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Abstract
This volume on boron isotope geochemistry contains chapters reviewing
the low- and high-temperature geochemistry, marine chemistry, and
cosmochemistry of boron isotopes. It covers theoretical aspects of B
isotope fractionation, experiments and atomic modeling, as well as all
aspects of boron isotope analyses in geologic materials by the full range of
solution and in situ methods. The book provides guidance for researchers
on the analytical and theoretical end, and introduces the various scientific
applications and research fields in which boron isotopes play a growing
role today. This chapter provides a brief history of boron isotope research
and analytical development and provides an overview of the other
chapters of the volume “Boron Isotopes—The Fifth Element” in the series
Advancements in Isotope Geochemistry.
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1.1 Introduction

Boron is a moderately volatile, lithophile metal-
loid with a low atomic mass and two stable
isotopes (10B and 11B). The 11B/10B ratio in
terrestrial materials is approximately 4, but
shows a variation of *100 ‰ in nature (Palmer
and Swihart 1996; Foster et al. 2016).The large B
isotopic fractionation at low temperatures has led
to the use of the B stable isotope system for
studies on processes acting on the Earth’s surface
(e.g. Hemming and Hanson 1992; Barth 1998)
and for the detection of fluid-rock interaction
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processes, such as in seafloor hydrothermal sys-
tems or enrichment processes in subduction
zones (e.g. Spivack and Edmond 1987; Ishikawa
and Nakamura 1994; Scambelluri and Tonarini
2012). The pH-dependent speciation of B in
water and hydrous fluids leads to pH-dependent
boron isotope fractionation between water and
solids (Kakihana et al. 1977; Wunder et al. 2005;
Klochko et al. 2006). Consequently, the boron
isotopic composition of biogenic carbonate can
be employed as a paleo-pH proxy for seawater
during, for example, glacial-interglacial cycles
and periods of the more distant geological past
(e.g., Hönisch and Hemming 2005; Martí-
nez-Botí et al. 2015).

The strong enrichment of B in the crust and
the significant difference in B isotopic composi-
tion among continental crust, modern seawater
and the depleted mantle make boron a powerful
tracer for the secular evolution of the
ocean-crust-mantle system (e.g., Leeman and
Sisson 1996; Marschall et al. 2017). In cosmo-
chemistry, boron isotope ratios are employed to
investigate the timing of condensation and
accretion, and in particular irradiation processes
in the early solar system that led to the produc-
tion of short-lived 10Be and the subsequent
ingrowth of radiogenic 10B (e.g., McKeegan
et al. 2000; Hoppe et al. 2001; MacPherson et al.
2003; Gounelle et al. 2013).

1.2 A Short History of Boron
Isotope Analyses

1.2.1 The Discovery of Boron Stable
Isotopes

The invention of the mass spectrometer by F.W.
Aston and J.J. Thomson at Cambridge University
(Thomson 1913; Aston 1919) and by A.
J. Dempster at the University of Chicago
(Dempster 1918) led to the discovery of stable
isotopes in 1920 for which F. W. Aston was
awarded the Noble Price in chemistry in 1922.
Boron was among the first elements investigated
with the new instrument and the discovery of its
two stable isotopes was already reported in one

of the first papers (Aston 1920). Soon, the masses
of 10B and 11B were determined from ionized
BF3 (Aston 1927), and the results were already
within 0.02‰ of the currently accepted values.

1.2.2 Natural Abundances
and Variations

Other workers used acid titration of BCl3 and
BBr3 solution to determine the atomic mass of
boron and, hence, the natural abundances of the
two stable isotopes (Baxter and Scott 1921).
Discrepancies among different workers led to the
consideration that natural isotopic abundances
could vary depending on the source of boron,
and attempts to demonstrate this experimentally
occurred as early as 1925 (Briscoe and Robinson
1925). However the d11B values determined for
sassolite from Italy, colemanite from California
and boracite from Turkey by Briscoe and
Robinson (1925) ranged from +54 to +208‰.1

These values are much higher and show a much
larger spread than any values determined for
natural boron minerals more recently, suggesting
that fractionation occured in the laboratory dur-
ing sample preparation. The results and other
contrasting reports of the 1920s for natural
variations of boron isotope abundance ratios
were questioned in the 1930s and explained as
due to experimental errors. The quest for the
determination of the atomic mass of boron (and
hence its natural isotopic abundance ratio)
continued.

Photometric analysis of boron from BF3 and
from boron oxide in the 1930s led to the estab-
lishment of the atomic mass of boron closer to
the presently accepted value, and it was assumed
that natural variations would not be resolvable
analytically with the methods available at the
time (Elliott 1930a, b; Jenkins and McKellar
1932; Ornstein and Vreeswijk 1933). These early
pioneers quickly recognised something that
modern analysts know all too well: the isotopic
composition of boron was difficult to measure

1d11B values are calculated from the reported 11B=10B
ratios relative to the certified ratio of SRM951.
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precisely. In this case, it was suspected that the
widely used BF3 method caused instrumental
fractionation and memory effects, leading to the
use of other boron compounds instead, such as
trimethyl boroxine, B3O3(CH3)3 (Inghram 1946).

The lighter boron isotope, 10B, has a very
large cross section for thermal neutrons that is
only rivaled by Cd and some of the rare earths
(Sears 1992). The cross section of 11B is
approximately six orders of magnitude smaller
than that of 10B; the efficacy of boron as a neu-
tron absorber in nuclear reactors, therefore,
depends strongly on its isotopic composition.
Following the discovery of nuclear fission in the
1930s and 1940s there was a growing interest in
the natural isotopic abundance of boron. Indeed,
such investigations played an important role in
the discovery of the neutron itself (Chadwick
1933). The high neutron absorption of boron was
also investigated early on in the context of neu-
tron irradiation treatment of cancer (Zahl and
Cooper 1941; Conger 1953). However, the nat-
ural isotope abundances became less important
for technical applications once efficient isotope
enrichment methods were developed (e.g.,
Beams and Haynes 1936; Yates 1938).

Nevertheless, the debate on the natural isotope
abundances of boron continued, and some
authors still suspected that natural variations of
boron isotope ratios could exist (e.g. Aston
1931). This hypothesis was encouraged espe-
cially after Urey and Greiff (1935) had predicted
variations in the atomic masses of light elements
in nature; they argued for natural stable isotope
fractionation based on a theoretical discussion of
mass-dependent fractionation among molecules.
This renewed the interest in the natural variation
of the abundances of boron isotopes (Thode et al.
1948). However, most of these early studies did
not include controlled sample preparation
strategies from sampling of natural material to
the stage of sample introduction into the mass
spectrometer. Instead, commercially available,
industrially processed boric acid was used for
which the mine sources and original mineralogy
were known (Thode et al. 1948). The possibility

(and likelihood) of isotope fractionation during
chemical processing was not discussed, and
indeed all published boron isotope ratios from
this early period are suspiciously enriched in the
heavy isotope with d11B ranging from +56 to
+94‰ (see Footnote 1) (Inghram 1946; Thode
et al. 1948).

The debate continued with improvements in
mass spectrometric methods, but subsequent
papers reporting full preparation procedures for
analyzed minerals found no resolvable variation
for a large selection of borates and borosilicates
(Osberghaus 1950; Parwel et al. 1956). This also
includes the first analyses of borosilicates (ax-
inite and tourmaline) and of seawater, but
unfortunately, no actual values were reported by
Parwel et al. (1956). Analytical methods initially
included the use of single-focussing mass spec-
trometers, but then moved to double-focussing
instruments, and employed a range of boron
compounds, such as boron hydride, trimethyl
borane (CH3)3B, and trimethyl boroxine
(Inghram 1946; Lehmann and Shapiro 1959;
Abernathey 1960), as well as BF3 and BCl3
(Inghram 1946; Thode et al. 1948; Osberghaus
1950; Bentley 1960), all of which resulted in
very high 11B/10B ratios and hence high esti-
mates for the atomic mass of boron.

1.2.3 TIMS and the Establishment
of Standards

The debate was resolved in the 1960s with the
introduction of isotope reference materials that
could be used to correct for instrumental mass
fractionation, and the use of thermal-ionization
mass spectrometry (TIMS), in which boron
compounds with higher masses (and so with
reduced machine induced mass fractionation)
were analyzed (McMullen et al. 1961). Ions of
boron compounds were analyzed in P-TIMS,
most importantly Na2BO2

þ , but also K2BO2
þ ,

which show less instrumental fractionation than
BF3 due to the much smaller relative mass dif-
ference between the 10B- and 11B-bearing
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compounds, respectively (McMullen et al. 1961;
Finley et al. 1962; Shima 1962, 1963; Agyei and
McMullen 1968). Other alkali-borate compounds
were also used later on, including Rb2BO2

þ and
Li2BO2

þ (Gensho and Honda 1971), and
Cs2BO2

þ (Ramakumar et al. 1985; Spivack and
Edmond 1986). In particular the cesium borate
method produced very precise data, owing to the
low instrumental fractionation of masses
309/308. In the early 1980s, TIMS employing
the analysis of negative ions (BO2

�) was devel-
oped, which enabled the analyses of much
smaller samples compared to P-TIMS (Zeininger
and Heumann 1983; Duchateau and De Bièvre
1983).

The first modern studies on minerals, rocks
and waters included the investigation of borates
and borosilicates, which contain boron as a major
component, but also meteorites, igneous and
sedimentary rocks and seawater, all of which
contain B as a trace element (Finley et al. 1962;
Shima 1962, 1963; Agyei and McMullen 1968).
The possibility of interlaboratory comparison
was given with the establishment of an interna-
tionally distributed boron isotope standard, a
boric acid distributed by NIST (then the NBS) in
1970, named standard reference material 951
(Catanzaro et al. 1970). This material was
established as the primary standard for boron
isotopes, and boron isotope ratios of terrestrial
materials are since reported in delta notation
relative to NIST-SRM951:

d11B ¼
11B=10Bsample
11B/10BSRM951

� 1

 !
� 1000 ð1:1Þ

A number of secondary reference materials
have since been established, as listed in this book
(see Foster et al. 2017). These materials include a
range of silicate glasses, silicate minerals,
boro-silicates, borates, waters, rocks, and car-
bonates and cover a large compositional and
structural range (e.g., Kasemann et al. 2001,
2009; Tonarini et al. 2003; Rosner and Meixner
2004; Brand et al. 2014).

1.2.4 Plasma Mass Spectrometry
and Interlaboratory
Comparison

Inductively-coupled plasma mass spectrometry
(ICP-MS) was first utilized for the determination
of boron isotopes in the late 1980s using quad-
ropole mass spectrometers for the analysis of
waters, borates and borosilicates (Gregoire 1987;
Porteous et al. 1995; Al-Ammar et al. 2000).
This was followed by the use of magnetic
sector-field instruments (Gäbler and Bahr 1999)
and eventually the employment of multi-collector
ICP-MS, which led to improvements in precision
and accuracy to the sub-permil level (Lécuyer
et al. 2002; Aggarwal et al. 2003; Foster 2008).

The growing number of laboratories and
analytical techniques necessitated the execution
of interlaboratory comparison studies. The first
two such intercomparison studies involved the
majority of labs worldwide that had been work-
ing on boron isotopes at the time (Gonfiantini
et al. 2003; Aggarwal et al. 2009, with 27 and 28
different labs, respectively). The outcomes of
these studies were sobering: in both studies half
of the laboratories did not release their analyses;
and the results from the labs that did showed
interlaboratory discrepancies that were much
larger than the uncertainties reported by indi-
vidual labs. For example, most laboratories
reported sub-permil uncertainties, whereas
reported values would vary by up to 15‰
between labs for the same reference material with
non-systematic off-sets among different labs
(Gonfiantini et al. 2003; Aggarwal et al. 2009).
This demonstrated that analyses of boron isotope
ratios in geologic materials and even in simple
boric acid solutions is still challenging, and that
reported uncertainties did not reflect accuracies
of the measurements—at least for a number of
laboratories.

A more encouraging outcome was presented
by a more recent intercomparison study on boron
isotopes in seawater and carbonates, which
included only four different labs (Foster et al.
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2013). This study showed agreement of reported
d11B values for seawater that agreed within the
reported uncertainties (2SD � 0.4‰), and only a
slightly larger discrepancy for the analysed car-
bonates (1.5‰).

1.2.5 The Development of in Situ
Techniques

It was realised early on that geological samples
can show small-scale heterogeneity in boron
isotopes that bear a wealth of information on the
physical or geochemical evolution of their for-
mation environments. These heterogeneities are
inaccessible through bulk methods and require
in situ analytical methods instead.

The development of in situ analytical methods
followed the development of the bulk methods,
which provided boron isotope reference values
for solid materials (glasses and minerals) that
could be used to correct for instrumental mass
fractionation. The first published B isotope
analyses by secondary-ion mass spectrometry
(“ionprobe”) were completed in the late 1970s
and early 1980s (Phinney et al. 1979; Christie
et al. 1981; Shimizu and Hart 1982), but it took
ten years before quantitative B isotope data
became available for a larger number of samples,
mostly produced by the group of Chaussidon
et al. (Chaussidon and Alabrède 1992; Chakra-
borty et al. 1993; Chaussidon and Jambon 1994;
Chaussidon and Robert 1995; Chaussidon et al.
1997) and studies by Smith and Yardley (1996)
and Peacock and Hervig (1999). And it was not
until the early 2000s that SIMS was applied to
boron isotope geochemistry and cosmochemistry
in a more widespread manner, as the number of
installed facilities grew larger (e.g., Kasemann
et al. 2001; Williams et al. 2001; Hoppe et al.
2001; Nakano and Nakamura 2001; Sugiura et al.
2001; Rose et al. 2001; Gurenko and Schmincke
2002; Kobayashi et al. 2004; Altherr et al. 2004).
In situ analyses of boron isotopes by
laser-ablation ICP-MS has also been completed
more recently with a growing number of labo-
ratories applying this method (e.g., le Roux et al.
2004; Tiepolo et al. 2006; Fietzke et al. 2010;

Hou et al. 2010). Advantages and limitations of
modern, state-of-the-art boron isotope analyses
by various mass-spectrometric methods are dis-
cussed in this book (Foster et al. 2017) and in
earlier reviews (You 2004; Aggarwal and You
2016).

1.2.6 Theoretical and Experimental
Boron Isotope
Fractionation

Boron isotope fractionation was demonstrated
experimentally and calculated theoretically by
Kakihana et al. (1977) and applied to
pH-dependent B isotope fractionation between
carbonates and seawater by Hemming and Han-
son (1992). Equilibrium stable isotope fraction-
ation is dominated by differences in the bond
strength of the element of interest to its bonding
partners. Boron does not form B3+ ions, but is
almost exclusively bonded to O in nature with a
strongly covalent character of the B–O bonds
(Hawthorne et al. 1996). It forms B(OH)3,
BðOHÞ4� or other complex ions in fluids. Frac-
tionation effects are notably large where the
coordination polyhedra of B between two phases
differ. Boron in minerals, melts and fluids is
either trigonally (3-fold) or tetrahedrally (4-fold)
coordinated to oxygen, and therefore, displays
large isotopic fractionation between different
phases (Kakihana et al. 1977). The higher bond
strength of the trigonal coordination leads to a
fractionation of 11B into the trigonal sites, and a
relative enrichment of the light isotope 10B in the
phase with tetrahedrally coordinated B.

In the early 2000s various laboratories started
to conduct experiments on boron isotope frac-
tionation at a range of pressures and temperatures
that were compared to the theoretical predictions.
These experimentally derived fractionation fac-
tors were used to calibrate temperature- and
pH-dependent fractionation laws for specific
mineral–fluid (± melt) systems (Williams et al.
2001; Hervig et al. 2002; Williams and Hervig
2005; Wunder et al. 2005). Experiments on
boron sorption onto organic and inorganic sur-
faces demonstrated the importance of boron
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speciation in surface complexes (Lemarchand
et al. 2007), and carbonate–water B isotope
fractionation experiments improved the accuracy
of B isotopes as a tool of paleo-pH indicator for
seawater from fossil biogenic carbonate (Hem-
ming et al. 1995; Sanyal et al. 2000; Klochko
et al. 2006). Theoretical predictions also became
more sophisticated with the application of
ab initio calculations (Rustad and Bylaska 2007;
Kowalski et al. 2013). These theoretical studies
have accompanied and informed the gradual
improvement in the analysis of boron in natural
materials.

1.3 The Fifth Element

The last compendium that summarized the geo-
chemistry of boron, with some coverage of its iso-
tope geochemistry, was published more than
20 years ago (Grew and Anovitz 1996), and we
have since seen significant progress in analytical
techniques, applications and scientific insight in the
isotope geochemistry of boron. Thepresent volume,
therefore, provides a unique resource for students
and professionals alike, including those who will
use it as an introduction into a new field and those
who use it as a reference in their ongoing research.

This introductory chapter is followed by a
review and outlook by Foster et al. (2017,
Chap. 2) of the laboratory methods employed to
analyze the boron isotopic compositions of geo-
logic materials, which may include waters,
glasses, minerals or biogenic carbonates. Major
obstacles in the accurate and precise analysis of
boron isotopes are evaluated that arise from
sample preparation, chemical purification and
mass spectrometric methods. The treatment of
reference materials and matrix bias are discussed,
as well as recent improvements in precision and
accuracy. Contamination and unintended isotope
fractionation in the laboratory are highlighted as
major sources of inaccuracy.

In Chap. 3, Kowalski and Wunder (2017)
discuss boron isotope fractionation in vapor–
fluid–melt–mineral systems from a theoretical
standpoint together with a review of fractionation
experiments that have been reported. The current

state of atomistic modeling of boron isotope
fractionation among fluid and solid phases is
discussed and the experimental work conducted
at a range of pressure-temperature conditions is
summarized and critically evaluated. The authors
then explore the feedback between the two
approaches and identify areas in the geosciences
where further experimental data is sorely needed.

These three general chapters of the volume are
followed by a block of four Chaps. (4–7) on the
low-temperature geochemistry of boron isotopes
in the surface environments of the Earth, such as
during weathering and in riverine and marine
environments, and by a block of four Chaps. (8–
11) on the high-temperature geochemistry and
cosmochemistry of boron isotopes.

Chapter 4 provides a detailed discussion of
boron incorporation into calcium carbonate on
the molecular and crystallographic level. Bran-
son (2017) discusses the adsorption and struc-
tural incorporation of boron into inorganic
carbonate (calcite and aragonite) and their
dependence on seawater chemical composition,
temperature, pH and abundances of boron, as
well as on growth rates and structure of the
carbonate. The relevant experimental work is
reviewed and discussed in the context of isotope
fractionation among aqueous dissolved boron
species and boron adsorbed to CaCO3 growth
surfaces and incorporated in the mineral struc-
ture. The chapter then proceeds to discuss boron
isotope fractionation between seawater and bio-
genic carbonate and the vital effects that offset
various species from the inorganic fractionation
line. The chapter lays out the framework on
which the following two chapter discuss the
specific application of boron isotope signatures
in foraminifera and corals, respectively.

Chapter 5 discusses the systematics of boron
isotopes in foraminifera and their use as a pH
proxy for paleo-seawater. Rae (2017) reviews
calibration studies for benthic and planktic spe-
cies using culturing experiments and the results
from natural specimen sampled in the seawater
column and in sediment cores. His chapter pro-
vides an overview of the applications of boron
isotopes in foraminifera in studies of past sea-
water pH and atmospheric CO2 levels and
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discusses current obstacles and future opportu-
nities in these fields.

Chapter 6 reviews the use of boron isotopes in
scleractinian corals for the reconstruction of
seawater pH. Emphasis is placed on the pH offset
between seawater and the calcification fluid
generated by the organism itself to stabilize the
aragonite skeleton. McCulloch et al. (2017)
describe how the investigation of boron isotopes
in corals has led to the detailed study of, and new
insight into, the process of calcification and pH
regulation by different species. The chapter
highlights the complexities of pH variations in
the calcifying fluid in scleractinian corals and,
therefore, of their boron isotopic compositions.
Both parameters may depend on more than just
temperature, seawater pH and availability of
light, but are also influenced by seawater chem-
istry including the level of dissolved inorganic
carbon, as well as vital processes that produce
different responses for example between sym-
biont and asymbiont species.

The use of boron isotopes as a tracer for rock
weathering and erosion is reviewed in Chap. 7.
Gaillardet and Lemarchand (2017) discuss boron
isotope fractionation in subaerial weathering
processes including isotopic signatures recorded
in soil, vegetation, groundwater and by rivers.
Fractionation mechanisms during chemical
weathering and the formation of secondary
minerals are examined, as well as the influence of
precipitation and of the vegetation cycle. The
riverine transport is estimated with its effects on
the global budget of the ocean, including fluc-
tuations caused by changes in climate and veg-
etation. The anthropogenic influence, such as
land use, on the boron cycle is also explored.

The boron isotopic composition of oceanic
basalts and the Earth’s mantle are discussed in
Chap. 8. Marschall (2017) also reviews the
available data on altered oceanic crust, serpen-
tinized abyssal peridotites, and oceanic sedi-
ments, as well as hydrothermal vent fluids. The
fractionation of boron isotopes during low- and
high-temperature alteration of the oceanic crust is
discussed based on these data. The chapter also
reviews the Earth boron budget and isotopic
composition of the crust–mantle system and its

major reservoirs, and provides an overview of
our current knowledge of the secular evolution of
seawater over geological time.

The boron isotope systematics of subduction
zones is evaluated in Chap. 9. De Hoog and
Savov (2017) review the boron isotope variations
observed in fore-arc materials and magmas
erupted along active convergent margins and
show that boron and its isotope ratio varies sys-
tematically with the physical geometry of sub-
duction zones and with a range of regularly
employed geochemical tracers. The boron budget
of the slab entering subduction zones is sum-
marized, followed by a discussion of boron iso-
tope fractionation processes related to slab
dehydration and the role of the serpentinized
mantle wedge as an important boron reservoir.

In Chap. 10 Trumbull and Slack (2017) elu-
cidate the geochemistry of boron isotopes in the
continental crust with a discussion of prograde
metamorphism, of various types of granite and
pegmatites, and of hydrothermal systems
including ore deposits. They show via a compi-
lation of global granite data that S-type granites
are on average isotopically lighter then the
mantle, which is in agreement with their inter-
pretation as derived from melting of sedimentary
rocks. In contrast, I-type granites, which may be
to a large degree derived from fractionated or
remelted mantle-derived magmas or magmatic
rocks, are on average isotopically heavier than
the mantle. This agrees with the isotopically
heavy composition of basaltic magmas erupted
along modern subduction zones. The authors
show that this S-type/I-type dichotomy also
holds for the hydrothermal ore deposits that are
associated with the respective granitic
magmatism.

Finally, Chap. 11 reviews the cosmochemistry
of boron isotopes. Liu and Chaussidon (2017)
summarize our knowledge of the boron isotopic
composition of the solar system and its compo-
nents, as well as that of other stars of the galaxy
and of the interstellar medium as derived from
spectroscopy. The possible sources of the two
isotopes of boron and their nucleosynthesis are
discussed along with the meteoritic record of
boron in the early solar system. The isotopic
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record of live 10Be in the early solar system as
recorded in early condensates is reviewed, which
points not only to spallation processes during this
phase, but also to boron isotopic heterogeneity in
the planetary disc. Liu and Chaussidon (2017)
close their chapter with a number of major
unresolved questions of boron isotope cosmo-
chemistry that concern for example the origin of
the boron isotopic composition of the solar sys-
tem near a 11B/10B ratio of 4, which is shared by
other stars of the galaxy, and the origin of the
small-scale isotopic heterogeneity observed
among primitive meteorites and individual com-
ponents of meteorites.
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