follows:

P (vi = 1|h1) = φ

⎛

⎝
n1∑

j=1

w1
ijh

1
j

⎞

⎠ , (15)

P (h2
z = 1|h1) = φ

⎛

⎝
m2∑

i=1

w2
izh

1
i

⎞

⎠ , (16)

and

P (h1
j = 1|v,h2) = φ

⎛

⎝
m1∑

i=1

w1
ijvi +

n2∑

z=1

w2
jzh

2
z

⎞

⎠ . (17)

After learning the first RBM using Contrastive Divergence, for instance, the
generative model can be written as follows:
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P (v) =
∑

h1

P (h1)P (v|h1), (18)

where P (h1) =
∑

v P (h1,v). Further, we shall proceed with the learning process
of the second RBM, which then replaces P (h1) by P (h1) =

∑
h2 P (h1,h2).

Roughly speaking, using such procedure, the conditional probabilities given by
Eqs. 15–17 and the Contrastive Divergence algorithm, one can learn DBM para-
meters one layer at a time [3].

3 Temperature-Based Deep Boltzmann Machines

Li et. al. [11] showed that a temperature parameter T controls the sharpness of
the logistic-sigmoid function. In order to incorporate the temperature effect into
the RBM context, they introduced this parameter to the joint distribution of
the vectors v and h in Eq. 2, which can be rewritten as follows:

P (v,h, T ) =
1
Z

e
−E(v,h)

T . (19)

When T = 1, the aforementioned equation degenerates to Eq. 2. In addition,
Eq. 7 can be rewritten in order to accommodate the temperature parameter as
follows:

P (hj = 1|v) = φ

(∑m
i=1 wijvi

T

)
. (20)

Notice the temperature parameter does not affect the conditional probability of
the input units (Eq. 6).

In order to apply the very same idea to DBMs, the conditional probabilities
over the two hidden layers given by Eqs. 16 and 17 can be derived and expressed
using the following formulation, respectively:

P (h2
z = 1|h1) = φ

(∑m2

i=1 w2
izh

1
i

T

)
, (21)

and

P (h1
j = 1|v,h2) = φ

⎛

⎝
∑m1

i=1 w1
ijvi

T
+

n2∑

z=1

w2
jzh

2
z

⎞

⎠ . (22)

3.1 Adaptive Temperature-Based Model

In this paper, we study the influence of two different functions during the con-
vergence process:

– f1(t) = L − t
tmax

(L − U); and
– f2(t) = L exp((log

(
U
L

)
/tmax)t).
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In the above functions, L = 0.1 and U = 2.0 stand for the lower and upper
temperature boundaries, respectively. Also, tmax = 200 denotes the maximum
number of iterations concerning DBN/DBM learning procedure. Figures 1a and b
display the behaviour of functions f1 and f2, respectively. In a nutshell, f1 stands
for a bounded linear function, meanwhile f2 represents a bounded exponential
function. The reason for using functions bounded in [0.1, 2.0] concerns the fact
that lower temperatures lead to better results [11,12].

Fig. 1. Function F1 and F2 for (a) and (b), respectively. Used to update temperature
values along the convergence process.

Additionally, we used 100 iterations with step-size of 10 for convergence pur-
poses (i.e. the temperature changes every 10 iterations). Although such num-
ber may not be enough to achieve state-of-the-art results, we would like to
emphasize we are interested into showing the proposed approach can outper-
form temperature-fixed ones even using a small number of iterations.

4 Methodology

In this section, we present the methodology employed to evaluate the proposed
approach, as well the datasets and the experimental setup. Notice the approach
used in this paper is based on the one employed by Passos et al. [12].

4.1 Datasets

We propose to evaluate the behavior of DBNs and DBMs under adaptive temper-
atures in the context of binary image reconstruction using three public datasets,
as described below:

– MNIST dataset1: it is composed of images of handwritten digits. The original
version contains a training set with 60, 000 images from digits ‘0’–‘9’, as well

1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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as a test set with 10, 000 images2. Due to the high computational burden for
DBM model selection, we decided to employ the original test set together
with a reduced version of the training set3.

– CalTech 101 Silhouettes Dataset4: it is based on the former Caltech 101
dataset, and it comprises silhouettes of images from 101 classes with reso-
lution of 28 × 28.

Figure 2 displays some training examples from the above datasets.

Fig. 2. Some training examples from (a) MNIST and (b) Caltech 101 Silhouettes.

4.2 Experimental Setup

We employed a 3-layered architecture for all datasets as follows: I-500-500-2, 000,
where I stands for the number of pixels used as input for each dataset, i.e., 196
(14 × 14 images) and 784 (28 × 28 images) considering MNIST and Caltech
101 Silhouettes datasets, respectively. Therefore, we have a first and a second
hidden layers with 500 neurons each, followed by a third hidden layer with 2, 000
neurons5. The remaining parameters used during the learning steps were chosen
empirically and fixed for each layer as follows: η = 0.1 (learning rate), λ = 0.1
(weight decay), α = 0.00001 (penalty parameter).

In order to provide a statistical analysis by means of the Wilcoxon signed-
rank test with significance of 0.05 [14], we conducted a cross-validation procedure
with 20 runnings. In regard to the fixed-temperature experiment, we considered
a set of values within the range T ∈ {0.1, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, 2.0} for the
sake of comparison purposes.
2 The images are originally available in grayscale with resolution of 28 × 28, but they

were reduced to 14 × 14 images.
3 The original training set was reduced to 2% of its former size, which corresponds to

1, 200 images.
4 https://people.cs.umass.edu/∼marlin/data.shtml.
5 Since this architecture has been commonly employed in several works in the litera-

ture, we opted to employ it in our work either.

https://people.cs.umass.edu/~marlin/data.shtml
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Finally, we employed 100 epochs for DBM and DBN learning weights
procedure with mini-batches of size 20. In order to provide a more precise
experimental validation, we trained both DBMs and DBNs with two different
algorithms6: Contrastive Divergence (CD) [2] and Persistent Contrastive Diver-
gence (PCD) [15]. Also, in order to evaluate the techniques considered in this
work, we computed the mean square error (MSE) error over the training set.
Therefore, the smaller the MSE, the better the technique is.

5 Experiments

This section presents the experimental results concerning DBN and DBM opti-
mization by means of adaptive temperatures. Two different adaptive functions,
i.e., f1 and f2, as well as eight constant temperatures were used for the base-
line approach (i.e., fixed-size temperature): 0.1, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5 and
2.0. Furthermore, DBM results were compared against DBN using two differ-
ent learning algorithms, i.e., Contrastive Divergence and Persistent Contrastive
Divergence in a three-layered model. Table 1 presents the average MSE results
for DBMs and DBNs over Caltech 101 Silhouettes datasets. The most accurate
results according to the Wilcoxon signed rank test are in bold.

Table 1. Average DBM/DBN MSE over the test set considering Caltech 101
Silhouettes dataset with 200 iterations.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Linear Curve

DBM-CD 0.16048 0.16048 0.16048 0.16049 0.16048 0.16049 0.16049 0.15983 0.15822 0.16053

DBM-PCD 0.16049 0.16049 0.16050 0.16048 0.16049 0.16048 0.16049 0.15983 0.15929 0.16039

DBN-CD 0.16049 0.16050 0.16049 0.16050 0.16049 0.16058 0.16249 0.17040 0.15822 0.16523

DBN-PCD 0.16048 0.16049 0.16049 0.16049 0.16048 0.16049 0.16081 0.16120 0.15929 0.16321

Clearly, the best results were obtained using the linear adaptive function for
both DBMs and DBNs. A closer look may suggest that adaptive temperature
optimization works well for challenging datasets, such as Caltech 101 Silhouettes.
Also, one can observe that both DBMs and DBNs obtained pretty much similar
results, which can be explained by the fact we are not fine-tuning DBMs with
the mean-field learning process. However, it is beyond the scope of this work to
show that DBMs may be more accurate than DBNs, since we are interested to
show the robustness in using adaptive temperatures for both models.

Table 2 presents the behavior of adaptive temperatures concerning DBMs
and DBNs considering the MNIST dataset. Despite the adaptive linear function
did not achieve the best results according to Wilcoxon signed-rank test, the dif-
ference between fixed- and adaptive-temperature is pretty much irrelevant. With
respect to DBNs, both models evaluated in this work, i.e., fixed and adaptive
temperatures, obtained quite close results. Additionally, in regard to DBMs, one
6 One sampling iteration was used for all learning algorithms.
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can observe the best results were obtained with smaller temperatures, as dis-
cussed by Passos et al. [12]. In this case, it is expected that adaptive models
will not outperform fixed ones, since the temperature values in these dynamic
approaches increase along the iterations.

Table 2. Average DBM/DBN MSE over the test set considering MNIST dataset with
200 iterations.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Linear Curve

DBM-CD 0.08642 0.08642 0.08674 0.08745 0.08753 0.08750 0.08751 0.08752 0.08747 0.08751

DBM-PCD 0.08674 0.08659 0.08681 0.08744 0.08752 0.08751 0.08750 0.08752 0.08747 0.08751

DBN-CD 0.08760 0.08771 0.08763 0.08752 0.08751 0.08751 0.08751 0.08749 0.08752 0.08775

DBN-PCD 0.08760 0.08769 0.08762 0.08751 0.08751 0.08751 0.08750 0.08751 0.08752 0.08775

We performed an extra round of experiments to analyze the impact of adap-
tive temperatures during the convergence process. For comparison purposes, we
considered both the temperature value and learning algorithm that achieved
the best results concerning the fixed-temperature approach. Figure 3 depicts the
MSE of the first layer during the learning process across the iterations for both
DBMs and DBNs considering the Caltech 101 Silhouettes dataset. Therefore, we
compared DBM-CD with T = 2.0 against the proposed approach in Fig. 3a, as
well as we compared DBN-PCD with T = 1.0 against the proposed approach in
Fig. 3b.

Clearly, one can observe the adaptive temperatures converged faster during
the first 50 iterations, and for DBN (Fig. 3b) they did not get stuck in local
optima, as one can observe in the experiment with the fixed temperature, which
stabilized after 75 iterations. Also, it seems there is no difference in using the lin-
ear or exponential function to update the temperature values considering DBMs,
while the exponential model seemed to fit better for DBNs, but for a very small
difference.

Fig. 3. MSE during the learning step of the first layer considering Caltech 101
Silhouettes dataset for (a) DBM and (b) DBN.
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Fig. 4. MSE during the learning step of the first layer considering MNIST dataset for
(a) DBM and (b) DBN.

Figure 4 shows the very same procedure for MNIST dataset. Once again,
the fast convergence of the proposed approaches can be evidenced. Notice that
adaptive-temperatures achieve by far the lower MSE since the beginning, but the
model starts to “unlearn” and moves back to a point where the MSE is higher
than the one achieved by the fixed-temperature after a long period of training.

Roughly speaking, the proposed approaches can benefit in situations where
higher temperatures lead to the better results. However, since the adaptive model
always increases the temperature, one may not get suitable results at the very
end of the convergence process, which means one can halt the process much
earlier.

6 Conclusions

In this work, we dealt with the problem of hastening the DBM learning step using
adaptive temperatures, as well as we also evaluated them in the context of DBNs.
Recent works presented the influence of different temperatures during DBN [11]
and DBM [12] learning process, which introduces an additional parameter to the
model. Adaptive temperatures exempt the need for the aforementioned extra
parameter, thus becoming easier to handle those models.

Furthermore, the experimental results over two public well-known datasets
showed the technique is at least competitive to optimize DBMs and DBNs,
outperforming temperature-fixed DBNs and DBMs in one of the cases, but being
much faster for convergence at the early iterations in both datasets. In regard to
future works, we aim to validate the proposed approach to reconstruct gray-scale
images either.

Acknowledgments. The authors are grateful to FAPESP grants #2014/16250-9 and
#2014/12236-1, as well as Capes and CNPq grant #306166/2014-3.
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Abstract. This paper deals with the colorization of grayscale images.
Recent papers have shown remarkable results on image colorization uti-
lizing various deep architectures. Unlike previous methods, we perform
colorization using a deep architecture and a reference image. Our archi-
tecture utilizes two parallel Convolutional Neural Networks which have
the same structure. One CNN, which uses the reference image, helps
the other CNN in color prediction for the input image. On the other
hand, the second CNN, which uses the input image, helps to identify
the areas which holds essential information about the color scheme of
the scene. Comprehensive experiments and qualitative and quantitative
evaluations were conducted on the images of SUN database and on other
images. Quantitative evaluations are based on Peak Signal-to-Noise Ratio
(PSNR) and on Quaternion Structural Similarity (QSSIM).

Keywords: Image colorization · Deep learning · Convolutional Neural
Network

1 Introduction

Automatic image colorization examines the problem how to add realistic colors
to grayscale images without any user intervention. It has some useful applications
such as colorizing old photographs or movies, artist assistance, visual effects and
color recovering. On the other hand, colorization is a heavily ill-posed problem.
In order to effectively colorize any images, the algorithm or the user should have
enough information about the scene’s semantic composition.

As pointed out in [16], image colorization is also a good model for a huge
number of applications where we want to take an arbitrary image and predict
values or different distributions at each pixel of the input image, exploiting
information only from this input image. This is a very common task in the
image processing and pattern recognition community.
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To date, deep learning techniques have shown impressive results on both
high-level and low-level vision problems including image classification [1], remov-
ing phantom objects from point clouds [2], pedestrian detection [3], face detec-
tion [4], handwritten character classification [5], photo adjustment [6], etc. In
recent years, deep learning based approaches appeared to address the coloriza-
tion problem.

Main contributions. Image colorization algorithms can be divided into three
classes: scribble-based, example-based, and learning-based. In this paper, we
show a possible solution that utilizes the advantages of example-based and
learning-based approaches. Unlike previous methods, we perform colorization
using a deep architecture and a reference image.

Paper organization. This paper is organized as follows. In Sect. 2, the related
and previous works are reviewed primarily focused on learning-based approaches.
We describe our algorithm in Sect. 3. Section 4 shows experimental results and
analysis. The conclusions are drawn in Sect. 5.

2 Related Works

Image colorization has been intensively studied since 1970’s. Broadly speak-
ing, the existing algorithms can be divided into three groups: scribble-based,
example-based, and learning-based approaches. In this section, we mainly con-
centrate on reviewing learning-based approaches.

Scribble-based approaches interpolate colors in the grayscale image based
on color scribbles produced by a user or an artist. Levin et al. [7] presented an
interactive colorization method which can be applied to still images and video
sequences as well. The user places color scribbles on the image and these scribbles
are propagated through the remaining pixels of the image. Huang et al. [8]
improved further this algorithm in order to reduce color blending at image edges.
Yatziv et al. [9] developed the algorithm of Levin et al. [7] in another direction.
The user can provide overlapping color scribbles. Furthermore, a distance metric
was proposed to measure the distance between a pixel and the color scribbles.
Combinational weights belong to each scribbles which were determined based on
the measured distance.

Example-based approaches require two images. These algorithms transfer
color information from a colorful reference image to a grayscale target image.
Reinhard et al. [10] applied simple statistical analysis to impose one image’s
color characteristics on another. Welsh et al. [11] utilized on pixel intensity val-
ues and different neighborhood statistics to match the pixels of the reference
image with the pixels of grayscale target image. On the other hand, Irony et al.
[12] determine first for each pixel which example segment it should learn its
color from. This carried out by applying a supervised classification algorithm
that considers the low-level feature space of each pixel neighborhood. Then each
color assignment is treated as color micro-scribbles which were the inputs to
Levin et al.’s [7] algorithm. Charpiat et al. [13] predicted the expected variation
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of color at each pixel, thus defining a non-uniform spatial coherency criterion.
Then graph cuts were applied to maximize the probability of the whole colored
image at the global level. Gupta et al. [14] extracted features from the target
and reference images at the resolution of superpixels. Based on different kind of
features, the superpixels of the reference image were matched with the superpix-
els of the target image and the color information was transfered to the center of
the superpixels of the target image with the help of micro color-scribbles. Then
these micro-scribbles were propagated through the target image.

Fig. 1. The architecture of the proposed method. The input and the reference CNN
have the same structure. First, only the reference CNN is trained then the input CNN
and the reference CNN are trained simultaneously. Information is transmitted from
input CNN to reference CNN and vica versa using element-wise addition operator to
certain convolutional blocks.

Learning-based approaches model the variables of the image coloriza-
tion process by applying different machine learning techniques and algorithms.
Bugeau and Ta [15] introduced a patch-based image colorization algorithm that
takes square patches around each pixel. Patch descriptors of luminance features
were extracted in order to train a model and a color prediction model with a
general distance selection strategy was proposed. Deshpande et al. [16] colorize
an image by optimizing a linear system that considers local predictions of color,
spatial consistency, and consistency with an overall histogram. Cheng et al. [17]
introduced a fully-automatic method based on a deep neural network which was
trained by hand-crafted features. Three levels of features were extracted from
each pixel of the training images: raw grayscale values, DAISY features [18], and
high-level semantic features.

In recent years, Convolutional Neural Network based approaches appeared
to tackle the colorization problem. Iizuka et al. [19] elaborated a colorization
method that jointly extracts global and local features from an image and then
merge them together. In [20], the authors proposed a fully automatic algorithm
based on VGG-16 [21] and a two-stage Convolutional Neural Network to pro-
vide richer representation by adding semantic information from a preceding
layer. Furthermore, the authors proposed Quaternion Structural Similarity [22]
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for quality evaluation. Zhang et al. [23] trained a Convolutional Neural Net-
work to map from a grayscale input to a distribution of quantized color values.
This algorithm was evaluated with the help of human participants asking them
to distinguish between colorized and ground-truth images. In [24], the authors
introduced a patch-based colorization model using two different loss functions
in a vectorized Convolutional Neural Network framework. During colorization
patches are extracted from the image and are colorized independently. Guided
image filtering [25] is applied as postprocessing. Larsson et al. [26] processed a
grayscale image through VGG-16 [21] architecture and obtained hypercolumns
[27] as feature vectors. The system learns to predict hue and chroma distri-
butions for each pixel from its hypercolumn. Deshpande et al. [28] proposed
a conditional model for predicting multiple colorizations. The low dimensional
embedding of color fields was learned by a Variational Autoencoder. Similarly,
Cao et al. [29] worked with a conditional model but a Conditional Generative
Adversarial Network was utilized to model the distribution of real-world col-
ors. Limmer and Lensch [30] proposed a method for transferring the RGB color
spectrum to near-infrared images using deep multi-scale convolutional neural
networks. The transfer between RGB and near-infrared images is trained.

3 Our Approach

The objectiveness of our framework is to combine example-based and learning-
based approaches in order to produce more realistic and plausible colors. To
capitalize on the advantages of example-based and learning-based methods as
well, we propose a novel architecture which is shown in Fig. 1. Our architecture
consists of two parallel CNNs which are called Input CNN and Reference CNN.
These have the same structure. In the following, this structure is firstly described
and then the co-operation of the two networks is discussed.

We reimplemented the algorithm of [23] using Keras [31] deep learning library.
This algorithm has some appealing properties. First of all, the authors elabo-
rated a class rebalancing method because the distribution of ab values in natural
images is biased towards low ab values. Second, colorization is treated as multino-
mial classification instead of regression. This means that the ab output space is
quantized into bins with grid size 10 and keep the Q = 313 values which are in
gamut. For all details, we refer to [23].

We used SUN database [32] to compile our training database. We denote a
reference image by R and an input image by I. Formally, our database can be
defined as Li = {(Ii, Ri)|i = 1, ..., N} where N is the number of image pairs
and reference image Ri is semantically similar to input image Ii. That is why we
opted to utilize SUN database [32] since this dataset contains images grouped by
their semantic information. Figure 2 shows the empirical distribution of pixels
in ab space gathered from our database. Figure 3 illustrates the empirical and
smoothed empirical distribution of ab pairs in the quantized space. These curves
were determined and were applied in the training process based on the algorithm
of [23].
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Fig. 2. Empirical probability distribution of ab values in our database, shown in log
scale. The horizontal axis represents the b values and the vertical axis represents the
a values. The green dots denote the quantized ab value pairs. (Color figure online)

Fig. 3. Empirical (blue curve) and smoothed empirical distribution (red curve) of ab
pairs in the quantized space of our cartoon database. (Color figure online)
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Fig. 4. Colorized results. The first image is the reference image, the second is the
grayscale input, the third is our colorized result, and fourth is the result of [23], and
the fifth is the ground-truth image. Digital watermarks in the lower right corners
were embedded by the application of [23] (available: http://demos.algorithmia.com/
colorize-photos). (Color figure online)

http://demos.algorithmia.com/colorize-photos
http://demos.algorithmia.com/colorize-photos
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Fig. 5. Colorized results.

First, we train only the Reference CNN using only the Ri’s from our database.
We utilize ADAM optimizer [33] and early stopping [34] with the following
parameters: α = 0.0001, β1 = 0.9, β2 = 0.999, d = 0.0, and ε = 1e − 8 where
α is the learning rate, ε is the fuzz factor, and d is the learning rate decay over
each update. Then the input CNN and the reference are trained simultaneously
using the whole Li = {(Ii, Ri)|i = 1, ..., N} database. As we mentioned the input
and the reference CNN have the same structure. Information is transmitted from
input CNN to reference CNN and vica versa using element-wise addition operator
to certain convolutional blocks (see Fig. 1). The image pairs (Ii, Ri)Ni=1 are given
to the input of the two CNNs. The values of the third convolutional block in the
Reference CNN are added element-wise to those in the Input CNN. Next, the
values of the fourth convolutional block in the input CNN are added to those in
the Reference CNN. This process repeats to the second last convolutional block.
In this process, we also applied ADAM optimizer and early stopping with the
above mentioned parameters. In this way, the color information of the reference
image is applied to facilitate the color prediction for the input image. On the
other hand, information from the input image helps to identify the areas which
holds essential information about the color scheme of the scene. The proposed
framework was trained on 60.000 image pairs of the SUN database.

As pointed out in many papers [20,23,24,26], Euclidean loss function is not
an optimal solution because it will result in the so-called averaging problem.
Namely, the system will produce grayish sepia tone effects. That is why we use
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a cross-entropy like loss function to compare predicted Ẑ ∈ [0, 1]H×W×Q against
the ground truth Z ∈ [0, 1]H×W×Q:

L(Ẑ,Z) = −
H,W∑

h=1,w=1

v(Zh,w)
Q=313∑

q=1

Zh,w,q · log(Ẑh,w,q), (1)

where Q = 313 is the number of quantized ab values (see Fig. 2), v(·) is a
weighting term used to rebalance the loss based on color-class rarity, and H
and W denote the height and the width of the training images. The weighting
term v(·) is obtained using the smoothed empirical distribution of ab pairs in
the quantized space (see Fig. 3). For all details of the weighting term, we refer
to [23].

Fig. 6. Comparison with state-of-the-art example-based colorization algorithms.

4 Experimental Results

Figure 4 presents several colorization results obtained by our proposed method
with respect to the inputs, the ground-truth colorful images, and the
reference images. Figure 4 also illustrates the results of [23] which were
obtained using their web application (available: http://demos.algorithmia.com/
colorize-photos). Note that the digital watermarks in the lower right corners
were embedded by this application. From this qualitative comparison, we can see
that our method is able to reduce visible artifacts, especially for detailed scenes,
objects with large color variances (e.g. building). The color filling is nearly flaw-
less. We could reduce the amount of false edges near the object boundaries.
Figure 5 shows further results of our method.

Figure 6 shows a comparison with the major state-of-the-art example-based
colorization algorithms such as [11–14]. It can be seen that we could produce
more realistic and plausible colors than most state-of-the-art example-based col-
orization algorithms.

http://demos.algorithmia.com/colorize-photos
http://demos.algorithmia.com/colorize-photos
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Fig. 7. Peak Signal-to-Noise Ratio (PSNR) distribution. It can be seen that the pro-
posed method can improve the colorization accuracy.

Figure 7 presents the Peak Signal-to-Noise Ratio (PSNR) distribution of our
method, Cheng et al. [17], and Deshpande et al. [16]. We have measured the
PSNR distribution on 1500 test images from the SUN database [32]. Note that
we reimplemented for this experiment the method of [17] using Keras deep learn-
ing library [31]. In our experiment, we have applied a 33-dimensional semantic
feature vector for [17] and have trained the proposed deep neural network archi-
tecture using ADAM optimizer [33] and the images of SUN database. Besides,
we have used the source code (available: http://vision.cs.illinois.edu/projects/
lscolor) provided by Deshpande et al. [16]. Figure 7 illustrates that the proposed
method is able to improve colorization accuracy since it outperforms these two
state-of-the-art algorithms.

Unfortunately, there is no widely used quality metrics which clearly indi-
cates the quality of a colorization. Methodical quality evaluation by showing
colorized images to human observers is slow, expensive, and subjective. Empir-
ically, we have found that Quaternion Structural Similarity (QSSIM) [22] gives
a good base for quantitative evaluation. It is a theoretically well based measure
which has been accepted by the colorimetry research community as a poten-
tial qualification value. We have measured the QSSIM distribution on 1500 test
images from the SUN database. Figure 8 presents the QSSIM distribution of our
method, Cheng et al. [17], and Deshpande et al. [16]. It can be seen that the pro-
posed method outperforms the two other state-of-the-art algorithms. A higher
QSSIM values indicates better image quality. This experiment was based on the

http://vision.cs.illinois.edu/projects/lscolor
http://vision.cs.illinois.edu/projects/lscolor
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Fig. 8. Quaternion Structural Similarity (QSSIM) distribution. It can be seen that the
proposed method can improve the colorization quality. A higher QSSIM value indicates
better image quality.

source code (available: http://www.ee.bgu.ac.il/∼kolaman/QSSIM) provided by
Kolaman et al. [22].

5 Conclusion

In this paper, we have introduced a novel framework which capitalizes on the
advantages of example-based and learning-based colorization approaches. Specif-
ically, we have shown a possible solution that combines the information between
two CNNs in order to help the input CNN in color prediction for the input
image. To this end, we have trained first a reference CNN which facilitates the
identification of the specific color scheme of the input scene. We have shown
that the semantic enhancement capability of a deep CNN can be switched into
a colorization scheme to result in an effective image analysis and interpretation
framework. The QSSIM method has been proved a superior measuring method
for color modeling. There are many directions for further research. First, it is
worth to generalize the proposed method for arbitrary size input images. Another
direction of research would be automatizing the search for a suitable reference
image to an input image.
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Abstract. We propose an algorithm that provides a pixel-wise classifi-
cation of building facades. Building facades provide a rich environment
for testing semantic segmentation techniques. They come in a variety of
styles affecting appearance and layout. On the other hand, they exhibit
a degree of stability in the arrangement of structures across different
instances. Furthermore, a single image is often composed of a repetitive
architectural pattern. We integrate appearance, layout and repetition
cues in a single energy function, that is optimized through the TRW-
S algorithm to provide a classification of superpixels. The appearance
energy is based on scores of a Random Forrest classifier. The feature
space is composed of higher-level vectors encoding distance to struc-
ture clusters. Layout priors are obtained from locations and structural
adjacencies in training data. In addition, priors result from translational
symmetry cues acquired from the scene itself through clustering via the
α-expansion graphcut algorithm. We are on par with state-of-the-art.
We are able to fine tune classifications at the superpixel level, while
most methods model all architectural features with bounding rectangles.

1 Introduction

Generating models of buildings has innumerable applications, such as heritage
conservation, disaster management and urban planning. One particular field of
interest has been analysis of building facades. Facades capture the architectural
essence of the buildings. They are a dense representation of their characteristics
in terms of layout and materials used, which translate into surface properties.

Facade parsing is often regarded as a classical case of semantic segmentation.
As most scene interpretation approaches, the problem was originally tackled with
appearance-based segmentation algorithms, in which weak priors of smoothness
assumption are applied. Research was then directed to the incorporation of mid-
level and high level cues of translational symmetry and sub-part classifications,
based on training data. The challenges for achieving high accuracies rise from
imaging artifacts: blur and noise, non-uniform lighting conditions, reflections
and, shadows. Also, they include, the existence of irregular lattices of structures,
occlusions, intra- and inter- geometric style variations. This lead to investigating
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 196–207, 2017.
DOI: 10.1007/978-3-319-64689-3 16
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the pattern of arrangement of facade elements rather than their individual visual
attributes. We present an algorithm that exploits higher level reasoning about
scene entities, suggested by the appearance characteristics. We combine both
aspects in a single energy function, to provide optimized solution at the low-
est level of image primitives. In contrast, state-of-the-art methods [10,14] apply
their optimization steps on formed Bounding Boxes (BB), whose assignments are
either rejected or accepted as a whole. As such, their algorithms incorporates
layout principles only in the recognition step of pre-segmented regions, resulting
from appearance cues phase. Whereas, we carry out segmentation and recog-
nition simultaneously, while exploiting the layout priors to correct preliminary
segmentations. We provide an algorithm that minimizes the use of thresholds,
prior assumptions except for fronto-parallelism and works in an approximate
inference framework. More importantly, it does not require manual specification
of architectural rules as in the 3-layered approach [10].

1.1 Related Work

Research is directed towards implementing architectural guidelines in automated
flexible form. These guidelines are concerned with alignment, symmetry, simi-
larity, co-occurrence and components layout. In [10], Martinović et al. make use
of these architectural principles in their final classification decision. They refine
the output of a preceding segmentation step by applying this set of restricting
principles in an ad-hoc procedure. Each principle is applied in isolation and in
most part, as a matter of fulfilling a certain criterion is exceeding a manually
specified threshold. The classification into structures is achieved by an Recur-
rent Neural Networks RNN [12] fed with an oversegmentation of the image and
a Dollar’s Integral Channel [5] specialized window and door detector.

[6] is the only reported work that allows a per-pixel final classification. Every
pixel is represented by a vector of image features (such as: location, RGB val-
ues, and HOG features), in addition to contextual ones (such as: neighbourhood
statistics, and bounding box features) obtained from the preliminary predictions
based on image features. The drawback is, each feature vector is supplied inde-
pendently to an ensemble of classifiers. It lacks the concurrency in classification
of pixels of the arrangement and hence, it lacks the global optimality in the
proper sense. Perhaps the most related work to ours is [14]. In [14], they build a
factor graph of higher order cliques on the images, based on structural aspects
more sophisticated than spatial proximity. However, their nodes are Bounding
Boxes (BBs) of preliminary segmented regions with the pixel assignment done as
a region-to-pixel mapping of the chosen label without the capability of fine tun-
ing the results. Also, based on their reported inadequacy in localizing segment
borders, the hardwired specification of thresholds on aspects like alignment, size
similarity and regular spacing, will fail with inaccuracies in the segments and
subsequent BBs formation. The way they handle size variations and the subse-
quent reliability of relative location priors is unclear, given that they use vertical
and horizontal distances in their absolute form. In addition, their algorithm does
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not incorporate appearance in determining edges between the BBs, as they rely
on purely geometrical properties.

2 Facade Segmentation Optimization

Our proposed algorithm (Fig. 1) receives as input a set of image pixels in the
2d space. It is required to provide an interpretation of these data points by
assigning them to a predefined set of labels L = {Li}Mm=1, such that L holds
indices to M architectural structures. To keep the problem tractable and enhance
computational efficiency, we work with superpixels. Thus, the data points for our
algorithm is the set X = {xi}ni=1 of n superpixels. The image is subjected to
a watershed transform [15]. The transform aggregates pixels to a region until
reaching a peak in the 2d space of the gradient image. The result is a severe
oversegmentation of the images with color coherent regions, called basins. The
superpixels are the minima pixels corresponding to the lowest gradient value in
each region.
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Fig. 1. Diagram showing proposed system modules and their interactions.

We pose our problem as an optimization problem under both appearance
and layout constraints, emerging from architecture characteristic patterns. To
this end, we define an energy function and minimize it using the sequential tree-
reweighted message passing (TRW-S) [7]. We chose this minimization technique
due to its ability to handle arbitrary forms of cost function and scalability, while
providing state-of-the-art results in some applications. We aim to ensure that
the labeling of a pixel is influenced not only by the labeling of its neighbours,
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but also by that of pixels in other possibly distant regions based on extracted
architectural patterns.

A distinctive aspect of our algorithm is imparting structural knowledge on
image primitives. The TRW-S operates on the original set of superpixels. The
total energy function Ξ of the TRW-S is as follows:

Ξ = Ξ1 (L) + Ξ2 (L) , (1)

where
Ξ1 (L) =

∑

xi

D (Li|xi) , (2)

is the datacost received from the appearance module. D (Li|xi) = − log
(P (Li|xi)). P (Li|xi), are the classification posteriors resulting from a Random
Forest (RF) classifier. And, the layout prior

Ξ2 (L) = β1

∑

xi

∑

xj∈Ψ1

Q1 (Li, Lj |xi, xj) + β2

∑

xi

∑

xj∈Ψ2

Q2 (Li, Lj |xi, xj) (3)

is the total energy relayed from the layout statistical model and the translational
symmetry modules (Fig. 1). Ψ1 and Ψ2 are the neighbourhoods defined based on
the short- and long- range edges (Sect. 2.2). Q1 (·) is the prior for the plausible
structural adjacencies, while Q2 (·) is the regularizer for the translational sym-
metry of structures in the architectural scene at hand. The assigned label of a
superpixel is mapped to all pixels sharing its basin.

In the following sections, we explain how the appearance and layout priors are
established to be incorporated in our energy function for the TRW-S algorithm.

2.1 Appearance Cues

A well-known fact about visual perception is, it is evoked by appearance. Thus,
our algorithm is launched by obtaining preliminary classification of the image
superpixels that utilizes textural characteristics of the regions. We choose Ran-
dom Forest (RF) as our classifier [2], which performs a recursive partitioning of
the data based on an ensemble of decision trees. But, other efficient classifiers
can be used instead.

Another critical choice is the space in which the feature vectors are embed-
ded. We examine 2 spaces. Firstly, the vector si is comprised of the 128 SIFT
descriptors [9], calculated densely over the image with a bin size of 8. Secondly,
the vector ri (4) and (5) is the distances to M predefined clusters, correspond-
ing to M architectural structures. Each cluster consists of the SIFT feature
vectors of the superpixels, belonging to a certain structure and acquired from
the groundtruth data. The distance is calculated as the mean Euclidean norm
between the SIFT vector of the superpixel and the k-nearest neighbours vectors
in the cluster after removing the exact match. We preferred this distance over
a centroidal one, because the clusters exhibit a high degree of scattering, due
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to the high degree of appearance variation among instances of the same struc-
ture. Hence, the centroid would not be a proper representative of a cluster. We
downsampled over-sized clusters to ensure a uniform prior for the RF.

ri =
[
r1i r2i . . . . . . rM

i

]
. (4)

rj
i =

∑k
o=1

∣∣si − NNo
ij

∣∣
k

. (5)

NNo
ij is the SIFT vector of the o-th nearest neighbour in cluster j with respect

to data point i. And k is the count of neighbours.
In practice the later space was found to outperform the former. In our opin-

ion, it introduced a higher level of semantics over the raw SIFT features, that
achieved a substantial dimensionality reduction (from 128 to M features). The
challenge for any dimensionality reduction algorithm is, not disturbing the posi-
tion of a feature vector in its space, relative to label clusters. In the described
space, we retain this relative position of the vector, by storing its distances to
the clusters in the space, without the overhead of low-level SIFT details. In addi-
tion, this space transformation provided better characteristics for the training
vectors, namely inter-separability and intra-compactness of the clusters. These
characteristics are expected to boost, not only k-nn equivalents but also margin-
maximizing hyperplane classifiers. However, further investigation is required to
evaluate the proposed idea with other classifiers and clusters of various topolo-
gies. Similar approach of using a meta-feature vector can be found in [3]. The
resulting segmentations are provided as input to the next phase. We also retain
the classification probabilities P (Li|xi) computed by the RF for each super-pixel
to be used as datacosts in the TRW-S framework.

2.2 Layout Cues

In this module, we make use of 5 architectural principles, namely, spatial coher-
ence, approximate structural location, structure ordering, recurring structural
adjacencies, and translational symmetry. In our framework, these principles are
expressed in the edge costs of the TRW-S graph. The edge costs are look-up
tables giving the penalties for various combinations of labelings for the edge
vertices. There are 2 types of edges: short-range and long-range.

Short-Range Edges. They specify neighbours based on spatial proximity, and
their edge costs used to establish Q1 (·) for the TRW-S function (3). Super-
pixels are connected by an edge if there is a common boundary between their
encompassing basins. Hence, each superpixel is allowed a different number of
neighbours. During the learning phase, we build a statistical model of the found
adjacencies among structures. We argue that the familiar adjacencies is the most
stable feature across different architectural scenes. For instance, a door structure
can be seen adjacent to a wall, but never next to a sky structure.
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The edge costs are M × M matrices, where M is the number of architec-
tural features encoding the costs for different combinations of labels for adjacent
superpixels. We introduce the concept of location-aware edges, which entails dif-
ferent costs for edges in different zones of the facade. In POTTs model [1], the
diagonal values are set to zero encourage neighbouring nodes get the same label.
However, we utilize a non-POTTs model, in which the values on the diagonals
of the cost matrices are non-zeros. Therefore, there is a penalty incurred even if
nodes are given the same labeling. This penalty is dependent on the frequency
by which the label has been seen in this zone of the image in the training sam-
ples. The frequencies of the labels with respect to locations are obtained through
the following procedure. To account for image size variability, the groundtruth
images are transformed to an approximate scale invariant space. This is done by
subdividing each image into k horizontal and k vertical stripes of equal width,
such that k2 rectangular patches are formed. The corresponding patch is deter-
mined for each labeled pixel and the information is used to update the frequency
of the label in the patch. The values are then normalized by dividing by the total
pixel density within the patch to get probability Pm

rc , such that r, c ∈ {1, 2, . . . k}.
To fill the upper and lower triangles of the cost matrices, we build a 2d

histogram for the structural tangencies based on the same image subdivision,
but this time for a pair of labels (instead of a single label) to encode a transition.
The recorded frequencies in each patch, are normalized per structure to reflect
the probability Pab

rc that a pair of labels (a and b) exist in adjacency at this
location, when a testing sample is introduced. a, b ∈ {M × M}, such that a �= b.
Edges and their cost matrices are established in 2 directions corresponding to
the directions for tangency: horizontal and vertical. For each structure instance
in the ground truth, we record the structures to its east and south. We bypass
the west and north directions because they are inverses of the included directions
and would only require a transpose of the cost matrix. So, including them will
redundantly duplicate the cost. The matrices are non-symmetrical. For instance,
a roof structure is more frequently seen to the south of sky than to its north.

In this way, the edge cost matrices (Fig. 2) encode the architectural princi-
ples of, vertical and horizontal arrangement ordering of structures, in addition
to locations and structural direct adjacencies. At inference time, if basins are
tangent in both directions, we choose the direction of the common boundary
with the longest length. We convert the probabilities to costs to build labeling
penalty matrices, according to the Boltzmann distribution, Em

rc = − log (Pm
rc)

and Eab
rc = − log

(
Pab

rc

)
+ ξ. We add ξ, a constant to raise the range of values in

the upper and lower triangles of the cost matrices over the diagonal values, to bias
the optmization algorithm towards same labeling for the vertices of the edge. As
such, spatial coherence is achieved while promoting the frequently encountered
label in the training set, at this location. If the algorithm chooses to label the
vertices differently, the most frequent adjacencies at this location are preferred.

Some practical adjustments were carried out, because the subdivision of
the image is arbitrary and to prevent over-fitting to training data. We apply
a Gaussian smoothing filter on the frequency histograms of location and
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1 2 3 4 5 6 7 8 9 10 11 12

1 1 21 464 464 21 464 464 464 464 464 21 21

2 464 2 21 464 21 464 21 464 21 21 21 21

3 464 464 7 464 464 464 464 464 464 464 464 464

4 464 464 464 444 464 464 464 464 464 464 464 464

5 464 464 464 464 5 464 464 464 464 464 464 464

6 464 464 464 464 464 444 464 464 464 464 464 464

7 464 20 464 464 464 464 5 464 464 464 464 464

8 464 464 464 464 464 464 464 444 464 464 464 464

9 464 21 464 464 464 464 464 464 5 21 464 464

10 464 21 464 464 21 464 464 464 464 4 464 464

11 464 464 464 464 464 464 464 464 464 464 444 464

12 464 464 464 464 464 464 464 464 464 464 464 6

)b()a(

Fig. 2. (a) A sample of long-range edges shown in red. (b) A sample of short-range
edge approximated cost matrix for the CMP dataset [14]. Structure 1 incurs the least
cost, which signals that it is the most frequently encountered structure in this image
patch. The most abundant transition is between structures 7 and 2. Structures 4, 6,
8, and 11 are never seen in this image patch during training. Values on the diagonal
are in a lower range than the ones on the lower and upper triangles to promote same
labeling. (Color figure online)

structural adjacency. In addition, Inf costs, resulting from zero frequency, are
replaced by a relatively high value π, to discourage rather than eliminate the
possibility of an assignment. Same goes for Inf values in the appearance datacost,
as they are replaced by ρ.

Long-Range Edges. These encode the translational symmetries found in the
scene, used for building the Q2 (·) (3). To establish these symmetries we use
the α-expansion graphcut algorithm [8], to assign a translation vector to each
superpixel in the image. The ultimate goal is to establish a smoothness prior
over distant instances of the same structure, in the TRW-S labeling optimiza-
tion step. It is run separately for each type of putative structure resulting from
the appearance classification phase. A Markov Random Field (MRF) is defined
over all superpixels belonging to the structure and forming the nodes of the
graph. The smoothness prior is based on neighbourhood Ω, detected between
superpixels when their basins share a common boundary and belong to the same
putative structure. Neighbourhoods are assigned a constant weight. The termi-
nal nodes of the graph of the α-expansion algorithm constitute the labels and
they are a set of translational vectors. This set is constructed from the SIFT
feature points of the image and their best matches. The matching score is cal-
culated based on Euclidean norm in the SIFT space. The set of translational
vectors is refined by preserving only the ones that exhibit a translation in either
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the x and y directions but not both. As such the long-range cliques promote the
vertical and horizontal alignment of facade structures. The energy function E,
to be minimized by the graphcut, is as follows:

E (Y ) =
∑

xi

DY (yi|xi) + μ
∑

xi

∑

xj∈Ω

FY (yi, yj |xi, xj) + θ · |YT | . (6)

The unary term D (·) is the dissimilarity score between an examined superpixel
xi and the superpixel of the watershed basin, to which the destination belongs.
The destination is obtained when applying translation yi (∈ T ) on the exam-
ined superpixel. We constraint the translations to result in destinations being
within image boundaries, but not necessarily belonging to the same structure as
the source superpixel, to minimize the propagation of errors from the previous
appearance-based stage. The pairwise term F (·) follows a POTTS model, in
which a pair of neighbouring superpixels labeled differently, is penalized with
a constant value. θ is a constant label cost that penalizes the assignment of xi

to new redundant labels. Redundancy in the sense that they can be replaced
by one of the already utilized labels without drastically increasing the datacost.
Afterwards, the edges that will be relayed to the TRW-S algorithm are found by
applying on each superpixel its preferred translation vector in the specified, in
addition to the reverse direction (a 180◦ rotated variant). In effect, this extends
the putative structures into a loci of points that complete their contained grids.
An outcome of this phase is shown in Fig. 2.

(a) (b)

Fig. 3. (a) Semi-log scale plot of the cost against PSO iterations. (b) Accuracy plots
for the images in ECP dataset when different options for IASC are activated.
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2.3 Learning the Weight Parameters

For learning the parameters of the energy functions, we use the Particle Swarm
Optimization [11] (PSO). A meta-heuristic technique, that relies on a user-
specified range of values for the parameters. The algorithm initializes a swarm of
vectors randomly. Each vector Ui holds values for the parameters and is named
a particle. Iteratively, it updates the vectors based on their best previous posi-
tion Ui pbest and the best position in the swarm Uglobal best. The quality of the
particle is evaluated based on a cost function. In all our experiments, the cost
function is single objective. The position update rule for the ith particle is

Ui = Ui + Vi . (7)

The velocity Vi of the particle is given by,

Vi = ω×Vi+c1×rand ()×(Ui pbest − Ui)+c2×rand ()×(Uglobal best − Ui) . (8)

The rule guarantees that the procedure yields non-increasing cost values in
each iteration Fig. 3, thus leading to convergence. First, we use the PSO in
learning the α-expansion parameters (θ and μ). In this case, the objective is
minimizing the number of erroneous edges that link superpixels belonging to
different genre of structures. In the second setting, it is used for optimizing β1,
β2, ξ, π, and ρ in the TRW-S framework. The objective is minimizing the errors
in the final labeling of the superpixels, when compared to ground truth data.

3 Evaluation

We follow the convention of related work, and document the results based on
5-fold cross validation and using pixel-based accuracy as the criterion for com-
parison. The training folds are used for constructing SIFT clusters of the struc-
tures, collecting the layout statistics and training the Random Forest. We test
our model IASC (Integrated Appearance Structure Cues) on the ECP-Monge
dataset [13] and the CMP dataset [14], and compare to the state-of-the-art
results from the 3-layered approach [10], Spatial Pattern Templates (SPT) [14]
and Auto-Context [6]. The ECP-Monge contains 104 images of facades in Haus-
mannian style. We use the corrected groundtruth [10]. The CMP is considered
more challenging as it contains 378 samples from various (often difficult to model)
styles. Because, we propose a multi-phase algorithm, we needed to separately
examine each phase to understand its contribution to the final accuracy value.
Table 1 summarizes the mean accuracies achieved by [6,10,14] and IASC algo-
rithm in various stages. We include the results of the commonly used POTTS
model for spatial smoothness (PA), as a variant of our algorithm, and use the
same datacosts of the IASC. We follow the naming conventions of the original
papers [6,10,14] in reporting results. Per-image accuracies are shown in Fig. 3, for
the different factors affecting the performance of our model. In Fig. 4, we display
results of a selection of samples. We can conclude from experiments, for IASC,
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Table 1. Average accuracies on datasets. NC: No context (appearance only), AP:
Aligned Pairs, APRT: Aligned Pairs Regular Triplets, SH: Structural Heuristics, PA:
POTTS Adjacency, ST3: Auto-Context classified, PW3: POTTS Smoothed Auto-
Context, SEP: Short-range Edges Prior, and LEP: Layout Edges Prior (short- and
long- range).

SPT [14] 3-layers [10] Auto-context [6] IASC (our method)

(NC) (AP) (APRT) (NC) (PA) (SH) (ST3) (PW3) (NC) (PA) (SEP) (LEP)

ECP 59.6 79.0 84.2 82.6 85.1 84.2 90.8 91.4 68.9 79.9 86.3 87.8

CMP 33.2 54.3 60.3 - - - 66.2 68.1 41.4 55.5 60.3 64.4

each phase consistently improved accuracy over the preceding one. Despite our
efforts to minimize the propagation of errors, across the system modules, it is
evident that appearance classification failures remain a limiting factor for sub-
sequent improvements. It is evident for [10], the incorporation of the structural
heuristics (such as: the existence of a running balcony on the second and fifth
floor) degraded the accuracy of their smoothed appearance classifications. As
for [14], the fact that their neighbourhoods of pairs and triplets were based
on a manually assigned threshold was a severe limitation. The reported result
for ECP-Monge in [6] is based on 7 classes of structures, whereas we include
the result using the updated groundtruth which added the chimney structure.
In IASC, we record one of the highest accuracy net gains when incorporating
layout cues in the problem of facade parsing, even when starting with severely
damaged results based on appearance. This is attributed to the generalization
ability of our optimization function that relies only on persistent architectural
guidelines without being style specific.

We use the Davies Bouldin (DB) index [4] to shed light on the characteristics
of the proposed feature space of distance-to-cluster, against the raw SIFT feature
space. The clustering is predefined from the groundtruth and we normalized the
2 spaces. It was found that the proposed space transformation increased both
separability and compactness of the clusters, thus, favorably lowering the average
DB on the training folds from 8.4616 to 1.4497. As for classification accuracy,
raw SIFT vectors achieved 63.3% on ECP-Monge in the No Context setting. For
the distance vectors, the figure was 68.9%. In both settings we use the PSO to
learn the parameters, the number of iterations was set to 75. The swarm size
was 10 when optimizing the parameters for finding long-range edges and 40 for
the TRW-S function. The parameters ranges were based upon our observations
during experiments, but we provided a much wider range to lower the risk of a
local minimum. In evaluating the objective functions, 10 samples were selected
randomly for each dataset. The objective function yields the highest calculated
cost based on the 10 samples.
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(a) (b) (c) (d) (e)

Fig. 4. Sample outcomes in tabular format. Row (1) ECP-Monge sample with accuracy
91.72%; (2) ECP-Monge sample with accuracy 83.18%; (3) CMP sample with accuracy
74.21%; (4) CMP sample with accuracy 72.00%. Column (a) Ground truth; results of
(b)NC; (c) PA; (d) SEP; (e) LEP.

4 Conclusion

We present an algorithm for handling semantic segmentation of architectural
scenes. The algorithm relies on the output of a Random Forest classifier on
SIFT-based meta-feature vectors. We carry out a feature space transformation
from raw SIFT to distance-to-cluster vectors. Also, we incorporate layout princi-
ples in the form of labeling costs for superpixel long-range cliques resulting from
translation vectors, detected by α-expansion. Other labeling costs are based on
location and structural adjacencies, defined on short range neighbourhoods. We
report competitive results. We believe our method offers significant advantages
over competitors in terms of algorithm elegance. The priors are automatically
learned from training samples and its weight parameters are deduced via the sin-
gle objective PSO algorithm. At inference time, the labeling is efficiently opti-
mized using the TRW-S algorithm, while including no heuristics or manually
determined thresholds. Our future work is intended towards boosting the accu-
racy figures, by plugging in the state-of-the-art Convolutional Neural Networks
in the appearance module and relaying its resulting posteriors to our layout
optimization function.
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14. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with reg-
ular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol.
8142, pp. 364–374. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7 39

15. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on
immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598
(1991)

http://dx.doi.org/10.1007/3-540-47977-5_5
http://dx.doi.org/10.1007/3-540-47977-5_5
http://dx.doi.org/10.1007/978-3-642-33786-4_31
http://dx.doi.org/10.1007/978-3-642-40602-7_39


Development of a New Fractal Algorithm
to Predict Quality Traits of MRI Loins

Daniel Caballero1(B), Andrés Caro1, José Manuel Amigo2, Anders B. Dahl3,
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Abstract. Traditionally, the quality traits of meat products have been
estimated by means of physico-chemical methods. Computer vision algo-
rithms on MRI have also been presented as an alternative to these
destructive methods since MRI is non-destructive, non-ionizing and
innocuous. The use of fractals to analyze MRI could be another pos-
sibility for this purpose. In this paper, a new fractal algorithm is devel-
oped, to obtain features from MRI based on fractal characteristics. This
algorithm is called OPFTA (One Point Fractal Texture Algorithm).
Three fractal algorithms were tested in this study: CFA (Classical fractal
algorithm), FTA (Fractal texture algorithm) and OPFTA. The results
obtained by means of these three fractal algorithms were correlated to
the results obtained by means of physico-chemical methods. OPFTA and
FTA achieved correlation coefficients higher than 0.75 and CFA reached
low relationship for the quality parameters of loins. The best results
were achieved for OPFTA as fractal algorithm (0.837 for lipid content,
0.909 for salt content and 0.911 for moisture). These high correlation
coefficients confirm the new algorithm as an alternative to the classi-
cal computational approaches (texture algorithms) in order to compute
the quality parameters of meat products in a non-destructive and effi-
cient way.

Keywords: MRI · Fractal · Algorithms · Quality traits · Iberian loin

1 Introduction

The traditional methods established for determining physico-chemical parame-
ters related to loin quality are laborious, time and solvent consuming and require
c© Springer International Publishing AG 2017
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the destruction of the meat piece. Magnetic Resonance Imaging (MRI) and com-
puter vision techniques have been proposed as an alternative, since they are
non-destructive, non-invasive, non-intrusive, non-ionizing and innocuous. Sev-
eral works have been carried out to determine quality characteristics of dry-
cured products by MRI, most of them focused on hams, allowing to monitor the
ripening process of Iberian [1], Parma [2] and San Daniele [3] hams.

Indeed, the extraction of textural information from images is very common to
explore parameters related to food quality. Cernadas [4,5] allowed the prediction
of some sensory and physico-chemical traits. Ávila [6] analyzed marbling and fat
level in Iberian loin based on texture features of MRI. Recently, Pérez-Palacios
applied texture analysis to predict moisture and lipid of hams [7] and loins [8].
Jackman et al. [9,10] have proved the efficiency of texture feature methods to
solve problems related to food technology.

In recent years, there is a growing interest in the use of fractal analysis tech-
niques instead of classical texture analysis methods. Mainly because the image
texture seeks to compress image information while the use of fractals allows
the identification of recurring patterns, removing the possibility of image com-
pression. The fractal concept studies the degree of symmetry or self-similarity
found in a structure at all scales [11,12]. In relation to the use of fractals in
food technology, mainly, fractal techniques have been applied to characterize
the microstructure of different fruit and vegetables [13], fish [14] and meat [15].
For prediction issues, only two studies have applied fractal techniques. Tsuta
[16] used them to predict the sugar content of melons and Polder [17] measured
the chlorophyll of tomato by applying fractals. However, as our knowledge, the
use of fractal analysis has not been carried out to predict quality parameters on
meat products.

This paper aims (1) to develop an algorithm for studying texture features
based on fractal and second order statistics and (2) its application on MRI images
of Iberian loins in order to predict some physico-chemical parameters.

This paper is organized as follows: Sect. 2 presents the Materials and Methods
used in this work. Section 3 describe the obtained results and their discussion.
Section 4 draws the main conclusions and their implications.

2 Materials and Methods

The prediction of quality attributes was carried out with 5220 MRI images from
fresh and dry-cured loins. In addition, the quality attributes of fresh and dry-
cured loins were determined by means of traditional physico-chemical methods
in order to obtain values for moisture [18], salt [18] and lipid content [19].

2.1 Image Acquisition

MRI from the loins were generated at the Animal Source Foodstuffs Innovation
Services (SiPA) at Faculty of Veterinary Science of University of Extremadura
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(Cáceres, Spain). A low-field MRI scanner (ESAOTE VET-MR E-SCAN XQ
0.18 T) was used, with a hand/wrist coil, with nine different configurations on
echo time (TE) and repetition time (TR). Sequences of Spin Echo (SE) weighted
on T1 were applied with a field of view (FOV) of 150× 150 mm2, slice thickness
4 mm, a matrix size of 256 × 204 and 29 slices per loin were obtained.

All images were acquired in DICOM format, with a 512× 512 resolution and
256 grey levels. The MRI acquisition was performed at 23 ◦C.

2.2 Computer Vision Algorithms

Once the MRI of loins were obtained, three Computer Vision algorithms based
on fractal were applied to extract numerical data from the images.

Table 1. Texture features equations of FTA algorithm

Equation

Uniformity (UNI)
∑

i

F 2
i (1)

Entropy (ENT)
∑

i

Fi ∗ log10(Fi) (2)

Correlation (COR)
∑

i

(i − µ) ∗ Fi (3)

Inverse Difference Moment (IDM)
∑

i

Fi
1+i2

(4)

Inertia (INE)
∑

i

Fi ∗ i2 (5)

Contrast (CON)
∑

i

F 2
i ∗ i2 (6)

Emphasis (EMP)
∑

i

Fi
i2

(7)

Jorna Correlation (JC)
∑

i

(i − µ)2 ∗ Fi (8)

Cluster Shade (CS)
∑

i

(i − µ)3 ∗ Fi (9)

Cluster Prominence (CP)
∑

i

(i − µ)4 ∗ Fi (10)

The first one, classical fractal algorithm (CFA) [20] studies the repetition of
patterns in the MRI. The method measures the number of boxes (small fractions
of the image depending on the size of the original image) needed to cover an
area occupied by the object as a function of the size of boxes. This is calculated
by computing the so-called local exponent with different box sizes. The local
exponent, D, is the variation of the number of objects (N) depending on the box
size (R).

D = −� lnN

� lnR
(11)

The fractal dimension is the value of the number of D when it remains con-
stant respect to the box size. Quantification of the fractal dimension of each
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simple image was calculated using the compression box counting package (tool-
box downloaded from http://www.mathworks.com/matlabcentral/fileexchange/
13063-boxcount-last accessed November 2016, for MATLAB (The Mathworks
Inc., Natick, Massachusetts, U.S.A.)). Eight features were obtained from CFA
algorithm.

The second one, the fractal texture algorithm (FTA) [21] is a novelty tex-
ture algorithm which is not based on texture features of images. In fact, it is
based on fractals characteristics, obtained from a two dimensional variation of
Minkowski-Bouligand algorithm [20]. Algorithm 1 shows the new version of the
Minkowski-Bouligand algorithm, proposed to compute the local exponents for
FTA. These fractal characteristics reflect the number of times that a pattern is
repeated for each image depending of the box size calculated in each case. These
fractal characteristics were gathered in a vector. The features of this algorithm
were computed applying second order statistics [22] on these vectors, a total
of ten features were calculated and they were the following: Uniformity (UNI),
Entropy (ENT), Correlation (COR), Inverse Difference Moment (IDM), Inertia
(INE), Contrast (CON), Emphasis (EMP), Jorna’s Correlation (JC), Cluster
shade (CS) and Cluster Prominence (CP). Table 1 shows the equation to com-
pute each feature from the values of the previously calculated vector, where i
is the index of the vector, Fi is the value of the cell with the position i of the
vector, and µ is the average value of the vector.

2.3 One Point of Fractal Texture Algorithm (OPFTA)

The third algorithm studied was our proposal One Point of Fractal Texture
Algorithm (OPFTA). Figure 1 summarizes the flow chart of this algorithm.

Fig. 1. The proposed computational texture algorithm (OPFTA algorithm). (A) Input
image. (B) Largest area rectangle inside of loin contour (C) Calculating ROIs (D)
Selecting fractal value (E) Input fractal value in the matrix (F) Calculating features

First, the image acquisition process obtained sets of MRI, in a high reso-
lution (pixel resolution 0.23× 0.23) (Fig. 1A). When the images were acquired,
the largest rectangle inscribed in the contour of the loin was selected (Fig. 1B)
[23]. Then, each rectangle was divided into smaller rectangles of 32× 32 pixels,
so called region of interest (ROI) (Fig. 1C). At this point, a two dimensional
variation of the Minkowski-Bouligand algorithm [20] was applied on each one of
the ROI in order to obtain local exponents with the different box sizes (powers
of 2). Again, algorithm 1 was used to compute the local exponents for OPFTA.

http://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount-last
http://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount-last
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These local exponents reflect the number of times that a pattern is repeated for
each ROI depending of the size of the boxes calculated in each case. From all
local exponents, we select the local exponent with the box size equal to eight
(Fig. 1D), since this local exponent is very representative, because reflect the
patterns inside of the ROI of medium size. After that, we gathered one value for
each ROI in order to create a matrix with the fractal values. Each cell of the
matrix represents one ROI from the image (Fig. 1E).

Finally, seven texture features were computed on each matrix (Fig. 1F). These
features were calculated based on second order statistics [22], and were the fol-
lowing: Uniformity (UNI), Entropy (ENT), Correlation (COR), Homogeneity
(HOM), Inertia (INE), Contrast (CON) and Efficency (EFI). Table 2 shows the
equation to calculate each feature from the values of the previously computed
matrix. Algorithm 2 shows the pseudocode of the OPFTA algorithm.

Table 2. Texture features equations of OPFTA algorithm

Equation

Uniformity (UNI)
∑

i

∑

j

P (i, j)2 (12)

Entropy (ENT)
∑

i

∑

j

P (i, j) ∗ log10(P (i, j)) (13)

Correlation (COR)

∑

i

∑

j
μx∗μy∗P (i,j)

σx/σy
(14)

Homogeneity (HOM)

∑

i

∑

j
P (i,j)

1+(i−j)2
(15)

Inertia (INE)
∑

i

∑

j

P (i, j) ∗ (i − j)2 (16)

Contrast (CON)
∑

i

∑
j P (i, j)2 ∗ (i − j)2 (17)

Efficency (EFI) σx
μx

+
σy

μy
(18)

2.4 Prediction Analysis

The prediction of physico-chemical parameters is made as a function of com-
puter vision features from CFA, FTA and OPFTA algorithms. To achieve the
prediction, data mining techniques were carried out, specifically multiple linear
regression (MLR) [24]. MLR models the linear relationship between a target
variable and more independent prediction variables, to produce a linear regres-
sion equation that can be used to predict future values. For this purposal the free
software WEKA was used (http://www.cs.waikato.ac.nz/ml/weka - last accessed
November 2016). The M5 method was applied to select attributes, this method
is based on stepping though the attributes, being the one with the smallest stan-
dardized coefficient removed until no improvement is observed in the estimation
error [25] and a ridge value of 1.0 × 10−4 was applied in the linear regression in
this study.

http://www.cs.waikato.ac.nz/ml/weka
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Algorithm 1. Method for obtaining fractals dimensions: Obtain fractals()
Input: img: image
Output: datavector: vector
1: Begin
2: (height, width) ←obtain dimensions (img)
3: if height > width then
4: max ←height
5: else
6: max ←width
7: end if
8: p ←log(max) / log(2)
9: size ←2p

10: ampliedimg ←create image (size,size)
11: for i = 0 to height do
12: for j = 0 to width do
13: ampliedimg ←img
14: end for
15: end for
16: for i = 0 to height do
17: for j = width to size do
18: ampliedimg ←0
19: end for
20: end for
21: for i = height to size do
22: for j = 0 to size do
23: ampliedimg ←0
24: end for
25: end for
26: for g = p − 1 to 0 decrease: −1 do
27: aux ←2p−g

28: auxil ←aux/2
29: for i = 1 to aux increase: i + max − aux do
30: for j = 1 to aux increase: j + max − aux do
31: if ampliedimg(i,j) = ampliedimg(i+auxil,j) then
32: cont++
33: else if ampliedimg(i,j) = ampliedimg(i,j+auxil) then
34: cont++
35: else if ampliedimg(i,j) = ampliedimg(i+auxil,j+auxil) then
36: cont++
37: end if
38: end for
39: end for
40: Update datavector
41: end for
42: End
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Algorithm 2. Main method of OPFTA
Input: img: image
Output: featurevector: vector
1: Begin
2: (height, width) ←obtain dimensions (img)
3: columns ←width/32
4: rows ←height/32
5: mat ←create matrix (rows,columns)
6: for i = 0 to i <= rows ∗ 32 increment: i + 32 do
7: for j = 0 to j <= columns ∗ 32 increment: j + 32 do
8: cell ←cut image (img,i*32,j*32,(i+1)*32,(j+1)*32)
9: /* applying algorithm 1 */

10: obtain fractals (cell,datavector)
11: /* Select the position of datavector with the box size equal to 8 */
12: fractalvalue ←datavector (3)
13: mat(i, j) ←fractal value
14: end for
15: end for
16: /* Computing equations from Table 2 */
17: compute features(mat,featurevector)
18: End

3 Results and Discussion

Table 3 shows the computational complexity of some of most used computer
vision algorithms. In this table, the fractal-based algorithms tested in this study
are shown first and then, other classical computer vision algorithms traditionally
applied to analyze images. OPFTA performs a computational complexity O(n2)
lower than other fractal algorithms (O(n2*log(n)) and O(n3)) and similar to
the classical texture algorithms. GLCM and GLRLM obtained a computational
complexity of O(n2). Low computational complexities are mandatory from an
industrial point of view.

Table 3. Computational cost of the most used computer vision algorithms

Algorithm Authors Reference Computational cost

CFA Mandelbrot [20] O(n3)

FTA Caballero et al. [21] O(n2 * log(n))

OPFTA Caballero et al. This study O(n2)

GLCM Haralick et al. [26] O(n2)

NGLDM Sun and Wee [27] O(n3)

GLRLM Siew et al. [28] O(n2)

GLCM + NGLDM + GLRLM Durán et al. [29] O(n3)
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The predicted values based on the three fractals algorithms were correlated
to the real values obtained by physico-chemical analysis. Thus, the correlation
coefficient (R) of equations were calculated (Table 4), and was used to evaluate
the accuracy in the predictions. These results were analyzed taking into account
the rules given by Colton [30], who considered correlation values between 0
and 0.25 as little degree of relationship, from 0.25 to 0.50 as a fair degree of
relationship, from 0.50 to 0.75 as moderate to good relationship and between
0.75 and 1 as very good to excellent relationship.

Table 4. Correlation coefficients between some physico-chemical traits and computer
vision algorithms

CFA FTA OPFTA

Moisture (%) 0.289 0.832 0.911

Lipid (%) 0.201 0.835 0.837

Salt (%) 0.507 0.795 0.909

As can be seen in Table 4, according to Colton [30], for physico-chemical
parameter, CFA reached little relationship, whereas FTA and OPFTA achieved
very good to excellent correlations. OPFTA obtained slightly higher R values for
all physico-chemical attributes than FTA, 0.911 versus 0.832 for moisture, 0.837
versus 0.835 for lipid content and 0.909 versus 0.795 for salt content. The fact
of the OPFTA obtained higher correlations than FTA could be related to the
better perform in terms to simulate textures from the images. In addition, FTA
was previously validated in order to predict some physico-chemical parameters
of loin [21]. Therefore, these facts could validate the use of OPFTA to predict
quality traits from the loins.

Table 5. Prediction equations obtained applying OPFTA algorithm

Equation

Moisture(%) = 136.970 ∗ ENT − 33.214 ∗ COR + 24.320 ∗ HOM + 82.487 ∗ INE +
33.350 ∗ CON + 10.610 ∗ EFI − 83.966

Lipid(%) = − 52.016 ∗ UNI − 52.642 ∗ ENT + 8.502 ∗ COR − 13.734 ∗ INE +
11.566 ∗ CON − 10.309 ∗ EFI + 67.576

Salt(%) = −11.033 ∗ ENT + 2.333 ∗ COR − 1.812 ∗ HOM − 6.675 ∗ INE − 2.615 ∗
CON − 0.628 ∗ EFI + 11.986

Table 5 shows the prediction equations of quality parameters of loin as a
function of features obtained from OPFTA. As can be seen, there are six inde-
pendent variables of the prediction equations for the OPFTA. In addition, only
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seven features of OPFTA need to be computed, while FTA require the compu-
tation of ten features. Besides, the computational cost for OPFTA is lower than
FTA, as Table 3 shown. All these facts point out the suitability of OPFTA for
MRI analysis in order to predict some physico-chemical characteristics of loin.

4 Conclusion

In this study, a new texture algorithm based on fractals and second order sta-
tistics has been proposed, developed and validated. The prediction of moisture,
lipid and salt content of loins by applying the proposed algorithm on MRI have
also been tested. Therefore, the use of this approach could be suitable for the
meat industries in order to characterize meat products in a non-destructive,
effective, efficient and accurate way.
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1. Antequera, T., Caro, A., Rodŕıguez, P.G., Pérez-Palacios, T.: Monitoring the ripen-
ing process of Iberian ham by computer vision on magnetic resonance imaging.
Meat Sci. 76, 561–567 (2007)

2. Fantazzini, P., Gombia, M., Schembri, P., Simoncini, N., Virgili, R.: Use of mag-
netic Resonance Imaging for monitoring Parma dry-cured ham processing. Meat
Sci. 82, 219–227 (2009)

3. Manzoco, L., Anese, M., Marzona, S., Innocente, N., Lazaglio, C., Nicoli, M.C.:
Monitoring dry-curing of San Daniele ham by magnetic resonance imaging. Food
Chem. 141, 2246–2252 (2013)
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Abstract. In this paper, we propose amethod to inspect wheel mark defect on the
wafer backside. The aim of this method is to detect wheel mark defects through
back side film and back grinding tape on back side of the wafer. To reduce noise
from both films, we used a vignetting correction to eliminate vignetting effects
from line scan and Gaussian smoothing filter to reduce noises from back side
films. Then, we used a Circle Curve Fitting to find the center point of the wafer and
extracted the periodic feature in polar coordinates using the Fourier transform.
And we also measured the noise signal on the background to calculate SNR and
parameterize it. A sample test result shows that the proposedmethod is effective to
control the quality of products in the factory.

Keywords: Wheel mark � Wafer backside � TSV

1 Introduction

Wafer backgrinding(Backlap) is an essential process in semiconductor device fabri-
cation to reduce wafer thickness to allow for stacking and high density packaging of
integrated circuits(IC) [1]. Usually, the active part of the die is just a few microns thick
and the other part is silicon, which can be removed via the wafer backgrinding pro-
cedure [2]. However, this procedure has been faced with increasing challenges due to a
reduction in die thickness in the process of incorporating multiple dies to make
high-integration packages. Today, a die can be reduced to a 10-micron thickness with a
cutting-edge wafer backgrinding system [3] while wafers thinned down to 30 to 50 µms
are common now.

It is necessary to control the quality of surface backside; particularly, prevention of
cracks is important to create through silicon via (TSV) 3D packages and TSV 3D
integrated circuits [4, 5]. A broken die would spoil a package containing whole dies
[6]. For the same reason, detecting a wheel mark signal is very important to monitor the
grinding process and prevent cracks. A die with wheel marks has the potential to
develop into the crack. But it is hard to detect them because the thinned wafer is
attached to some film such as die attach film (DAF) with wafer ring frame. Unfortu-
nately, the light transmission rate of these films is too low. For that reason, many
manufacturers rely on sampling inspection by human eyes.
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Therefore, it is necessary to find a method to inspect wheel mark defect through
backside film to ensure the quality of the backgrinding process.

2 Method

Although the ultra-thin wafer handling is very difficult, it is a widely acknowledged
technology. Generally, a thin wafer having an edge support ring is called as metal film
frame or wafer ring frame. A wafer ring frame is used to hold the tape and carry a wafer
as non-contact handling. This kind of step is wafer mounting process. This step is
necessary for not only wafer handling but also wafer dicing. After wafer backgrinding,
die is separated from a wafer. There are many methods for wafer dicing such as
mechanical sawing (dicing saw) and laser cutting.

Fig. 1. (a): a normal wafer, (b): a close-up of surface of (a), (c): a wafer with wheel mark defect,
(d): a close-up of wheel mark defect.
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During dicing, a wafer is mounted on a dicing tape. The dicing tape has different
properties depending on the dicing application. The dicing tape can be made of PVC,
polyolefin, or polyethylene backing material with an adhesive [7]. And some tapes
have UV curable properties. UV tapes are made to reduce adhesive strength by
exposure to ultraviolet light after dicing. There is a wide variety of tapes and films to
choose from. Unfortunately, most of them are not made for visible properties. The
backside films have rough particles and opaque properties, which makes it hard to
detect wheel mark defects by a visual system.

Figure 1(a) is an image of a good wafer, which was captured by the proposed
system. The pixel resolution was 20 um. Figure 1(c) is an image with wheel mark
defects. Figure 1(d) is an original scale image of the position of wheel mark defect. It is
very hard to find defect signals because the contrast of defect is too low while the noise
level is quite high. Figure 1(b) is an original scale image of normal position. There is
no big difference between two images. This is the reason why detecting wheel mark
defects through backside film is a challenge. Wheel mark defects appear like a wave
from the center of the wafer. The interval in concentric circles between each wheel
mark is almost the same. It is a key characteristic. We focused on this signature and
here, we propose a method to find wheel mark signals in polar coordinates.

2.1 Pre-processing

We used a wide-line scanning camera to grab the image of the wafer at one time-point.
The number of pixels is 16,000 and field of view(FOV) is 320 mm. The uniformity of

Fig. 2. (a): an original image, (b): a vignetting corrected image, (c): a image with Gaussian
smoothing filter (r = 1, kernel size = 5 � 5), (d): a vignetting corrected image with Gaussian
smoothing filter
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illumination is important in this system because the wheel mark signal is too low while
the noise level is too high. Unfortunately, it was impossible to get an image with good
uniformity for full FOV. Therefore, vignetting correction is an essential part of
pre-processing to improve wheel mark signals. To correct for illumination vignetting
effects in an image, often the easiest way is to get an empty field in advance [8]. A key
characteristic of illumination vignetting effects in our system is the same effects for
each vertical line. To characterize a vertical vignetting, we used the average intensity of
vertical line in the center to make an empty field.

Pixel greyscale values are defined as I(x, y). ImeanðxÞ is the mean intensity profile
and Imedian is the median value across the profile. The correction function is determined
as follows

IcorrectionðxÞ ¼ Imedian � ImeanðxÞ ð1Þ

The vignetting-free image is Icorrectionðx;yÞ as

Icorrectionðx; yÞ ¼ Iðx; yÞþ IcorrectionðxÞ ð2Þ

Figure 2(b) is vignetting-free image given by (2). Figure 2(b) has noise signals
such as an electronic noise. Particularly, the film on wafer makes a lot of noise signals.
Normally, a thin wafer is mounted on the back side film and DAF. The textures of films
are rough. So, we need a noise reduction. The 2D Gaussian smoothing filter is widely
used to reduce noises for years [9, 10]. The value of each element in the 2D Gaussian
function can be defined by (3) [9]

Gðx; yÞ ¼ e
�ðx2 þ y2Þ

2r2 ð3Þ

It is possible to use this 2D distribution as a point spread function for image and it is
replaced by convolution. A noisy image is Tðx; yÞ and it is convolved with Gaussian
function. Gðx; yÞ is impulse response function. G1 is Gaussian smoothing filter of
5 � 5 kernel size with r = 1. (varying x and y between −2 to 2)

G1 ¼

0:0030 0:0133 0:0219 0:0133 0:0030
0:0133 0:0596 0:0983 0:0596 0:0133
0:0219 0:0983 0:1621 0:0983 0:0219
0:0133 0:0596 0:0983 0:0596 0:0133
0:0030 0:0133 0:0219 0:0133 0:0030

2
66664

3
77775

ð4Þ

T1 is an image matrix made by Icorrectedðx; yÞ then the convolution is given by:

Z ¼ T1 � G1 ð5Þ

Z is an image matrix of a corrected image from noise and vignetting. Figure 2(d) is
a result image of it.
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2.2 Finding Center of Wafer

It is necessary to find the exact center point of the wafer because defects of wheel mark
generally occur from the center of the wafer. But wafers under 200 mm diameter have
flat cuts and wafers of 200 mm diameter and above have a single small notch. Both are
made to convey wafer orientation. And a thin wafer has an edge that is prone to cracks.
These factors make it difficult to calculate the center point of the wafer. Therefore, a
method of Circle Curve Fitting [11] is needed to find the exact center point of the wafer
without error points.

To find the fine edge of the wafer by Circle Curve Fitting, at first, we need to detect
a candidate circle. We searched for the edges from the center of the image to the edge
of the image with the edge gradient direction. Finding the edge with every direction is
the best way but it is good enough to find 0 and 90° only with changing position to
reduce the complexity of calculating direction. W is a data set to represent wafer edge.
The least square method is a widely used method to get the approximate solution of
overdetermined systems [11]. The best fitting ellipse is defined as a collection of points
(x, y) of satisfying the following implicit Eq. (7).

x2 þ ay2 þ bxyþ cxþ dyþ e ¼ 0 ð6Þ

To simplify the following analysis, we subtract x2 from both sides of the equality
sign, which can be reduced to

ay2 þ bxyþ cxþ dyþ e ¼ �x2 ð7Þ

The analysis method of least square is a standard approach to the approximate
solution of overdetermined systems. But it is complicated for some equations which
have many parameters. So, we use an algebraic method using pseudo inverse method
[12]. The matrix equation for (8) is (9)

y21 x1y1 y1 x1 1

..

. ..
. ..

. ..
. ..

.

y2n xnyn yn xn 1

0
B@

1
CA

a
b
c
d
e

0
BBBB@

1
CCCCA

¼
�x21
..
.

�x2n

0
B@

1
CA ð8Þ

The pseudo inverse has the following properties.

X ¼ pinvðAÞB
¼ ðATAÞ�1ATB

ð9Þ

(8) can be solved by using pseudo inverse (9) [12]. Following this process, we were
able to find the best fitting ellipse of the wafer and C is the center point of the wafer
from that.
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2.3 Extracting Periodic Feature in Polar Coordinates

Wheel mark defects have an arc shape from the center of the wafer to outside. And this
defect is repeated on the wafer with similar intervals in a circle. A signal of individual
defects is very weak, so it is difficult to detect with a typical surface inspection method.
Therefore, we used the Fourier transform in polar coordinates to observe the periodic
features and check that there are signals repeated at a specific frequency.

r is a radius of a wafer which was calculated in the previous step. Kr is a circle
which is centered at C and has a radius of r. Kn is a concentric circle with Kr and has a
radius of n. Rn is a data set of points on the circle Kn. RnðtÞ is an intensity of the image
at the position which is given by (10)

RnðtÞ ¼ pðr � cosðtÞ; r � sinðtÞÞþ c ð10Þ

Fig. 3. (a): R75 of (d), (b): blue SNR of defect wafer and orange is SNR of good wafer, (c): good
wafer for test, (d): defect wafer for test (color figure online)
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We can get the amplitude in the frequency domain using Fourier transform. Tn is a
result of Fourier transform of Rn. Rn is a data set of points on concentric circles with the
wafer with different radius. So, Tn means a result of Fourier transform of points on
concentric circles with a radius of n.

Figure 3(a) is a result of Fourier transform of R75 (the radius is 75 mm). Sn is a
maximum value of Tn. Sn means a signal of wheel mark. Nn is a noise signal of Tn. The
signal of wheel mark only exists in low frequency. Tnh is a high frequency part of Tn.
(over 150 Hz) Nn is a mean value of Tnh. Nn means a noise signal of background. We
can analyze wheel mark defects by calculating Signal to Noise Ratio (SNR)

Sn ¼ MAXðTnðxÞÞ
Nn ¼ MEANðTnðxÞÞ ðif x[ 150hzÞ ð11Þ

SNRn ¼ Sn
Nn

ð12Þ

Figure 3(b) shows that the wheel mark signal at 75 mm position in defect wafer is
10.24. To calculate SNR for the whole wafer, we measure SNR from 45 mm to
145 mm at intervals of 15 mm. A SNR of a defect sample wafer is 9.08 and a SNR of
the normal wafer is 2.41. The result shows that the proposed method amplifies the
wheel mark signals to distinguish between the good and defects.

3 Experiment and Result Analysis

Today, most production lines for frontend processes are fully automated. In contrast to
frontend process, the backend process is not yet automated enough. Products are still
carried by people and examined by human eyes in some backend lines. Because there is
no proper inspection equipment to inspect many kinds of defects, sometimes human
inspectors make different judgments about the same defects. As the standards for
judgment are always changing according to person and time, critical and huge defects
are often overlooked. In addition, new defects may occur during human handling of the
products. In order to solve these problems, we made the first inspection application to
the production line to inspect backside of the wafer with a consistent condition.

In order to test its reliability for cases of mass production, we made an inspection
zone in Equipment Front End Module (EFEM). EFEM is used to transfer wafers in a
clean environment. It is located in front of the process modules and passes wafers
between the carriers such as FOUP and FOSB. Figure 4 is a blueprint of our system.
The purpose of EFEM is to transfer wafers from FOUP to process module using Wafer
Transfer Robot (WTR). We integrated an inspection module into EFEM to eliminate
the need for additional steps and space. This EFEM, which gets the back side
inspection zone has the same throughput as the original version. This is an advantage in
terms of efficiency.
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We tested a variety of defect sample wafers for a while. Actually, the inspection
module was made to inspect many kinds of defects. The number of wheel mark defects
found during the evaluation period was only 13. The lack of samples was a big factor
that made this problem difficult. The number of other defects found the same period was
103. We compared these two groups. Figure 5 is the result of the evaluation. The
average SNR of defects is 7.51 and the average SNR of the normal wafer is 2.80. The
maximum value of SNR of the normal wafer is 3.4. And standard deviation of it is 0.34.
This means that only the wheel mark signal could be amplified by the proposed method.

The results from this application to a mass-production line resulted in the satis-
factory management of backgrinding wheel defects. After some refinements, this
method can contribute for the engineering of backend packaging process.

Fig. 4. A diagram about the data set of concentric circles in a wafer

Fig. 5. A result of evaluation
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4 Conclusions

To detect wheel mark defects on the back side of the wafer through films, we reduced
the noise from backside films using vignetting correction and Gaussian smoothing. And
we extracted the edge of the wafer and found the center point of the wafer by Circle
Curve Fitting using a pseudo inverse method. And we got an intensity of points, which
are on the concentric circle with the wafer. Then we measured a signal of wheel mark
using Fourier transform in polar coordinates. And we also measured a noise signal,
which represents the background. We used both signals to define SNR of wheel mark.
The average SNR of defect wafers is 7.51 and the average SNR of good wafers is 2.80.
The ratio of defects to normal is 2.68. The test result showed that the proposed method
to find wheel mark signal in polar coordinates seems to have enough potential for
applications to the actual production of products in factories.
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Abstract. The matched filter is an effective method for the detection of retinal
vessels when combined with other processing techniques. This paper presents a
segmentation method to improve the extraction of retinal vessels based on the
matched filter. The method combines a morphological approach to enhance
retinal vessels before applying the matched filter and a modified joint relative
entropy (MJRE) thresholding method to segment the matched filter response.
The morphological approach is designed to suppress irregular bright regions and
noise while preserving the information of vessel edges, and to improve the
contrast of vessels, especially thin ones. The joint relative entropy thresholding
is modified to provide an optimal threshold value for segmenting the retinal
vessel tree properly. The proposed method is tested on the DRIVE dataset,
yielding an average accuracy, specificity and sensitivity of 0.9546, 0.9742 and
0.7527 respectively. Experimental results demonstrate that the proposed method
achieved better performance than the state-of-the-art methods.

Keywords: Retinal vessel � Mathematical morphology � Matched filter � Joint
relative entropy

1 Introduction

Retinal blood vessels have been widely used in the medical society for pathological
diagnoses. The physical appearance of blood vessels plays an important role in the
diagnosis and treatment of many diseases such as hypertension, glaucoma, arte-
riosclerosis and diabetic retinopathy. Detecting blood vessels in retinal image is per-
formed manually in some cases. The manual segmentation of retinal blood vessels is a
time-consuming process and requires remarkable skills [1, 2]. Hence, an automated
segmentation of retinal blood vessels using computer algorithms would be highly
desirable for medical diagnoses. However, the development of an automated method
for retinal vessel segmentation faces several challenges such as low intensity contrast
between thin vessels and the background, and the presence of noise and other retinal
structures [1]. Many methods have been presented in the literature [1, 3–14] for the
segmentation of blood vessels from retinal image. These methods have achieved great
progress in the segmentation of retinal vessels. However, the following aspects are
required to be improved for better segmentation results.
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• Some of the enhanced methods are associated with one or both of the following two
problems. The first problem is that noise is exaggerated when the contrast of vessels
is improved. The second is losing small and weak vessels, or some part of a vessel,
when noise is removed. These problems are because the intensity contrast between
vessels, especially thin ones, and background is relatively low. It is important to use
an enhanced method that can reduce the effects of these problems on the vessel
detection.

• False detection might result from presenting irregular bright regions such as exu-
dates and central light reflexes. Exudates can have higher contrast and be mis-
classified as vessel pixels. Central light reflex may present as a bright strip along the
center of a wider vessel, which leads to detecting the vessel as two small ones. Also,
when these bright regions are removed, some vessel pixels are misclassified as
background. The segmentation method should be concerned with the influence of
these regions.

• A thresholding method should provide the optimal value that distinguishes vessel
pixels from background pixels properly. At the same time, the resultant retinal
vessels should be linked in order to provide a good visual appearance. This is
crucial to enable the underlying shape of vessels to be identified.

The contribution of this paper is to improve the mentioned aspects for obtaining
better segmentation results. This is achieved by combining a morphologically enhanced
approach and a modified joint relative entropy (MJRE) thresholding method with the
matched filter. The morphological approach is applied before using the matched filter
to remove noise and irregular bright regions, preserve the information of vessel edges,
and improve the contrast of vessels. The joint relative entropy thresholding is modified
in a way to provide an optimal threshold value for extracting the retinal vessel tree from
the matched filter response properly. Also, the MJRE thresholding method can provide
a better threshold value than other thresholding methods used to segment the matched
filter response.

The rest of the paper is organized as follows. Section 2 presents the proposed vessel
segmentation method. Results are discussed in Sect. 3 and conclusion is given in
Sect. 4.

2 The Proposed Vessel Segmentation Method

The proposed vessel segmentation method includes several operations. The green
channel of the retinal image is firstly extracted for its higher contrast than the other
channels (red and blue). Then, a morphological approach is applied to the green
channel for the removal of noise and irregular bright regions, and vessel contrast
enhancement while preserving the information of vessel edges. The matched filter is the
next operation to detect retinal vessels in the morphologically enhanced image. After
that, the matched filter response is segmented by a modified joint relative entropy
thresholding method. The final step is area filtering operation to suppress small
unwanted and isolated regions that do not belong to the vessel tree.
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2.1 Morphological Approach

Dilation and erosion are the basic morphological operations that are used for detecting,
modifying and manipulating features presented in an image based on their shapes. The
dilation and erosion of an image I by a structuring element SE are defined as I � SE
and I� SE respectively. Other morphological operations such as opening and closing
are built by performing a series of dilation and erosion operations. The opening of an
image I by a structuring element SE (denoted by I � SE) is an erosion operation
followed by a dilation operation. The closing of an image I by a structuring element SE
(denoted by I � SE) is a dilation followed by an erosion [15, 16].

The green channel of retinal image includes the vessel structure, optic disk, heavy
background noise and occasionally irregular bright regions. As the intensity contrast
between vessels, especially narrow and small ones, and background is relatively lower,
the enhancement of vessel structure is associated with problems of exaggerating noise
when improving contrast, and losing some vessel pixels when removing noise. Irregular
bright regions might also appear in the retinal image because of the presence of exudates
or the reflection of artefacts, which can result in false detection. Exudate lesions are
higher intensity pixels that may complicate the detection process of vessels and present
in the final segmented vessel tree. The central light reflex may present as a bright strip
along the center of a wider vessel. This strip can result in detecting a vessel as two small
ones when it is strong. Moreover, if two vessels lie two close to each other, they might
be merged in the detection process as one wider vessel. Therefore, there is a need to
design an enhanced method that can reduce the effects of these problems on the vessel
detection. This can be achieved by an opening-by-reconstruction operation and a bottom
hat transformation.

The opening-by-reconstruction operation is applied to the green channel to remove
irregular bright regions, and reduce the risk of merging close vessels together and
missing small and narrow vessels. Applying the opening-by-reconstruction involves
two steps. The first one, the green channel is eroded to suppress bright regions that have
a smaller size than the structuring element. The next step is reconstructing image by
dilating eroded image iteratively to restore the contours of components that have not
been completely removed. The eroded image is used as the marker image and the green
channel is the mask image for reconstruction. Assume Gr be the green channel of a
retinal image and SE be a structuring element, the opening-by-reconstruction operation
is defined as:

Fr ¼ RGðGr� SEÞ ð1Þ

where Fr is the resultant image from opening-by-reconstruction operation (recon-
structed image). The notation � denotes the opening-by-reconstruction operation.

Bottom hat transformation can improve the contrast of dark objects on a light
background. It extracts dim regions that are smaller than the structuring element [16].
Therefore, since retinal blood vessels appear darker compared to the background, this
transformation can enhance the contrast of retinal vessels. Bottom hat transformation is
built by subtracting input image from its closing, where the input image is the image
Fr. The bottom hat transformation can be expressed as
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Bd ¼ Fr � SEð Þ � Frð Þ ð2Þ

where Bd is the resultant image having dim regions. Then, these dim regions (Bd) are
subtracted from the reconstructed image (Fr) to improve the contrast of vessels and
remove small components of noise that are associated with vessels. The enhanced
image is given as:

Ienhanced ¼ Fr � Bd ð3Þ

where Ienhanced is the enhanced image. By using Eqs. (1) and (2) in Eq. (3), the
morphologically enhanced image can be rewritten as:

Ienhanced ¼ ðRGðGr� SEÞÞ � ððRGðGr � SEÞÞ � SEÞ � ðRGðGr� SEÞÞf g ð4Þ

Moreover, selecting the appropriate structuring element (SE) is important into the
performance of the used morphological approach. Since the vessels have uncertain
direction and are symmetric, the disk structuring element is the optimal type to be used.
Its radius is determined experimentally and set to 4 to preserve the information of major
vessels when noise and bright regions are removed.

2.2 Matched Filter

The matched filter (MF) is a template matching method which is used in the detection
of blood vessels in retinal images. The MF was firstly designed by Chaudhuri et al. [9]
based on the assumption that the cross-sectional intensity profile of a retinal vessel
might be approximated by the Gaussian shaped curve. The two-dimensional matched
filter kernel is built based on the Gaussian function to detect blood vessels in the
enhanced image (Ienhanced). According to [9], such a kernel can be expressed as:

K x; yð Þ ¼ �e
�x2

2r2

� �
8 yj j � Ls

2
ð5Þ

where r is the spread of the intensity profile and Ls is the length of the vessel segment
assumed to have a fixed orientation. The values of Ls and r are set to 9 and 1.2
respectively. To detect retinal vessel in all possible orientations, the kernel is rotated
from (0° to 180°) by angular resolution of 15° using the rotation matrix, which is
shown in Eq. (6). Then, a set of twelve kernels with a size of 16 	 15 is convolved
with the enhanced image and only the maximum response is taken for each pixel.

ri ¼ cos hi � sin hi
sin hi coshi

� �
ð6Þ

Once the MF response is obtained, it is multiplied by a mask. The mask is used to
label pixels that belong to the region of interest (ROI) in the retinal image, removing
pixels outside the ROI. The mask is generated by two steps. The first step is thresh-
olding the green channel; in the next, erosion operation with a disk structuring element
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of radius 3 is subsequently applied to the thresholded image. Let Ms be a mask, the
matched filter response (MFÞ may be defined as:

MF ¼ CONV Ienhanced;Kð Þ 
Ms ð7Þ

where 
 is the notation for element-wise multiplication.

2.3 Modified Joint Relative Entropy Thresholding

Grey level co-occurrence matrix (GLCM) is one of a widely used feature extraction
techniques in image processing. It was introduced by Haralick et al. [17] to acquire the
spatial dependence of grey level values. The values of GLCM demonstrate related
frequencies of pij in which two neighbouring pixels with constant distance of d, one of
them with grey level of i and the other with grey level of j occur on the image [18].
Assume an image of size M X N with L grey levels denoted by G = {0,1,2,…., L−1}
and consider f x; yð Þ be the grey level of the pixel at the spatial location x; yð Þ. Then, the
image can be defined as F = ½f x; yð Þ�M X N , where f x; yð Þ 2 G. A co-occurrence matrix
of an image is an L X L square matrix, which is denoted by W = ½tij�LX L, where tij
represents the number of transitions from grey level i to grey level j. In other words,
each entry in the matrix tij indicates the number of times that the pixel grey level
j follows the grey level i in some pattern [11, 19, 20]. The co-occurrence matrix of the
MF response is computed to acquire the special distribution of the grey levels of retinal
vessels. In this paper, the value of tij is calculated as follows, where the angle between
two pixels is considered as 0° and the distance is set to 1.

tij ¼
XM

m¼1

XN

n¼1

1 if f m; nð Þ ¼ i and f m; nþ 1ð Þ ¼ j
0; otherwise

�
ð8Þ

The desired transition probability Pij from grey level i to j can be obtained by
normalizing the total number of transitions in the co-occurrence matrix as:

Pij ¼ tij=ð
XL�1

k¼0

XL�1

l¼0
tklÞ ð9Þ

Assume t be the value used to threshold an image. Then, the co-occurrence matrix
is divided by t into four quadrants: A, B, C and D. The quadrants A and C represent
grey level transitions within background and foreground respectively. The quadrants B
and D represent the grey level transitions across the boundaries of background and
foreground. In other words, these quadrants (B and D) include edge information on
transitions from background to foreground and foreground to background. The four
quadrants are grouped into two classes. The first class is local quadrants that are A and
C. The second class is B and D, which are known as joint quadrants [19–21]. In this
work, the joint quadrants (B and D) are only considered. Figure 1 shows an example to
calculate the co-occurrence matrix and its quadrants of an image, where t is set to 2.
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The probability of each quadrant can be defined as follows [21]:

Pt
A ¼ Pt

i¼0

Pt
j¼0 Pij Pt

B ¼ Pt
i¼0

PL
j¼tþ 1 Pij

Pt
C ¼ PL�1

i¼tþ 1

PL�1
j¼tþ 1 Pij Pt

D ¼ PL�1
i¼tþ 1

Pt
j¼0 Pij

ð10Þ

The relative entropy has been used to measure the information distance between two
probability distributions. The relative entropy is smaller when the two probability dis-
tributions are closer to each other. Assume two sources with L grey levels be described
by probability distributions (p and h). The relative entropy between p and h is defined by

Jðp; hÞ ¼
XL�1

j¼0
pj log

pj
hj

ð11Þ

The entropy Jðp; hÞ is computed as h relative to p, where p is considered as the
original image, while h is the processed image which tries to match p [19, 21].
A second order joint relative entropy is defined as:

J pij
� �

; htij
n o	 


¼
XL�1

i¼0

XL�1

j¼0
pij log

pij
htij

ð12Þ

Then, the conditional probabilities of the quadrants B and D are expressed as:

htijjB ¼ qtB ¼ Pt
B

ðtþ 1ÞðL�t�1Þ htijjD ¼ qtD ¼ Pt
D

ðL�t�1Þðtþ 1Þ ð13Þ

This paper utilizes the studies in [19, 21, 22] to propose a modified thresholding
method. The modified joint relative entropy (MJRE) thresholding method for seg-
menting the MF response is designed as follows:

(1) The probabilities of the quadrants B and D (Pt
B and Pt

D) are calculated as shown in
Eq. (10):

(2) The probabilities of these quadrants (B and D) are multiplied by two constant
values (f 1 and f 2 respectively) as follows.

P0t
B ¼ Pt

B � f 1 P0t
D ¼ Pt

D � f 2 ð14Þ

where f 1 and f 2 are experimentally examined and set to 0.168 and 0.01
respectively.

Fig. 1. (a) An original image, (b) the co-occurrence matrix.
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(3) The conditional probabilities of the joint quadrants are obtained as:

ĥ
t
ijjB ¼ q0tB ¼ P0t

B
tþ 1ð ÞðL�t�1Þ ĥ

t
ijjD ¼ q0tD ¼ P0t

D
L�t�1ð ÞðLþ 1Þ ð15Þ

Note that the term Lþ 1ð Þ is used in Eq. (15) rather than the term ðtþ 1Þ, which is
used in Eq. (13) when calculated the qtD.

(4) The maximum entropy is taken instead of the minimum one as the optimal
threshold value.

t0jre ¼ arg maxt2L ĤjreðtÞ
� � ð16Þ

where Ĥjre tð Þ ¼ �ðP0t
B log q

0t
B þP0t

D log q0tDÞ. The value t0jre is the threshold value
used to segment retinal vessels from the MF response. The segmented image
contains small unwanted and isolated regions caused by noise and pathological
changes. These regions are wrongly classified as vessels. They can be removed
based on the connectivity of retinal vessels. Each region connected to an area less
than 40 pixels is removed and reclassified as background.

3 Results and Discussion

The proposed method is tested on a well-known database, DRIVE. This database
includes 40 retinal images, which were taken from a diabetic retinopathy screening
program in the Netherlands. The images were captured by a Canon CR5 3CCD camera
with a FOV (field of view) of 45°, with a resolution of 565*584 pixels and 8 bits per
color channel. The database is divided into two sets: a training set and test set, each
consisting of 20 images. They were manually segmented by three observers trained by
an experienced ophthalmologist. The images in the test dataset were segmented twice by
two different observers, resulting into two sets: A and B [1, 2]. The performance of the
proposed method is only evaluated on the test dataset using the segmented images in the
set A (1st_manual) as a ground truth. To evaluate the performance of the proposed
method, sensitivity, specificity and accuracy measures are computed as follows.

Sensitivity ¼ TP=ðTPþFNÞ ð17Þ

Specificity ¼ TN=ðTN þFPÞ ð18Þ

Accuracy ¼ ðTPþ TNÞ= TPþ TNþFPþFNð Þ ð19Þ

where TP (True Positive) represents the number of correctly classified vessel pixels. TN
(True Negative) is the number of correctly classified non-vessel pixels. FP
(False Positive) represents the number of non-vessel pixels incorrectly classified as
vessel. FN (False Negative) is the number of vessel pixels incorrectly classified as
non-vessel. Sensitivity shows the ability of the proposed method to detect the vessel
pixels. Specificity demonstrates the ability to detect the non-vessel pixels. Accuracy
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represents the ratio of the correctly detected vessel and non-vessel pixels to the number of
pixels in the image FOV [2]. Figure 2 shows the segmentation results of the proposed
method. Sensitivity, specificity and accuracy measures are calculated for each retinal
image in the test dataset as shown in Table 1.

a                           b                               c 

Fig. 2. (a) The green channel, (b) the ground truth, (c) segmentation results by the proposed
method.

Table 1. Segmentation results on the DRIVE test dataset.

Image Sensitivity Specificity Accuracy

1 0.8222 0.9688 0.9558
2 0.8270 0.9659 0.9517

3 0.6710 0.9839 0.9527
4 0.7782 0.9723 0.9545
5 0.6976 0.9866 0.9595

6 0.6497 0.9870 0.9542
7 0.7577 0.9655 0.9465

8 0.6923 0.9737 0.9495
9 0.6925 0.9837 0.9601
10 0.7125 0.9826 0.9604

11 0.7595 0.9578 0.9400
12 0.7403 0.9774 0.9570

13 0.7212 0.9774 0.9524
14 0.8003 0.9644 0.9511
15 0.8423 0.9519 0.9441

16 0.7668 0.9765 0.9576
17 0.7382 0.9772 0.9570

18 0.7889 0.9746 0.9599
19 0.8257 0.9791 0.9664
20 0.7700 0.9768 0.9616

Avg. 0.7527 0.9742 0.9546
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As shown in Table 1, the maximum accuracy, specificity and sensitivity are 0.9664,
0.9870 and 0.8423 respectively. In contrast, the minimum results are 0.9400, 0.9519
and 0.6497 respectively. The average accuracy, specificity and sensitivity of the pro-
posed method are 0.9546, 0.9742 and 0.7527 respectively when applied on the test
dataset (20 images). For comparative purposes, the average accuracy, specificity and
sensitivity are reported in Table 2.

The performance of the proposed method is compared with 13 different segmen-
tation methods in Table 2 using the same dataset in terms of average accuracy,
specificity and sensitivity. These methods are based on region growing [1], supervised
learning [3–5], modelling [6], multi-scale line detection [7], morphological bit plane
slicing [8], and matched filter [9–14] methods. The matched filter studies [9–14] used
different thresholding methods to segment the MF response. The vessel tree of the
classical MF [9] and Kumar et al. [12] methods were obtained by filtering. Kande et al.
[10] and Singh et al. [11] used the local entropy thresholding. Zhang et al. [13] and
Odstrcilik et al. [14] applied a global thresholding and the Kittler minimum error
thresholding methods respectively. The segmentation results of Soares et al. [5] and
classical MF [9] methods are obtained from the method [1, 3] respectively. The results
of the other methods are taken from their original studies.

As shown in Table 2, the proposed method obtains a better performance than other
vessel segmentation methods. It achieves a higher average sensitivity than the reported
methods, which means that the proposed method detects more vessel pixels than them.
In terms of average accuracy, the proposed method is higher than the other methods
except the method in [12]. The method [12] produced an average accuracy of 0.9626,
while the average accuracy of the proposed method is 0.9546. However, the method
[12] misclassified some vessel pixels as non-vessel and increased the FN. This resulted
in an average sensitivity of 0.7006, which is lower than the sensitivity of the proposed

Table 2. Comparison of different vessel segmentation methods on the DRIVE test dataset.

Method Average accuracy Average specificity Average sensitivity

Zhao et al. [1] 0.9477 0.9789 0.7354
Marín et al. [3] 0.9452 0.9801 0.7067
You et al. [4] 0.9434 0.9751 0.7410
Soares et al. [5] 0.9446 0.9762 0.7230
Lam et al. [6] 0.9472 – –

Nguyen et al. [7] 0.9407 – –

Fraz et al. [8] 0.9430 0.9768 0.7152
Classical MF [9] 0.8773 – –

Kande et al. [10] 0.9437 – –

Singh et al. [11] 0.9459 0.9721 0.6735
Kumar et al. [12] 0.9626 – 0.7006
Zhang et al. [13] 0.9382 – 0.7120
Odstrcilik et al. [14] 0.9340 0.9693 0.7060
The proposed method 0.9546 0.9742 0.7527
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method (0.7527). Regarding specificity, the methods [1, 3–5, 8] produced higher
specificity than the proposed method. Nevertheless, the proposed method obtains
higher accuracy and sensitivity than these methods, and the specificity of the proposed
method is also higher (0.9742).

According to the experimental results, the proposed segmentation method provides
encouraging results and a better performance compared to the other vessel segmenta-
tion methods. The proposed method is able to segment both thin and wide vessels.
Suppressing noise and irregular bright regions while preserving the information of
vessel edges results in making the contrast between vessels and the background rela-
tively higher, helping to extract more vessel pixels, and decreasing false detection.
Designing the matched filter kernel with Ls of 9 and r of 1.2 contributes to detecting
different vessel sizes and producing better detection results. Also, using the MJRE
thresholding method for segmenting the MF response provides a better threshold value
than the local entropy thresholding, the global thresholding and the Kittler minimum
error methods, which were also used to segment the MF response in the literature. This
leads to increasing the TP and TN results, decreasing the FN and FP results, and
producing a well linked structure with more vessels. The parameter f 1 in the used
thresholding method can be set between the range of (0.167-0.173). It is set to 0.168 to
produce better thresholding results on the DRIVE database. It can be adjusted to
provide an optimal threshold value when applied to other databases. The proposed
method does not require any training data for the extraction of vessels. It is an unsu-
pervised method. Regarding the execution time, the proposed method runs on a PC
Intel ® Xeon® 3.10 GHz CPU and 4 GB RAM using MATLAB software. It takes
1.14 s to segment a DRIVE retinal image. The main drawback of the proposed method
is that false detection can occur around the optic disk and in some pathological regions.

4 Conclusion

This paper proposes a segmentation method by combining a morphological approach
and a modified joint relative entropy thresholding method with the matched filter. The
morphological approach is applied to the green channel to suppress noise and irregular
bright regions, to preserve the information of vessel edges, and to improve the contrast
between the vessels and background. It is built using an opening-by-reconstruction
operation and a bottom hat transformation. The opening-by-reconstruction operation is
used to remove irregular bright areas, and reduce the risk of merging close vessels
together and missing of small and fine vessels. The bottom hat transformation removes
noise and improves the contrast of vessels, especially thin ones. This is achieved by
subtracting small components which are smaller than the structuring element from the
reconstructed image. The matched filter is then applied to the enhanced image. The MF
response is segmented by the proposed MJRE thresholding method. The MJRE
thresholding method can provide a better threshold value for extracting retinal vessels
from the MF response than the other thresholding methods used to segment the MF.
The proposed segmentation method is tested on the DRIVE database, producing an
average accuracy, specificity and sensitivity of 0.9546, 0.9742 and 0.7527 respectively.
The method obtains encouraging results and a better performance compared to the
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existing segmentation methods. Combining the proposed morphological approach and
the MJRE thresholding method with the matched filter leads to detecting both thin and
wide vessels with a well-connected vessel structure. The main disadvantage of the
proposed method is its false detection around the optic disk and in some pathological
regions. The focus for future work is implementing a segmentation method that can
avoid the false detection produced from these regions.
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Abstract. Head pose estimation is an important problem in the field of
computer vision and facial analysis. We model the problem of head pose
estimation as a regression problem, where the three rotation angles (yaw,
pitch, roll) are functions of the face appearance. We make use of that fact
and learn the appearance of the face using a tree cascade of sparse Multi-
Variate Relevance Vector Machines (MVRVM). Our method is fast and
suitable for real-time applications as it is not computationally expen-
sive. Our method learns the face appearance to estimate the head rota-
tion angles. We evaluated our approach on two challenging datasets, the
YouTube Faces and the Point and Shoot Challenging (PaSC) dataset.
We achieved results of head pose estimation (yaw, pitch, roll) with mean
error less than 5◦ and with error tolerance less than ±4 on the PaSC
dataset. In terms of speed, one prediction takes around 6 milliseconds,
which is suitable for real-time applications and also with high frame rate.

Keywords: Head pose estimation · MVRVM · Cascade · YouTube
Faces · PaSC

1 Introduction

Due to many potential applications, head pose estimation has become one of
the most active and important topics in computer vision [12]. The problem can
be considered as a sole problem to be solved and tackled, or as an important
part of a bigger system. For example, it can help in gaze estimation problems.
Valenti et al. [17] combined head pose with eye location to solve gaze estimation
problem.

As outlined in [12], the problem of head pose estimation has been framed
as a crucial factor in the field of facial analysis, in case robustness to pose is
required in an application. For example, in implementing a gender classifier, a
pose estimator can be an important pre-processing step in the system.

The problem can be addressed as a classification problem, where the system
can try to classify the face in one of the main rotations, like left profile, right
profile, semi profile on both sides and frontal face. An SVM could be sufficient
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 240–250, 2017.
DOI: 10.1007/978-3-319-64689-3 20



Sparse MVRVMs Tree for Fast and Accurate Head Pose Estimation 241

in that application. However, if we add more possibilities, the number of classes
will be very big in a way a classifier can fail at. Thus, to predict a wide range of
angles, we model the problem as a regression problem, where we provide data in
the training phase, and our approach can learn the data, and use it to estimate
the three rotation angles at a time.

Our approach builds a tree cascade of regressors, where each node in the
tree is trained in subset of the training dataset. We estimate the three rotation
angles with the cascade tree of Multi-Variate Relevance Vector Machines [16].

Fig. 1. Sample frames from the PaSC dataset [3]. The top images are from the control
subset videos (steady camera). The bottom frames are from the hand-held videos.
Hand-held have lower quality and resolution. The dataset have videos captured indoor
and outdoor. The persons walk during the video, thus we have different, continuous
head poses

Although we build over previous work where MVRVM was used for head
pose estimation [15], we significantly improve over this work by building a more
complex structure of MVRVMs that yields less error. The work in [15] was limited
to single subject only. However, with our new tree structure, we generalized the
method for faces of unseen subjects. Moreover, We trained MVRVM models with
better input angles generated by state of the art head pose estimation algorithm
by [2]. Moreover, we validated our new approach for generalization and worked
with more challenging datasets, the PaSC [3].

2 Related Work

In recent time, head pose estimation attracted more interest in the computer
vision community. Different approaches have been investigated in solving this
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problem. Some researchers work on 2D facial images [5,10,13], and others work
on 3D data [4,8]. For the methods that use AAMs [5] or any specific facial
feature, their estimation is dependent on specific features detection, like facial
landmarks, thus, making that error prune. In case an error exists in the features
detection, it propagates to the head pose estimation.

In the approach proposed by [7], 3D data is used. The 3D data requires special
hardware for capturing. In fact, that makes their approach limited to this type
of data and cannot be applied on 2D video sequences. Besides, the work done
by [11] uses both color data and depth data. They base their estimation on the
point cloud data, they achieve very good results. However, comparing to these
approaches is not possible as we work with 2D images from video sequences.

Our work deals with 2D facial images. This problem was addressed before
in the work done by [19], however, they have a high error tolerance of ±15◦.
The problem of head pose was addressed in the work by [2], and they depends
on landmark detection. Thus, making head pose estimation depending on the
landmark detection. Having this constraint in their approach, they are limited
to angles of about −60 to +60◦, where enough landmarks are still visible. Our
proposed approach doesn’t rely on landmarks.

Previously, using MVRVMs in solving the problem in head pose estimation
was introduced in [15]. The idea was tested on videos of single subjects from
the YouTube faces dataset [18]. It was limited to one subject in the training,
in other words, it wasn’t generalized to work with any unseen subjects. In this
work, we go deeper into the MVRVMs by testing different kernel types. We also
work with larger dataset, the Point and Shoot Challenging dataset [3].

3 Methodology

As introduced before in the introduction and related work sections, we build our
approach on previous work by [15]. We used MVRVMs for head pose estimation,
where it was trained on a single subject. In this work, we want to reduce the
error in the estimated head rotation angles and validate the generalization of
our approach for unseen faces. For that we introduce the idea of building a more
complex structure, that doesn’t only have one single MVRVM to make the head
pose estimation, but the structure has a tree of MVRVMs. As we build upon
previous work, we use the same feature extraction method, which is a vector of
normalized pixel intensities extracted from the facial image.

Figure 2 shows an abstract overview of the proposed method. The detected
faces are fed into the feature extraction step, then the features and corresponding
angles are fed into the Root node of the cascade tree. The cascade is discussed
in details in the next subsection.

3.1 Cascade of Sparse Regressors

The cascade of the regressors is built in a tree structure. The yaw angle is used
in branching the tree, as it is the rotation angle of the head that has the widest
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factor = 3

Fig. 2. Overview of the input faces and the cascade tree of sparse MVRVMs

range. The yaw angle can start from −90◦ (left profile face) to +90◦ (right profile
face). At the root node in the tree, the MVRVM is trained on the input samples,
which consists of the features of each face and its corresponding three rotation
angles. Going to the next level of the tree, the number of children of the node is
determined by the branching factor b. If b = 3, the yaw angle range is split into
three ranges, and the data is filtered such that each node has the samples that
lie in the corresponding yaw angle range. The branching goes on untill we reach
the maximum depth of the cascade, or a node does not have sufficient data to
be learnt.

The resulting tree of MVRVMs, is used in the prediction process. The predic-
tion process starts from the root node. The root node is designed to give a rough
estimation of the head pose. Based on the predicted yaw angle, the child node
is chosen to be the next node used in the path while traversing the tree of the
cascade. The longest prediction path is predicting and improving the estimation
by d predictions, where d is the maximum depth of the cascade.

Although, free variables available in using MVRVM for solving the problem
of head pose estimation were optimized [15], we now introduce new free variable
that needs to be optimized. We carried out experiments to optimize those para-
meters, the tree branching factor and its depth. We also investigated different
MVRVM kernel types.

4 Evaluation and Results

In this section, we present the evaluation of our approach on challenging datasets
of persons captured in different conditions. These datasets have continuous head
pose variation. They vary in the background, illumination, indoor and outdoor
locations, resolution, etc. We show the results of the experiments on the datasets
to optimize the free variables in our approach. In general we optimize the kernel
width and type of the RVM. Moreover, we optimize the branching factor of
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the tree. Finally, we validate our approach for generalization purposes on large
subsets of the dataset.

4.1 Datasets

The standard datasets like FERET [14] has discrete specific values for head
pose. A continuous angles variation is an important feature that the dataset
must have to perform a proper evaluation of our regression-based approach.
Moreover, using real data captured in the wild is an important feature to assure
the validity of our algorithm on real-life scenarios. The Labeled faces in the wild
[9] is a challenging dataset in terms of occlusion, image quality, varying poses,
different illumination, etc. However, it does not provide sufficient samples for
each subject in different poses. Good candidates to the best of our knowledge
are the video datasets, YouTube faces [18] and the PaSC [3].

YouTube Faces Dataset. The YouTube faces dataset [18] is a challenging
dataset that has 3425 videos of 1595 different people. The authors of the dataset
provided the rotation angles of each frame in the dataset. They used face.com
API to provide the head rotation angles.

Point and Shoot Face Recognition Challenge (PaSC). In 2013, Beveridge
et al. produced the PaSC dataset [3]. They used inexpensive “point-and-shoot”
cameras. They collected 9376 still images and 2802 videos of 293 people. The
videos were recorded in different locations, outdoors and indoors, with varying
illumination and backgrounds. The authors provided meta-data with the dataset
that contains the face detection in the video frames. The head rotation angle was
provided by the PittPatt detector. The scenarios they had in the videos shows
the face from the right profile to the left profile in continuous motion, where
the yaw angles changes widely along the videos. Two video types were provided
in the dataset, hand-held and controlled subsets. In the hand-held videos, the
frames are very shaky and challenging. The controlled videos, have a stable
background. Both video types are challenging. Figure 1 shows sample images
from the dataset.

The rotation angles in the datasets were produced using the face.com API
for the YouTube Faces, and PittPatt for the PaSC (yaw angle only) dataset.
However, the work done by [2] focuses on facial landmarks detection, and can
estimate the head pose. We used their approach to generate estimations of the
head rotation angles. However, even this approach was challenged, as it was
unable to detect and track the landmarks in some hard frames of the detected
faces in the PaSC dataset. It worked with about 72% of the faces provided by the
meta-data in the dataset. However, we don’t need all the frames, as our approach
learns the head pose from appearance and can estimate it for any detected face.



Sparse MVRVMs Tree for Fast and Accurate Head Pose Estimation 245

4.2 Parameters Optimization

Choice of the Kernel and Its Size. As mentioned in Sect. 3, the kernel type
is chosen in a way that suits the data provided to the RVM. Kernel type affects
the accuracy of the training as it is the metric mapping the input to the output
of the RVM. We evaluated four kernel types (Gaussian, Linear, Bubble, and
Cubic) on the PaSC dataset subject videos and on the YouTube faces dataset.
The Gaussian kernel yields the least error in the yaw angle estimation, hence it
is the kernel that we used in the next evaluations. The kernel width has a strong
effect on the accuracy of the cascade (Fig. 3). In [15], the kernel was optimized
for the head pose estimation problem. It was varied starting from value 3 up to
50. The optimal value found was 13.
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Fig. 3. Comparing different kernel types on the PaSC dataset. Average errors in the
yaw angle estimation are shown with the standard deviation among all dataset videos.
Gaussian kernel yields the least error.

Grid Size. In the work [15], the result of optimizing the face grid size to was
reported to be 15 × 15. Here we build upon these results, and proceed to build
the cascade tree for solving the problem of head pose estimation.

4.3 Branching Factor

The tree branching factor affects the accuracy of the estimations. We variate
the branching factor of the cascade tree from 2 splits up to 5 splits. Having
more than 5 splits makes the range very small in the child nodes. We start the
optimization at branching factor of value 2, which is the minimum number of
splits possible. When the branching factor was more than 4, the number of input
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samples decreased quickly in the tree, h ence, resulting in a shallow tree. The
branching factor with the least error was 3. We set the root node to have only
two children, thus classifying right or left profile faces. Further children in the
tree have branching factor of 3. Based on that setup, the leaf nodes of the tree get
very small range of angles after depth of 3. Consequently, we set the maximum
depth to be 3 levels.
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Fig. 4. The effect of the branching factor on the mean error in the head rotation angles
(left). The effect of the number of the branching factor on the tree nodes count (right),
using the YouTube faces dataset

Figure 4 shows the effect of varying the branching factor on the YouTube
dataset. The results are the average of 4-fold cross validation on all the 1595
subjects in the dataset. In Fig. 4, we see that the 3 splits has the most number of
nodes, which means a better representation of the data in the cascade tree. It also
follows that the least average error on the main head rotation angle, the yaw, is at
3 splits. Considering the presented evaluations, we optimized the free parameters
in our approach by 4-fold cross validation experiments which considered all the
videos of one of the subjects. Thus, the next step is validating the approach with
as many samples from the dataset as possible, which is discussed in Subsect. 4.5.

4.4 Single RVM vs. Cascade Tree

It is important to compare the single MVRVM [15] to the Cascade tree of
MVRVMs. Table 1 shows the mean accuracy of 4-fold cross validation test on
the PaSC dataset. The cascade tree approach yields smaller errors in all head
rotation angles.

4.5 Validation

Based on the findings so far, the kernel width optimal value is 13, and the
optimal number of grid divisions is 15. The final step is approach validation.
We generated better head pose estimations for the PaSC dataset using a newer
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Table 1. Comparing the Single with the Tree Cascade of MVRVMs. The Cascade
shows smaller mean error - PaSC. (Mean error ±std). Validation experiment of chunks
of 5000 samples.

Method Yaw Pitch Roll

Single MVRVM [15] 5.4 ± 4 5.4 ± 4 3 ± 2.5

Cascade Tree 4.6 ± 3.32 5 ± 4 2.3 ± 2.1

method proposed by [2] (compared to PittPatt used in the dataset metadata).
Their method deals with landmark localization and tracking, and it can be used
in head pose estimation. To validate our method for generic use, we first shuffle
all video frames from all subjects. Then we divide the frames into sets of 5000
frames each. We run 4 fold cross-validation on each set. The number of validation
sets in the PaSC is 25, each having 5000 random frames from different subjects.
Table 2 shows the average mean error with standard deviation reported on all
the sets.

Table 2. Validation results, reported on the PaSC dataset. Average errors in the angles
with the standard deviations are reported.

Dataset Yaw Pitch Roll

PaSC [15] 5.4 ± 4 5.4 ± 4 3 ± 2.5

PaSC (Our work) 4.6 ± 3.32 5 ± 4 2.3 ± 2.1

HPEG (Work [6]) 4.25 ± 3.04 3.83 ± 2.72 -

HPEG (75,25) 2.6 ± 1.2 1.9 ± 2 -

HPEG (25,75) 3.45 ± 1.9 2.15 ± 2.25 -

The MVRVMs can learn the head pose by the appearance of the face with
high accuracy. Less the 4.6◦ error in the Yaw angle in the validation tests are
reported on very challenging uncontrolled datasets. Regarding the pitch and
roll angles, the MVRVM reported errors less than 5◦ on PaSC. Figure 5 shows
the distribution of the errors in the angles on the dataset frames. We can see
that the error is below 5◦ in the yaw angle for about 66% of the data. and
below 10◦ for about 98% of the data. The errors in the pitch and roll are a bit
higher which could be due to the fact that the video frames did not have as
big variations as in the yaw angle. Finally, our method is suitable for real-time
applications as the time taken by the computation of one single prediction of
the three head rotation angles is only 6 milliseconds, with no need of complex
landmark detection or model fitting or tracking.

We compared our approach with the work in [6] using the same dataset, the
HPEG dataset [1]. The dataset contains 10 video sequences of people rotating
their head, the groundtruth angles were provided by the dataset. They acquired
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it using markers attached to the subject’s head (outside the face). The work
in [6] requires tracking and doesn’t require training, We require training on a
subset of the dataset. We used different training and testing percentages of the
dataset, either 25% or 75%. Results are shown Table 2.
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Fig. 5. Results of our new approach in the validation experiment on the PaSC dataset.
Yaw error is below 5◦ in the yaw angle for about 66% of the data. and below 10◦ for
about 98% of the data

The architecture of the machine used in the evaluations is a 6-core Intel
Xeon CPU with hyper-threading technology, and 64 GB of RAM. Our evaluation
application runs in parallel using the 12 threads provided by the CPU.

5 Conclusion

In this paper, we present a cascade tree of sparse regressors to solve the problem
of head pose estimation. This work is built upon the work in [15]. We use the
face appearance as the only input, and generate normalized pixel features for
training a cascade of MVRVMs. The simple features used are inexpensive to
compute on a CPU.

We significatly improve the work in [15] by building a more complex structure
that can handle more input data and improve the accuracy of the head pose
estimation. Moreover, we make further analysis of the MVRVMs kernels. We
also, use a more challenging dataset for training the cascade and validating
our method. Finally, we generalize our method where we train using different
subjects and not only one subject. Our new proposed approach works on unseen
faces.

We tested our approach on two challenging datasets, the YouTube faces
dataset and the PaSC dataset. Although, if the values provided by the datasets or
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the Chehra library [2] are not the absolute correct head rotation angles, we show
that we can learn these numbers without the need of model fitting or complex
landmark localization. Besides our extensive cross validation experiments which
we ran on hundreds of thousands of images from the datasets, we compared our
approach to another model-free one by [6], and we show that we significantly
reduce the average error on the HPEG dataset [1].
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Abstract. Today the simple availability of 3D sensory data, the evo-
lution of 3D representations, and their application to object recognition
and scene analysis tasks promise to improve autonomy and flexibility
of robots in several domains. However, there has been little research
into what can be gained through the explicit inclusion of the structural
relations between parts of objects when quantifying similarity of their
shape, and hence for shape-based object category recognition. We pro-
pose a Mathematical Morphology inspired hierarchical decomposition of
3D object views into peak components at evenly spaced depth levels,
casting the 3D shape similarity problem to a tree of more elementary
similarity problems. The matching of these trees of peak components is
here compared to matching the individual components through opti-
mal and greedy assignment in a simple feature space, trying to find
the maximum-weight-maximal-match assignments. The matching thus
achieved provides a metric of total shape similarity between object views.
The three matching strategies are evaluated and compared through the
category recognition accuracy on objects from a public set of 3D models.
It turns out that all three methods yield similar accuracy on the simple
features we used, while the greedy method is fastest.

Keywords: 3D shape similarity · Tree matching · Mathematical Mor-
phology · Object recognition · Scene analysis

1 Introduction

Nowadays 3D sensing technologies provide an ever growing number of low-cost
and reliable sensors like the popular Kinect� and the Xtion� in both first and
second versions. The depth data produced by these devices come at a high
frame rate and provide a dense representation of 3D surface geometry. Speed
of processing and representational geometric quality are important aspects in
robotics, which often makes 3D sensing and processing the procedure of choice
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 251–263, 2017.
DOI: 10.1007/978-3-319-64689-3 21



252 F. Bracci et al.

for enhancing robot autonomy and adaptivity. In particular, object recognition
and scene analysis are increasingly based upon analysis of 3D data, and both
imply matching and comparing objects.

Naive pixel-based or 3D point-based global matching is intractable for the
combinatorial explosion of computations. Hence, several methods were developed
to compare object shape through an abstract representation, e.g. histograms
of local or regional descriptors on keypoints, global descriptors, or graphs of
parts and their relations. Apart from the latter approach, the vast majority of
representations has not explicitly regarded the relations of parts or components
of objects. By contrast, we are here specifically interested in the effects of those
relations when included in a structural object representation.

One particular kind of structure is the object’s topology; comparing objects
then means comparing topologies, which can be formalized as a graph match-
ing problem. However, graph matching in general can be costly, even unfeasible
for practical problems, therefore approaches like [14] take approximations and
simplifications. Efficient matching algorithms are known for the graph subclass
of trees, which are often produced as a problem approximation, e.g., by mini-
mum spanning trees. Here we propose a representation where the favorable tree
structure comes out naturally in the exact formulation.

The shape of 3D objects is here represented in a view-based fashion. Range
images of object views are decomposed into peak components, which are the
height profiles over 2D cross-sections taken at evenly spaced depth levels from
the sensor. Considering depth levels is very suitable for depth data and this
decomposition yields the inclusion relationship between each pair of such peaks:
the inclusion hierarchy. A tree structure thus naturally arises from the proposed
decomposition, the representation by a 3D shape tree.

Individual peak components, that is, the vertices of the 3D shape tree, need
to be described in some feature space. For the sake of this study, we have here
used a very simple feature space with limited descriptive capacity, thus relying on
the aggregation effect of simple components. A 3D shape metric can be obtained
by computing and quantifying a match between trees or simply between the sets
of components.

We quantify the contribution of the tree structure among the components
to the matching accuracy achieved in shape-based category recognition by a
nearest-neighbor classifier: matching is done using the tree-structural constraints
and also with structureless assignment of the components. Elaborating and com-
paring the results is the main contribution made by this work.

While intuitively one might expect that an explicit regard for structural
relations among object components should generally improve matching accuracy,
it here turns out that it does not improve similarity-based category recognition in
this particular setup. It seems hence worthwhile to always compare a structural
matching against a structureless baseline, and the latter may suffice. The analysis
of the results is presented in Sect. 6.
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2 Related Work

A taxonomy of shape matching methods is proposed in [22]; there shape match-
ing methods are subdivided into feature based, graph based and geometry based.
Our method uses the ability of a tree to describe the relations among the ele-
ments, which qualifies it as a graph-based method. At the same time the target
to be described is a range image of an object taken from a given viewpoint,
which also puts it among the geometry-based methods. The proposed method
also relies on features of peak components, which makes it feature-based too.

An inspiration to our work has been the depth decomposition proposed in
[8]. They slice 3D CAD models in three orthogonal directions aligned with the
object’s bounding box, and the cross-sections produced by scanning through the
object along those directions are collected from the front to the back. The 3D
descriptor is made by a histogram computed by binning simple 2D slice features.

A popular histogram-based shape descriptor is the Viewpoint Feature His-
togram (VFH) of [19]. For any patch of points a histogram of three angular
values between all the couples of point normals is computed and extended with
the angular values between the point normals and the central viewpoint direc-
tion. A fast approximated kNN is then used to classify the objects. The methods
based on histograms as global object descriptors do not take into account any
structure among the constituent elements whose features are accumulated.

As discussed in [7], perceptual organization should be captured using models
that take account of the part structure of objects and capture the properties of
3D shapes. As argued for example by Huber [6], part-based detection has the
advantage of generalizing to unknown instances of object types. While in [6] and
for the part-based VFH (called CVFH) feature [1] objects need to be singulated
first, other part-based approaches like [13] can efficiently detect objects in clutter.
Recently, Richtsfeld et al. [18] presented a multi-level approach to fit planar or
curved surfaces to over-segment parts, and then define inter-segment relations
to decide if they should be merged or not, but the method performs best for
merging touching segments and for convex shapes.

A graph-based method is proposed in [21] where objects are matched through
their skeletons. The skeletonization is made from a voxelized object and the skele-
tal voxels are connected with a minimum spanning tree algorithm. The actual
object matching is restricted to the nearest graphs by indexing. The matching
is modeled as a modified maximum-cardinality-minimum-weight matching, and
is computed with a recursive depth-first coarse-to-fine search.

In the VRML community [27] also proposed a graph-based method. They
decompose 3D objects in concave patches by watershed, and formulate the object
matching as a graph isomorphism between attributed graphs, a computation-
ally difficult problem without polynomial time solutions. The authors tackle the
problem by merging patches such that their number stays small.

Trees for object recognition have been used in [4,5] for human airways recog-
nition. The authors restrict the modeled trees to planted trees with bifurcations
and trifurcations; edge weights represent the distance among vertices. The node
similarity is computed from the ratio of the length of the airway to the vertex,
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the branch point type, and structural similarity. The matching between their
structures minimizes a tree-edit distance, where a set of allowed matching com-
binations is previously determined to limit the NP-complexity.

An example of a histogram-based region descriptor method is the shape con-
text proposed in [2]. The authors first align the objects, and then sample a
number of points along the object contour with uniform spacing, and in each
contour point they take a distribution of the relative position of the other contour
points. Correspondences between two objects are found by solving an optimal
assignment problem; the total weight is used to estimate the similarity between
pairs of objects. This method was extended to 3D in [11] to a histogram of rel-
ative 3D point positions of all the other shape points of a patch. The object
matching goes through the optimal assignment formulation as well.

Deep learning is a class of methods of growing popularity, see [15]. The meth-
ods proposed so far are not able to process megapixel-size images and require
large amount of training data. An example of such methods is [26] where a global
object representation is learned, while in [3] a patches-representation is learned
across deformed shapes.

The structural-representation-based method here investigated exploits the
descriptiveness of geometric features of the object’s parts at multiple scales, used
along with a tree’s ability to represent the relationship among those parts, while
gearing on efficient tree matchings. This method was chosen as a promising struc-
tured matching procedure for depth data, as it is different from generic graph
methods that are mainly applied rather on a small scale and on abstract decom-
positions/labellings of the objects due to the computationally costly matching.

This approach is similar to the work done in [10] where attributed graphs are
built on a triangulation of Harris corners; they match image graphs by optimal
assignment and locally preserve structure through the heterogeneous Euclidean
overlap metric, a metric jointly considering vertex attributes, vertex degree, and
attributes of the incident vertices. We also draw on the work of [24], where they
measure the total distance between two trees with the maximum-cardinality-
maximum-weight tree isomorphism through a recursive descent which maximizes
the total accumulated similarity for different root vertex choices. They evaluate
their work on matching skeletal graphs of 2D images.

In our application of these ideas we borrow the image decomposition from
the work done in [25]. This method is based on 2D Shape-Size Pattern Spectra,
which are 2D histograms of shape (moment of inertia divided by squared area)
and size (area) of the peak components of an image. They classify images trough
decision trees of the image’s pattern spectra. Connected components and peak
components are Mathematical Morphology’s concepts which have been proven
as a valuable decomposition; in [20] we find an efficient method to extract and
store these components.

3 Method

The structural representation we investigate in this study aims at capturing
shape details as well as the coarse outline. The representation is built from
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range images of objects taken from any viewpoint, either by a range sensor or
through rendering of a 3D model. The core idea is to represent a 3D shape by
a hierarchy of range image peaks, split into their connected components, and
hence yielding a tree structure.

We now explain in turn the decomposition of a range image into its peak
components and their descriptor; the construction of the tree structure; the
matching algorithm for the trees; and how a 3D shape metric is derived from a
match between two trees. The baseline of a structureless matching we compare
to is a straightforward assignment between individual peak components from
two object views.

Peak Components and Descriptors. As input we have a range image, which
is a raster of depth values D (x, y) for pixel coordinates (x, y) of an object from
a given viewpoint. This raster describes a height profile with isolines shrinking
towards the observer. Occluded parts and sides of the object are not visible to
the observer and hence no information about those is available.

Slicing, or thresholding at any depth level h produces one or more peak
components Ph

i , which is the i-th set of connected image component of depth h
and lower:

Ph
i {(x, y) |D (x, y) ≤ h} (1)

In other words, as a sequence of decreasing depth levels are used for slicing,
the generated peak components are the connected regions in the remaining depth
image. These are nested into each other like the isolines at the different values
for h; the largest component lays at the maximal depth and the smallest lies
close to the observer.

We use the same features as in [25] to describe the peak component shape,
namely area, elongation and entropy. Additionally we consider relative area (the
ratio of the peak component’s area and the root peak component’s area) and
normalized entropy (the ratio of entropy and the logarithm of the number of
pixels per peak component); see Sect. 4 for further motivation.

The individual peak components are compared by means of Euclidean dis-
tances in a metric space. In a space of descriptive features, similar elements are
expected to be close to each other while dissimilar elements are expected to be
far apart. We map the point-wise distance to a similarity measure

s(u, v) = max(1 − ‖u − v‖/r, 0) (2)

where ‖‖ denotes the Euclidean norm, u and v are descriptor vectors of peak
components, and r is a cutoff radius. In particular, the similarity is set to zero
for a distance larger than r.

3D Shape Tree. So far we have an unorganized collection of peak compo-
nents; now we represent their mutual inclusion by building the hierarchy. This
is achieved through the computation of the Max-Tree proposed in [20], a well
known data structure in the Mathematical Morphology. The Max-Tree is an
inclusion tree, which is a tree of nested connected components, where each com-
ponent includes its children. The Max-Tree represents morphological changes
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across the depth in the object through branches of arbitrary degree and depth,
and through the vertex descriptors. The Max-Tree is a special level-set method.

The Max-Tree computation is linear in the number of pixels. This is achieved
through a recursive flood-fill procedure starting at the highest depth; each time a
pixel of lower depth is found, the flooding continues at the new depth level. This
way the tree vertices correspond to varying discrete depth changes, and we have
a non-uniform sampling of depth levels. We overcome this with an expansion step
where all the vertices with depth difference to the parent �h > 1 are substituted
with a small series of �h non-branching vertices of unit depth increase.

Structural and Structureless Matching. Once object views are transformed
into trees of peak component descriptors, we need a matching and comparison
scheme defining quantitatively a 3D shape similarity. General graph matching
is costly and when done by edit-distance minimization is NP complete; tree
matching instead is solved efficiently in polynomial time.

We define a tree as T = (V,E) with vertices V and edges E. A matching of
the vertices of two trees without regarding the edges can be obtained straight-
forwardly through optimal assignment of the vertices. Specifically, we look for a
matching ϕ ⊆ V1 × V2 that maximizes the total similarity

W (ϕ) =
∑

(u,v)∈ϕ

s (u, v) . (3)

where ϕ represents the one-to-one vertex mapping between the two trees.
This optimal assignment is one baseline of a structureless matching we com-

pare to. The problem was originally solved by Kuhn [12] and Munkres [16].
The original algorithm has O (

n4
)

complexity for n nodes to match; instead we
use the algorithm of Jonker and Volgenant proposed in [9] which has O (

n3
)

complexity.
In the literature greedy algorithms are known which iteratively couple labeled

vertices. We extend this approach with similarity (2), so that the correspondence
with the largest weight is selected and added to the matching; the involved ver-
tices are removed from the trees afterwards; this assignment proccess is iterated
over the complete set. The procedure is shown in Algorithm1: it requires a dis-
tance matrix between all the vertex pairs, which has quadratic time complexity,
and a sorting step on it, which gives O (n log (n)) total time complexity.

The above matching methods are generic and flexible, but they disregard the
tree hierarchies and should be considered as structureless matching. For instance,
if u ∈ T1 is matched to v ∈ T2, the child u′ of u might be matched to the parent v’
of v, as there is no constraint modeled in the assignment. We consider also a tree
matching algorithm proposed in [24], which is proven to have O (

bn3
)

complexity,
where b is the maximum degree of the tree vertices. For any given pair of vertices,
u in T1 and v in T2, the algorithm performs a recursive descent and accumulates
the similarity between u and v plus the maximal similarity among all the pairs of
children of u and v in the matching: (u′, v′) ∈ Ch (u)×Ch(v) where Ch () gives the
vertex children. The algorithm finds the maximal tree matching by iterating on
(u, v) ∈ {root (T1)}×T2 and (u, v) ∈ T1×{root (T2)} where root () is the tree root.
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Algorithm 1. Sequential Greedy Match for MWMM
(w,W ) = SequentialGreedyMWMM(V1,V2) (V1,V2 vertex sets)

1. if |V1| = 0 ∨ |V2| = 0 then

2. return (0, ∅)
3. else

4. (u, v) = argmin{s(u, v) |u ∈ V1, v ∈ V2}
5. V ′

1 = V1 \ {u} ; V ′
2 = V2 \ {v}

6. (w′,W ′) = SequentialGreedyMWMM(V ′
1,V

′
2)

7. return (s (u, v) + w′, {(u, v)} ∪ W ′)

It needs a pairwise similarity s (u, v). This procedure resembles counting the sim-
ilar vertices found in a parallel descent of two trees. Such matching enforces inclu-
sion relationships by construction and is therefore a structural matching.

3D Shape Similarity Metric. Now a (structural or structureless) tree match-
ing is computed in order to find the corresponding parts of two trees representing
two object views. Let ϕ12 be the optimal mapping found through optimal assign-
ment, greedy assignment or structural matching, hence maximizing (3). The total
similarity W (ϕ12) accumulated through ϕ12 is not meaningful as such: gener-
ally matching two small trees produces a small total similarity while matching
two large trees produces a large one because of the different number of involved
vertices. In order to avoid this size bias effect, we weight W (ϕ12) relative to the
original tree sizes. For this purpose we apply the four metrics proposed in [23],
with |Vi| the number of vertices in Vi:

d1 (T1, T2) = max (|V1| , |V2|) − W (ϕ12) (4)
d2 (T1, T2) = |V1| + |V2| − 2W (ϕ12) (5)
d3 (T1, T2) = 1 − W (ϕ12) /max (|V1| , |V2|) (6)
d4 (T1, T2) = 1 − W (ϕ12) / (|V1| + |V2| − W (ϕ12)) (7)

4 Evaluation

We evaluate the structural and structureless matching variants of our trees in
an experiment on shape-based category recognition. We are interested in the
accuracy of 1NN classification using the shape metrics (4) through (7) for finding
the nearest neighbor.

Our experimental setting is similar to the one used in [2]. We take10 objects
each from 10 classes from the SHREC-2010 database [17], take four specific views
of each object (front, top, elevated back diagonal and elevated left diagonal
view) and render a total of 400 range images of 900× 1200 pixels. Each image is
rendered with the focal length of the Kinect� and with an object-to-viewpoint
distance such that the object fits in and fills the image. This set of arbitrary
views is meant to contain different and therefore discriminable representations
of the chosen objects. Example images, one for each class, are shown in Fig. 1.
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Fig. 1. Example range images from our evaluation set; the four views of an object from
each class. Object models taken from [17].

In this study we focus on the aspect of shape similarity and disregard the
absolute object size. Our 3D shape tree disregards absolute size by choice of the
component descriptors. Moreover, to make the representation independent of the
image size of an object as well, we investigate a version where the image area
of a peak component is quantified as the fraction of the object silhouette area.
Likewise, the entropy of a peak component is normalized by the logarithm of the
component area. Finally, a depth normalization step is applied before the peak
component decomposition in order to make the depth slicing comparable across
objects. Depending on the actual application, when object size matters real
physical units of the measures can be used for the descriptor vectors. Note that
the used features are rotationally invariant which avoids the need for sampling
of different angles around the viewing axis.

We compute the accuracy of a 1NN classifier of object category on three sub-
sets of our range images set: a set of low-detail objects (fish, skyscraper, bottle,
mug), a set of mixed-detail objects (bird, fish, biped, single house, mug), and a set
of high-detail objects (bird, non flying insect, flying insect, biped, quadruped). This
way we evaluate the quality of the proposed descriptor and relation between the
different match procedures for different shape detail levels. Classification accura-
cies are computed in a leave-one-out scheme, where each queried object instance
is left out from the database of category samples to match against. The evalua-
tions cover the four shape metrics (4) through (7). The cutoff radius on similarity
of peak components (cf. Eq. 2) is set to a range of percentile values (10%, 20%,
..., 90%, 99%) from the full sample of distances between all peak components.
This way we adapt the parameter to the actual statistics of occurring feature
distances.

5 Results

The evaluation was performed with four different features combinations; here we
present results only for the feature set leading to the best classification accuracy,



On the Use of the Tree Structure of Depth Levels 259

Fig. 2. Classification experiments results: mean classification accuracies and standard
errors (bars) depending on similarity cutoff radius (cf. Eq. 2). Shown is the performance
separately on low-, mixed-, and high-detail shape classes for the structural and struc-
tureless matching methods and for the resulting shape metrics according to Eqs. (4)
through (7), as indicated.
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which is the relative area, normalized entropy and elongation. The results of the
classification experiments are shown in Fig. 2. There we can see the classification
accuracy for matching the shape trees (structural match), and through optimal
and greedy assignment (structureless matches) of peak components.

All the three matching methods show a similar best classification accuracy on
the same data sets: on the low-detail shapes the greedy assignment is best with
a 87.5% accuracy, on the mixed-details shapes both the greedy and the optimal
assignments reach 84% accuracy, while on the high-detail shapes both the tree
matching and the greedy assignment matchings show an 83% classification accu-
racy. The differences of best achievable accuracy between matching methods fall
within the standard error of the mean in all these cases, are hence not significant.
The overall best classification accuracy is achieved for the low-detail classes; it
is overall worst for the high-detail classes.

The accuracy differences between best achievable accuracies fall within the
standard error of the mean also across the different data sets. Nonetheless it’s
worth to note that the largest difference is between the accuracies on the low-
detail and the high-detail shape classes, showing that low-detail shapes are some-
what easier to discriminate properly in the simple descriptor space considered.
Very similar are the accuracies between different metrices within each data set:
in most cases those are very close to each other with similar dependence on the
different similarity cutoffs; only for the tree matching the Sum metric of Eq. 5
does have a lower accuracy. The general trend is that accuracies degrade for
the highest similarity cutoffs, which indicates that there should be an indifferent
zero similarity set from some moderate feature distance upward.

When comparing computation times for the different levels of shape detail, we
found that low-detail classes are less computationally demanding than the high-
detail classes for all the techniques. Also we observe an increasing computation
time for both structureless matching variants when increasing the cutoff radius,
while the structural matching remains insensitive to it.

6 Discussion and Conclusions

We have introduced a tree-structured representation of 3D object views that
captures the hierarchy of peak components at different depth levels. The peak
components have been described in a simple three-dimensional space of area,
elongation, and entropy. In this setting, shape is represented by an aggregation
of simple components. We have investigated the contribution made by the tree
structure to the performance of a shape metric derived from matching these
components between objects: matchings are computed with and without explicit
regard for the edges in the tree as a structural constraint.

We have found no statistically significant difference in achievable accuracy of
shape-based category recognition for the structural and structureless matches.
When comparing the behavior for shape classes of different levels of geometric
detail, it turnes out that low-detail shapes are somewhat easier to discriminate
than high-detail shapes in our simple descriptor space. A very general conclusion
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to be drawn from this study is that it is worthwhile to compare any structural
matching against a structureless baseline, such as the naive assignment. The
latter may give similar results, be easier to implement, and may even run faster
with off-the-shelf libraries.

It is interesting to understand the reason behind the somewhat counter-
intuitive result that the tree structure of the shape components doesn’t need to
be considered during matching to find a reasonable correspondence. Our hypoth-
esis is that this is due to the effect of the spatial arrangement of the peak com-
ponents in the used feature space. On visual inspection it appears that their
descriptors, as a point set in feature space, are generally laid out in the shape of
the tree they are extracted from. Hence, two structurally and vertex-wise similar
trees align quite well in feature space, such that the naive strategy of assigning
components of the one tree to the nearest component of the other tree turns out
effective and mostly does not disrupt the inclusion relationships.

As the found equivalence of structureless and structural assignments seems
tightly linked to the nature of our feature space, it seems likely that results may
turn out differently in different feature spaces. In particular, the role of structure
in shape representations based on more descriptive features will be investigated
in our research. Moreover, the structural aspect may be enhanced through, e.g.,
taking orientation relations between peak components into account.
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Abstract. A major task in non-rigid shape analysis is to retrieve corre-
spondences between two almost isometric 3D objects. An important tool
for this task are geometric feature descriptors. Ideally, a feature descrip-
tor should be invariant under isometric transformations and robust
to small elastic deformations. A successful class of feature descriptors
employs the spectral decomposition of the Laplace-Beltrami operator.
Important examples are the heat kernel signature using the heat equa-
tion and the more recent wave kernel signature applying the Schrödinger
equation from quantum mechanics.

In this work we propose a novel feature descriptor which is based on
the classic wave equation that describes e.g. sound wave propagation. We
explore this new model by discretizing the underlying partial differential
equation. Thereby we consider two different time integration methods.
By a detailed evaluation at hand of a standard shape data set we demon-
strate that our approach may yield significant improvements over state
of the art methods for finding correct shape correspondences.

Keywords: Feature descriptor · Shape analysis · Wave equation

1 Introduction

For the purpose of shape analysis applications, it is useful to describe the shape of
a three dimensional geometric object by its bounding surface M. In this setting,
two shapes may be considered similar if there exists an almost isometric trans-
formation between them. Such a transformation allows small elastic deformations
such as stretching and contractions. In order to investigate the similarity of shapes,
its geometry has to be analyzed. To this end, often a simplified shape representa-
tion, called feature descriptor, is employed. Ideally, a feature descriptor should be
invariant under almost isometric transformations which is challenging to achieve.

Over the last decade many feature descriptors have been presented. Classic fea-
ture descriptors are mostly invariant under rigid transformation only. As examples
for this class of descriptors let us mention here spin images [7] and integral vol-
ume descriptors [12]. Some more recent approaches, such as the one in [10] which
relies on the Möbius transform, are also invariant under isometric transformations.
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A modern class of feature descriptors that can handle almost isometric transfor-
mations is based on the spectral decomposition of the Laplace-Beltrami operator.
In this context, shapes can be thought as a vibrating membrane and the eigenfunc-
tions can be interpreted as its vibration modes and the eigenvalues have the mean-
ing of the corresponding vibration frequencies. Unfortunately, this eigenspectrum
can not fully determine the shape of the domain as captured in [8]. Nevertheless,
for shape analysis these spectral methods were first proposed in [11]. Based on
developments in [16], the heat kernel signature (HKS) has been introduced [17].
It assigns each point on an object surface a unique signature based on the fun-
damental solution of the heat equation. This amounts effectively to the compu-
tation of a series expansion of the heat kernel. A scale invariant extension of this
approach was developed in [4]. In [1] another feature descriptor inspired by the
Schrödinger equation was proposed. This feature descriptor is called the Wave
Kernel Signature (WKS) and represents the average probability of measuring a
quantum mechanical particle at a specific location. Let us note that in order to
make the series expansion techniques efficient, it is advocated to employ heuristics
such as the scaling of time [17] or energy domain [1]. This avoids the computation
of the full spectrum. As an alternative approach to the construction of the feature
descriptor, the authors of [5] proposed to solve the corresponding partial differ-
ential equations (PDEs) numerically, i.e. the heat equation and the Schrödinger
equation are discretized directly in space and time. From the constructed solution
of the corresponding PDE the feature descriptor can be extracted.

Our Contribution. In this paper we introduce a novel feature descriptor based
on the classic wave equation. To our best knowledge, this rather fundamen-
tal model has not been considered before for that purpose. Our motivation for
proposing the wave equation is that the wave propagation described by this PDE
may yield by the arising complex wave interaction phenomena a more unique
signature as in previous models. Let us also note that the physical basis of the
wave equation is inherently very different to the quantum mechanical approach
based on the Schrödinger equation. Similarly to the proceeding in [5] we solve
the wave equation numerically by direct discretization of the PDE. As a con-
sequence of the results of that work, we perform time integration by implicit
schemes. Since the suitable numerical solution can have a significant influence
on the quality of the feature descriptor, we opt to give here a detailed study
of important numerical baseline methods at hand of one standard shape data
set. We demonstrate experimentally that our novel feature descriptor may give
superior matching results compared to the state of the art WKS based on the
Schrödinger equation. Especially, we observe a substantially higher accuracy in
detecting correct one-to-one correspondences at the first match.

2 The Models

In this section we first briefly sketch the mechanism of the spectral eigenfunction
expansion methods that are employed for comparison purposes. Afterwards, we
present the framework of the classical wave equation.
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2.1 Existing Spectral Methods

The key mechanism of the eigenfunction expansion methods is the spectral the-
orem which is a result stating when a linear and self-adjoint operator can be
diagonalized. Fortunately, the Laplace-Beltrami operator is such an operator on
the space L2(M). We assume the existence of a discrete spectral decomposi-
tion of eigenvalues λ0 < λ1 ≤ ... and corresponding orthogonal eigenfunctions
ϕ0, ϕ1, ... satisfying the Helmholtz equation ΔM ϕi = −λiϕi. Here, λi is the ith

eigenvalue and ϕi denotes the corresponding ith eigenfunction of the Laplace-
Beltrami operator ΔM, respectively.

Heat Kernel Signature. For p ∈ M the heat equation ∂tu(p, t) = ΔM u(p, t)
describes how a heat distribution u(p, t) would propagate along a surface M. Its
solution at time t can be expressed as convolution of the heat kernel K(p, p′, t)
with the initial heat distribution at p′ ∈ M:

u(p, t) =
∫

M
K(p, p′, t)u(p′, 0) dμ(p′), (1)

where K(p, p′, t) describes the volume of heat transmitted from p′ to p after time
t. According to the spectral decomposition of the Laplace-Beltrami operator, the
heat kernel can be expressed as

K(p, p′, t) =
∞∑

i=1

exp (−λit) ϕi(p)ϕi(p′) (2)

where λi are the (ordered) eigenvalues and ϕi the corresponding eigenfunctions.
The quantity [17]

HKS(p, t) = K(p, p, t) =
∞∑

i=1

exp (−λit) ϕ2
i (p) (3)

describes the amount of heat present at point p at time t. In [17], the authors
proposed to associate each point p on the surface with a vector sampled at a
finite set of times t1, ..., tM . This feature descriptor is called the Heat Kernel
Signature.

Wave Kernel Signature. The Schrödinger equation ∂tu(p, t) = iΔMu(p, t),
where i2 = −1 allows to study how a free and massive quantum particle would
move on the surface M. In quantum mechanics, the dynamics of a particle is
described by its complex-valued function u(p, t) which can be expressed in terms
of eigenfunctions and eigenvalues of the Laplace-Beltrami operator. In [1], the
authors introduced the WKS to be defined as the average probability over time
to measure a particle at position p:

WKS(p, e) = lim
T→∞

1
T

T∫

0

|u(p, t)|2dt =
∞∑

i=1

c2e(λi)φ2
i (p). (4)
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where ce is an appropriate log-normal energy distribution and a logarithmic
energy scale e was chosen. Finally, the Wave Kernel Signature can be written as:

WKS(p, e) = Ce

∞∑
i=1

φ2
i (p) exp

(−(e − log λi)2

2σ2

)
(5)

where the variance of the energy distribution is denoted by σ and Ce represents
a normalization factor.

2.2 The Geometric Wave Equation

Let us elaborate a bit on our new model with the aim to convey a physical
intuition of the underlying process. To this end we observe in the following the
motion of disturbances originating from a localized point in all directions over a
surface M. The resulting phenomena are called waves and their dynamics will
be described by u(p, t). The surface may then be considered as a mesh of point
masses connected by elastic strings. Applying an initial displacement of a point
mass at a fixed position u(p, 0) = φ, this displacement takes place in outward
normal direction with respect to M, i.e. φ > 0. The motion of the displaced point
mass is governed by Newton’s second law of motion with the acting tension force
of the elastic strings.

The resulting dynamic process is a wave which propagates as a result of that
initial displacement. The mathematical formulation reads as:

1
c2

∂ttu(p, t) = ΔM u(p, t) (6)

where the constant c is the speed of the wave’s propagation, assumed here to be at
unit velocity c = 1. The wave equation is a hyperbolic second order linear partial
differential equation and requires therefore a further initial value ∂tu(p, 0) = ψ
which has the interpretation of the initial velocity of φ.

3 Discretization Aspects

As indicated, in contrast to the framework of the spectral descriptors, we will
construct a feature descriptor by direct discretization of the underlying wave
equation.

In order to approximate the wave equation on a shape we have to take care
of three things. Firstly, a discrete approximation of our continuous and closed
surface as well as of the time domain is needed. Secondly, a suitable discrete
Laplace-Beltrami operator has to be defined. Thirdly, a discrete approximation
for the second order time derivative has to be found.
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Discrete Space and Time Domain. A suitable surface representation is given
by a triangular mesh. In more detail, a triangulated surface is given by the tuple
Md = (P,E). The point cloud P := {p1, ..., pN} contains the finite number of
coordinate points a shape consists of. The edges E contain the neighborhood
relations between the coordinate points. The entire mesh can be formed by con-
necting the coordinate points pi so that one obtains two-dimensional triangular
cells.

The time axis t ∈ [0, T ] is sampled uniformly by M + 1 grid points 0 =:
t0 < ... < tk < ... < tM := T and τ denotes the (uniform) time increment.
Thus, a function u can be approximated via u(p, t) ≈ (u(p1, tk), ..., u(pN , tk))� =
(uk

1 , ..., u
k
N )� =: uk ∈ R

N , where the vector contains the spatial components from
the kth time layer.

Discrete Laplace-Beltrami Operator. Many schemes have been proposed to
estimate the Laplace-Beltrami operator for a triangular meshed surface [2,14,15].
A commonly used method is the cotangent weight scheme introduced in [13]. The
authors present a formal derivation using the mixed finite-element/finite-volume
paradigm. The arising formulae can be transferred into matrix notation:

(LM)ij =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2Aj

∑
i∈Nj

(cot αij + cot βij), if i = j

1
2Aj

(cot αij + cot βij), if i �= j and i ∈ Nj

0, else

(7)

where LM ∈ R
N×N and ΔM u(p, t) ≈ LMu is a linear approximation. With Nj

we denote the set of points adjacent to pj , and Aj represents the barycentric
area of the cell that corresponds to pj . Furthermore, αij and βij denote the two
angles opposite to the edge (pi, pj) as shown in Fig. 1.

pj

pi

αij

βij

Md

Nj

Aj

Fig. 1. Illustration of the cotangent weight scheme.
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Discrete Time Operator. Finally, the discrete representation of the second
order time derivative ∂ttu(p, t) has to be defined. In this paper we use the finite
difference method to obtain the following baseline methods for time integration:

centered: ∂ttu(p, t) ≈ uk+1 + 2uk − uk−1

τ2
(8)

backward: ∂ttu(p, t) ≈ uk + 2uk−1 − uk−2

τ2
(9)

3.1 Some Details on Our Approach

Let us comment that the definition of a time integration method not only refers to
the use of a discrete time operator, but also on the time level used for evaluating
the expressions of the spatial discretization. To this end the data sets uk and
uk−1 from time levels k and k − 1 are considered as given.

Since explicit finite differences schemes are known to be just conditionally
stable, leading to limitations for the time increment τ in dependence of the cell
area Aj , they are not usable without restriction for shape analysis tasks. There-
fore we study here two possible implicit time integration schemes as described
below.

Backward Time Integration (BT Method). The second order time deriv-
ative ∂ttu(p, t) is replaced by the second order backward differences quotient to
obtain the backward time integration method for the wave equation

uk − 2uk−1 + uk−2

τ2
= LMuk ⇔ (

I − τ2LM
)
uk+1 = 2uk − uk−1 (BT-W)

where k = 1, ...,M −1 and an index shift k → k+1 is applied. Computing values
at time k + 1 requires solving a system of linear equations at each time step.

Centered in Time Integration (CT Method). The wave equation is approx-
imated by the second order central difference quotient to obtain the centered time
integration method for the wave equation

uk+1 − 2uk + uk−1

τ2
=

1
2

(
LMuk−1 + LMuk+1

)
(10)

⇔
(

I − τ2

2
LM

)
uk+1 = 2uk −

(
I − τ2

2
LM

)
uk−1 (CT-W)

where k = 1, ...,M−1 and uk was linearly interpolated using uk+1 and uk−1. The
centered in time scheme is an implicit method. To obtain values at time k + 1
it requires both solving a system of linear equations as well as an additional
matrix-vector multiplication compared to (BT-W) for each time step.
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Approximation of the Initial Condition. The wave equation requires two
initial conditions. For u(p, 0), the initial point displacement φ is approximated
by the Kronecker peak φ = δpi

(p). In vector notation the initial condition reads

u0 = δpi
(p) = (u0

1, ..., u
0
i , ..., u

0
N )� = (0, ..., 1, ..., 0)� (11)

and we give it the interpretation of a sampled Gaussian distribution with a
small variance parameter. Also the initial velocity of the point displacement
∂t(p, 0) = ϕ has to be approximated. This second initial condition is used in turn
to obtain an expression for u2. Therefore ∂t(p, 0) = ψ becomes approximated by
the central difference quotient at the time-layer k = 0, to result in

∂t(p, 0) ≈ u1 − u−1

2τ
= ψ ⇔ u−1 = −2τψ + u1 (12)

where the point u−1 is a virtual point. To obtain u1 we simply use (BT-W) and
(CT-W) for the time layer k = 0 and replace the virtual term u−1 by (12). For
the backward integration method we get

(
I − τ2LM

)
u1 = 2φ + 2τψ − u1 ⇔

(
I − τ2

2
LM

)
u1 = φ + τψ (13)

and finally, for the centered integration method one obtains
(

I − τ2

2
LM

)
u1 = 2φ −

(
I − τ2

2
LM

)
u1 +

(
2τI − τ3LM

)
ψ (14)

⇔
(

I − τ2

2
LM

)
u1 = φ +

(
τI − τ3

2
LM

)
ψ. (15)

For the following framework, the initial velocity of the displacement is assumed
to be zero ψ = 0.

3.2 The Wave Equation Based Feature Descriptor

In order to obtain the feature descriptor from the wave equation at the location
p = pi we follow the two key steps:

• Solve the wave equation ∂ttu(p, t) = ΔM u(p, t) with u(p, 0) = δpi
(p) and

∂tu(p, 0) = 0 to obtain u(p, t) as shown for example in Fig. 2.
• From the solution u(p, t) the feature descriptors can be extracted by restrict-

ing its spatial component fi(t) := u(p, t)|p=pi
=

(
u0

i , ..., u
M
i

)� ∈ R
M+1, such

it is considered at the point pi, i.e. where the initial condition is triggered.

Since the underlying PDE describes physical phenomena it is possible to assign
those to the feature descriptor. The wave based feature descriptor describes the
motion amplitudes of an emitted wave front over the time at the considered point
pi. Therefore, the feature descriptor catches partially reflected waves, influenced
by the intrinsic geometry of the surface. Over time the waves are spread through-
out the surface.
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Fig. 2. The dynamics described by the wave equation on a triangular meshed surface. In
this case, the solution was modelled with the BT scheme. The initial point displacement
u(p, 0) = δblue(p) takes place at the blue point on the man’s chest. The time evolution
of |u| is shown from left to the right. (Color figure online)

4 The Correspondence Problem

Let us consider two almost isometric and triangular meshed surfaces Md and
M̃d. Then, the almost isometric transformation Qaiso : Md → M̃d unfolds
one surface onto the other. This transformation Qaiso := Qiso ◦ Qε can be
decomposed into a purely isometric part Qiso and a small distortion Qε. We
call Md the reference shape because we are able to allocate a fixed labelling
to its points P = {p1, ..., pN}. For a fixed labeling pi ∈ P the assignment
map match : P → P̃ , pi 	→ p̃j gives p̃j ∈ P̃ a label on the deformed
shape, and the points with matching indices belong together. Therefore we write
pi ↔ p̃j ⇔ match(pi) = p̃j if pi and p̃j describe the same point on Md and M̃d.
Now, the feature descriptor is used as a local shape representation that is invari-
ant to isometric transformations fi = Qiso(fi) and robust to almost isometric
transformations fi ≈ Qiso(fi). Let us apply this condition to the correspondence
problem: pi ↔ p̃j ⇔ fi ≈ Qaiso(fj) := f̃j . The feature descriptors fi(t) and f̃j(t)
are real valued functions, sampled point-wise on the time axis. Therefore, the
distance between two discrete feature descriptors is simply measured by using
the normalized l1 -norm:

d(fi, f̃j)(t) :=
1
M

M∑
k=1

|fi(tk) − f̃j(tk)|. (16)

The points with the smallest feature distance should belong together. This
condition can be written as a minimisation problem for all points:

pi ↔ p̃j ⇔ match(pi) = arg min
p̃j∈M̃d

{
d(fi, f̃j)(t)

}
. (17)

An example for a correspondence task is shown in Fig. 3.
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Fig. 3. An almost isometric correspondence task: The black point on the man’s toe
has to be retrieved on the almost isometric counterpart (green point). The spectrum
of the feature descriptor at corresponding locations is similar. The problem leads to
a minimisation problem, finding the feature descriptors with the smallest distance.
(Color figure online)

5 Experiments

In the following we give a detailed quantitative evaluation showing that the
proposed new model based on the wave equation may give in some interesting
aspects results that are superior to previous kernel based descriptors.

The Data Set. For our illustrative experiment six centaur shapes are used,
see Fig. 4, taken from the TOSCA data set [3], available in the public domain.
For those shapes we evaluate a dense shape correspondence by investigating the
performance to find correct corresponding pairs for all N points on the shapes.

Parameters and Reference Model. For the experiment, the time interval
size is evaluated for T = 25 and T = 100. The time increment is set to τ =
1. For experimental comparison we considered the state-of-the-art wave kernel
descriptor. Its parameters were set as described in [1]. Further, we evaluate the
time integration feature descriptor obtained from the heat (BT-H and CT-H)
and Schrödinger equation (BT-S and CT-S) [5].

Numerical Implementation Details. The implementation of our methods
was done in Matlab and the sparse linear system was LU-decomposed with the
SuiteSparse package [6] to reduce the cost of solving a system of linear equations
to approximately O(N2). To obtain feature descriptors for all points of one
centaur shape it requires M · N times a O(N2) action. For example for T = 100
and τ = 1 it needs 1.58 million times solving a system of 15768 equations.

Cumulative Match Characteristic (CMC). The CMC curve evaluates the
probability of finding the correct match within the first k best matches. The
value k = 1, ..., 100/N is scaled such we evaluate the correct corresponding points
among the first 1% of the best matches.
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Fig. 4. The transformed centaur shapes are almost isometric modifications of the
reference shape (left).
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Fig. 5. The evaluation of the centaur data set. For reference, the WKS descriptor with
constant 100 evaluation steps was evaluated. Top: The small interval size T = 25 was
evaluated. Bottom: The larger interval size T = 100 was investigated. Left: The CMC
curves. For T = 25 and for less then 0.6% of best matchings, the CT-W, BT-W, CT-S
and BT-W descriptors gain better results in this experiment than the WKS descriptor.
For T = 100, the BT-W and BT-S descriptors outperform the WKS descriptor for 1%
of best matches. Right: The geodesic error. The CT-W method outperforms the WKS
descriptor on both time sizes.
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The Geodesic Error. For the evaluation of the correspondence quality, we
followed the Princeton benchmark protocol [9]. This procedure evaluates the
precision of the matching performance by determining how far are the com-
puted matches away from the actual ground-truth correspondence. For a correct
correspondence, this inaccuracy is zero.

Results of Quantitative Comparison. On the left-hand side of Fig. 5 the hit
rate for increasing values of 100 · k/N is shown. By increasing the size of time
interval from T = 25 to T = 100 the corresponding feature descriptor contains
geometric information of a larger neighborhood. This in fact leads to a better
hit rate for the BT-S and BT-W descriptors. For the setting T = 100 the BT-
W descriptors clearly beat the WKS descriptor. However, the CT-S and CT-W
descriptors lose their performance at a certain time size. Yet, the combination
of the heat equation with the centered time method CT-H is not affected by a
performance collapse.

The evaluation of the geodesic error on the right-hand side of Fig. 5 shows
the superiority of the BT-W methods over the WKS descriptor. Especially, the
experimental results indicate that the time integration descriptors have a higher
accuracy to find correct correspondences at the first match k = 1. This holds
in particular for the BT-W descriptor. By comparing the wave and Schrödinger
equation alone, the descriptor based on the wave equation gains better results.

Concluding the above discussion, a feature descriptor based on backward
integration of the wave equation leads to the best results (T = 100) on the
centaur data set.

6 Summary and Conclusion

We introduced a novel feature descriptor based on the classic wave equation.
Further, two different time integration methods for the direct numerical solution
of the wave equation PDE were investigated for the purpose to obtain feature
descriptors.

Experimental results performed on the centaur data set illustrate the prop-
erties of numerical solvers and the usefulness of the approach for tackling the
correspondence problem. They confirm exemplarily that our novel wave app-
roach may have a higher precision to find correct correspondences compared to
the state of the art WKS, especially for small percentages of best matchings.

In future work we aim to perform more exhaustive benchmark tests in order
to evaluate on a broader basis the properties of our method. The results docu-
mented here are, to our impression, very promising and may show that our new
method can at least be an alternative to kernel based methods. We also aim to
consider other numerical solvers to make the research of our direct integration
approach more complete.
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Abstract. With the proliferation of social networks and photo-sharing
websites, the need for an effective image retrieval system has become
crucial. To match the users’ intents, retrieval results are expected to be
not only relevant to the query but also diverse. In this way, they depict
a comprehensive summarization of the user query. Motivated by this
observation, we propose a hypergraph-based reranking model for retriev-
ing diverse social images. Indeed, a visual hypergraph is constructed to
capture high-order relationships among images. Different from exiting
hypergraph ranking that usually ranks images according to their rele-
vance to a given query, our approach emphasizes diversity by integrating
absorbing nodes into the ranking process. This way, redundant images
are prevented from getting high ranking scores, thereby ensuring diver-
sity. Extensive experiments conducted on the MediaEval 2016 dataset
demonstrate that our approach can achieve competitive performance to
the existing diversification approaches.

Keywords: Image retrieval · Visual reranking · Diversity · Hypergraph

1 Introduction

During the past few years, we have witnessed an explosive growth of social net-
works and photo-sharing websites (e.g. Facebook1 and Flickr2). In view of this,
the amount of community-contributed photos has been exponentially increased.
Accordingly, exploiting the huge amount of photos for multimedia applications
is of great importance [2].

Among multimedia applications, image retrieval has attracted increasing
research attention [3,8,16,17]. Until recently, exiting image retrieval engines
(e.g. Google and Flickr) commonly relied on the textual descriptions associated
with images for indexing and retrieval. Nevertheless, text-based image retrieval
presents some critical limitations i.e. noisy, language-dependent and irrelevant
textual information. Moreover, the rich content of images is not appropriately
1 www.facebook.com.
2 www.flickr.com.

c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 279–291, 2017.
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described through textual information. Accordingly, retrieval results may con-
tain some irrelevant images.

To tackle this issue, visual reranking has been proposed [5,22]. It aims at
refining the text-based retrieval results by incorporating the visual information.
Most visual reranking models in earlier years focused primarily on providing
relevant results to the query. However, the retrieved results may contain a large
number of redundant information (e.g. duplicate or visually similar images).
Therefore, an effective visual reranking model should make a trade-off between
relevance and diversity. In fact, diversity has been considered to be a key criteria
of image retrieval results expected by users [10,11,16,20,24]. It provides a sum-
marization of retrieval results which constitutes a complete and comprehensive
representation of the query and enables faster and better access to the desired
information. Recently, diversity has been the focus of several international chal-
lenges (ImageCLEF [19] and MediaEval Retrieving Diverse Social Images Task
[15]). Particularly, the MediaEval task focuses on enhancing both relevance and
diversity of image retrieval results within the social context [15].

In this paper, we tackle the aforementioned issue by proposing an approach
for retrieving diverse social images using an hypergraph ranking with absorbing
nodes. In the first place, we model the high-order relationships among social
images through a visual hypergraph. Next, we perform an iterative hypergraph
ranking to learn the visual ranking scores of different images. In order to achieve
diversity, the hypergraph ranking algorithm is extended with the concept of
absorbing nodes. The role of absorbing nodes is to prevent visually similar images
in the dataset from having higher ranking scores. The proposed approach is eval-
uated on the MediaEval 2016 “Retrieving Diverse Social Images” dataset. Exper-
imental results demonstrate that our approach achieve competitive performance
compared to the existing diversification approaches.

The reminder of this paper is organized as follows. Section 2 presents the
related work. The proposed approach is described in details in Sect. 3. Experi-
mental results are shown in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

With the proliferation of social networks and photo-sharing websites, the need
for an effective image retrieval system has become crucial. In view of this,
visual reranking has been broadly investigated for boosting retrieval effective-
ness [5,22,28]. The prior objective of early visual reranking approaches is the
relevance of retrieval results. However, in recent literature, both relevance and
diversity are considered as two key criteria of effective image retrieval system
[16,20]. In this way, retrieval results depict a complete and comprehensive repre-
sentation of the query. For instance, Tollari et al. [23] propose an approach that
uses textual reranking to improve the relevance. After reranking, an Agglom-
erative Hierarchical Clustering is performed to ensure the diversity. Boteanu
et al. [1] introduce a novel approach based on pseudo-relevance feedback in
which an automatic selection of image is applied instead of human feedback.
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Fig. 1. Schematic illustration of the proposed diversification approach.

Diversification is achieved by applying (1) a Hierarchical Clustering and (2)
diversification strategy based on a round robin approach. Zaharieva et al. [27]
select the most appropriate combinations of features and clustering method for
each query. The selection is performed using clustering internal validation mea-
sures. The clustering methods investigated in this method are: Affinity Propaga-
tion (AP), expectation maximization (EM), k-means (KM) and X-means (XM).
Diversification is also achieved using a Round-Robin approach. Feki et al. [9]
score each image by the mean average of a visual score and a textual score. The
visual score is obtained by clustering the visual information using the EM and
Make Density-based clustering algorithm. The textual score is obtained by an
Hierarchical Clustering using the textual information. Ferreira et al. [12] pro-
pose a reranking approach that consists of 3 steps: (1) re-ranking the initial list
provided by Flickr using the textual information, (2) aggregating re-ranked lists
by several text-based descriptors using Genetic Programming (GP) and finally
(3) employing Agglomerative and Birch methods to achieve diversification.
Castellanos et al. [6] compute the relevance of each image to the query based on
the visual information and a relevance feedback algorithm. Next, a textual-based
FCA clustering is performed. Finally, the image at the top of each textual FCA
cluster is selected to generate the final list of images. Overall, the aforementioned
techniques try to improve the relevance and diversity separately. In general, they
employ clustering algorithm followed by a method to select the most represen-
tative images from each cluster. In this paper, we propose a hypergraph-based
reranking model that aims to jointly consider the relevance and diversity.

3 A Hypergraph-Based Reranking Model

An effective image retrieval system should generate results that are not only rel-
evant to the query but also diverse. In this section, we propose an approach for
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(a) Flickr (b) Proposed approach

Fig. 2. Top 10 ranked images for the query sailing boat

retrieving diverse social images using an hypergraph-based ranking with absorb-
ing nodes. A schematic illustration of the proposed approach is presented in
Fig. 1. After ranking the initial list provided by Flickr using the textual infor-
mation and Hierarchical Clustering, we construct a visual hypergraph where the
vertices are the images initially retrieved from Flickr. Each image is represented
by the convolutional neural network based descriptor (CNN). Thereafter, we
perform an iterative ranking over the constructed hypergraph in order to learn
the ranking scores of different images. To ensure diversity, we extend the hyper-
graph ranking algorithm with the concept of absorbing nodes. By the way, we
are able to not only rank the images based on their visual relevance but also to
consider the diversity of retrieval results.

Next, we emphasize the different steps of the hypergraph-based ranking with
absorbing nodes.

3.1 Visual Hypergraph Model

Graphs are widely used to represent relationships among different objects [10,
26,28]. Particularly, a hypergraph is a graph in which an edge can link more than
two vertices [2]. Regarding its effectiveness in modeling high-order relationships
among objects, the hypergraph has been successfully employed in numerous
application such as 3D object recognition [25], image retrieval [14,18], person
re-identification and tracking [21], music recommendation [4] and so on.

In our approach, the hypergraph is used for retrieving diverse social images
and high-order relationships among social images are represented using hyper-
edges.

More formally, a hypergraph G = (V,E, ω) is consisted of a finite vertex set
V, an hyperedge set E which is composed by a family of subsets e of V such that⋃

e∈E = V . Each hyperedge e is weighted with a positive scalar ω(e) [2]. The
hypergraph G is generally represented with an incidence matrix H ∈ M|V |×|E|
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where

h(e, v) =

{
S(u, v), v ∈ e

0, otherwise
(1)

and S(i, j) is the similarity between u the centroid of hyperedge e and v. The
degree of hyperedge e ∈ E is defined as follows:

δ(e) =
∑

v∈V

h(e, v) (2)

Each hyperedge is weighted with a positive scalar expressing its importance in
the hypergraph. The weight of the hyperedge e ∈ E is defined as follows:

ω(e) =
∑

v∈e

S(e, v) (3)

The degree of vertex v ∈ V is defined as follows:

d(v) =
∑

e∈E

ω(e)h(e, v) (4)

Let Dv,De and W be diagonal matrices containing the vertex degrees, the hyper-
edge degrees and the hyperedge weights respectively.

In our image retrieval framework, we construct a visual hypergraph in which
vertices are the visual descriptors of social images.

Let χ = {x1, ...xN} be a collection of social images and � = {f1, ...fN} a
set of visual descriptors where fi is the adapted convolutional neural network
based descriptor (CNN) of image xi. CNN descriptors are based on the refer-
ence convolutional neural network (CNN) model provided along with the Caffe
framework [15].

In order to capture high-order relationships of visually similar images, we
build k-nearest neighbors graphs based on the similarity between different CNN
descriptors measured with Euclidean distance. Indeed, we consider each descrip-
tor fi as a ‘centroid’ vertex and compose a hyperedge by connecting each centroid
with its k-nearest neighbors.

3.2 Hypergraph-Based Diversified Ranking

Given the constructed visual hypergraph and a user query, exiting image retrieval
approaches perform an hypergraph ranking that rank all vertices in the hyper-
graph with respect to their relevance to the query [13,14]. Nevertheless, they
do not consider the diversity of visual search results. In fact, beside relevance,
diversity has also been considered as critical criterion for ranking [7]. Diversified
retrieval results provide users with a complete and comprehensive representation
of the query. To tackle this issue, we extend the hypergraph ranking algorithm
with the concept of absorbing nodes which improve the diversity of retrieval
results [21].
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Let q ∈ �|V |×1 be the query vector containing the initial ranking scores:

qi =

{
1 if i is the query index
0 if otherwise

(5)

Let y be the to-be-learned ranking function that assigns a ranking score y(v) to
vertex v ∈ V such that,

y : |V | → R, v → y(v) (6)

In our framework, we formulate the hypergraph ranking as a regularization
framework similarly to [29]:

arg min
y

{Ω(y) + μRemp(y)} (7)

where Ω(y) is a regularization term which ensures that vertices sharing many
hyperedges will probably have similar ranking scores.

Ω(y) =
1
2

∑

e∈E

∑

v,u∈V

ω(e)h(e, v)h(e, u)
δ(e)

(
y(v)

√
d(v)

− y(u)
√

d(u)
)2

(8)

and Remp(y) denotes the empirical loss which imposes that the final ranking
scores are not far away from the initial ones.

μRemp(y) = μ‖y − q‖2 =
∑

v∈V

(y(v) − q)2 (9)

where μ is a positive weighting parameter. To solve the cost function in Eq. 7, let
Δ = I − Θ = I − D

−1/2
v HWD−1

e HTD
−1/2
v be the Laplacian of the hypergrpah.

Then,
Ω(f) = yT (I − Θ)y (10)

By following the step described in [29], the final ranking scores is obtained by
solving the following linear equation:

((1 + μ)I − Θ)y = μq (11)

Let γ = 1
1+µ , the final ranking scores can be obtained as

y = (1 − γ)(I − γΘ)−1q (12)

The aforementioned hypergraph ranking algorithm enables to perform relevant-
based image retrieval. However, an effective visual search should return not only
relevant results to the query but also diverse results. To enhance the diversity,
redundant items in the ranked images list should be avoided. Therefore, we
extend the aforementioned hypergraph ranking with the concept of absorbing
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nodes. Actually, to the best of our knowledge, this concept has not been applied
to the context of image retrieval yet. Different from the hypergraph ranking,
the hypergraph ranking with absorbing nodes computes the ranking scores in
an iterative manner. At each iteration, previously-ranked items are turned into
absorbing nodes, i.e. their ranking scores are set equal to zero. In this way,
any ranking score is propagated from the absorbing nodes to their neighbors.
Accordingly, the redundant candidates are prevented from having high ranking
scores. Hence, the diversity of visual search is enhanced.

More formally, the ranking scores are computed iteratively as follows.

y(t+1) = γΘIfy(t) + (1 − γ)q (13)

Where If is an identity matrix such that

If (i, i) =

{
0, if the (i,i)-entry is an absorbing nodes
1, otherwise

(14)

The sequence {y(t)} converges to the ranking scores obtained previously in
the analytic analysis, i.e. y = (1 − γ)(I − γΘ)−1q [7].

Proof. Starting from (13) used in the iterative hypergraph ranking, we have

y(t) = (γΘIf )(t)f (0) + (1 − γ)
t−1∑

i=0

(γΘIf )iq

Let P̂ = D−1
v HWD−1

e HT If be the similarity transformation of ΘIf as
follows:

ΘIf = D−1/2
v HWD−1

e HTD−1/2
v If

= D1/2
v D−1

v HWD−1
e HTD−1/2

v If

= D1/2
v P̂D−1/2

v

Therefore, P̂ and ΘIf are similar and have the same eigenvalues. By
Gershgorin circle theorem, we have

|ρ| ≤
∑

i�=j

|P̂ii| ≤ 1

where ρ is the largest eigenvalue of P̂ . Then eigenvalues of ΘIf are not greater
than one.

Since 0 ≤ γ ≤ 1 and |ρ| ≤ 1, we have

lim
t→∞(γΘIf )t = 0
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(a) Results on P@N (b) Results on CR@N (c) Results on F1@N

Fig. 3. Comparison with Flickr baseline in terms of relevance and diversity

and

lim
t→∞

t−1∑

i=0

(γΘIf )i = (I − γΘIf )−1

Hence, the sequence {y(t)} converges to

y∗ = (1 − γ)(I − γΘIf )−1q

4 Experimental Results

4.1 Data and Evaluation Metrics

In order to evaluate the performance of the proposed approach, we conducted
the experiments on the test set of the public dataset MediaEval 2016 “Retriev-
ing Diverse social images Task” [15]. The test set consists of 65 general-purpose
multi-topic queries. Each query is represented with a list of around 300 Flickr-
provided images which are typically ranked using the default ‘relevance’ algo-
rithm of Flickr. Furthermore, each image is represented with several content
descriptors (e.g. CNN visual descriptors, text information) [15].

Performance in terms of both relevance and diversity is measured with the
following metrics: Precision, Cluster recall and the F1-measure [15].

– Precision at X (P@X): this measure is used to assess the relevance. It denotes
the number of relevant photos among the top X ranked results.

– Cluster Recall at X (CR@X): this measure is used to assess the diversity.
It denotes the number of different clusters from the ground truth that are
represented among the first X results.

– F1-measure (F1@X). The F1 measure is the harmonic mean of P@X and
CR@X. It is used to measure both relevance and diversity.
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We conduct the following experiments: Sect. 4.2 compares the proposed app-
roach with Flickr Baseline; Sect. 4.3 deals with performance stability of the
proposed approach; finally, Sect. 4.4 presents a comparison to diversification
approaches presented in the MediaEval 2016. In these experiments, we randomly
choose an image from the Flickr-provided list of images as a visual query in our
proposed approach.

4.2 Refinement of Flickr Retrieval Results

Given a Flickr-provided list of images, our focus is to evaluate the performance
of proposed approach in refinement of Flickr retrieval results. Accordingly, in
this experimentation, we consider the default ‘relevance’ algorithm of Flickr as
baseline.

As shown in the Fig. 2, the proposed approach achieves a diversity improve-
ment over the baseline approach.

Figure 3 presents the comparison results with Flickr baseline in terms of
relevance and diversity. Indeed, starting from the official ranking metric of the
MediaEval 2016 reranking task, which was fixed to a cutoff of 20 images, we
achieve 0,3738 of CR@20 compared to 0,3609 for Flickr baseline. Interestingly,
the proposed approach achieves a steady diversity improvement over the baseline
from a cutoff at 20 images (see Fig. 3b). However, it is necessary to note that
the Flickr baseline relevance is maintained for a cutoff at 30 images and above
(see Fig. 3a).

(a) Results on P@N (b) Results on CR@N (c) Results on F1@N

Fig. 4. Evolution curve of relevance and diversity for different query topics

Overall, as revealed in Fig. 3c, our approach outperforms the Flickr baseline
in terms of both relevance and diversity from a cutoff at 30 images.

4.3 Refinement Stability Analysis

In this section, we aim to investigate the performance stability of our approach
at different cutoff points for different query topics.
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Figure 4 illustrates the performance per query of the proposed approach in
terms of precision, cluster recall and F1-measure for various cutoff points. We
rank the queries based on the F1-measure and select the top ten queries for the
evaluation.

In terms of relevance, Fig. 4a show that, for most queries, the precision
decreases when the number of cutoff points is increased. For instance, for the
query “blueberry on plant”, the precision P@20 = 0,75 compared to 0,52 for
P@50. This results reveals the fact that the more number of images are returned,
the more irrelevant images are arisen.

Contrary to the precision, the cluster recall increases proportionally with the
number of returned images. For instance, for the topic class “rail tracks”, we
reach the best cluster recall at a cutoff at 50 images (e.g., CR@50 = 0,9 whereas
CR@20 = 0,65).

Overall, the above observations demonstrate the fact that our approach is
stable in terms of precision. However, the diversity of our retrieval system is
more dependent on the number of cutoff points that the more the number of
evaluated images rises, the more our approach is effective (see Fig. 4c).

4.4 Comparison to Diversification Approaches

In this section, we compare our approach to diversification approach presented
during the MediaEval’16 in terms of Precision (P@20), Cluster Recall (CR@20)
and F1-score (F1@20) as illustrated in Fig. 5.

The proposed approach outperforms both Feki et al. and Castellanos et
al. approaches in terms of relevance and diversity. For instance, Feki et al.
and Castellanos et al. have F1@20 = 0, 3964 and F1@20 = 0, 3745 respec-
tively compared to F1@20 = 0, 4013 achieved with the proposed approach. In
terms of diversity, the cluster recall (CR@20) for Feki et al. and Castellanos et
al. approaches is equal to 0,3501 and 0,3544 respectively compared to 0,3738
for the proposed approach. Moreover, our approach achieved very competitive

Fig. 5. Comparison to diversification approaches
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performance with both Ferreira et al. and Boteanu et al. approaches. As
shown in Fig. 5, our proposed approach have F1@20 = 0, 4013 compared to
F@20 = 0.4107 and F1 = 0.4208 for Ferreira et al. and Boteanu et al. respec-
tively.

It is interesting to note that the best performance in terms of both relevance
and diversity is achieved by the approach of Tollari et al. One explanation is
the fact that authors have proceeded with a re-ranking step based on textual
features to enhance relevance. Furthermore, different from other approaches,
they use an effective clustering method based on ScalableColor features [23] as
visual information and also textual information.

5 Conclusion

In this paper, a novel approach is proposed to retrieve diverse social images based
on a modified hypergraph ranking. A visual hypergraph is first constructed with
database images. Then, an iterative hypergraph ranking is performed. During the
ranking process, ranked items is turned into absorbing nodes to prevent redun-
dant items from having higher scores. In this way, the diversity of visual search
is enhanced. Experimental results, conducted on the MediaEval 2016 “Retriev-
ing Diverse Social Images Task” dataset, depict that the proposed method has
achieved a significant enhancement of search results diversity. Future work will
focus on integrating more social information to further enhance both relevance
and diversity.
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Penatti, O.A.B., Li, L.T., Almeida, J., Torres, R.: Recod @ mediaeval 2016: diverse
social images retrieval. In: MediaEval 2016 (2016)

13. Gao, Y., Wang, M., Luan, H., Shen, J., Yan, S., Tao, D.: Tag-based social image
search with visual-text joint hypergraph learning. In: Proceedings of the ACM
Conference on Multimedia, pp. 1517–1520 (2011)

14. Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic
hypergraph ranking. In: 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. pp. 3376–3383, June 2010

15. Ionescu, B., Gı̂nsca, A., M., Boteanu, B., Lupu, M., Müller, H.: Retrieving diverse
social images at mediaeval 2016: challenge, dataset and evaluation. In: MediaEval
2016 (2016)

16. Ionescu, B., Popescu, A., Radu, A.L., Müller, H.: Result diversification in social
image retrieval: a benchmarking framework. Multimed. Tools Appl. 75(2), 1301–
1331 (2016)

17. Ksibi, A., Ben Ammar, A., Ben Amar, C.: Adaptive diversification for tag-
based social image retrieval. Int. J. Multimed. Inf. Retr. 3(1), 29–39 (2014).
http://dx.doi.org/10.1007/s13735-013-0045-5

18. Liu, Y., Shao, J., Xiao, J., Wu, F., Zhuang, Y.: Hypergraph spectral hashing for
image retrieval with heterogeneous social contexts. Neurocomputing 119, 49–58
(2013). Intelligent Processing Techniques for Semantic-based Image and Video
Retrieval

19. Paramita, M.L., Sanderson, M., Clough, P.: Diversity in photo retrieval: overview
of the ImageCLEFPhoto task 2009. In: Peters, C., Caputo, B., Gonzalo, J., Jones,
G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS,
vol. 6242, pp. 45–59. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15751-6 6

20. Spyromitros-Xioufis, E., Papadopoulos, S., Ginsca, A.L., Popescu, A., Kompat-
siaris, Y., Vlahavas, I.: Improving diversity in image search via supervised rele-
vance scoring. In: Proceedings of the 5th ACM on International Conference on
Multimedia Retrieval (ICMR 2015), pp. 323–330. ACM, New York (2015)

21. Sunderrajan, S., Manjunath, B.S.: Context-aware hypergraph modeling for re-
identification and summarization. IEEE Trans. Multimed. 18(1), 51–63 (2016)

22. Tian, X., Yang, L., Lu, Y., Tian, Q., Tao, D.: Image search reranking with hierar-
chical topic awareness. IEEE Trans. Cybern. 45(10), 2177–2189 (2015)

23. Tollari, S.: UPMC at mediaeval 2016 retrieving diverse social images task. In:
MediaEval 2016 (2016)

24. Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Towards a relevant and diverse search
of social images. IEEE Trans. Multimed. 12(8), 829–842 (2010)

http://dx.doi.org/10.1007/s13735-013-0045-5
http://dx.doi.org/10.1007/978-3-642-15751-6_6


A Hypergraph-Based Reranking Model for Retrieving Diverse Social Images 291

25. Xia, S., Hancock, E.R.: 3D object recognition using hyper-graphs and ranked. In:
da Vitoria Lobo, N., et al. (eds.) SSPR/SPR 2008. LNCS, vol. 5342, pp. 117–126.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-89689-0 16

26. Xu, B., Bu, J., Chen, C., Wang, C., Cai, D., He, X.: EMR: a scalable graph-based
ranking model for content-based image retrieval. IEEE Trans. Knowl. Data Eng.
27(1), 102–114 (2015)

27. Zaharieva, M.: An adaptive clustering approach for the diversification of image
retrieval results. In: MediaEval 2016 (2016)

28. Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N.: Query specific rank fusion
for image retrieval. IEEE Trans. Pattern Mach. Intell. 37(4), 803–815 (2015)

29. Zhou, D., Huang, J., Schólkopf, B.: Learning with hypergraphs: clustering, classi-
fication, and embedding. In: Advances in Neural Information Processing Systems
(NIPS), p. 19. MIT Press (2006)

http://dx.doi.org/10.1007/978-3-540-89689-0_16


Learning a Limited Text Space for Cross-Media
Retrieval

Zheng Yu, Wenmin Wang(B), and Mengdi Fan

School of Electronic and Computer Engineering, Shenzhen Graduate School,
Peking University, Lishui Road 2199, Nanshan District, Shenzhen 518055, China

yuzheng@pku.edu.cn, wangwm@ece.pku.edu.cn, fanmengdi@sz.pku.edu.cn

Abstract. In this paper, we propose a novel model for cross-media
retrieval which relies on a limited text space rather than a common
space or an image space. More specifically, the model consists of three
parts: A visual part that consists of a convolutional neural network and
an image understanding network; A language model part that achieves
sentence understanding by recurrent neural network; An embedding part
that contains a fusion layer to capture both visual label information and
semantic correlations between images and sentences, as well as learn the
final limited text space by optimizing pairwise ranking loss. Experimen-
tal results on three benchmark datasets show that our proposed model
gains promising improvement in accuracy for cross-media retrieval espe-
cially on sentence retrieval compared with the related state-of-the-art
methods.

Keywords: Cross-media retrieval · Limited text space · Fusion layer ·
Image understanding network · Recurrent neural network

1 Introduction

Along with the popularization of the Internet, there has been a rapid growth of
multimedia data such as images, texts, videos and audios which always appear
together. As a result, single-media retrieval can not meet people’s daily needs
since some people want to search sentences that can best describe a given image
or show images that can best depict a given sentence. Therefore, cross-media
retrieval has been proposed which comprises two problems. The first problem is
how to efficiently represent multimedia data. Traditional methods such as the
bag-of-words for sentences and SIFT for images transformed multimedia data
into low-level features. In order to learn more abstractive representations, deep
neural network was proposed to represent data at a higher level which was proven
to be more efficient than low-level features. However, the semantic gap among
heterogeneous data features still exists.
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Fig. 1. A detailed illustration of our proposed model which consists of three parts:
Visual part, Language model part and Embedding part.

Hence, the second problem is how to embed heterogeneous multimedia data
such as images and sentences into a homogeneous space so that their similarity
can be measured directly. Since we only focus on the retrieval between images
and sentences, cross-media retrieval can be achieved based on a common space
[4,7,8,19,21], a text space [9,18], or an image space [10]. When performing cross-
media retrieval, from the human point of view, we always try to understand the
images and sentences sufficiently before retrieval. It is simple and intuitive for
brains to understand the sentences but a little bit complicated to understand
the images. Given an image, we first caption the image subconsciously by nature
language and then understand it. In order to make the model behave as similar
as human, we hope it is able to understand images and sentences sufficiently
before retrieval. Therefore, we aim to perform cross-media retrieval in a text
space. Current methods based on a text space mostly employed the Word2Vec
space. Image understanding was achieved by a convex combination of the word
embedding vectors of the visual labels predicted to be the most relevant to the
image. However, the visual labels only reflect the objects contained in an image
but ignore how these objects relate to each other as well as their attributes and
the activities they are involved in. Thus, the Word2Vec space is not an effective
text space for cross-media retrieval.

Accordingly, we propose a novel model to learn the text space effectively
which is capable of understanding images like human. For the first problem
mentioned above, we propose a visual part to learn deep representations for
images. Meanwhile, recurrent neural network is used to learn dense represen-
tations for sentences. For the second problem, we propose an embedding part
to learn a limited text space. More specifically, the whole model contains a lan-
guage model part, a visual part and an embedding part. The language model part
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learns a dense limited text space representation for each sentence which contains
rich semantic information. The visual part contains a deep convolutional neural
network and an image understanding network. Deep CNN can be used to gener-
ate deep convolutional representations containing rich visual label information,
such as the objects contained in an image. The image understanding network
represents images in a pre-trained limited text space which can capture strong
semantic correlations between images and sentences, such as the attributes and
the activities these objects are involved in. For the embedding part, a single
fusion layer is added on top of the visual part to capture both visual label
information and semantic correlations between images and sentences, as well as
transform the image representations into the final limited text space by opti-
mizing the pairwise ranking loss. About the word “limited” in the paper title,
it means that the text space is spanned by a set of base vectors which are also
known as different words in a vocabulary. Therefore, the ability for the text space
to understand is limited due to the limited number of words in the vocabulary.

Our core contributions are: (1) We propose a novel model to do the retrieval of
images and sentences humanly in a limited text space. Pairwise ranking loss func-
tion is exploited as the objective function to be optimized. (2) The image under-
standing network is capable of modeling strong semantic correlations between
images and sentences. (3) A single fusion layer is added on top of the visual
part in order to capture both visual label information and semantic correlations
between images and sentences, as well as transform the image representations
into a limited text space.

The rest of the paper is organized as follows. Section 2 reviews the related
work for cross-media retrieval. Section 3 describes details of our proposed model.
Section 4 presents the experimental results on three datasets. Finally, we make
a summary of the paper in Sect. 5.

2 Related Work

There are a lot of methods that have been proposed to handle the aforementioned
two problems. For the first problem of learning efficient image and sentence rep-
resentations, Sharif et al. [1] argued that a pre-trained deep convolutional neural
network (CNN) was an effective image feature extractor which had achieved the
state-of-the-art performances on many image processing tasks. Simonyan et al.
[2] investigated how the depth of convolutional neural networks affected their
performance and proposed VGG which had won the first and the second places
in the localization and classification tasks respectively. For sentence, traditional
methods including Word2Vec [3], LDA [17], or FV [5] were used to learn low-
level representations for sentences without concerning the rich contextual infor-
mation. Recently, with the great progress on machine translation [6], recurrent
neural network is found to be a more powerful tool for language modeling which
is able to take advantage of the contextual information of the whole sentence.
Wang et al. [23] proposed a deep alternative neural network (DANN) to extract
contextual information for action recognition in video.
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For the second problem of learning a homogeneous space, the mainstream
approach is to learn a common space by affine or deep transformation on both
sentence and image sides. Canonical correlation analysis [4] learned a common
space by maximizing the correlations between relevant sentences and images.
Karpathy et al. [19] broke down both images and sentences into fragments and
embedded them into a common multi-modal space. Fan et al. [21] performed
coupled feature mapping and correlation mining successively for cross-media
retrieval. Coupled feature mapping learned two projection matrices to map the
multimodal features into a common category space and then correlation min-
ing was used to take advantage of the semantic category information. Yan et
al. [7] stacked fully connected layers together to represent the sentences and
used deep canonical correlation analysis for matching images and sentences. Ma
et al. [8] proposed multimodal convolutional neural networks (m-CNNs) which
captured relations between images and sentences at different level. In addition
to a common space, in the DeViSE model developed by Frome et al. [18], the
text space was formed by a pre-trained Word2Vec model. In a follow-up work,
Norouzi et al. [9] employed Word2Vec for both sentence and image embeddings.
The text space vector of an image was obtained by a convex combination of
the word embedding vectors of the visual labels predicted to be the most rele-
vant to the image. Recently, a distributional visual embedding space provided by
Word2VisualVec [10] was found to be an effective space to perform cross-media
retrieval by embedding sentences into a visual feature space.

Apart from those models designed for cross-media retrieval, image caption
models can also be used to learn an appropriate homogeneous space. For exam-
ple, multimodal recurrent neural network (m-RNN) [11], neural image cap-
tion (NIC) [13], deep visual-semantic alignments (DVSA) [14], Unifying Visual-
Semantic Embeddings (VSE) [15] were used to learn the relations between images
and sentences and generate the captions for a given image. Before translat-
ing the image representations to descriptive sentences, those models first trans-
formed the image representations into a limited text space. Thus, the limited text
space vectors for images contain rich semantic correlations between images and
sentences.

3 Proposed Method

The architecture of our proposed model is shown in Fig. 1 which contains a
language model part, a visual part and an embedding part.

3.1 Language Model Part

We first review GRU which is used for learning dense limited text space rep-
resentations for sentences. Cho et al. [16] proposed Gated Recurrent Unit as a
simpler alternative to the LSTM. The GRU uses reset gates r and update gates
z to control the flow of information inside the unit. h represents the activation
of the GRU and ĥ is the previous computed activation.
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Let S = (s0, s1, · · · , st), t ∈ {0 · · · T} be an input sentence, where we rep-
resent each word as a one-hot vector st of dimension equals to the size of the
dictionary. Note that we denote by sT a special end word which designates the
end of the sentence. Before fed into the GRU, st should be embedded into a
more dense space such as the Word2Vec space:

xt = West, t ∈ {0 · · · T} , (1)

The word embedding matrix We maps the one-hot vectors to a more dense text
space. As mentioned in [16], the GRU takes the form:

hj
t = (1 − zj

t )h
j
t−1 + zj

t ĥ
j
t

zj
t = σ(Wzxt + Uzht−1)j

ĥj
t = tanh(Wxt + U(rt � ht−1))j

rj
t = σ(Wrxt + Urht−1)j

(2)

As shown in Eq. (2), the activation hj
t of the GRU at time t is a linear

interpolation between the previous activation hj
t−1 and the candidate activation

ĥj
t . An update gate zj

t decides how much the unit updates its activation. The
reset gate rj

t controls the unit whether to forget the previous computed states or
not. Finally, the representation of a sentence S is the hidden state of the GRU
at time T .

3.2 Visual Part

The visual part contains a deep convolutional neural network and an image
understanding network to achieve image understanding. For convolutional neural
network, we employ VGG [2] to extract 4096-dimensional image representations
Xvgg which contain rich visual label information.

For the image understanding network, inspired by the idea of automatic
image captioning, we propose a novel method to map image pixels to pre-trained
limited text space representations which contain strong semantic correlations
between images and sentences similar to NIC [13]. The understanding process
can be divided into two sub-processes:

(1) Learning image representations. We choose Inception v3 image recog-
nition model pre-trained on the ILSVRC-2012-CLS image classification
dataset as an image feature extractor:

Ximg = Inception v3(Image) (3)

where Ximg is a 1024-dimensional vector in an image space.
(2) Embedding image representations into a pre-trained limited text

space. A single linear embedding layer is added on top of the Inception v3
model to transform the image representations into a pre-trained limited text
space:

Xtxt = XimgWimg (4)

where Wimg maps Ximg to a 512-dimensional vector.
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3.3 Embedding Part

As mentioned in the previous subsection, Xvgg is able to capture rich visual label
information but ignores semantic correlations between images and sentences.
Xtxt is particularly good at modeling semantic correlations between images and
sentences which is complementary to Xvgg. According to it, we add a linear
fusion layer on top of the visual part to combine Xtxt with Xvgg as well as
embed them into a limited text space:

Xfinal = XvggWvgg fuse + XtxtWtxt fuse, (5)

where Wvgg fuse and Wtxt fuse are embedding matrices for Xvgg and Xtxt

respectively.

Fig. 2. Illustration of the pairwise ranking loss for learning the limited text space.
Rectangles represent images and circles represent sentences. Matching image-sentence
pairs are denoted in the same color.

In order to optimize the model parameters, pairwise ranking loss function
is exploited to be the objective function. That is, as shown in Fig. 2, given an
image query x, we want the distance between x and its matching sentences to
be smaller than the distance between x and its non-matching sentences by a
margin, and vice versa for a sentence query. Thus, we optimize the following loss
function:

L = min
Θ

∑

x

∑

k

max {0,margin − d(x, s) + d(x, sk)}

+
∑

v

∑

k

max {0,margin − d(s, x) + d(s, xk)}
(6)

where sk is a negative sentence for a given image x and xk is a negative image
for a given sentence s. In order to obtain the non-matching terms, we choose
them randomly from the training set and re-sampled every epoch.
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4 Experiments

In order to evaluate the effectiveness of our proposed model on cross-media
retrieval, we have performed an extensive set of experiments on three benchmark
datasets. We follow the evaluation metrics adopted in [15] for a fair comparison
using Recall@K and Med r. The R@K (with K = 1, 5, 10) computes the mean
number of images for which the correct caption is ranked within the top-K
retrieved results and vice versa for sentences. Med r is the median rank of the
first correct result in the ranking list. Higher R@K and lower Med r thus mean
better performance.

Table 1. Bidirectional image and sentence retrieval results on Flickr8K

Sentence retrieval Image retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Random ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500

DeViSE [18] 4.8 16.5 27.3 28.0 5.9 20.1 29.6 29

m-RNN [11] 14.5 37.2 48.5 11 11.5 31.0 42.4 15

Deep fragment [19] 12.6 32.9 44.0 14 9.7 29.6 42.5 15

DCCA [7] 17.9 40.3 51.9 9 12.7 31.2 44.4 13

m-CNNwd [8] 15.6 40.1 55.7 8 14.5 38.2 52.6 9

m-CNNphs [8] 18.0 43.5 57.2 8 14.6 39.5 53.8 9

m-CNNphl [8] 16.7 43.0 56.7 7 14.4 38.6 52.2 9

m-CNNst [8] 18.1 44.1 57.9 7 14.6 38.5 53.5 9

m-CNNENS [8] 24.8 53.7 67.1 5 20.3 47.6 61.7 5

FV (GMM + HGLMM) [5] 31.0 59.3 73.7 4 21.3 50.0 64.8 5

VSE [15] 18.0 40.9 55.0 8 12.5 37.0 51.5 10

Ours single 21.8 50.2 64.5 5 13.8 37.5 52.2 10

Ours fusion 21.5 50.3 66.2 5 15.4 40.5 54 9

4.1 Datasets

For evaluation we use three benchmark datasets consisting of images and their
corresponding descriptive sentences. The statistics of the datasets are as follows:

Flickr8K [24]: This dataset consists of 8,000 images. Each image is annotated
with 5 sentences describing the content. We use 6,000 images for training, 1,000
images for validation and 1,000 images for testing.

Flickr30K [22]: This dataset consists of 31,783 images. Each image is also anno-
tated with 5 sentences describing the content of the image. We use 29,000 images
for training, 1,000 images for validation and 1,000 images for testing.
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MSCOCO [12]: This dataset consists of 82,783 training, 40,504 validation, and
40,775 testing images. Each image is also annotated with 5 sentences describing
the content of the image. We reserve 1,000 random images from the MSCOCO
validation set as test and use it to report results.

4.2 Experimental Configurations

For the visual part, we adopt the similar architecture as NIC [13] to embed image
pixels into a pre-trained limited text space which was pre-trained on MSCOCO.
More specifically, we use 512 dimensions for the word embeddings. For the lan-
guage model part, we randomly initialize the word embeddings We to be 1024-
dimensional vectors. Similar to [15], our GRU uses one layer with 1024 units
and weights initialized uniformly from [–0.08, 0.08]. For the embedding part,
Xavier initialization [20] is used to initialize the embedding matrices Wvgg fuse

and Wtxt fuse. In order to choose an appropriate margin that achieves the best
performance on all datasets, we set margin = [0.1, 0.2, ..., 0.9] for validation and
finally select margin = 0.7. The whole model is implemented in TensorFlow
and Theano based on NVIDIA Tesla K80 GPU. We use minibatches of 40 on
Flickr8K, 100 on Flickr30K and MSCOCO in the training procedure.

Table 2. Bidirectional image and sentence retrieval results on Flickr30K

Sentence retrieval Image retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Random ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500

DeViSE [18] 4.5 18.1 29.2 26 6.7 21.9 32.7 25

Deep fragment [19] 14.2 37.7 51.3 10 10.2 30.8 44.2 14

m-RNN-vgg [11] 35.4 63.8 73.7 3 22.8 50.7 63.1 5

DCCA [7] 16.7 39.3 52.9 8 12.6 31.0 43.0 15

m-CNNwd [8] 21.3 53.2 66.1 5 18.2 47.2 60.9 6

m-CNNphs [8] 25.0 54.8 66.8 4.5 19.7 48.2 62.2 6

m-CNNphl [8] 23.9 54.2 66.0 5 19.4 49.3 62.4 6

m-CNNst [8] 27.0 56.4 70.1 4 19.7 48.4 62.3 6

m-CNNENS [8] 33.6 64.1 74.9 3 26.2 56.3 69.6 4

FV (GMM + HGLMM) [5] 35.4 62.0 73.8 3 25.0 52.7 66.0 5

VSE [15] 23.0 50.7 62.9 5 16.8 42.0 56.5 8

Ours single 24.5 54.2 69.3 5 17.7 43.6 55.9 8

Ours fusion 31.2 62.5 75.8 3 21.5 48.9 61.5 6

4.3 Experimental Results

We aim to show the experimental results on two aspects. Firstly, in order to
emphasize the importance of the fusion layer, we design three contrast models:
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Table 3. Bidirectional image and sentence retrieval results on MSCOCO

Sentence retrieval Image retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Random ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500

m-RNN-vgg [11] 41.0 73.0 83.5 2 29.0 42.2 77.0 3

DVSA [14] 38.4 69.9 80.5 1 27.4 60.2 74.8 3

m-CNNwd [8] 34.1 66.9 79.7 3 27.9 64.7 80.4 3

m-CNNphs [8] 34.6 67.5 81.4 3 27.6 64.4 79.5 3

m-CNNphl [8] 35.1 67.3 81.6 5 27.1 62.8 79.3 3

m-CNNst [8] 38.3 69.6 81.0 2 27.4 63.4 79.5 3

m-CNNENS [8] 42.8 73.1 84.1 2 32.6 68.6 82.8 3

FV (GMM + HGLMM) [5] 39.4 67.9 80.9 2 25.1 59.8 76.6 4

VSE [15] 43.4 75.7 85.8 2 31 66.7 79.9 3

Ours single 34.6 68.5 82.9 3 17.8 49.9 66.9 6

Ours fusion 45.5 78.7 88.8 2 30.2 66 80.5 3

(1) VSE is the baseline model which uses VGG features to represent images; (2)
Ours single removes the fusion layer and uses the image understanding network
to learn image representations; (3) Ours fusion reserves the fusion layer. Sec-
ondly, we compare the three models with the related state-of-the-art methods so
as to verify the effectiveness of the limited text space. The experimental results
on Flickr8K, Flickr30K and MSCOCO are illustrated in Tables 1, 2, and 3 where
the best performance of each evaluation metric has been highlighted.

The experimental results among the three contrast models show that our
proposed fusion model Ours fusion outperforms VSE and Ours single on
all datasets. It demonstrates that the fusion layer is able to capture both
visual label information and semantic correlations between images and sentences
which is beneficial to the performance of cross-media retrieval compared with
VGG features and the pre-trained limited text space representations. Moreover,
Ours single outperforms VSE as well especially on sentence retrieval task due
to the sufficient understanding of images by the visual part.

The contrast experiments between the fusion model Ours fusion and the
related state-of-the-art methods are shown as follows. On Flickr8K, FV achieves
the best performance. Ours fusion performs inferiorly to FV and m-CNNENS .
Due to the lack of training samples, Fisher vector is proven to be the most
powerful method on modeling sentences. However, recurrent neural network is
essentially a kind of temporally deep neural network and thus needs sufficient
data to tune the parameters adequately. Except FV, m-CNNENS performs better
than us due to the integration of four separate models. It is worth mentioning
that Ours fusion outperforms the four models on sentence retrieval and matches
their results on image retrieval.
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On Flickr30K, with more training samples than Flickr8K, Ours fusion gains
a significant improvement on sentence retrieval task which shows competitive
experimental results compared with FV and m-CNNENS . However, the model
performs poor on image retrieval task. The most probable cause may be the
insufficient understanding of sentences by RNN which may lead to the ambiguity
during the retrieval.

On MSCOCO, with the largest number of training samples, the performance
of Ours fusion on sentence retrieval has been significantly improved, compared
with all the other methods. Only DVSA outperforms Ours fusion in terms of
Med r. It demonstrates that with enough training samples, the parameters of
GRU and the embedding matrices can be more adequately tuned. On image
retrieval task, Ours fusion performs inferiorly to m-CNNENS but still superior
to the other methods.

Table 4 shows three examples of sentence retrieval. It can be observed that
our model finds the closest results for a given image query. For example, the
groundtruth descriptive sentences for the first image query are: (1) A wooden

Table 4. Three examples of sentence retrieval. The first column contains the image
queries and the second column shows the top five retrieved sentences on MSCOCO
dataset. The correctly retrieved sentences for each image query are denoted in blue.
The incorrectly identified objects are marked in red.
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ball on top of a wooden stick. (2) The table is full of wooden spoons and utensils.
(3) A wood table holding an assortment of wood cooking utensils. (4) A selection
of wooden kitchen tools on a counter. (5) Wooden spoons are lined up on a table.
Although retrieved sentences “Wooden spoons and forks are all over a table” and
“Multiple wooden spoons are shown on a table top” are regarded as irrelevant to
the image, they can describe the content more accurately than “A wooden ball
on top of a wooden stick” and “A selection of wooden kitchen tools on a counter”
from a subjective perspective of human. However, there are some unreasonable
results for the third image query. As shown by the words marked in red, our
model identifies visual concept “woman” incorrectly which is nonexistent in the
image.

5 Conclusion

In this paper, we propose a novel model to perform cross-media retrieval in a
limited text space which aims to learn limited text space representations for
both images and sentences. Firstly, the visual part learns image representations
including deep convolutional features and pre-trained limited text space repre-
sentations. The language model part learns a dense limited text space represen-
tation for each sentence. Secondly, the embedding part captures both visual label
information and semantic correlations between images and sentences, as well as
learns the final limited text space. Experimental results on three benchmark
datasets demonstrate the importance of the fusion layer and the effectiveness of
the limited text space. Our proposed fusion model achieves promising improve-
ment compared with the related state-of-the-art methods. In the future, we will
pay more attention to the image retrieval task and further improve the accuracy
of it.
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Abstract. Keyword Spotting (KWS) improves the accessibility to
handwritten historical documents by unconstrained retrievals of key-
words. The proposed KWS framework operates on segmented words that
are in turn represented as graphs. The actual KWS process is based on
matching graphs by means of a cubic-time graph matching algorithm.
Although this matching algorithm is quite efficient, the polynomial time
complexity might still be a limiting factor (especially in case of large
documents). The present paper introduces a novel approach that aims
at speeding up the retrieval process. The basic idea is to first segment
individual graphs into smaller subgraphs by means of a quadtree pro-
cedure. Eventually, the graph matching procedure can be conducted on
the resulting pairs of smaller subgraphs. In an experimental evaluation
on two benchmark datasets we empirically confirm substantial speed-ups
while the KWS accuracy is nearly not affected.

Keywords: Handwritten keyword spotting · Bipartite graph matching ·
Quadtree graph segmentation

1 Introduction

In the last decades, handwritten historical documents have been made increas-
ingly digitally available around the world. Example documents are the Barcelona
marriage registry [1], the Saint Gall manuscript [2] or the George Washington
letters [3], to mention just a few. Yet, the accessibility to these documents with
respect to browsing and searching is still an issue since automatic full transcrip-
tions are often not feasible. Thus, Keyword Spotting (KWS) as an alternative to
transcriptions has been proposed for this type of document [3–6]. KWS allows
to retrieve any instances of a given keyword in a certain document. In case of
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 304–315, 2017.
DOI: 10.1007/978-3-319-64689-3 25
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historical documents, KWS is limited to document images only and is thus an
offline task. Generally, offline KWS is regarded as the more difficult case when
compared to online KWS, where temporal information about the writing process
is available as well.

KWS approaches can be roughly distinguished into template-based or
learning-based algorithms. In the case of template-based KWS, handwritten
words are often represented by sequences of feature vectors used to store cer-
tain characteristics of the handwriting. A query word can then be retrieved in
a set of document words by matching sequences of features vectors, for example
by means of dynamic time warping [5,7,8]. Learning-based KWS on the other
hand is based on a statistical model that is trained a priori on a relatively
large set of training words [3,6,9]. Comparing both approaches with each other,
we observe that learning-based approaches lead to higher accuracies in general,
while template-based approaches are characterised by a higher flexibility (as no
training is required). In the present paper, we focus on template-based KWS
using graphs for the formal representation of words.

In various fields of pattern recognition, graphs have been employed as a
versatile representation formalism [10–12]. Yet, for applications based on KWS,
graphs are rarely used [13–18]. This is somehow surprising as graphs offer a
natural and comprehensive representation for handwritten words. In particular,
graphs are able to adapt both their size and structure to the complexity of the
underlying handwritten words. Moreover, graphs are able to represent binary
relationships that might exists between parts of the handwritten words.

In case of graph-based KWS, the actual spotting process includes matching
a query graph with a set of document graphs (using some graph matching algo-
rithm [11]). When large amounts of graph matchings are necessary, the complete
KWS process might take too much time, even with fast approximate matching
algorithms (e.g. [16]).

In the present paper, we focus on speeding up the graph-based KWS process
by adapting the actual graph matching procedure. Graphs are first iteratively
segmented into smaller subgraphs by means of a quadtree segmentation. Second,
the graph matching is conducted on corresponding small subgraphs rather than
on the large graphs representing the complete word. The rationale for this pro-
cedure is to substantially speed up the graph matching, as the matching time
depends on the number of nodes of the involved graphs.

The remainder of this paper is organised as follows. In Sect. 2, the basic KWS
framework for graph-based word representations is reviewed. The actual speed-
up procedure for graph-based KWS is introduced in Sect. 3 and evaluated in
Sect. 4. Finally, Sect. 5 concludes the paper and outlines possible future research
activities.

2 Graph-Based Keyword Spotting

The present paper proposes a novel method for speeding up a framework for
graph-based KWS [16]. The basic KWS framework consists of four different
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Fig. 1. Process of Graph-based keyword spotting of the word “October”

processing steps as illustrated in Fig. 1. In the following four subsections these
four steps are briefly reviewed.

2.1 Image Preprocessing

For the purpose of evaluation, we employ two historical documents, viz. the
George Washington letters (GW) and the Parzival manuscript (PAR). GW is
based on twenty pages with a total of 4,894 handwritten words1. The letters are
written in English by George Washington and his associates during the American
Revolutionary War in 1755. Variations caused by both degradation and writing
style are low. PAR consists of 45 pages with a total of 23,478 handwritten words2.
The manuscript is written in Middle High German and originates in the 13th
century. Variations caused by degradation are markable, while variations caused
by writing style are low. Two exemplary words are given for both documents in
the first row of Fig. 2.

GW PAR

Keypoint

Projection

Preprocessed

Original

Fig. 2. Different representations of two sample words from both datasets.

1 George Washington Papers at the Library of Congress, 1741–1799: Series 2, Let-
terbook 1, pp. 270–279 & pp. 300–309, http://memory.loc.gov/ammem/gwhtml/
gwseries2.html.

2 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/
databases/iam-historical-document-database/parzival-database.

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
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The original document images are first preprocessed to reduce variations
caused, for instance, by skew scanning, noisy background, and document degra-
dation. On the basis of preprocessed document images, single word images are
automatically segmented by means of their projection profile (and if necessary
manually corrected). In the second row of Fig. 2 we show the result of our pre-
processing on some examples. For details regarding both image preprocessing
and word segmentation we refer to [16].

2.2 Graph Representation

A graph g is generally defined as a four-tuple g = (V,E, μ, ν) where V and
E are finite sets of nodes and edges, and μ : V → LV as well as ν : E →
LE are labelling functions for nodes and edges, respectively. Graphs can be
divided into undirected and directed graphs, where pairs of nodes are either
connected by undirected or directed edges, respectively. Additionally, graphs
are often distinguished into unlabelled and labelled graphs. In the latter case,
both nodes and edges can be labelled with an arbitrary numerical, vectorial, or
symbolic label from Lv or Le, respectively. In the former case we assume empty
label alphabets, i.e. Lv = Le = {}.

The following two graph extraction algorithms (originally presented in [17])
result in graphs where nodes are labelled with two-dimensional numerical labels,
while the undirected edges remain unlabelled, i.e. LV = R

2 and LE = {}.

– Keypoint: The first graph extraction algorithm makes use of keypoints in
the word images such as start, end, and junction points. These keypoints
are represented as nodes and labelled with the (x, y)-coordinates of the corre-
sponding keypoint. Between pairs of keypoints further intermediate points (in
equidistant intervals) are converted to nodes and added to the graph. Finally,
undirected edges are inserted between pairs of nodes that are directly con-
nected by a stroke.

– Projection: The second graph extraction algorithm is based on an adaptive
segmentation of word images by means of horizontal and vertical projection
profiles. A node is inserted into the graph for every segment and labelled by
the (x, y)-coordinates of the centre of mass of the corresponding segment.
Undirected edges are inserted into the graph for each pair of nodes that is
directly connected by a stroke in the original word image.

In the third and fourth row of Fig. 2 we show the resulting graphs of Keypoint
and Projection, respectively.

For both graph representations, the dynamic range of the (x, y)-coordinates
of each node label μ(v) is normalised with a z-score. Formally,

x̂ =
x − μx

σx
and ŷ =

y − μy

σy
,

where (μx, μy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration.
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2.3 Graph Matching for Keyword Spotting

In our general KWS approach, a query graph q is individually matched with every
graph g from a set of document graphs G = {g1, . . . , gN}. For this particular
task, we focus on inexact graph matching and employ the concept of Graph
Edit Distance (GED) [19]. Note that any other graph matching algorithm could
be used as well. Yet, GED is particularly interesting as it allows matchings of
arbitrary graphs.

Given a query graph q and document graph g ∈ G, the basic principle of
graph edit distance is to transform q into g using some edit operations (i.e. inser-
tions, deletions, and substitutions) for both nodes and edges. A set {e1, . . . , ek}
of k edit operations ei that transform q completely into g is called an edit
path λ(q, g) between q and g.

To find the most suitable edit path, one commonly introduces a domain-
specific cost function c(e) for every edit operation e. This cost function is used to
measure the degree of deformation of a given edit operation. Given an adequate
cost model, the graph edit distance dGED(q, g), or dGED for short, between q and
g is defined by

dGED(q, g) = min
λ∈Υ (q,g)

∑

ei∈λ

c(ei),

where Υ (q, g) denotes the set of all edit paths between q and g.
For the exact computation of dGED, it is common to employ A*-based search

techniques using some heuristics [20,21]. However, these exhaustive search pro-
cedures are exponential with respect to the number of nodes of the involved
graphs. Formally, GED belongs to the family of Quadratic Assignment Prob-
lems (QAPs) [22], which in turn belong to the class of NP-complete problems.

In order to overcome this limitation, we make use of an approximation algo-
rithm for the computation of GED [23]. This method basically reduces the prob-
lem of GED computation to an instance of the Linear Sum Assignment Prob-
lem (LSAP). Both QAPs and LSAPs deal with the optimal alignment of entities
of two sets. Yet, by encoding the GED problem as an LSAP, we have to neglect
the global edge structures of the graphs. This actually leads to a general overes-
timation of the true GED. However, with this transformation, we benefit from
the polynomial complexity of LSAPs (see [24] for an exhaustive survey on LSAP
solving algorithms). For the remainder of this paper, we make use of this graph
matching algorithm and name the corresponding suboptimal graph edit distance
dBP(q, g), or dBP for short3.

2.4 Derive Retrieval Indices

Our approach for keyword spotting relies on retrieval indices which are based on
the suboptimal graph edit distance dBP. We define retrieval indices for both local
and global threshold scenarios. In case of local thresholds, the KWS accuracy is

3 BP stand for bipartite (LSAPs are also termed bipartite matching problem).
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independently measured for every keyword, while in case of global thresholds,
the KWS accuracy is measured for every keyword with one single threshold.

In both scenarios, dBP is first normalised by the sum of the maximum cost
edit path between q and g, i.e. the sum of the edit path that results from deleting
all nodes and edges of q and inserting all nodes and edges in g. Formally,

d̂BP(q, g) =
dBP(q, g)

(|Vq| + |Vk|) τv + (|Eq| + |Eg|) τe
,

where τv and τe denote the node and edge insertion/deletion costs. In case a
query consists of a set of graphs {q1, . . . , qt} that represents the same keyword,
the normalised graph edit distance d̂BP is given by the minimal distance achieved
on all t query graphs. This normalised graph edit distance is used to derive a
first retrieval index for local thresholds by

r1(q, g) = −d̂BP(q, g).

To derive a retrieval index for global thresholds, d̂BP is further normalised
by using the average distance of a query graph q to its k nearest document
graphs, i.e. the document graphs {g(1), . . . , g(k)} with smallest distance values
to q. Formally, we use

d̄k(q) =
1
k

k∑

i=1

d̂BP(q, g(i)),

to derive
ˆ̂
dBP(q, g) =

d̂BP(q, g)
d̄k(q)

.

Finally, the distance ˆ̂
dBP is used to derive the retrieval index for global thresh-

olds by

r2(q, g) = − ˆ̂
dBP(q, g).

Rather than defining k as a constant, we dynamically adapt k for every query
graph q. In particular, k is defined such that the distance dBP(q, g(k)) of q to its
k-th nearest document graph g(k) is equal to

d̄m(q) + θ (d̄N (q) − d̄m(q)),

where m and θ are user defined parameters and N refers to the number of
document graphs. The value of d̄m(q) refers to the mean distance of q to its m
nearest neighbours and d̄N (q) refers to the mean distance to all document graphs
available. This sum reflects the level of the dissimilarities of q to the graphs in
its direct neighbourhood. If the sum is large, k is automatically defined large,
too. This in turn increases d̄k(q), which ultimately increases the scaling to ˆ̂

dBP.
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3 Speeding-Up the Graph Matching

The contribution of the present paper is a novel method that aims at faster
computations of pairwise graph dissimilarities. That is, we focus on reducing
the time for computing dBP. Basically, rather than matching complete graphs,
we first apply a quadtree segmentation to individual graphs. Next, we match the
small subgraphs (corresponding to each other w.r.t. the segmentation) and sum
up the individual matching costs. This procedure might substantially speed up
the graph matching procedure as the complexity of the graph matching algorithm
is a cubic function of the number of nodes of the involved graphs.

The graph segmentation is carried out as follows. First, the bounding box
surrounding a graph g is segmented at the Centre of Mass (xm, ym) into four seg-
ments as illustrated in Fig. 3a. To make this segmentation more robust against
variations in the underlying graphs, we overlap each segment depending on a
user defined factor α ∈ ]0, 1[. Parameter α defines the overlap of a segment to
its neighbouring segments with respect to width and height of the correspond-
ing segment. That is, for α = 0.10, for instance, the overlapping region is 10%
of the size of the corresponding segment. For each of the resulting segments
one subgraph is created that includes all nodes (and edges) of the correspond-
ing segment. Hence, we obtain four (not necessarily disjoint) subgraphs. These
subgraphs are iteratively segmented at their corresponding centre of mass into
further subgraphs until the recursion level l is equal to a maximum recursion
depth r > 0 (defined by the user). This procedure is illustrated in Fig. 3b and c.

The actual procedure for computing a dissimilarity between two graphs g
and g′ using the proposed segmentation is formalised in Algorithm1 (termed
Quadtree Graph Matching). The proposed procedure is initialised by an external
call with recursion level l = 1, i.e. BPQ(1, g, g′). First, both graphs g and g′

are segmented into four subgraphs with the procedure described above. Each
of these subgraphs represent the nodes and edges in one of the four segments
under consideration (with a relative overlap of α) (see line 2 of Algorithm 1).
Eventually, the sum of the four bipartite graph edit distances computed on the
corresponding four subgraphs is built (see line 3). Finally, the subgraph pairs
are further segmented by means of a recursive function call of BPQ (see line 6).
This procedure is repeated until the current recursion level l is equal to the
user-defined maximum depth r (see line 4 and 5).

4 Experimental Evaluation

The proposed speed-up procedure of quadtree segmentation (termed BP-Q from
now on) is compared with two reference systems. First, we use the original KWS
framework presented in [16] (termed BP from now on). Second, we use BP in
conjunction with a fast rejection procedure recently proposed in [18] (termed
BP-FR from now on). BP-FR also aims at speeding up the KWS process. Yet,
this approach is based on a reduction of the number of graph matchings. In
particular, pairs of query and document graphs are first compared with respect
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(a) Recursion Level l = 1 with Centre of Mass (xm, ym) and Overlap Factor α

(b) Recursion Level l = 1 with Subgraphs g1 (highlighted), g2, g3, and g4

(c) Recursion Level l = 2 with Centres of Mass (xm1 , ym1) , . . . , (xm4 , ym4)

Fig. 3. Quadtree graph segmentation.

Algorithm 1. Quadtree Graph Matching
Input: Graphs g and g′, overlap factor α, maximum recursion depth r > 0
Output: Graph distance dBPQ between graph g and g′

1: function BPQ(l, g, g′)
2: Quadtree segment g and g′ to g1, g2, g3, g4 and g′

1, g′
2, g′

3, g′
4

3: dBPQ =
4∑

i=1
dBP(gi,g

′
i
)

4: if l equal r then
5: return dBPQ

6: return dBPQ +

(
4∑

i=1
BPQ(l + 1, gi, g′

i)

)

to their node distributions in a polar coordinate system. If these distributions
are similar enough, the graph matching is actually carried out (otherwise the
document graph is rejected without further computations).

In the following subsection, the optimisation of the proposed KWS system is
described. Eventually, the results are presented and discussed in Subsect. 4.2.

4.1 Optimisation of the Parameters

For the optimisation of the KWS framework, we manually select ten different
keywords (with different word lengths) on both datasets (GW and PAR). More-
over, a validation set is defined consisting of 1,000 different random words includ-
ing at least ten instances of all ten keyword instances. The KWS experiments
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Table 1. Number of keywords as well as the size of the training and test set for both
benchmark datasets.

Dataset Keywords Train Test

GW 105 2,447 1,224

PAR 1,217 11,468 6,869

are finally conducted with optimised parameter settings on the same training
and test sets as proposed in [3]. In Table 1, the number of keywords, as well as
the size of the training- and test set are shown for both datasets.

In case of global thresholds, the accuracy of KWS systems is often measured
by the Average Precision (AP), which is the area under the Recall-Precision (RP)
curve for all keywords given one single global threshold. In case of local thresh-
olds, the KWS accuracy is commonly measured by the Mean Average Preci-
sion (MAP), that is the mean over the AP of each individual keyword query. In
a real-world scenario, global thresholds are regarded as the more realistic but
also more difficult case.

The optimal parameters for the KWS system BP, the fast rejection method
BP-FR, as well as the two graph extraction methods Keypoint and Projection
are adopted from previous works [16–18]. The parameters of the quadtree seg-
mentation, i.e. the maximum recursion depth l and the overlap factor α, are opti-
mised as follows. We evaluate five maximum recursion depths r ∈ {1, 2, 3, 4, 5} in
combination with 20 overlap factors α ∈ {0.01, 0.02, . . . , 0.20}. On both datasets
and for both extraction methods a maximum recursion depth of 1 turns out
to be optimal. On PAR an overlap factor α of 0.01 is optimal for both graph
representations, while on GW α = 0.01 and α = 0.02 is optimal for Keypoint
and Projection, respectively.

The retrieval index r2 is optimised for the scenario with global thresholds.
In particular, parameter m and threshold scaling factor θ are optimised. To this
end, we evaluate 2,000 parameter pairs (m, θ) with m = {10, 20, . . . , 990, 1000}
and θ = {0.01, 0.02, . . . , 0.19, 0.20}. In Table 2, the optimal parameter settings
for r2 are given for both graph extraction methods and benchmark datasets.

Table 2. Optimal parameters m and θ for retrieval index r2 for both graph extraction
methods and benchmark datasets.

Method GW PAR

m θ m θ

Keypoint 70 0.01 950 0.20

Projection 60 0.02 1,000 0.20
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4.2 Results and Discussion

In Table 3, the MAP and AP for local and global threshold scenarios are given for
all three KWS systems, i.e. the original framework BP [16,17], the BP framework
with fast rejection BP-FR [18], as well as our novel procedure BP-Q. Addition-
ally, we indicate the speed-up factor4 as well as the relative gain or loss of the
KWS accuracy of both speed-up approaches when compared with the original
system BP.

Table 3. Mean average precision (MAP) using local thresholds, average precision (AP)
using a global threshold, and speed-up factor (SF) for KWS using the original bipartite
graph matching without rejection (BP), with fast rejection (BP-FR), and with quadtree
segmentation (BP-Q). With ± we indicate the relative percental gain or loss in the
accuracy of BP-FR and BP-Q when compared with BP.

Method GW PAR

MAP ± AP ± SF MAP ± AP ± SF

b
p

Keypoint 66.08 55.22 62.04 60.76

Projection 61.43 49.34 66.23 62.38

b
p
-
f
r Keypoint 68.81 +4.1 54.10 –2.0 3.2 67.70 +9.1 63.01 +3.7 2.4

Projection 64.65 +5.2 48.94 –0.8 2.6 72.02 +8.7 63.49 +1.8 2.3

b
p
-
q Keypoint 65.92 –0.2 54.91 –0.6 17.1 56.83 –8.4 54.66 –10.0 21.2

Projection 59.57 –3.0 48.13 –2.5 15.0 64.62 –2.4 61.72 –1.1 21.5

When compared to BP, the proposed method BP-Q achieves speed-up factors
of about 15–17 and 21 on GW and PAR, respectively. This refers to a substantial
improvement of the performance, especially as the previous method for speeding
up the KWS process (BP-FR) leads to speed-up factors of about 2 to 3 only.
However, for both datasets and both threshold scenarios an accuracy loss has to
be taken into account with BP-Q, while BP-FR outperforms BP in three out of
four cases. Yet, this deterioration of BP-Q in the KWS accuracy is negligible. In
particular, when we consider the results of Keypoint on GW and Projection
on PAR (where the relative loss of accuracy is lower than 1% and 2.5%, respec-
tively). Hence, we can summarise that BP-Q achieves comparable results as BP
but needs about 20 times less computation time for KWS.

5 Conclusion and Outlook

In the present paper a procedure for speeding up graph-based keyword spotting
is presented. The basic idea is to iteratively segment graphs into smaller sub-
graphs by means of a quadtree segmentation. These small subgraphs, rather than
4 We carry out our experiments on a high performance computing cluster with dozens

of 2.2 GHz CPU nodes. Hence, these readings refer to the average matching time per
keyword measured in a sequential scenario.
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complete graphs, are eventually matched during the KWS process. The moti-
vation for this procedure is to decrease the runtime of the KWS process. This
is actually reasonable as the time complexity of the employed graph matching
algorithm is a cubic function of the number of nodes of the involved graphs.

We compare the proposed speed-up procedure BP-Q with the original frame-
work BP and a recent fast rejection method BP-FR on two different benchmark
datasets. On both datasets, BP-Q achieves remarkable speed-up factors of 15
to 21 when compared with BP (BP-FR leads to substantially smaller speed-up
factors of 2 to 3). However, these performance improvements are accomplished
with a marginal loss in accuracy when compared with BP.

In future work we aim at combining both speed-up approaches BP-Q and
BP-FR to further speed up the KWS process. That is, graphs might be first
filtered by the fast rejection method [18] and eventually segmented and matched
by means of the quadtree graph matching procedure. Moreover, we see great
potential in applying our fast matching procedure in other fields of graph-based
pattern recognition. Last but not least, it would be interesting to employ our
general method in a parallelised computation scenario.

Acknowledgments. This work has been supported by the Hasler Foundation
Switzerland.
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Abstract. Autonomous driving safety is becoming a paramount issue
due to the emergence of many autonomous vehicle prototypes. The safety
measures ensure that autonomous vehicles are safe to operate among
pedestrians, cyclists and conventional vehicles. While safety measures
for pedestrians have been widely studied in literature, little attention
has been paid to safety measures for cyclists. Visual cyclists analysis is a
challenging problem due to the complex structure and dynamic nature of
the cyclists. The dynamic model used for cyclists analysis heavily relies
on the wheels. In this paper, we investigate the problem of ellipse detec-
tion for visual cyclists analysis in the wild. Our first contribution is the
introduction of a new challenging annotated dataset for bicycle wheels,
collected in real-world urban environment. Our second contribution is a
method that combines reliable arcs selection and grouping strategies for
ellipse detection. The reliable selection and grouping mechanism leads to
robust ellipse detections when combined with the standard least square
ellipse fitting approach. Our experiments clearly demonstrate that our
method provides improved results, both in terms of accuracy and robust-
ness in challenging urban environment settings.

1 Introduction

Visual cyclists analysis is gaining considerable attention, especially due to the
growing demand for autonomous driving safety. The analysis mainly involves
understanding cyclists’ behavior and their intentions. A cyclist has a com-
plex structure composed of a bicycle and a pedestrian. Therefore, it cannot be
processed as a pedestrian nor a bicycle. The work of [35] introduced a dynamic
model for cyclists with nine state parameters that define the cyclist pose in
the global coordinate system. Among these parameters are the wheel base, the
steering angle, and the normal vector to the rear wheel, as well as the normal to
the front wheel, which can be estimated from the steering angle. Such sophisti-
cated dynamic model requires a robust and accurate ellipse estimation for the
front and the back wheel to facilitate the state estimation. The assumption is
that by tracking these states, the behavior of cyclists can be analyzed and their
intentions can be predicted. This would have a great impact on autonomous
driving safety, allowing vehicles to interact with cyclists efficiently by knowing
their current state and their intentions.
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 319–331, 2017.
DOI: 10.1007/978-3-319-64689-3 26
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Fig. 1. (a) An example from the Caltech 256 dataset [14], (b) Examples for challenges
in the TDCB dataset [20].

Thus, ellipse detection plays a crucial rule for visual cyclists analysis. There
are plethora of good ellipse detectors in literature, which have been extensively
evaluated [2,11,26]. However, they have been evaluated on either synthetic data
or clean images taken in controlled environments. To our knowledge, there exist
no dataset for ellipse detection in realistic imagery acquired in uncontrolled
environment. Hence, we introduce a new dataset, E-TDCB, with annotated
ellipses of wheels for visual cyclists analysis in urban environment. The images
in the E-TDCB dataset are taken from the Tsinghua-Daimler Cyclist Detection
Benchmark Dataset (TDCB) [20], and we provide rich annotations of the bicy-
cle wheels. Our motivation to generate this dataset is to provide an evaluation
benchmark for ellipse fitting in real-world urban imagery that is more challeng-
ing than the standard datasets and to produce a baseline for visual cyclists
analysis methods that apply a dynamic cyclist model relying on ellipse esti-
mates. Figure 1 shows a comparison between a bicycle image from the Caltech
256 dataset [14], taken in a controlled environment, and some challenging exam-
ples from the TDCB dataset. We also introduce a novel ellipse detector which
combines several ellipse fitting approaches into a light-weight detector with real-
time performance, high accuracy, and robustness. We perform comprehensive
experiments by evaluating our method and state-of-the-art ellipse detectors on
the E-TDCB dataset. The results clearly demonstrate that our method outper-
forms existing state-of-the-art detectors, while providing an exceptional balance
between accuracy and robustness. In summary, our contributions are:

• A new dataset with wheels annotations for visual cyclists analysis in the wild.
• A robust ellipse-based wheel detection method facilitating cyclists analysis.
• Comparison to existing state-of-the-art ellipse detectors on the new dataset.

2 Related Work

One of the few existing works on visual cyclists analysis is the recent work by
Zernetsch et al. [34] that predicts the trajectory of cyclists and their intentions
such as “Starting”, “Stopping”, “Waiting”, or “Passing”. The approach is based
on Artificial Neural Networks that are trained on annotated tracks captured
using a stereo camera and a laser scanner. Another work by Ardeshiri et al. [1]
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estimates and tracks the cyclist’s state based on measurements from a conven-
tional monocular camera instead of special hardware. It applies an advanced
dynamic cyclist model [35] and particle filters to predict the future state of
cyclists. For the ellipse extraction, a simple method fits ellipses to bicycles wheels
based on the assumption that tires have reflective rings on them, thus unsuitable
for uncontrolled imagery. A robust ellipse detector that works with uncontrolled
bicycle imagery would be essential to make this method applicable in practice.

Shape matching, as a generalization to ellipse extraction, has been a fre-
quently studied computer vision approach to object recognition tasks. Several
methods have been proposed based on geometric context [3,4], shape descrip-
tors in the spatial domain [12], and in the frequency domain [19]. These methods
have been applied to numerous challenging problems such as object recognition
[24,25], character recognition [29], traffic sign recognition [19], pedestrian detec-
tion, and motion analysis [21]. Ellipses are one of the most frequently observed
shapes in digital imagery since they are projections of circles commonly avail-
able in real-world objects. This has prompted ellipse fitting to be one of the pre-
requisites for several shape matching methods employed in many applications,
including facial gesture analysis [15,30], medical image analysis [27,31], vehicle
wheels detection [7], visual cyclists analysis [1], and traffic sign detection [22].

An ellipse is defined by five parameters and a common approach was to
use the Hough Transform (HT) to estimate these parameters. The approach
is similar to HT line detection, but in case of ellipses, the accumulator has
five dimensions instead of two. This imposes high computational and memory
demands to explore the space and several attempts have been made to reduce
its size. Mclaughlin [23] eliminated two parameters by geometrically finding the
center of the ellipse and then performing Randomized HT (RHT) [33] to obtain
the other three parameters. In [32], the dimensionality of the accumulator was
reduced to one dimension by randomly selecting pairs of pixels that match certain
geometric constraints and estimate the center, major axis, and the angle for
candidate ellipses from these pairs. The minor axis is then calculated using 1D
HT. Similarly, two optimized versions of [32] were proposed in [2,6] which require
less memory, fewer computations, and are more robust against noise and false
detections. All these HT-based methods require a proper selection of several
control parameters that define geometric constraints.

Another approach is based on the canonical representation of ellipses and
formulating the problem as a least-squares minimization. Fitzgibbon [10] intro-
duced direct least squares fitting of ellipses by minimizing the algebraic distance
between some scattered points and an ellipse hypothesis that is represented in
canonical form and constrained to produce only ellipses, not parabolas or hyper-
bolas. A more stable version [28] addresses the problem of singularities in the
design matrix [10] and produces more stable solutions for the least-squares prob-
lem. RANSAC has also been used to randomly sample a subset of the data, to fit
an ellipse using least-squares minimization, and to iterate until the best ellipse
is found according to some convergence criteria [8,17].
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Recently, two methods were introduced for ellipse fitting which combine the
two approaches above. The first one [26] is mainly based on edge curvature
and convexity to determine groups which potentially form ellipses. A modified
2D HT is used to evaluate these groups and if they fulfill some constraints,
an ellipse is fitted using direct least squares [10]. The ellipse candidates are
evaluated using three unique saliency measures and an ellipse is selected if its
saliency score exceeds the average score for all other ellipses. The second method
was proposed by Fornaciari and others [11] and is based on grouping edges
that adhere to some geometric constraints. Thus the parameter space for HT
is reduced, enabling real-time performance even on smart phones with limited
computational power. These two methods were shown to achieve state-of-the-art
performance on synthetic data and the Caltech 256 dataset [14]. Both methods
will be evaluated on the E-TDCB dataset in Sect. 5.

3 Ellipse Fitting for Visual Cyclists Anaylsis

The Tsinghua-Daimler Cyclists Benchmark [20] provides a comprehensive evalu-
ation for state-of-the-art object detectors on their dataset. The Deformable Parts
Model (DPM) object detector [9] was able to achieve a remarkable performance
against sophisticated methods such as F-RCNN deep networks [13]. A major
advantage of a DPM is its ability to construct a flexible model for the object-of-
interest. This model is composed of the prominent parts that form the object,
their arrangement, and relationships between them. This makes the DPM app-
roach highly appropriate for visual cyclist analysis as it gives an insight about
the structure of the cyclist and facilitates its analysis accordingly. A part of the
training process for a DPM detector is to find the optimal locations for different
parts and to construct a weight filter for each part. Those filters are convolved
with the image during test time and are supposed to produce high output at
their corresponding parts.

3.1 Finding the Wheels

We trained a DPM model on the TDCB dataset, restricted to cyclists that are
seen from the side view as described in details in Sect. 4. The model has a root
filter that locates cyclists as a whole and another eight part filters which locate
different parts of the cyclist as illustrated in Fig. 2(a). The state model of the
cyclist relies basically on the wheels as described in Sect. 1. Hence, we sample
potential patches from DPM parts that are located on the wheels (shown in red in
Fig. 2(a). The Canny edge detector [5], i.e., horizontal and vertical derivatives,
is applied to potential patches to get the edge map. Each patch is processed
individually on the subsequent steps.
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Fig. 2. Method overview. (a) DPM root filter in green, parts filters in white and
selected filters in red. (b) Candidate patches sampled at the wheels. (c) Edge maps for
candidate patches. (d) Classifying edge pixels according to positive (cyan) and negative
(magenta) sign of the orientation tangent. (e) Arcs convexity check. (f) Different arcs
quadrants in unique colors. (g) Ellipse hypothesis. (h) Best ellipse hypothesis. (j)
A long arc shown in green that is split using inflexion point detection. (Color figure
online)

3.2 Arcs Selection

Initially, each edge pixel p in the edge map is classified according to the sign of
the orientation tangent of its gradient as follows:

sign(tan ϕ(p)) = sign(Gx(p)).sign(Gy(p)) (1)

where Gx(p) and Gy(p) are the horizontal and the vertical derivatives, respec-
tively. Pixels with positive orientations are stored in a set Ppos while pixels with
negative orientations are stored in Pneg. Each set is processed by an edge linking
algorithm to define connected arcs. In this work we use the edge linking algo-
rithm by Kovesi [18] and store each arc ai from Ppos, Pneg in sets Apos, Aneg,
respectively. Arcs that have a length less than ΘLen are discarded.

The convexity of each arc is checked to determine if it is up-facing or down-
facing. Similarly to [11] and as illustrated in Fig. 2(e), the area below and above
the arc determines its convexity:

Conv(ai) =

{
1, Area(Li) > Area(U i)
−1, Area(U i) > Area(Li)

, (2)
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Based on the arc convexity and orientation, the associated quadrant can be
determined:

Q(ai) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I if (ai ∈ Apos) ∧ (Conv(ai) = 1)
II if (ai ∈ Aneg) ∧ (Conv(ai) = 1)
III if (ai ∈ Apos) ∧ (Conv(ai) = −1)
IV if (ai ∈ Aneg) ∧ (Conv(ai) = −1)

, (3)

note that the signs of Gx and Gy are not sufficient to determine the quad-
rant as the direction of the gradient is unknown (direction vs. orientation [16]).
Figure 2(f) shows different quadrants in unique colors. Occasionally, two arcs are
merged due to noise or background clutter as shown in Fig. 2(j). Therefore, we
detect inflexion points, where the continuity of the arc is violated. We apply a
3-steps approach for detecting those inflexion points [26]: (a) fit line segments to
the arc; (b) calculate their angles with the arc; and (c) check how these angles
change between line segments. A sign change for these angles indicates a change
in the arc curvature and the arc is split at this point.

3.3 Arcs Grouping

Arcs are grouped into pairs in a anti-clockwise order, e.g., arc ai ⇔ Q(ai) = I
is grouped with arc ak ⇔ Q(ak) = II. This grouping is constrained to prevent
irrelevant arcs from being grouped with arcs from the wheels:

Pr(ai, ak) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� if Q(ai, ak) = 〈I, II〉 ∧ abs(ai.Ly − ak.Ry) ≤ Θpair

� if Q(ai, ak) = 〈II, III〉 ∧ abs(ai.Lx − ak.Lx) ≤ Θpair

� if Q(ai, ak) = 〈III, IV 〉 ∧ abs(ai.Ry − ak.Ly) ≤ Θpair

� if Q(ai, ak) = 〈IV, I〉 ∧ abs(ai.Rx − ak.Rx) ≤ Θpair

⊥ else,

(4)

where L/R is the leftmost/rightmost point of the arc, abs() is the absolute value,
and Θpair is the pairing threshold. The choice of the value of Θpair depends on
the thickness of the wheel and the size of the bicycle. A good selection for
this parameter prevents wrong pairings of arcs that do not belong to the same
ellipse. For instance, in Fig. 2(g), a high value for Θpair will cause arcs belonging
to the inner rim to be grouped with arcs from the outer rim. After applying the
constraints (4) to all possible pairs, only �-arcs are paired together and added to
the set of pairs Spairs. Eventually, all pairs that have a common arc are grouped
into triplets and added to a set of triplets Striplets. For example, assume two
pairs of arcs 〈ac, ad〉 and 〈ad, ae〉 will be grouped into a triplet 〈ac, ad, ae〉 and
this triplet is added to Striplets.

3.4 Ellipse Fitting, Grouping and Evaluating

For each triplet in Striplets, all arc points in this triplet are used for fitting an
ellipse. Direct least squares ellipse fitting [10] is used and the residual error
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is required to be less than ΘLSE for this ellipse to be considered as an ellipse
hypothesis, see Fig. 2(g). As a second step, similar ellipses, i.e., ellipses with
high overlap with each other, are grouped and their parameters are averaged to
get a representing ellipse. Finally, ellipse hypotheses are evaluated by checking
their intersection with the edge map. Bicycle wheels are usually occluded and
cluttered by the background. Consequently, some parts of the wheels will not
form an arc and will be removed as noise which will lead to an imprecise ellipse
estimation. Therefore, checking for intersection with all edge pixels results in a
better estimation even if some arcs are removed.

4 Dataset

The starting point of this work was to investigate whether the available ellipse
detectors work in real-life applications such as visual cyclists analysis, where data
is taken from uncontrolled environment, i.e. a camera mounted on the dashboard
of a car. We checked the recently published datasets that match the above criteria
and we found that the Tsinghua-Daimler Cyclist Detection Benchmark Dataset
(TDCB) [20] is a perfect match. The images were recorded using a stereo camera
setup mounted on a car that drove in the streets of Hong Kong. Bounding box
annotations were provided for different classes of objects such as pedestrians,
cyclists, motorcycles, and other objects. The dataset has many challenges that
only arise in uncontrolled environments. Bicycle wheels are usually cluttered by
the background and sometimes occluded by the legs of the cyclist. Motion blur
occur occasionally and cause bicycle wheels edges to be smeared. Also if a bicycle
is occluded by another bicycle, it becomes tricky to discriminate between their
wheels. Some challenging examples are shown in Fig. 1.

We provide wheels annotations on the monocular images for cyclists with
bounding box aspect ratio r < 1.25 in training set, r < 1.75 in test set where r is
defined as r = bboxheight/bboxwidth. This ratio indicates that the cyclist is seen
from the side and the wheels are visible. Other images from the front or the back
view are ignored as they do not have visible wheels. The number of cyclists that
matched the above ratio is 642 images from training set and 142 image from the
test set. This means that the dataset has 1568 manually annotated ellipses for
the outer rims of the wheels, while the inner rims were estimated roughly with
respect to the cyclist size. Some annotated examples are shown in Fig. 3.

Fig. 3. Examples of wheels annotation.
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5 Experiments

As discussed previously, a reliable ellipse fitting is essential for cyclist state
estimation. Hence, we evaluate our ellipse detector as well as three state-of-
the-art methods on the proposed dataset. The methods are Prasad [26], Basca
[2], and Yaed [11]. An overview of each method was provided in Sect. 2, while
an overview of the dataset was given in Sect. 4. The source code for Prasad was
provided by the author while the source code for Yaed and Basca was found
online.

5.1 Evaluation Metrics

For evaluation, following evaluation metrics are used:

Precision =
Number of True Positive Ellipse Hypotheses

Total Number of Ellipse Hypotheses
(5)

Recall =
Number of True Positive Ellipse Hypotheses

Total Number of Ground-truth Ellipse
(6)

F-Score =
2 × Precision × Recall

Precision + Recall
(7)

where a true positive hypothesis is an ellipse which has a certain overlap with any
of the ground-truth ellipses. The overlap in case of ellipses is defined as overlap =
1 − count(XOR(Ellipse, GT))

count(OR(Ellipse, GT)) . High precision indicates that the detector outputs
highly confident hypotheses, high recall means that the detector is reliable in
finding the ellipses, and f-score incorporates both. A good ellipse detector should
combine high precision and a good recall.

5.2 Parameter Selection

Our method has three parameters. The minimum length of arc ΘLen is set to
9, Θpair can be any value from 5 to 15, and ΘLSE is set to 0.01. In Prasad, we
change minimum edge length to 10 instead of 15 and the rest of parameters are
kept unchanged. Basca has many control parameters as it is HT-based. We set
minMajorAxis to one third of the candidate patch width, maxMajorAxis to the
largest dimension of the candidate patch, and we only consider at most the best
25 ellipse hypothesis in the evaluation to retain levels of precision. For Yaed, we
tried different combinations of its many control parameters and the best f-score
was achieved at minimum arc length ThLen = 5, minimum shortest side of arc
oriented bounding box ThOBB = 1.0, and the default remaining parameters.

5.3 Quantitative Results

Evaluation metrics are calculated for each method under different overlap ratios
from 0 to 1 both on the training and the test set. The test set is more challenging
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Fig. 4. Evaluation metrics for Basca [2], Prasad [26], Yaed [11], and our proposed
method on the training set (Left colum) and test set (Right Column). The test set
is more difficult than the training set as the DPM filters sometimes are not perfectly
aligned in case of test set, which makes ellipse detection task more challenging.

as the locations of DPM filters are not perfectly aligned as in the training set.
Besides, cyclists in the test set have larger yaw angles due to larger value of
r which makes ellipse fitting more difficult. Figure 4 summarizes the evaluation
metrics for the training and the test set. For Prasad, the final policy for select-
ing salient ellipses is too strict for this realistic dataset which led to very low
recall. Therefore, we evaluated Prasad twice, once on the most salient hypotheses
(Prasad-Best) and another on all hypotheses after grouping (Prasad-All).
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Fig. 5. Performance of ellipse detectors with different challenges. For clarity, only the
best hypothesis is drawn. For the Prasad method, we show the top half of all hypothesis
as the best hypothesis is always a small ellipse due to its circumference overlap ratio.

As shown, our method and Yaed have a comparably high precision on both
sets, while Prasad and Basca have average precision. Our explanation is that
their arcs grouping criteria is based on a HT accumulator for finding the poten-
tial ellipse center for each arc. In case of concentric ellipses as in bicycle wheels,
irrelevant ellipses from outer and inner rims are grouped which leads to false
ellipse estimation. On the contrary, the constrained arcs grouping criteria in
Yaed and our method alleviates these false groupings. The recall is high for all
methods but for different reasons. For Basca, a huge number of hypotheses is
produced which leads to a high recall under low thresholds only, while Prasad-
All has a high recall due to considering all hypothesis in the evaluation. Yaed
has slightly lower recall due to the large number of control parameters that are
difficult to determine for balancing precision and recall. Finally, our method was
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able to retain high recalls even under high thresholds due to its relaxed con-
straints on dealing with all available edge information. The F-score shows that
our method outperforms all other methods, achieving an outstanding balance
between accuracy and robustness both on training and test set.

5.4 Qualitative Analysis

Figure 5 shows how each method performs with different challenges. Basca per-
forms well when the wheels are visible in the ideal case, but when some challenges
are introduced, a considerable tuning has to be done for the control parameters
of HT space. However, it does not perform well with cluttered or occluded wheels
as HT-based approaches are sensitive to outliers. Prasad performs similarly to
Basca and cannot handle most challenges as its ellipses saliency criteria is either
too strict or in favor of small ellipses which has high circumference overlap ratio
[26]. YAED noticeably performs better than the latter methods and achieves
higher accuracy as it has a reliable arcs selection criteria. However it fails also to
detect cluttered and occluded wheels due to its strict ellipses selection criteria
and the large number of control parameters that needs to be adjusted to each
case. Finally, our method achieves and outstanding performance with all chal-
lenges. It succeeds to fit ellipses to occluded and cluttered wheels as it employs
a very reliable and relaxed arcs selection criteria that encounters for all avail-
able information in the edge map, which is usually treated as noise in other
approaches. Also our ellipse selection policy is suitable for real-world scenarios
where images are not always ideal. Thereby, our method succeeded in combining
both precision and reliability, which is essential for real-world applications.

6 Conclusion and Future Work

Due to the growing emergence of autonomous vehicles and the increasing atten-
tion to their safety measures, visual cyclists analysis needs to be investigated
more for the sake of cyclists safety. The literature lacks for a realistic real-world
dataset for this purpose. Therefore, we introduced a new dataset with wheels
annotations for cyclists that contributes to addressing the problem of visual
cyclists analysis. We also proposed a robust and reliable method for ellipse fit-
ting on bicycles wheels that is needed for cyclists state estimation. Our method
as well as the state-of-the-art methods were evaluated on the new dataset and
our method was able to outperform all other methods providing robust and reli-
able ellipse detection. In the future, more approaches need to be investigated
for ellipse fitting. For instance, the use of edge orientation information in ellipse
fitting, iterative least square minimization for refined fitting, and further investi-
gations for the most suitable ellipse selection criteria. Also integrating our ellipse
fitting method in an existing visual cyclists analysis platform would give some
insights on the advantages and drawbacks of our method.

Acknowledgments. This work has been supported by VR (EMC2, ELLIIT, starting
grant [2016-05543]) and Vinnova (Cykla).
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Abstract. In this paper we present an approach which estimates the
course of a road over long distances based on static and dynamic scene
cues detected by a video camera. The approach is based on a clothoid
road model, a probabilistic fusion concept as well as a fast variational
inference method. Our experimental results show that the approach out-
performs a state-of-the-art road marking-based method in challenging
real-world driving situations.

Keywords: Road course estimation · ADAS · Probabilistic environ-
ment model · Black box variational inference · Clothoid road-course
model · 3D scene reconstruction

1 Introduction

Automated driving requires a robust and precise estimation of the road course.
This is a challenging task, which for all conceivable driving situations and envi-
ronments is still unsolved. State-of-the-art road-course detection systems fuse
different complementary sensor signals to receive better estimation results. This
are typically signals of radar, lidar and camera systems. Within these setups,
camera systems are a valuable source of information. They usually contribute
detected road markings to the road-course estimation. Unfortunately, this kind
of information is often not sufficiently available in many driving situations like
for example on some newly build roads or in dimly lit environments (e.g. at
night). Therefore, we propose a camera-based estimation approach, which does
not depend on information from road markings but instead on information of
different road-course correlated scene cues. Thus, our approach estimates the
course of a road within reach of 140 m on the base of static and dynamic scene
cues like delineators or other traffic participants. We build our algorithm on a
clothoid road model and fuse measured scene cues with the help of a proba-
bilistic model and variational inference. We empirically evaluate our approach
in challenging real-world driving situations with reduced light, and prove its
performance.

c© Springer International Publishing AG 2017
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1.1 Related Work

The importance of a robust road-course estimation for the realization of a vehicle-
cruise-control system (ADAS) led to a high research interest in this subject early
on. The first commercially available systems were based primarily on radar sen-
sors. Such systems detect the road course based on radar-signal-reflecting land-
marks such as cars or guardrails. Since then the abilities of such systems pro-
gressed constantly. State-of-the-art radar systems depend heavily on increased
and detailed environment models, probabilistic estimation approaches [1,7] and
advanced radar-hardware designs [2]. Of particular interest is the approach by
Hammarstrand et al. [3]. They received a more robust estimation system by inte-
grating a clothoid road model, which explicitly models the course of a road accord-
ing to real-world design principles in road construction [22]. The first camera-based
systems used road markings for a road-course estimation [4,5]. Recent proposals
for camera-based systems depend exclusively [11] or additionally [10] on seman-
tic segmentation results computed with the help of a deep convolutional neuronal
network. These kind of approaches produce remarkable results in day-light situa-
tions. But because these methods mainly exploit surface textures of objects for a
scene segmentation, they often lack performance in dimly lit environments (e.g.
at night) where surface textures are hardly visible. To overcome limitations of
individual sensor systems and methods, fusion-based approaches, that integrate
information of multiple methods as well as multiple sources, such as radar, lidar,
cameras sensors and digital HDR maps, were proposed [6–8]. Popular represen-
tatives of these use an occupancy grid to fuse the information [9]. Another very
promising fusion method has been proposed by Geiger et al. [12,13] for a camera-
only crossroad structure estimation. Based on graphical probabilistic modeling the
approach showed remarkable estimation performances. However, a computational
bottleneck of this approach is the used sampling-based inference method. Recent
published variational-inference techniques [17–19] promise to solve this problem.
Therefore, in this contribution we use a similar probabilistic fusion model com-
bined with an efficient variational inference technique for an estimation of the
road course based on camera-detected static and dynamic scene cues. Our versatile
probabilistic fusion framework also allows the integration of information provided
by other sensors, if these are available.

The remainder of the paper is structured as follows: Sect. 2 describes our pro-
posed estimation approach in detail, then in Sect. 3 we evaluate and discuss our
method in challenging driving situations. The Sect. 4 summarizes our approach
and offers a brief outlook on future work.

2 Road Course Estimation Using Variational Inference

2.1 Scene Cues

The foundation of our approach are scene cues or landmarks that reflect the
course of a road. They are detected by a monoscopic camera system which is
mounted behind the rear-view mirror in a car (see Fig. 1).



334 F. Trusheim et al.

Fig. 1. Schematic road course with regarded evidence types (left) and different data-
projection concepts (right)

These scene cues (see Fig. 1) are:

– Static Objects: Guardrails, delineators, road poles, road lanterns and road-
embedded reflectors.

– Dynamic Objects: Bicycle, cars, motorbikes and trucks.

The static and dynamic objects are detected with the help of different clas-
sifiers. Each classifer detection is rated by a confidence measure. The detected
objects are tracked over time and thus generate tracklet information. The clas-
sifier and tracking [16] methods are not the subject of this publication, and
therefore will not be discussed in detail.

In addition to the images, our road-course estimation approach makes also
use of information from a 6-axis Inertial Measurement Unit (IMU).

2.2 Causality Model

The theoretical foundation of the proposed approach is a generative Bayesian
network (BN) model which describes the causal relationship between the road-
course defining parameters and the image projections of road-course correlated
static and dynamic scene cues. A sketch of the context of our approach together
with the proposed probabilistic model are shown in Fig. 2. To properly introduce
the complete modeling, we begin with a description of a sub-part of the model.
Hence, we start with the causal relationship between the road-course determining
parameters and the 3D positions of the static landmarks. A look at the context-
referencing Fig. 2, suggests that the course of a road can be described by a virtual
contour line. This contour line can quantified by a road model fff (CCC), in which the
CCC represents the shape-defining parameters. The 3D positions yyyStat3DPos of the
road-course aligned static landmarks can then be described as objects lateral-
shifted to the contour line along the contour-line normal f̃ff (CCC). This is exemplary
shown with delineators in Fig. 2. While driving, those 3D positions yyyStat3DPos

get projected on the image sensor according to the 3D pose of the user-vehicle
camera yyyUV Cam3DPose and thereby generate landmark-corresponding measure-
ments yyyStat2DPos. The same ideas can be transferred to dynamic objects as well.
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Analogous to static landmarks, the 2D positions yyyV 2DPos can be modeled as a
causal superposition of the road-contour parameter CCC, the vehicle-specific off-
sets O

[p]
D and the camera poses yyyUV Cam3Pose. However, unlike static objects,

dynamic objects, such as vehicles, change their positions over time and gener-
ate a 3D scene flow yyyV 3DFlow as well as a corresponding sparse optical flow
yyyV 2DFlow. Because these generated flows are directly connected with the posi-
tions of the vehicles, they can be modeled equally by a causal superposition of
the road-contour parameter CCC and the vehicle lateral offsets OOOD. This model,
in conjunction with the measured evidence yyyStat2DPos, yyyV 2DPos, yyyV 2DFlow and
the IMU data XXX and ΘΘΘ, enables the estimation of the road-course parameters
CCC, OOOS and OOOD.

In order to increase the estimation robustness we build the proposed model
on additional design principles:

• Data Buffering: To obtain a sufficient amount of evidence we accumulate
ego-motion compensated data over a time period T .

• Flat World Assumption: To simplify the complexity of the contour model
fff (CCC) during the estimation process we make the assumption that the 3D
road course is located on flat plane and therefore can be handled as a 2D
road course.

• Multi Stage Design: We use a two stage signal processing pipeline (see
Fig. 3) to reconstruct a 3D scene from measured 2D information and then
estimate the course of the road in 3D.

– In the first stage we reconstruct the 3D signals yyyStat3DPos, yyyV 3DPos

and yyyV 3DFlow from the corresponding image measurements yyyStat2DPos,
yyyV 2DPos and yyyV 2DFlow. The 3D positions of trackable static objects are
obtained with the help of standard structure-from-motion (SfM) methods.
In detail, we use a combination of an inverse-depth reconstruction [21] and
a bundle adjustment calculation [20]. The necessary ego-motion informa-
tion is obtained from the IMU. For the 3D reconstruction of vehicles we
use an approach based on prior knowledge about the geometry of the vehi-
cles, as well as the assumption of a distortion-free camera projection model.
Hence, we calculate the 3D positions and the 3D scene flows with the help
of the intercept theorem (IcT) [21] and standard tracklet-based differential
methods.

– In the second stage of the pipeline we estimate the road course based on
the 3D evidence. This stage is presented in detail in Sect. 2.3.

2.3 Probabilistic Model

The purpose of our approach is the identification of the contour parameter CCC
as well as the lateral-offset parameters OOOS and OOOD, which explain the measured
evidence data YYY . This directly corresponds to a regression problem. However,
due to the chosen clothoid-contour model

f (CCC) =
[
x (l)
y (l)

]
=

[
x0

y0

]
+

∫ l

0

[
cos(φ(t))
sin(φ(t))

]∣∣∣∣
φ(t)=φ0+κ0·t+κ1

2 ·t2
dt, (1)
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Fig. 2. Schematic road course (left) and proposed probabilistic model (right). The
acronyms used in the figures are explained in the text.

this regression problem is not trivial. The integral terms complicates the math-
ematical handling of the road model within a regression problem. A solution
to this problem can be derived by the clothoid-approximation framework of
Bertolazzi [23]. This framework allows the definition of a clothoid based on the
configuration of its start and end point. Therefore, the contour parameter CCC is
determined by

CCC = [xStart, yStart, αStart, xEnd, yEnd, αEnd] .

In order to adapt the model to the measured evidence data we need an effec-
tive method to project this data orthogonally to road-contour model fff (CCC) (see
Fig. 1). However, an optimal orthogonal projection results in a computational
heavy regression problem. To avoid that, we apply an approximative orthogonal
projection concept similar to the procedure proposed by Geiger et al. [13]. In the
first stage, we therefore sample the clothoid road model along its length. Based
on the sampling, an evidence point yyy is then assigned to the closest clothoid-
sample point ppp. Associated with that assignment, the scene flow of an evidence
point yyy (in case of a moving vehicle) is than connected to the corresponding
clothoid-tangent at point ppp (see Fig. 3). Therefore, the regression problem is no
longer differentiable and hence can not be solved by an efficient gradient-based
optimization method.

Alternatively, we reformulate the regression problem as a probabilistic max-
imum a-posteriori (MAP) estimation within a graphical model framework and
solve that with the help of variational inference.

In this reformulation, the regression parameters (CCC,OOOS ,OOOD) correspond to
hidden random variables and the evidence data YYY correspond to observable
random variables. The general structure of the joint distribution of this MAP-
problem follows the form
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P (HHH,YYY )|HHH = {CCC,OOOS ,OOOD}
YYY = {YYY S ,YYY D}

= P (CCC) · P (OOOS) · P (OOOD) (2)

· P (YYY S |CCC,OOOS) · P (YYY D|CCC,OOOD) .

Thereby, the evidence data YYY consists of static landmarks YYY S and dynamic
landmarks YYY D. The prior terms of the regression parameters are assumed as
Gaussian distributed. Thus, they are defined as

P (HHHi) =
exp

(
− 1

2 (HHHi − μμμHi
)T

ΣΣΣ−1
Hi

(HHHi − μμμHi
)
)

(
(2π)dim(HHHi) · det (ΣΣΣHHHi

)
) 1

2
. (3)

Here, the parameters μμμHi
and ΣΣΣHi

represent manually defined hyperpara-
meters. The likelihood terms of the joint distribution, which reflect the errors
between the road model-predicted evidence data Ŷ̂ŶY and the true evidence data
YYY , are modeled similarly in our approach. Their structure is as follows:

P (YYY S |CCC,OOOS) =
NP os

S∏
n=1

P
(

YYY Pos
S

[n] |CCC,OOOS

)
, (4)

with

P
(

YYY Pos
S

[n] |CCC,OOOS

)
=

βPos
S

1
2 · exp

(
−βP os

S

2 · errorPos
(
CCC,OOOS ,YYY P os

S
[n]
)2

σ2

YYY P os
S

[n]

)

(
2π · σ2

YYY P os
S

[n]

) 1
2

and

P (YYY D|CCC,OOOD) =
NP os

D∏
n=1

P
(

YYY Pos
D

[n] |CCC,OOOD

)
·

NF low
D∏
n=1

P
(

YYY Flow
D

[n] |CCC,OOOD

)
(5)

with

P
(

YYY Pos
D

[n] |CCC,OOOD

)
=

βPos
D

1
2 · exp

(
−βP os

D

2 · errorPos
(
CCC,OOOD,YYY P os

D
[n]
)2

σ2

YYY P os
D

[n]

)

(
2π · σ2

YYY P os
D

[n]

) 1
2

P
(

YYY Flow
D

[n] |CCC,OOOD

)
=

βFlow
D

1
2 · exp

(
−βF low

D

2 · errorF low
(
CCC,OOOD,YYY F low

D
[n]
)2

σ2

YYY F low
D

[n]

)

(
2π · σ2

YYY F low
D

[n]

) 1
2

.
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Fig. 3. Schematic representation of the estimation pipeline

Here, the proposed Gaussian character of those distributions shall reflect the
typical lateral-fluctuations of landmark positions in the real-world, as well as
inaccuracies in our 3D reconstruction and small sampling-caused projection
errors (see Fig. 1). The value of errorPos corresponds to the euclidean distance
between the road model-predicted position and the true position of a evidence
data point. Similarly, errorF low reflects the anti-correlation between the road
model-predicted scene flow and the true scene flow of an evidence data point (see
Fig. 1). The hyperparameters NPos

S , NPos
D , NFlow

D depict the quantities of the
different data types within the measured evidence data and the values of σYYY P os

S

σYYY P os
D

, σYYY F low
D

are related to the specific confidences of the measured evidence
points. In contrast, βPos

S , βPos
D and βFlow

D represent design parameters which con-
trol the influence of the corresponding evidence data types in the MAP-problem.

2.4 Variational Inference

Solving the MAP-problem requires an analysis of the extreme value of the
a-posteriori distribution P (HHH|YYY ) which is defined by the joint distribution
P (HHH,YYY ). However, this analysis is not trivial, because of the structure of the
problem and the continuous random variables. Therefore, we propose to approx-
imate the a-posteriori distribution initially and then infer the MAP-solution
based on the generated approximation. In detail, we exploit a state-of-the-
art variational inference technique, called Overdispersed Black-Box Variational
Inference (O-BBVI) [17,19]. This deterministic and fast-converging method
lacks the typical high computational cost of popular sampling-based techniques
[14,15].
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When applied to the MAP-problem, O-BBVI approximates the exact a-
posteriori distribution P (HHH|YYY ) by a factorized distribution with the form

Q (HHH|λλλ) =
N∏

i=1

qHi
(HHHi|λλλi) ,

in which each component qHi
is defined as:

qHi
(HHHi|λλλi) =

exp
(

− 1
2

∑dim(HHHi)
d=1

(
H

[d]
i − λ

[d]
i

)2
)

(2π)
1
2 dim(HHHi)

. (6)

Based on that, O-BBVI computes this approximation by an optimization over
the parameters λλλi of the factor terms qHi

. The parameter-decoupling structure
of the O-BBVI approximation modifies the solution of the MAP-problem to

HHHopt = argmax
HHH

(P (HHH|YYY ))
∣∣∣∣
P (HHH|YYY )≈Q(HHH|λλλopt)

(7)

≈ argmax
HHH

(Q (HHH|λλλopt))
∣∣∣∣
Q(HHH|λλλopt)=q(CCC|λλλC

opt)·q
(
OOOS |λλλOS

opt

)
·q
(
OOOD|λλλOD

opt

) (8)

CCCopt = argmax
CCC

(
qC

(
CCC|λλλopt

C

))
= λλλopt

C

=⇒ OOOopt
S = argmax

OOOS

(
qOS

(
OOOS |λλλopt

OS

))
= λλλopt

OS

OOOopt
D = argmax

OOOD

(
qOD

(
OOOD|λλλopt

OD

))
= λλλopt

OD
.

Finally, this MAP-solution in conjunction with the applied road-contour
model fff (CCC) returns the full 3D-description of an estimated road course.

3 Experiments and Discussion

In the following section, we will compare our scene cue based fusion approach on
three real-world traffic examples with a corresponding state-of-the-art estimation
method which is based on road markings [5]. The chosen examples cover various
driving situations in which a road marking-based approach shows weaknesses in
comparison with the landmark-based approach. The spectrum of the situations
varies across different types of roads and different types, numbers and densities
of available static and dynamic scene cues. All the situations are scenarios with
reduced light.

The course estimations for both methods are post-processed under real-time
conditions on the base of recorded images and logged IMU data. However, for
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a better understanding of the scene structure, we visualize the IMU-recorded
trajectory of the ego-vehicle as well as all the 3D-reconstructed static landmarks
upfront. The results are shown in Figs. 4, 5 and 6.

The first scenario in Fig. 4 represents a driving situation on a country road
in low-light conditions. The road has roadside-markings and rows of delineators
on both sides. The ego-vehicle follows an other vehicle through a curve. The
results demonstrate that the range of the landmark-based estimation exceeds
the corresponding estimation of road marking-based approach by more than
25 m or 33% because of the detected delineator on the right side. Making use
of the delineators on the right side, our approach is even capable of seeing a
short distance around the bending of the curve and hence identifies a part of the
course which is not detected by the road-marking based system.

The second scenario in Fig. 5 reflects a ride on a highway at night. The scene
is only illuminated by the high-beam head lamps of the ego-vehicle. On both
sides of the road are reflectors mounted on the guardrails. Road markings are
also available. The results illustrate that our approach achieves an estimation of
the road course up to 140 m relative to the position of the ego-vehicle. This is
accomplished with the help of the detected delineators. As a result, our estima-
tion reaches 70 m or 100% further than the corresponding estimation based on
road markings.

The scene in Fig. 6 shows a driving situation in an urban environment at
night. The road has no delineators or roadside-markings. The scene is mainly
illuminated by a few road-aligned road lanterns on the right and left side. Hence
the road lanterns on the right side, our approach generates a virtual road bound-
ary. This information can not be exploited by a road-marking based method.
Next to the comparison with the road-marking based method, we also evaluate
our approach statically with labeled ground-truth road courses on a database
of approximately 14,000 images of various night traffic situations. For this pur-
pose, we labeled the regions in those images where we expect the boundaries of

Fig. 4. Rural road: 3D Reconstruction (left), camera image (right)
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Fig. 5. Highway: 3D Reconstruction (left), camera image (right)

Fig. 6. Urban road: 3D Reconstruction (left), camera image (right)

the estimated road courses with polygon-shaped tubes. Based on that labeling,
we rate road-course estimations which are fully embedded within the labeled
polygons as true positives. Estimations which do not fulfill this criterion are
rated as false positives. In this evaluation framework our approach achieves a
true positive rate (TPR) of 92.18% and a false positive rate (FPR) of 4.68%.
With the objective of using our approach on hardware platforms with limited
computational resources, we further investigate the influence of the amount of
the numerically expensive iterations within the O-BBVI inference method on
the quality of the estimated road courses. In detail, we reduce the number of
iterations to 75%, 50% and 25% of the amount of iteration which are needed
for a complete convergence of the O-BBVI method during the inferences. The
reduction to 75% results in a TPR of 81.8% and FPR of 15.4%. A further
reduction to 50% causes a TPR of 74.5% and a FPR of 22.9% and a reduction
to 25% lowers the TPR to 61.5% and FPR of 36.4%. These results implicate
that the O-BBVI based inferences converge fast after a few iterations. Thus,
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this circumstance allows our approach to easily adapt to available hardware
resources without entirely given up on estimation quality.

4 Conclusion and Future Work

In this publication we presented an approach that estimates the course of a
road based on images of a monoscopic camera for ranges of 140 m, particularly
in difficult situations with reduced light. The method therefore uses static and
dynamic scene cues which are correlated to the course of a road. The underlying
fusion concept is flexible and hence works with a variety of different landmark
types and quantities. This makes the approach highly adaptive to varying evi-
dence in a scene. In order to optimally respond to real-world road designs we
proposed to use a clothoid road model. The associated complications with such
a road model in a regression problem were addressed with a probabilistic model
and a numerically efficient and adaptive variational inference. We demonstrated
the performance of our algorithm in challenging low-light driving situations.
Thereby, we proved that the approach can achieve larger estimation ranges than
a comparable road marking-based method in the same situations. These results
reflect that information fusion provides a framework to integrate expert knowl-
edge over the problem setup with data-driven insights into the decision-making
process.

In future work we plan to strengthen the presented approach in several areas.
At first, we plan to exploit our current set of evidence data more effectively
in the fusion process. Therefore, we would like to substitute manual-defined
hyperparameters within the probabilistic model (see Eqs. 3, 4 and 5) by data-
trained counterparts. In addition to that, we intend to develop a robust strategy
to identify lane-changing vehicles. This would allow us to react better to lateral-
shifts of vehicles during the estimation process. Beyond these improvements
we would like to extend the current set of evidence data by integrating more
camera signals, like road markings or semantic segmentation results, as well as
signals from other sensors, such as lidar or radar into our probabilistic fusion
framework. We expect that this will enhance the robustness and also will allow
us to model even more complex driving scenarios, like splitting or reunifying
roads. Furthermore, we plan to improve the variational inference procedure in
order to achieve even faster and more precise estimates.
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Abstract. Symmetry is an important composition feature by investigat-
ing similar sides inside an image plane. It has a crucial effect to recog-
nize man-made or nature objects within the universe. Recent symmetry
detection approaches used a smoothing kernel over different voting maps
in the polar coordinate system to detect symmetry peaks, which split
the regions of symmetry axis candidates in inefficient way. We propose
a reliable voting representation based on weighted linear-directional ker-
nel density estimation, to detect multiple symmetries over challenging
real-world and synthetic images. Experimental evaluation on two public
datasets demonstrates the superior performance of the proposed algo-
rithm to detect global symmetry axes respect to the major image shapes.

Keywords: Multiple symmetry · Symmetry detection · Reflection sym-
metry · Kernel density estimation · Linear-directional data

1 Introduction

Reflection symmetry is a fundamental principle of visual perception to feel the
equally distributed weights within foreground objects inside an image. These
weights are inspected respect to textural complexity of their shapes, in such non-
identical manner to preserve a well-balanced composition between similar objects
and their surrounding background [13,16]. Detection of reflection symmetry has a
principal intermediate-level role in recent computer vision applications [1,31,37].
Liu et al. [19] described the global symmetry as top-tier visual features, which
are distributed uniformly across the image sides and contributed to define an
uppermost similarity behavior. This paper focuses on detecting multiple bilateral
symmetry axes inside an image by exploring the geometrical correlation between
spatial regions on a global scale.

The baseline algorithm was proposed in 2006 by Loy and Eklundh [21]. They
analyzed the bilateral symmetry from image features’ constellation by intro-
ducing the general scheme: (1) detection of local feature points (i.e. SIFT),
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 344–355, 2017.
DOI: 10.1007/978-3-319-64689-3 28
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associated with local geometrical properties (location, orientation, scale) and
descriptor vectors. (2) pairwise matching and evaluation of a local symmetry
magnitude of their descriptors, to generate symmetry candidates. (3) accu-
mulation of their symmetry magnitude in a Hough-like voting space parame-
trized with orientation and displacement, to identify the dominant reflection
axes inside an image. The first survey of symmetry detection algorithms was
introduced by the computer vision group of Pennsylvania State University in
2008 [28]. The same group conducted symmetry detection challenges in 2011
[32] and 2013 [18], where the baseline algorithm [21] still outperformed the par-
ticipated approaches [17,23,26,30]. Other keypoint-based algorithms [5,7] also
proposed feature refinement techniques for better results. Edge/contour-based
features [3,4,8,9,11,24,36] are modernly used instead of the intensity-based, due
to saliency properties in detecting well-defined symmetric structures inside an
object. In both approaches, a limited number of feature points are detected in
the image, axis candidates are randomly sampled across the voting space. These
sparse symmetry candidates further need to be grouped through a smoothing
kernel to define relevant mono- or multi- axis hypothesis. Our idea is to for-
mulate the voting problem as a density estimation problem, by computing the
probability of detecting symmetry axis at every position and orientation inside
the image plane.

Kernel density estimation is one of the most popular techniques in nonpara-
metric statistics. Density estimates are controlled by a smoothing bandwidth
and a weighting kernel function. Density estimates with linear kernels have been
introduced in 1954 [2], and then have been adapted to deal with directional
data since the mid 1980s [15]. Many computer vision applications used kernel
density estimation for linear data [10,12,20,25,33,35], and fewer recently used
it for directional data [27,34]. Garcia-Portugues et al. [14] derived the general
principle of joint kernel density estimator for linear-directional data.

Our contribution is twofold. First we propose a weighted joint density estima-
tor to handle both orientation and displacement information. Second, we intro-
duce a robust linear-directional kernel-based voting representation for reflection
symmetry detection. This approach is evaluated for multiple symmetry detection
using two public datasets. The remaining sections of this paper are organized as
follows. Section 2 describes the proposed algorithm. Sections 3 and 4 present the
experimental details and results on two public datasets. Finally, the conclusion
is given in Sect. 5.

2 Algorithm Details

Given an image, our algorithm focuses globally to detect all symmetry axes using
a dense and regular estimation of linear-directional density, as briefly shown in
Fig. 1. First, we extract wavelet-based features with different scales, accompanied
with edge and textural characteristics (for better display, only features with high
magnitude are displayed over the gray-scale version of the input image). Second,
we triangulate each feature pair at each scale with respect to the origin of the
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Fig. 1. The proposed framework of reflection symmetry detection, using a weighted
linear-directional kernel density estimator (LD-KDE). Best seen on screen (zoom-in
for details).

feature space, in order to define symmetrical weights in the polar coordinate
system. Third, we formulate a voting representation based on weighted pairs via
linear-directional kernel density estimation. Finally, the global symmetry axes
are well-chosen by searching for maximum peaks, and spatially defined by the
convex hull of the voting features.

2.1 Feature Extraction and Normalization

Upon the application of Morlet wavelet over an image (width W and height H)
with multiple scales σ ∈ {1, 2, 4, 6, 8} and orientations φ ∈ { zπ

32 , z = 0 . . . 31},
feature points {pi = [pi

x, pi
y]T , i = 1 . . . P, P ∝ max(W,H)} are sampled, as

detailed in [11], along a regular grid with respect to image size (W × H). Each
feature point is the center of a neighborhood window D(pi), which allows to
compute its local edge components (maximum wavelet response J i along side
with associated scale σi and angle φi over all orientations) plus neighboring
textural histograms hi of size B:

hi(b) =
∑

r∈D(pi)

J iδφb−φr
, φb ∈ {bπ

B
, b = 0 . . . B − 1, 8 ≤ B ≤ 32} (1)

where δ is the Kronecker delta. hi is l1 normalized and circular shifted respect
to the maximum magnitude J i among the neighborhood window D(pi).

The feature points are normalized with keeping aspect ratio as following:

p̂i =
pi − cW,H

max(W,H)
(2)
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where cW,H represents the original image center (W
2 , H

2 ). So that, the feature
space is transferred from the dynamic-sized image plane [1,W ] × [1,H] to a
unified version [−1, 1] × [−1, 1].

2.2 Pairwise Symmetry Triangulation

We first define a set of feature pairs {qn = (p̂i, p̂j) | n = 1, . . . , N} such that
i �= j and σi = σj . Then, we perform a triangulation process (as illustrated
in Fig. 2) with respect to the feature origin, producing the symmetry candidate
axis as the bisector of the pair segment. The candidate axis is parametrized by
angle θn ∈ [0, π), and displacement ρn ∈ [−

√
2
2 ,

√
2
2 ]) and has a symmetry weight

ωn [9,11] defined as follows:

ωn = ω(p̂i, p̂j) = m(i, j) c(i, j) d(i, j) (3)

m(i, j) = J iJj (4)

c(i, j) = |τ iS(T⊥
ij )τ j | (5)

d(i, j) =
B∑

b=1

min(hi(b), h̃j(b)) (6)

where τ i is a direction associated with angle φi, S(T⊥
ij ) is the reflection matrix

with respect to the perpendicular of line connecting (p̂i, p̂j), and h̃j is the reverse
version of hj histogram. l1 normalization is applied to the symmetry weights
ω1, . . . , ωN . In brief, m is a semi-dense edge magnitude, c is a mirror symme-
try coefficient based on the local edge orientation of points of the pair, d is a
similarity measure between the local texture around the feature pairs.

Fig. 2. Symmetric triangulation for a feature pair. Best seen on screen.



348 M. Elawady et al.

2.3 Weighted Linear-Directional Kernel Density Estimation

One dimensional linear random variable ρ represents displacement part of a
candidate axis, assuming ρ1, . . . , ρN samples of ρ with size N . Let μ describes
two dimensional directional variable (circular data corresponds to angle θ, rep-
resenting orientation part of a candidate axis, see Fig. 2), assuming μ1, . . . , μN

samples of μ with the same size of ρ. Inspired by [15,29], the linear kernel density
estimator fl(.) is defined as

fl(x; g) =
1

Ng

N∑

n=1

G(
x − ρn

g
), x ∈ R (7)

G(u) =
1

(2π)
1
2
e− 1

2 |u|2 , (8)

where G(.) is a Gaussian kernel with bandwidth parameter g. The directional
kernel density estimator fd(.) is defined as:

fd(y; k) = C(k)
N∑

n=1

L(yT μn; k), y ∈ Ω2 (9)

L(x; k) = ekx, C(k) =
1

2πS(0, k)
, (10)

y = [cos(θ), sin(θ)], μn = [cos(θn), sin(θn)], (11)

where L(.) is a von-Mises Fisher kernel [22] with concentration parameter k,
and normalization constant C(k). S(.) is the modified Bessel function of the
first kind. y is remarked as directional unit-vector of angle θ, such that ||y|| = 1.

As axis candidate samples (ρ1, μ1), . . . , (ρN , μN ) are associated with symme-
try weights ω1, ω2, · · · , ωN , and use of the linear-directional density estimator
fl,d(.) in [14]. We define the extended weighted version f̂l,d(.) as:

f̂l,d(x, y; g, k) =
C(k)
Ng

N∑

n=1

ωnG(
x − ρn

g
)L(yT μn; k) (12)

assuming that linear and directional data are independent resulting dot product
between accompanying kernels. Previous weights (see Eq. 3) are multiplied by
N in order to normalize f̂l,d.

The multiple symmetry peaks inside the voting representation f̂l,d(.) are
identified through finding non-interleaved extreme spots via a standard non-
maximal suppression technique [6]. The spatial extent of each peak representing
a symmetry axis is determined by the convex hull of the voting pair associated
with the peak [21]. Figures (3a-d) present an example of multiple symmetry
detection, using 1D and 2D kernel-based voting maps. Three vertical symmetry
axes are shown in the weighted linear kernel density f̂l(x; g) (Fig. 3b). Two major
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Fig. 3. Symmetry detection process: (a) Input image with global symmetry axis can-
didates. (b) The output of weighted linear kernel density f̂l(x; g) over 800 bins. (c)
The output of the weighted directional kernel density f̂d(y; k) over 180 bins. (d) The
output of the weighted linear-directional kernel density f̂l,d(x, y; g, k) over 800 × 180
bins. Maximal peaks are associated with global symmetry axes. Best seen on screen.

directional axes appear in the weighted directional kernel density f̂d(y; k) at
angles θ = 90◦, 180◦ (Fig. 3c). All global symmetry axes are clearly recognized
through the combination version of the previous weighted densities f̂l,d(x, y; g, k)
(Fig. 3d). To obtain such representation, as θ originally belongs to [0, π), each
angle value is multiplied by 2 in order to obtain an appropriate periodicity with
the directional kernel.

3 Implementation and Evaluation Details

We compare our reflection symmetry detection approach against three different
methods (Loy2006 [21], Cicconet2014 [9], and Elawady2016 [11]). We executed
their source codes with default parameter values, assigned by the authors for
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stable performance. For our approach, we empirically set the size of textural
histograms B to 32, the linear-kernel bandwidth parameter g to 0.03, and the
directional-kernel concentration parameter k to 40. Two public datasets are used
to represent multiple reflection symmetry detection results: (1) PSU dataset:
Liu’s vision group proposed a symmetry groundtruth for Flickr images (# images
= 142, # symmetries = 479) in ECCV2010, CVPR2011 and CVPR2013. Non-
duplicative images are combined from three previously mentioned versions for
challenging comparisons. (2) NY dataset: Cicconet et al. [8] presented a new
symmetry database (# images = 63, # symmetries = 188) in 20161, providing
more accurate and consistent groundtruth for multiple symmetry endpoints.

Quantitative comparisons are performed as proposed in [18,32], where a
detected symmetry axis considered as a true positive (TP): (1) The angle
between the detected symmetry axis and its corresponding groundtruth sym-
metry axis is less than 10◦; (2) The distance between the centers of detected
and same groundtruth axes is less than 20% minimum length of the axes. Mul-
tiple detections can match to the same ground-truth axis, but not vice versa.
The overall performance of algorithms are defined through the precision and
recall rates:

precision =
TP

TP + FP
, recall =

TP

TP + FN
. (13)

where false positive (FP) are non-matched detected axes with any groundtruth,
false negative (FN) are non-matched groundtruth with any detected axes. Close
detections are clustered as one proposal axis to avoid duplicates in true positive
or false positive calculations.

4 Experiments and Discussions

Quantitative (Figs. 4, 5) and qualitative (Fig. 6) comparisons are conducted
among the proposed method (Our2017), Loy and Eklundh (Loy 2006) [21],
Cicconet et al. (Cic2014) [9], and Elawady et al. (Ela2016) [11]. Loy2006 and
Ela2016 were reported to have the best performed results for the single sym-
metry detection in keypoint-based and edge-based methods respectively [11].
Figure 4 presents precision-recall curves for the multiple symmetry datasets
(PSUm [18,32], and NYm [8]), to compare the proposed method to three prior
algorithms (Loy2006 [21], Cic2014 [9], and Ela2016 [11]). Cic2014 [9] has the low-
est performance for precision and recall in both curves. In Fig. 4a, Loy2006 [21]
has better precision than Ela2016 [11] over corresponding low recall, while the
precision of the proposed method (aka Our2017) outperforms all these methods
in most sections of the curve. In Fig. 4b, Ela2016 [11] has a superior precision
performance over Loy2006 [21] under the recall rate of 40%, meanwhile the pro-
posed method has the best performance along both precision and recall rates.
Additionally, we also compute the F1 score to define the harmonic mean between
precision and recall rates, and used the maximum F1 score to qualify the overall

1 http://symmetry.cs.nyu.edu/.

http://symmetry.cs.nyu.edu/
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performance of different detection algorithms. The values of maximum F1 score
are presented in Fig. 4 to express the precision-recall curve for each method
in a single global measure. Figure 5 shows precision and recall rates where the
maximum F1 scores are selected among the corresponding curves in Fig. 4. The
proposed method achieved the best performance among all results.

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8

1
Loy2006 (0.29211)
Cicconet2014 (0.15883)
Elawady2016 (0.27744)
Our2017 (0.32828)

(a) PSUm
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Loy2006 (0.33657)
Cicconet2014 (0.2365)
Elawady2016 (0.38788)
Our2017 (0.43373)

(b) NYm

Fig. 4. Precision-Recall curves on (a)PSUm [18,32] and (b)NYm [8] datasets to show
the superior performance of our method “Our2017” against the three prior algorithms
(“Loy2006” [21], “Cic2014” [9], “Ela2016” [11]). The maximum F1 scores are qual-
itatively presented as square symbols along the curves, and quantitatively indicated
between parentheses inside the top-right legends. Best seen on screen.

Fig. 5. Comparison of maximum F1 score and its equivalent precision and recall rates
among two different datasets (PSUm [18,32], NYm [8]) for our method “Our2017”
against the baseline algorithm “Loy2006” [21] and two of the recent algorithms
“Cic2014” [9] and “Ela2016” [11].
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(a) ref rm 79 - GT (b) ref rm 71 - GT (c) I012 - GT

(d) ref rm 79 - Our2017 (e) ref rm 71 - Our2017 (f) I012 - Our2017

(g) ref rm 79 - Ela2016 (h) ref rm 71 - Ela2016 (i) I012 - Ela2016

(j) ref rm 79 - Loy2006 (k) ref rm 71 - Loy2006 (l) I012 - Loy2006

Fig. 6. Some challenging images in PSUm [18,32] (1st and 2nd columns) and NYm [8]
(3rd column) datasets with groundtruth in 1st row (a, b, c). our method in 2nd row
(d, e, f) produces better results among El2016 [11] in 3rd row (g,h,i) and Loy2006 [21]
in 4th row (j, k, l). For each algorithm, the top five symmetry results is presented in
such order: red, yellow, green, blue, and magenta. Each symmetry axis is shown in a
straight line with squared endpoints. Best seen on screen. (Color figure online)
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Figure 6 presents some experimental results for multiple symmetry detection
from two publicly available datasets (PSUm [18,32], NYm [8]). Groundtruth of
the first example (Fig. 6a) shows four symmetries (vertical, horizontal, and diago-
nals) of a flower within natural background view. The proposed method (Fig. 6d)
detects correctly vertical and horizontal axes, while Loy2006 [21] (Fig. 6j) fails to
find enough feature points resulting two partial (diagonal and vertical) axes, and
Ela2016 [11] (Fig. 6g) breakdown the vertical axis to represent the top five detec-
tions. Second and third examples (Figs. 6b and c) display three in-between sym-
metries of a thinned metal object and five symmetries expressing arms’ details
of a starfish respectively over texture-less surfaces. These symmetries have been
efficiently detected by the proposed method (Figs. 6e and f) over Ela2016 [11]
(Figs. 6h and i). However, Loy2006 [21] (Figs. 6k and l) concentrates on local
symmetries describing the inner details of the centric objects.

5 Conclusion

This paper proposes a linear-directional kernel-based voting scheme within uni-
fied feature representation, in order to support a reliable detection framework
for global multiple symmetries. Our approach solves the drawbacks of the previ-
ous symmetry detection approaches, by estimating the fixed-sized kernel density
with efficient bandwidth parameters, and identifying correctly the symmetrical
regions at a global scale. Quantitative and qualitative evaluations present the
state-of-the-art performance of our proposed framework among public datasets.
This work can be extended to refine the accuracy of the symmetry peaks and the
selection of corresponding voting features, using a continuous maxima-seeking
technique. The future work is introducing an entropy-based measure, to exploit
the global strength of various symmetry axes inside an image.
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O.M.: Directional kernel density estimation for classification of breast tissue spec-
tra. IEEE Trans. Med. Imaging 36(1), 64–73 (2017)

28. Park, M., Lee, S., Chen, P.C., Kashyap, S., Butt, A.A., Liu, Y.: Performance
evaluation of state-of-the-art discrete symmetry detection algorithms. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8.
IEEE (2008)

29. Parzen, E.: On estimation of a probability density function and mode. Ann. Math.
Stat. 33(3), 1065–1076 (1962)

30. Patraucean, V., von Gioi, R.G., Ovsjanikov, M.: Detection of mirror-symmetric
image patches. In: 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 211–216. IEEE (2013)

31. Ram, S., Rodriguez, J.J.: Vehicle detection in aerial images using multiscale struc-
ture enhancement and symmetry. In: 2016 IEEE International Conference on Image
Processing (ICIP), pp. 3817–3821. IEEE (2016)

32. Rauschert, I., Brocklehurst, K., Kashyap, S., Liu, J., Liu, Y.: First symmetry detec-
tion competition: summary and results. Technical report, CSE11-012, Department
of Computer Science and Engineering, The Pennsylvania State University (2011)
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Abstract. In recent years, the importance of behavioral studies of model
organisms such as Drosophila melanogaster has significantly increased
in biological research. Recently, a novel monitoring setup for analyzing
Drosophila larvae in culture vials was proposed which allows researchers
to conduct long-term studies without disturbing the animals’ behavioral
routine. However, when monitoring larvae in such a setup over several
days, dirt accumulates on the vial surface, leading to artifacts in the seg-
mentation process. To overcome this problem and enable researchers to
perform experiments involving long-term tracking of the animals, we pro-
pose a method for background subtraction which is based on convolutional
neural networks (CNNs). Our method produces good results and signifi-
cantly outperforms other methods. In addition, we show that besides its
good performance our compact CNN architecture allows us to apply our
method for online-processing on microcomputers in real-time.

1 Introduction

In recent years, the importance of long-term behavioral studies in biological
research has significantly increased. Often model organisms such as Drosophila
flies [6,11] are monitored to obtain behavioral read-out for evaluating social
interactions or observing stimulus-based behavior. Recently, Berh et al. [1] have
proposed a novel monitoring setup for long-term analysis of Drosophila lar-
vae in culture vials. This system is based on the FIM imaging technique by
Risse et al. [18,19] and consists of five cameras which are connected to Rasp-
berry Pi microcomputers. Each of the microcomputers images a part of the
cylindrical culture vial, locally unfolds the vial wall, and sends the processed
rectangular view to a central server where the individual images are stitched
together to obtain a view of the entire vial wall. The setup and an example of a
resulting image are depicted in Fig. 1. Due to the utilization of the principle of
frustrated total internal reflection, FIM images generally have a high contrast
and foreground segmentation of larvae as a pre-processing step for tracking can
thus be reliably performed by a simple thresholding step [1,19]. However, the
main challenge arising when imaging a large number of larvae in such a setup for
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(a) (b)

Fig. 1. Prototype of the FIM in-vial setup by Berh et al. [1]. (a) A cylindrical culture
vial containing Drosophila larvae is imaged using five cameras connected to microcom-
puters which send their views of the vial to a server. A food bowl and an inner cylinder
are inserted into the vial. (b) Example of a stitched view of the vial surface generated
by the server from the views of the individual cameras.

several days is the accumulation of dirt on the vial surface. Since a food bowl is
inserted into the vial, larvae drag food, dirt, and excretions over the vial, which
produces artifacts with similar intensity as larvae in the obtained images. Over
time, this dirt accumulates on the vial surface, making the segmentation and
thus tracking of the larvae a challenging task (see Fig. 2).

Here, we propose a method for background subtraction in FIM in-vial images
by applying a convolutional neural network (CNN). Our network is trained end-
to-end using 265 images with manually labeled ground truth data. We evaluate
the quality of the results for multiple net configurations and compare our CNN
to two other methods, an automatic thresholding approach as well as Gabor
filters in combination with a random forest classifier. Moreover, we show that
our proposed CNN can be applied in real-time on a Raspberry Pi microcomputer
due to its compact structure. This extends the use of the FIM in-vial setup to
novel tracking experiments in the context of long-term behavioral studies.

The remainder of this paper is structured as follows. Section 2 provides a brief
overview of related work regarding CNN-based segmentation and background
subtraction. In Sect. 3, we outline the proposed CNN architecture and describe
the loss function we use, which is based on the F1-score. In Sect. 4, we provide an
evaluation of the achieved results for different CNN architectures and compare
our method to two other approaches. Moreover, we analyze the applicability
of our method for real-time processing on a Raspberry Pi microcomputer. In
Sect. 5, we draw a conclusion and provide an outlook of some future work.

2 Related Work

Over the last years, deep learning with CNNs has proven a powerful method
which has surpassed traditional model-based approaches by a large margin in
many image processing and pattern recognition tasks. Despite the fact that the
concept of convolutional nets has been known for some time [13], their actual
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(a) (b) (c)

Fig. 2. Exemplary section of an image obtained by long-term monitoring using the
FIM in-vial setup (see Fig. 1). The original image (a) depicts the accumulation of dirt
on the vial surface, whereas (b) and (c) show the manually labeled ground truth where
only larvae are marked as foreground.

breakthrough – starting with the network by Krizhevsky et al. [12] – is due to
the availability of large data sets in combination with the processing capabilities
of modern GPUs which allow to train large networks in reasonable time.

Convolutional neural networks have also been applied to biomedical segmen-
tation tasks by predicting a class label for each pixel in the images. Ciresan
et al. [3] have proposed a deep neural network for segmentation of electron
microscopy images by applying a sliding-window approach to classify each pixel
in the image. Later on [4], they have extended their former net architecture and
applied it to mitosis detection in breast cancer histology images. In contrast to
the sliding-window approach, Ronneberger et al. [20] have proposed the U-net, a
convolutional net architecture specifically designed for biomedical image segmen-
tation which is based on the concept of fully convolutional networks [14]. Their
network has won the ISBI 2015 cell tracking challenge, significantly outperform-
ing all other competing approaches. The U-net has recently been extended to
three-dimensional image segmentation by Milletari et al. [16] and Çiçek et al. [2].

A large body of work has been published on background subtraction. Usually,
this refers to the extraction of moving objects by learning either a static or a
dynamic background model from video streams of RGB images. A review of such
methods can be found in [22]. The use of different types of neural networks has
also been proposed in this context [5,15]. Recently, Xu et al. [24] have proposed
the use of deep auto-encoder networks for dynamic background modeling.

In comparison to the aforementioned background subtraction approaches,
our problem setting is slightly different. Although the background changes over
time due to larvae dragging dirt over the tracking surface [1], it does not contain
dynamic movement itself. Moreover, we do not only strive to extract moving
objects, since larvae can be inactive for extended periods of time or pupate,
in which case they become static objects, but should still be recognized as fore-
ground. Furthermore, learning and maintaining a background model dynamically
over an extended period of time is complex and computationally expensive, which
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hampers its applicability to low-cost, large-scale screening settings in behavioral
biological studies. We therefore propose a method that classifies the pixels in a
single input image without the context of a video stream. This is especially use-
ful since such an approach can be realized using a compact network which allows
the application of the CNN directly on microcomputers such as a Raspberry Pi.

3 Methods

3.1 CNN Architecture and Training

We propose a compact structure for our CNN which is depicted in Fig. 3. Our
CNN consists of two consecutive blocks which each comprise a 3×3 convolutional
layer, a rectified linear unit (ReLU) activation function, and a max pooling
layer. The first convolutional layer consists of 20 filters, i.e., outputs 20 channels,
whereas the second one outputs 64 channels. Those two stages are followed by two
blocks which comprise a de-convolution layer and a ReLU activation function.
De-convolution is performed using 4×4 filter kernels with stride 2 so that in the
end the original image size is obtained. Moreover, using 4×4 instead of 2×2 filter
kernels in the de-convolution improves the performance of the net (see Sect. 4). In
total, the net comprises 32, 926 weights. The de-convolution stages are followed
by a softmax layer which normalizes the output to the range [0, 1] so that the
resulting output images can be interpreted as probability maps. During training,
the probabilities are used as input for the F1-score loss layer. Details about
using the F1-score loss function are given in Sect. 3.2. When performing actual
classification, the probability map can be thresholded (e.g., using a threshold
t = 0.5) to obtain a binary segmentation. It should be noted that besides the
good results of this CNN architecture, the compact network layout facilitates
the use of our proposed method for real-time processing on a microcomputer
such as a Raspberry Pi (see Sect. 4). We have tested several alternative network
configurations which are comparatively evaluated in Sect. 4.

Fig. 3. Our CNN architecture. Each solid box corresponds to a layer in the network.
The two convolution and pooling blocks are depicted in red whereas the de-convolution
part of the network is depicted in blue. The rightmost layer is the F1-score loss layer,
which is depicted using the dashed gray box to indicate that it is only present during
the training phase. (Color figure online)
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For our implementation we use the Caffe framework [10] which provides most
of the layers in our architecture out-of-the-box. The only additional layer not
provided by Caffe is the F1-score loss layer which we implemented in Python.
For training, we have used Caffe’s stochastic gradient descent method.

The CNN is trained end-to-end using 265 images which have been obtained
by Berh et al. in a long-term monitoring experiment [1]. We use images of the
first three days, more specifically from hours 15 to 63, of this experiment. Images
of the hours before that contain only few larvae or do not yet show a lot of dirt
accumulation on the tracking surface whereas 63 h are sufficient for obtaining
meaningful behavioral read-out. The images have been taken from each of the
five cameras in the setup and the lower part containing the boundary of the
food bowl has been removed prior to the labeling as it is not relevant for the
segmentation and tracking process of the experiment. Each of the images then
has an original size of 180×420 pixels, but has been cropped to 178×418 pixels
to fit the dimensions required by the CNN when performing the pooling and
de-convolution operations. The images have been sorted by their timestamps
and were afterwards divided into 4 time slots of which the first 3 slots contain
65 images each and the last slot contains 70 images. Each time slot therefore
corresponds to approximately 12 h of monitoring. This allows to compare clas-
sification results between different time frames in the experiment (see Sect. 4).
For each time slot, the images are randomly partitioned into 5 subsets of 13
images each (14 for the last time slot). From each time slot one of the subsets
has then been selected as a set of test images which are not used for training the
network. The test set thus comprises 53 images, which corresponds to 20% of
the data. Due to the selection of a single subset from each time slot, test images
are distributed evenly among the three days of the experiment. This allows an
evaluation of the segmentation quality in relation to the monitoring time which
corresponds to the amount of dirt on the tracking surface (see Sect. 4). For the
remaining 212 images, we perform data augmentation to increase the number of
training images by mirroring each image in x-direction, y-direction, as well as
both of the axes. Additionally, each of the four obtained images is rotated by
180◦. This procedure increases the number of training images by a factor of 8 so
that we obtain 212 · 8 = 1, 696 training images of 180 × 420 pixels in total. Note
that this procedure introduces a slight bias towards the non-mirrored data which
is selected twice due to the fact that rotating the image by 180◦ is equivalent to
mirroring it in both x- and y-direction.

3.2 Utilizing the F1-Score for Unbalanced Data

Since our images contain notably more background pixels than pixels belonging
to foreground objects, i.e., larvae, the occurrences of background and foreground
classes are highly imbalanced (see Fig. 2). Unbalanced training data is a com-
mon problem in many machine learning tasks and can significantly affect the
performance of a classifier [23]. Several strategies to tackle this problem have
been proposed, some of which rely on re-sampling of the data to balance the
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class instances [25] or adjusting the training by using additional weights for the
loss of different classes [20].

For binary classification problems (including segmentation or background
subtraction) the F1-score, sometimes also referred to as F-measure, is commonly
used as an objective quality measure since it is more suitable for unbalanced data
than an accuracy-based evaluation [9,21,24]. Pastor-Pellicer et al. [17] have pro-
posed this measure as the loss function for training artificial neural networks
with unbalanced data using backpropagation. Milletari et al. [16] have success-
fully employed the F1-score for training convolutional neural networks in the
context of medical image segmentation and show that using the F1-score as the
loss function can significantly outperform the use of a weighted logistic loss func-
tion in terms of segmentation quality. We therefore adapt the use of the F1-score
as the loss function for our convolutional neural network. For convenience, we
will give a short summary of the derivation of this loss function.

Given a binary segmentation S and a ground truth labeling G with n pixels,
the number of true positives (TP) is given by the number of foreground pixels
si ∈ S, 0 ≤ i < n, which are also labeled as foreground in G, i.e., for which holds
that si = 1 = gi, where gi ∈ G is the corresponding pixel in G. Consequently,
the number of false positives (FP) corresponds to the number of pixels si ∈ S
for which si = 1 ∧ gi = 0, and the number of false negatives (FN) is given by
the number of pixels si ∈ S for which si = 0 ∧ gi = 1. For a probability map
O with oi ∈ O, 0 ≤ i < n, 0 ≤ oi ≤ 1 (which corresponds to the output of our
CNN due to the use of a softmax layer) instead of a binary segmentation S the
TP, FP, and FN can be computed as follows:

TP =
n−1∑

i=0

oi · gi FP =
n−1∑

i=0

oi · (1 − gi) FN =
n−1∑

i=0

(1 − oi) · gi (1)

Based on the TP, FP, and FN the two metrics Precision (PR) and Recall (RC)
are defined as follows:

PR =
TP

TP + FP
RC =

TP
TP + FN

(2)

The F1-score is then given by the harmonic mean between PR and RC:

F1 = 2 · PR · RC
PR + RC

= 2 ·
∑n−1

i=0 (oi · gi)∑n−1
i=0 (oi + gi)

(3)

In order to apply the F1-score as the loss function for the backpropagation
algorithm, it is necessary to compute the gradient given by the partial derivatives
with respect to oj , 0 ≤ j < n, as follows:

∂F1

∂oj
= 2 · gj · ∑n−1

i=0 (oi + gi) − ∑n−1
i=0 (oi · gi)[∑n−1

i=0 (oi + gi)
]2 (4)
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Pastor-Pellicer et al. [17] have shown that this loss function works well for mini
batch training with stochastic gradient descent (SGD), although it should be
taken into account that mini batches which only contain background samples
in the ground truth do not update the weights since in such cases both the F1-
score as well as the partial derivatives will always be 0. Furthermore, it should
be noted that in order to use the aforementioned equations in a minimization
setting such as SGD, the sign of the partial derivatives has to be inverted.

4 Results and Discussion

4.1 Performance Evaluation

To evaluate the performance of our CNN, we compare the segmentation result
to the ground truth data by using the first part of each of the 4 time slots as
test data which has not been used for training (see Sect. 3.1). The classification
results of the CNN, which are given as probability output maps, are thresholded
to obtain a binary image. Segmentation quality is then assessed by computing
the pixel-wise F1-score in comparison to the ground truth images. Although we
have tested various thresholds on the probability maps ranging from 0.3 to 0.7
in steps of 0.05 for all net architectures (see below), scores were not significantly
influenced by the choice of thresholds. In the following, we have therefore only
considered the threshold t = 0.5 for all CNN architectures.

First, we have compared several net architectures. Besides the proposed net-
work (see Fig. 3) with two 3 × 3 convolutional layers and 4 × 4 de-convolutional
layers, we have tested different kernel sizes kc in the convolutional layers and
different numbers lc of convolutional layers (with the corresponding number of
de-convolutional layers), all of them with the standard 2 × 2 de-convolution as
opposed to the 4 × 4 de-convolutional layers in our proposed architecture. All
tested nets with their respective input image sizes and number of filter kernels
are listed in Table 1. The number of channels is symmetrically reduced in the
de-convolutional layers as in our proposed net architecture (see Sect. 3.1).

All networks have been trained end-to-end for 40, 000 iterations with a batch
size of 20 images. Each net was evaluated on the test data every 500 iterations
and a snapshot (i.e., the learned weights at that point) was taken every 1000
iterations. For all nets, the same set of hyper parameters was used for training.
The base learning rate was set to 0.001 with a momentum of 0.99 and weight
decay set to 0.0005. The learning rate was reduced in a step-wise fashion by
multiplication with 0.5 every 7000 iterations. For three-layer nets with larger
filter kernels (i.e., kernel5 layer3 and kernel7 layer3 ) the base learning rate was
reduced to 0.0004 in order for the training to converge. Other than that, all
parameters stayed the same.

After training, the snapshot with the best F1-score over all of the test data
was selected for each network. The results for those selected networks for each
time slot as well as over all of the test data are listed in Table 2. It should
be noted that, depending on the time slot, other architectures outperform our
proposed net slightly (see the difference in F1-score of our proposed net to the
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Table 1. Evaluated CNN architectures. For each net, the size kc of the filters kernels,
the number lc of convolutional layers, the input size, and the number of channels (i.e.,
filters) in the convolutional layers (Num. channels) are denoted.

Label kc lc De-conv. size Input size Num. channels

kernel3 layer2 3 × 3 2 2 × 2 178 × 418 20 – 64

kernel5 layer2 5 × 5 2 2 × 2 180 × 420 32 – 64

kernel7 layer2 7 × 7 2 2 × 2 178 × 418 32 – 64

kernel3 layer3 3 × 3 3 2 × 2 174 × 414 20 – 64 – 128

kernel5 layer3 5 × 5 3 2 × 2 180 × 420 32 – 64 – 128

kernel7 layer3 7 × 7 3 2 × 2 178 × 418 32 – 64 – 128

Proposed 3 × 3 2 4 × 4 178 × 418 20 – 64

best net architecture in the last line of Table 2). Especially in the last time slot
which shows the most dirt accumulation on the tracking surface, thus leading to
the worst results in all of the nets, deeper nets with more convolutional (and de-
convolutional) layers show a better performance. However, the slight difference in
performance is negligible since the results are still nearly as good as the best net
architecture and one of the main advantages of our very compact architecture
is that it can be used in real-time on a microcomputer in long-term tracking
experiments (see Sect. 4.3). We therefore propose the architecture in Sect. 3.1
due to its usefulness in the considered application. Overall, our proposed network
reaches an F1-score of 0.905 over all of the test data. In the second time slot, the
highest score of 0.916 is reached which slightly decreases to 0.906 in the third time
slot and drops to 0.878 in the last time slot. Interestingly, whereas (as expected)
the performance of all classifiers diminishes with the later time slots due to
the increasing accumulation of dirt on the tracking surface, the second time slot
displays better results than the first one across all architectures. Despite a careful
inspection of the ground truth data to identify potential errors in the labeling,
we could not directly determine the origin of this behavior. We assume that dirt
accumulation between the two time slots does not significantly increase, while
more larvae are visible in the second time slot so that falsely classified pixels do
not diminish the results as significant due to more true positive pixels.

4.2 Performance Comparison

In order to compare the performance of our model we use two well-established
segmentation algorithms as benchmarks. The first baseline method is Otsu’s
automatic threshold selection. Despite its simplicity this approach delivers good
results on FIM images [1]. However, performance drops significantly after the
first day of the experiment due to aggregation of dirt which cannot be segmented
by single-pixel intensities. As expected, this leads to a large number of false
positives. Overall, the method yields an F1-score of 0.726 for all time slots. The
F1-scores of Otsu’s method for the individual time slots are listed in Table 3.
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Table 2. Results for different CNN architectures. Although the proposed net is slightly
outperformed by other architectures, differences (see last line) are negligible considering
the applicability to real-time processing (see Sect. 4.3).

Architecture\time slot 1 2 3 4 All

kernel3 layer2 0.896 0.903 0.877 0.831 0.882

kernel5 layer2 0.920 0.922 0.909 0.878 0.909

kernel7 layer2 0.789 0.791 0.784 0.755 0.781

kernel3 layer3 0.916 0.923 0.913 0.893 0.913

kernel5 layer3 0.913 0.920 0.914 0.899 0.913

kernel7 layer3 0.907 0.910 0.909 0.899 0.907

Proposed 0.915 0.916 0.906 0.878 0.905

Diff. (proposed to best) 0.005 0.007 0.008 0.011 0.008

Table 3. Baseline segmentation results and proposed method (F1-scores)

Method\time slot 1 2 3 4 All

Otsu 0.717 0.792 0.743 0.679 0.726

Gabor-RF 0.861 0.874 0.855 0.821 0.850

CNN (proposed) 0.915 0.916 0.906 0.878 0.905

An approach based on local texture information is expected to be more robust
against dirt on the tracking surface. Hence, our second baseline method (which
we refer to as Gabor-RF for the remainder of this paper) combines a random
forest classifier which was shown to deliver good results on many different classifi-
cation tasks [7] with a Gabor filter bank suitable for texture detection [8]. First,
all input images are filtered by the filter bank, yielding 72 channels. Second,
random forests are trained as pixel-wise classifiers.

While the first baseline relying on automatic thresholding does not require
any parameter tuning, Gabor-RF has a number of parameters to be adjusted.
To obtain the optimal set of parameters, we performed extensive grid search.
Best performance across all time slots according to F1-score was achieved using
a Gabor-RF comprising 448 trees with maximum tree depth h = 24, and bina-
rization threshold 0.4. Results on individual time slots are listed in Table 3.

Overall, our proposed CNN significantly outperforms both the threshold-
ing method as well as the Gabor-RF on all time slots. Moreover, although the
performance drops in the last time slot, the CNN method still performs more
consistently over all time slots and has less difficulties dealing with more complex
image data. Figure 4 shows some qualitative results for all classifiers.
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4.3 Real-Time Processing on Microcomputers

To evaluate the applicability of our CNN for real-time processing in the FIM in-
vial setup, we conducted a runtime study on a microcomputer used for imaging
the vial wall. For our tests, we used a Raspberry Pi 3 model B with a 1.2 GHz
64-bit quad-core ARMv8 CPU and the Raspbian Jessie operating system. Caffe
was used in CPU mode with OpenBLAS version 0.2.19. We evaluated the clas-
sification time for a single image of 178×418 pixels including copying the image
to the input of the neural net and retrieving the results. To obtain representative
numbers, we measured 5, 000 classifications where we observed a mean runtime
of 0.3215 s with a standard deviation of 0.0021. This corresponds to 3 frames
per second which is more than sufficient for online-processing since the larvae
are not recorded with more than approximately 2 frames per second [1]. When
increasing the filter kernel size to 5 × 5 instead of 3 × 3 filters in the convolu-
tional layers (i.e., using the network denoted as kernel5 layer2 in Table 1), the
mean runtime increases to 0.541 s which is not feasible for real-time processing.
The same goes for net architectures with more than two convolutional layers,
which increases the runtime even further. Although the performance of the nets
with larger filter kernels is slightly superior, we thus propose the net architecture
outlined in Sect. 3.1 since differences in performance are only minor and the com-
pact net allows a higher throughput up to real-time processing on a Raspberry
Pi. Moreover, due to the use of 4 × 4 filter kernels in the de-convolution layers,
our proposed net retains the dimensions of its input images in the output. In
contrast to this, a net with two 5× 5 convolutional layers and 2× 2 filter kernels
in the de-convolution crops the output by 12 pixels in each dimension due to its
receptive field while using 7×7 kernels crops the output by as much as 20 pixels
in each dimension. This might be problematic when applying the net directly
on the individual microcomputers as the subsequent stitching process requires
some overlap between the images obtained from different cameras [1].

(a) (b) (c) (d) (e)

Fig. 4. Exemplary qualitative results for the proposed CNN and benchmark classifiers.
(a) original image, (b) ground truth, (c) Otsu thresholding, (d) Gabor-RF, (e) CNN
(proposed). Note that some darker larvae are not labeled in the ground truth as they
are assumed by domain experts to be located on the inner cylinder of the setup and
should thus not be segmented.
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5 Conclusion

We have proposed a method for background subtraction in in-vial FIM images
based on convolutional neural networks which provides good results and sig-
nificantly outperforms other methods such as automatic thresholding or Gabor
features in combination with a random forest classifier. To account for unbal-
anced training data, we use the F1-score as a loss function for training our CNN.
We have shown that the use of a relatively small network topology facilitates the
application of our method directly on the Raspberry Pi microcomputers which
are used in the FIM in-vial setup proposed by Berh et al. [1]. We believe that
our method is a significant step towards enabling researchers to perform novel
tracking experiments in long-term behavioral studies of Drosophila larvae.

In the future, we are going to extend our method to dynamically learn a
background model over time by incorporating the information of the preceding
video frames. Moreover, we will extend the classification to a multi-class prob-
lem instead of a binary foreground/background classification to specifically label
boundaries of larvae and thus provide a means of resolving interactions between
animals in the segmentation and tracking process of the FIM setup. Finally, we
want to extend our method by including an automatic classification of pupae in
the images for allowing a more fine-grained behavioral read-out later on.
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Abstract. Spatial regularization is a technique that exploits the depen-
dence between nearby regions to locally pool data, with the effect of
reducing noise and implicitly smoothing the data. Most of the currently
proposed methods are focused on minimizing a cost function, during
which the regularization parameter must be tuned in order to find the
optimal solution. We propose a fast Markov chain Monte Carlo (MCMC)
method for diffusion tensor estimation, for both 2D and 3D priors data.
The regularization parameter is jointly with the tensor using MCMC.
We compare FA (fractional anisotropy) maps for various b-values using
three diffusion tensor estimation methods: least-squares and MCMC with
and without spatial priors. Coefficient of variation (CV) is calculated to
measure the uncertainty of the FA maps calculated from the MCMC sam-
ples, and our results show that the MCMC algorithm with spatial priors
provides a denoising effect and reduces the uncertainty of the MCMC
samples.

Keywords: Spatial regularization · Diffusion tensor · Spatial priors ·
Markov chain Monte Carlo · Fractional anisotropy

1 Introduction

Diffusion MRI is a technique used for studying brain connectivity. It has been
reported that neighboring voxels show similar diffusion signals, due to their high
degree of spatial coherence in terms of underlying fiber microstructure (Aboitiz
et al. 1992). The spatial information is ignored by widely used voxel-by-voxel
diffusion tensor estimation algorithms, e.g. ordinary least squares (OLS) and
weighted least squares (WLS) (Chung et al. 2006), which assume that the data in
each voxel is independent. Algorithms with this assumption make the parameter
estimation more vulnerable to the image noise. The robustness and reliability
c© Springer International Publishing AG 2017
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of the estimated diffusion parameters can be improved by incorporating spatial
information in the parameter estimation.

Spatial regularization is a technique that encourages similarity between para-
meters over a neighborhood of voxels. This is typically done by minimizing a cost
function which is often the sum of a data error term and a regularization term
(Raj et al. 2003; Wang et al. 2011). One of the drawbacks of this method is
that the weight of the regularization term must be tuned in order to find the
optimal solution. However, determining the appropriate regularization weight is
a difficult problem, and there is no general solution. An alternative but similar
concept is the use of probabilistic spatial priors in a Bayesian framework to spa-
tially regularise the model fitting procedure (Demiralp and Laidlaw 2011; King
et al. 2009; Poupon et al. 2001; Sidén et al. 2017; Walker-Samuel et al. 2011).
The regularization strength is then governed by a hyperparameter that scales
the prior precision matrix which can be estimated directly during the fitting
procedure, rather than being estimated separately. Poupon et al. (2001) used
a Markov random field (MRF) framework to obtain a regularized fiber orien-
tation map, in order to improve the diffusion tractography. Mart́ın-Fernández
et al. (2003, 2004) proposed both Gaussian and non-Gaussian MRF approaches
for the 2D spatial regularization of diffusion tensor fields. Mart́ın-Fernández
et al. (2004) extended the 2D Gaussian MRF method to 3D using multivari-
ate Gaussian Markov random field (GMRF) ideas. The maximum a posteriori
(MAP) estimator was found by the simulated annealing algorithm in all the
three approaches. King et al. (2009) tackled the crossing-fiber problem using an
MRF model and Markov chain Monte Carlo (MCMC) sampling for the multi-
fiber ball and stick model outlined in (Behrens et al. 2007), which offered a useful
solution for the crossing-fiber problem in diffusion tractography. Walker-Samuel
et al. (2011) proposed a MCMC method using GMRF to incorporate spatial
information when estimating the apparent diffusion coefficient (ADC).

Fig. 1. Diffusion images using b-values of 0, 1000, 3000, 5000, and 10,000 s/mm2 show
progressively more diffusion weighting, but also reduced SNR.

Figure 1 shows a sequence of diffusion images for 5 different b-values. Increas-
ing the b-value from 0 to 10,000 s/mm2 creates greater diffusion weighting of the
image, at the expense of a significant reduction of the signal-to-noise-ratio (SNR).
The SNR issue becomes important at higher b-value diffusion imaging due to
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the larger exponential attenuation of the signal, longer echo time and increased
susceptibility (Graessner 2011). To use the spatial dependency between the sig-
nals in neighbouring voxels for accurate inference, we extend a MCMC algorithm
with spatial priors, previously used for fMRI analysis (Sidén et al. 2017), to dif-
fusion MRI. A preconditioned conjugate gradient (PCG) approach is applied to
make the MCMC algorithm a practical option for the whole brain analysis. The
main contribution of this paper is that we use the PCG approach and MCMC to
compute the posterior distribution with spatial priors for the whole brain, which
was previously infeasible due to the high computational complexity. We calculate
fractional anisotropy (FA) maps from three diffusion tensor estimation methods:
least-squares, and MCMC with and without spatial priors for various b-values.
The coefficient of variation (CV) is calculated to measure the dispersion of the
FA maps from the MCMC samples.

2 Theory

2.1 Diffusion Tensor Estimation

In a diffusion experiment, the diffusion-weighted signal Si of the ith measurement
for one voxel is modeled by

Si = S0 exp(−bgT
i Dgi), for i = 1, 2, · · · , T, (1)

where S0 is the signal without diffusion weighting, b is the diffusion weighting

factor, D =

⎡
⎣

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤
⎦ is the diffusion tensor in the form of a 3×3 positive

definite matrix, gi is a 3 × 1 unit vector of the gradient direction, and T is the
total number of measurements. Using the log transform, the equation above
becomes

ln(Si) = ln(S0) − bgT
i Dgi, (2)

which, assuming additive noise on the log scale, can be structured into the well-
known multiple linear regression form

y = Xw + ε, (3)

where y = [ln(S1), ln(S2), · · · , ln(ST )]T represents the logarithm of the measured
signal, w = [Dxx,Dxy,Dyy,Dxz,Dyz,Dzz, lnS0]

T are the unknown regression
coefficients, X is a T ×7 design matrix containing the different diffusion gradient
directions,

X = −b

⎡
⎢⎢⎢⎣

g21x 2g1xg1y g21y 2g1xg1z 2g1yg1z g21z
1
b

g22x 2g2xg2y g22y 2g2xg2z 2g2yg2z g22z
1
b

...
...

...
...

...
...

...
g2Tx 2gTxgTy g2Ty 2gTxgTz 2gTygTz g2Tz

1
b

⎤
⎥⎥⎥⎦ , (4)
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and ε = [ε1, ε2, · · · , εT ]T are the error terms. We will consider diffusion data
containing T volumes with N voxels ordered in a T × N matrix Y. The linear
regression model given in Eq. 3 can be rewritten for simultaneous estimation of
all the parameters, according to

Y = XW + E, (5)

where W is a 7 × N matrix of regression coefficients and E is a T × N matrix
error terms.

2.2 Bayesian Inference

In the Bayesian inference framework, the posterior distribution quantifies the
uncertainty of the parameters W given the data Y, according to Bayes theorem:

p(W|Y) ∝ p(Y|W)p(W), (6)

where p(W) is the prior information about the parameters, and p(Y|W) is the
likelihood of Y given W. A closed form expression for the posterior distribution
is normally not available, but MCMC can be used to produce samples from the
posterior leading to inference that is asymptotically exact.

2.3 MCMC Algorithm

Here we assume that the noise in each voxel is modeled as independent and
identically distributed (i.i.d.) Gaussian noise. The likelihood then becomes

p(Y|W, λ) =
N∏

n=1

N (Y·,n;XW·,n, λ−1
n IT ), (7)

with Y·,n and W·,n denoting the nth column of Y and W, λn is the noise
precision of voxel n and IT is the T × T identity matrix. The spatial part of the
model is incorporated via the following prior on the regression coefficients W

p(W|ααα) =
7∏

k=1

p(WT
k,·|αk), WT

k,·|αk ∼ N (0, α−1
k D−1

w ), (8)

where WT
k,· denotes the transposed kth row of W, Dw is a N × N spatial

precision matrix and ααα = [α1, α1, · · · , α7]
T are hyperparameters that controls

the smoothness, which are to be estimated from the data for each regressor in
X. We choose the unweighted graph-Laplacian (UGL) (Penny et al. 2005) which
has 6’s on the diagonal when modeling the 3D brain and 4’s when modeling a
2D slice, and Dw(i, j) = −1 if i and j are adjacent. The log likelihood can be
expressed as

log p(Y|W,λλλ) =
T

2

N∑
n=1

log(λn)

− 1
2

N∑
n=1

λn

(
YT

·,nY·,n − 2YT
·,nXW·,n + WT

·,nX
TXW·,n

)
, (9)
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where we have ignored everything that is constant with respect to the parame-
ters. Since Y and X will not change during the MCMC algorithm, quantities
such as XTX can be effectively pre-computed, removing the time dimension
from the likelihood which leads to significant speed up. We obtain closed form
expressions for all full conditional posteriors, and can therefore perform Gibbs
sampling. The full conditional posterior of W is given by

log p(W|Y,λλλ,ααα) = −1
2
wT

r B̃wr + bT
wwr, (10)

where bw = vec(diag(λλλ)YTX), B̃ = XTX ⊗ diag(λλλ) + diag(ααα) ⊗ Dw, wr =
vec(WT ). The full conditional posterior of λλλ can be written as

log p(λλλ|Y,W,ααα) = (ũ2 − 1)
N∑

n=1

log(λn) −
N∑

n=1

λn

ũ1n
, (11)

where 1
ũ1n

= 1
2

(
YT

·,nY·,n − 2YT
·,nXWT

·,n + WT
·,nX

TXW·,n
)

+ 1
u1

, ũ2 = T
2 + u2.

The full conditional posterior of ααα is given by

log p(ααα|Y,W,λλλ) = (q̃2 − 1)
7∑

k=1

log(αk) −
7∑

k=1

αk

q̃1k
, (12)

where 1
q̃1k

= 1
2

(
YT

·,nXWT
·,n

)
+ 1

q1
, q̃2 = N

2 + q2. We refer to Sidén et al. (2017)
for further details.

2.4 PCG Based Sampling

Cholesky decomposition is usually the bottleneck for algorithms involving high
dimensional GMRFs (Rue and Held 2005). In practice it takes too long time to
finish the whole 3D brain inference (if N = 100, 000). Papandreou and Yuille
(2010) proposed a sampling method from the posterior for W that avoids the
Cholesky decomposition. The main idea is to minimize Y − XB instead of solv-
ing Y = XB. First we construct Bdata = diag(λλλ) ⊗XTX and then we calculate
b =

(
blkdiag

[√
αkGw

])T
z1+HT

wLdataHwz2+bw. z1 and z2 are random draws
from a Gaussian distribution with zero mean and identity covariance. Gw needs
to satisfy Dw = GT

wGw. Hw is defined as the permutation matrix such that
vec(W) = Hwvec(WT ) (Penny et al. 2007). Ldata is the Cholesky factor of
Bdata. Lastly compute M as the incomplete Cholesky factor of B̃ and solve
B̃wr = b approximately using preconditioned conjugate gradient (PCG) with
preconditioner M. PCG is a conjugate gradient method with some preconditions
set to ensure fast convergence. Please note that B̃ has to be reordered using a
reordering method (Amestoy et al. 1996), and the same reordering has to be
used for b. Using the inverse reordering, posterior samples wr can be obtained.
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3 Data

We use the MGH adult diffusion dataset from the Human Connectome Project
(HCP) (Van Essen et al. 2013). Data were collected from 35 healthy adults
scanned on a customized Siemens 3T Connectom scanner with 4 different b-
values (1000, 3000, 5000 and 10,000 s/mm2). The data has already been pre-
processed for gradient nonlinearity correction, motion correction and eddy cur-
rent correction (Glasser et al. 2013). The data consists of 40 non-diffusion
weighted volumes (b = 0), 64 volumes for b = 1000 and 3000 s/mm2, 128 vol-
umes for b = 5000 s/mm2 and 256 volumes for b = 10, 000 s/mm2, which yields
552 volumes of 140 × 140 × 96 voxels with an 1.5 mm isotropic voxel size.

Data used in the preparation of this work were obtained from the Human
Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp). The
HCP project (Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Cen-
ter at Massachusetts General Hospital; Arthur W. Toga, Ph.D., University of
Southern California, Van J. Weeden, MD, Martinos Center at Massachusetts
General Hospital) is supported by the National Institute of Dental and Cranio-
facial Research (NIDCR), the National Institute of Mental Health (NIMH) and
the National Institute of Neurological Disorders and Stroke (NINDS). HCP is
the result of efforts of co-investigators from the University of Southern Califor-
nia, Martinos Center for Biomedical Imaging at Massachusetts General Hospital
(MGH), Washington University, and the University of Minnesota.

4 Results

In Figs. 2 and 3 we present FA maps obtained from three diffusion tensor estima-
tion methods: a standard least-squares method, and MCMC with and without
2D/3D spatial prior. The formula for FA is

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

. (13)

The number of MCMC samples we use is 1000, and the number of samples
for burn-in is 500. For MCMC with and without spatial priors, we calculated
the average FA maps over all MCMC draws. It is known that a higher b-value
will result in diffusion data with lower SNR. To investigate the effect of the b-
value, we decompose the diffusion data into 5 parts, each of which consists of
volumes for a single b-value (0, 1000, 3000, 5000 and 10,000 s/mm2). In theory
it is possible to estimate the diffusion tensor with at least two b-values. For
each method, we calculate FA maps for 4 different combinations of b-values (b =
0/1000, 0/3000, 0/5000, 0/10, 000 s/mm2), and the entire dataset. Each FA map
is normalized by its mean, to adjust the FA maps to a common scale. As showed
in the first row of Figs. 2 and 3, the FA maps from the least-squares method
are quite noisy. Comparing the least-squares approach to the MCMC approach
in Figs. 2 and 3, we can see a denoising effect in MCMC with spatial priors.

https://ida.loni.usc.edu/login.jsp
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Fig. 2. FA maps from three diffusion tensor estimation methods. First row: least-
squares method, second row: MCMC with 2D spatial priors, third row: MCMC
without 2D spatial priors, fourth row: absolute difference of FA maps from
MCMC with and without 2D spatial priors. Columns from left to right: b =
0/1000, 0/3000, 0/5000, 0/10, 000 s/mm2 and the entire dataset. Each FA map was
normalized by its mean, to adjust the FA maps to a common scale. For the FA maps,
Values no greater than 0 are mapped to the first color in the colormap, and values no
less than 8 are mapped to the last color in the colormap. For the absolute difference of
FA maps, the scaling interval is 0 to 3.

Also, one can see a denoising effect for the FA maps from MCMC with spatial
priors, compared with those from MCMC without spatial priors, as showed in
the second row of Figs. 2 and 3. The MCMC algorithm with a spatial prior
provides a better denoising effect for data with higher b-values, since that data
has lower SNR. However, the denoising effect of using a spatial prior is clearly
weaker for the entire dataset, as we can see from the fifth column in Figs. 2 and
3. The absolute differences between the FA maps from MCMC with and without
spatial priors are rather small for the entire dataset. In the fourth row of Figures
2 and 3, one can see that the 3D spatial prior tends to provide a very close
absolute difference to its 2D counterpart.

We use the CV (the ratio of the standard deviation to the mean) to measure
the uncertainty of the FA maps calculated from the MCMC samples, as showed
in Figs. 4 and 5. A lower uncertainty is found for some white matter voxels in the
third rows, for both the 2D and 3D priors. For b = 0/1000 and 0/3000 s/mm2, the
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Fig. 3. FA maps from three diffusion tensor estimation methods. First row: least-
squares method, second row: MCMC with 3D spatial priors, third row: MCMC
without 3D spatial priors, fourth row: absolute difference of FA maps from
MCMC with and without 3D spatial priors. Columns from left to right: b =
0/1000, 0/3000, 0/5000, 0/10, 000 s/mm2 and the entire dataset. Each FA map was
normalized by its mean, to adjust the FA maps to a common scale. For the FA maps,
Values no greater than 0 are mapped to the first color in the colormap, and values no
less than 8 are mapped to the last color in the colormap. For the absolute difference of
FA maps, the scaling interval is 0 to 3.

decrease in uncertainty was clearly higher than other combinations of b-values.
Comparing the third row in Figs. 4 and 5 we see that the 3D prior provides
slightly better performance in lowering the uncertainty of the FA maps than the
2D prior for entire dataset.

5 Discussion

Performing Bayesian inference with spatial priors for the whole brain (N =
294, 000) becomes a practical option with the PCG based MCMC sampling.
The results presented in this paper demonstrate that the MCMC algorithm
with spatial priors provides improvements by reducing the uncertainty of the
MCMC samples. The presented FA maps from three diffusion tensor estimation
methods show that the MCMC method provides a denoising effect compared
with the least-squares method. The denoising effect comes from the spatial pri-
ors. We have seen that MCMC sampling with spatial priors provides a denoising
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Fig. 4. CV of FA maps calculated from the MCMC samples. First row: MCMC with
2D spatial priors, second row: MCMC without 2D spatial priors, third row: ratios of
CV of FA maps calculated from MCMC with and without 2D spatial priors. Columns
from left to right: b = 0/1000, 0/3000, 0/5000, 0/10, 000 s/mm2 and the entire
dataset. For the CV, Values no greater than 0 are mapped to the first color in the
colormap, and values no less than 0.4 are mapped to the last color in the colormap.
For the ratio of the CV, the scaling interval is 1 to 2.

effect for various combinations of b-values. For b = 0/1000, 0/3000, 0/5000,
0/10000 s/mm2, MCMC with spatial priors works much better than MCMC
without spatial priors. For the entire dataset, the differences of the performance
between MCMC with and without spatial priors become smaller. For diffusion
tensor model, MCMC with 3D spatial prior provides very close performance to
MCMC with 2D spatial prior. The uncertainty of the FA maps from the posterior
distributions generated with MCMC is reduced by the spatial prior, especially
for the b-value combinations b = 0/1000 and 0/3000 s/mm2. We have noticed
that most of the voxels with reduced uncertainty are located in white matter,
where the FA values are relatively large.

In this paper, we have only considered the isotropic and stationary spatial
prior (UGL). One potential improvement of this work is to use an anisotropic
and non-stationary spatial prior, e.g. replacing the UGL prior with a weighted
graph-Laplacian (WGL) prior. Wegmann et al. (2017) showed that the FA values
can be greatly underestimated for methods that take the logarithm of the dif-
fusion measurements. Thus in the formulation of the linear regression model in
Eq. 3, using a logarithmic link function (Wegmann et al. 2017) instead of taking
the logarithm of the diffusion measurements might be a better option. Also, to
make the diffusion tensor positive definite, if it is possible to impose the restric-
tion using a log-Cholesky representation (Koay 2010) of the diffusion tensor.
Raj et al. (2011) reported that reconstruction of fiber orientation distribution
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Fig. 5. CV of FA maps calculated from the MCMC samples. First row: MCMC with
3D spatial priors, second row: MCMC without 3D spatial priors, third row: ratios of
CV of FA maps calculated from MCMC with and without 3D spatial priors. Columns
from left to right: b = 0/1000, 0/3000, 0/5000, 0/10, 000 s/mm2 and the entire
dataset. For the CV, Values no greater than 0 are mapped to the first color in the
colormap, and values no less than 0.4 are mapped to the last color in the colormap.
For the ratio of the CV, the scaling interval is 1 to 2.

function (ODF) for high angular resolution diffusion imaging (HARDI) using
spatial priors provides even stronger advantages, compared with the simpler dif-
fusion tensor model. For the latter case, only extremely noisy data benefit from
spatial priors. For future work, we will extend the MCMC method in this paper
to HARDI models, such as q-ball imaging and diffusion spectrum imaging, where
the ODF can be estimated via a linear estimator.
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Abstract. Tensor principal component analysis enables the efficient
analysis of spatial textures of volumetric images and spatio-temporal
changes of volumetric video sequences. To extend the subspace methods
for analysis of linear subspaces, we are required to quantitatively eval-
uate the differences between multilinear subspaces. This discrimination
of multilinear subspaces is achieved by computing the geodesic distance
between tensor subspaces.

1 Introduction

For computer-assisted diagnosis, inspection and biopsy in precision medicine,
abnormality detection based on pattern recognition is a fundamental technique.
Organs, cells in organs and microstructures in cells, which are dealt with in
biomedical image analysis for these procedures, are spatial textures. From cell
to human body, medical data used in biomedical image analysis are multiway
data. Furthermore, for longitudinal analysis, the collected of these statistical
data are expressed as volumetric video sequences. For the detection of spatio-
temporal modifications of these volumetric video sequences, we introduce the
geodesic distance between tensor subspaces for longitudinal analysis of data.
The proposed geodesic distance is based on tensor-subspace learning methods,
which is an extension of principal component analysis to deal with multiway
data [1,2].

To measure the difference between subspaces, the canonical angle between
two subspaces has been used [3,4]. Furthermore, the Grassmannian distance
between two subspaces has been proposed [5–7]. The Grassmannian distance is
based on a set of canonical angles between two subspaces. However, the compu-
tation of canonical angles between tensor subspaces is computationally expensive
from the view point of numerical computation [2] since we need to compute the
eigendecomposition of a large projection matrix of size m2n2 for images of size
m × n. Moreover, the distance between Stiefel manifolds has also been proposed
[6,8,9].
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To compute the difference between multilinear subspaces, we deal with mul-
tilinear subspaces as Stiefel manifolds. We introduce a geodesic distance as the
distance between Stiefel manifolds, which are defined by two sets of orthogonal
vectors for each modes of two tensor subspaces. In numerical examples, we show
the geodesic-distance-based analysis for four-dimensional MRI data [10].

2 Preliminaries

2.1 Tensor Expression for N-way Arrays

We briefly summarise the multilinear projection for N -dimensional arrays from
ref. [1]. A Nth-order tensor X defined in R

I1×I2×···×IN is expressed as X =
(xi1,i2,...,iN ) for xi1,i2,...,iN ∈ R, using N indices in. Each subscript n denotes
the n-mode of X . For X , the n-mode vectors, n = 1, 2, . . . , N , are defined as
the In-dimensional vectors obtained from X by varying this index in while
fixing all the other indices. The unfolding of X along the n-mode vectors of
X is defined as X(n) ∈ R

In×(I1×I2×...In−1×In+1×···×IN ), where the column vec-
tors of X(n) are the n-mode vectors of X . Figure 1(a) illustrates unfoldings for
a third-order tensor as an example of unfolding of Nth-order tensor. The n-
mode product X ×n U of a matrix U ∈ R

Jn×In and a tensor X is a tensor
G ∈ R

I1×I2×···×In−1×Jn×In+1×···×IN , with elements gi1,i2,...,in−1,jn,in+1,...,iN =
∑In

in=1 xi1,i2,...,IN ujn,in , by the manner in ref. [11]. A linear projection form of
n-mode product is also given by G(n) = UX(n). Figure 1(b) shows a linear pro-
jection form of a 1-mode projection for a third-order tensor. For the m- and
n-mode products by matrices U and V , respectively, we have X ×m U ×n V =
X ×n V ×m U since n-mode projections are commutative [11]. We define the
inner product of two tensors X = (xi1,i2,...,iN ),Y = (yi1,i2,...,iN ) ∈ R

I1×I2×···×IN

by 〈X ,Y〉 =
∑

i1

∑
i2

· · · ∑iN
xi1,i2,...,iN yi1,i2,...,iN . Using this inner product, we

have the Frobenius norm of a tensor X by ‖X‖F =
√〈X ,X〉. For the Frobenius

norm of a tensor, we have ‖X‖F = ‖vec X‖2, where vec and ‖ · ‖2 are the vec-
torisation operator for a tensor and Euclidean norm for a vector, respectively.
For the two tensors X1 and X2, we define the distance between them by

d(X1,X2) = ‖X1 − X2‖F. (1)

Although this definition is a tensor-based measure, this distance is equivalent
to the Euclidean distance between the vectorised tensors X1 and X2.

As the tensor X is in the tensor space R
I1 ⊗ R

I2 ⊗ · · · ⊗ R
IN , the ten-

sor space can be interpreted as the Kronecker product of N vector spaces
R

I1 ,RI2 , . . . ,RIN . To project X ∈ R
I1 ⊗ R

I2 ⊗ · · · ⊗ R
IN to another tensor

Y in a lower-dimensional tensor space R
P1 ⊗ R

P2 ⊗ · · · ⊗ R
PN , where Pn ≤ In

for n = 1, 2, . . . , N , we need N projection matrices {U (n) ∈ R
In×Pn}N

n=1. Using
the N projection matrices, the tensor-to-tensor projection (TTP) is given by

Y = X ×1 U (1)� ×2 U (2)� · · · ×N U (N)�. (2)
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(a) (b)

Fig. 1. (a) Unfoldings of a third-order tensor showing 1-, 2- and 3-mode unfoldings of
the third-order tensor X ∈ R

4×5×3. (b) 1-mode projection that projects X ∈ R
4×5×3

to a lower-dimensional tensor Y ∈ R
3×5×3.

This projection is established in N steps, where at the nth step, each n-mode
vector is projected to a Pn-dimensional space by U (n). We call this operation
the orthogonal projection of X to Y.

2.2 Tensor Subspace Derived by Tensor Decomposition

A Nth-order tensor X ∈ R
I1×I2×···×IN , which is the array X ∈ R

I1×I2×···×IN ,
is denoted as a triplet of indices (i1, i2, . . . , iN ). We set the identity matrices
Ij , j = 1, 2, . . . , N in R

Ij×Ij . Here we summarise higher-order singular value
decomposition (HOSVD) [12] for third-order tensors. For a collection of tensors
{Xi}M

i=1 ∈ R
I1×I2×···×IN satisfying the zero expectation condition E(Xi) = 0, we

compute
Yi = Xi ×1 U (1)� ×2 U (2)� · · · ×N U (N)�, (3)

where U (j) = [u(j)
1 , . . . ,u

(j)
Ij

], that minimises the criterion

J− = E
(
‖Xi − Yi ×1 U (1) ×2 U (2) · · · ×N U (N)‖2F

)
(4)

with respect to the conditions U (j)�U (j) = Ij .
Eigendecomposition problems are derived by computing the extremes of

Ej = Jj + tr((Ij − U (j)�U (j))Σ(j)), j = 1, 2, . . . , N, (5)

where we set Jj = E
(
‖U (j)�Xi,(j)X �

i,(j)U
(j)‖2F

)
. For C(j) = 1

M

∑M
i=1 Xi,(j)

X �
i,(j), j = 1, 2, . . . , N , the optimisation of J− derives the eigenvalue decom-

position
C(j)U (j) = U (j)Σ(j), (6)

where Σ(j) ∈ R
Ij×Ij , j = 1, 2, . . . , N , are diagonal matrices satisfying the

relationships λ
(j)
k = λ

(j′)
k , k ∈ {1, 2, . . . ,K}, for Σ(j) = diag(λ(j)

1 , λ
(j)
2 · · · ,

λ
(j)
K , 0 · · · , 0). For the optimisation of {Jj}3j=1, there is no closed-form solution to
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this maximisation problem [12]. For practical computation, we use the iterative
procedure of multilinear principal component analysis (MPCA) [1].

For pk ∈ {ek}K
k=1, we set orthogonal projection matrices P (j) =

∑kj

k=1 pkp�
k

for j = 1, 2, . . . , N . Using these {P (j)}N
j=1, the low-rank tensor approximation

[12] is given by

X̂i = X ×1 (P (1)U (1))� ×2 (P (2)U (2))� · · · ×N (P (N)U (N))�, (7)

where P (j) selects kj bases of projection matrices U (j). The low-rank approxi-
mation using Eq. (7) is used for compression in TPCA.

Setting {U
(j)
k }N

j=1 to be orthogonal matrices of a Nth-order tensor projection

for the kth category, we have a tensor subspace spanned by {U
(j)
k }3j=1 for the

kth category. Therefore, we can define a tensor subspace of a category by

Ck = {X | X̂ ×1 U
(1)
k ×2 U

(2)
k · · · ×N U

(N)
k = X}. (8)

Since a pattern represented by tensors contains perturbation, we define the kth
category by

Ck(δ) = {X | ‖X̂ ×1 U
(1)
k ×2 U

(2)
k · · · ×N U

(N)
k − X‖F � δ}, (9)

where a positive constant δ is the bound for a small perturbation of a pattern.
Furthermore, using P (j), we define a low-dimensional tensor subspace for the
kth category as

CΠ,k(δ) = {X | ‖X̂ ×1 Û (1) ×2 Û (2) · · · ×N Û (N) − X‖F � δ + ε}, (10)

where Û
(1)
k = P (1)U

(1)
k , Û

(2)
k = P (2)U

(2)
k , . . . , Û

(N)
k = P (N)U

(N)
k and ε is the

bound for a small reduction error in a pattern.

3 Distance Between Manifolds

3.1 Grassmann Manifold

The Grassmann manifold (Grassmannian) G(m, d) is the set of m-dimensional
linear subspaces of R

d [7]. An element of G(m, d) can be represented by an
orthogonal matrix Y of size d by m, where Y comprises the m basis vectors
for a set of patterns in R

d. The geodesic distance between two elements on
Grassmannian has been defined in terms of principal angles.

Let Y1 and Y2 be orthogonal matrices of size d × m. The principal angles
0 ≤ θ1 ≤ · · · ≤ θm ≤ π

2 between the two subspaces span (Y1) and span (Y2) are
defined by

cos θk = max
uk∈span(Y1)

max
vk∈span(Y1)

u�
k vk s.t. u�

k ui = 0, v�
k vi = 0, (11)
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for i = 1, 2, . . . , k −1. These principal angels are related to the geodesic distance
by

dG(Y1,Y2) =

√
√
√
√

k−1∑

i=1

θ2i . (12)

This geodesic distance represents principal angles between linear subspaces as
shown in Fig. 2(a).

3.2 Stiefel Manifold

The Stiefel manifold Sm,d is the linear subspace of m orthonormal vectors in
R

d, represented by the d × m matrix Y . While the Grassmannian defined by
the dimension of the linear subspaces and the dimension of the original space,
the Stiefel manifold Sm,d is defined by the set of basis vectors. Let two Stiefel
manifolds be orthogonal matrices Y1 and Y2. For p = 1, 2, the distance between
the two Stiefel manifolds is defined by

dS(Y1,Y2) = min
wi

⎛

⎝
m∑

i=1

m∑

j=1

wijθ
p
ij

⎞

⎠

1/p

, (13)

where θij ≥ 0 is the angle between the ith basis in span(Y1) and the jth basis
in span (Y2) and wij ≥ 0 is the transportation cost between the two bases.
Figure 2(b) shows examples of the distance between Stiefel manifolds. This geo-
desic distance between two Stiefel manifolds is defined for linear subspaces of
a vector space. In the next section, we introduce the distance between tensor
subspaces.

t t + 1 t + 2

θt
θt+1

(a)

t t + 1 t + 2

θ
(1)
t

θ
(2)
t θ

(3)
t θ

(1)
t+1

θ
(2)
t+1

θ
(3)
t+1

(b)

Fig. 2. Distances between linear subspaces. For a sequence of images in a time series,
we have subspaces of each image. (a) Distance between linear subspaces on the Grass-
mann manifold computed by using canonical angles. (b) Distance between Stiefel man-
ifolds computed by a pair of bases.
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4 Geodesic Distance Between Tensor Subspaces

To simplify the discussion, we first consider second-order tensors, that is, two-
dimensional images. For instances t1, t2, . . . , tM for indices i = 1, 2, . . . ,M , we
have a set {Xi}M

i=1 of two-dimensional digital images. For the set {Xi}M
i=1, we

compute orthogonal matrices U and V that minimise

J(U ,V ) = E
i
‖Xi − UΣiV

�‖2F, (14)

where Σi is a coefficient matrix. If we apply TPCA to each image Xi, we have
orthogonal matrices Ui and Vi that minimise

J(Ui,Vi) = ‖Xi − UiΣiV
�

i ‖2F, (15)

where Σ is a diagonal matrix.
For Xi, Xi+1 ∈ X, we have pairs of orthogonal matrices 〈Ui,Vi〉 and

〈Ui+1,Vi+1〉, respectively. For these two pairs, we define rotation matrices R
(1)
i

and R
(2)
i by

Ui+1 = R
(1)
i Ui, Vi+1 = R

(2)
i Vi, (16)

for 1- and 2-mode eigenvectors, respectively. If the orthogonal matrices satisfy
Ui = Ui+1 and Vi = Vi+1, then the relations R(1) = R(2) = I hold.

For a pair of images f(x, y) and g(x, y), we set

p(x, y) =
f(x, y)

F
, F =

∫ ∫

R2
f(x, y)dxdy, (17)

q(x, y) =
g(x, y)

G
, G =

∫ ∫

R2
g(x, y)dxdy. (18)

The transportation between f(x, y) and g(x, y) is computed as

T (f, g) = min
c

∫ ∫

R2

∫ ∫

R2
|d(p, q)|c(x, y;x′y′)dxdydx′dy′, (19)

where d(p, q) = p(x, y) − q(x′, y′). For T (f, g), we set
∫ ∫

R2 c(x, y;x′y′)dx′dy′ =
p(x, y) and

∫ ∫
R2 c(x, y;x′y′)dxdy = q(x′, y′). If f(x, y) and g(x, y) are sampled

on an m × m grid, the minimisation of the discrete version of Eq. (19),

T (f, g) = min
cijij′j′

m∑

ij=1

m∑

i′j′
|pij − qi′j′ |ciji′j′ , (20)

where
∑

i′j′ ciji′j′ = pij and
∑

ij ciji′j′ = qi′j′ , is achieved using linear program-
ming for (m × m)2-dimensional vectors.

For two bases ui and uj , we define the geodesic distance d(·, ·) by

d(ui,uj) =

{
cos−1(u�

i uj), if 0 ≤ u�
i uj ≤ 1

cos−1(|u�
i uj |), if − 1 ≤ u�

i uj < 0.
(21)
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Fig. 3. Mathematical properties of expressions of images for computation of the dis-
tances between images. (a) Probabilistic distribution of grey values in images. Images
are represented by probabilistic distributions normalised so that the L2-norms are one.
The Wasserstein distance is defined by the sum of the transportation costs between
two probabilistic distributions. (b) Decomposition of images by TPCA. Images are
decomposed to eigenvalues and eigenvectors. The Wasserstein distance is defined by
the sum of the transportation costs for the contribution ratios of eigenvalues. In the
transportation, the angle between bases is adopted as the cost of transportation.

We set Uk = [uk
1 , . . . ,u

k
N ], V k = [vk

1 , . . . ,vk
N ] and Uk+1 = [uk+1

1 , . . . ,uk+1
N ],

V k+1 = [vk+1
1 , . . . ,vk+1

N ]. Setting d
(1)
ij = d(uk+1

i ,uk
j ) and d

(2)
ij = d(vk+1

i ,vk
j )

and by performing TPCA for Xk,Xk+1 as preprocessing, we approximate the
transportation problem in Eq. (20) as the minimisation of

d(Xk+1,Xk) = min
c
(1)
ij

m∑

i,j=1

d
(1)
ij c

(1)
ij + min

c
(2)
ij

m∑

i,j=1

d
(2)
ij c

(2)
ij . (22)

For this minimisation problem, we give constraint conditions

∑

j

c
(1)
ij =

∑

j

c
(2)
ij = λk+1

i /

m∑

i=1

λk+1
i ,

∑

i

c
(1)
ij =

∑

i

c
(2)
ij = λk

j /

m∑

j=1

λk
j . (23)

where λk
j and λk+1

i are eigenvalues for Xk and Xk+1, respectively. Therefore, the
problem is transformed to one of linear programming for m×m-dimensional vec-
tors. Figure 3 summarises mathematical properties of image expressions. Figure 4
illustrates the Wasserstein distance based on mode-1 and -2 bases for a second-
order tensor.

Next, we define the Wasserstein distance among Nth-order tensors. For two
Nth-order tensors X1, X2 ∈ R

I1×I2×···×IN , using HOSVD or TPCA, we have
the decompositions

X1 = Y1 ×1 U
(1)
1 ×2 U

(2)
1 · · · ×N U

(N)
1 ,X2 = Y2 ×1 U

(1)
2 ×2 U

(2)
2 · · · ×N U

(N)
2 . (24)

As the result of these HOSVDs, we have sets of orthogonal matrices. In these
decompositions, each base u

(n)
k,l corresponds to eigenvalue λ(n)k,l for k = 1, 2,
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Fig. 4. Wasserstein distance between tensor subspaces for second-order tensors. The
Wasserstein distance is the solution of the transportation problem between the con-
tribution ratios of eigenvalues. (a) and (b) show the contribution ratios of eigenvalues
obtained by singular value decomposition for two different images. The angle between
bases is computed as the transportation cost between eigenvalues as shown in (c).
The Wasserstein distance is obtained by minimisation of the total transportation cost
among the eigenvalues for two tensor subspaces.

l = 1, 2, . . . , In and n = 1, 2, . . . , N . Using these bases of orthogonal matrices,
we define the Wasserstein distance between two Nth-order tensors by

d(X1,X2) = min
c
(1)
ij

I1∑

i,j=1

d
(1)
ij c

(1)
ij + min

c
(2)
ij

I2∑

i,j=1

d
(2)
ij c

(2)
ij + · · · + min

c
(N)
ij

IN∑

i,j=1

d
(N)
ij c

(N)
ij , (25)

where we set the constraints

∑

j

c
(n)
ij = λ

(n)
i /

In∑

i=1

λ
(n)
i ,

∑

i

c
(n)
ij = λ

(n)
j /

In∑

j=1

λ
(n)
j . (26)

We can use this Wasserstein distance to compute the distance between two tensor
subspaces of Nth-order tensors spanned by {U

(j)
1 }N1

j=1 and {U
(j)
2 }N2

j=1.

5 Numerical Examples

In this section, we show three examples of analysis of multilinear subspaces.
Throughout this section, we use the cardiac dataset [10], which contains 17 vol-
umetric video sequences of beating hearts. Figure 5 shows frames of sequences.
For each video sequence, we compute tensor subspaces by the MPCA. For the
computation of geodesic distance, we use the Wasserstein distance between ten-
sor subspaces that obtained by the MPCA.

For the first example, we compute the Wasserstein distance between third-
order tensor subspaces. By expressing a volumetric video sequence as a set of 20
third-order tensors, we compute 20 tensor subspaces for 20 volumetric frames. We
then compute geodesic distance between subspaces of the first and jth frames for
20 volumetric frames. For comparison, we also compute the Euclidean distance,
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Time

20

Fig. 5. Illustration of volume sequences of human ventricles. These sequences of volu-
metric data are extracted from cardiac MRI dataset with landmarks of endocardium
of left ventricles [10]. We have 17 sequences of volumetric data of left ventricle for 17
patients. Each sequence of volumetric data represents one cardiac beat by 20 frames
of 81 × 81 × 63 voxels.

which given by Frobenius norm for tensors, between the first frame and ith
frame of a sequence of a beating heart. Figure 6(a) shows the comparison among
distances.

In Fig. 6(a), the graph of the Wasserstein distance represents changes in the
time series more clearly than the graph of the Euclidean distance, although
those two graphs are similar. The graph of the Wasserstein distance for mode-
2 is similar to the graph of the Wasserstein distance. This result implies that
tensor subspaces of mode-2 mainly represent the difference between frames. On
the other hand, the graph of the Wasserstein distance for mode-3 represents
small changes. These results imply that the shrink and expansion of a beating
heart are mainly happen in the direction of mode-1 and -2 to send blood to
direction of mode-3.

For the second example, by expressing 17 volumetric video sequence as 17 sets
of 20 third-order tensors, we compute 17 third-order tensor subspaces for each
sequence by the MPCA. For these 17 third-order tensor subspaces, we compute
Wasserstein distances between tensor subspaces of the first and jth sequences
for j = 2, 3, . . . , 17. Figure 6(b) shows the results for tensor subspaces for sets of
third-order tensors. Furthermore, by expressing 17 volumetric video sequence as
17 fourth-order tensors, we compute 17 fourth-order tensor subspaces for each
sequence by the MPCA. For these 17 fourth-order tensor subspaces, we compute
Wasserstein distances between tensor subspaces of the first and jth sequences
for j = 2, 3, . . . , 17. Figure 6(c) shows the results for tensor subspaces for sets of
fourth-order tensors.

By expressing volumetric video sequences as fourth-order tensors, we can
compute distances that represent changes in a time series, that is distance for
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(a) (b) (c)

Fig. 6. Wasserstein distance between tensor subspaces for third-order tensors. (a)
Wasserstein distances and relative distance between first and ith frames for i =
1, 2, . . . , 20. In (a), the horizontal and vertical axes represent the index number of
the frame and the distance, respectively. The plotted relative distance for the Frobe-
nius norm of the first frame is defined by ‖X1 − Xi‖F/‖X1‖F, where X1 and Xi are
the first and ith frames, respectively, and ‖ · ‖F is the Frobenius norm. (b) Wasserstein
distances between the first and ith categories obtained using the third-order tensor
expression for i = 1, 2, . . . , 17. We compute the distances by using the eigenvectors
of mode-1, -2, -3 and all modes. (c) Wasserstein distances between the first and ith
categories obtained using the fourth-order tensor expression for i = 1, 2, . . . , 17. We
compute the distances by using the eigenvectors of mode-1, -2, -3, -4 and all modes. In
(b) and (c), the horizontal and vertical axes represent the index number of the category
and the Wasserstein distances, respectively.

mode-4. In Fig. 6(c), the Wasserstein distance for mode-4 represents the distances
for a tensor subspace of changes in a time series in addition to mode-1, 2 and
3, which represent spatial changes of slice images. Comparing Figs. 6(b) and
(c) shows that the Wasserstein distance between fourth-order tensor subspaces
measures the difference between volumetric sequences more clearly than the
Wasserstein distance between third-order tensor subspaces.

For the third example, we compute Wasserstein distances between fourth-
order tensor subspaces. For each mode, we adopt one, five and fifteen eigenvec-
tors that corresponds to one, five and fifteen largest eigenvalues. Then, we refer
the residual principal components except major components as minor princi-
pal components. Figure 7(a)–(c) summarise the Wasserstein distances between
three-mode tensor subspaces in the case of using one, five and fifteen major
principal components, respectively. Figure 7(d)–(f) summarise the Wasserstein
distances between fourth-order tensor subspaces in the case of using minor prin-
cipal components.

In Figs. 7(a)–(c), the Wasserstein distance measures the differences among
categories. On the other hand, in Figs. 7(d)–(f), the Wasserstein distance is
unable to measure the difference among categories for minor principal compo-
nents. These results imply that the differences among the categories are mainly
concentrate on only 15 major principal components.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Wasserstein distances between the subspaces of the first and ith categories for
17 categories. The horizontal and vertical axes represent the number of the category and
the Wasserstein distance, respectively. The top and bottom rows show the Wasserstein
distances obtained using major and minor principal components, respectively. In (a)–
(c), 1, 5 and 15 major principal components, respectively, are used for the computation.
In (d)–(f), minor components, that is, the principal components except 1, 5, and 15
major principal components, are used for the computation, respectively.

(a) (b) (c) (d)

(a)(b)(c)(d)

Fig. 8. Rendered frame of a volumetric volume sequence of a beating heart. From the
left to right, the volumetric heart reconstructed by using first, five and fifteen major
principal components and original volumetric heart are shown.
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Figure 8 shows the sequences reconstructed from only major principal com-
ponents. Figure 8(a) shows that the first major principal components of each
mode represent the mean of each mode. The major components from the second
to the fifth principal components represent the changes in the directions of the
width, height, depth and time as shown in Fig. 8(b). Figure 8(c) illustrates that
The next ten principal components represent smooth changes, which are given
by second derivatives, in space and time.

6 Conclusions

We introduced the geodesic distance to tensor subspaces. In numerical examples,
the proposed distance measures the difference between tensor subspaces. The
results clarified that the analysis of volumetric video sequences requires fourth-
order tensor subspaces for data expression. Furthermore, we showed that only
fifteen principal components mainly express the differences among fourth-order
tensor subspaces of volumetric video sequences.

This research was supported by “Multidisciplinary Computational Anatomy
and Its Application to Highly Intelligent Diagnosis and Therapy” project funded
by a Grant-in-Aid for Scientific Research on Innovative Areas from MEXT,
Japan, and “Object oriented data-analysis for understanding and recognition
of higher-dimensional multimodal data” by grant for Scientific Research from
JSPS, Japan.
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Abstract. We present an efficient algorithm to compute Euler charac-
teristic curves of gray scale images of arbitrary dimension. In various
applications the Euler characteristic curve is used as a descriptor of an
image.

Our algorithm is the first streaming algorithm for Euler characteristic
curves. The usage of streaming removes the necessity to store the entire
image in RAM. Experiments show that our implementation handles ter-
abyte scale images on commodity hardware. Due to lock-free parallelism,
it scales well with the number of processor cores.

Additionally, we put the concept of the Euler characteristic curve in
the wider context of computational topology. In particular, we explain
the connection with persistence diagrams.

1 Introduction

The Euler characteristic curve is a powerful tool in image processing [7]. It has
been used in a variety of fields including astrophysics1 [2,13], medical image
analysis [11,17], and image processing in general [14,18]. Its wide applicability
stems from simplicity and efficient computability.

However, with the advances in image acquisition technology, there is need
to handle very large images. For example the state-of-the-art micro-CT scanner
Skyscan 1272 creates images of size 14450 × 14450 × 2600 with 14-bit precision.
Therefore, a single scan yields more than half a trillion voxels. It is also possible
to combine multiple scans of the same object which further multiplies the size of
data. As loading the resulting multi-terabyte image into RAM of a commodity
computer is infeasible, a streaming approach is needed.

We present the first streaming algorithm for computing Euler characteristic
curves.2 Our algorithm divides a multidimensional image into chunks that fit
into RAM, calculates the Euler characteristic curves for each chunk separately
and merges them in the end. Since these chunks can be made arbitrarily small,
commodity hardware can be used to compute Euler characteristic curves of arbi-
trarily large images. The fact that the chunks are not dependent on each other
makes lock-free parallelism possible.
1 The astrophysics community refers to the Euler characteristic curve as the genus.
2 We review related work at the end of the paper.

c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part I, LNCS 10424, pp. 397–409, 2017.
DOI: 10.1007/978-3-319-64689-3 32
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For defining the Euler characteristic curve we first need to explain what the
Euler characteristic is. There are two ways to define the Euler characteristic and
the Euler-Poincaré formula states that they are both equivalent. For discrete two-
dimensional surfaces, like a triangulation of a sphere or a torus, the definitions
are: first, the number of vertices minus the number of edges plus the number of
faces; second, the number of connected components minus the number of tunnels
plus the number of voids. Originally the Euler characteristic was defined for the
surface of a convex polyhedron where it always equals two. To see this, consider
that such a surface consists of one connected component, no tunnels and one
void.

The equivalence between these two definitions seems to be the reason for the
usefulness of the Euler characteristic: It captures global topological structures—
like holes—although it can be computed locally—by adding up vertices, edges
and faces.

The Euler characteristic curve of an image is the vector of Euler characteris-
tics of consecutive thresholded images. We illustrate this for the example image
of a bone3 in Fig. 1a with values ranging from 0 (black) to 255 (white). The
Euler characteristic curve of this image maps each t ∈ {0, 1, ..., 255} to the Euler
characteristic of the set of pixels with gray value smaller or equal to t. Figure 1
illustrates this process. This concept can be extended to more general settings,
e.g., images with floating point gray values (see Sect. 3).

(a) Example
image

(b) t = 0
χ(T0) = 8

(c) t = 12
χ(T12) = −17

(d) t = 25
χ(T25) = −7

(e) t = 38
χ(T38) = −3

(f) t = 52
χ(T52) = 1

(g) Euler characteristic curve of the example image

Fig. 1. Definition of the Euler characteristic curve illustrated with an image showing
a 2D slice of the distance transform of a segmented bone. Subfigures (b)–(f) show
thresholded images Tt for different thresholds t. For t = 38, there is 1 component and
4 holes, hence χ = −3. Starting from t = 52, there are no holes, so χ stabilizes at 1.

3 We thank Reinhold Erben and Stephan Handschuh from Vetmeduni Vienna for
providing micro-CT scans of rat vertebrae.
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2 Theoretical Background

We give basic definitions needed in Sect. 3 using the language borrowed from
computational topology [10]. With this we can provide precise definitions in
arbitrary dimension and explain the connection between the Euler characteristic
curve and other topological descriptors.

Cubical Cell. A k-dimensional cubical cell (short: cell) c of embedding dimen-
sion d is defined as the Cartesian product of intervals and singletons:

c := I1 × I2 × · · · × Id

where exactly k of the sets (Ii)i∈{1,2,...,d} are intervals of the form Ii = [ai, ai+1]
with integers ai ∈ Z and the remaining d − k sets are singletons Ii = {bi} with
integers bi ∈ Z. A zero-dimensional cell is called a vertex, a one-dimensional
cell an edge, a two-dimensional cell a square, a three-dimensional cell a cube.

Face. A cell c1 of embedding dimension d is called a face of a cell c2 of embedding
dimension d if c1 is a subset of c2.

Cubical Complex. A p-dimensional cubical complex (short: complex) of
embedding dimension d is a finite set of cubical cells of embedding dimension d
such that

1. The faces of each cell are also elements of the complex
2. The intersection of any two cells is also an element of the complex4

where p is the highest dimension of all cells in the complex. The complexes that
appear in our algorithm always fulfill p = d. Figure 2 shows an example of a
cubical complex.

Fig. 2. Example of a two-dimensional cubical complex of embedding dimension two
with one square, eight edges and eight vertices.

4 The second condition is implied by the first condition since we allow only consecutive
integers as interval endpoints in the definition of cells.
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Filtration of Cubical Complexes. A sequence of complexes K1,K2, . . . , Km is
called a filtration if the complexes are monotonically increasing: K1 ⊆ K2 ⊆
· · · ⊆ Km.

Sublevel Set Filtration. Let K be a cubical complex. A cell that is not a face
of any other cell than itself is called a maximal cell. Let f : M → R be a
function, where M is the set of maximal cells. This function f can be extended
to a function f̃ : K → R defined on all cells:

f̃ : K → R

c �→ f̃(c) :=

⎧
⎨

⎩

f(c) if c ∈ M

min
m∈M
c⊆m

f(m) otherwise.

For each t ∈ R the sublevel set f̃−1 ((−∞, t]) of this extended function is
the set of cells that are a face of at least one maximal cell with f -value smaller
or equal to t. As K consists of only a finite number of cells, f̃ can only have
a finite number of different function values {t1, t2, . . . , tm}. The sublevel sets
f̃−1 ((−∞, t1]) , . . . , f̃−1 ((−∞, tm]) form a filtration of cubical complexes—the
sublevel set filtration induced by the function f .

To see this, notice that the definition of f̃ implies that for each t ∈ R the
sublevel set f̃−1 ((−∞, t]) is a cubical complex: all faces of a cell c belong to
the same sublevel set as c. Furthermore the sublevel sets are monotonically
increasing f̃−1 ((−∞, t1]) ⊆ f̃−1 ((−∞, t2]) ⊆ · · · ⊆ f̃−1 ((−∞, tm]). Therefore,
the sublevel sets form a filtration.

Consecutive Thresholded Images as Sublevel Set Filtrations. A d-dimensional
gray scale image with n1 × n2 × · · · × nd voxels5 can be interpreted as a d-
dimensional cubical complex K of embedding dimension d with a function f
on its maximal cells: for each voxel index (i1, . . . , id), i1 ∈ {1, . . . , n1}, . . . , id ∈
{1, . . . , nd} the corresponding voxel position is represented by the d-dimensional
cell ci1,...,id of embedding dimension d:

ci1,...,id := [i1 − 1; i1] × [i2 − 1; i2] × · · · × [id − 1; id] .

The cubical complex K is defined as the set of all these cells ci1,...,id along with
all their faces. The function f maps each maximal cell ci1,...,id to the gray value
of the voxel with index (i1, . . . , id). The sublevel set filtration6 induced by the
function f is formed by consecutive thresholdings of the image.7

5 Throughout this paper we use “voxel” as multidimensional generalization of “pixel”.
6 Another interpretation of voxel data is via the dual complex (voxels become ver-

tices) using the lower star filtration. The way we use appears more natural in image
processing context. The two approaches yield similar but not necessarily identical
Euler characteristic curves.

7 Defining cells as products of closed intervals implies (3d − 1)-connectivity for the
voxels of the thresholded images. This corresponds to 8-connectivity for 2D images.
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Euler Characteristic. The Euler characteristic χ of a p-dimensional complex
K of embedding dimension d is defined as

χ(K) :=
p∑

k=0

(−1)knk

where nk is the number of k-dimensional cells in K.
The Euler-Poincaré formula states

χ(K) =
p∑

k=0

(−1)knk =
d−1∑

k=0

(−1)kβk

where βk is the kth Betti number (the number of k-dimensional holes). For a
formal definition of cubical homology and the involved Betti numbers, see [10].
In three-dimensional space, β0 is the number of connected components, β1 is the
number of tunnels and β2 is the number of voids.

Euler Characteristic Curve. The Euler characteristic curve e of a filtration
of cubical complexes K1 ⊆ K2 ⊆ · · · ⊆ Km is the vector

e = (χ(K1), χ(K2), . . . , χ(Km)) .

This vector can also be interpreted as a function

e : {1, 2, . . . ,m} → Z

t �→ χ(Kt),

which is used to visualize the Euler characteristic curve as in Fig. 1g.

Euler Characteristic Curve of an Image. We already saw that for an arbitrary
gray scale image the sequence of consecutive thresholded images is a filtration—
the sublevel set filtration. The Euler characteristic curve of this filtration is the
Euler characteristic curve of an image.

Connection to Other Topological Descriptors. We want to put the above consid-
erations in the wider context of computational topology. Two popular topological
descriptors of a filtration are Betti curves and persistence diagrams [6], which
both capture information about holes at different thresholds.

For each hole in the image the persistence diagram tracks the first and last
threshold at which the hole occurs. The kth Betti curve, which counts the k-
dimensional holes at each threshold, is easily computable from the persistence
diagram. Furthermore, the alternating sum of the Betti curves yields the Euler
characteristic curve. Therefore, the Euler characteristic curve summarizes a per-
sistence diagram, but it can be computed locally.

The usefulness of the Euler characteristic curve suggests that the two richer
descriptors may also be useful in image processing. However, large images are
out of reach of the currently available persistence diagram software. For now,
the Euler characteristic curve remains the only feasible option.
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3 Algorithm

The input for our algorithm is a gray scale image of arbitrary dimension d with
n voxels. The output is the Euler characteristic curve of this image, as defined
in Sect. 2.

Range of Values. In Sect. 2 the function f maps to R. However, in practice
the gray values of an image are in a predefined range, usually {0, 1, . . . , 255} or
{0, 1, . . . , 65535}. If the range contains negative numbers, it can be shifted so that
it starts from zero. For this reason we focus on ranges of the form {0, 1, . . . ,m−1}
with a positive integer m. A version of our algorithm that can handle floating
point values will be discussed at the end of this section.

Tracking the Changes. It is suboptimal to compute the Euler characteristic
for each threshold separately, as already noted in [18]. To avoid redundant com-
putations we track the changes between consecutive thresholds. More precisely,
we determine how each voxel contributes to the change in Euler characteristic.
Therefore we first compute a vector of changes in Euler characteristic (VCEC)
(a0, a1, . . . , am−1) whose entries at := χ

(
f̃−1 ((−∞, t])

)
−χ

(
f̃−1 ((−∞, t − 1])

)

are the difference between the Euler characteristics of two consecutive thresh-
olded images.8 The Euler characteristic curve is then:

(

a0, a0 + a1, . . . ,

m−1∑

t=0

at

)

=

=
(
χ

(
f̃−1 ((−∞, 0])

)
, χ

(
f̃−1 ((−∞, 1])

)
, . . . , χ

(
f̃−1 ((−∞,m − 1])

))
.

When changing from one thresholded image f̃−1 ((−∞, t − 1]) to the next
f̃−1 ((−∞, t]), all voxels with gray value t are included, along with all their faces
that have not already been included at a previous threshold. We say that these
new faces are introduced by these new voxels. More precisely, a face c of a voxel
v is introduced by v if all other voxels w that have c as a face fulfill one of the
following two conditions:

1. f(w) > f(v)
2. f(w) = f(v) and w � v,

where � is any total order of the voxel positions, e.g., the lexicographical order9.
The output of our algorithm is independent of the chosen total order. However, it
is necessary to require w � v in condition 2 to ensure that each face is introduced
by a unique voxel.

Now we can decompose the cubical complex of the input image into blocks
such that each block contributes to exactly one change of threshold. A block

8 where χ
(
f̃−1 ((−∞, −1])

)
= χ(∅) = 0.

9 In lexicographical order a voxel at position (i1, . . . , id) succeeds a voxel at position
(j1, . . . , jd) if ik > jk for the first k where ik and jk differ.
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(a) The cubical complex consists not only
of the voxels but also of their faces (red).
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(b) Block decomposition shows which vox-
els introduce which faces, e.g., the upper
left voxel introduces 3 edges and 2 vertices.

Fig. 3. This is an illustration for the block decomposition. (Color figure online)

consists of a voxel together with all the faces it introduces. Which faces are
introduced by a certain voxel is determined only by the gray values of the voxel’s
3d − 1 neighbors. We exploit this locality in the design of our parallel streaming
algorithm. Figure 3 shows the decomposition of a two-dimensional example image
into blocks.

Storage. For the computations we store only the gray values of the voxels. The
geometric information and the adjacency relations between cells are implicit in
the voxel grid and calculated locally whenever needed. Similarly the function f̃
and the block decomposition it induces are never explicitly stored. Apart from
storing the result vector, the memory overhead is essentially zero.

Streaming. If the entire image does not fit into RAM, we divide it into chunks
that fit into RAM. In our implementation we use a simple strategy: an image of
size n1 × n2 × · · · × nd is divided into c chunks of size n1

c × n2 × · · · × nd (see
Fig. 4, left). As these correspond to contiguous memory regions, streaming the
chunks from a single input file is easy. We then separately compute the VCEC
for each chunk either sequentially or in parallel.

Parallel Computations. For parallelism we use a thread pool. Each worker
thread is assigned memory for a single chunk and one initially empty VCEC
vector. One task is to read a chunk from disk, update the worker thread’s VCEC
vector by the VCEC of this chunk and discard the chunk. At any given time at
most w chunks reside in RAM, where w is the number of worker threads. Because
different worker threads work with disjoint memory regions we achieve lock-free
parallelism. The underlying data structure for the collection of VCECs is a vector
of vectors, called euler changes.
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chunk A

chunk B

chunk C

chunk D

chunk E

chunk A + collar

chunk C + collar

chunk E + collar

chunk B + collar

chunk D + collar

thread 1

thread 2

thread 3

thread 4

VCEC 1

VCEC 2

VCEC 3

VCEC 4

Fig. 4. Whenever a worker thread is free it loads one chunk along with a one voxel
thick collar into its space in RAM and computes the VCEC of this chunk.

Processing One Chunk. Along with the chunk we read a one voxel thick
collar surrounding it. This way we have access to all neighbors of the voxels
in the chunk (see Fig. 4). With this information we compute the VCEC of this
chunk as specified in Algorithm1.

Algorithm 1. Computing the VCEC
Input: One chunk of an image along with a one voxel thick collar surrounding it and

current thread, the index of the worker thread processing this chunk.
Output: An updated version of the vector euler_changes[current_thread] which is

the VCEC of all chunks this thread has processed.
1: for all voxels v in the chunk do
2: t = gray value of v
3: change = 0
4: for all faces c introduced by v do
5: if dim(c) is even then
6: change++
7: else
8: change−−
9: euler_changes[current_thread][t] += change

10: remove chunk and collar from RAM

Post-Processing. In the end, when all chunks have been processed, a single
thread sums up the VCECs yielding the VCEC of the whole image, which is
a vector (a0, a1, . . . , am−1). The Euler characteristic curve is then computed as(
a0, a0 + a1, . . . ,

∑m−1
t=0 at

)
.

Analysis. To analyze the complexity we remind that d is the dimension of the
image, n is the number of voxels, m is the number of gray values10 and w is the
10 The input size is log2(m)n.
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number of worker threads. We introduce a new variable s, the number of voxels
per chunk including the collar.

Assuming perfect parallelization, the worst case running time of our algo-
rithm is O(3

dn
w + mw) because for each voxel we visit all its neighbors and

sequentially post-process the VCECs. We analyze the practical scaling behavior
in Sect. 4. As the dimension d is usually small (mostly 2 or 3), the exponential
term is usually not a problem in practice.

For each worker thread, we need s integers of log2(m) bits to store the gray
values of a chunk. Additionally, the euler changes data structure consists of
wm 64-bit integers. Therefore, the total storage is log2(m)ws + 64wm + O(1)
bits in RAM. By decreasing the chunk size s, the dominant part, log2(m)ws, can
be made arbitrarily small. Because of this, our algorithm works for arbitrarily
large images on commodity hardware.

Other Ranges of Gray Values. When the range of gray values is not of
the form {0, 1, . . . ,m − 1}—for example for floating point values—one option
is to use a hash map to store the euler changes. If the number of different
input values approaches n, the output size dominates the overall storage and the
advantage of a streaming approach disappears. In this situation, it is preferable
to transform (i.e., round, scale, shift) the input values to obtain a range of the
form {0, 1, . . . ,m−1}. Running our standard algorithm on the transformed input
yields the same result as transforming the domain of the Euler characteristic
curve computed for the original data.

4 Experiments

We implemented the above algorithmic scheme in C++14. We made experiments
on two different machines: a laptop with Intel core i5-5200U CPU with two
physical cores clocked at 2.2 GHz with 8 GB of RAM and a workstation with
Intel Xeon E5645 CPU with 12 physical cores clocked at 2.4 GHz and 72 GB of
RAM. Table 1 shows the running time and memory usage for different 3D input
images ran on the laptop. We use images from a standard data set11, see [4,21].
The names’ suffixes distinguish between 8- and 16-bit precision images. The last
column shows that the running time is linear in n and does not depend on the
content of the image.

Due to the above, we show the scaling behavior using a single image. The
computations were performed on the workstation for a 512 × 499 × 512 image
with 16-bit precision. We used from 1 to 12 threads taking the mean running
time and standard deviation across 20 runs. Figure 5 shows the speed-up gained
using w threads instead of one. In particular using 10 threads is 7.1 times faster
than using a single thread.

11 Most of the images are available at www.byclb.com/TR/Muhendislik/Dataset.aspx.

www.byclb.com/TR/Muhendislik/Dataset.aspx
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Table 1. Running time and memory usage.

Name Size Million voxels Memory[MB] Time[s] Time[s]/million
voxels

prone16 512× 512× 463 121.4 70.4 24.7 0.20

xmastree16 512× 499× 512 130.8 72.9 26.7 0.20

vertebra16 512× 512× 512 134.2 74 28.4 0.21

random8 512× 512× 512 134.2 51 28.9 0.22

random8 1024× 1024× 1024 1073.7 93.1 236.7 0.22

random8 2048× 2048× 2048 8589.9 261.6 1767.1 0.21
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Fig. 5. Scaling with number of threads

Table 2 shows that the Euler characteristic curve of terabyte scale images can
be computed on a single computer with limited memory. Memory usage could
be further decreased by changing the chunking scheme. However, the experi-
ments demonstrate that—for the foreseeable future—our implementation is a
reasonable trade-off between performance and simplicity.

5 Related Work and Discussion

We review the work related to computing the Euler characteristic (curve) of
images. We embed this in the context of computing other topological descriptors
of images, particularly persistence diagrams.

Algorithms related to the Euler characteristic received a lot of attention in
image processing [5,16,19,22], starting from the seminal work by Gray [8]. Many
modern implementations aim at real-time processing of small 2D images [18].
Our goal is different, namely handling large multidimensional images.

Computing other topological descriptors of images is a more recent advance-
ment [4,9,10,12,15,20,21], which has however not entered mainstream image
processing. Specialized methods for computing persistence diagrams handle 3D
images up to 5003 voxels [4,9] on what we consider commodity hardware. The
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Table 2. Running time and memory usage for computations on large 3D images,
performed on the 12-core workstation. The voxel values are generated independently
from a uniform random distribution in the range {0, 1, . . . , 250}. As we already showed,
using other images of the same size will exhibit almost identical performance.

Size Threads Time Memory

4096 × 4096 × 4096 12 1.8 h 1.93 GB

14 500 × 14 500 × 2 600 24 9 h 4.5 GB

14 500 × 14 500 × 2 600 12 13 h 2.27 GB

10 000 × 10 000 × 10 000 8 32 h 3.98 GB

main limitation is the storage of the entire image in memory. There exist distrib-
uted implementations [1], which alleviate the storage problem per machine, but
are not specialized to image data, resulting in large overall memory overhead.
The largest reported computed instances are in the range of 10003 on 32 server
nodes.

Overall it is clear that a specialized, streaming approach is necessary for han-
dling large images. We offer a robust implementation for the Euler characteristic
curve, with possible future extensions to other topological descriptors.

We expect that these more complex topological descriptors will be com-
putable for this terabyte scale data in the future but currently we are limited to
using Euler characteristic curves. Let us discuss the properties of our algorithmic
scheme and mention limitations of our current implementation.
The advantages of our algorithm are:

• It can handle arbitrarily large images on commodity hardware.
• It can handle images of arbitrary dimension.
• Linear running time.
• Predictable running time and memory usage.
• Due to lock-free parallelism, running time scales well with increasing number

of threads.
• Our algorithm can be easily adapted to a massively-distributed setting using

a map-reduce framework [3].

Some limitations of the current implementation:

• It uses (3d − 1)-connectivity. For other types (e.g., 6-connectivity for 2D
images), modifications on the algorithm can be made.

• For simplicity we use slices of the image as chunks. For very large images even
a one voxel thick slice may not fit into memory.

• For technical reasons we surround each chunk with a second collar of voxels
with value ∞. Effectively a five voxel thick slice has to fit into memory, which
may become a problem for very large images.

• To include the value ∞ we may need a larger data type. For example if the
input contains all values from 0 to 255 we use a 16-bit data type to store the
original values along with an extra value for infinity.
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Despite the limitations, our implementation is robust and can handle even the
largest data produced by state-of-the-art image acquisition technology. We plan
to release this software as open source.
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