
6ASecurity Policy Transition Framework for
Software-Defined Networks

Jacob H. Cox Jr., Russell J. Clark, and Henry L. Owen III

6.1 Introduction

Software-defined networking (SDN) [1] allows for a single controller to orchestrate
the actions of an entire network of switches.1 Meanwhile, southbound interfaces,
like OpenFlow [2], provide network operators with a single, vendor-agnostic inter-
face for creating network applications, allowing for more fine-grained orchestration.
In addition, these interfaces are further augmented by programming frameworks,
like Pyretic [3] and Ryuretic [4] to provide greater abstraction and shield network
operators from the complexities inherent in network application development.
Furthermore, as organizations seek to protect their network’s clients, data, and
resources, greater numbers of researchers and network operators are looking toward
SDN to quickly produce network security applications that address various attack
vectors as they are discovered.

Unfortunately, many security solutions lack a framework for reversing or updat-
ing security measures (e.g., port blocking, traffic redirection, and other policy
enforcements) once they are activated. Without a transition framework, once a
client is flagged for a policy violation, revoking (or updating) the triggered security

1This chapter only considers a single controller, though distributed, logically centralized controllers
can be used for more robust control options (e.g., fault tolerance, scalability, etc.).

J.H. Cox Jr. (�) • H.L. Owen III
School of Electrical and Computer Engineering, Georgia Institute of Technology,
North Ave NW, 30332, Atlanta, GA, USA
e-mail: jcox70@gatech.edu; henry.owen@ece.gatech.edu

R.J. Clark
College of Computing, Georgia Institute of Technology, North Ave NW,
30332, Atlanta, GA, USA
e-mail: russ.clark@gatech.edu

© Springer International Publishing AG 2017
S.Y. Zhu et al. (eds.), Guide to Security in SDN and NFV, Computer
Communications and Networks, DOI 10.1007/978-3-319-64653-4_6

149

mailto:jcox70@gatech.edu
mailto:henry.owen@ece.gatech.edu
mailto:russ.clark@gatech.edu


150 J.H. Cox Jr. et al.

measure is not possible without having the network operator manually update the
controller with either a script or external command. In some cases, the network
operator may even have to reset the controller. None of which are ideal. For
in one case, network operators can become overwhelmed with a large number
configuration requirements. Yet, in the other, resetting the controller can result in
a loss of state for the network and deprive the network of orchestration while the
controller reboots.

As Kim et al. [5,6] observe, network operators may already be responsible for as
many as 18,000 network configuration changes in a given month. On traditional
networks, these changes often include adding, modifying, or deleting entries in
access control lists (ACLs). Similar change requirements may exist on SDNs
where network operators utilize whitelists and blacklists as part of their security
strategy. In both cases, each additional configuration introduces an opportunity to
add an error to the network. This task is further compounded when we consider
that network operators may already be maintaining ACLs that contain roughly
10,000 entries, requiring updates as much as 4,000 times per year [5]. Such
requirements represent a burdensome and tedious challenge for network operators.
Moreover, this burden can be even more cumbersome for many network operators
who lack programming experience. Thus, forcing network operators to manually
handle policy enforcements prolongs a traditional requirement that is already
seen as tedious and error prone. Additionally, future and emerging networks and
services are likely to present levels of complexity that are currently unforeseen and
unmanageable by the traditional means. Hence, as argued by Tsagkaris et al. [7],
the design and implementation of more sophisticated tools are required to simplify
network management and control and also to minimize human interaction.

For the above reasons, this chapter describes a security policy transition frame-
work [8] to automate the process of updating policy enforcements in SDNs, which
can assist network operators and benefit their clients by automating security policy
transitions. For instance, a transition framework can help network operators reduce
their manual configuration requirements, allowing them to avoid additional network
errors and to pursue more complex tasks. Second, clients receive automatic notifica-
tion of their violation and instructions for regaining their network privileges. Third,
it eliminates erroneous trouble tickets by informing both clients and administrators
of the violation. Finally, depending on the violation and validation requirement, this
framework reduces the total time required to reinstate a client’s network privileges.
Having triggered a policy enforcement, the client need only enter a passkey into a
web interface (i.e., a captive portal) to regain network privileges. Additionally, this
framework is easily adaptable to other protocols and cloud infrastructures.

The rest of this chapter is outlined as follows. We first discuss the motivation
for a security policy transition framework in Sect. 6.2. In Sect. 6.3, we discuss
related work that best correlates to security policy transitions. The components of
this framework are explained in Sect. 6.4, and the Mininet-based, test environment
for this framework is explained in Sect. 6.5. Use cases for this framework are then
introduced in Sect. 6.6. Finally, further discussion and future opportunities for this
framework are offered in Sect. 6.7 before concluding this chapter in Sect. 6.8.



6 A Security Policy Transition Framework for Software-Defined Networks 151

6.2 Motivation for a Security Policy Transition Framework

The primary goal of the security policy transition framework [8] is to reduce
the number of manual network configurations in order to reduce network errors
and improve network operator efficiency. Hence, it automates system functions to
alleviate human error and reduce network operator workloads. Likewise, automating
the revocation (or updates) of policy enforcements, once triggered by security
policies, can significantly reduce a network operator’s involvement with ACLs.
For example, when a flagged client is added to a blacklist that triggers a policy
enforcement, a security policy transition framework, like the one presented in this
chapter, provides the client with preconfigured options for regaining access to
network services. In other cases, where automated options are not possible, a help
desk – employing less-skilled attendants – can be used to provide validation services
for the flagged client. When the client does meet validation requirements, either the
automated system or the help desk can provide the client with a passkey.

For instance, patch compliance can potentially be completely automated, while
infected computers that require operating system reinstalls could be handled by help
desk personnel. In either case, the transition framework handles the revocation of
policy enforcements once the client obtains and provides a unique passkey. Since
this process avoids network operator involvement, operational expenses (OPEX)
and customer wait times can be further improved. We now offer a more detailed
discussion of the security policy transition framework as seen in Fig. 6.1.

In this framework, the network operator sets the security policies for the
controller as shown in (1) of Fig. 6.1. Then, as shown in (2), when the controller
detects a violation that triggers a policy enforcement, the SDN controller informs
the Trusted Agent, which serves as the framework’s automated system for client
services and controller updates, via an in-band communication and then updates
the OpenFlow switch’s flow table through its southbound interface. The flow table

Fig. 6.1 Security policy transition framework [8]



152 J.H. Cox Jr. et al.

modification results in the redirection of the flagged client’s current and future
traffic to a captive portal provided by the Trusted Agent. In (3), the Trusted Agent
accepts and stores the client’s keyID, passkey, MAC address, and violation. Thus,
the Trusted Agent has knowledge of the client’s violation when it presents the client
with the web interface of its captive portal. This interface can then provide the
client with a notice of the client’s violation and instructions for regaining access
to network services. For instance, if the client is flagged for patch compliance, then
the Trusted Agent can make the patch available for download (4a or 5a). Once the
software is installed and validated, the client can obtain a passkey from the validation
authority (5a or 5b) and enter it into the web portal. Then, once the client enters the
correct passkey (6), the Trusted Agent sends a revocation request to the controller
(7), and the client’s network privileges are reinstated as the policy enforcement is
revoked (8). Hence, in this framework, the Trusted Agent services the flagged client
and provides automated revocation requests to the SDN controller to remove policy
enforcements.

A similar approach can be taken if the client inadvertently (or overtly) violates
a network policy (e.g., packet spoofing, port scanning, rogue DHCP replies, etc.)
requiring them to re-sign an acceptable use policy (AUP) after retraining. This
requirement may also force the user to provide assurances that they will not repeat
such actions in the future. The passkey can then be provided with a certificate
of completion. Still, network operators may also wish to choose their level of
involvement for certain policy violations. For instance, they may want to take action
based on a first occurrence of a policy violation or a third, etc. In a corporation or
government office, the network operator may even require the first line supervisor
to login and acknowledge the incident before granting the certificate and passkey.

Another case occurs when clients are flagged for a computer virus that requires
their system to be re-imaged. For such cases, a validation authority, such as a help
desk can easily provide this service or verify that specific actions were completed.
Once done, a passkey is provided to the client. For all of these examples, the
client regains network privileges without involving the network operator. Doing so
simplifies network management and control operations while also improving service
efficiency for network operators and their clients. Not to mention, the incorporation
of a Trusted Agent into an SDN architecture introduces additional opportunities for
innovation, which we will later discuss.

6.3 RelatedWork

With networks growing in size, traffic volume, and requirements, the challenges
of network management continue to increase. Likewise, enforcing organizational
guidelines, protecting clients and data, and controlling network services all while
preventing the organization’s network from being intentionally or unintentionally
sabotaged is an ever present network security concern. As a solution, systems often
monitor client login attempts and refuse access to those who fail to authenticate
or lack authorization. These solutions may even seek to monitor security policies



6 A Security Policy Transition Framework for Software-Defined Networks 153

and automatically adjust network parameters to ensure compliance. Accordingly,
various methods for controlling network access and enforcing policies exist in
traditional networks and SDNs.

Traditional security management methods often rely on access control lists
(ACLs), client IDs and passwords, and terminal access controller access control
to enforce prearranged policies on system networks [9]. However, these policies
are often reconfigured by network operators each time a security violation occurs or
when a client (who triggered the security measure) regains approval to be reinstated.
Additionally, protocols like 802.1X [10] can shut down ports if they detect
unapproved devices connected to them, but removing these policy enforcements
to reactivate these ports is often left to the network operator to resolve via a trouble
ticket. Hence, these solutions place considerable configuration burden on network
operators, add additional software and hardware costs, and lack an automated
security policy transition framework for reinstating clients. They also add to the
ambiguity of trouble tickets created by clients who do not yet know the reason
for their loss of network services. Likewise, due to the ambiguity of these trouble
tickets, network operators can spend unnecessary time trying to troubleshoot and
determine the cause of the client’s loss of services.

Consider, for example, commercial network access control (NAC) solutions,
like ForeScout [11] and Cisco NAC [12]. They mostly seek to ensure that access
policies for the network (and its resources) are enforced on a per person basis. These
systems may even move a device to a reconfigured guest network (e.g., walled
garden), so it can receive system updates (e.g., antivirus software and patches).
Previously, a major restriction of NAC solutions was that they were typically
limited to devices that had specific operating systems installed and/or were capable
of installing a NAC agent. For instance, IEEE 802.1X requires that end devices
(i.e., a client) have a supplicant installed, which is used to communicate with
the central authentication server. However, modern NAC solutions have grown to
offer new features. For instance, the Aruba ClearPass Policy Management Platform,
the Bradford Networks’ Network Sentry/NAC, the Cisco Identity Services Engine
(ISE), and the Pulse Secure Policy Secure NAC solutions all offer agentless support,
extended policy capabilities, onboarding support, extended guest management,
extended profiles support, extended endpoint compliance, optional advanced threat
protection and mitigation, expanded monitoring and reporting, and extended system
integration and interoperability [13].

Still, NAC solutions can also be complicated to set up, often becoming a long-
term project requiring phased deployments and more suitable to robust/mature
infrastructures. Since an authentication server is required, deployment also includes
more power, space, and licenses, while support for random equipment, like printers,
can also be problematic. Examples also exist for defeating NAC. For instance, a
security researcher demonstrated that by attaching a hub to a port, they could simply
wait for the authorized client to authenticate with the NAC server and then piggy
back their communications over the network by spoofing the authorized client [14].
Other researchers have implemented bridging techniques using an authorized port
and an active client to achieve better results [14]. Still, when port violations are



154 J.H. Cox Jr. et al.

detected, the port is generally blocked and manually cleared. So, despite a plethora
of available protocols and software, network connectivity remains a manual process
and a challenge to network management. Hence, network operators must still work
with clients to address the flag’s cause and to reinstate their privileges, which the
security policy transition framework discussed in this chapter attempts to address.
Additionally, NAC deployments also require proprietary switches that support
NAC features, like 802.1X. However, such features are absent in SDN/OpenFlow
switches, hence, SDN-based approaches are required.

SDN solutions have also developed in recent years to assist network operators
with flexible network programmability for security management. For instance,
PolicyCop [15] helps network operators detect policy violations. Action requests
are either forwarded to an autonomic policy adaptation module or the network
operator depending on the policy violation. As a result, the network operator is
an essential part of this architecture having to provide manual configurations.
Moreover, PolicyCop [15] does not directly consider the revocation of policy
enforcements, yet it can be assumed that the network operator must provide manual
interventions for those as well. Ethane [16], a precursor to SDN, provides a
centralized network architecture with identity-based access control that allocates
IP addresses as IP-MAC-Port associations. In this environment, clients authenticate
via a webform, and their packets are then reactively evaluated by the controller
for policy compliance. By doing so, Ethane allows network operators to define
a single, fine-grain policy and apply it network wide. And, as a result, network
clients can be held accountable for their traffic, yet Ethane also requires network
operator intervention for flagged clients [16]. In contrast, FlowNAC [17] drops
web-based authentication in favor of a modified 802.1X framework supporting
extensible authentication protocol over LAN (EAPoL-in-EAPoL) encapsulation.
In this framework, client traffic flows are associated with a target service. As a
result, this system handles client access based on predefined authentication and
authorization policies, but it does not consider policy violations where the client
becomes flagged. Additionally, supplicant (client) software must be utilized to
enable FlowNAC’s features.

Kinetic, formerly known as Resonance, also represents a transition framework
that offers an OpenFlow-based dynamic access control system [6]. It uses network
alerts to support continuous monitoring and per interface policy control to automate
dynamic security policies. Additionally, Kinetic verifies that prescribed changes
align with operator requirements by employing a finite-state machine (FSM) having
states that correspond to distinct forwarding behavior [6]. Transitions within the
FSM are controlled by Kinetic’s Event Handler, which monitors for events and
triggers policy updates. However, Kinetic follows a similar vein to the solutions
previously discussed in that it too requires network operators to supply the events
that trigger its policy changes. In addition, since Kinetic is built atop the Pyretic
[3] programming language and POX [18], which is limited to OpenFlow 1.0
[2] and only 12 packet header match fields, its packet inspection capabilities are
substantially constrained. Moreover, Kinetic also lacks an automated framework for
transitioning between security measures.



6 A Security Policy Transition Framework for Software-Defined Networks 155

While all these solutions represent great strides toward better and more intuitive
interfaces that simplify the application development process, they still do not
provide a policy transition framework for automating the revocation or modification
of a policy enforcement. Resultantly, network operators are still heavily involved in
multiple, unnecessary configurations on a daily basis. Hence, we next introduce a
security policy transition framework that can be implemented in SDN and NFV
environments. By including this framework, network operators can improve the
time associated with reinstating network clients while reducing network operator
workloads and erroneous trouble tickets. Much like Kinetic [6], this framework
implements an event listener (i.e., Event Handler); however, it works with a
trusted entity (i.e., Trusted Agent) to determine when an activated security measure
or policy enforcement should be changed. The SDN controller then assumes
responsibility for implementing and enforcing security policies, while relying on
the Trusted Agent to provide notification for when policy enforcements should be
revoked.

6.4 The Framework

The security policy transition framework introduced in this chapter uses Ryuretic
[4] for its SDN controller applications. Ryuretic [4] is a domain-specific language
offering a modular framework for application development atop the Ryu [19]
controller. It also provides an intuitively simple format for network operators to
select header fields within a packet (pkt[*]) and then specify what operation (ops[*])
occurs when a match (fields[*]) is found. This platform also allows programmers
to craft their own packets, which is utilized to establish a communication channel
between the SDN (Ryuretic) controller and its Trusted Agent using ICMP packets.
This communication channel is then used to submit policy enforcement updates or
revocation requests. This is discussed in greater detail in Sect. 6.4.3. Additionally,
this communication allows both the Ryuretic controller and the Trusted Agent to
maintain corresponding state tables as we will also discuss in Sect. 6.4.3. These and
the other components comprising the controller and Trusted Agent modules (shown
in Fig. 6.2) are now discussed.

6.4.1 Controller

As shown in Fig. 6.2, the Ryuretic controller for this framework is an SDN controller
comprised of an Event Handler, a Policy Enforcer, and a Policy Table. These
components are implemented in Ryuretic [4], which serves as an abstraction layer
residing atop the Ryu [19] controller and supporting OpenFlow 1.3 [2]. With
Ryuretic, network operators can choose to forward, drop, mirror, redirect, modify,
or craft packets based on match parameters that they define via objects.

As shown in Fig. 6.3, when a packet-in event occurs in the Ryu [19] controller,
the Ryuretic coupler generates a packet object (pkt) that is forwarded to the Ryuretic



156 J.H. Cox Jr. et al.

Fig. 6.2 Security policy
transition framework
components [8]

Fig. 6.3 Ryuretic controller

interface. This is where the network operator policies are specified. Based on these
policies, the interface returns two objects (i.e., fields and ops) specifying which
match-action rules to pass to the switch. These objects are then interpreted by the
Ryuretic coupler and forwarded as instructions to the Ryu controller, which installs
the rules to the switch. In Fig. 6.3, the Event Handler, the Policy Enforcer, and the
Policy Table all exist as user-defined applications in the Ryuretic interface.



6 A Security Policy Transition Framework for Software-Defined Networks 157

6.4.1.1 Event Handler
The Event Handler serves as the primary interface for the controller, responding
to network events from the switch, security events from the Policy Enforcer, and
security policy transitions from the Trusted Agent. It also handles insert and delete
messages for the controller’s Policy Table to maintain state for each connected
client. When a packet arrives from the switch, the Event Handler passes the packet
to its Policy Enforcer. If a violation is detected (e.g., a spoofed ARP packet), then
the Event Handler will receive notification of the violation along with a generated
keyID and passkey. It then records this information, including the client’s MAC
address and input port number, into the SDN controller’s Policy Table, which serves
as an access control list for future packet decisions. It then notifies the Trusted
Agent via the in-band communication channel (shown previously in Fig. 6.2 and
discussed in Sect. 6.4.3) and includes the client’s table information discussed above.
Finally, it provides a match-action flow rule to the OpenFlow switch to direct future
packets from the flagged client to the Trusted Agent. Should the Event Handler
receive a policy enforcement revocation request from the Trusted Agent, then the
Event Handler reinstates the client’s privileges by removing the associated client
entry from the controller’s Policy Table.

6.4.1.2 Policy Enforcer
The Policy Enforcer handles events passed to it from the Event Handler. It first
confirms that arriving packets are not already flagged in the Policy Table. If not, the
Policy Enforcer next applies selected security policies against the arrived packet.
If the packet passes specified checks, then it is passed to the Event Handler for
normal forwarding. Otherwise, the Policy Enforcer returns fields and ops hash
tables2 to the Event Handler – resulting in the client’s traffic being redirected to the
network’s Trusted Agent. If the client is flagged, the Policy Enforcer also generates a
randomized passkey and a unique keyID, which is passed back to the Event Handler
with the client’s other unique flow information (i.e., input port, MAC, and violation).

6.4.1.3 Policy Table
The Policy Table simply stores the identification and flag state information for each
client. As shown in Fig. 6.4, the Policy Table stores keyID (primary identification
key), passkey (for client authentication), MAC address, input port, and violation
code for flagged clients (of which, all but the input port are forwarded to the Trusted
Agent).

6.4.2 Trusted Agent

The Trusted Agent serves as an intermediary between the client and the network
operator. For instance, the Trusted Agent is able to send revocation messages to the
controller and reinstate the client’s privileges in lieu of the network operator once

2Hash tables (Python dictionaries) are Ryuretic’s method for directing network operations.



158 J.H. Cox Jr. et al.

Fig. 6.4 Controller – Trusted Agent communication

the passkey is provided. It can also provide clients with instructions for regaining
network access. Its components (See Fig. 6.2) are next discussed.

6.4.2.1 Client Policy Handler
The Client Policy Handler establishes a communication link with the controller to
receive policy activation notices and submit revocation requests. When the Trusted
Agent is first notified of a policy enforcement activation, it records the provided
keyID, passkey, MAC, and violation associations in its Client Table as indicated in
Figs. 6.2 and 6.4. The Client Policy Handler also periodically queries the Revocation
Table for keyIDs belonging to clients who have submitted a passkey and are awaiting
the reinitialization of client privileges. In this framework, the query is arbitrarily
performed every 30 s. Ideally, this query can be performed more frequently.

6.4.2.2 Client and Revocation Tables
The Client Table allows the Trusted Agent to maintain state for flagged clients.
As shown in Fig. 6.4, this table maintains the client’s keyID, passkey, MAC, and
violation. It is also queried by the Client Table Handler to confirm client MAC and
passkey pairs. Furthermore, the Client Table provides violation information to the
Handler, so the Trusted Agent renders appropriate instructions to the client.

The Revocation Table (also shown in Fig. 6.4) allows the Trusted Agent to queue
keyIDs for clients awaiting privilege reinstatement. The Client Policy Handler then
routinely queries the table and sends keyIDs in revocation messages to the controller.

6.4.2.3 Client Table Handler
The Client Table Handler queries the Client Table to verify a client’s passkey and
MAC address. If successful, the Handler loads the client’s keyID to the Revocation
Table for delivery to the controller. As a security measure, the Client Table Handler
can only query the Client Table and write to the Revocation Table.



6 A Security Policy Transition Framework for Software-Defined Networks 159

6.4.2.4 Data Processor
The Data Processor is a Common Gateway Interface (CGI) module that provides
server-side scripting for the Trusted Agent’s web server. It receives as input the
MAC and passkey from form data and provides them to the Client Table Handler.
In turn, the Handler returns feedback information to the client’s web interface via
HTML.

6.4.2.5 Web Server
While any number of web servers could be used for this component, the lighttpd [20]
web server is used due to its small memory footprint and support for CGI scripts.
It serves as the client’s primary interface while resolving flags. It also captures the
client’s MAC address via a PHP script when the client enters their passkey. The
passkey and MAC address are then forwarded to the Data Processor for passkey
validation. Note that the web server and the client must be on the same subnet for
the PHP script to capture the client’s MAC address. Otherwise, it captures the MAC
address of the previous hop (e.g., a router’s MAC address).

6.4.3 Communication Channel

The SDN controller and Trusted Agent communicate rule insertions, updates, and
revocations via crafted ICMP packets having instructions in their modified data
field. Both ICMP request and reply packets (see Fig. 6.5) are used. Normally, the
data field of an ICMP packet header contains information for determining round trip
times (e.g., time stamps), etc. However, the transition framework’s communication
channel repurposes this field. Additionally, identification (ID) and sequence (SEQ)
fields are set to zero. Yet, while the Trusted Agent can receive ICMP packets having
complete payloads, the SDN controller only receives the ICMP packet’s header
information and the up to 86 bytes of the packet’s data – based on observations
of the Open vSwitch and Ryu controller implementation used in this work. Hence,
communications from the Trusted Agent to the Ryu controller are limited to 86
bytes, as shown in Fig. 6.5b.

Fig. 6.5 ICMP Packet modification. *Ideally, within network’s max transmission unit (MTU)
size. (a) Typical contents of ICMP packet. (b) Modified ICMP packet



160 J.H. Cox Jr. et al.

Table 6.1 Abbreviations used for controller communication [8]

Abbr. Meaning Summary

i Initialize Establish Trusted Agent parameters

a Acknowledge Send table entry receipt for keyID

d Delete Request policy deletion for specified keyID

Fig. 6.6 Mininet test environment

To accommodate its data limitation and allow for future features, the Trusted
Agent constrains it responses to action, keyID strings, consuming up to 8 bytes.
The action (see Table 6.1) value is a single letter abbreviation. It identifies the
message type (i.e., initialize, acknowledge, or delete). Messages not requiring a
keyID (e.g., initialize) include a zero after the action value. For example, the Trusted
Agent’s initialization message to the Ryuretic controller appears as “i,0” in the
data field of the ICMP’s packet header. A revocation appears as “d,102,” while an
acknowledgment from the controller appears as “a,d,102.”

Messages from the controller, however, have more flexibility. For instance,
rule insertion methods destined for the Trusted Agent’s Client Table will include
MAC, passkey, violation, and keyID values in a comma-separated string. This
format is recognized by the Trusted Agent and handled accordingly by its Client
Policy Handler. It is through this communication channel and format that the
Ryuretic controller and the Trusted Agent are able to maintain corresponding
tables (the Policy Table for the Ryuretic controller and the Client Table for the
Trusted Agent), which are shown in Fig. 6.4. Moreover, while limited, this solution
is easily adaptable to other SDN controllers using existing protocols, making it
controller neutral. In other words, any SDN controller capable of crafting ICMP
packets can implement this communication channel. Still, while adequate for this
implementation, the per packet data limit imposed by this communication channel
serves as a challenge to encrypted and cross-domain communications, which remain
open research areas in this work.

6.5 Test Environment

The test environment (shown in Fig. 6.6) is implemented in Mininet [21], a network
emulator for creating virtual clients, switches, controllers, and links. All clients,
including the Trusted Agent, are virtual machines with Ubuntu 14.04 operating



6 A Security Policy Transition Framework for Software-Defined Networks 161

systems. The switch is OpenFlow 1.3 [2] capable, and Ryuretic [4] applications run
atop a Ryu controller to provide network control. The testbed also provides Internet
access via a virtual network address translator (NAT) or gateway router (GW). Until
a client is flagged, it can ping other clients and access web services via the GW. Web
services are tested using curl and wget commands and the Firefox Internet browser.
However, the flows of a flagged client are redirected to the Trusted Agent’s web
server until the client provides the appropriate passkey. Once that is provided, the
client regains network privileges within 30 s of making the entry.

6.6 Example Use Cases

In this security policy transition framework, the Ryuretic controller enforces the
policies defined by the network operator. In this section, we attempt to highlight
just a couple of policy violations (i.e., ARP spoofing and unauthorized NAT)
that a network operator might target. We implement these attacks in the test
environment discussed in Sect. 6.5. In this environment, we assume a client is
behaving maliciously, so we will discuss some of the key code listings contributing
to the framework’s detection and notification methods. This section will also allow
us to explore Ryuretic’s packet crafting feature.

6.6.1 Spoofed ARP Packets

Spoofed ARP packets can poison neighboring client ARP tables and serve as a
springboard for more dangerous attacks (e.g., packet dropping (black hole) and
man-in-the-middle (MitM) attacks). However, this framework allows the network
operator to set an ARP spoofing detection protocol in Ryuretic [4] to trigger
appropriate security measures. When Ryuretic detects an arriving ARP packet, it is
forwarded to the appropriate handler (see Listing 6.1). The Policy Enforcer checks
the Policy Table to determine if the incoming packet should be dropped, redirected,
or forwarded.

Listing 6.1 Ryuretic ARP Event Handler
1 def handle_arp(self,pkt):
2 #Check Policy Table for MAC and input port
3 pkt_status = self.check_net_tbl(pkt[‘srcmac’],
4 pkt[‘inport’])
5 if pkt_status is ‘flagged’:
6 #If flagged, redirect flow
7 fields,ops = self.Redirect_Flow(pkt)
8 else:
9 #If not flagged, test for spoof

10 spoofed = self.detectSpoof(pkt)
11 if spoofed != None:
12 #Notify Trusted Agent of Policy Transition
13 self.notify_TA(pkt)



162 J.H. Cox Jr. et al.

14 fields, ops = self.drop_ARP(pkt)
15 else:
16 # Handle ARP packet
17 fields, ops = self.respond_to_arp(pkt)
18 self.install_field_ops(pkt,fields,ops)

If the source MAC or input port is not flagged, then the packet is evaluated by the
detectSpoof() method (see Listing 6.2). If the packet is flagged as spoofed, then the
Policy Enforcer notifies the Event Handler, which forwards a notification message
to the Trusted Agent with the client’s MAC, passkey, violation, and keyID. It then
sets Ryuretic’s fields and ops objects to drop future ARP replies from the client. In
turn, the Trusted Agent adds the flagged client to its Client Table.

Otherwise, the packet is forwarded to the respond_to_arp() method for normal
forwarding. As seen in Listing 6.2, the detectSpoof() method builds a network view
to associate each client’s MAC and IP address to a switch port. If a packet arrives
after the network view is built with an incorrect MAC or IP address, then it is
flagged as spoofed, and its future traffic is sent to the Trusted Agent, which renders
a web page to explain the violation and offer instructions for regaining access to
the network (e.g., submit an acceptable use policy, AUP). Currently, the security
policy transition framework discussed in this chapter relies on the help desk to serve
as the validating authority; however, a future implementation could make the AUP
available and provide compliance validation. Once the client obtains and submits
the passkey, their network services are reinstated – generally within 30 s of entering
the passkey. The complete implementation is available at [22].

Listing 6.2 Ryuretic ARP poison detection method
1 def detectSpoof(self,pkt):
2 policyFlag = None
3 # Has port been mapped?
4 if self.netView.has_key(pkt[‘inport’]):
5 # Does srcmac match recorded value?
6 if pkt[‘srcmac’]!= self.netView[pkt[‘inport’]][‘srcmac’]:
7 policyFlag = ‘ARP’
8 # Does srcip match recorded value?
9 if pkt[‘srcip’] != self.netView[pkt[‘inport’]][‘srcip’]:

10 policyFlag = ‘ARP’
11 else:
12 # Map the port
13 self.netView[pkt[‘inport’]] = {‘srcmac’: pkt[‘srcmac’],
14 ‘srcip’: pkt[‘srcip’]}
15 # Set policy enforcement
16 if policyFlag == ‘ARP’:
17 self.net_MacTbl[pkt[‘srcmac’]] = {‘stat’:‘flagged’,
18 ‘port’:pkt[‘inport’]}
19 self.net_PortTbl[pkt[‘inport’]] = {‘stat’: ‘flagged’}
20 return policyFlag



6 A Security Policy Transition Framework for Software-Defined Networks 163

6.6.2 Network Address Translation (NAT)

Unauthorized network address translation (NAT) devices can also compromise local
networks by giving unauthorized users access to network services. One way to
detect these devices is to monitor IP packet headers for a decremented time-to-live
(TTL) [23]. In this example, host 2 (h2) from Fig. 6.6 attempts to run NAT services.
To detect this policy violation, the Policy Enforcer utilizes a nat_detect module, as
defined in Listing 6.3, to inspect the TTL field of each IP packet passing through
the switch (s0). Consequently, inspecting every packet can impact the controller’s
performance. A better solution would limit packet inspections to just a few packets
per flow before installing rules for future flows. Instead, this listing shows a simple
example that is implemented with just few lines of code.

We first observe that most network devices have TTL values of 64 or 128. If
hosts are directly connected to the switch, then it should detect one of these values.
However, if these devices are connected behind a rogue NAT device with TTL
decrement enabled, then the NAT will be detected, and the value returned will signal
the Ryuretic controller to flag the client for a rogue “NAT” violation. The controller
then updates its Policy Table and notifies the Trusted Agent before updating the
switch’s flow table.

Listing 6.3 Ryuretic NAT detection method creation
1 def TTL_Check(self, pkt):
2 policyFlag = None
3 if pkt[‘ttl’] not in [64, 128]:
4 policyFlag = ‘NAT’
5 return policyFlag

6.6.3 ICMP Packet Notifications

Packet creation is a feature developed for Ryuretic allowing programmers to craft
packets via its fields and ops objects. Listing 6.4 demonstrates how messages
are crafted using Ryuretic within the security policy transition framework. The
controller generates a packet containing the srcmac, passkey, violation, and keyID
(see lines 15–16). Additionally, while not shown, the MAC and IP addresses of
the controller and Trusted Agent are defined elsewhere in the code. Other ICMP
message examples can be found in the Ryuretic interface file located at [22] and
[24].

Listing 6.4 Ryuretic packet crafting
1 def update_TA(self,pkt, keyID):
2 table = self.policyTbl[keyID]
3 agent, cntrl = self.t_agent, self.cntrl
4 fields, ops = {},{}
5 fields[‘keys’] = [‘inport’, ‘srcip’]
6 fields.update({‘dstip’:agent[‘ip’],
7 ‘srcip’:cntrl[‘ip’]})
8 fields.update({‘dstmac’:agent[‘mac’],



164 J.H. Cox Jr. et al.

9 ‘srcmac’:cntrl[‘mac’]})
10 fields.update({‘dp’:agent[‘dp’], ‘msg’:agent[‘msg’],
11 ‘inport’:agent[‘port’],
12 ‘ofproto’:agent[‘ofproto’],
13 ‘ptype’:‘icmp’,‘ethtype’:0x800,
14 ‘proto’:1, ‘id’:0})
15 fields[‘com’] = table[‘srcmac’]+‘,’+str(table[‘passkey’])+
16 ‘,’+table[‘violation’]+‘,’+str(keyID)
17 ops = {‘hard_t’:None, ‘idle_t’:None, ‘priority’:0, \
18 ‘op’:‘craft’, ‘newport’:agent[‘port’]}
19 self.install_field_ops(pkt, fields, ops)

6.6.4 Traffic Redirect

Once a client is flagged, the Ryuretic controller must next divert the client’s traffic
to the Trusted Agent. An example using Ryuretic [4] is provided in Listing 6.5,
and additional code examples can be found at [22] and [24]. In this snippet, an IP
table is tied to the Ryuretic controller’s Policy Table. Notice that line 2 first sets
the fields and ops objects to set match-action rules for the traffic flow. This snippet
also shows how additional fields can be updated in lines 4–28. Here we see that if
a client is flagged for “deny,” then the traffic flow’s destination information is saved
to a TCP table. Its packet header data is then modified, and the packet is forwarded
to the Trusted Agent. These actions occur in lines 4–17. Otherwise, if the packet
originates from the Trusted Agent, the Ryuretic controller performs a reverse table
lookup to associate the client with its packet, modifies the packet’s source fields
to reflect its original destination, and forwards the packet to the flagged client, as
shown in lines 18–28 of Listing 6.5.

Listing 6.5 Ryuretic traffic redirect
1 def redirect_TCP(self,pkt):
2 fields,ops = self.default_Field_Ops(pkt)
3 #IP address (src & dst) maintained in IP forwarding table
4 if self.ipTbl.has_key(pkt[‘srcip’]):
5 if self.ipTbl[pkt[‘srcip’]] in [‘deny’]:
6 key = (pkt[‘srcip’],pkt[‘srcport’])
7 # Copy srcmac and dstmac to modify packet header
8 self.tcp_tbl[key] = {‘dstip’:pkt[‘dstip’],
9 ‘dstmac’:pkt[‘dstmac’],

10 ‘dstport’:pkt[‘dstport’]}
11 fields.update({‘srcmac’:pkt[‘srcmac’],
12 ‘srcip’:pkt[‘srcip’]})
13 fields.update({‘dstmac’:self.t_agent[‘mac’],
14 ‘dstip’:self.t_agent[‘ip’]})
15 # Modify and redirect packet to TA or flagged client
16 ops = {‘hard_t’:None, ‘idle_t’:None, ‘priority’:100,\
17 ‘op’:‘mod’, ‘newport’:self.t_agent[‘port’]}
18 elif self.ipTbl.has_key(pkt[‘dstip’]):
19 if self.ipTbl[pkt[‘dstip’]] in [‘deny’]:



6 A Security Policy Transition Framework for Software-Defined Networks 165

20 key = (pkt[‘dstip’],pkt[‘dstport’])
21 # Copy srcmac and dstmac to modify packet header
22 fields.update({‘srcmac’:self.tcp_tbl[key][‘dstmac’],
23 ‘srcip’:self.tcp_tbl[key][‘dstip’]})
24 fields.update({‘dstmac’:pkt[‘dstmac’],
25 ‘dstip’:pkt[‘dstip’]})
26 # Modify and redirect packet to TA or flagged client
27 ops = {‘hard_t’:None, ‘idle_t’:None, ‘priority’:100,\
28 ‘op’:‘mod’, ‘newport’:None}
29 return fields, ops

6.7 Discussion and Future Opportunities

The security policy transition framework presented in this chapter presents many
opportunities for future improvements. For instance, while this framework’s limited
communication channel is suitable for multiple controllers and allows for automated
revocations using existing protocols, more robust communication channels are still
needed. These channels could allow an east-westbound interface to better enable
policy enforcement and validation across domains (which is still an open research
topic) or provide for more versatile communication between the SDN controller
and the Trusted Agent. As presented, the framework covered in this chapter relies
on existing unmodified network protocols to implement a limited communication
channel for the invocation and revocation of policy enforcements.

The transition framework discussed in this chapter is also easily adaptable to a
password-based authentication framework for clients seeking to join the network.
In which case, a network view can be built as clients authenticate to the network.
Additionally, within the context of this framework, there is potential to provide
a variety of actions for clients to take once they are redirected to the Trusted
Agent. For instance, the captive portal can include patches, courses, administrative
documents, initial warnings, etc. Additionally, the Trusted Agent’s responsibilities
could expand to include other security features. For instance, a modified Trusted
Agent could provide active testing for security threats where passive monitoring is
either not sufficient or too intensive for the controller to handle. With minor updates
to this framework’s communication channel, the SDN controller could notify the
Trusted Agent of testing requirements for clients, and the Trusted Agent could
instruct the SDN controller to transition the security state of a client under “test.”

Using a Trusted Agent in this framework also reduces burden on network
operators by reducing the manual configurations needed to remove policy enforce-
ments, while also providing clients with immediate feedback on the status of their
network privileges. With regard to network access control (NAC) systems, it is
not too far a stretch to have the Trusted Agent interact with NAC authorization
servers to implement comparable features as already exist today. However, this
remains a focus for future work. Furthermore, since this framework’s functions
and components are implemented using NFV, it is also viable for cloud and virtual
network environments, which serves as another future research direction.



166 J.H. Cox Jr. et al.

Of course, while SDN is capable of implementing numerous security features,
we still do not suggest that all security features should be handled by the SDN
controller. In fact, the introduction of the Trusted Agent in this chapter further pro-
vides for the incorporation of additional security features where secondary devices
serve to provide more layers to a defense-in-depth security strategy. Likewise, this
framework does not replace the need for application-level monitoring. Such services
are still needed to identify a client’s software version, provide patch compliance,
detect malware, or even apply an application-layer firewall. However, the Trusted
Agent could be configured to coordinate security efforts between application-layer
products and the controller.

Furthermore, as the Trusted Agent serves as a key intermediary between the
client and the network operator, this framework could also benefit from the inclusion
of machine learning algorithms that better cater to the client’s needs while providing
more automated services. Doing so could offer a more human experience along with
a greater range of services for client validation. Additionally, the Trusted Agent’s
functions could be expanded to coordinate with existing middleboxes, manage IoT
devices, and/or provide system redundancy. For example, should a primary server
(e.g., DHCP, DNS, etc.) fail, the Trusted Agent could serve as a backup until the
primary server is again operational. IoT device security along the network’s edge is
also an open research topic for which this framework might be expanded to include.

Network operators using this framework must also consider that more clients
than just subscribers will operate on their networks (e.g., M2M communication or
Web service interaction). If not handled appropriately, the redirection of flagged
clients to a self-service interface, as proposed in this work, could cause IoT devices
or user agents to assume the network has failed. Such incidents could result in the
generation of erroneous trouble tickets that once again task network operators to
troubleshoot connectivity issues instead of policy violations. Ideally, the network
operator will whitelist or set aside specific ports for such devices to provide
notifications if the device becomes flagged. For such cases, the Trusted Agent could
also run a mail server to notify the help desk when a nonuser device is affected.
Additional applications could further augment the Trusted Agent to better handle
such devices as well. For instance, should IoT devices deviate from expected traffic
patterns, then their subsequent flows can be forwarded to the Trusted Agent for deep
packet inspection or other analysis, isolated from the network, or recorded for future
analysis. SDN is uniquely situated to provide edge-based analysis of IoT device
traffic, and future work will explore how a security policy transition framework as
discussed in this chapter can be applied to IoT management and security.

Of course, introducing the Trusted Agent into this framework also introduces yet
another attack vector. If the Trusted Agent can be compromised, then its commu-
nications to the controller for policy revocations can also be affected. However, in
this system, we assume the Trusted Agent to be at least as physically secure as the
SDN controller. Likewise, we utilize the controller to monitor network access to the
Trusted Agent and block unauthorized traffic. As a result, only clients who have
already been flagged are able to interact with the Trusted Agent via its web server,
which limits packets to HTTP(S) (i.e., port 80 and 443) and DNS (i.e., port 53)



6 A Security Policy Transition Framework for Software-Defined Networks 167

protocols. Moreover, further hardening of the transition framework should add
additional network security. For instance, randomizing keyIDs, encrypting the
passkey while in transit, and further securing communications between the client
and Trusted Agent are all prudent measures. Another consideration is validation
of this framework with standards specified by the Trusted Computing Group (TCG)
[25] for Trusted Network Communications (TNC) and Security Content Automation
Protocol (SCAP). However, additional security analysis, hardening, and standards
compliance of this security policy transition framework, including its Trusted Agent,
are left to future work.

6.8 Conclusion

With OpenFlow providing a vendor-agnostic platform for SDNs and enabling the
orchestration of numerous switches, programmers are better able to implement
novel network applications for security and traffic engineering. Yet, network opera-
tors still need additional measures for automating daily processes and configurations
to fully utilize SDNs in physical and virtual environments. As a result, this chapter
introduces the concept of a security policy transition framework, which provides
automation by flagging clients, redirecting their network flows to a Trusted Agent,
and revoking activated security measures once the client validates they have met
specific requirements by entering a passkey.

In this framework, a passkey is obtained from a validating authority (e.g., a
help desk or the Trusted Agent) and used by the client to prove that specified
requirements have been met in order to rejoin the network. As a result of these
features, frameworks such as the one discussed in this chapter can eliminate
many daily network configuration requirements that must currently be manually
performed by network operators. Other benefits include reduction of both erroneous
trouble tickets and client wait times for regaining network access. However, these
wait times may still vary based on the violation and system validation procedures.

Finally, this chapter introduces several potential directions that this framework
may take in future iterations. For instance, machine learning could be leveraged to
enhance user experience when interacting with the Trusted Agent. Additionally, the
Trusted Agent may be further developed to implement active detection measures for
security applications. Other future work includes security analysis and hardening
of the framework itself, improving upon it communication channel with an east-
westbound interface, and implementing security and management applications for
IoT.

Questions

1. Overall, how will this framework or one like it aid network operators?
2. Regarding security, what additional challenges does introducing a Trusted Agent

to an SDN create?



168 J.H. Cox Jr. et al.

3. What features should be added to the Trusted Agent and the communication
channel used in this work to support functions that go beyond policy enforcement
revocation, for instance, active testing of clients?

4. Considering the ICMP-based communication channel utilized in this work, what
are its primary limitations, and how might they be improved?

5. Does the communication channel used in this work represent an in-band or out-
of-band form of communication? Explain your answer.

6. Is the communication channel developed in this work only applicable to the
Ryuretic programming framework, or could it also be used with other controllers
(e.g., POX, OpenDaylight, Floodlight, etc.)?

7. What ways might a client obtain a passkey to regain their network privileges?
8. How might network operators modify the security policy transition framework

presented in this chapter to accommodate Internet of things (IoT) devices and
other clients having neither access to a web browser nor an ability to respond to
the Trusted Agent’s web server?

9. Concerning Ryuretic, what SDN controller does it augment, and what are the
objects it uses for monitoring, matching, and rule setting on packets?

References

1. McKeown N (2009) Software-defined networking. INFOCOM Keynote Talk 17(2):30–32
2. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Turner J (2008)

OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev
38(2):69–74

3. Reich J, Monsanto C, Foster N, Rexford J, Walker D (2013) Modular SDN programming with
pyretic. Technical report of USENIX

4. Cox JH Jr, Donovan S, Clark R, Owen H (2016) Ryuretic: a modular framework for RYU. In:
IEEE MILCOM2016

5. Kim H, Benson T, Akella A, Feamster N (2011) The evolution of network configuration: a
tale of two campuses. In: Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, Nov 2011. ACM, pp 499–514

6. Kim H, Reich J, Gupta A, Shahbaz M, Feamster N, Clark R (2015) Kinetic: verifiable
dynamic network control. In: 12th USENIX symposium on networked systems design and
implementation (NSDI 15), pp 59–72

7. Tsagkaris et al (2015) Customizable autonomic network management: integrating autonomic
network management and software-defined networking. IEEE Veh Technol Mag 10(1):61–68

8. Cox JH Jr, Clark RJ, Owen HL (2016) Security transition framework for software defined
networks. In: Proceedings of the 2016 IEEE the first international workshop on security in
NFV-SDN (SNS2016), Nov 2016. IEEE

9. Cisco, Network management system: best practices white paper. http://www.cisco.com/c/en/
us/support/docs/availability/high-availability/15114-NMS-bestpractice.html

10. Congdon P, Aboba B, Smith A, Zorn G, Roese J (2003) IEEE 802.1 X remote authentication
dial in user service (RADIUS) usage guidelines (No. RFC 3580)

11. ForeScout. https://www.forescout.com/solutions/use-cases/network-access-control/
12. Cisco NAC. http://www.cisco.com/c/en/us/products/collateral/security/nac-appliance-clean-

access/product_data_sheet0900aecd802da1b5.html
13. Wilkins S (2015) A guide to network access control (NAC) solutions, May 2015. http://www.

tomsitpro.com/articles/network-access-control-solutions,2-916-2.html

http://www.cisco.com /c/en/us/support/docs/availability/high-availability/15114-NMS-bestpractice.html
http://www.cisco.com /c/en/us/support/docs/availability/high-availability/15114-NMS-bestpractice.html
https://www.forescout.com/solutions/use-cases/network-access-control/
http://www.cisco.com /c/en/us/products/collateral/security/nac-appliance-clean-access/product_data_sheet0900aecd802da1b5.html
http://www.cisco.com /c/en/us/products/collateral/security/nac-appliance-clean-access/product_data_sheet0900aecd802da1b5.html
 http://www.tomsitpro.com/articles/network-access-control-solutions,2-916-2.html
 http://www.tomsitpro.com/articles/network-access-control-solutions,2-916-2.html


6 A Security Policy Transition Framework for Software-Defined Networks 169

14. Skip Al, A bridge too far: defeating wired 802.1X with a transparent bridge using Linux.
https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-
Duckwall-Bridge-Too-Far.pdf

15. Bari MF, Chowdhury SR, Ahmed R, Boutaba R (2013) PolicyCop: an autonomic QoS policy
enforcement framework for software defined networks. In: 2013 IEEE SDN for future networks
and services (SDN4FNS), Nov 2013. IEEE, pp 1–7

16. Casado M, Freedman MJ, Pettit J, Luo J, McKeown N, Shenker S (2007) Ethane: taking control
of the enterprise. In: ACM SIGCOMM computer communication review, vol 37, no 4, Aug
2017. ACM, pp 1–12

17. Matias J, Garay J, Mendiola A, Toledo N, Jacob E (2014) FlowNAC: flow-based network
access control. In: 2014 third European workshop on software defined networks, Sep 2014.
IEEE, pp 79–84

18. POX. http://www.noxrepo.org/pox/about-pox/
19. Ryu. http://osrg.github.io/ryu/
20. Lighttpd. https://www.lighttpd.net/
21. Lantz B, Heller B, McKeown N (2010) A network in a laptop: rapid prototyping for software-

defined networks. In: Proceedings of the 9th ACM SIGCOMM workshop on hot topics in
networks, Oct 2010. ACM, p 19

22. Cox JH Jr, Ryuretic security policy transition project. https://github.com/Ryuretic/SecRev
23. Phaal P (2003) Detecting NAT devices using sFlow. http://www.sflow.org/detectNAT
24. Cox JH Jr, Ryuretic rogue access point detection. https://github.com/Ryuretic/RAP
25. Trusted Computing Group. https://trustedcomputinggroup.org/work-groups/trusted-network-

communications/

Jacob H. Cox Jr. received his B.S. in EE from Clemson University, SC in 2002, and his M.S. in
ECE from Duke University, NC, in 2010. He has also recently completed his Ph.D. in ECE under
the supervision of Dr. Henry Owen and Dr. Russell Clark at Georgia Institute of Technology,
GA. As an Army officer, Jacob served as an Army telecommunications engineer (2008–2014)
with his most recent assignments being assistant professor at the United States Military Academy
(2010–2013) and chief of Enterprise Operations for the South West Asia Cyber Center in Kuwait
(2013–2014). His research interests include software-defined networking and network security.

Russell J. Clark received his B.S. in Mathematics and Computer Science from Vanderbilt
University in 1987. He received his M.S. and Ph.D. degrees in Information and Computer Science
from Georgia Institute of Technology in 1992 and 1995. For the years 1997–2000, he was a senior
scientist with Empire Technologies, a network management software company. He is currently a
senior research scientist at Georgia Tech’s School of Computer Science where he engages hundreds
of students each semester in mobile development, networking, and the Internet of things. Russell
is also the founder and co-director of the Georgia Tech Research Network Operations Center (GT-
RNOC) and research director for SoX/Southern Crossroads.

Henry L. Owen III received his BSEE, MSEE, and Ph.D. in Electrical Engineering from the
Georgia Institute of Technology in 1980, 1983, and 1989 respectively. He joined the research
faculty of the Georgia Tech Research Institute in 1980 and the Georgia Institute of Technology
academic faculty in 1989. He is a member of the Computer Engineering and the Telecommunica-
tions technical interest groups at the Georgia Institute of Technology. His research interests include
software-defined internetworking and security.

https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf
https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf
http://www.noxrepo.org/pox/about-pox/
http://osrg.github.io/ryu/
https://www.lighttpd.net/
https://github.com/Ryuretic/Sec Rev
http://www.sflow.org/detectNAT
https://github.com/Ryuretic/RAP
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/

	6 A Security Policy Transition Framework for Software-Defined Networks
	6.1 Introduction
	6.2 Motivation for a Security Policy Transition Framework
	6.3 Related Work
	6.4 The Framework
	6.4.1 Controller
	6.4.1.1 Event Handler
	6.4.1.2 Policy Enforcer
	6.4.1.3 Policy Table

	6.4.2 Trusted Agent
	6.4.2.1 Client Policy Handler
	6.4.2.2 Client and Revocation Tables
	6.4.2.3 Client Table Handler
	6.4.2.4 Data Processor
	6.4.2.5 Web Server

	6.4.3 Communication Channel

	6.5 Test Environment
	6.6 Example Use Cases
	6.6.1 Spoofed ARP Packets
	6.6.2 Network Address Translation (NAT)
	6.6.3 ICMP Packet Notifications
	6.6.4 Traffic Redirect

	6.7 Discussion and Future Opportunities
	6.8 Conclusion
	Questions
	References


