
2NFV Security: Emerging Technologies
and Standards

Igor Faynberg and Steve Goeringer

2.1 Introduction

This chapter addresses the NFV security while reflecting on the work of the
ETSI NFV Security Working Group (NFV SEC WG), which has indeed been
the key forum in the industry work on the subject since 2011, gathering network
operators, major vendors, governments’ representatives (primarily regulators and
law enforcement agencies), and researchers. Hence the consensus reached in the
group is the industry view.

The authors feel it is important to communicate this view. At the same time,
the authors also state, where appropriate, their opinions and present a vision on
how certain technologies have to develop in the future, and when these opinions are
stated, it is made clear that these are the opinions rather than standards or established
views of the industry.

A few words on the history of the NFV SEC WG. This WG was championed
by Don Clarke (then the Head of Research in BT), the man who had spearheaded
the NFV Industry Specification Group creation in the first place. The security group
started and functioned for the first 2 years as an expert group, whose charter was
merely exploratory. The main task of the group was to outline the security problems
that were specific to the NFV (as opposed to generic cloud, whose security problems
had been already tackled by a number of organizations—the US National Institute
of Standards [NIST] and Cloud Security Alliance [CSA] among them) so as to
avoid duplication of effort and thus develop sharp focus on what is specific to the

I. Faynberg (�) • S. Goeringer
Cable Labs, Louisville, CO 80027, USA
e-mail: i.faynberg@cablelabs.com; s.goeringer@cablelabs.com

© Springer International Publishing AG 2017
S.Y. Zhu et al. (eds.), Guide to Security in SDN and NFV, Computer
Communications and Networks, DOI 10.1007/978-3-319-64653-4_2

33

mailto:i.faynberg@cablelabs.com
mailto:s.goeringer@cablelabs.com

34 I. Faynberg and S. Goeringer

telecommunications industry.1 In 2015, the NFV SEC WG has become a working
group with the charter to develop industry standards.

As it turned out, a set of problems identified in the NFV Security Problem
Statement [2] has been comprehensive in that all but one NFV SEC WG’s work
item has been accepted by the SEC WG to address problems identified in that set.
One exception was the study of the OpenStack security [3], which was carried to
document the state of the art in the open-source development. (Overall, by the nature
of its work, the SEC WG stayed away from abstract models, concentrating instead
on specific use cases, available technologies, and operators’ requirements.)

The rest of this chapter is as follows:

• Section 2 outlines the main differences between the “generic” cloud and NFV
and discusses the security threats as well as new benefits for security provided in
the NFV environment;

• Section 3 discusses the problems in the NFV Security Problem Statement and
explains how the NFV SEC work items map into these problems;

• Section 4 explains how trust is bootstrapped from hardware and established
among the execution components, the discussion culminating in the treatment
of the subject of remote attestation;

• Section 5 introduces the requirements and architecture for lawful interception in
the NFV environment and reports on the results of the NFV Security WG work
on the architecture and security controls for sensitive component execution;

• Section 6 is dedicated to security management and monitoring;
• Section 7 introduces the NFV Security WG work on the analysis of the

OpenStack security;
• Section 8 is the conclusion;
• Acknowledgments; and
• List of references.

2.2 Threats and Opportunities

The first question that needs an answer here is what is specific to the NFV
environment in comparison to that provided by the generic cloud computing (as,
for example, described in a recent monograph [4]).

In short, the NFV is a “Telco cloud” established for and used by network
operators, and here lies the answer: While the generic cloud provides computing
services, the NFV is about providing telecommunications services. Of course, with
the convergence, the differences between the two types of services are blurring, but
there are some essential characteristics that make the telecommunications services
distinct.

1For the history of the initial development of the NFV Security Working Group, see [1].

2 NFV Security: Emerging Technologies and Standards 35

For one thing, network operators are regulated. This places special requirements
on reliability. Even more stringent (and, as we will see, much more challenging to
implement in the virtualized environment) are the requirements related to lawful
interception. Examples of other stringent regulatory requirements—which differ
from country to country—are those related to data retention, personally-identifiable
information sharing, and movement of data that are considered private across
national or regional borders.

From here, we can see that networking plays as defining role in the NFV as
virtualization does. To this end, the development of the NFV is coupled with
that of the software-defined network (SDN) technology standardized by the Open
Networking Foundation (ONF).

SDN and NFV are independent (but related) technologies that network operators
are using to create open distributed network architectures. The transition to this new
model of networking is well underway, expanding and extending on lessons learned
in data centers.

One limitation of the regulated environment is that network operators have much
less control of interconnection options. The consequence is that the open distributed
architectures they develop must support multiple-operator interconnectivity, while
the solutions must support multiple tenants (often providing infrastructure to other
operators as clients). These networks might span continents. The result is a nebulous
network with soft perimeters. Providing a comprehensive layered security solution
in this environment is quite challenging.

As far as security is concerned, opening up new services is often at cross-purpose
with the objective of limiting the threat surface. The nature of network services is
such that once a capability that has value is developed, that value is only achieved by
opening up access to it. Opening up to address a market or company need inevitably
means accepting a risk that another party may exploit this new capability in some
way. Introducing security controls necessarily limits how a service or device might
be used, which also necessarily decreases its value. In other words, the value of a
network is inversely proportional to how secure it is!

Hence security engineers are always seeking balance between addressing a target
market with compelling capability and limiting the use of this capability sufficiently
so that only reasonable risks remain. The goals, therefore, are to make exploitation
expensive (not to eliminate threats altogether) and employ evolvable or upgradeable
security controls and methods.

SDN and NFV, in and of themselves, are only contributing technologies to
how networks are evolving. Open distributed networks also integrate ideas from
development operations (DevOps), software repository and distribution technolo-
gies, various virtual infrastructure implementations integrating virtual machines,
hypervisors, physical and logical hosts, physical and logical interfaces, and much
more. The resulting network manages complexity through abstraction. This abstrac-
tion can create security comfort through obfuscation; however, obfuscation is never
a reasonable security approach. Moreover, abstraction itself presents significant
security challenges. Do security operations have visibility to all the physical and
logical elements that must be secured? Can security professionals see all the flows

36 I. Faynberg and S. Goeringer

that occur in their network and see far enough up through the layers of abstraction
encoded in APIs and interfaces to have context? Is the architecture consistent
enough to allow correlation of events and to chain dependencies so the security
engineer can identify and isolate compromised devices?

Another complexity of SDN and NFV technologies is in the way they actually
distribute network state. Ultimately the purpose of an SDN controller is to maintain
network state by distributing the flow table entries across multiple network elements,
enabling programmatic implementation of end-to-end connectivity. Similarly, NFV
orchestrates the deployment of dynamic infrastructure, creating chains of service
elements that run their own interdependent state machines to provide capabilities.
Consequently, this creates a new, target rich environment for adversaries to do new
types of denial of service attacks, different methods of pivoting to gain access and
manipulate network behavior, and more.

Moreover, the consequence of failure can be much higher. Once an adversary
gains access to a virtualized infrastructure, the adversary may have the opportunity
to penetrate hundreds or thousands of other physical or virtual devices. Thus
entire infrastructures are likely to be compromised, deeply and widely, and nearly
simultaneously at that. The notions of security in-depth and threat management
through kill-chain modeling are critical for open distributed networks.

Fundamentally, open distributed architectures introduce risks by two key factors.
First, the new infrastructure transitions from a hardware-centric orientation to one
focused on software, and so networks become vulnerable in ways traditionally
associated with software-based solutions. Second, the decomposition of network
elements that separate the data plane, control plane, and management plane dra-
matically increases the attack surface that adversaries can address. There are simply
more interfaces and elements (physical and virtual) to exploit. Moreover, concurrent
changes in other IT technologies (such as DevOps) introduce further emphasis
on software as the actual infrastructure and really create a virtual supply chain
for service delivery and deployment. Thus vulnerabilities in software development
processes now become operational vulnerabilities in the nature of how networks are
managed and maintained.

We refer a reader to the latest results in SDN development. The ONF summarizes
threats to SDN in its Technical Report TR-530 [5]. It must be noted that the
security mechanisms outlined by ONF are optimized for an environment specified
in [6]. Developing specifications and concepts as outlined by the ONF view of
the SDN evolution in TR-535 [7] introduce entirely new network control and flow
management practices which remain to be assessed fully.

NFV has a similar, if not greater, impact on increasing the attack surface: NFV
introduces a new model for management and orchestration with new interfaces,
which an attacker may attempt to exploit. Most are implemented as software with
inherent software vulnerabilities.2

2The fact that security problems are introduced by sloppy programming is well known, although
it is often overlooked because it is rarely mentioned. As Dijkstra famously noted in [8], “The
required techniques of effective reasoning are pretty formal, but as long as programming is done

2 NFV Security: Emerging Technologies and Standards 37

With the newly abstracted nature of NFV elements, isolation of failures may
be more difficult, affecting an often forgotten security factor—availability. Even
aside from that, threat-correlating network security data so that compromises can
be identified and isolated to specific physical or logical elements might be more
complex.

NFV also includes the notion of service chaining—the ability for an orchestrator
to provision multiple network functions in series or even in parallel to provide a
composite service. This creates a level of cascading complexity which can dynam-
ically increase the attack surface as services are dynamically and automatically
created and provisioned.

A plethora of potential problems (and, as we will see soon, benefits) stems from
the hypervisor administrator’s capability for introspection—that is the full access
to the memory of any virtual machine at run time. If the respective API falls into
the wrong hands, no secrets can be kept. As a result, a virtual machine effectively
escrows all cryptographic keys with the administrator as well as with any other
entity that has access to the introspection API.

On the other hand, introspection is quite useful in that it allows, for example,
to detect root kits and otherwise enable security monitoring services. To this end,
NIST [9] encourages cloud operators to “Consider using introspection capabilities
to monitor the security of activities occurring among guest O[perating] S[ystems]s.”
(For more information on the services that a hypervisor can provide and known
attacks on the virtualization infrastructure, see [4].)

But as far as lawful interception (LI) is concerned, the hypervisor introspection
presents a big problem. One critical LI requirement is that the very act of
surveillance must remain undetected by the persons who don’t have a need to know.
The hypervisor administrator (a human or a software agent with the access to the
hypervisor API) might not necessarily have such a need, but the administrator has
full access to the infrastructure within an individual host. This is a major challenge
in implementing reasonable support for LI on NFV infrastructure.

by people that don’t master them, the software crisis will remain with us and will be considered an
incurable disease. And you know what incurable diseases do: they invite the quacks and charlatans
in, who in this case take the form of Software Engineering gurus.” In the same page is a quote
from an early 1984 EWD: “Machine capacities now give us room galore for making a mess of
it. Opportunities unlimited for fouling things up! Developing the austere intellectual discipline of
keeping things sufficiently simple is in this environment a formidable challenge, both technically
and educationally.” As unfortunate as it is, the “software crisis” must be a primary factor in security
assessment.

38 I. Faynberg and S. Goeringer

The summary of the security challenges introduced by virtualization is thus as
follows:

• Reliance on additional software (that is, hypervisors and modules for manage-
ment and orchestration) and hence a longer chain of trust

• Reduced isolation of network functions
• Fate-sharing due to resource pooling and multi-tenancy
• Effective key escrow for hosted network functions
• Complexity of implementing LI

The good news is that there are mechanisms and tools to deal with these
challenges. Furthermore, there are unique opportunities in NFV when it comes to
security.

First, NFV helps streamline security operations. In a cloud environment, multi-
tenancy drives the need for logical separation of virtual resources among tenants.
Through orchestration, certain virtual network functions (VNF) can be deployed
on separate compute nodes, and they can be further segregated by using separate
networks. In addition, the use of security zones allows VNFs to be deployed on—
or migrated to—hosts that satisfy security-pertinent criteria such as location and
level of hardening. Centralized security management allows network functions to
be configured and protected effectively according to a common policy as opposed
to a collection of per-NF security procedures that may not always be consistent or
up to date.

Second, NFV can ease the operational impact of deploying security updates.
An upgraded instance of the VNF can be launched and tested while the previous
instance remains active. Services and customers can then be migrated to the
upgraded instance over a period of time (shorter or longer as dictated by operational
needs). The older instance with the un-patched security flaw can be retired once this
is complete.

Third, by using hypervisor introspection, root kits can be detected and, conse-
quently, eliminated. Overall, the run-time memory analysis can improve the security
posture of a VNF, a process that was very difficult on network appliances or stand-
alone services used for legacy telecommunications infrastructure.

Fourth, NFV opens up new possibilities in incident response owing to the
inherent flexibility it introduces. For example, automated incident response could
include rapid and flexible reconfiguration of virtual resources. Another character-
istic of network function virtualization that leads to improved incident response
is the relative ease of decommissioning and recommissioning VNFs. If a VNF is
suspected of having been compromised (for example, through unauthorized access
via a backdoor), an uncompromised version can be instantiated to replace it, and the
compromised version can be decommissioned and a copy of it made for forensic
analysis.

Fifth, one well-recognized benefit of the cloud environment is that it stimulates
the use of analytics. This, of course, immediately applies to security in more than
one way: analyzing the running code for viruses (and possible anomalies) as well as

2 NFV Security: Emerging Technologies and Standards 39

Generic VM
Threats

NF-specific
Threats

NFV environment-mitigated threats

Fig. 2.1 VNF threat classification

analyzing traffic both for early detection of distributed denial of service attacks and
distribution of malware. Again, the relatively central nature of the NFV enforces
systematic use of analytics to develop a “big picture” of the state of a data center
and the whole operator’s network.

Now, we are ready to classify the threats discussed so far and consider which of
them are specific to the NFV environment. Figure 2.1 illustrates this point.

In the simplest case, a VNF is an instance of a network function running on a
virtual machine (VM). The overall set of security threats to a given VNF can be, at
the first approximation, viewed as a combination of all generic virtualization threats
(a circle on the left) and those threats specific to the network function software (a
circle on the right).

As we discussed earlier, the latter set has a subset comprising the threats that can
mitigated by the new mechanisms—such as hypervisor introspection and centralized
security management. For this reason, we “carve out” this subset, thus reducing the
threat landscape.

Now, the Cartesian product of these sets (i.e., a set of pairs of virtualization
threats and unmitigated network-function threats acting simultaneously) provides
the full landscape of the NFV-specific threats. The potential problems that stem
from the most pertinent threats in this space are the subject of the next section.

2.3 The Problems Identified in the ETSI NFV Security Problem
Statement

To understand the actual risks of the threat landscape described above, it is essential
to consider the deployment models envisioned in the NFV. This is exactly what [2]
does.

The simplest is what [2] calls a Monolithic Operator. Effectively, this is an
operator’s private cloud. Only operator’s own network functions are represented
there, and thus, most security concerns that deal with hosting are absent here. (The
reason we consider such deployment unlikely is that in its pure form, it excludes
even hosting of content delivery servers.)

40 I. Faynberg and S. Goeringer

The next model is called Operator Hosting Virtual Network Operators. Here,
the operator’s cloud hosts VNFs that belong to other operators. Since, a virtual
machine escape (i.e., a situation in which a rogue virtual machine can get control
of a hypervisor) is not unheard of and also because of potential “noisy neighbor”
problems, the expectation is that an operator in such deployments will isolate the
VNFs of a hosted operator on a separate hardware platform. With that, each hosted
operator will be provided a separate hardware platform.

More extreme is the Hosted Network Operator model in which “An IT services
organization operates the compute hardware, infrastructure network, and hypervi-
sors on which a separate network operator runs virtualized network functions. The
premises including cable chambers, patch panels, etc. are physically secured by the
IT services organization.” In this model, of course, the security of such operator’s
practice depends entirely on that of the IT service organization.

The Hosted Communications Provider model is a hybrid of the two previous
models. Here, the IT service organization hosts either more than one communication
services provider (CSP) or even a more than one wholesale network operator. In
the latter case, the IT service organization sells the rights to each network that
provides to run VNFs for the wholesaler. The wholesaler then resells these rights to
the retailers. (We can note the necessity of a well-developed identity management
framework for this case.)

The Hosted Communications and Application Providers model takes the next
step by permitting the IT service organization to offer full-blown public cloud
services, while the same facilities that are used in that offer are supporting the
network operators and communication service providers.

In the Managed Network Service on Customer Premises model, a network
operator runs VNFs on its own hardware located on a customer’s premises and
physically secured by the customer.3 This model can be deployed for an enterprise
or even a home network.

When the hardware belongs to and is operated by the customer, the above model
becomes that of Managed Network Service on Customer Premises Equipment. For
instance, the customer may allocate a host to the network operator where all the
network operator’s VNFs are to run. This specific deployment model excludes
sharing the host (and hypervisor) between the network operator and a customer,
although the model in which this is done is valid, too.

To determine the security implications of a deployment scenario, one needs
to consider all parties at the level each of them operates (e.g., host hardware,
hypervisor, or guest VNF). Then a decision has to be made as to which use rights
each party may have over its resources. The fundamental security engineering
design factor here is to provide a basis for trust suitable for all parties. See [2] for
more discussion of how this can be effected.

Next, the NFV Security Problem Statement considers the potential attackers,
traditionally classified by their respective means, motives, and opportunities. The

3Over the years, the NFV ISG has considered a number of such use cases.

2 NFV Security: Emerging Technologies and Standards 41

introduction of NFV does alter the means and opportunity to exploit a vulnerability.
How far this can go depends on the technical and contractual position of an
organization in relation to others in the supply chain of NFV. To this end, the
following hierarchy is considered:

• End-customers of retail network operators
• Retail network operators
• Wholesale network operators
• Hypervisor operators
• Infrastructure (i.e., hosts, storage, and infrastructure network) operators
• Facilities managers (who are responsible for the physical security of buildings

and equipment)

A hosted service implies that a party at a given level contracts with (and thus
places a degree of trust in) the parties operating lower levels.

The attacks are likely to occur from either a higher level, or at the same level (as
in the case where a hosted network operator might spy on is competitor sharing the
same facilities), or from inside (by disgruntled or unfaithful employees).

A hosting operator might mount willingly an attack on a guest (such as stealing
confidential information that can be sold) as long as the attack does not degrade
performance or otherwise affect the operator’s reputation. Among existing threats
are those related to intellectual property (i.e., proprietary algorithms, configuration
files). Reverse engineering and side-channel attacks are specifically mentioned in
[2] as the ones that need to be mitigated to protect the intellectual property of
vendors from (1) one another, if they are running on the same platform and (2) from
the platform operator. This can be achieved with the technologies for execution
of sensitive components, discussed in Sect. 6. Of course, the full protection
here is limited as it is infeasible for all of a guest’s computing functions to be
concealed from the host. One alternative technology applicable here, noted in [2]
is homomorphic cryptography, which is becoming practical for certain very specific
functions without too much overhead.

The rest of this section describes specific problems that the ETSI NFV Security
Group has identified in [2]. These problems are:

1. Topology validation and enforcement
2. Availability of management support infrastructure
3. Secured Boot4

4This term has been subsequently changed to “Trustworthy Boot,” defined in [11] as the means
to encompass “the technologies and methods for validation and assurance of boot integrity.”
This subject will be addressed in the next section, but, in a nutshell, the same result can be
accomplished with different alternative technologies based on different standards. Since the NFV
Security Problem Statement has not changed, we keep the old term throughout this section. (As
pedantic as it may sound, the term “Secured Boot” was created for a similar reason: to refer to a
generic set of mechanisms vs. the UEFI Secure Boot.)

42 I. Faynberg and S. Goeringer

4. Secure crash
5. Performance isolation
6. User/Tenant Authentication, Authorization, and Accounting
7. Authenticated Time Service
8. Private Keys within Cloned Images
9. Backdoors via Virtualized Test and Monitoring Functions

10. Multi-Administrator Isolation

2.3.1 Topology Validation and Enforcement

An essential requirement for a network provider is that customers’ networks and
the provider’s own network are partitioned so as to be isolated from one another.5

This creates separate trust domains. In any pre-NFV environment, this is effected
by a set of firewalls (containing network address translators), which are properly
provisioned by the operations and management systems according to a provider’s
policy.

Virtualization changes the demarcation between customers’ and providers’ trust
domains. As Fig. 2.2 illustrates, a virtualized forwarding function may interconnect
partitioned networks even in the simplest (i.e., virtual LAN-based) cloud environ-
ment. Overall, while the inter-host paths can be controlled in the pre-NFV ways,
the intra-host paths fall under control of virtualized forwarding functions and,
ultimately, hypervisors. Thus, this is a classic example of the generic case mentioned
earlier in which the environment is exposed to a pair of a threats, one inherent to
physical networking and another threat introduced by virtualization.

Therefore a network operator needs to be able to ensure that the connectivity of
the whole network meets the security policy. Furthermore, it is necessary to prevent
the establishment of an unauthorized connection.

VNF
Component
(Forwarding

Function)

VNF
Component

A
(Network 1)

VNF
Component

B
(Network 2)

Hypervisor

Network 1Network 2

Fig. 2.2 Interconnection of partitioned network by a virtualized forwarding function

5A storage network also needs to be isolated, as does the operations-and-management network.
This issue will be addressed later in this section.

2 NFV Security: Emerging Technologies and Standards 43

Various examples of establishing and validating service chains are presented in
[2], which also recommends approaching the problem at different connection levels:
the physical cabling, ports of each forwarding function, internal configuration of
the forwarding function (as it relates to the assigned place in the service chain,
etc.).

This is a challenging problem, which is further complicated by the possibility of
introducing loops into service chains, which can be exploited to amplify a denial-of-
service attack traffic. Potential mitigation steps here involve loop detection during
the topology validation stage.

As may be expected when discussing networking, the subject of SDN is brought
up in [2] because “SDN is considered highly complementary to NFV in certain
scenarios (e.g., data centers).”6 SDN connectivity can be defined programmatically,
resulting in dynamic and flexible network configurations. Consequently, validating
and constraining topologies is more difficult than in the “traditional” case. To
address this complexity, [2] suggests an approach in which a network is partitioned
into security zones, each zone defined by a distinct set of security policies. It is
important to list here several reasons for such partitioning, as these reasons are
specific to the managed networks and therefore are defining as far as NFV is
concerned. These reasons include legislative or jurisdictional control, customer-type
(e.g., government, enterprise, or residential), transferred content (as it may require
rights protection or confidentiality), and multi-tenant controls, where network
functions of competing network operators are hosted.

The SDN topologies are likely to be hierarchical—arranged in several layers.
The simplest case is presented by one-layer, single-controller network, in which the
controller will push rule sets into the switches. In more complex schemes, lower-
level components request routing decisions from higher-layer components. In all
cases, there is a need for a mutual authentication for every pair of interlocutors to
prevent injection of malicious commands (by an entity masquerading an upper-layer
component) or, divulging the network topology (by switches). Different layers may
be implemented by different network operators, so trust management and network
partitioning again become critical design considerations.

Network performance and security are often at cross-purposes when one tries to
find the right place in the hierarchy for making forwarding decisions. Consider two
extreme polar cases. Making forwarding decisions for every packet by the lowest
controller in the hierarchy may provide the best security in terms of correlating and
isolating distributed denial of service (DDoS) attack traffic. However, this may be
impractical because of scaling and performance concerns. In contrast, making all
the forwarding decisions in a switch may provide excellent performance but may
also result in never detecting problems that would have been obvious had there been
a possibility of correlating the traffic visible only to the higher-level entities.

6It is noted, however, that the SDN is still an emerging technology, in which (as of 2014) the full
set of controls has not been standardized.

44 I. Faynberg and S. Goeringer

One possible solution here is for a switch to monitor the traffic and then send
periodic updates to the SDN controller hierarchy. This has to be designed carefully
to avoid making a controller a possible target of a denial-of-service attack, which
would likely destabilize the whole network.

Another complication standing in the way of consistent topology validation pro-
cess is that operators7 can program the behavior of the switches via the operations
and management interfaces independently of the controller. To avoid inconsistency,
a capability to report any such change to controller must be built into the protocol.
(Note that the NFV Security Problem Statement mentions attestation (discussed
further in this chapter) as the mitigation means to ensure that the configurations and
other essential operational data have not been changed since the last time they were
modified legally.)

A more complex feature interaction problem may occur because the virtualized
forwarding function may change the routing of packets in application-specific ways.
With that some functions may take their instructions from the SDN control hierarchy
(via OpenFlow™ interfaces), but, as [2] explains, it is one of the purposes of NFV
“to enable deployment of application-specific Forwarding Functions, that will not,
in general, be amenable to description by a deliberately constrained protocol such
as OpenFlow.”

Having touched on the SDN-related matters, we refer a reader to [2] for the
discussion of the much better understood topology validation issues specific to the
use of the traditional distributed routing protocols.

Finally, [2] stresses the necessity of keeping the overall “out-of-band” manage-
ment system always alive. This can be helped by ensuring that the management
ports of processing blades, switches, and storage controllers have both the phys-
ically independent connectivity to the management and orchestration system and
locally accessible caching mechanisms for storing configuration state and logging
events.

2.3.2 Availability of Management Support Infrastructure

The single most important requirement here is that the management infrastructure
be available even when the infrastructure that it manages is out. In a way, that
requirement has been spelled out already when we discussed the SDN. To quote
[2]: “Ideally the management ports of processing blades, switches and storage
controllers ought to have physically independent connectivity to their configuration
state in the management and orchestration system, as well as locally accessible
storage/caching for configuration state and the necessary access controls to these
rudimentary but critical resources.” The goal, or necessary practice here, is to make
the operations network inaccessible from customers’ networks.

7And thus an inside attacker.

2 NFV Security: Emerging Technologies and Standards 45

The problem with fulfilling this requirement is the costs associated with pro-
viding a separate (physical) network for operations and management. It is quite
possible to do so in a data center (and OpenStack supports that as demonstrated in
[4]), but for an operator’s network that spans multiple data centers spread over a
sizable geographic area, the solution has been to dedicate a virtual private network
for these purposes.

There are several aspects to this arrangement. First, the management network
must be robust. To ensure availability, [2] recommends path diversity (including
cellular network backup) whenever it is economically feasible. Second, access
control to the management network also needs to be more stringent than access
to the supported networks. An example of a specific challenge introduced by the
NFV is booting of a hypervisor. This procedure may require network access to
obtain its own configuration, software licenses, cryptographic keys, etc. For that, a
hypervisor does need a “purely physical” access to the management network, which
must be physically isolated from others. A similar problem arises on the start-up
of a virtualized forwarding function. It may rely on accessing the network through
another forwarding function in the chain only as the latter does not rely (circularly)
on the very function that is being started up. One solution proposed by [2] is never
to allow the management network to use a virtualized function on any forwarding
path. Perhaps over time, the industry could develop a provable recursive solution
though.

2.3.3 Secured Boot

Here we address the fundamental problem of establishing the chain of trust, on
which we further expand in the next section. In a nutshell, an application’s users
trust both the application software and the operating system on which the software
runs. An operating system, in turn, trusts the hardware on which it executes. In the
cloud, a hypervisor is largely replacing the hardware as a trusted entity (by operating
systems), but a hypervisor still has to trust the hardware. Finally, the cloud operator
must have a basis to trust the hypervisor, the hardware, and the various software
installed on it.

Overall in the NFV environment, a hosted network operator has to trust its host-
ing provider’s virtualization platform sufficiently to run virtual network functions
on it; conversely, the NFV operator must trust each VNF (which means being able
to ascertain that each VNF comes intact from an accepted vendor, performs to its
specifications, and is not being modified in the process). Each VNF can, in turn, be
composed of multiple workloads (VMs in traditional virtualized infrastructure), and
so trust chaining can become quite complex.

To bootstrap the process of building trust, we provide mechanisms and processes
to base trust in the hardware (in that it has no malicious modules and otherwise acts
according to its specifications). The next step is to ascertain that the booted software
belongs to the trusted vendor. This is precisely the problem addressed here.

46 I. Faynberg and S. Goeringer

Secured boot encompasses the technologies and methods for validation and
assurance of boot integrity validation. The secured boot process actually can do a bit
more than just checking software—in addition to checking the hypervisor and OS
image, it can also validate add-on hardware modules (such as acceleration hardware)
and firmware.

Furthermore, the established trust base is further used to ensure that the software
loaded into the VNF execution environment is authentic and has not been tampered
with. This is achieved by checking cryptographic signatures of the respective
modules. (Unless specifically stated otherwise, we always assume asymmetric
cryptography.)

In the NFV environment, there is a need to incorporate software from multiple
software vendors. As [2] notes, “to minimize certificate management complexity in
such cases it may be desirable to have a single certification authority for VNFs.”8

The relevant secured boot technology (often under different names—such as
“secure boot” or “trusted boot”—and in somewhat different contexts) has been
addressed in various fora. For example, the architecture and mechanisms for ver-
ifying signed firmware and software images are specified by the Unified Extensible
Firmware Interface (UEFI) Forum (www.uefi.org). UEFI enables one to ascertain
that host is booted into a known configuration based on hardware-rooted trust.
Although supported on servers, the technology is not yet in use widely.

The UEFI secure boot involves checking the signatures of all UEFI modules
as they are being loaded. If the signature check fails, the boot stops. This process
leverages a public key infrastructure, in which the public keys of vendors are stored
in a database, augmented with the revocation list. There is also an option for an
administrator to approve a boot signature manually at the console.

Another, more general technology to achieve this—and wider—purpose is called
trusted computing and standardized by the Trusted Computing Group (TCG)
(www.trustedcomputinggroup.org). The new and essential implement here is the
Trusted Platform Module (TPM), a tamper-resistant hardware “box,”9 which stores
the private endorsement key and also performs a variety of computing operations.
Neither the host CPU nor, for that matter, any other hardware module may look
inside the TPM arbitrarily. The TPM communicates with the outside world via
a well-defined interface. The ultimate goal is to establish the chain of trust that
encompasses all pieces of firmware and software.

Recognizing that the TPM technology can be implemented using various hard-
ware standards, the ETSI NFV Security Group came up with a general term,
hardware-based root of trust (HBRT) (defined in [17]), to refer to the anchoring
function presented in a hardware-based TPM. There have been claims that a similar

8Indeed, there has been a long-standing work item in the NFV Security Working Group on this
subject.
9Implemented as a dedicated ASIC or a subcomponent of another processor. The chip would
provide external mechanisms to prevent or make difficult tampering or inspection and also provide
mechanisms to destroy stored secrets if tampering is detected.

http://www.uefi.org
http://www.trustedcomputinggroup.org

2 NFV Security: Emerging Technologies and Standards 47

function can be developed by a hardware security module (HSM) (see [4] for a
review of the HSM technology).

The trust chain is maintained through the execution of secure transactions, which
(1) isolate memory (for example, for storing derived keys), (2) bind storage to
specific configurations of hardware and software, and (3) provide remote attestation
(alarming a specified party to all environment changes).

Among other functions that TPM provides are those to generate the crypto-
graphic keys (bound to the endorsement key) and to store the measurement of the
respective boot components. TPM has been implemented in hardware, but there has
been an effort to virtualize it [10].

Given the definitions provided above, a clarification of terminology is necessary.
Booting with TPM is called trusted boot to differentiate it from the UEFI secure
boot.10

The outstanding question that [2] poses is whether these technologies have
proven to be feasible to operate at network operator scale. We return to this in the
next section.

2.3.4 Secure Crash

It is a common place that programs must not crash. About any crash leaves the
program memory and other resources in an unknown state, and this results, among
other problems, in a significant potential vulnerability. With that, a crash of an
application is different in its consequence from a crash of an operating system
because the latter naturally exposes the resources of all its applications. Ultimately,
a crash of the host’s hypervisor exposes the resources of all virtual machines;
however, [2] concludes that the “Cloud technology already has a strong track-record
of robust design against crash-related vulnerabilities. Therefore it would seem that
NFV adds no new concerns here.” The NFV-specific problem is that NFV magnifies
the consequence of a successful attack.

Within the NFV framework, the key components that are at risk in this context are
the hypervisors and virtual network function component instances. In the latter case,
the role of the hypervisor is to ensure that all file references, hardware pass-through
devices, and memory are safe from being accessed by unauthorized entities.

But not all problems are confined to the host itself. An example of a “remote”
problem is the references to a crashed virtual network function component stored on
remote devices. As [2] notes, the devices often use such references as the means to
“authenticate” a machine. There is a need to purge those references from the devices,
but this can, of course, be achieved only when they are known. An easier objective
to achieve is to ensure that it is not possible for a newly executing VNF component
instance to adopt identifiers (e.g., MAC or IP addresses) that were recently used by
a crashed instance, lest this instance impersonate the crashed one.

10As we will see later, the industry has introduced a new, generic term, “trustworthy boot.”

48 I. Faynberg and S. Goeringer

A similar problem is related to storage (both local and remote) resources attached
to the crashed virtual network function component instances. Since the hypervisor
cannot know what storage resources need to be wiped in the event of a crash, it is
likely to be the job of the VNF manager to wipe them.

Naturally a crash of a virtual network function component affects the availability
of a service. In this case, [2] suggests that the VNF manager needs to identify
the likely cause of the problem and work with the NFV infrastructure (via the
virtualization infrastructure manager) to work around it. The remedy may be the
creation of a new component instance (or set of instances), rerouting of packets
passing through the crashed component, or the creation of new routes among
the dependent entities. This places requirements on the virtual network function
descriptor to store the information to be used by the VNF manager in the case of
crash.

2.3.5 Performance Isolation

The generic problem here is that a virtual machine may (more often than not because
of one or another software fault in a hypervisor) affect performance of other virtual
machines on the same host. In an extreme case, a machine can “escape,” that is take
control of the hypervisor thus control all other virtual machines. Even when done
passively, this amounts to learning all cryptographic secrets of other machines and
unlimited monitoring of all communications. In milder cases, without “escaping,” a
misbehaving machine may consume more resources (such as memory, CPU cycles,
or bandwidth) than it is supposed to do, thus degrading the performance of other
machines. We refer a reader to [4], which describes this problem—and some ways
of dealing with it—at length.

As with the previous problem, the consequences of isolation failure in the NFV
environment may be catastrophic (especially in view of the lawful interception
requirements). Hence [2] is considering a range of isolation approaches, of which
the most effective is static hardware segregation (hard partitioning of resources such
that memory and storage at not shared at run time).

Others include ensuring proper configuration of the hypervisor so as to constrain
the ability of a VNF component to acquire memory, processing cores, CPU quanta,
and so on. These techniques, however, may prove inefficient when the granularity
at which the resource can be allocated is too coarse or when it is impossible
to predict the correct usage of resources by a given VNF. Moreover, some of
these techniques significantly reduce the potential cost benefits of NFV that drives
operator investment in virtualization. In fact, [2] warns that “network and I/O
partitioning of : : : [one guest] is hard to isolate from that of other guests, because
it can range widely over different distributed network resources and it can be highly
variable at any point, making any partitioning very inefficient.”

Another factor that stands in the way of performance isolation is the recurrent
need to optimize the performance of a hypervisor. To increase I/O throughput, for
example, hypervisors may allow direct pass-through, thus allowing guests access to

2 NFV Security: Emerging Technologies and Standards 49

Network Function Virtualization Layer

Infrastructure Layer

VNF Administrators
End Users Network Service Providers

Hypervisor Administrators Hosting Service Providers

Federation A Federation B

Federation C

Fig. 2.3 Identities in NFV

the common physical memory. To counter this, [2] recommends using I/O memory
management units.

And yet another group of attacks are those on the resources of the virtualization
infrastructure. As [2] notes, “Even when isolation is in place, whether for storage
I/O, network, memory or CPU, there is a class of attacks on the resources used by
the hypervisor platform itself, which may vary in ease of execution and efficacy
depending on the failure modes of the underlying hypervisor and the hardware
architecture.”

One essential security capability recommended by [2] is proactive monitoring,
which can enable mitigation. Monitoring is prescribed at two levels: the infrastruc-
ture level and, independently, at each VNF. Detecting anomalous traffic behavior,
degraded performance, unusual spikes in I/O processing, and other irregularities
and then leveraging the management and orchestration system to bring these data
into a central place where they can be analyzed so as to find a proper response is an
essential technique recommended for the NFV.

2.3.6 User/Tenant Authentication, Authorization,
and Accounting (AAA)

In the NFV, the identities of various actors are used in (at least) two layers: at
the network and virtualization infrastructure and at the network function layer, as
depicted in Fig. 2.3.

Federations of actors result in compound identities, and so identity sets develop
both horizontally and vertically. What the figure does not show, but what has been
implied, is the law enforcement actors who may have access to some identities but
not to others (and whose very presence must remain a secret from most actors). This

50 I. Faynberg and S. Goeringer

point in its more general form is reflected by [2] thus: “Authentication procedures
can imply privacy breaches associated to the disclosure of user information at
layers that are not intended to consume certain identity attributes.” Consequently,
addressing privacy issues in authentication needs to be validated in this multilayered
environment.

Similarly, the accounting in the NFV environment may also impact privacy
and so must be taken into account. For example, traffic packet acquisition and
classification as well as the policy enforcement blocks on a per-actor basis should
be kept private between customers, and operator use on such information may be
regulated.

2.3.7 Authenticated Time Service

The correct function of many cryptographic protocols depends on knowing the
correct time of the day, which is, for example, used in timestamps or to check cer-
tificate expiration. Tampering with time is an attack that can interfere cryptographic
and security protocols as transport-level security (TLS), Kerberos, DNS security
(DNSSEC), and time-limited access controls. Moreover, time accurate event logging
and reporting time can be critical for performance and fault isolation procedures and
event identification and management for identifying security compromise. Beyond
just interfering with the security protocols, tempering with time poses a plethora of
additional security problems—especially in network functions—because operations
on various communications caches (such as that used in DNS) depend on correct
time as does operation of routing protocols such as Border Gateway Protocol (BGP).

While there are authenticated time servers that render a variety of man-in-the-
middle attacks on the Network Time Protocol (NTP) difficult, in the virtualized
environment, the hypervisor is a trusted man-in-the-middle, and so a compromised
hypervisor can easily tamper with timing queries.

2.3.8 Private Keys within Cloned Images

The potential problem is that images from which VNFs are booted may contain
private keys or other sensitive data. The recommendation in [2] is that such keys
have to be supplied at boot time.

The use of Trusted Platform Modules or hardware security modules can reduce
the need for key provisioning, and the work in the NFV Security Group on the
architecture for sensitive component execution has addressed this.

2.3.9 Backdoors via Virtualized Test andMonitoring Functions

This problem deals with the current dubious practice of certain vendors in which
they develop “hidden” (unofficial) interfaces for run-time access to their code for

2 NFV Security: Emerging Technologies and Standards 51

debugging purposes. As such, the problem is not exactly NFV-specific except for
the hope expressed in [2] that virtualization technology could be used to create
a more structured approach for authorizing whether testing and monitoring can
be conducted, which diagnostic functions are allowed, and who is allowed to run
them. A good practice would be to require all test and monitoring functions to be
cryptographically authenticated just as for any management access to infrastructure
or virtual components.

2.3.10 Multi-administrator Isolation

The defining use case here was dictated by needs of lawful interception as
communicated by the members of the ETSI Technical Committee on Lawful
Interception (TC LI). The problem here (already mentioned in the discussion
of multilayered administration environment of the NFV) is that administrators
of the virtualization infrastructure naturally have higher privileges than those of
administrators of the virtualized functions executing on the system. For instance,
a host administrator already has access to all virtual machines on the host through
introspection capabilities, while an administrator of an orchestrator has access to all
infrastructure controlled by the orchestrator.

This gets in the way of lawful interception—inasmuch as it occurs at the
virtualization layer—because the infrastructure administrators do not necessarily
have the need to know even that the lawful interception occurs, let alone be able to
learn every detail of it.

In fact, the problem here is more general than that of lawful interception. Hosted
operator environments are just as vulnerable to potential confidentiality violations—
and exactly for the same reason. Hence the work undertaken by the NFV Security
Group has been centered on solving the larger, more general problem. In effect, this
solution must eventually be an evolution of role-based access control which assures
administrators are able to see and do only the activities and data they should.

In conclusion, Table 2.1 demonstrates how certain work items undertaken in
the group relate to the above problem set. (It should be noted that not all work
items were driven by the problem statement. Some work items, such as Report on
Security Aspects and Regulatory Concerns or Report on Retained Data problem
statement and requirements, are of more general nature, while others—notably
Security Specification for MANO Components and Reference points—are specific
to the detail of the NFV architecture.)

2.4 Establishing andMaintaining Trust

Before we start with the formal approach, let us consider an intuitive one. We can
envision the “bootstrapping” of security of three planes of the NFV as depicted in
Fig. 2.4. We start at the lowest plane—the physical infrastructure. Assuming that
we can trust the hardware, we can use it to boot all hypervisors securely, using the

52 I. Faynberg and S. Goeringer

Ta
b
le

2
.1

R
el

at
io

n
of

ce
rt

ai
n

E
T

SI
N

FV
Se

cu
ri

ty
W

G
w

or
k

ite
m

s
to

th
e

pr
ob

le
m

s
in

th
e

se
cu

ri
ty

pr
ob

le
m

st
at

em
en

t

To
po

lo
gy

va
lid

at
io

n
&

en
fo

rc
em

en
t

A
va

ila
bi

lit
y

of
m

an
ag

em
en

t
su

pp
or

t
in

fr
as

tr
uc

tu
re

Se
cu

re
d

bo
ot

Pe
rf

or
m

an
ce

is
ol

at
io

n
U

se
r/

te
na

nt
A

A
A

Pr
iv

at
e

ke
ys

w
ith

in
cl

on
ed

im
ag

es

B
ac

k-
do

or
s

vi
a

vi
rt

ua
liz

ed
te

st
&

m
on

ito
ri

ng
fu

nc
tio

ns

M
ul

ti-
ad

m
in

is
tr

at
or

is
ol

at
io

n
C

at
al

og
ui

ng
se

cu
ri

ty
fe

at
ur

es
in

m
an

ag
em

en
t

so
ft

w
ar

e

*
*

*
*

R
ep

or
to

n
la

w
fu

l
in

te
rc

ep
tio

n
im

pl
ic

at
io

ns

*
*

*

R
ep

or
to

n
ce

rt
ifi

ca
te

m
an

ag
em

en
t

*
*

R
ep

or
to

n
at

te
st

at
io

n
te

ch
no

lo
gi

es
an

d
pr

ac
tic

es
fo

r
se

cu
re

de
pl

oy
m

en
ts

*
*

*

R
ep

or
to

n
us

e
ca

se
s

an
d

te
ch

ni
ca

la
pp

ro
ac

he
s

fo
r

m
ul

ti-
la

ye
r

ho
st

ad
m

in
is

tr
at

io
n

*
*

*

Se
cu

ri
ty

re
po

rt
on

N
FV

L
I

ar
ch

ite
ct

ur
e

*
*

*
*

Sy
st

em
ar

ch
ite

ct
ur

e
sp

ec
ifi

ca
tio

n
fo

r
ex

ec
ut

io
n

of
se

ns
iti

ve
N

FV
co

m
po

ne
nt

s

*
*

*

Se
cu

ri
ty

m
an

ag
em

en
t

an
d

m
on

ito
ri

ng
sp

ec
ifi

ca
tio

n

*
*

*

*
T

he
as

te
ri

sk
in

di
ca

te
s

th
at

th
e

pr
ob

le
m

in
th

e
gi

ve
n

co
lu

m
n

is
ad

dr
es

se
d

in
th

e
sp

ec
ifi

ca
tio

n
in

th
e

gi
ve

n
ro

w
.

2 NFV Security: Emerging Technologies and Standards 53

Data Center

Data Center

Data Center

DMZ 1 DMZ 2 Trusted but Vulnerable Zone Trusted Zone

• Hypervisor
Controls

• Secured boot
• A�ested

configura�on

Virtual Firewall

Hosted Applications

Virtualized Network Zones

Platform

Network
Protection
(Firewalls)

Virtual Load
Balancer DoS

mitigation

DNS…
5G Applica�ons

On-the-fly X.509
Certificates

Security as
a service

Fig. 2.4 Bootstrapping trust

HBRT. Once booted, we can maintain the same level of security by applying all
software patches and otherwise following the best industry practices for security
hardening.

At the same time, we have to ensure that the physical network inside the data
centers is secure and that access to it is adequately protected. The word “adequately”
implies adherence to the operator’s security policy.

As the hypervisors start building their own local area networks, we must ensure
that the respective configurations adhere to the appropriate security policies and,
once deployed, remain unchanged (except for controlled changes sanctioned and
performed by the operator). This can be achieved by employing remote attestation.

At this point, we can extend the trust chain to the next plane, in which we place
virtual network appliances—firewalls, SDN controllers, load balancers, and so on—
and develop trust zoning in the virtualized environment. This also includes hosted
environments, and so various networks can coexist now founded on the trust within
the platform.

Subsequently, this chain will extend toward the applications (such as fifth-
generation mobile applications) of the upper plane. Incidentally, the security
services deployed at the upper plane (for example, identity management services)
can be used now further to strengthen the security of the physical plane—this
recursive nature of developing and chaining trust should be fully leveraged.

Having developed the intuitive view, we can take a look at the standards work
in this area. The first document [11] gives a high level but systematic review of

54 I. Faynberg and S. Goeringer

establishing trust and the security controls in the life cycle management of the virtual
network function component instantiation (i.e., a virtual machine that implements a
part of a network function).

In fact, the very start of the life cycle—the creation of such a machine—can
take different forms; a machine can be instantiated from a pre-built image or from a
cloned image of another machine (in which case it may carry into its new a life
the old baggage of security problems). Consequently, virtual asset tracking and
audit records as well the networking-related data, security credentials, and software
licensing information—just to list a few examples—need to be verified and, in some
cases, updated.

Similarly, removal of a machine follows the same steps, but here, additional
actions may be required for secure wipe and verified destruction of data.11 Fur-
thermore, removal has to be verified across backed-up images and cloned images.
As the private keys are destroyed, so should the respective certificates be revoked.
Needless to say, all these steps must be properly logged.

Of course, it is not only the “beginning of life” and “death” processes that
require such scrutiny; the lifetime maintenance is actually much more involved
with ensuring consistent (across hosts and data centers) patching and configu-
ration changes. An implementation of an ingenious virtualization feature—live
migration—must address memory reuse, feature parity, configuration compatibility,
and service availability.

But what is trust after all? It is defined in [11] as “confidence in the integrity of
an entity for reliance on that entity to fulfil specific responsibilities.” Typically, trust
is expressed through an assurance level based on specific measures, but it may be
expressed merely through a relation (as is in A trusts B more than C).

With that, trust is temporary. (For instance, once booted, a hypervisor may be
trusted for no longer than it is running; the trust has to be reestablished at the next
boot.) The other constraining characteristic of trust is the context. A may trust B to
know a parameter’s value but not to change it. The trust may also be delegated.12

Some examples of parameters for measuring trust in NFV presented in [11] are
software integrity, geographical location, hardware capabilities, and time elapsed
since last audit.

Among well-known examples of trust relation is that established by a party with
a certification authority (CA) in public key infrastructure. From that, a chain of
trust is formed to the entities that are issued certificates by this CA. Specific to
NFV, as we saw in the Security Problem Statement, is a matter of provisioning and
storing the private keys. The techniques mentioned in [11] include the injection of

11An important point to remember is that certain data may need to be retained, for regulatory
reasons (such as lawful interception). For detail, see [12].
12Trust delegation is typically established for the purposes of authorization. An example: when a
person wants to use a printing service to print photos available on a social site, this person delegates
the authority to do so to the printing service. We will see a detailed example when reviewing the
OpenStack security below.

2 NFV Security: Emerging Technologies and Standards 55

the private key by a hypervisor as well as the reliance on the HBRT.13 In view of
the “private key in images” problem discussed earlier, the hypervisor injection is
a solution to it. Incidentally, the hypervisor trust is implicit in virtualization, and
therefore, validating the hypervisor is the first and most essential step in the grand
scheme of the NFV trust establishment.

Developing of a trust chain starts with the trustworthy boot, which, according to
[11], “encompasses the technologies and methods for validation and assurance of
boot integrity.”

This term was defined to differentiate from earlier industry terms: the secure boot
and measured boot. With secure boot, the integrity checks are based on the known
hardware-based roots of trust. The booting process stops when integrity check fails.
With measured boot, the integrity state is merely recorded without affecting the boot
process. This state is checked by a verifier after the boot is complete, and it is up to
the verifier to validate it and assign the appropriate level of trust.

The trustworthy boot process can use any of the existing boot types either alone
or in combination. One overarching requirement here is that the virtual network
function manager is assured that the boot process of the VNF component instance
has completed.

The interpretation of the results of the process is not simply “black or white,” as
in the case of secure boot. Booting can still be allowed, but with reduced privileges
and restricted access to certain hardware. Handling of failed integrity checks is
subject to respective policies.

As a hypervisor is aided by the on-the-chip TPM, which cannot be directly used
by the operating systems of the virtual machines, virtual TPMs can be created—
under control of the hypervisor. There is a certain amount of controversy in the
industry whether a virtual TPM can be trusted, and [11] neither prescribes nor
proscribes its use.

Now we can delve into what should constitute the trust measurements in the NFV
environment and how the remote attestation of this environment is performed. Here
we report on the research results rather than a standard as, at the moment of this
writing, the respective work in the NFV SEC Working Group is still in a progress,
and so the resulting specification [13] is still in its draft form.

Attestation is formally defined in [13] as “the process through which a remote
challenger can retrieve verifiable information regarding a platform’s integrity state
[TCG PCSISCB].” The term remote attestation is often used in the industry to point
out that the attestation process is to be observed by a geographically remote party
(a challenger)—not only by someone at the console of a host. Thus, even though
there is no suggested central use of attestation at the moment, the notion lends itself
naturally to an operations and management environment in which the whole of a
provider infrastructure can be measured and attested to.

The platform’s integrity information is delivered to a challenger in the form of
a measurements log. One immediate difficulty here is that such a measurement log
is generated by the software that is being measured. Since the challenger is trying

13The detail of this is not elaborated on and “left for further study.”

56 I. Faynberg and S. Goeringer

Core Root of Trust
for Measurements

Hypervisor

OS

Interpreted
Execution

Environment

Application
program

Application
program

Virtual Network Function Component Instantiation A

OS

Type-2
Hypervisor

Application
program

Application
program

Virtual Network Function Component Instantiation B

Boot Loader

Fig. 2.5 Establishing chains of trust

to ascertain whether this software can be trusted, it is follows that it is necessary to
establish a chain of trust first and then maintain the evidence that the measurement
log has not been tampered with.

The chain of trust is developed recursively, as shown in Fig. 2.5.
The process starts with establishing the Root of Trust for Measurement (RTM).

The boot loader is measured using the Core Root of Trust for Measurement (CRTM)
whom everyone and everything trusts. When the boot loader is executed (after
having been measured and approved for execution), it inherits from the CRTM
transitive trust and thus becomes the first node in a trust tree. Every path in
this tree—traversed from a leaf to the root—forms a trust chain. At this point a
hypervisor or an operating system (in the case of non-virtualized environments
where containers are run instead of virtual machines) is similarly measured and
then booted, joining the trust chain. Similarly, once the operating system runs, an
interpreted execution environment (such as Java execution environment) or a type-2
hypervisor can in turn be measured and approved for becoming a link in the trust
chain, thus being able to measure the application, which could in turn measure its
software components.

As we have already mentioned, the hardware and network configuration of the
platform must be measured and verified to provide the holistic view of the platform
security.

At the moment, the industry proposes six levels of assurance (LOAs) for the NFV
[13]. In the first five LOAs, each subsequent level contains all the checks performed
for the previous levels and then the additional ones that go deeper in checking the
corresponding link in the chain. The sixth level checks the infrastructure network.

In relation to the last point, [13] provides an example of how a TPM can be used
to verify SDN and otherwise extend the network function’s attestation features to
report on the current SDN configuration.

2 NFV Security: Emerging Technologies and Standards 57

To effect that, the SDN verifier retrieves from the SDN controller the configu-
ration of the attested network element, measures it, and then compares it with the
attestation result.

The last example is a special type of run-time attestation, which is the attestation
performed on a running program. It is fairly easy because what is measured here is
a specific data segment of a program, which is not supposed to be modified. With
the general programs, the problem is much harder and remains a topic of active
research. (See [14] for the problem description, bibliography, and a description of a
prototype implementing a partial solution.)

2.5 Lawful Interception and the Environment for
the Execution of Sensitive Components

Lawful interception (LI) concerns two aspects of communications: the intercept-
related information (IRI) (which can be anything but the actual content—that is
signaling, call information, log record information, etc.) and the actual content of
communication (CC) in the form of streaming traffic.

The related data are acquired through the point of interception (POI) in the
operator’s network, whose precise location must be handed by the network operator
along with the above data.

An operator is expected to support three interfaces called HI1, HI2, and HI3,
which are, respectively, used for administration, IRI, and CC.

LI can take place only when requested by an authorized law enforcement agency
(LEA). With that the POI must be physically present in the jurisdiction in which
the law enforcement has authority, and it is a requirement that the network operator
must ensure this. This requirement has an implication for the NFV—specifically for
the NFV orchestration and management system—in that the function component
that implements POI must always be deployed on the hardware located within the
appropriate jurisdiction.14

The next major LI requirement that constrains NFV is that of LI being unde-
tectable. All the LI data—and the very fact that the LI takes place—must be
contained within the jurisdictional borders and protected from exposure to anyone
except those authorized to have access to it by both the law enforcement agency and
the network operator.

To summarize, the high-level LI requirements are as follows:

• The LI service capability must always be available.
• The LI service must be activated upon issuing a valid interception order from law

enforcement.

14We can see now how remote attestation of geographic attributes can be useful in meeting this
requirement.

58 I. Faynberg and S. Goeringer

• The LI service must be deactivated when the interception warrant expires (or
earlier, if requested).

• The LI service must be invoked on any communication authorized for intercep-
tion from or to the target visible to the network.

• Interrogation (in the form of operations and management queries) can be
admitted only by an LI interface administrator authorized by both the network
operator and the law enforcement agency.

• An authorized user for the purposes of interrogation is one who is allowed and
authorized by both LEA and the CSP to administer the LI interface.

• LI must not visibly interact with other services (in order to ensure that it is only
visible to authorized entities).

For the detail of handling encryption, identities of potential and actual interlocu-
tors, triggers for sending the IRI, and parameters to be enclosed, see [15].

As we noted earlier, the “interrogation” requirement poses a problem in the
virtualized environment because of the administrative access to the hypervisor
introspection capabilities. As [15] states: “It is very unlikely that the administrator
of a conventional hypervisor or orchestrator will be authorized as an interrogator
who should be allowed to know that the LI function is activated, and against whom,
as information that has to be strictly controlled.” The problem is further amplified
by the potential capabilities of the analytics software to infer the presence of LI.

The actual LI architecture for virtualized environment is being specified in [16],
and the current consensus15 of the NFV Security Working Group is summarized in
Fig. 2.6.

The LI virtual machine (LI VM) is to be placed at the optimal POI in the CSP
infrastructure to intercept the target traffic. The LI VM then passes the intercepted
traffic to the LI Mediation Function (MF)/Delivery Function (DF), which, in turn,
frames the traffic in the standard format and then forwards it to the Law Enforcement
Monitoring Facility (LEMF) in LEA. There is a range of present implementations of
the MF/DFs: from a single MF/DF per POI to an MF/DF being a large concentration
point serving multiple POIs.

This is as much as we can say here about handling the LI data. But what about
management and control?

The first element here is the Administrative Function (ADMF), imported from
the legacy environment, which is responsible for administering target warrants
and instructing the POI and MF/DFs to take the actions necessary to capture
communications of a given target. To perform this function, the ADMF must
keep the database of all POIs and MF/DFs under its control. This database is
effectively built by the LI Controller (LI CTRL), another entity exported from
legacy environment, which is responsible for the activation, configuration, and
audit of the POIs, as well as for notifying the ADMF that a POI is ready for
interception. In the NFV environment, the ADMF has to adapt dynamically to the

15As of December 2016.

2 NFV Security: Emerging Technologies and Standards 59

Fig. 2.6 (Draft) LI architecture in virtualized environment (a simplified version of Fig. 6-2-2 of
[16])

newly instantiated (or migrated) POIs and MFs. This can be achieved only through
some form of cooperation with the NFV management and orchestration.16

In the NFV environment, as [16] observes, “it may be desirable for security
reasons to place the MFs outside of the NFV platform in which the LI POIs are
implemented. However as the LI POIs move and change in scale, this may make
the routing complexity required to backhaul traffic from the LI POIs to the MF/DFs
unacceptable. It would potentially be difficult to adequately hide the routing/traffic
flows in an SDN connectivity environment.” This backhaul problem (known as
“trombone effect”) is essential for understanding the complexity of the SDN and
NFV interactions. This is an open problem. Even though it has first manifested itself
during the LI case study, it is likely to arise in other use cases.

In terms of the infrastructure development, [16] suggests that either LEMF be
moved into the CSP or a trusted third-party proxy be used to represent the LEMF in
the CSP. One problem with implementing this is that national security requirements,
which differ across the LEAs, might make this difficult to achieve.

The consensus on the nature of the ADMF is clear. As the ADMF is the root
of trust and central point of control, [16] recommends that it be implemented “as
standalone hardware which is fully separated from the NFV platform hosting the
VNF POIs.”

Finally, as far as the respective interfaces (or, reference points, in the standards
parlance) are concerned, Fig. 2.7 should give a reader a good idea of the current
consensus on the subject.

16Several such scenarios are discussed in [16].

60 I. Faynberg and S. Goeringer

ETSI NFV

Virtualised Network

X1_2-NFV

LI-ADMF

LEMF

LI
Controller

MANO

ORCH

Ve-Vnfm

Or-Smas-Li

Sctl-Vnfm-Li

Ctl-Vi-LiNf-Vi

VNFM

VIM

HI-1
HI-2
HI-3

X1_3-NFV

Li-Os-1

Virtual Pol

Virtual

vMF/DF

VNF (vPol) VNF (vMF/DF)

vPol

Fig. 2.7 LI reference points (Fig. 6.5-1 of [16], Draft)

Unfortunately, the space limit of this chapter does not allow us to go into detail
of various deployment scenarios (and their respective vulnerabilities and controls).
We refer a reader to [16].

We note one particular scenario—the one called the “POI VNF Embedded,”
in which the POI is part of a VNF. This, of course, is the ultimate NFV-based
use case. [16] notes that this scenario, when implemented in conjunction with
the security mechanisms for the execution of sensitive components, “most closely
provides an equivalent level of LI capability and security to that of an ‘on-switch’
legacy hardware implementation : : : [which] should address most national security
requirements.”

This naturally brings us to the subject of the implementation. As should be
obvious to a reader now, in order to meet the most basic requirements of LI,
the platform must provide both specialized hardware and the capabilities for
implementing special security controls.

These have been addressed in [17] in terms of the overall platform hardware and
software requirements as well as the life cycle maintenance requirements, system-
hardening mechanisms, and identity management controls.

The major requirement is the presence of the HBRT, which is tamper-resistant
and tamper-evident and whose interfaces to other hardware components are
protected—to a level established by a certification process—from eavesdropping,
manipulation, and replay attacks.

2 NFV Security: Emerging Technologies and Standards 61

With that, a control must be present to restrict (e.g., halt) booting “if assistance
from the HBRT is not available or the HBRT currently does not contain valid
cryptographic material.”

As the HBRT is first and foremost serves as the identification of the platform, it is
essential that it be an irremovable part of the host hardware. Any attempt to tamper
with the HRBT itself or separate it from the host, must be detected and reported.

An essential task of the HBRT module is key management, which includes
creation and deletion of cryptographic keys. HBRT must store the cryptographic
material in a “shielded” (i.e., physically protected from an unauthorized access)
location. Based on these capabilities, the overall key management system, which
also includes access right management, is developed. An essential requirement
in terms of services based on HBRT is that the “host system shall provide
cryptographically separated secure environments to different applications.”

The core software requirements presented in [17] are based on the premise
that the HBRT, with the valid cryptographic material be present and its services
available. Otherwise, the booting procedure must prevent running of workloads.

With HBRT firmly present, the hardware and software of the system can be
molded into the foundation called the trusted computing base (TCB). A number
of requirements in [17] concern the life cycle of the operation in the presence of
the TCB. One of these requirements is that the host system strictly authorize the
use of potentially dangerous capabilities (such as memory sharing among virtual
machines), with the established default that none such capabilities be available.

The run-time techniques are prescribed to ascertain the level of integrity such of
running machines and their respective file systems. This is performed by specialized
agents, but those can be also compromised, and so the external behavioral monitor-
ing is also recommended. To run software in a stealth mode, [17] suggests the use
of hardware-mediated execution enclaves.17

As far as cryptographic algorithms are concerned, [17] has both prescribed
and proscribed a number of them, referencing the ISO/IEC standards and the
NIST specifications. For communications security, the latest stable versions of the
application and network protocols are prescribed.

Further to life cycle-related requirements, [17] refers to a set of prescribed
system-hardening and logging techniques, including the operating system-level
access and confinement controls as well as physical controls and alarms. The
attribute-based access control defined by NIST is declared mandatory. In addition,
logging controls are recommended. At the end of the workload life cycle, secure
wipe of the relevant storage should be performed. Making provisions for a rainy
day, [17] specifies a set of requirements for dealing with the failure conditions.

17This term is rather loosely defined in the NFV, but the authors have ascertained two firm
implementation examples: (1) that of the Intel’s Software Guard Extensions (SGX) (https://
software.intel.com/en-us/sgx) and (2) a joint proprietary implementation developed by ARM and
Apple (https://www.quora.com/What-is-Apple%E2%80%99s-new-Secure-Enclave-and-why-is-
it-important).

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.quora.com/What-is-Apple%E2%80%99s-new-Secure-Enclave-and-why-is-it-important
https://www.quora.com/What-is-Apple%E2%80%99s-new-Secure-Enclave-and-why-is-it-important

62 I. Faynberg and S. Goeringer

While the requirements for the execution of sensitive components naturally apply
to the hosts, there is a natural dependency on the operations and management
systems (e.g., Management and Orchestration [MANO], attestation authority, cer-
tificate authority, or logging systems) to act in concert supporting and enforcing the
NFV provider-wide compliance with the requirements.

2.6 Security Management andMonitoring

The draft specification [18] is still under development at the time of this writing. A
number of factors have been shaping it, and the authors feel that explaining these
factors (and also providing some history) will help with understanding the resulting
standard.

The work on the subject, or rather the monitoring part of it, started in 201418. The
initial objective was to define a security monitoring framework that would provide
sufficient material to which analytics could be applied to detect attacks.

The first plan was concrete: to consider specific use cases (such as the IP
Multimedia Subsystem (IMS) and the Evolved Packet Core (EPC) environment) that
were of immediate concern to network operators, develop the monitoring solutions
for those use cases, and then derive the generic architecture that would support
security monitoring for all of these use cases.

But in the beginning of 2015, a proposal for the work on developing an active
security management (as opposed to just monitoring) framework came. There was
unanimous agreement that the work should proceed, but specifying active controls
separately from the mechanisms that trigger them did not make much sense and so
the scope of the monitoring work item. As a result, the new work item19 was created,
resulting in a numbering gap, but this was the least controversy.

Over the 2 years of the development of this work (which is expected to be
completed in 2017), significant questions were raised as to what should be visible
to the monitoring software and what actions it may take. As a reader has probably
inferred from the previous section, lawful interception requirements pose a major
problem. For one thing, the copied stream would be perceived as anomaly (perhaps
even an attack) by a monitoring system, and so all the attributes of an operation
that is supposed to be secret would be divulged. Even worse, any action to stop this
“attack” would interfere with the lawful interception traffic.

Hence the overarching principle that security management should be confined
within a trust domain. The latter has been defined in [18] as “a collection of entities
that share a set of security policies.” Actually, lawful interception is not the only
case where trust domain separation—and the confinement of security management
to its own a trust domain—is required. Another such case is when a provider of

18As part of now extinct work item 8 (https://portal.etsi.org/webapp/workProgram/Report_
WorkItem.asp?wki_id=45992).
19Work item 12.

https://portal.etsi.org/webapp/workProgram/Report_WorkItem.asp?wki_id=45992
https://portal.etsi.org/webapp/workProgram/Report_WorkItem.asp?wki_id=45992

2 NFV Security: Emerging Technologies and Standards 63

the NFV infrastructure hosts a network operator. Naturally, the NFV infrastructure
provider’s concern is the security of the infrastructure, and so the job of the security
management software is to enforce these policies rather than secure the operations of
the hosted operator. The hosted domain operates under a different set of policies. It
may require its own security management operation to enforce those. Alternatively,
the infrastructure provider may deliver security management as a service, but in
this case, its operation will be distinct from that of the security management of the
infrastructure.

There is a detailed discussion in [18] of the use case in which the IMS is deployed
on the infrastructure that belongs to a single operator but consists of multiple trust
domains.

The life cycle of security management, according to [18], is recursive in that
it employs three processes (called phases), which run concurrently and influence
one another. The operation starts with the security planning phase, in which the
security policies are specified for the respective trusted domain. Then, in the security
enforcement phase, the policies are deployed, at which point the security monitoring
phase kicks off. The latter observes whether the policies are followed and reports
violations to the security enforcement phase, which sends back the updates. Security
monitoring may also pass to the security planning phase the request for changes in
policies (as, for example, may be required in order to optimize security operations).

We introduce the security management framework, the following discussion
accompanied by Fig. 2.8, with the warning to a reader that this is still a work in
progress. Some nuances, which will point out in due time, remain to be worked out
before the standard is published.

Following the MANO model, [18] defines the VNF layer security function
(VSF) for security management of a specific function, a (subordinate) VNF instance
security function (ISF) and—to take into account the remaining un-virtualized
physical network functions in legacy operations—the physical security function
(PSF).

Lest these definitions sound too abstract, [18] provides examples of the VSF, of
which we list two: (1) a firewall and (2) a tap for monitoring. The two examples of
the ISF are an appliance provided directly by a hypervisor and a hardware box (an
HSM, or TPM, or a crypto accelerator).

As far as the management is concerned, there are three blocks. First is the block
of traditional security element managers, which enable the NFV security manage-
ment functional block (NSM-FB)—depicted at the top of the figure. The NSM-FB
is in charge of the overall security management. The three phases described earlier
are exactly the processes it manages. The NFVI security management functional
block (ISM-FB), depicted as part of the MANO virtual infrastructure manager,20 is
responsible for the horizontal management of the virtualization layer. There is a set
of requirements specified in [18] that govern the operation of these entities.

20This depiction is likely to change as some participants in the NFV Security Working Group share
the opinion that security management should not be performed by MANO.

64 I. Faynberg and S. Goeringer

Fig. 2.8 (After Fig. 6.3-1 of [18]): Security management framework

Without going into the detail, we conclude this section with the note that [18] also
defines a separate functional architecture for monitoring. Within this architecture a
set of services and a protocol are specified for bootstrapping the trust for the whole
infrastructure assuming the existence of the trust chain extending to virtual network
functions.

2.7 Analysis of theOpenStack Security

The work on analyzing the OpenStack security was set up at the ETSI NFV Security
Group at a very early stage, as the second work item after the NFV Security Problem
Statement.21 The work resulted in the publication of [19]; its findings communicated
to OpenStack whose contributors were actively involved in writing this document.

Before introducing the findings of [19] (which assumes familiarity with the
OpenStack architecture), the authors feel that an introduction to the architecture

21In fact, for the first 2 year of its existence, the group was an expert group (rather than a working
group—the status achieved in 2015). As an expert group, the security group was not expected to
produce its own documents except for the Problem Statement. Yet, the founders felt that a bottom-
up study was necessary both to develop a sound standard and to influence OpenStack.

2 NFV Security: Emerging Technologies and Standards 65

is in order. The OpenStack documentation, available at http://www.openstack.org/,
is somewhat overwhelming as a first reading because of the sheer amount of detail.
This is distilled to a more basic form in [4], to which we refer a reader. Here, we
briefly list the most essential facts.

The foundation software components of the OpenStack deal with compute
(i.e., host administration), networking, and storage. These are governed by the
management functions, which include those of orchestration and identity and access
management (to be addressed in the last section of this chapter).

The part of a component that implements an HTTP server (and is thus accessed
via a API) is referred to by the OpenStack documentation as a service.

Each component is associated with a separate project in charge of its software
development. The names of components and their associated projects are used
interchangeably in the OpenStack documentation.

The compute component (developed in the project called Nova) contains func-
tions that govern the life cycles of all virtual machines. Within the compute,
the controller processes—the cloud controller, volume controller, and network
controller—take care of the compute resources, block-level storage resources, and
network resources, respectively.

The networking component (developed in the Neutron project) is concerned with
enabling network connectivity for all other components. The services provided by
this component support network connectivity and addressing. The native Neutron
software presently supports configuring the TLS support for all API and implements
Load-Balancer-as-a-Service (LBaaS) and Firewall-as-a-Service (FWaaS).

Neutron also allows to create routers, which are gateways for virtual machines
deployed on the nodes that run the Neutron L3 agent software. Among other things,
the routers perform NAT translation for the floating IP address—the public IP
address that belongs to the cloud provider. It is a unique feature of the Neutron
design that this address is not assigned through Dynamic Host Configuration
Protocol or set statically. In fact, the guest operating system is unaware of it as
the packet delivery to the floating IP address is handled exclusively by the Neutron
L3 agent. That arrangement provides much flexibility as the floating (public) and
private IP addresses can be used at the same time on any network interface.

To deal with detailed network management, Neutron supports plug-ins—among
them that for SDN software. The plug-ins run in the back end. The front-end REST
API allows, among other things, to create and update tenants’ networks as well as
specific virtual routers.

As far as storage is concerned, there are two projects in the OpenStack: Swift and
Cinder. The former deals with unstructured data objects, while the latter provides
access to the persistent block storage (here again, there is room for plugging in other
block storage software).

Also related to storage—of a rather specialized type—is the service component
(developed in the Glance project). True to its name, the service deals with storing
and retrieving the registry of the virtual machine images. The state of the image
database is maintained in Glance Registry, while the services are invoked through
Glance API.

http://www.openstack.org/

66 I. Faynberg and S. Goeringer

Controller Node

Resource database
Message queue server
Cloud controller
Network controller
Volume controller
Scheduler
CLI server
Portals to

Image services
Storage services
Identity and Access Management
Dashboard API server
Orchestration API and engine
Telemetry Collector and database

Hosted VMs

(Hypervisor)
Compute Drive

Compute Agent

Glance registry
Telemetry agent

Telemetry Agent

Telemetry agent

Image Node

Compute Node

Storage Node

Fig. 2.9 Deployment example

The authentication and access authorization component is worked in the Open-
Stack Keystone project, which governs the identity and access management. Need-
less to say, this function was a centerpiece of the security-related study.

Finally, there are three management and orchestration components. The user
interface is available both in the “old” CLI form and through the web-based portal,
the OpenStack Dashboard, developed as part of the OpenStack Horizon project.
Two other components are (1) telemetry, developed in the OpenStack Ceilometer
project, which is in charge of metering (achieved through monitoring) and (2)
service orchestration, developed in the OpenStack Heat project.

To give a reader the feel for how these components may be deployed on physical
architecture, Fig. 2.9 introduces a four-node deployment example.

The compute node is the workhorse of a data center—this is where the virtual
workload is deployed. A compute node also runs various applications that belong
to the management infrastructure. Some of these applications—called agents—
initiate interactions with other components (and so act as clients); others respond
to communications initiated elsewhere (and so act as servers). An agent can also be
both a client and a server.

The compute agent creates and deploys virtual machines. It acts as a server to the
scheduler (located at the controller node), but it acts as a client when dealing with
the central resource database, image node and storage node, which, respectively,
maintain the Glance image registry and either type (block or object) of storage.

The telemetry agents, present in all three nodes, collect the performance data
used in orchestration.

Finally, the controller node is in charge of cloud management. To begin with, it
contains the global resource database. This database is replicated in all practical

2 NFV Security: Emerging Technologies and Standards 67

Storage Network

Compute
Node

Compute
Node…

Controller

Controller

…
Storage node

Storage node

…

Command and Control Network

(Public) Floating IP Network

To the
Internet

Private Network

Fig. 2.10 Physical network isolation in OpenStack

deployments—for scaling reasons, and thus it needs a front-end (called Nova
conductor), which handles the compute agent interface.

The scheduler is in charge of the placement function. It makes the decision on
where (i.e., on which compute node) a new virtual machine is to be created and on
which storage node a new block storage volume is to be allocated. For scheduling,
the Nova scheduler is employed and for storage, the Cinder scheduler.

The Message Queue Server is the communications center for the messaging
among the OpenStack API servers representing its components.

The practical deployments follow the principles of isolation outlined in the NFV
Security Problem Statement. A typical deployment in a cloud data center is depicted
in Fig. 2.10.

There, four networks are completely separate from one another:

• The storage network, which is intended only for accessing storage (and thus
interconnects only the compute nodes and storage nodes)

• The private network, which exists only for communications among the hosted
virtual machines

• The command-and-control network, which supports orchestration and manage-
ment

• The public network, which allows connection to the Internet and which, for this
reason, employs floating IP addresses

68 I. Faynberg and S. Goeringer

Keeping these networks separate, in addition to aiding security, also help
to differentiate the network capacity among the components as their respective
bandwidth demands are different.

As we mentioned earlier, [19] addresses all but one problem of the Security
Problem Statement. The space of this chapter does not allow us to go into any detail
here, except for the most important part—the identity management.

The rest of this section follows [19] in describing Keystone, which, again, is the
component that provides centralized authentication and authorization services. As
such, it controls access to all API consumed by the rest of OpenStack components.

Keystone works as follows. A user is first authenticated by Keystone.22 If
authentication passes, the user is given a temporary token, which is to be included
in all subsequent service requests. The authorization decision is made based on the
user’s role.

Keystone is organized as a library of internal calls (HTTP requests), which
comprise the identity service, token service, and catalog service.

The identity service handles user authentication and user-data validation. Among
the constructs used here are the user, project,23 and user-group identities and
the role, whose value is the set of resource access rights. The identity service
supports basic operations (e.g., create, read, update, and delete). It allows plug-
ins for authentication and authorization via a back end module (such as Lightweight
Directory Access Protocol (LDAP) servers or an SQL database server, the latter
being the default).

The token service supports token management and validation. It relies on a
database to store tokens and the token-management data, such as token revocation
lists, token lifespan, and token scope—the set of projects and roles associated with
the user. Initially, at the authentication time, the token is unscoped as no scope
is yet defined. The scope of a token is determined by a combination of projects
and roles associated with the user. An unscoped token may be issued during the
initial authentication of the user, which can then use the token to discover accessible
projects and then exchange it for a scoped token.

The token service ensures that tokens be protected from unauthorized access or
alteration. Several types of tokens are supported, including public key infrastructure
(PKI) (that assume the existence of PKI infrastructure) and the universally unique
identifier (UUID), the latter type—defined by the IETF in [20]—being the default.
The PKI-type tokens are verified based on the RSA signatures; the UUID tokens are
merely random strings. We will discuss both types in more detail in a moment. It
is important to note right away that both types of tokens are bearer tokens; in other
words, a token is a magic wand—whoever possesses it has all the rights associated
with it. It follows that it is essential to safeguard a token, for which OpenStack
makes special provisions.

22Keystone provides the flexibility of employing an external authentication system.
23A project is defined as a specific set of OpenStack resources.

2 NFV Security: Emerging Technologies and Standards 69

The catalog service manages the registry of all OpenStack services, supporting
the service discovery—including the discovery of addresses of the respective
servers. The region is where a server is located, and the characteristic of a server
(i.e., public, internal, or administrative) is an attribute that can be defined here, and
it is also possible to specify tenant-specific endpoints. As a reader may recall, this
feature is essential for meeting the separation requirements for multi-administrative
domains.

An important feature of OpenStack is that access permissions can be delegated.
See [4] for the explanation and use cases. The construct for delegation is called a
trust. The trust is implemented as an augmented token, where the delegation-specific
information is added. It is created by the delegating party, called a trustor, and issued
to the trustee. The trustor can revoke a trust that it had created.

The scope of the trust is limited to the set of rights that are being delegated. Once
created, a trust cannot be changed. Unlike the tokens, the trusts may have unlimited
lifetime. This feature is important since it is often unknown when a delegated
operation needs to take place. If the lifetime is specified as infinite, the trust is valid
until it is revoked. The original trustor can allow re-delegation, in which case the
trustee may, in turn, become a trustor and delegate the rights it acquired as a trustee
to another trustee.

Let us illustrate the use of the UUID and PKI tokens with a (simplified) workflow
for provisioning a virtual machine.

We consider the UUID case fist. The workflow starts with the user agent, say
Horizon, being authenticated by Keystone and, as a result, issued a token in the
form of a unique string. (Keystone, which is the only entity that can validate the
token, keeps a database, in which the string is associated with the user information.)
To create a virtual machine, Horizon sends a request to Nova, enclosing its token.
To understand whether the request is valid, Nova has to send it back to Keystone
(enclosing its own token so as to allow Keystone to authenticate the transaction).
Now Keystone has to look up the date associated with both tokens, first to ensure
that the validation request actually came from Nova and, second, to validate that
the token passed to it indeed belongs to Horizon and that Horizon has the right to
create a virtual machine of the requested type. If all is well, Keystone will respond
to Nova positively. We can see that for this transaction, Keystone had to perform
two database look-ups. In reality (see [4] for the actual example of what is involved
in the actual process of creating a virtual machine), Keystone needs also to talk to
Glance and Swift. A reader can see that always going through Keystone make create
a performance bottleneck. Again, this is because, UUID tokens can be validated only
by Keystone.

In contrast, a PKI token is self-contained. Its structure is depicted in Fig. 2.11.
In this structure, the roles in the domain SuperTel are specified as well as the

authentication method. The token is protected by the Keystone signature, which
can be verified using its certificate. Thus the token can be validated by the receiver
without going to Keystone, which eliminates the potential bottleneck and fixing the
problem caused by the UUID tokens.

70 I. Faynberg and S. Goeringer

"expires_at": "2017-07-27T22:52:58.852167Z",
"issued_at": "2016-11-27T21:52:58.852167Z",
"methods": ["password"],
"domain": {

"id": "3b7650cecd974bf08041328b53a62458",
"name": “SuperTelNFV"

},
"roles": [{

"id": “7ae2ff9ee4384b1894a90878d3e92bab",
"name": "admin“
}
],

"user": {
"domain": {

"id": "3b7650cecd974bf08041328b53a62458",
"name": “SuperTelNFV"

},
"id": "3ec3164f750146be97f21559ee4d9c51",
"name": “EntitledUser"

}
}

}

Fig. 2.11 A PKI token structure

Unfortunately, nothing is simple. The problem is that the size of a PKI token
can grow beyond the limit allowed in the HTTP header. This constrains the use of
PKI tokens, and OpenStack, after temporarily making this type of a token a default,
reverting the default back to the UUID format.

2.8 Conclusion

This chapter addresses the network function virtualization (NFV) security while
reflecting on the work of the ETSI NFV Security Working Group (NFV SEC WG),
and the industry view it has formulated in the past 4 years. The chapter has explained
the differences between the “generic” cloud and NFV and discusses the security
threats as well as new benefits for security provided in the NFV environment. The
chapter further explained how trust is bootstrapped from hardware and established
among the execution components and introduced the current work on the remote
attestation. The requirements and architecture for lawful interception (LI) in the
NFV environment, as well as the security monitoring and management in the NFV
environment, are treated in much detail. Finally, a separate section is dedicated to
the analysis of the OpenStack security. There is substantial bibliography offered to
a reader who wishes to understand the background and minute detail of the subject.

2 NFV Security: Emerging Technologies and Standards 71

2.9 Review Questions

1. Explain how the NFV environment differs from the generic cloud environment
and list as many NFV security challenges and benefits as you can.

2. Explain how the NFV and SDN rely on each other’s features in delivering
network services and explain the security problems related to service chaining.

3. Explain why hypervisor introspection presents a problem for LI. What is being
done to deal with this problem (name specific hardware components)? How can
the proposed solution be applied to solving other (non-LI-related) problems?

4. Explain the differences between the TPM and HSM, and give one example for a
typical use of each of these two modules.

5. Explain why remote attestation is needed and outline its steps.
6. Outline the architecture for the delivery of security management and monitoring

services and explain its interfaces.
7. Explain how OpenStack Keystone uses trusts for tokens and outline potential

security attacks when bearer tokens are used. How can tokens be changed to
eliminate the security threats you described?

Acknowledgments The authors thank all participants of the ETSI NFV Security Working Group
for the continuous discussion and development of the very subject of this chapter. In particular,
thanks go to the Rapporteurs—who have been leading the work on the group’s work items as
follows:

Problem Statement (work item 1)—Bob Briscoe;
Cataloguing security features in management software (work item 2)—Hui-Lan Lu;
Security and Trust Guidance (work item 3)—Mike Bursell, Kurt Roemer, and Mihai Serb;
Report on Lawful Interception Implications (work item 4)—Scott Cadzow
Report on Certificate Management (work item 5)—Markus Wong;
Report on Security Aspects and Regulatory Concerns (work item 6)—Scott Cadzow;
Report on Attestation Technologies and Practices for Secure Deployments (work item 7)—

Diego Lopez and Mihai Serb;
Report on use cases and technical approaches for multi-layer host administration (work

item 924)—Mike Bursell and Anne-Marie Praden;
Report on Retained Data problem statement and requirements (work item 10)—Mark Shep-

herd;
Security Report on NFV LI Architecture (work item 11)—Alex Leadbeater;
Security Management and Monitoring specification (work item 12)—Ashutosh Dutta, Wei Lu,

and Kapil Sood;
Security Specification for MANO Components and Reference points (work item 13) and Secu-

rity Specification for other MANO reference points (work item 14)—Pradheepkumar Singaravelu.

We are very grateful to Michael Bilca whose LI architecture figures we re-used. Special thanks
go to Don Clarke, whose leadership in the NFV ISG ensured that the work on security got the
attention, support, and resources needed to produce the results partially described here.

24There is the gap in numbering because of renaming a former work item 8, as explained in Sect. 6.

72 I. Faynberg and S. Goeringer

References

1. Amzallag David (2014) “NFV Insights: The making of NFV Security—from Vision to Reality.
Published by TNT at http://blog.tmcnet.com/next-generation-communications/2014/06/nfv-
insights-the-making-of-nfv-security---from-vision-to-reality.html. Retrieved on December 14,
2016

2. ETSI Group Specification (2015) ETSI GS NFV-SEC 001 V1.1.1 (2014–10): Network
Function Virtualization; NFV Security; Problem Statement

3. ETSI Group Specification (2015) ETSI GS NFV-SEC 002 V1.1.1 (2015-08): Network Func-
tions Virtualization; NFV Security; Cataloguing security features in management software.
Sophia Antipolis, France

4. Faynberg I, Lu H, Skuler D (2016) Cloud computing: business trends and technologies. Wiley,
LTF, Chichester

5. Open Network Foundation (2016) TR-530, Threat analysis for the SDN Architecture Version
1.000 (https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/Threat_Analysis_for_the_SDN_Architecture.pdf. Retrieved on December 19, 2016

6. Open Network Foundation (2014) OpenFlow switch specification version 1.3.4 (Protocol
version 0x04). https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.3.4.pdf. Retrieved on December 19, 2016

7. Open Network Foundation (2016) TR-535 “ONF SDN Evolution Version 1.0 ONF.” Retrieved
on December 19, 2016

8. Edsger W. Dijkstra, EWD 1305. https://www.cs.utexas.edu/ EWD/transcription-
s/EWD13xx/EWD1305.html. Retrieved on December 19, 2016

9. Scarfone K, Souppaya M, Hoffman P (2011) Guide to security for full virtualization tech-
nologies. Special Publication 800-125. National Institute of Standards and Technology. US
Department of Commerce

10. Trusted Computing Group (2011) Virtualized trusted platform architecture specification.
http://www.trustedcomputinggroup.org/virtualized-trusted-platform-architecture-
specification/. Retrieved in December 2016

11. ETSI Group Specification (2016) GS NFV-SEC 003 V1.2.1. Network Functions Virtualization
(NFV); NFV Security; Security and Trust Guidance

12. ETSI Group Specification (2016) GS NFV-SEC 010 V1.1.1. Network Functions Virtualization
(NFV); NFV Security; Report on Retained Data problem statement and requirements

13. Draft ETSI Group Specification ETSI GS NFV SEC 007 Network
Functions Virtualization (NFV); NFV Security; Trust; Report on Attes-
tation Technologies and Practices for Secure Deployments. Work in
progress.https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=44578.
Retrieved on December 5, 2016

14. Simpson AK, Schear N, Moyer T (2016) Runtime integrity measurement and enforcement
with automated whitelist generation. In: Proceedings of annual computer security applications
conference (ACSAC). Available at https://homes.cs.washington.edu/ aksimpso/publication-
s/ACSAC2014Abstract.pdf. Retrieved on December 5, 2016

15. ETSI Group Specification NFV-SEC 004 V1.1.1 (2015) Network Functions Virtualisation
(NFV); NFV Security; Privacy and Regulation; Report on Lawful Interception Implications

16. Draft ETSI Group Specification NFV SEC 11 V0.0.6 (2016–05) Network Functions Virtualiza-
tion (NFV); NFV Security; Trust; Report on Report on NFV LI Architecture. Work in progress.
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=47603.
Retrieved on December 12, 2016

17. Draft ETSI Group Specification NFV-SEC 012 V0.0.13 (2016) Network
Functions Virtualisation (NFV); Security; System architecture specifica-
tion for execution of sensitive NFV components. Work in progress.
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=47619.
Retrieved on December 15, 2016

http://blog.tmcnet.com/next-generation-communications/2014/06/nfv-insights-the-making-of-nfv-security---from-vision-to-reality.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Threat_Analysis_for_the_SDN_Architecture.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.4.pdf
https://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1305.html
http://www.trustedcomputinggroup.org/virtualized-trusted-platform-architecture-specification/
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=44578
https://homes.cs.washington.edu/~aksimpso/publications/ACSAC2014Abstract.pdf
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=47603
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=47619

2 NFV Security: Emerging Technologies and Standards 73

18. Draft ETSI Group Specification NFV-SEC 013 V0.0.6 (2016) Network Functions Virtualisa-
tion (NFV); Security Report; Security Management and Monitoring for NFV [Release 2]. Work
in progress. https://portal.etsi.org//tb.aspx?tbid=799&SubTB=799. Retrieved on December 21,
2016

19. ETSI Group Specification NFV-SEC 002 V1.1.1 (2015–08) Network Functions Virtualisation
(NFV); NFV Security; Cataloguing security features in management software

20. Leach P, Mealling M, Salz R (2005) RFC 1422, A Universally Unique IDentifier (UUID) URN
Namespace. (https://tools.ietf.org/html/rfc4122)

Igor Faynberg a 2011 Bell Labs Fellow, is an industry consultant and an Adjunct Professor of
Computer Science in Stevens Institute of Technology. He represents Cable Television Laboratories
in the ETSI NFV ISG, where he has been chairing the Security Working Group for the past 4 years.

Prior to founding the Stargazers Consulting LLC in 2015, Dr. Faynberg had had various staff
and management positions in Bell Labs and Alcatel-Lucent business units where he had contributed
to a range R&D projects, starting from the development of variants of Karmarkar algorithm for
supercomputers, Intelligent Network, and its interworking with the Internet to cloud computing
and network functions virtualization. Most recently, he directed a group that researched solutions
for security and identity management problems and led their standardization in the ATIS, IETF,
ITU-T, ISO/IEC, ETSI, and INCITS Cyber Security Committee.

Prior to joining Bell Labs in 1986, Dr. Faynberg had contributed to design and development
of operating systems and a hypervisor as well as a network management suite for the Sperry
Distributed Communications Architecture and designed the Local Area Networking architecture
and protocols for the Burroughs Network Architecture.

Dr. Faynberg holds over 50 US and international patents for inventions relevant to converged
services, data communications, and security, and he has over 30 refereed publications in the area
of application of computer science to communications and network security. He has co-authored
three books entitled, respectively, Intelligent Network Standards, Their Applications to Services
(McGraw-Hill, 1997), Converged Networks and Services: Internetworking IP With PSTN (John
Wiley & Sons, 2000), and Cloud Computing—Business, Trends, and Technologies (John Wiley &
Sons, 2016).

He holds an M.A. in mathematics from Kharkov University, Ukraine, and M.S. and Ph.D.
degrees in Computer and Information Science from the University of Pennsylvania, Philadelphia.

Steve Goeringer is a principal security architect at CableLabs working on emerging technologies
and innovation projects. He has recently worked on security of network functions virtualization
(NFV), software-defined networking (SDN), medical devices, and cable modems architecture.
He has also been investigating innovations in integrating cryptography into cameras, block chain
solutions for the cable industry, and new approaches to securing home networks. He is currently
supporting the Center for Medical Interoperability as the chairperson of the security working group.

Prior to working at CableLabs, Steve had worked as a consultant for Polar Star Consulting,
LLC, providing technology leadership to government agencies. In this role, he researched WAN
acceleration solutions, investigated Ethernet security, and performed engineering and technical
selection of nationwide optical networks. Before that, he fulfilled several engineering roles at
Qwest, including Technical Director of the Access and Transport Networks team.

Steve spent 12 years at the National Security Agency where he was a Master Intelligence
Analyst. He started his career in the US Army as a Communications Station Technical Controller.
Steve has a Bachelor of Science degree in computer and information science.

https://portal.etsi.org//tb.aspx?tbid=799&SubTB=799
https://tools.ietf.org/html/rfc4122

	2 NFV Security: Emerging Technologies and Standards
	2.1 Introduction
	2.2 Threats and Opportunities
	2.3 The Problems Identified in the ETSI NFV Security Problem Statement
	2.3.1 Topology Validation and Enforcement
	2.3.2 Availability of Management Support Infrastructure
	2.3.3 Secured Boot
	2.3.4 Secure Crash
	2.3.5 Performance Isolation
	2.3.6 User/Tenant Authentication, Authorization, and Accounting (AAA)
	2.3.7 Authenticated Time Service
	2.3.8 Private Keys within Cloned Images
	2.3.9 Backdoors via Virtualized Test and Monitoring Functions
	2.3.10 Multi-administrator Isolation

	2.4 Establishing and Maintaining Trust
	2.5 Lawful Interception and the Environment for the Execution of Sensitive Components
	2.6 Security Management and Monitoring
	2.7 Analysis of the OpenStack Security
	2.8 Conclusion
	2.9 Review Questions
	References

