
Chapter 3
Multichannel Spatial Clustering Using
Model-Based Source Separation

Michael I. Mandel and Jon P. Barker

Abstract Recent automatic speech recognition results are quite good when the
training data is matched to the test data, but much worse when they differ in some
important regard, like the number and arrangement of microphones or the rever-
beration and noise conditions. Because these configurations are difficult to predict
a priori and difficult to exhaustively train over, the use of unsupervised spatial-
clustering methods is attractive. Such methods separate sources using differences in
spatial characteristics, but do not need to fully model the spatial configuration of the
acoustic scene. This chapter will discuss several approaches to unsupervised spatial
clustering, with a focus on model-based expectation maximization source separation
and localization (MESSL). It will discuss the basic two-microphone version of
this model, which clusters spectrogram points based on the relative differences
in phase and level between pairs of microphones, its generalization to more than
two microphones, and its use to drive minimum variance distortionless response
(MVDR) beamforming. These systems are evaluated for speech enhancement as
well as automatic speech recognition, for which they are able to reduce word error
rates by between 9.9 and 17.1% relative over a standard delay-and-sum beamformer
in mismatched train–test conditions.

3.1 Introduction

While automatic speech recognition (ASR) systems using deep neural networks
(DNNs) as acoustic models have recently provided remarkable improvements in
recognition performance [23], their discriminative nature makes them prone to
overfitting the conditions used to train them. For example, in the recent REVERB
challenge [27], far-field multichannel ASR systems consistently performed more
accurately in the simulated conditions that matched their training than in the real
recording conditions that did not. In order to address generalization, DNN acoustic
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models should be trained on data that reflect the conditions in which the model will
be operating. One common approach to such training is the use of multicondition
data [32], in which the recognizer is trained on speech mixed with many different
kinds of noise, in the hope that the noise at test time will resemble one of the training
noises. Multicondition training provides benefits for both Gaussion-mixture-model
(GMM)- and DNN-based acoustic models [39]. DNN enhancement systems can
similarly be trained explicitly to generalize across source positions for a fixed
microphone array [24], or even to generalize across microphone spacings in linear
arrays [47].

While explicit generalization to new spatial configurations of microphones,
sources, and rooms is expensive to include in discriminative training procedures,
it can be naturally factored out of the data through beamforming. Traditional
beamforming assumes a known array geometry, which hinders generalization to new
conditions, but unsupervised localization-based clustering avoids this assumption.
Successful systems of this type have been introduced for two-microphone separation
[37, 45, 61], and in larger ad hoc microphone arrays for localization [33], calibra-
tion [18], and construction of time–frequency (T–F) masks [4]. It can be applied to
distributed microphone arrays [22], but this chapter describes three similar systems
for performing unsupervised spatial clustering and beamforming with compact
microphone arrays [29, 37, 49].

These spatial-clustering approaches are based on the idea of time–frequency
masking, a technique for suppressing unwanted sound sources in a mixture by
applying different attenuations to different T–F points in a spectrogram [58]. The
time–frequency masking technique is also discussed in Chap. 2. Clustering T–F
points results in groups of points with similar spatial characteristics. Arranging the
weight of each T–F point’s membership in each group results in a T–F mask that
can be used to isolate an individual source. This mask-based approach is in contrast
to traditional approaches to blind source separation (BSS), which aim to model all
sources at all time–frequency points. A good overview of BSS methods for audio
is presented in [57], including various types of additional information that can be
utilized to aid more in the source separation process.

3.2 Multichannel Speech Signals

Let a signal of interest in the time domain be denoted by x1Œn�. If it is recorded with
I�1 other signals, xiŒn�, at J microphones, with yjŒn� the signal at the jth microphone,
then

yjŒn� D
IX

iD1

LX

lD1
hijŒl�xiŒn � l�C ujŒn� (3.1)

D
IX

iD1
.hij � xi/Œn�C ujŒn� (3.2)
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where hijŒn� is the impulse response between source i and microphone j and ujŒn� are
noise terms. In the time–frequency domain, assuming that impulse responses are
shorter than the Fourier transform analysis window, this relation becomes

Yj.t; f / D
IX

iD1
Hij. f /Xi.t; f /C Uj.t; f /; (3.3)

where Yj.t; f /, Hij. f /, Xi.t; f /, and Uj.t; f / are all complex scalar values.
The impulse responses Hij. f / capture the communication channel between

source and microphone, which includes all of the paths that the sound from
the source can take to get to the microphone. This includes the direct sound
path, paths coming from a distinct direction that have experienced one or more
specular reflections off walls, and paths that come from no distinct direction
after having bounced or scattered off many walls, resulting in diffuse rever-
beration. In general, this channel is time-varying, but many models, including
the spatial-clustering methods described below, make the assumption that it is
time-invariant, i.e., that the sources, microphones, and reflectors are fixed in
space.

3.2.1 Binaural Cues Used by Human Listeners

Human listeners are able to attend to and understand the speech of a talker of
interest even when it co-occurs with speech from several competing talkers. They
are able to do this using certain cues from individual impulse responses, but
mainly by utilizing differences between impulse responses of the same source
at the two ears [38]. By comparing the two observed signals to each other, it
is easier to differentiate between the effects of the original sound source and
the channel on the observations. Performing this same task on single-channel
observations requires a strong prior model of the sound source, the channel, or
both.

The difference between two microphone channels that human listeners utilize
comes from the ratio of two complex spectrograms,

Cjj0.t; f / D Yj.t; f /

Yj0.t; f /
: (3.4)

The log magnitude of this quantity is known as the interaural level difference (ILD),

˛jj0.t; f / D 20 log10 jCjj0.t; f /j D 20 log10 jYj.t; f /j � 20 log10 jYj0.t; f /j: (3.5)
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When Yj.t; f / and Yj0.t; f / are dominated by the contribution of a single source,
Xi�.t; f /, where i� is the index of that dominant source at .t; f /,

˛jj0.t; f / � 20 log10 jHi�j.t; f /jjXi�.t; f /j � 20 log10 jHi�j0.t; f /jjXi�.t; f /j (3.6)

D 20 log10 jHi�j.t; f /j � 20 log10 jHi�j0.t; f /j: (3.7)

Note that this quantity is entirely independent of the source signals Xi�.t; f / because
it is common to both channels. The property of a single source dominating each
individual time–frequency point is known as W-disjoint orthogonality [61], and
has been observed in binaural recordings of anechoic speech signals. In addition,
in single-channel source separation systems, the log magnitude of a mixture of
signals is commonly approximated as the log magnitude of the most energetic signal
[46], known as the log-max approximation. This approximation holds for multiple
channels as well, as long as the same source is the loudest in all channels. Both
of these approximations support the idea of a single source dominating each time–
frequency point, which will be used heavily in the remainder of this chapter. Note
that different points can be dominated by different sources, so that each source has
a set of points at which it dominates all other sources, including the noise.

The phase of Cjj0.t; f / is known as the interaural phase difference (IPD). Again
assuming W-disjoint orthogonality,

�jj0.t; f / D †Cjj0.t; f / D †Yj.t; f / � †Yj0.t; f /C 2`� (3.8)

� †Hi�j.t; f /Xi�.t; f / � †Hi�j0.t; f /Xi� .t; f /C 2`� (3.9)

D †Hi�j.t; f / � †Hi�j0.t; f /C 2`0�; (3.10)

where ` and `0 are integers that capture the 2� ambiguity in phase measurements.
In the case that hj0 Œn� is related to hjŒn� by a pure delay of��jj0

samples, then through
basic Fourier transform properties

hij0 Œn� D hijŒn� � ıŒn ���jj0
�; (3.11)

) �jj0.t; f / D † exp.�2�f��jj0
=fs/ D 2�f��jj0

=fs C 2�`; (3.12)

where � D p�1 is the imaginary unit, ` is an unknown integer, and fs is the sampling
rate. This pure delay, ��jj0

, is known as the interaural time difference (ITD) and
models the nonzero time it takes for a sound to physically traverse a microphone
array. As can be seen in (3.12), this ITD corresponds to an IPD that increases linearly
with frequency.

For a pure delay between two microphones,��jj0
D fsdjj0=c, where c is the speed

of sound in air, approximately 340 m/s, and djj0 is the distance between microphones
j and j0. When ` D 0, it is trivial to map from an observed IPD to an unobserved ITD
using ��jj0

D �jj0 fs=2�f . This is only possible when f < c=2djj0 . For frequencies
close to or above this critical value, it is less straightforward to map from IPD
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to ITD because ` must be estimated in some way, a problem known as spatial
aliasing [16, 43]. This estimation becomes more difficult in the presence of noise
and reverberation. For human listeners, ITD can be measured directly in an anechoic
chamber to establish the critical frequency. For a set of 45 subjects, [2] found the
average maximum ITD to be 646�s, corresponding to a distance of 22.0 cm, for
which spatial aliasing begins at approximately 800 Hz. Thus this problem is clearly
relevant to the processes of source localization and separation in humans.

Figure 3.1 shows example interaural parameters for a recording from the
CHiME-3 dataset [6], which collected speech interactions with a six-microphone
tablet device in several noisy environments. The top row shows log magnitude
spectrograms for the individual channels, 0–3. The microphone for channel 0 was
located very close to the talker’s mouth, so has a much higher signal-to-noise ratio
than the other channels. This can be seen from the lower noise level, after the entire
mixture has been attenuated to maintain a consistent speech level. The microphone
for channel 2 was facing away from the talker on the back side of the tablet device,
leading to a much lower signal-to-noise ratio than the other channels. This can be
seen in the lower speech levels relative to channels 1 and 3.

These differences in the levels of the speech and noise signals in each channel
lead to characteristic ILDs between pairs of channels. For example, between
channels 1 and 2, there is a clear ILD for the speech that distinguishes it from
the noise. The IPD, on the other hand, does not discriminate between them. For
channels 1 and 3, differences in time of arrival cause the IPD to be much more
useful in discrimination between target and noise than the ILD is. Spatial-clustering
systems take advantage of these differences to identify time–frequency points from
the same source and group them together.

3.2.2 Parameters for More than Two Channels

For recordings with more than two channels, the spatial parameters can be general-
ized in two ways. The first is a direct generalization of the interaural computation,
arranging the Cjj0.t; f / terms from (3.4) into a matrix, C.t; f /. In this matrix, the
phase term is the difference between the phases in channels j and j0 at time–
frequency point .t; f /, and the log magnitude is the difference between the log
magnitudes at that point.

The linearly constrained minimum variance (LCMV) beamformer [8] uses a
slightly different matrix to characterize the relationship between the microphone
channels. In particular, it uses quantities such as the spatial covariance matrices

˚UU. f / D EtŒU.t; f /U	.t; f /� ˚YY. f / D EtŒY.t; f /Y	.t; f /�; (3.13)

where U.t; f / D ŒU1.t; f /; : : : ;UJ.t; f /�> and Y.t; f / D ŒY1.t; f /; : : : ;YJ.t; f /�>. In
these computations, the phase of element j; j0 at time–frequency point .t; f / is again
the difference in phases between Yj.t; f / and Yj0.t; f /, but the log magnitude is the
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sum of the log magnitudes of Yj.t; f / and Yj0.t; f /. If, however, it is assumed that
there are no acoustic obstructions between any of the microphones in the array and
the source is far away from the array (i.e., equidistant from all microphones), then

jYj.t; f /j D jYj0.t; f /j D 1; (3.14)

)
ˇ̌
ˇ̌ Yj.t; f /
Yj0.t; f /

ˇ̌
ˇ̌ D

ˇ̌
ˇYj.t; f /Y�

j0 .t; f /
ˇ̌
ˇ D 1; (3.15)

and the two sets of cues are equivalent. When the magnitudes are not unity, as in the
CHiME-3 setup for channel 2, the perceptually motivated C.t; f / matrix is not Her-
mitian symmetric because it contains the ratios of the channel observations, while
the LCMV-related observation matrices and parameters are Hermitian symmetric.

3.3 Spatial-Clustering Approaches

Due to spatial aliasing, it is not possible to unambiguously map from noisy IPD
estimates to the ITD at individual time–frequency points. The ambiguity can
be resolved using spatial-clustering approaches. There are two main approaches:
narrowband and wideband.

Narrowband spatial clustering (e.g., [49]) takes advantage of the fact that at
almost all frequencies, sounds from two sources located at different positions will
have different interaural parameters (phase and level differences). It typically does
not make strong predictions about what those parameters will be, just that they will
be different for different sources, thus permitting the separation of mixtures that
include spatial aliasing. Once separation is performed in each individual frequency
band, the sources identified in each band must be permuted to “match up” with one
another in a second step.

In contrast, wideband models, such as [29] and [37], make stronger predictions
about the connection between the interaural parameters at each frequency. In so
doing, they are able to pool information across frequencies and avoid the potentially
error-prone step of source alignment. The cost of this approach is that it must make
certain assumptions about the form of the relationship across frequencies, and a
failure of the observations to meet these assumptions could cause the failure of the
separation process. In addition, care must be taken in developing this model so that
it is robust to spatial aliasing.

All of these algorithms (i.e., [29, 37, 49]) have a similar structure. They first
define each source by a set of frequency-dependent model parameters,
i. f /. They
then alternate between two steps, an assignment of individual time–frequency points
to source models using a soft or hard mask, zi.t; f /, and an update of the source
model parameters 
i. f / based on the observations at the points assigned to that
source. This follows the expectation and maximization steps of the expectation
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maximization (EM) algorithm [15] in the case of soft masks or the two alternating
steps of the k-means algorithm [34] in the case of hard masks.

3.3.1 Binwise Clustering and Alignment

The narrowband approach is exemplified by Sawada et al. [49]. Instead of clustering
vectors of ILD and IPD measurements, the observed multichannel spectrogram
signals are clustered directly. Building upon the notation of (3.3) to make a vectorial
observation at each time–frequency point, let

Hi�. f / D ŒHi�1. f /; : : : ;Hi�J. f /�
>; (3.16)

Y.t; f / D ŒY1.t; f /; : : : ;YJ.t; f /�
> (3.17)

� ŒHi�1. f /Xi�.t; f /; : : : ;Hi�J. f /Xi�.t; f /�
> D Hi�. f /Xi�.t; f /: (3.18)

Independent processing is performed at each frequency, with no dependence on the
frequency itself, so we will drop the f index from our notation in the remainder
of this section. In order to separate the contribution of the target source from its
spatial characteristics, the multichannel observations are magnitude-normalized at
each time–frequency point:

QY.t/ D Y.t/
kY.t/k D Hi�

kHi�k
Xi�.t/

jXi�.t/j : (3.19)

This normalization removes the magnitude of the source signal, but not its phase,
Xi�.t/=jXi�.t/j, which must be accounted for in the clustering procedure.

These observations are then clustered in a way that is similar to the line
orientation separation technique (LOST) [40]. In this model, sources correspond
to directions in a multidimensional complex space. These directions are represented
by complex unit vectors, ai, and the distance between sources and observations is
measured by projecting the observation onto the source direction. These distances
are assumed to follow a circular complex Gaussian distribution with scalar variance
�2i ,

p.Y.t/ j ai; �i/ D 1

.��2i /
J�1 exp

�
1

�2i
k QY.t/ � .aHi QY.t//aik2

�
: (3.20)

Note that, as required, this likelihood is invariant to a scalar phase applied to all
channels of Y.t/, because it is applied identically to QY.t/ and .aHi QY.t//ai and then
removed by the magnitude computation. Thus this likelihood is invariant to the
original phase of the source, Xi�.t/=jXi�.t/j. For the same reason, it is also invariant
to an additional scalar phase applied to the impulse response, so without loss of
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generality, we assume that †Hi�1 D 0. Similarly, a scalar phase applied to ai will
cancel out, so without loss of generality, we assume that †Œai�1 D 0.

If considered in relation to the interaural parameters described above, it can be
seen that for two channels, †Hi�2 D �12, i.e., this parametrization is equivalent to
the IPD. In addition,

ŒHi� �1

kHi�k D Hi�1pjHi�1j2 C jHi�2j2
D

s
jHi�1j2

jHi�1j2 C jHi�2j2 (3.21)

D
s

1

1C jHi�2j2=jHi�1j2 D
r

1

1C 10˛12=10
; (3.22)

showing that this parametrization is also equivalent to a pointwise transformation of
the ILD. For every channel that is added beyond the second, this formulation adds
an additional degree of freedom in phase and another in level for each source model.
This linear growth is unlike the quadratic growth in degrees of freedom displayed
by the spatial covariance matrix of each source in (3.13). This behavior implies that
this parametrization can model point sources, but perhaps not diffuse sources, which
require the full spatial covariance.

3.3.1.1 Cross-Frequency Source Alignment

In the narrowband clustering formulation, the frequency bands are processed
independently and the source clusters can have a different arbitrary ordering in
each band. Further processing is therefore required to assign clusters to sources
in a consistent manner across frequency. Earlier techniques, e.g., [48], solved this
same problem for frequency-domain independent component analysis (ICA) by
correlating the extracted sources’ magnitudes in adjacent frequency bands. For
masking-based approaches, however, [49] found that performing the same sort of
correlational alignment using the posterior probabilities from the masks, zi.t; f /,
yielded better alignments and thus better separation performance.

To perform this alignment exhaustively would take O.JŠF2/ time, where J is the
number of sources and F the number of frequency bands. This is quite expensive,
but [49] describes several heuristics for reducing the cost. The first is to perform a
global exemplar-based clustering of the source posteriors across frequency. Instead
of comparing all frequencies to each other, the posteriors at each frequency are
compared to those of J exemplars, which reduces the cost to O.JŠFJ/. While J
and JŠ are relatively small (typically J < 5), [49] suggests a greedy approach to
the alignment calculation between a given pair of source sets, leading to an overall
cost of O.J2FJ/. This initial rough alignment is then refined using a fine-grained
alignment based on comparing frequency bands that are either close to each other
or harmonically related.
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Overall, being a narrowband approach, this system is quite flexible in modeling
impulse responses that vary a great deal across frequency. Such flexibility is
not always required, however, and sacrifices some amount of noise robustness
that comes from pooling information across frequencies. Instead, narrowband
approaches tend to require longer temporal observations with stationary sources to
achieve good separation performance. In addition, a good solution to the alignment
problem requires careful tuning of the above heuristics. This can be difficult, for
example, for wideband speech, where activity in frequencies up to 4 kHz containing
sonorant phonemes is uncorrelated or even negatively correlated with activity in
frequencies above 4 kHz containing obstruent phonemes, as can be seen in Fig. 3.1.

3.3.2 Fuzzy c-Means Clustering of Direction of Arrival

An example of a wideband approach is that of [29], which combines ideas from
[10, 28, 53]. This approach performs clustering based solely on IPD converted
to ITD using the Stepwise Phase dIfference REstoration (SPIRE) method [53],
which resolves the spatial aliasing issue for certain kinds of arrays. SPIRE uses
closely spaced pairs of microphones within a larger array to estimate the phase-
wrapping terms in (3.12). Specifically, by sorting microphone pairs from the
smallest separation to the largest, SPIRE identifies the unknown ` term in (3.12),
expanded as

�k D 2�f��k=fs C 2�`k D 2�dk f=c C 2�`k; (3.23)

where k indexes the microphone pair and all terms indexed by k are specific to time–
frequency point .t; f /. For two different microphone pairs, most of these quantities
are identical, allowing the correct `k to be identified recursively by

.�k�1C2�`k�1/
dk
dk�1

�� � �k C2�`k � .�k�1C2�`k�1/
dk
dk�1

C�: (3.24)

Once these IPD terms are identified for each time–frequency point, they can be
directly converted to ITDs by

��k.t; f / D fs
2�f

.�k.t; f / � 2�`k.t; f //: (3.25)

The scalar ITDs for the outermost microphone pair, ��K .t; f /, are then clustered
using an alternating approach similar to the GMM expectation maximization
described above. Specifically, the parameters in this clustering are the direction for
each source, denoted �i, and the soft cluster assignment for each time–frequency
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point, zi.t; f /. These two quantities are updated using

zi.t; f / D k��K .t; f / � �ik2=.�1/
P

i0 k��K .t; f / � �i0k2=.�1/ ; �i D
P

t;f z

i .t; f /��K .t; f /P
t;f z


i .t; f /

;

(3.26)

where  > 1 is a user-defined parameter controlling the softness of the likelihoods.
Aside from this  parameter, which effectively scales the log-likelihood, these
updates are equivalent to GMM EM with a spherical unit variance.

Because it is wideband, this approach is able to pool information across
frequency and requires fewer temporal observations than narrowband approaches.
The use of the microphone pair with the widest spacing for localization provides the
most precise estimates. In order to do so, however, it makes the assumption that the
ITD is a pure delay between microphones, which appears in the form of (3.25). This
is generally not the case in reverberant environments when early specular reflections
disrupt this relationship. It also implies that sounds come from point sources and
have no diffuse component, which is also unlikely in reverberant environments.

3.3.3 Binaural Model-Based EM Source Separation
and Localization (MESSL)

The binaural model-based EM source separation and localization (MESSL) algo-
rithm [37] explicitly models IPD and ILD observations using a Gaussian mixture
model. In order to avoid spatial aliasing, MESSL models the ITD as a discrete
random variable, and the IPD as a mixture over these ITDs, computing the source
assignment variables as zi.t; f / D P

� zi� .t; f /. Intuitively, while an IPD does not
correspond to a unique ITD in the presence of spatial aliasing, every ITD does
correspond to a unique IPD, and so, by comparing the likelihoods of a set of ITDs,
the most likely explanation for a set of observed IPDs can be found. The probability
distribution for the Gaussian observations for a source i and discrete delay �� is

p.�.t; f /; ˛.t; f / j i; �;
/
D p.�.t; f / j �; �i� . f /; �i� . f // � p.˛.t; f / j�i. f /; �i. f //: (3.27)

The distributions of individual features are given by

p.�.t; f / j �; �i� . f /; �i� . f // D N
� O�.t; f I �; �i� . f // j 0; �2. f /�; (3.28)

where O�.t; f I �; �i� . f // D † exp .�.�.t; f / � 2�f��=fs � �. f /// ; (3.29)

p.˛.t; f / j�i. f /; �i. f // D N
�
˛.t; f / j�i. f /; �

2
i . f /

�
: (3.30)
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The phase residual, O�.t; f I �; �i� . f //, computes the distance between the observed
phase difference, �.t; f /, and the phase difference that should be observed from
source i at frequency f , namely 2�f��=fs C �i� . f /. The first term in this expression
is the phase difference predicted at frequency f by the ITD model with delay �� ,
and the second term is a frequency-dependent phase offset parameter, which permits
variations from the pure delay model caused by early echoes. Furthermore, this
difference is constrained to lie in the interval .��; ��. Note that �� comes from
a discrete grid of delays on which the above expressions must be evaluated, so
that their likelihoods may be compared to one another. This step is computationally
expensive and could be avoided by using a more sophisticated optimization scheme
to find the most likely ITD.

These likelihoods are then used in the expectation and maximization steps of the
EM algorithm. In the expectation step, the assignment of time–frequency points to
sources is computed by

zi� .t; f / D p.�.t; f /; ˛.t; f / j i; �;
/p.i; �/P
i0� 0 p.�.t; f /; ˛.t; f / j i0; � 0
/p.i0; � 0/

: (3.31)

In the maximization step, the model parameters are all updated by taking weighted
sums of sufficient statistics of the observations using the assignments as weights.
For details, see [37].

As a wideband method, MESSL can pool localization information across
frequency, requiring temporally shorter observations than narrowband methods. Its
statistical formulation permits the incorporation of additional parameters, like the
IPD means, �i� . f /, that can model early echoes in addition to the direct-path pure
delay. Because the model is so flexible, however, it requires careful initialization to
avoid local minima that do effectively separate the sources. It also permits the use
of a prior on the ILD means given the ITDs.

This flexibility has facilitated several extensions of MESSL. Weiss et al. [59]
combined the spatial separation of MESSL with a probabilistic source model.
Instead of estimating a single maximum likelihood setting of parameters, [14] used
variational Bayesian inference to estimate posterior distributions over the MESSL
parameters. Instead of a grid of ITDs, [54] used random sampling to extract the best
IPD-ILD parameters for a multichannel configuration.

3.3.4 Multichannel MESSL

Multichannel MESSL [5] models every pair of microphones separately using the
binaural model described in Sect. 3.3.3. These models are coordinated through a
global T–F mask for each source. For a spatial-clustering system to be as flexible as
possible, it should not require calibration information for the microphone array. This
flexibility will allow it to be used in applications from ad hoc microphone arrays to
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databases of user-generated content that lack specifications of the hardware that
produced the recordings: source separation that is blind to the microphone array
geometry. Without calibration, model parameters are difficult to translate between
microphone pairs, but T–F masks are much more consistent across pairs and can be
used to coordinate sources and models. This is the strategy adopted by multichannel
MESSL, which maximizes the following total log-likelihood for J microphones:

L .
/ D 2

J

JX

j<j0D1

L .
jj0/ (3.32)

D 2

J

JX

j<j0D1

X

tf

log
X

i�

h
p.zi� .t; f / j
jj0/ � p.�jj0.t; f /; ˛jj0.t; f / j zi�.t; f /; 
jj0/

i
:

Averaging over all pairs in this way assumes that all microphone pairs are
independent of one another, whereas in reality only J � 1 are. This false assumption
leads to an overconfidence in the likelihoods that is compensated by the 2=J term.
This factor has much the same effect as the  coefficient in (3.26) for the fuzzy
c-means clustering approach. Preliminary experiments showed that using all pairs
of microphones with this correction factor led to higher-quality separations than
designating a single microphone as a reference and using J � 1 pairs. The E and
M steps for the model then proceed almost as in the two-channel algorithm. In the
E step, the likelihood of the observations for each microphone pair is calculated
under each source model. These likelihoods are then multiplied across microphone
pairs and normalized across sources to give the final global posterior masks. In the
M step, these global masks are used to reestimate the parameters of each pairwise
model.

Initializing the multichannel model requires initializing the pairwise models and
coordinating the source models across microphone pairs. We explored two different
initializations. The first used the PHAT-histogram approach [1] to find the dominant
peaks in cross-correlations between pairs of channels, followed by several iterations
of binaural MESSL to estimate a mask for each source. These masks were then
used to align the sources across microphone pairs. This approach has the advantage
of being self-contained. The second initialization used a T–F mask derived from
level differences between a beamformer output and a reference microphone. In the
experiments below on CHiME-3 data, this was between the output of BeamformIt
[3] and channel 2, the microphone facing away from the talker. The initial mask
is then constructed from the 30% of points where the beamformer output is
maximally greater in energy than the reference. This initialization has the advantage
of automatically aligning the source models across microphone pairs, but can fail if
the baseline beamformer fails in localization or separation.

Multichannel MESSL modeling all pairs of microphones has enough parameters
to model both point sources and diffuse sources. The models can be arranged
into a J � J matrix of sorts to reflect the observations C.t; f /, where each pair of
microphones corresponds to an entry in the matrix. This parametrization comes
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at the cost of a running time that is quadratic in the number of microphones.
Preliminary experiments to reduce this computational complexity showed that
subsampling the microphone pairs could trade off separation performance for
complexity. For the six microphone recordings in CHiME-3, this was not necessary,
so we will leave this investigation for future work.

3.4 Mask-Smoothing Approaches

One widely recognized problem that arises in mask-based separation is musical
noise due to isolated false positive T–F points in the mask. Several approaches have
attempted to alleviate this problem by applying a separate smoothing process after
mask estimation [13, 19, 35, 56]. This section discusses the incorporation of these
smoothing procedures into the spatial clustering process itself.

3.4.1 Fuzzy Clustering with Context Information

[29] introduced a mask-smoothing approach based on a heuristic modification of the
source assignments zi.t; f / after each expectation step, following an approach first
applied in image segmentation [12]. In particular, they defined

Nzi.t; f / D 1

jN.t; f /j
X

t0;f 02N.t;f /
zi.t

0; f 0/; (3.33)

where N.t; f / is a set of time–frequency indices for points that neighbor point
.t; f /. In [30], N is a rectangular neighborhood of 15 frequency bands and 9 time
frames centered on the target point, equivalent to a rectangle of size 118 Hz by
90 ms. This averaged mask is applied in the expression for the update of the source
memberships,

Qzi.t; f / D zi .t; f /Nzˇi .t; f /P
i0 z



i0.t; f /Nzˇi0 .t; f /
; (3.34)

where ˇ is a parameter controlling the relative contribution of the smoothed masks.
[29] ran an initial iteration of the separation process with ˇ D 0 to provide
an unbiased estimate of �i, followed by five iterations with ˇ D 10 to provide
robustness to noise and reverberation. After iteration, a median filter was run over
the masks to further reduce spurious classifications and musical noise.
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3.4.2 MESSL in a Markov Random Field

With the same motivation, [36] proposed embedding the MESSL algorithm into
a grid-shaped pairwise Markov random field (MRF) to simultaneously estimate
model parameters and smooth T–F masks. This MRF penalizes the assignment of
neighboring T–F points to different sources, smoothing the masks and reducing
musical noise. The combined model is referred to as MESSL-MRF. In image seg-
mentation applications, these models have been shown to be effective in combining
evidence across neighboring pixels, e.g., [7]. While exact inference in these models
is intractable, a number of approximation methods have been shown to be effective,
including graph-cuts and loopy belief propagation (LBP) [52]. In addition, learning
the parameters of an MRF model is also typically intractable, but it has been shown
that approximate learning using expectation maximization can provide a reasonable
approximation in practice for segmenting noisy images [20, 62]. MRFs have been
used in several speech separation systems recently for both single- [25, 31] and
multichannel approaches [26].

3.4.2.1 Pairwise Markov Random Fields

An MRF is an undirected graphical model, representing the joint probability of
several random variables as a product of potential functions over subsets of those
variables [7]. Depending on the structure of the graph, certain quantities can be
estimated much more efficiently because of this factorization. This section focuses
on pairwise MRFs, in which only pairwise interactions between variables are
nonzero and thus only pairwise potential functions are necessary. In such models,
the joint distribution of random variables z1; z2; : : : ; zN can be written as

p.z1; z2; : : : ; zN/ D 1

Z

Y

kk0

 kk0.zk; zk0/
Y

k

 k.zk/; (3.35)

where  k.zk/ is the potential function of variable zk by itself, perhaps induced
by a corresponding observation, and  kk0.zk; zk0/ is the pairwise potential function
between zk and zk0 , representing compatibilities between their various configura-
tions. Using the sum–product variant of the belief propagation algorithm [41], it is
possible to estimate the distribution of each individual variable when all of the others
are marginalized away. In the case of tree-structured graphs, belief propagation
can compute these quantities exactly. In the case of graphs with loops, it can
only approximate these quantities, but it has been shown that such approximations
perform well in practice [60].
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3.4.2.2 MESSL-MRF

We propose smoothing MESSL masks by using the MESSL likelihood as the local
potential in a grid-shaped pairwise MRF. In the context of such a model, zk is the
random variable representing the source number responsible for the majority of
the energy at time–frequency point k.1 If there are I sound sources, then zk is a
discrete I-dimensional multinomial random variable. In the experiments below, I
was 2. The grid-shaped MRF then has potentials between every T–F point and its
four direct neighbors in time and frequency. Thus the potential function  kk0.zk; zk0/

represents the compatibility between source zk dominating T–F point k and source
zk0 dominating T–F point k0. We set the compatibility potentials,  kk0.zk; zk0/, to

 kk0.zk; zk0/ D exp.�ˇı.zk; zk0//; (3.36)

where ı.zk; zk0/ is the discrete Dirac delta function, which is 1 when zk D zk0 and
0 otherwise, and ˇ is a parameter that we tuned on a separate validation dataset.
While simple, this potential is standard in MRF approaches to image segmentation.

More sophisticated compatibility potentials are possible and can be learned from
training data. In particular, at low frequencies, ground truth masks tend to be more
correlated across time because of the presence of strong lower harmonics. At high
frequencies, they are more correlated across frequency because of wideband bursts
and frication noise. Thus a frequency-dependent compatibility potential could be
useful, but we leave this approach for future work.

In MESSL-MRF, the local potential is defined as

 tf .ztf / D
X

�

zi� .t; f /; (3.37)

where we have changed the notation back from indexing hidden variables by k to
t; f , and zi� .t; f / is defined in (3.31). We find the maximum likelihood parameters

 from the test data using the EM algorithm [15, 20, 62]. Although learning in this
MRF is intractable, it can be approximated by inserting the MRF belief propagation
step between the E and M steps of a standard EM algorithm. In MESSL, it thus
becomes a mask-smoothing step. MESSL’s E step computes zi� .t; f /, which defines
the local potential  tf .ztf / in (3.37). From these, LBP is run until convergence to
compute the soft masks, btf .ztf /, which are used to compute updated posteriors

Nzi� .t; f / D zi� .t; f /
btf .ztf /P
� 0 zi� 0.t; f /

: (3.38)

And these are used in the standard MESSL M-step updates.

1For the purposes of the MESSL-MRF discussion, the indices k and k0 are a shorthand for the T–F
coordinates .tk; fk/ and .tk0 ; fk0/.
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This approach has a similar effect to the context incorporation described in
Sect. 3.4.1, namely encouraging neighboring points to belong to the same source.
The probabilistic formulation of MESSL-MRF allows it to easily incorporate prior
information about the relationships between neighboring points. It permits the
substitution of the solution algorithm from loopy belief propagation [52] if desired.
It also makes clear the approximations being made and their effect on the solution.
The cost of the approach, however, is that to maintain these desirable properties, it
must not utilize too large a neighborhood in its smoothing. Large neighborhoods in
grid-shaped graphical models reduce the benefits of factorizing the joint distribution
and lead to longer convergence times, if convergence is achieved at all.

3.5 Driving Beamforming from Spatial Clustering

Beamforming is the process of combining signals recorded from a microphone
array into a single estimate of a target signal. This estimate is typically driven
by an optimality criterion. One popular criterion for fixed (nonadaptive) filter-and-
sum beamforming is that of minimum variance distortionless response (MVDR)
[8], which aims to minimize the output power of the beamformer while preserving
signals from a target “look” direction. For signals recorded as in (3.3), a filter-and-
sum beamformer can be represented as a frequency-dependent vector, w. f /, and the
signal estimated by the beamformer is

OX1.t; f / D wH. f /Y.t; f /: (3.39)

For a steering vector d. f /, which should have unity gain, the MVDR beamformer
is

w�. f / D min
w

E
˚jwHX.t; f /j2� s.t.wHd. f / D 1: (3.40)

Recently, [50] showed that this can be solved without the use of an explicit steering
vector by

w�. f / D ˚�1
UU. f /˚HH. f /eref

tr
�
˚�1

UU. f /˚HH. f /
� D .˚�1

UU. f /˚YY. f /� I/eref

tr
�
˚�1

UU. f /˚YY . f /
� � J

; (3.41)

where I is the J � J identity matrix, and eref is a vector of zeros with a single one
selecting a reference microphone. This method allows the MVDR beamformer to
be estimated without the use of an explicit steering vector, but still requires the
estimation of ˚UU. f /, the noise spatial covariance, and either ˚YY. f /, the mixture
spatial covariance, or ˚XX. f / / ˚HH. f /, the target source spatial covariance (note
that the constant of proportionality divides out in (3.41)). In our experiments, the
denominator of these expressions was sometimes close to zero or even negative for
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MESSL

Multichan
noisy audio

Beamforming
Single-chan
clean audio

Mask

Direction Noise estimate

Fig. 3.2 Three ways that spatial-clustering outputs can drive minimum variance distortionless
response beamforming: IPD parameters for look direction and masks for noise estimation and/or
nonlinear postfiltering

a small set of frequencies, causing a large gain in the output at those frequencies and
poor overall sound quality. We overcame this issue by enforcing that it be at least 1.

In the experiments discussed below, we explore the use of spatial clustering,
and specifically MESSL, in driving MVDR beamforming in several ways, as
illustrated in Fig. 3.2. Masks from spatial clustering can be used to estimate the noise
spatial covariance ˚UU. f /, model parameters from spatial clustering can be used
to compute a steering vector d. f /, and the masks can also be used as a nonlinear
postfilter applied to the output of the beamformer. This use of spatial clustering to
drive MVDR beamforming was suggested by Cermak et al. [10], [11], and Kühne
et al. [29].

The complement of the mask for a single source, zi.t; f /, can be used as a
frequency-dependent noise activity detector to estimate ˚UU. f / as

˚UU. f / �
PT

tD1 .1 � zi.t; f //X.t; f /XH.t; f /
PT

tD1 .1 � zi.t; f //
: (3.42)

Alternatively, [10] models and separates I � 1 noise sources individually, and
computes ˚UU. f / from the sum of these noise sources. To avoid speech damage,
observations can be excluded from this sum from frames in which more than 40%
of frequencies are predicted to be speech. To ensure that ˚UU. f / is invertible, a
certain number of frames from the beginning and end of the signal can be included
in estimating it. We have found that the first M frames and the last 2M frames of an
utterance work well for this empirically.

The steering vector can also be computed from the output of spatial clustering.
From the estimated ITDs, assuming a pure delay,

d.i/. f / D Œ1; exp.��2�f�
�
.i/
12

. f /=fs/; : : : ; exp.��2�f�
�
.i/
1J
. f /=fs/�: (3.43)
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Another possibility [11] is to find the d.i/. f / that produces the best resynthesis of
the observation from an estimate of the target signal, captured by the cost function

L .d/ D Et

h
.x.t; f /� d. f /zi.t; f /y1.t; f //

2
i
; (3.44)

which is solved by

d.i/. f / D
P

t x.t; f /zi.t; f /y
�
1 .t; f /P

t jzi.t; f /y1.t; f /j2
: (3.45)

And, finally, it is possible to use the IPD estimates from multichannel MESSL
to directly compute a full-rank ˚HH for use in (3.41). While ILD is not useful
for beamforming, as shown in (3.15), it is close to 1 for arrays without acoustic
obstructions between microphones. Using just the IPD,

˚
.i/
HjHj0

. f / D �ijj0fˇ̌
�ijj0f

ˇ̌ for �ijj0 f D E�

h
exp.��2�f .�� C �

.i/
jj0� . f //=fs/

i
; (3.46)

where �� C �
.i/
jj0� . f / is the fine-grained mean of the IPD Gaussian between

microphones j and j0 for source i at the ITD indexed by � . This approach takes
advantage of MESSL’s frequency-varying IPD estimates and does not assume a pure
delay between microphones, as the first steering-vector formulation does.

Finally, masks estimated through spatial filtering can be used as nonlinear
postfilters for the output of the MVDR beamformer. Suppressing points where
zi.t; f / D 0 to silence leads to musical noise, which can be avoided by suppressing
them by some maximum amount. We found that using a maximum suppression of
�9 dB D 0:355 gave good noise suppression without causing noticeable musical
noise.

3.6 Automatic Speech Recognition Experiments

This section describes experiments that examine the performance of MVDR
beamforming driven by spatial clustering as a means of adapting far-field DNN-
based automatic speech recognition to mismatched conditions. In particular, it uses
the baseline recognizer from the AMI Meeting Corpus [9, 44], and tests it on the
CHiME-3 corpus. These two conditions are mismatched in many ways, including
signal-to-noise ratio, amount of reverberation, the distance to the microphone array,
and the number and arrangement of the microphones. These experiments show that
spatial clustering can provide significant recognition performance gains towards
overcoming mismatched far-field conditions.
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The recognizer was trained on the AMI Meeting Corpus, which contains speech
recorded on an 8-microphone circular array of diameter 10 cm. We used the
multiple-distant-mic (MDM) condition processed by the BeamformIt tool [3],
which performs delay-and-sum beamforming using time-varying source localiza-
tion. We used the AMI Full-ASR partition training set (about 78 h of speech)
proposed in [51] and the corresponding Kaldi recipe with the provided automatic
segmentations (version 1.6.1). The final acoustic model was a fully connected
DNN that takes as input 40-dimensional log mel filterbank features with first
and second time derivatives [55]. This DNN was trained on labels aligned by
a GMM–hidden-Markov-model (HMM) model trained on mel-frequency cepstral
coefficient (MFCC) features followed by linear discriminant analysis [21] and semi-
tied covariance transforms [17], and discriminatively trained using the boosted
maximum mutual information [42] criterion. The number of tied states was roughly
4000.

This recognizer was tested on the live-data portion of the CHiME-3 [6] dataset,
which records speech input to a simulated tablet device in noisy environments. It
used a 6-microphone rectangular array built around the edge of the tablet, to which a
talker whose mouth was 30–50 cm away read sentences from the Wall Street Journal
corpus (WSJ0). The recordings were made in four different noisy environments
with an estimated signal-to-noise ratio averaging around 0 dB. The acoustic model
described above was used with the default CHiME-3 language model. Thus the
training and test sets differed significantly in the number of microphones, array
geometry, amount of reverberation, microphone array distance, amount and type
of noise, speaking style, and vocabulary. MESSL was used only on the development
and test sets, not in training. The variant of multichannel MESSL used in the
experiments had fully frequency-dependent parameters and smoothed its masks
using MESSL-MRF.

For estimating the noise spatial covariance matrices˚UU. f /, we compared using
MESSL’s masks to using the 400–800 ms of audio preceding the speech of each
utterance, assumed to be noise only, which is the approach taken by the baseline
CHiME-3 system (see [6]). For estimating the steering vector, we compared an
estimate of ˚HH. f / based on MESSL’s IPD parameters to a derivation from (3.41)
using ˚YY . For a nonlinear postfilter, we compared the use of MESSL’s masks to
apply a gain to each T–F point of the beamformed signal to the use of the unmodified
output of the beamformer.

3.6.1 Results

Table 3.1 shows the results of these experiments. The best system on the devel-
opment set is shown in row 15 and used the MESSL noise estimate, the MESSL
postfilter, cross-correlation initialization for MESSL, and the mixture spatial covari-
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Table 3.1 Word error rates for recognizer trained on AMI data and tested on enhanced CHiME-3
real recordings

WER (%)

Noise est Postfilt MESSL init Look dir Dev Test

1 Prev None – Mix 29:2 48:6

2 Prev None BeamformIt MESSL 26:1 39:7

3 Prev None Xcorr MESSL 24:6 40:2

4 Prev MESSL BeamformIt MESSL 22:8 35:4

5 Prev MESSL BeamformIt Mix 23:2 39:5

6 Prev MESSL Xcorr MESSL 20:8 35:6

7 Prev MESSL Xcorr Mix 22:5 40:1

8 MESSL None BeamformIt MESSL 26:7 43:9

9 MESSL None BeamformIt Mix 22:4 32:4

10 MESSL None Xcorr MESSL 23:1 41:3

11 MESSL None Xcorr Mix 22:1 34:8

12 MESSL MESSL BeamformIt MESSL 23:9 39:5

13 MESSL MESSL BeamformIt Mix 20:8 30:0
14 MESSL MESSL Xcorr MESSL 20:4 36:1

15 MESSL MESSL Xcorr Mix 19:7 32:6

16 – None – – 22:7 36:2

17 – MESSL – – 20:6 31:0

Key: Noise estimates from the previous 400–800 ms (Prev) or MESSL mask. Postfilter not used
(None) or MESSL mask. MESSL initialized from BeamformIt or cross-correlation (Xcorr). Look
direction from mixture (Mix) or from MESSL IPD. Bottom: BeamformIt baselines. Rows that are
discussed in the text are shaded with N D 27;119, system 15 is significantly better than system
14 on the dev set ( p < 0:05) and system 13 is significantly better than system 17 on the test set
( p < 0:01) according to a one-sided binomial test

ance for (3.41). The columns of the table are ordered by the increase in word error
rate (WER) on the development set caused by changing one of these parameters
from this best setting. The rows of the table are ordered by the settings in each
column. The parameter with the largest effect on this system is the noise estimate.
Using the preceding 800 ms instead of the MESSL mask to estimate the noise results
in a 2.75% absolute (14.0% relative) increase in the development set WER (row 7
vs. 15). The second largest effect comes from the postfilter. Removing the postfilter
results in a 2.4% absolute (12.2% relative) increase in WER (row 11 vs. 15). The
last two parameters have smaller effects on the development set. Initializing MESSL
from BeamformIt instead of using cross-correlations results in a 1.1% absolute
(5.4% relative) increase in WER (row 13 vs. 15). Using the look direction from
the MESSL IPD instead of the mixture results in a 0.7% absolute (3.7% relative)
increase in WER (row 14 vs. 15).

Baseline systems using BeamformIt are shown in the bottom two rows. The
MESSL postfilter decreases WER by 2.1% absolute (9.3% relative) (row 16 vs. 17).
Without a postfilter, two MESSL-MVDR systems (rows 9 and 11) achieve lower
development and test WERs than the corresponding baseline (row 16), showing that
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MESSL can be used to effectively drive beamforming. With the postfilter, the same
two systems (rows 13 and 15) perform comparably to the baseline (row 17). The
MESSL-MVDR system that performs best on the development set (row 15) reduces
the WER on the test set by 3.6% absolute (9.9% relative) compared to the plain
BeamformIt baseline. Consistent differences in performance have been seen on test
and development sets for CHiME-3 [6], which might suggest looking directly for the
best system on the test set, in which case, the best MESSL-MVDR system (row 13)
reduces the WER by 6.2% absolute (17.1% relative).

3.6.2 Example Separations

Figure 3.3 shows example outputs of several of the systems described above
for the input mixture shown in Fig. 3.1. The leftmost column shows a noisy
input channel (channel 1) and the close microphone recording for reference. The
remaining plots show system outputs. The top row of the figure shows the effect
of the postfilter mask, with system 11 using no postfilter, system 15 using a
postfilter with 9 dB maximum suppression, and the unnumbered system in the
rightmost plot showing 40 dB maximum suppression. System 15 gave the best
performance on the development set, and it can be seen that using too little
postfilter suppression leaves too much noise in the output, while using too much
suppression leads to artifacts such as musical noise. These artifacts, including
the lack of noise suppression at the lowest frequencies, are due to the postfilter
being purely based on spatial characteristics of the recordings. The incorporation
of a speech-aware model into the mask estimation procedure could mitigate
these artifacts, permitting a greater maximum suppression to be used with the
postfilter.

The bottom row of plots in Fig. 3.3 shows the output of systems that dif-
fer in a single component from the best system (number 15), paralleling the
discussion in Sect. 3.6.1. System 14 is the same as system 15, except that it
uses MESSL’s estimate of the look direction, based on its IPD model. It can
be seen that in this separation, MESSL’s look direction estimate leads to a
residual noise that is more uniform across frequency in regions where the speech
is inactive, although with slightly more noise at frequencies between 500 and
1000 Hz. System 13 uses BeamformIt to initialize MESSL instead of cross-
correlations between channels. Its performance looks quite similar to that of
system 15 for this separation. System 7 uses the 400–800 ms of noise pre-
ceding the speech to estimate the noise parameters. Its output on this exam-
ple contains slightly more residual noise than system 15s, for example around
1200 Hz.
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3.7 Conclusion

This chapter has described the use of multichannel spatial clustering to drive mini-
mum variance distortionless response beamforming. By clustering time–frequency
points based on their spatial characteristics, these systems are able to generalize to
quite different recording conditions. Experiments recognizing data from CHiME-3
with a recognizer trained on AMI show that there are several ways of utilizing the
outputs of spatial clustering with MVDR beamforming, including incorporating its
mask into the noise spatial covariance estimate, using the mask as a post–filter, or
using estimated interaural phase differences to form the target spatial covariance
matrix. In the future, generalizing the speech models of [59] from binaural to
multichannel recordings could improve performance further.
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