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For John Macnamara:

“Some on the leaves of ancient authors prey, /
Nor time nor moths e’er spoil so much as
they.”

Pope, Alexander (1709)
“An essay on criticism,” ll. 112 & 113
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Chapter 1

Schr€odinger’s Color Theory
and Its Background

Abstract Translations of Schr€odinger’s articles on color theory show us the

continuing importance of his colorimetry. Schr€odinger’s color theory develops a

tradition which begins with Newton, and which was developed by Helmholtz and

by Grassmann. Schr€odinger also wrote at a time when Fechner’s influence on

psychology was much stronger than it is now. Some colorimetric terms have

changed since his articles were published: some are more precisely applied than

general terms were in the 1920s. There have also been surprises since, such as

Wald’s discovery of small-field tritanopia, and the discovery of four-cone color

systems in some women. Generally Schr€odinger’s approach to color theory is

sophisticated, comprehensive, and usefully didactic. His axiomatic approach to

the geometry of color space permits a close examination of current assumptions

about the treatment of data from color matching and color comparison.

Keywords Colorimetry • Translation • History of ideas • Newton’s Opticks

• Grassmann • Helmholtz • Fechner’s Law • Color space • Small-field tritanopia

• Tetrachromacy • Schr€odinger

Section 1: About the Color Theory

The progress of science is not always smooth or easy. Sometimes a great scientist’s
effort is displaced: Newton spent a great deal of time writing religious tracts.

Sometimes a scientists’s effort is superseded or forgotten: Helmholtz is known

for his work on the physiology of vision, not for his work in kinematics.(a) Then

sometimes a scientist’s effort in one domain is eclipsed by success in another:

Schr€odinger’s work in theoretical physics is celebrated, but it may come as a

surprise that he wrote extensively on color theory – meaning the theory of human

color vision. His articles on color theory have been left uncollected, and much of

that work has been left untranslated. Translated into English almost a hundred years

after they were written, here are his principal articles on the subject.

Schr€odinger published his articles on color theory in the 1920s. One article of

nearly a hundred pages appeared in three sections, within the journal Annalen

der Physik. He sought to interpret his work for the common scientific reader as

well, in two popular articles and a textbook chapter. I became aware of

© Springer International Publishing AG 2017
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Schr€odinger’s writings on color theory when I was a graduate student, leafing

through older journals. At that time I believed that the existence and the

importance of these articles were matters of common knowledge – at least

among researchers in color science. I believe that his approach to colorimetry

retains its fundamental importance. If nothing else, his colorimetry licenses a

wider discussion of geometry applied to colorimetry. That is to say his color-

imetry readies the mathematical foundations of advanced colorimetry. If some

modern accounts of colorimetry crawl through masses of unconnected detail,

Schr€odinger’s colorimetry soars in its formal sophistication. There have been

translations of one or two of his articles (note the citations at the end of this

volume), but this is the most comprehensive collection of his works on color-

imetry in English to date.

One may ask the pedigree of Schr€odinger’s account of color theory, in other

words its place in the history of ideas. (His biography has already been written, and

larger overviews of the history of color systems are available elsewhere.)(b) His

color theory has a strong lineage. His account of color space follows on a notion

developed from Newton’s Opticks, by way of Hermann von Helmholtz and

Hermann Grassmann. His account responds directly to Helmholtz’s hypothesis of
a line element for color space, and it responds to Grassman’s formalization of color

theory as a vector space. Newton relies on an analogy from music, to arrange colors

in a circle whose circumference is divided into seven parts. Though he does not

insist on specific arclengths to represent all the different types of color, he considers

the arrangement of spectral colors to be “proportional to the seven musical Tones of

Intervals of the eight Sounds”.(c) Though the musical analogy sets an initial

arrangement of colors, Newton also introduces another formalism: a ‘center of

gravity’ construction to model combinations of colors. Later authors will abandon

the analogy of a musical scale, but the ‘center of gravity’ construction persists as a

feature of color theory. Color mixture for Newton is a domain independent of other

properties of physical optics, a domain tractable in a formal way. “And in this

respect the Science of Colours becomes a Speculation as truly mathematical as any

other part of Optiques.”(d)

Hermann von Helmholtz sought to carry Newton’s legacy forward, though

Helmholtz leaves aside the analogy to tonal intervals. Helmholtz (1852) surmises

that Newton’s musical analogy may have been reinforced by his choice of sunlight

as an illuminant, as well as his choices of crown glass or flint glass as prisms.(e)

Those can distort intervals along the spectrum. Helmholtz promotes Thomas

Young’s (1802) three-color or trichromatic theory, though he considers

Wollaston’s (1802) work as its basis. Helmholtz also acknowledges limitations on

Young’s three-color theory, for example in its claim for the objectivity of three

fixed primary colors. To extend the body of empirical evidence, Helmholtz (1855)

devised a color-wheel apparatus, which he thought could be used to replicate earlier

work with prisms – including that of Newton.

Grassmann (1853) responds to Helmholtz in vindication of Newton.

Grassmann does seek to show that Helmholtz’s results coincide with Newton’s
for the most part. In the same text Grassmann introduces important new concepts

2 1 Schr€odinger’s Color Theory and Its Background



to the study of color. Those concepts inform Schr€odinger’s later work. Grassmann

introduces the notion of a measure of hue, and the axiomatization of operations on

colors. Colors can be represented as line lengths with direction, and combinations

of colors can be represented as geometric vector sums. Grassmann refers to his

own earlier work on vector spaces, but he also introduces M€obius’s barycentric

coordinates and barycentric calculus.(f) He introduces them as part of the task of

revising Newton’s arrangement of colors about a circle by a centre-of-mass

calculation. Grassmann introduces the formal machinery of affine geometry or

projective geometry to the problem of characterizing color space; Helmholtz

seems not to appreciate the full import of Grassmann’s gambit. Helmholtz’s
response to Grassmann is once more a defense and re-interpretation of Newton’s
Opticks. Helmholtz (1855) seeks to explain Newton’s color circle results in terms

of the spectral sensitivity of the eye, and the optical properties of refractive

materials. He attributes some variance to the Purkinje effect, as well. Newton’s
spacing of colors is said to need revision, and Newton’s color circle needs to

include purples as mixtures of red and violet (Newton did acknowledge the latter

possibility.). Helmholtz claims that Newton’s theory of color mixture is expressed

by the color circle. Moreover, he claims that Newton’s essential contribution to

color theory is just the center-of-mass construction for the combination of colors

in the color circle. It is noteworthy that Helmholtz interprets Grassmann’s ‘sum of

colors’ in the center-of-mass construction in a narrow way rather than as a vector

sum. (As a consequence, he believes that Grassman is committed to a circular

form as the boundary of color space.)

Helmholtz (1891) continues his formal development of color theory, still aiming

to characterize Newton’s laws of color combination. Helmholtz’s aim is to develop

a Riemannian 3-manifold for color space. His methods include the determination of

intervals of just-noticeable difference or JND, following methods set out by Weber

and Fechner earlier in the nineteenth century. (Note that Helmholtz uses ‘difference
in sensation’ – Empfindungsunterschied – almost interchangeably with ‘sensation
of difference’ – Unterschiedsempfindung.) Helmholtz includes comparisons of

brightness, not just comparisons of hue among these differences. That is to say,

comparisons of heterochromatic brightness also count as intervals or steps of just-

noticeable difference. Lines in color space which prove to be lines of smallest color

difference are taken as geodesic, in other words as shortest lines between colors as

points in the color field. Helmholtz (1892b) generalizes his theory of color further.

He assumes that the perception of differences in color originates with the perception

of differences in brightness. (Helmholtz does recognize departures from Fechner’s
Law of just-noticeable differences, for color mixtures which include colors of low

saturation.) Consequently differences in brightness and differences in color both

contribute to a geometric representation of color. One may continue by character-

izing a system of color for dichromats, and then extending the dichromatic system

to trichromats. Newton’s laws of color mixture are more easily seen to apply to

color comparisons by dichromats. Helmholtz’s (1892b) color system makes refer-

ence to three primary colors as reference points, and it places colors in a frame of

positive rectilinear coordinates. Helmholtz’s (1892) color system is the principal

Section 1: About the Color Theory 3



foil, and the main historical reference for Schr€odinger’s narrative on color theory.

In that system any color can be expressed as a point in terms of three values: three

positive rectangular coordinates in x, y, and z. Helmholtz’s system is Riemannian in

the sense that any distance between two neighbouring points is given by a differ-

ential expression of coordinates. That expression for color sensations in coordinates

plays the role of an expression for the lengths of line elements. Helmholtz’s system
is three-dimensional including brightness, though he claims that any plane section

of the color system is a color table in the sense given in Newton’s Opticks. In

contrast Schr€odinger’s colorimetry leaves us with a programmatic sketch: his

colorimetry sets out the geometric framework for color space, but it does not

complete the structure. It establishes an affine geometry to suit the basic evidence

of color matching in colorimetry, but it stops short of specifying the Riemannian

structure of advanced colorimetry for color similarity. The affine geometry is a

default structure, sufficient only until a few problems in advanced colorimetry may

have been solved. A geometry of advanced colorimetry waits on two things: a fuller

corpus of empirical data, and a decision about the validity of the Weber-Fechner

law. What is to be done about Fechner? One can – to repeat Stevens’s phrase –

honor Fechner and repeal his law.(g) Otherwise one is faced with the task of

reconciling Fechner’s Law for color space with legitimate competing interests. In

either case Schr€odinger’s work – equally the work of color theory – remains

unfinished.

There is a leitmotiv in psychology, beginning with Weber and continuing with

Fechner,(h) which maintains there is a determinate relation between changes

in physical magnitudes and perceived changes in those magnitudes. Discussion

of its psychological validity often dominates discussion in the experimental

psychology of the time, as in Meinong’s writing and influence.(i) That determinate

relation has been claimed as a relation between physical magnitudes and qualities

perceived in a sense modality. Some would go so far as to call it a relation between

physical magnitudes and psychological qualities. The estimation of lifted weights

provides an example. Over a large range of weights that can be lifted with one hand,

a person may be asked to judge a just-noticeable difference in weight, or else a

constant difference in weight over many trials. At least for the estimation of

weights, a comparison weight which is noticeably heavier is one that adds a

constant positive fraction of weight to the weight which serves as a standard.

That constant fraction is maintained across a large range of weights, that is, for a

variety of standard weights. Something similar occurs in the brightness of white

lights: lights that are seen to exhibit equal steps of brightness will each add a

constant fraction of intensity to the previous step. (Note that just-noticeable differ-

ences and equal steps are not the same here, though they are related.) That constant

fraction for the brightness of white lights need not be the same fraction as the

fraction for the heaviness of weights. We may go on to speak of just-noticeable

differences or of equal steps for many qualities and modalities. The associated

fractions are known as Weber fractions. Fechner surmised that these observations

provided evidence for a logarithmic relation between psychological quantities and

physical changes for many modalities. Perhaps the elision from the estimation of

4 1 Schr€odinger’s Color Theory and Its Background



physical changes to changes in psychological quantities is unwarranted, but it

seldom delays anyone in this discussion.

Most often force of will supervenes over logic in discussion of Fechner’s Law.
Fechner recognized criticisms of his logarithmic relation, but considered them a

nuisance.(j) Later, Stevens recognized a heuristic value for Fechner’s Law, but he
did not stop to consider the assumptions which underlie its establishment. Stevens is

well-known for supplanting Fechner’s Law with a broader power-law relation. Yet

there have been close rational and historical considerations of Fechner’s Law which

illuminate the assumptions involved. That is to say we know what sorts of exper-

imental evidence might be brought in its favour. Still, in our century as previously,

we are blithe in our approach to psychological ‘laws’ based on just-noticeable

differences. Blithe, or else simply undisposed to close examination of the reason-

able implications of such assumptions. We seem to have accepted the general tenor

of the conclusions of such arguments, while we have – for the most part – jettisoned

the premises.

One could say that a central question for Schr€odinger’s colorimetry is whether

Weber fractions (i.e., Fechner intervals) remain constant for the brightnesses of

many differently colored lights, or not. Better, one can say that Schr€odinger realizes
the centrality of Fechner’s Law to contemporary accounts of color space. By his

(Schr€odinger’s) own deliberations, he was disposed not to accept the assumptions

of Fechner’s Law. Acceptance of that Law he sees to be incompatible with the

specification of a Riemannian line element for color space, in a colorimetry that

would unify an account of large differences in color with the account of small

differences.

Schr€odinger hints at a greater mathematical sophistication in colorimetry.(k) In

introducing basic colorimetry, he sets out a condition to determine whether or not a

definition of brightness is possible in colorimetry – which is his initial motivating

question for colorimetry. That stipulation is a condition on a set of partial differ-

ential equations, known as a Pfaffian system (see the relevant parts of Chap. 5 here,

and also footnote 3 to Chap. 4). Basic colorimetry must satisfy this condition if the

notion of heterochromatic brightness is to make sense. Schr€odinger also specifies a

provisional line element for the Riemannian geometry of the color manifold. He

specifies a line element which improves on the one Helmholtz had defined.(l) Both

line elements are then placed in doubt. Schr€odinger leaves the business of a line

element for the color manifold unspecified and unfinished. Two aims of his

colorimetry collide in the specification of a line element. One aim is to reconcile

small-scale differences with large-scale ones, meaning that there should be a

meshing of gears between strongly heterochromatic colorimetry and the colorim-

etry of adjacent colors in the manifold. Another aim is to adhere to Fechnerian

proportion for equal increments of intensity across the color manifold. Perhaps the

two constraints could even have been reconciled, but for the intrusion of the

Bezold-Brücke effect.(m) The discriminability of hues changes appreciably across

the spectrum as light intensity is varied. Though the Bezold-Brücke pattern of

changes is known by experiment, that pattern does not scale with the neat pro-

portions of a colorimetry based on Fechner’s Law. In short: specification of the line

Section 1: About the Color Theory 5



element remains an open problem. Is there even a line element tractable in math-

ematical terms, which is subject to all these influences? Subsequent authors quote

(and criticize) Schr€odinger’s line element for color space as if its form had been

settled as definite rather than left uncertain, as it is. Here Schr€odinger’s very

hesitation shows the sophistication of his approach to colorimetry. (One might

also ask what a suitable form might be, for a line element free of the Fechnerian

constraint.)

As with any historical translation, the issue of change in language may be raised

for this collection of Schr€odinger’s papers. Have the technical terms of color

science changed so much as to be unrecognizable? I think not. Both in his training

(he was Franz Exner’s assistant) and in his recognition of Helmholtz’s contribu-
tions, Schr€odinger was in the mainstream of color theory. Some contemporary

terms of art have fallen into disuse, such as ‘alychne’ (it indicates the locus of

colors in a color diagram which have an ideal but fictional property of zero

brightness). Some other terms have been sharpened over time – for example,

‘luminous efficiency’ has a more specific role in color theory than does ‘brightness’.
Yet none seem irretrievably unfamiliar.

I do not wish to say that these texts lack any decent translation at all. David

MacAdam’s translations provide something of a counterexample, though he

published only short fragments of the work in translation.(n) There is a particular

problem, though, for which I would like to make my stance clear. There is a cluster

of words used in the development of what are known today as color-matching

functions and fundamental response curves. The associated terms have changed

through time, as can be known even by comparingW.D.Wright’s (1947) uses of the
terms with Schr€odinger’s. Of course it might also be that the terms have been made

obscure in translation: MacAdam (1970) uses ‘calibration’ as an adjective to cover

terms ranging from chromaticity coordinates to fundamental color stimuli, to an

extent that make the modern interpretations of color-matching functions and fun-

damental stimuli barely recognizable. I take that gloss in translation to pose a

greater danger to these texts than change in language; my own glossary for these

terms is given as a footnote to this introduction.(o)

There are two more factors which may have clouded other translations. One is

appreciation of the subject matter. Translation preserves meaning: a text which

lacks meaning is not susceptible to translation. A translator also needs to be

comfortable with the meaning of the original text. Schr€odinger’s writing is clear

– evidently – but not everyone will be comfortable with its depth. The second factor

concerns a translator’s linguistic skill. I mean more by that than education in the

technical arts of translation. Style may also cloud the result of translation. Some

may consider colloquial style to be offhand for the translation of

Buchwurmsprache. Others may lament the gap between North American usage

and the Queen’s English, and so forth. One particular point of style is important

here: where translation is less than perfect, translation into one’s first language is

likely happier – as a matter of familiarity in style – than translation in another

direction. Few translations achieve a beautiful balance of meaning and style.
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Whatever the faults of the present translation, my earnest wish is that the original

meaning may shine through.

There have also been some surprises in color science over the last century, as one

might hope. Schr€odinger maintained that no authentic cases of tritanopia had been

reported – that is, no ‘blue-blind’ observers had been documented whose condition

did not involve severe ocular trauma. Though rare, such individuals are now known

to exist. He might have been surprised by discovery of small-field tritanopia – that

most of us are tritanopes when the field of view is restricted to a very small angular

extent under fixed viewing conditions.(p) He might also have been surprised by the

efficient manufacture of fluorescent pigments that borrow energy from non-visible

regions of the spectrum, to display brighter visible colors. Similarly, he maintained

that the color space of his basic colorimetry is three-dimensional, in the sense that

triplets of spectral colors are linearly independent. Combinations of four spectral

colors – so he supposed – would produce nothing new. He took pains to arbitrate

between a color manifold of dimensionality three, and a manifold of dimensionality

four. In other words he thought that the manifold of colors is covered completely

and exhaustively by pure spectral colors and their binary mixtures. He may also

have been surprised in that much: there are indications that a fair proportion of

women possess four chromatic systems rather than three, meaning that they possess

four distinct populations of cone cells, and that they discriminate color reliably and

functionally better as a consequence.(q) Then it may well be the case that we need a

four-dimensional manifold of color space, to describe the ability these women have

to judge differences in color.

Neither discovery – small-field tritanopia or tetrachromacy in some observers –

affects Schr€odinger’s color theory in a fundamental way. On these counts we can

tell how his color theory is extensible – how it may be extended to subsume these

new findings. His color theory is still fresh in that much. I hope the reader finds a

full and reasonable exposition of the theory of colorimetry in these pages, one that

ignites our modern imagination about the geometric nature of color space.

Notes

a. This includes [Helmholtz, H. L.F. von. The origin and meaning of geometric

axioms I. Mind, 1(3), 301 – 321 (1876). & Helmholtz, H. L.F. von. The origin
and meaning of geometric axioms II. Mind, 3(10), 212 – 225 (1878).]. Sophus

Lie revealed the lacuna in Helmholtz’s account: [Lie, S. Bemerkungen zu von

Helmholtzs Arbeit: Ueber die Tatsachen, die der Geometrie zu Grunde liegen. In

S. Lie, Gesammelte Abhandlungen, 2. Band, 1. Teil. Leipzig: B.G. Teubner,

374 – 379 (1886/1935).]

b. Schr€odinger’s biography can be found as: [Moore, W. Schr€odinger: Life and

thought. Cambridge: Cambridge University Press (1989).] A more comprehen-

sive account of color systems, including non-metric systems, is contained in:

[Wyszecki, G. Farbsysteme. 2d. ed. G€ottingen: Musterschmidt-Verlag (1962).]

or else [Wyszecki, G. and Stiles, W.S. Color science. 2d. ed. New York: John

Wiley & Sons (1982).]
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c. Their arrangement is “proportional to the seven musical Tones of Intervals of the

eight Sounds, Sol, la, fa, sol, la, mi, fa, sol contained in an Eight, that is,

proportional to the numbers 1=9, 1=10, 1=10, 1=9, 1=10, 1=16, 1=9 ” [Newton, p.114, The first

book of Opticks, part II (1704)].

d. He continues: “I mean so far as they depend on the nature of Light, and are not

produced or altered by the power of imagination, or by striking or pressing the

Eyes.” [Newton, p. 48, The second book of Opticks, part II (1704)].

e. Citations for the articles discussed in this section are:

Grassmann, H.G. Zur Theorie der Farbenmischung. Annalen der Physik und

Chemie (J.C. Poggendorff’s Annalen), 89 (Dritte Reihe 29), 69 – 84 (1853).;

Helmholtz, H.L.F. von. IV. Ueber die Theorie der zusammengesetzten

Farben. Annalen der Physik und Chemie (J.C. Poggendorff’s Annalen), 87

(Dritte Reihe 27), 45 – 66 (1852).; Helmholtz, H.L.F. von. Ueber die

Zusammensetzung von Spectralfarben. Annalen der Physik und Chemie

(J.C. Poggendorff’s Annalen), 94(1) (Vierte Reihe 4), 1 – 28 (1855).;Helmholtz,
H.L.F. von. Versuch einer erweiterten Anwendung des Fechnerschen Gesetzes

im Farbensystem. Zeitschrift für Psychologie und Physiologie der Sinnesorgane,
2, 1 – 30 (1891).; Helmholtz, H.L.F. von. Kürzeste Linien im Farbensystem:

Auszug aus einer Abhandlung gleichen Titels in Sitzungsberichte der Akademie

zu Berlin, 17. Dezember 1891. Zeitschrift für Psychologie und Physiologie der

Sinnesorgane, 3, 108 – 122. (1892).; Helmholtz, H.L.F. von. Versuch, das
psychophysische Gesetz auf die Farbenunterschiede trichromatischer Augen

anzuwenden. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 3,

1 – 20 (1892b).; Wollaston, W.H. A method of examining refractive and

dispersive powers, by prismatic reflection. Philosophical Transactions of the

Royal Society, 1 January, 92, 365 – 380 (1802).; Young, T. The Bakerian

lecture: On the theory of light and colors. Philosophical Transactions of the

Royal Society of London, January 1, 92, 12 - 48 (1802).

f. In other words the use of a non-Euclidean coordinate system for color space, as

in a system of barycentric coordinates [M€obius, A. F. Der barycentrische Calcul
1827. In: Gesammelte Werke, Band 1. Leipzig: Salomon Hirzel, 1 –

389 (1885).], was carried on by [Grassmann, H. G. Zur Theorie der

Farbenmischung. Annalen der Physik und Chemie (J.C. Poggendorff’s
Annalen), 89 (Dritte Reihe 29), 69 – 84 (1853). See page 83.] Grassmann’s
earlier work on vector spaces, the Ausdehnungslehre, can be found as [ Lewis,
A.C. (Ed.) Landmark writings in western mathematics 1640 – 1940. Chapter 32

– Hermann G. Grassmann, Ausdehnungslehre, first edition (1844), pp. 431 –

440 (2005).].

g. [Stevens, S.S. On the psychophysical law. Psychological Review, 64(3), 153 –

181 (1957)]. Stevens proposed a power-law relation whose exponent varied by

modality, to supplant Fechner’s ‘Law’.
h. Beginning with Weber [Weber, E.H. De pulsu, resorptione, auditu et tactu.

Leipzig: C.F. Koehler (1834). & Weber, E.H. Ueber den Raumsinn und die

Empfindungskreise in der Haut und im Auge. Berichte über die Verhandlungen
der k€oniglich sächsischen Gesellschaft der Wissenschaften zu Leipzig,
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mathematisch-physische Classe, 2, 85 – 164 (1852).] and continuing with

Fechner [Fechner, G. T. Ueber ein psychophysisches Grundgesetz und dessen

Beziehung zur Schätzung der Sterngr€ossen. Berichte über die Verhandlungen

der k€oniglich sächsischen Gesellschaft der Wissenschaften zu Leipzig,

mathematisch-physische Classe, 4, 457 – 532 (1859). & Fechner, G. T. Revision
der Hauptpuncte der Psychophysik. Leipzig: Breitkopf und Härtel (1882). &

Fechner, G. T. Über die psychischen Maβprinicpien und das Weber’sche
Gesetz. Philosophische Studien, 4, 161 – 230 (1888).]. Discussion of the

‘Law’ had a central place in nineteenth-century discussion of experimental

psychology (then ‘experimental philosophy’).
i. Meinong elaborated Fechner’s arguments at length [eg., Meinong, A. Ueber

Sinnesermüdung im Bereiche des Weber’schen Gesetzes. Vierteljahrsschrift für
wissenschaftliche Philosophie, 12(1), 1 – 31 (1888). & Meinong, A. Über die
Bedeutung des Weberschen Gesetzes. Beiträge zur Psychologie des

Vergleichens und Messens. Erster Abschnitt: Von Gr€ossengedanken und dessen

Anwendungsgebiet. Zeitschrift für Psychologie und Physiologie der

Sinnesorgane, 11, 81 – 99 (1896).]. As Chair of Philosophy at Graz, Meinong
had great influence on contemporary psychology. See Bertrand Russell [Russell,
B. Review of Alexius Meinong’s Ueber die Bedeutung des Weberschen

Gesetzes. Mind (New Series), 8, 251 – 256 (1899)] for an argument against

Meinong’s position.
j. Note especially the ‘quality objection’ put forward by Johannes von Kries

[Kries, J. von. Ueber die Messung intensiver Gr€ossen und über das sogenannte
psychophysische Gesetz. Vierteljahrsschrift für wissenschaftliche Philosophie, 4
(3), 257 – 294 (1882b)]. Niall provides an English translation: [Kries, J. von.
Conventions of measurement in psychophysics: von Kries on the so-called

psychophysical law. Spatial Vision, 9(3), 275 – 305 (1882/1995). ] See Michell
[Michell, J. Measurement in psychology: critical history of a methodological

concept. New York: Cambridge University Press (1999).] for a thorough and

critical account of assumptions in Fechnerian psychophysics.

k. This sophistication is evident through his career, of course: cf. Schr€odinger,
E. Expanding universes. Cambridge at the University Press (1956). Not that such

sophistication was always lacking in later color theory: the affine-geometric

account of basic colorimetry was taken up by [Schelling, H. von. Advanced
color geometry. Journal of the Optical Society of America, 45(12), 1072 – 1079

(1955). & Schelling, H. von. Concept of distance in affine geometry and its

applications in theories of vision. Journal of the Optical Society of America, 46

(5), 309 – 315 (1956).]

l. There is a long history of the line-element following Helmholtz and

Schr€odinger: cf. [Stiles, W.S. Line element in colour theory: A historical review.

In: J.J. Vos, L.F.C. Friele & P.L. Walraven, Eds. Color metrics: Proceedings of

the Helmholtz Memorial Symposium. Soesterberg, Netherlands: AIC/Holland &

Institute for Perception TNO, 1 – 25 (1972).; Wyszecki, G. Über die Metrik des

visuell homogenen Farbenraumes. In: International discussion of problems in

color metrics. Heidelberg: Die Farbe, 100 – 108 (1955).; Wyszecki, G. Recent
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developments on color-difference evaluations. In: J.J. Vos, L.F.C. Friele &

P.L. Walraven, Eds. Color metrics: Proceedings of the Helmholtz Memorial

Symposium. Soesterberg, Netherlands: AIC/Holland & Institute for Perception

TNO, 339 – 379 (1972).], up to more recent accounts such as [Raj Pant, D. &
Farup, I. Riemannian formulation and comparison of color-difference formulas.

Color Research and Application, 37(6), 429 – 440 (2012).; Raj Pant, D. &
Farup, I. Geodesic calculation of color difference formulas and comparison with

the Munsell color order system. Color Research and Application, 38(4), 259 –

266 (2013).; Jain, A.K. Color distance and geodesics in color 3 space. Journal of
the Optical Society of America, 62(11). 1287 – 1291 (1972).]

m. Cf. Ejima, Y. and Takahashi, S. Bezold-Brücke shift and nonlinearity in

opponent-color process. Vision Research, 24, 1897 – 1904 (1984).

n. See the list of Translations at the end of this volume. MacAdam was also well

aware of Schr€odinger’s work on the brightness of colored pigments: see [Mac-
Adam, D.L. The theory of the maximum visual efficiency of colored materials.

Journal of the Optical Society of America, 25, 249 – 252 (1935). & MacAdam,

D.L. Maximum visual efficiency of colored materials. Journal of the Optical

Society of America, 25, 361 – 367 (1935b).]

o. [Trans.] I have tried to maintain the following glossary for Schr€odinger’s
technical vocabulary of colorimetry:

Aichkurven: color-matching functions (in graphic form)

Eichfarben: calibration colors

Eichfunktionen: color-mixture functions (near in meaning to ‘color-matching

functions’)
Eichkurven: color-mixture curves

Eichlichter: calibration lights

Eichwerte: trichromatic coefficients (near in meaning to ‘chromaticity

coordinates’)
Elementarempfindungskurven: fundamental response curves

Farbkoordinaten: color coordinates
Grundempfindungen: fundamental stimuli

For Wright’s terminology, see [Wright, W.D. Researches on normal and

defective colour vision. St. Louis: The C.V. Mosby Company (1947)].

p. Wald, G. Blue-blindness in the normal fovea. Journal of the Optical Society of

America, 57(11), 1289 – 1303 (1967).

q. Jameson, K.A.,Highnote, S.M. &Wasserman, L.M. Richer color experience in

observers with multiple photopigment opsin genes. Psychonomic Bulletin &

Review, 8(2), June, 244 – 261 (2001).
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Chapter 2

Outlines of a Theory of Photopic Colorimetry

(Part I): Basic Colorimetry, or Affine Color

Properties (First Article)

Abstract A formal system of human color perception is described which is called

basic colorimetry. Colors may be compared in four ways, and basic colorimetry

uses just one of these: color matching. Basic colorimetry forms a coherent system

which follows Grassmann’s laws, and this system constitutes a color manifold. The

properties of the system are developed in a rigorous way. The color manifold

provides a model for affine vector geometry. Properties which are not affine-

invariant do not belong to the three-dimensional color space of basic colorimetry.

This geometric notion of colorimetry is elaborated in two subsequent chapters.

Keywords Colorimetry • Color vision • Color metric • Heterochromatic

brightness • Color matching • Color additivity • Grassmann law • Color

dimensionality • Affine geometry • Affine invariant • Color plane • Color

coordinates • Alychne • Schr€odinger

Preface

The occasion for developing the outline of a color metric – as it is sketched here –

was the author’s meditation on the concept of brightness. Those thoughts are

expressed in Sections 3–7 of the second Article of the present work. The questions

that are dealt with there, are the following. Suppose a color is given concretely –

that is, as a particular mixture of lights. Then can a number be assigned to its

brightness, in a way that a value may be given to lights of differing ‘stimulus

qualities’,(a) to say whether they are equal in brightness, or not? How is a definition

of equal brightness to be made, posed experimentally? And what would be the

consequences of a definition, correctly posed? Brightness could be defined empir-

ically as a function of three trichromatic coefficients, or three fundamental stimulus

valences, or in terms of any other triple of quantities sufficient to specify color

uniquely.

About these three questions: I believe I have established here – for the first time –

a rational criterion for answering the first question. (‘Is there heterochromatic

Schr€odinger, E. (1920). Grundlinien einer Theorie der Farbenmetrik im Tagessehen. I. Mitteilung.

Annalen der Physik, vierte Folge, 63(21), 397–426. Copyright © 2006, as renewed. Translated

with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

© Springer International Publishing AG 2017

K.K. Niall (ed.), Erwin Schr€odinger’s Color Theory,
DOI 10.1007/978-3-319-64621-3_2
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brightness?’) In doing so, I have discovered the basic reason that researchers are so

divided on this issue. Is a definition of equality of brightness fundamentally

possible, or not? That depends whether or not there exists an integrating factor

for a certain Pfaffian expression in three differentials. (Its coefficients are deter-

minable empirically.) Only if that should be the case, would ‘plane elements

representing equal brightness’ of the color manifold be pieced together to form

integral surfaces of equal brightness.(b)

Under the hypothesis that this experimentally-obtained function may admit

integration, a definition of brightness is obtained immediately. Whatever clever

experiments may show in future, there will be nothing to be altered in the definition.

The situation is different for the third question, as a consequence of the particular

function of color coordinates which stands for brightness. I have run with an idea

here, while trying to do justice to the larger structure of our color experience. The

idea is that brightness is a linear function of the fundamental valences: that it

behaves strictly additively when lights are added. A large corpus of observations

speaks to this fact, which holds at least to a close approximation. That is why I

thought it useful to show how this interpretation may be articulated, without coming

into obvious conflict with other observations – such conflict as might have arisen

from our general definition of brightness. That conflict has not yet been manifest.

Yet I do not quite believe that additivity holds in a strict sense; a few isolated but

very salient phenomena point to deviations from additivity.

Certainly then, this particular approach to the line element for color space –

and the particular brightness function which follows from it – is to be considered

only as an approximation which awaits further experimentation for its

improvement.

To emphasize the significance of this formal solution to the problem of bright-

ness, it has proved necessary to point out its place in the larger scheme of a color

metric. The author has indicated this already in the course of discussion on this

question and similar questions. It emerges through experience that all efforts to

quantify color fall into two fundamentally distinct categories. Their distinction lies

in the criterion used for the adjustment of two adjoining color fields on a device.

Either a criterion of complete identity is applied exclusively (indistinguishability),

or other criteria are applied (just-noticeable difference, maximum similarity, or

perhaps maximum contrast). Results of the first kind of measurement do form a

unified, internally consistent system whose simple axiomatic rules have been

formalized by Grassmann, which rules have been substantiated by the work of

K€onig. I believe that this system of rules – commonly known as the laws of light-

mixture – may reasonably be called basic colorimetry, to distinguish it from

advanced colorimetry, whose laws are much more complex and much less well

understood. Advanced colorimetry deals with quantitative results of the

second kind.

I maintain a strong distinction between these two theoretical domains –

abstracted from their immediately apparent meaning in theory – to be extremely

important, as a consequence. Otherwise there are a host of unclear concepts and a

host of experimental uncertainties that we encounter at every step of our advanced
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colorimetry, which will also intrude persistently in the domain of basic colorimetry.

They threaten to create confusion in the latter domain, though basic colorimetry

stands securely and validly on its own merits, being in no way affected by such

difficulties.

The deeper reason for such a hermetic, insulated quality is a simple one. Here

there is a strong analogy to the situation of a geometer who undertakes to study the

projective properties of plane figures or spatial forms exclusively. Such a geom-

eter does not lose sleep over Euclid’s parallel postulate; he does not need to know

anything about right angles or the lengths of line segments. That is to say, it turns

out that basic colorimetry provides a complete model for the affine geometry of a

pencil of vectors, taken to represent the color manifold. In the more commonly

used plane representation there is an essentially complete model for the projective

geometry of the color plane, in other words. Following an idea fromHelmholtz,(c)

we say by contrast that advanced colorimetry is best taken as a model for the real

metric geometry of that pencil of vectors normally taken to represent color space.

That is a metric in the very widest sense established by Riemann, a metric whose

line element is not Euclidean. Its line element has variable coefficients which are

only to be determined by experiment. (Advanced colorimetry is not so easily

represented in a plane diagram, since there the third coordinate is replaced by

weights that are both variable and unintuitive.)

The question of brightness also plays a role in advanced colorimetry, as is

immediately apparent, and as will be revealed in the following section. The relation

of ‘equally bright’ is as superfluous and foreign to the strict color matching of two

fields differing in hue, as are the relations of ‘equally long’ or ‘mutually perpen-

dicular’ for two lines in projective geometry. Then I also consider it to be funda-

mentally misguided if (as in Abney(d)) color matches and brightness matches are

confounded in their very nature, by the stipulation that fundamental colors should

be gauged in terms of shared equal units of brightness. Disparate judgments of

equality should not be confounded by the stipulation that fundamental colors can be

measured in units of equal brightness. A decision about the mere possibility of such

a step can be made only at a much better-developed stage of advanced colorimetry.

Whether such a step is useful depends on the successful experimental demonstra-

tion of a particular advanced function of brightness, that is, a linear combination of

the fundamental stimulus values. Any experimental counterindication or theoretical

objection to this very specific assumption will then (seemingly) shake the very

foundations of the theoretical edifice.

A link between the two domains is established by the theory of fundamental

stimulus colors. These should acquire meaning in basic colorimetry from those

colors which are confused by dichromats, which are widely known to have been

determined – entirely by color-matching ! – by von K€onig.(e) On the other hand one
might expect that the line element of advanced colorimetry would assume an

especially simple form, should one choose the fundamental stimuli as variables.

Helmholtz’s expectations were disappointed in that much. He had to assume new

fundamental stimulus points in the color plane arbitrarily to accommodate the line

element which he constructed to suit the Weber-Fechner law. Only then does his
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line element correspond to the evidence (the color difference thresholds produced

by K€onig and Brodhun) given the ad-hoc assumption. Consequently Helmholtz
was compelled to adopt much more complicated assumptions about the nature of

color blindness in dichromats.(f)

Add to this an error in Helmholtz’s calculations which widens the gap between

the experimental evidence and his line element. That may be the reason his

profound deliberations towards a Riemannian geometry of color have found little

resonance and have not been pressed further, so far as I know. The relevant citations

have even been excised from the most recent edition of Helmholtz’s Handbook of

physiological optics (Hamburg & Leipzig, published 1909 by Leopold Voss).

On my first encounter with this part of Helmholtz’s work, the incongruity of his
position seemed blatant. I seemed to recognize something that appeared to have

escaped Helmholtz – that his line element implies a brightness function which flies

in the face of experience (the cube root of the product of fundamental stimulus

valences). But then I noticed that another form is possible for the line element,

which – though surely capable of being improved – has a simple form I will adopt

which establishes an overall regularity, and which alleviates some irritating

contradictions.

In this first section dedicated to basic colorimetry, it is obvious that we add

nothing to the content provided by Helmholtz and K€onig. Still in my opinion, one

cannot dispense with a full and unified account of the entire subject, since there is

no one presentation I can think of that we could have used as a foundation for

advanced colorimetry. There is no description I know which emphasizes the purely

projective (or purely affine) character of these colorimetric laws as strictly as is

necessary to our purposes.(g)

Introduction: Characteristics of the Domain.

Delineation of the Basic Metric

The art of quantifying color can be seen as a topic in the physiology of the senses, as

it can be seen as a topic in experimental physics. We lend priority to the latter

perspective in the present discussion.

The experimental methods of physics that concern us here are proceedings

which occupy a particular distinguished position – I would even say a privileged

position from an epistemological standpoint. In the final analysis, all other physical

measurements always consist in the determination of superposition in space-time,

whether those measurements be conducted with a balance, a galvanometer, a

thermometer, or a telescope. The superposition may be that of a pointer, or of a

patch of light; the superimposition may be of a meniscus of mercury with a position

on a scale; it may be the superposition of crosshairs in a sight with a graduated

scale, or with the image of a star. – Often it consists of the temporal coincidence of

two such superimpositions in space, and so on. By contrast, the sensory apparatus of
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an observer enters into the activity of at least one determination for any measure-

ment of color, besides the kinds of determinations just listed. In its most basic form,

this activity of observation consists of the following: two adjacent color fields are

judged to be indistinguishable in color – allowing variation in the values of other

instrumental parameters, such as the settings of Nicol prisms, diaphragm settings,

and collimator settings. This is a determination where color matches coincide with

other coincidences and superpositions of the kind first mentioned.

The distinctive relation of the two halves of the color field does not have to be

one of indistinguishability, though. For a certain set of measurements (difference

thresholds) one proceeds another way, from a situation of complete identity. A

physical parameter of the apparatus is varied until the identical fields become just-

noticeably different. Further it may be that by a change in one parameter, no

setting is discovered for complete identity of the two fields. Rather a setting is found

that is distinguished another way: the two fields become less markedly different

for that setting (i.e., that value of the parameter) than for antecedent and succeeding

values of the parameter. Following Helmholtz, I call this an adjustment for max-

imum similarity; I believe that all direct methods for the comparison of hetero-

chromatic brightness – among other methods – fall into this category of

measurements. Finally, it is at least conceivable one might proceed in the opposite

manner: one could adjust fields for maximum contrast. I know of no case in which

such a principle may have been used.

I am of the opinion that all cases are covered by the following exhaustive list.

The four possible principles of adjustment are:

a) Identity

b) Difference

c) Maximum similarity

d) Maximum contrast

For instance, I believe that one makes an adjustment of the third kind if one

selects a color of the same hue within a richly-illuminated spectrum of colors to

match a color from a dimly-illuminated spectrum. One uses the same principle of

adjustment if one compares the photometric properties of two lights of different

hue: meaning one may match a color of equal brightness from a first sample, to one

of a graded second series of samples. I do not think that ‘set’ adjustments are

possible, as would be indicated by the differing expressions ‘identical in hue’ or
‘identical in brightness’. That is not to deny that one could, in the previous example,

at one time choose the equally bright, and at another time choose the color of equal

hue from the dimly illuminated spectrum. One might then choose different posi-

tions along the second spectrum, in general. So naturally there can be two (or more)

colors in a series which are more similar to a given color than their neighbours – just

as two (or more) minima can be present along a finite stretch of a curve.

Of course this conception is not subject to logical demonstration. So long as it

proves serviceable, it retains the advantage of simplicity against all other schemes –

which in current parlance should almost suffice to indicate that it is correct.

We have cited four principles for the adjustment of distinct combinations of

parameters by means of an apparatus to indicate color judgments. These four
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principles can be derived from the following two capacities, which are simply our

native and intuitive capacities to make sensory judgments.

1. We are able to judge whether adjacent color fields are the same or different.

2. Let us call a pair of adjacent, non-identical fields presented to an observer, a

‘step’. We can make qualitative decisions about the size of these steps. We can

judge simultaneously presented steps, or two steps presented in quick succession

(if the temporal interval is not too large). Namely we can judge if a step is

‘larger’ or if it is ‘smaller’. Corollary: This relation of larger-and-smaller

satisfies the axiom of transitivity: If A > B and B > C, then A > C; and if

A < B and B < C, then A < C.

I take it that our capacities to make these two color judgments are the only native

capacities to be considered in quantitative measurement. They entitle us to frame

observers’ adjustments according to the four principles just cited. That much is

immediately evident when the color fields vary only by a single variable param-

eter of our experimental apparatus. If a one-dimensional scale of steps is in

question, we may easily discern the same step, the first different (by progression

in one direction), the smallest (by comparison to neighbouring steps), and the

largest step, if such steps occur in the given scale. If two or more parameters are

to be varied, then the task is more difficult, and a solution much less certain. Even

for two parameters, a procedure of successive approximation must be adopted. For

example, one can maintain the first parameter as it is, and adjust the second

parameter for maximum similarity. Then one maintains the second in its altered

state and adjusts the first for maximum similarity, and so on. This is repeated either

until identity is achieved, or else until maximum attainable similarity is achieved.

In all cases where an adjustment is made to achieve equality, the concrete result

is not a single distinguished value of a parameter (or some combination of param-

eters), but rather a small region of values. The second principle b) owes its

relevance to this, since it comes into play in the investigation of magnitudes in

these regions. One cannot rely upon the simultaneous variation of several param-

eters; rather, one explores the extent of these regions in the direction specified by

each parameter in turn. By these means one obtains a somewhat different, but

perhaps equally useful measure of its extent, in that one determines an average

error of the adjustment for equality.

Now at some point we need to substantiate how and in what respect we are

justified in posing such a fundamental distinction between the measurements at

hand, and all other physical measurements. Other physical measurements are

standardized by spatial and temporal coincidences; these other measurements

involve a special relation to color. The full import of this distinction is not

immediately apparent. It does not depend on the external expression of color

judgment in any way. – This counts for so little that I even exclude from colorim-

etry proper a good number of studies which presuppose this special characteristic;

we have to exclude them because they are only peripherally connected to colorim-

etry proper.
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The color fields which are judged to be equivalent in these respects also have

entirely the same physical makeup. Clearly an observer’s eye – and the observer’s
judgment of color – enters into this business only as a convenient and a sensitive

physical instrument. That instrument registers a null-state reading, and it could be

replaced by any number of other instruments: a bolometer, or a thermometer

column, for example. In that way this kind of measurement could also be traced

back to conventions about coincidence in space and time. These measurements are

entirely at home with measurements of the usual kind – there is no fundamental

difference involved, only an apparent one.

Among those belong for example, strobometric measurements using polarizers,

as well as monochromatic photometry in which both lights do have just the same

spectral composition. That also holds particularly for studies with spectrophotom-

eters, e.g. determination of the reflectance function of a pigment, or the spectral

composition of a light source as compared to standard light sources, and so on. All

those measurements could be carried out by a colorblind physicist, and carried out

by a set procedure – even by a blind physicist. The results would be identical; they

would have a well-defined meaning for that physicist – just the same meaning they

would have for anyone.

The situation is quite different if, e.g. we combine two complementary spectral

lights to produce white, and compare the result to sunlight, or if we combine

thallium green and lithium red to obtain a desaturated sodium yellow (in what is

called Rayleigh equivalence). The spectral composition of the two fields is entirely

different in these cases, as illustrated by Figs. 2.1 and 2.2. Still with a suitable

choice of intensities, the two fields appear completely indistinguishable to the eye.

In this instance the eye is not to be replaced by an instrument. Further, another

observer’s eye may distinguish the balance of the two lights differently – in

abnormal cases the difference can be great. Arguments are all moot here which

might say whose judgment might be better or more nearly correct. The two lights

which appear the same are completely different entities; though they appear the

same, the two lights are entirely different when taken for themselves. They have

nothing in common except that they appear the same to a certain eye, which in its

color judgment is irreplaceable or unsurveyable by another measuring instrument.

This exclusive reliance on the eye of an observer always holds for the other

three principles, i.e., the three principles of colorimetry that have been outlined

(difference, maximum similarity, and maximum contrast). There is an amount by

Fig. 2.1 Sunlight, and the

combination of two spectral

lights. (bin€ares Weiss: white
from a pair of spectral lines;

Sonnenweiss: white
sunlight) (Reproduced from

Schr€odinger 1920)
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which two otherwise equally constituted lights must be altered in intensity, to be

recognized by eye as only just different. Evidently that amount is not determinable

by another measuring instrument, but only by eye. Similarly a color that is most

similar objectively to a given color cannot be picked from a graded series in the

absence of a judgment of color, that is, on a purely physical basis.

By this time and after all this discussion, one might characterize the special

situation of the domain of experimental physics to which we have turned our

attention. One might think it no longer belongs to physics at all. One would then

be investigating the subjective properties of sensory organs, and not the objective

properties of the physical world. This way of speaking is clear and comprehensible,

it is in general use, and it is correct in a certain sense. Nevertheless I have some

remarks to make against this way of speaking.

If one says that research on color may not be concerned with the investigation of

the properties and lawful regularities of the physical world which surrounds us – if

one says rather that it is an investigation of the function of a sensory organ – than a

certain form of representation follows easily. The immediate object of investigation

– color – is attributed less objective reality than other objects of physics, such as

physical bodies, atoms, light, electromagnetic fields, and so on. The barest form of

this representation is the view that the only real correlate in the environment is just

the anatomic or physiologic constitution and function of the sensory organ. But one

could just as well assert that all the rest of physics investigates the functioning of

our sensory organs, and the associated processes of the central and peripheral

nervous system. One could assert that in the final analysis all knowledge, all science

seems subordinate to the all-encompassing discipline of anthropology.

One may or may not cling to such radical Berkeleian views. At any rate, to me it

rings false to acknowledge only one part of our experience, and hence to establish

nonexistent metaphysical distinctions. Yes, all of physics might be conceived as a

categorization of perceptual experience in terms of mental images, which system

may allow us to predict the sequence of those images. In that respect one may find it

advantageous for many purposes to draw predictions from particular experiential

cues or marks. Yet one should not come to believe that such cues lose some of their

reality by our abstraction, or that the physical bodies which surround us might

Fig. 2.2 Desaturated sodium yellow, and the combination of thallium green and lithium red.

(bin€ares Gelb: yellow from a pair of spectral lines; Na Gelb þ Weiss: sodium yellow plus white)

(Reproduced from Schr€odinger 1920)

18 2 Outlines of a Theory of Photopic Colorimetry (Part I): Basic Colorimetry, or. . .



possess some cues in themselves known to us, though at the same time sound and

color are thought to exist for us alone.

The three-dimensional manifold of colors, or color space will be the focus of

much of the subsequent discussion. My view is that color space is every bit as real

as the familiar three-dimensional space of points. Color space should not be

conceived as a mathematical representation, such as the state-space diagrams of

statistical mechanics by which we illustrate the distribution of speeds of gas

molecules. Of course the manner in which we assign, arrange, and survey coordi-

nates in this space is an artificial construct of mathematics. In general we do not

consider the construct at all, as objects from the space appear before our eyes. In

just the same way we do not consider the familiar space of points when its objects

appear to us.

Among the four previously-established principles of colorimetric standardiza-

tion, the first principle of identity or equality is by far the simplest. There is an

advantage to bringing this principle to prominence first of all: i.e., easily accessible

data can be collected and examined when the principle is used exclusively. In this

way one may achieve a surview and general orientation to the color manifold. We

turn now to the definition of that manifold.

Colorimetry, Part I:

Basic Colorimetry, or Affine Color Properties

Section 1: The Notion of Color and Light

Color appears when light strikes the eye, ceteris paribus. Since this is the usual way

in which colors arise, and the only one which may be investigated in an exact

quantitative manner, we will consider it exclusively in what follows.

By light of a certain kind we understand a field of radiation that proceeds from

the neighbourhood of a certain point in space. The field has certain properties in the

(angular) neighbourhood of a direction which intersects that point in space. Con-

sider a plane element that is placed normally (i.e., perpendicularly) to that direction.

The plane element and the direction of a source point subtend a solid angle. For

units of area, time, and space, the quantity of energy varies as

f λð Þdλ

in the form of waves with lengths between λ and λ + d λ. f (λ) is a function of λ in
the visible spectrum. According to this definition, a quantity of energy can be

expressed as

f ðλÞdλ dω dσ dt
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where dω is a measure of angle, dσ a measure of plane area, and dt a measure of

time. The light in question is a function of wavelength f(λ) between λ ¼ 400 and

λ ¼ 800 μμ, more or less.

In saying that we present this light to the eye, we mean that we place the eye at

the locus of our plane element, so that the selected rays will be imaged close to the

region of most distinct vision on the retina (the macula). Here we presuppose that

f(λ) does not vary appreciably over the region of the pupil, meaning that the entire

pupil is uniformly covered by a homogeneous pencil of rays. Yet as soon as we

compare different lights across adjacent fields, the situation becomes entirely

different. Then f(λ) will exhibit a stepwise dependence on the direction that the

pupil makes to a flat pencil of rays – representing the clean, straight dividing line

between the two fields.

The manifold of lights has a higher power than the power of the continuum, that

is to say higher than a space of functions, and hence an indefinitely large number of

dimensions. A priori it could have been possible this would also hold true for the

manifold of color qualities. At least it could have had as large a number of

dimensions as does the manifold of combination tones. The ear acts as a harmonic

analyzer to some extent. That is not the case here. Rather, lights can be arranged in

large sets according to the principle of identical appearance across adjacent fields –

each of these sets has the power of a space of functions. For color-normal observers,

the manifold of this set of lights which appear identical is a manifold of three

dimensions; this is the highest dimensionality yet observed. This fact of its dimen-

sionality is a fundamental proposition of basic colorimetry. We will seek to

establish this result in more detail from experience.

We can now elucidate the ordinary-language use of the word color, that has been

used in absence of a better definition. For quantitative ends, let us designate the set

of identically-appearing lights as a color. In doing so, we distance ourselves

somewhat from the ordinary use of language. That holds particularly since lights of

the same color in our terminology may produce very different impressions on the

eye under different conditions. Occasionally they may even be assigned different

color names. So it may be for two lights that would be indistinguishable in

appearance if presented in adjacent fields. One may be seen as golden yellow

when say, presented singly in the context of a black background; the other may

appear brown when it is presented as an object’s surface color alongside other

relatively intense surface colors. Similarly in the well-known demonstration

concerning ‘colored shadows’: daylight that is reflected from a white patch ‘in
the candle’s shadow’ appears now blue (when the candle is lit), but at another time

gray (when the candle is snuffed).(h)

These differences in appearance depend not at all on a putative difference in the

physical composition of lights. Just as in the case given, such difference as does

occur, occurs with completely identical lights. Whatever circumstance under which

a light may be presented to the eye, the definition given above is maintained in one

sense: no noticeable change occurs by the substitution of that light with another

composite light of the same color.
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Section 2: The Addition of Lights and Colors

By the mixture or addition of lights, we understand a superposition of the pencils

of rays in question. If f(λ) and g(λ) are the spectral functions of two lights, then the

function of their mixture or sum is given by

f λð Þ þ g λð Þ

As a further basic fact of experience, we can cite another basic datum: that one

can speak unequivocally of a mixture or an addition of colors, just as one can

speak of a mixture or an addition of lights. At the outset this operation is indefi-

nitely equivocal, before one settles on a specific interpretation of experience. From

each of the colors to be mixed, one can select any of the infinite number of their

representatives for use in a mixture. It might be possible at the outset that the

resulting lights would not be all identical. Rather some might appear different, at

least in some respect. Then a bare specification of the colors that are mixed would

not be sufficient to determine a color mixture unequivocally. Yet as we have said,

experience teaches us that this is not the case. The resulting lights all appear the

same. Determination of the summands for their color does suffice to determine the

color of the composite light. Grassmann(i) expresses this as follows:
The mixture of lights which are identical in appearance will produce lights

identical in appearance. (Grassmann’s third proposition)

One may also say: the unconditional and complete equivalence of lights which

we have defined as the same in color, is retained when they are mixed.

This fact – and only this fact – allows us to operate directly with colors instead of

lights, i.e. instead of spectral functions, abstracting from extended consideration of

the exact composition of lights by which we produce colors. Throughout we will

use a Roman capital letter A, B, L, M . . . as the symbol for a color, and we will use +

as the symbol for a mixture:

Aþ B, Aþ Bþ LþM,

To indicate that two colors have the same appearance, we use the symbol ¼. So

if color L – which we know by other means – turns out to be the mixture of colors

A and B, then we may write in symbolic form:

L ¼ Aþ B

The equality sign carries an ambiguous meaning in this calculus, that is, it has its

common algebraic sense, and another in terms of color matches. So long as we use

Roman capitals consistently as symbols for colors only, this will lead to no greater

confusion than it does for vector algebra and tensor algebra. This analogy proves to

be complete, by the way, since all color matches made by a color-normal observer

may be represented by three algebraic equations.
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It is evident that the ordinary commutative and associative laws hold for this

addition of color. No new data of experience are implied, since these laws are

already defined in the course of the ordinary addition of spectral functions.

Once one has defined addition for a category of objects, soon one wants to ask

about the possibility of subtraction. Can a color X always be found, which when

added to A, produces color B?

Aþ X ¼ B

This color would be indicated by

X ¼ B� A

Such an X is not always realized. Subtraction is not possible in all cases, as we

show by the following (somewhat premature) example.

We call a light a spectral light, whose f (λ) is only slightly different in width

from zero in a small region of λ; we call the associated color a spectral color. Now
most spectral colors (from about λ¼ 475 to λ¼ 630) are special, in that they can be

produced in only this one manner. The set of equivalent lights has only one

member, if one ignores the fact that across a sufficiently small λ- region, the

distribution of energy within the region is arbitrary. Neighbouring wavelengths

that are sufficiently close have no different effect on the eye. No doubt there are

composite lights of the same hue, but they always appear somewhat pale (less

saturated) compared to the spectral light.

Now if we choose any two such spectral colors Sλ0 and Sλ00, and if we require that

Sλ0 þ X ¼ Sλ0 0

then as a matter of fact this stipulation cannot be satisfied, since the wavelengths λ0

on the left-hand side do not occur in all circumstances in a light that may represent

the spectral color on the right.

Subtraction is possible in some cases, for a reliable example by transposition of

an equation of addition which has been made manifest already. For the moment let

us restrict our use of the � (minus) sign to such cases. We may then transpose

elements of any color equation that is recognized as valid, so that a viable instance

of a color on one side of the equation can be transposed to the other side, with

change in sign. But now we must ask ourselves if the transposition of elements in

such an addition is always unequivocal, even though certainly it may be possible in

the present case. For example let us write

Aþ C ¼ B

as
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A ¼ B� C

and read the latter as: A is that color, which we must mix with C to obtain B. This
only makes sense if A is unequivocally determined for given B and C. That is to say
then, that the obverse proposition to Grassmann’s proposition about experience

(cited above) is also valid:

Only lights of the same color, when mixed with lights of the same color, produce
lights of the same color in turn.

Otherwise stated: from the color equality of n � 1 summands and the sum of the

said equation, one may determine the equality of the nth summand.

On that point it may be said this is the case – so far as experience is concerned.

That is, insofar as the limits of discrimination thresholds do not play a large role –

such limits are the subject of the second part of the present work. If A is a very faint

color compared to B, then B and C will be little different from one another. Then a

small alteration in Awill go unnoticed in the sum A + C, though the alteration would
be clearly noticed if applied to A alone. This uncertainty in the definition of A as a

difference is entirely analogous to the experimental uncertainty present in another

case. Suppose for example that one calculates a small angle – the angle of

deflection for a type of glass – as the difference of two larger angles to determine

the index of refraction for the type of glass. No one would want to deny that angles

can be subtracted unambiguously, on such a basis. And similarly here we should

maintain that the establishment of differences between colors is univocal in result

when it is possible at all.

One should pay serious attention that only a determinate and manifest color is

represented on at least one side of the equation, where it is represented as a sum of

values. A value of zero (0) should be admissible too, to represent the absence of all

light. Otherwise the application of such an arithmetic model is not assured. It may

be added that such equations are innocuous as may be formed as the by-product of

algebraic or formal operations. Still, they are to be avoided as a guide to use.

One more point should be noted. If one knows that a difference A � B in color

can be realized,

A� B ¼ C

then it does not follow at all as a consequence that a non-negative difference over

all λ,

φAðλÞ � φBðλÞ

will be produced by any two spectral distributions φA(λ) and φB(λ) which represent
the colors A and B. Perhaps it can be concluded that there are spectral representa-

tives of A and B for which this holds. Since there is a C, there is at least one light
φ(λ) which represents the color C. In that case
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φBðλÞ þ φCðλÞ and φBðλÞ

are two lights which have the desired property.

Section 3: Multiplication by a Scalar

The notion of the product of a color and an integer is given directly by a repeated

operation of addition.

m A ¼ Aþ Aþ Aþ . . .þ A

The notion of the division of a color by an integer is given as the opposite

operation. It is clear that such a division can always be performed.

To obtain

1=nð ÞA

is to find a color which when taken n times produces color A. To that end one need

only choose a light that represents A – call it φA(λ) – and divide by n.

ð1=nÞ φAðλÞ

What is not clear a priori is that this operation is unequivocal; i.e., that it makes

no difference which light one chooses for the color A, or that one always arrives at
the same fraction of color.

For the moment let us take this univocal result as having been established. Then

a notion of the product of a color with a rational number does follow, through a

combination of multiplication and division by integers:

ðm=nÞA :

Therefore it follows that a color equation remains valid, if one multiplies it by a

rational number, without fresh recourse to experience. That is: unless our post-

poned proof of a univocal result for the division of a color by a positive integer

should make necessary such recourse to experience.

An extension to arbitrary non-negative numbers is assured, since we are dealing

with physical reality and not just playing a game with mathematical symbols. But if

one wants to play, one can begin by relying on the second of Grassmann’s basic
propositions. We express the proposition in this form:

If a light changes monotonically the corresponding color changes monotoni-
cally. (Grassmann’s second proposition)
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In our nomenclature, this form has the advantage that it does not mention color

perception – only quantitatively tractable things. Expressed more precisely, our

proposition of monotonicity reads:

If φ(λ) and φ(λ) + δ φ(λ) are two minimally different lights, and ψ(λ) is an
arbitrary light which appears the same as φ(λ), then among the lights which appear
the same as φ + δ φ, there is at least one – ψ + δ ψ – which appears minimally
different from ψ .

With that step, we gain the notion of a product

μA ,

where μ is an arbitrary non-negative number. Also, we have the following

proposition.

An equivalence in color is retained, if the color is multiplied by a non-negative
number.

The validity of the associative and distributive laws of multiplication – a

commutative law is not under consideration – emerges from the relation between

our operations on colors and operations on spectral functions. What distinguishes

the former from the latter – the essential core of such propositions – is always and

only a determination of the univocal nature of the result. The result must be unique,

no matter which lights one may use to produce the colors that are the subject of

these operations.

Let us take up a question once more – the question that we have held in abeyance

temporarily – of the univocal outcome of division by whole numbers. One may

ask whether, from the equality of multiples

mA ¼ mB

one may conclude the equality of

A ¼ B

Or is it possible somehow that a color inequality

A 6¼ B

can be changed into an equation just by multiplication by a whole number m?
Where lights are concerned, the question then becomes: can two lights φ(λ) and

ψ(λ) which do not appear the same, be made to appear the same, as the objective

intensity of both lights is increased by a multiplicative factor m?
Firstly, the facts are as follows: this is not the case for the fovea, out as far as the

blind spot in the paracentral region. There all color equivalence is independent of

absolute intensity.(j) Color equivalences do change to color inequalities in the

paracentral and peripheral regions of the retina, which regions do not concern us

at present. But also in these regions, Grassmann’s proposition is invalid for the
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equality in appearance of mixtures of equal-appearing lights. Two questions con-

cern us here for reasons of principle: do these two kinds of appearance bear a

logical connection to one another?; or must the equations be endorsed as a distinct

datum of experience and as foundational, in juxtaposition with Grassmann’s
proposition?

Ewald Hering(k) affirmed the latter. As a consequence he would have extended

the list of Grassmann’s propositions to include the following:

Lights that appear the same remain the same, if one increases or decreases the
intensity of each by the same proportion.

I have also tried (in vain) to manage here without having fresh recourse to

experience – I think it impossible. Yet surely it would be incorrect to incorporate

wholesale all the machinery of multiplication – to erect it as an independent fact of

experience. At any rate, multiplication by an integer still follows logically from the

operation of addition.

The following conclusions may be drawn. If for a value of n there are different

fractions of colors (1/n) A, we say:

nAn ¼ nA0
n ¼ A

An 6¼ A0
n

Then neither

ðn� 1 Þ An ¼ ðn� 1Þ A0
n

nor

ðnþ 1 Þ An ¼ ðnþ 1Þ A0
n

because from each of these equations, together with the first part of the assumption

(the result of the univocal nature of subtraction, which seems reasonable here),

there would follow:

An ¼ A0
n

which contradicts the second part of the assumption. In the same way, it may be

concluded that

2n An ¼ 2n A0
n

but then

ð2n� 1 Þ An 6¼ ð2n� 1Þ A0
n
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ð2nþ 1 Þ An 6¼ ð2nþ 1Þ A0
n

and so on, for arbitrary multiples of n.
It suffices to say one thing for this reasoning to fly in the face of experience, for

the assumption consequently to be contradicted, and yet for univocity to be

affirmed. It suffices to posit this as a proposition from experience:

There are no two lights that become equal and later unequal in a periodic
manner as the intensities of these lights increase proportionally.

Section 4: Dimensionality

There is still one piece missing in our construction of an affine geometry of the

color manifold. That is the business of dimensionality, as was alluded in passing in

the previous section. I have not yet revealed the roots of dimensionality in experi-

ence, and have not yet made use of the fact of dimensionality. I have intended to

leave this for last, since all those facts of experience remain valid which were

mentioned previously. Their consequences hold valid not only for ordinary color-

normal observers, but they hold just as well for color-anomalous and color-deficient

observers. The differences among them lie simply in the dimensionality of the color

manifold.

If a number (n) of colors are given:

A,B,C . . .

there may be a linear relation that obtains among them:

α Aþ β Bþ γ Cþ � � � ¼ 0 ð2:1Þ

(naturally, we suppose throughout that not all these magnitudes α, β, γ . . . are equal
to zero). The existence of such a relation means that from coefficients of certain

subsets of the n colors (those which have positive coefficients in the equation), the

same color can be produced as a mixture of certain colors of the remaining

coefficients (those which have negative coefficients).

But it may also happen that no such relation obtains. In the former case we call

the n colors ‘linearly dependent’, in the latter ‘linearly independent’.
Then the basic facts of dimensionality can be stated:

A. For color-normals (trichromats)

There are linearly independent triplets of colors. Any four colours are always
linearly dependent.

B. For partially color-blind observers (dichromats)

There exist linearly independent pairs of colors. Any three colors are always
linearly dependent.

Section 4: Dimensionality 27



C. For completely color-blind observers (monochromats)

Any two colors are linearly dependent.

These expressions simply mean that for such people the color manifold has three

dimensions, or two, or one, respectively. Indeed let us consider the more compli-

cated case of trichromats. Let us then consider a linearly independent triple of

colors

A, B, C:

None of these may be obtained as a mixture of the others, under our premise. For

an arbitrary color F there will be a color equation

α Aþ β Bþ γ Cþ ζ F ¼ 0 ð2:2Þ

in which ζ is different from zero – otherwise A, B, and C would not be independent.

One can also solve for F:

F ¼ x1A þ x2B þ x3C:

x1 ¼ � α

ζ
, x2 ¼ � β

ζ
, x3 ¼ � γ

ζ
:

ð2:3Þ

To each F corresponds one and only one triplet of values (x1, x2, x3): only one,

since otherwise a relation could be found by subtraction which would involve A, B,
and C alone. The converse does not hold in general, though at least to all positive

triplets (x1, x2, x3) there corresponds one and only one color F. Then the colors

F form a manifold of no more and no less than three dimensions.

Certainly the expression that we have introduced for the fact of dimensionality is

simplest in theoretical terms. Yet it doesn’t follow that this expression represents

the immediate data of experience. One can never be quite certain that one has really

evaluated all sets of four colors, or if perhaps a set of linearly independent colors is

to be found among them.

In place of our proposition about dimensionality (for trichromats), Grassmann
uses this proposition:

For any light, another light of identical appearance may be formed as the
mixture of white light with either a pure spectral color, or with a distinct purple
mixture (that is, a mixture of colors from the ends of the visible spectrum).
(Grassmann’s first proposition)

A two-dimensional manifold is formed by the series of spectral colors and the

mixtures which give rise to purples, together with variations in intensity. Variations

in the intensity of white form a one-dimensional manifold. Consequently and

empirically, the combination of all these will form a three-dimensional manifold.

Yet in my opinion, this expression of Grassmann’s requires too much inductive

support – much broader than is necessary – to confirm basic facts about
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dimensionality. That is, it seems one really must have evaluated all lights, just to be

sure there is no mixture which is not representable in the way mentioned.

By contrast, a proof of tri-dimensionality may be adduced systematically, as

follows. First one examines the series of spectral colors; one recognizes that in

general any two of them are distinguished by more than their intensity (apart from

the narrow-band spectral ‘ends’, to be discussed later). Any attempt to match two of

them by objective changes in intensity will fail. Pairs of spectral colors are

linearly independent, in general.

Now if one examines binary mixtures of spectral colors, generally one finds

that something new is produced (if the wavelengths in the mixture do not lie along

the dichromatic ‘lines of confusion’ – more on that later). Namely, what is produced

are whitish versions of the pure colors and all the whitish versions of the purples.

These cannot be matched to a single spectral color by a simple change in their

objective intensity. Triplets of spectral colors are linearly independent, in

general.

In other words, we are certain the number of dimensions for the manifold is at

least three.

One recognizes that the number of dimensions is at most four, if one examines

ternary mixtures of spectral colors, and finds that they produce nothing new.

Rather, one finds that each has a binary equivalent. One doesn’t need to produce

an experimental demonstration for mixtures of four spectral colors or more. One

can always replace three of those by two others, until a binary equivalent remains.

Then since any light can be considered – to a reasonable approximation – as the

mixture of n pure spectral lights, it follows that:

The manifold of colors is covered completely and exhaustively by the pure
spectral colors and their binary mixtures.

Now the manifold of binary mixtures has a dimension number of 4. The same

would be true of the manifold of colors – that is, it would be true if each color could

not arise in 11 ways from the mixture of two spectral colors. Similarly, for

example, white can arise as the mixture of 11 pairs of complementary colors.

We can arbitrate between a dimensionality of three and a dimensionality of four at
this time, after having said that the set of interest is not the set of ‘all lights’ but
rather that of binary mixtures. Then we may have recourse to Grassmann’s idea,
and show that it holds equally well for desaturated spectral colors and purple

mixtures alike. And so finally the dimension number of three is vouchsafed.
The procedure is similar, though much simpler, for dichromats and monochro-

mats. To the former, binary mixtures produce nothing new. In general any two

spectral colors are linearly independent (different in color). The spectral colors

cover the manifold of all colors; the number of dimensions is therefore two. For
monochromats, simple changes in intensity suffice to match any two spectral

colors, and thus any arbitrary mixture. There are then not even linearly independent

pairs of colors; the number of dimensions is one.
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Section 5: Mapping onto a Pencil of Vectors

With that, the general laws of light mixture are settled. Basic colorimetry – as we

have called it – is settled insofar as the three kinds of color system which we have

distinguished can be considered independently. An important theoretical comple-

ment of a similarly general nature will be discussed later, that draws a relation

between the dichromatic and the trichromatic systems of color.

All that has been said to this point can be summarized briefly. Colors form a

manifold of things over which several operations are defined unequivocally: equal-

ity, addition, in a limited way subtraction, and moreover, multiplication by a

non-negative number uniquely. Associative and commutative laws – among others

– hold for these operations in the ordinary sense. The dimension number of the

manifold is three (in the normal case, to which we always give first attention). All

this is grounded in experience, held together by the immediate data of color

matching judgments for adjacent color fields.

Then we may compare these laws of color, as validated by experience, with a

set of axioms. They are the axioms we must establish to ground an affine geometry

for a pencil of vectors,(l) namely vectors that radiate from a point. The comparison

reveals a complete correspondence. The manifold of colors, or as we would like to

say, the color space, provides a three-dimensional model for a purely affine

structure, so far as color matching relations are concerned. In this way, all specific

relations in the less-than-easily surveyable domain of color can be made splendidly

intuitive. One can consider the color domain to have a one-to-one correspondence

with a pencil of vectors in space; each color corresponds to a vector, and each

vector definitely represents no more than a single color. But in doing so one should

not forget – as Grassmann stresses – that the domains which provide these models

are differentiated only in our immediate intuition, rather than in some elementary

reality. It is on the basis of matching judgments that color space comes into its own,

and acquires an affine structure. That is entirely distinct from the vector space or the

space of points which aids us in making color space perspicuous. Conversely this

intuition obscures a certain risk – no matter how comfortable or indispensable the

intuition may be. We must be acutely aware that we are wholly accustomed to

thinking of the space of points not just as an affine space, but rather as a metric

space – specifically as a Euclidean space. We must be careful to interpret color

space exclusively in terms of affine relations, rather than imposing metric relations.

Those metric relations are completely meaningless here. Color space may have its

own metric, but that notion will be developed in the second Article of the present

work [Chap. 4].

It may not be too much to remind ourselves of something here. We know the

affine properties of spatial forms to be all those properties which remain unaltered

under affine transformation. Forms which can be brought into coincidence by such a

transformation play the same role in affine geometry as congruent forms of Euclid-

ean geometry. The general affine group takes the place of the group of motions. In

ordinary rectilinear coordinate systems, and likewise in arbitrary systems which
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have oblique, nonindependent axes, the most general affine group can be expressed

as the complete group of linear (nonhomogeneous) coordinate transformations.

Every point of the new coordinates is mapped onto the original unchanged system

of coordinates by the deformation (‘aliasmethod’). One can proceed in another way
as well: one retains the numeric coordinates of every point, but one frames these as

the coordinates of a new skew system whose axes are arbitrarily oriented to one

another (‘alibi method’). The most general affine transformations can be instanti-

ated in that way too. Speaking in terms of vectors rather than points, one can say: we

conceive the original vector components as mapped onto an arbitrarily transformed

system of basis vectors.

In this most general characterization, affine transformation subsumes not only its

idiothetic basis – as deformation – but also ordinary motions (of translation and

rotation). Yet translation (transposition of the origin of coordinates) is meaningless

for our purposes, since we are dealing with a pencil of vectors which emanate from

a point. The position of that point in space is not determined in advance. Conse-

quently the coordinate transformation can always be termed homogeneous. What

remains by way of transformation, apart from rotation, is then so-called linear

deformation. In other words there remain three operations of stretch (changes of

measure) in three mutually perpendicular directions. (Of course, this does not

generally mean in the directions of the coordinate axes, even when rectilinear

coordinate axes are used.) Only those properties of shape which remain unaltered

by the shears and strains in question are affine properties, or have any meaning in

color space. Most importantly for us is that in this fashion, lines are mapped onto

lines and planes onto planes – and as a consequence of linearity, the order of a curve

or the order of a surface remains the same in number. The collinearity and

coplanarity of points, as well as the coplanarity of lines are also unchanged as a

consequence. Accordingly a curve will not acquire an inflection point as a result of

its transformation, and – what will interest us particularly – a cone will not acquire a

new generatrix line. – For later reference (in Section 10, on the theory of

dichromacy) we note too that the property of parallelism of lines and of planes is

also affine-invariant. – Of course this body of facts is well-known to physicists, and

trusted in the foundations of elasticity and of hydrodynamics. There the application

is to infinitesimally small deformations; by contrast our present application is to

quite arbitrary finite deformations.

The laws of color mixture deviate from the axioms of affine geometry on one

point which we have left unmentioned. That is the restricted application of the

operation of subtraction, and the connected lack of significance attached to negative

colors (�A), as well as the whole business of multiplication by negative numbers.

The use of color space as a model for a pencil of vectors might allow this operation

to be performed unrestrictedly. Yet it may be concluded that at most half of the

totality of vectors find a model, meaning that only that many vectors actually

represent a color (as we shall see, in reality it is less than half). For any vector

which represents a color, the vector of opposite sign remains unused because there

are no two lights and hence no two colors which produce darkness when

superimposed. That means colors are not represented by the entire vector pencil
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extending 4π in spatial angle. Rather a more bounded cone with total angular extent

less than 2π represents them (the precise value of this spatial angle has no meaning

in affine geometry, by the way). This explains the restricted application of the

operation of subtraction. Of course a vector difference may be found for any of the

representing vectors as a matter of geometry. That operation can always indicate a

vector which does not belong to the cone of real-valued colors. Then there exists no

color which is represented by the geometric requirement.

By the establishment of this general state of affairs, color space can be consid-

ered purely in terms of affine geometry – from the perspective of judgments of color

equality. Color space has the affine structure of a cone of vectors whose angular

extent is less than 2π. By the establishment of this state of affairs, in my opinion the

most important part of basic colorimetry is now complete. The facts have now been

established. As the reader is aware, in this section our discussion did not need to

touch on such difficult notions such as the definitions of white, saturation, whiteness

content, chromatic power, and complementary color, among others. Yet what

remains to be added consists only in the search for color vectors which represent

particular lights (i.e., especially spectral lights) by simple concatenation, and also in

determination of the affine-geometric relations of these vectors to one another. Thus

at one stroke we know the nature of the boundary of the spectral cone, the affine-

geometric structure of this cone, and its composition in terms of color. To that

purpose we will employ a representation of color which corresponds entirely to a

vector representation of coordinates. Because of this complete analogy, calcula-

tions become simple and perspicuous. Consideration of the meaning of all these

operations in color-theoretic terms will yet occupy some space in our discussion,

particularly the meaning of coordinate transformations. Then we will be concerned

with a single empirically rich proposition of experience – namely the recognition of

the set of trichromatic color matches made by dichromats – and the rule-governed

relations between dichromatic and trichromatic systems. This leads to the identifi-

cation of certain (virtual) color vectors as fundamental stimuli. Finally – because of

its wide dissemination – we will introduce the representation of colors in a color

plane. That is simpler in practical application, but it is somewhat more complicated

theoretically. We will derive that plane representation from our spatial representa-

tion, and go on to describe an ‘advanced’ color metric in the next article (Chap. 4).

(Submitted March 1920)

Notes

a. Following von Kries, I designate lights as having the same stimulus quality

when they are made indiscriminable by a simple change in the objective intensity

of one of their component lights. [ff.1, p. 398 original].

b. [Trans.] In the original this passage reads: „Ob die Definition der

Helligkeitsgleichheit grundsätzlich m€oglich ist oder nicht, hängt nämlich

davon ab, ob ein gewisser Pfaffscher Differenzialausdruck in drei Differenzialen
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Sinnesorgane, 4 (1893) p. 241ff. [ff. 1, p. 401 original].

f. Cf. the second of the above citations, p.15. [ff. 2, p. 401 original].

g. For an initial orientation to this area, I would most like to recommend the

illuminating account put forward by Johannes von Kries in W. Nagel’s
Handbuch der Physiologie des Menschen III.1 (Braunschweig, F. Vieweg

1904). [ff. 1, p. 402 original].

h. Cf. Helmholtz, H.L.F. von Handbuch der physiologischen Optik. 3rd ed., Ham-

burg und Leipzig: Leopold Voβ (1911, second volume published 1910), p. 230ff.

[ff. 1, p. 410 original].
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Dufft (1877). [ff. 1, p. 411 original].
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Chapter 3

Outlines of a Theory of Photopic Colorimetry

(Part II) Basic Colorimetry or Affine Color

Properties, Continued (First Article)

Abstract A formal system of human color perception has been described, which is

known as basic colorimetry. Positions of the associated color space represent

spectral colors, purples, and the color white – among others. Actual colors in

color space form at least a three-dimensional color envelope. This chapter describes

some affine-invariant properties of the color envelope. The role which plane

projective geometry plays in the subordinate color plane is the same as the role

which affine geometry plays in color space. The derivation of color coordinates is

demonstrated for an arbitrary function of wavelength, as is the derivation of color

coordinates under affine transformation of color space. A relation is established

between the color matches which are made by dichromat observers, and color

matches made by trichromats (color-normal observers). Basic colorimetry provides

the foundation for advanced colorimetry as developed in a subsequent chapter.

Keywords Colorimetry • Color vision • Color matching • Color space • Affine

geometry • Barycentric coordinates • Affine invariant property • Projective

geometry • Projective invariant • Color coordinates • Color-matching function •

Dichromacy • Trichromacy • Spectral curve • Schr€odinger

Section 6: The Spectral Cone. Delineation of the Real-Valued

Color Space, and Orientations in Color Space

The mapping of colors onto the cone of vectors – and conversely the catalogue of

the vectors which represents objectively given colors – has a theoretical formula-

tion which is extremely simple, though clean experimental demonstrations are

difficult. One chooses three objectively given colors as calibration colors among

which there is no linear relation, meaning that no one of them is formed by mixture

of the other two. One assigns these to three arbitrarily chosen noncoplanar vectors

of the pencil. This fixes the nine variable coefficients which are constrained under

the general group of affine (homogeneous) transformations. (Any arbitrary triple of

Schr€odinger, E. (1920b). Grundlinien einer Theorie der Farbenmetrik im Tagessehen. II.

Mitteilung. Annalen der Physik, vierte Folge, 63(21), 427–456. Copyright © 2006, as renewed.

Translated with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

© Springer International Publishing AG 2017

K.K. Niall (ed.), Erwin Schr€odinger’s Color Theory,
DOI 10.1007/978-3-319-64621-3_3
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noncoplanar vectors counts as ‘congruent’ to any other, in affine geometry.) Then

given a fourth objective color, one establishes a linear equation grounded experi-

mentally in the mixture of the four colors. If A, B, and C are the three calibration

colors and F is the fourth color, then as previously one obtains following the

equation (Eq. 3.1):

F ¼ x1Aþ x2Bþ x3C: ð3:1Þ

The coefficients xi indicate the color coordinates of F (its trichromatic coeffi-

cients) relative to the calibration colors A, B, and C.(a) The signs of the xi may be

different, but at least one of them must be positive, since the left-hand side stands

for an actual color. Either one of the four colors can be mixed from the three others,

or else a nicely balanced mixture of two of them is equal to a nicely balanced

mixture of the two others. At any rate, from the equation above we may derive the

vector that pertains to F. The xi are simply its components in affine-geometric

terms, relative to the basis vectors A, B, and C. If one constitutes the manifold of

vectors this way, representing them in homogeneous terms as lights from a

concretely-given spectrum, they form a characteristic cone: the spectral cone. The

heads of the vectors trace a specific curve around the surface of the spectral cone.

The exact shape of this curve depends on the specific distribution of energy in the

spectrum at hand, but the locus of the cone does not. That is, an increase in energy at

one position along the spectrum pushes the curve out farther from the origin. A

decrease in energy for that region of the spectrum draws the curve closer to the

origin.

Our main focus of interest is the fully invariant (in the sense of affine geometry,

naturally) form of the cone’s envelope. Its most important property is just this: the

envelope has gores which bound two plane sections. Those are the spectral

intervals – von K€onig called them transitional segments – from λ ¼ 630 to λ ¼
655, and from λ ¼ 430 to λ ¼ 475. They appear as the sections ROG and VOI in
Fig. 3.1. (The Figure also shows to good effect the intersection which the spectral

cone makes with an arbitrarily inclined plane.)

Along each of these spectral intervals – they include varying degrees of orange

and of indigo – any two intermediate spectral colors can be produced as a mixture

of two outlying spectral colors. But in general it is not the case that the three

Fig. 3.1 The envelope of

the spectral cone

(Spektralkurve: spectral
curve), and its intersection

with an arbitrarily inclined

plane (Schnitt mit einer
Ebene). (Reproduced from

Schr€odinger, 1920)
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generators of a cone lie in a single plane. The plane has no twist: it does have

monotonic curvature. Certainly it is not so tightly curved (one may think of the

development of a closed envelope) that a triple of three coplanar points may be

employed as generators in another way.

The plane gores form the borders of the surface in question. Yet if one meanders

towards one end of the spectrum, the color vector reaches its boundary, even before

the end of the visible spectrum is reached. From that point it draws back towards the

origin without changing in direction. This implies that within this end region

(K€onig) any color can be produced by any other by a simple change in objective

intensity – as we put the matter previously, they are of equal stimulus quality

(v. Kries). The end regions and transitional regions can also be called monochro-

matic and dichromatic according to their properties as mixtures of one or two

colors, respectively. Between them lies a middle region, along which the spectral

cone has convex curvature. Here is an overview of these five regions of the color

spectrum, whose boundaries are naturally not determinable precisely, and which

may vary slightly from eye to eye (Fig. 3.2).

If one mixes colors from each of the two end segments together in varying

proportion, one obtains all possible hues of purple – the most saturated of purple

hues which can be produced. The associated color vectors close up the plane

segment R O V, which when added to the spectral cone completes it as a closed

envelope. Now an arbitrary color must be represented as composed somehow of

spectral lights. Then since we know that this mixture must consist of no more than

two spectral lights, it follows: only the vectors inside this envelope – but that means

all of them – are real-valued color vectors. The three calibration colors with which

we began must also lie either in the interior or on the surface of the envelope.

From the rough distribution of colors in the interior we can form an intuitive

picture, reasoning that somewhere in the interior there must be a vector direction

which corresponds to white (say, to sunlight). The sheaf of planes through that

direction separates the totality of colors into groups. The groups which lie on the

same half-plane of the sheaf are related to the same spectral color (or the same

saturated hue of purple) by ‘dilution with white’.

Fig. 3.2 Sections of the visible spectrum, classified by properties of color mixture. (Endstrecke:
far region; Zwischenstrecke: transitional region; Mittelstrecke: middle region; monochromatisch:
monochromatic; dichromatisch: dichromatic; trichromatisch: trichromatic; Rot, Orange, Gelb,
Gr€un, Blau, Indigo, Violett: ROYGBIV) (Reproduced from Schr€odinger, 1920)
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They form – following common parlance – less saturated gradations of these

spectral colors (or those purples). They aremore unsaturated, i.e. whiter, the closer

they lie to the locus of white. Here we mark a clear distinction: this gradation has

meaning only for the same half-plane, that is, for colors of the same hue. Consider

the angle that the direction of white makes with pairs of vectors which are not

coplanar to white. That angle offers no measure of the relative saturation of the

associated pair of colors. From our present perspective no such measure can exist,

because an affine transformation can eliminate that angle entirely, or change the

sign of that relation.

Pairs of colors which are coplanar to white, and which enclose white, are

complementary colors in the fullest sense: white can be produced from suitably

balanced proportions of them.

Pairs of colors which have the same direction (vectors which include one

another) have – as suggested earlier – the same stimulus quality (the same hue

and the same saturation, so to speak). Colors that are less intense lights are

represented by shorter vectors. A similar observation holds, as was made earlier

with respect to saturation: A comparison of the lengths of vectors which lie in

different orientations will not license any inference to a comparison of the propor-

tion of the intensities of lights. From the standpoint of affine geometry, and

consequently from the standpoint of basic colorimetry, such vectors count as

entirely incommensurate. Up to this point, our system fails to cover any comparison

of intensity between colors that have different stimulus qualities.

It is important to notice that there is something arbitrary in this approach to color

space, in which the direction of white is given prominence. Simply as the color of

sunlight, white is not exceptional. It is not distinguished by the elementary makeup

of this kind of light, nor is it distinguished by a somehow characteristic place of its

assigned vector. Its psychological distinctiveness consists just in this: there is a

particular simplicity to the impression, or perhaps better, to the drawing of judg-

ments about this hue independently of sensation. This special situation – in psy-

chological terms – is associated with a composition of light that is in no way

exceptional in physical terms, being black-body radiation of about 7000 �C. The
situation may be explained readily in terms of genetic psychology, that is, in terms

of the evolutionary development of the sense organs. Our eyes have arisen pretty

well exclusively under the influence of this composition of light, and so they have

developed as they have, taking on their present functions. It is hardly amazing that

this composition of light plays a special role in color perception as it has developed,

mediating between possible extremes. As a footnote, the phylogenetic explanation

is also the only natural explanation for the noteworthy coincidence of the energy

peak of the solar spectrum with the peak of brightness across a flat spectral

distribution of energy. One might say that the development of better sensitivity to

light would be most profitable – so to speak – at the spectral position of the energy

peak and on either side of it. There the most distinct perception of objects in dim

illumination was inculcated.

But this plausible phylogenetic explanation in no way alleviates a deep ambi-

guity in the definition of ‘white’. That ambiguity has two sources: a physical source
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which changes with the time of day and the season of the year, since the compo-

sition of sunlight is not rigidly fixed. Secondly, it has a physiological source, since

color – meaning the set of lights which appear the same and to which we affix a hue

– varies in a significant way with the adaptation state of the eye. Even a

pre-adapted eye is disposed to change its stance on illumination after only a few

minutes of exposure to conditions other than sunlight. After that, either the

prevailing light or a light closer to it is recognized as being devoid of hue. Then

if a spot of sunlight appears in isolation in that environment, it will be named a color

that is complementary to the prevailing illumination. On those grounds we should

not declare that what is called ‘white’ at one time, is always the same in psycho-

logical terms or not. (I maintain that it is the same.) According to our metric

definition of color, it is another color (cf. Section 1 above). That is the conse-

quence for us presently, since our concept of color is the only tenable account in

metric terms. By contrast the psychological concept is indeterminate, and untenable

as a metric.

From the previous discussion, it emerges that directions in color space with

respect to white do not have a very central role. Rather they are just a guide to

intuition. We can make them an exact guide, by precise physical determination of

the light mixture that ought to be called ‘white’.(b) Yet there is an element of

convention to this: in purely formal terms we could also assign quite an arbitrary

mixture of lights to serve as that signpost, even one that is not white at all. Of

course, then descriptions like “a less saturated version of the same hue” would be

baseless for mixtures involving the new reference light. But such would also be the

case for a properly adapted eye, if we chose sunlight as standard white.

Many observers report that quite apart from the adaptation state of the eye, a

color may alter in hue if one simply combines it with a white which does appear free

of any tint under the conditions of the adaptation regime.(c) This occurs even

when the composition of the light is unaltered and only its objective intensity is

lowered.(d) Then the nomenclature ‘same hue’ does not even hold for what we have
called the same ‘stimulus quality’ in color, to put the simple facts concisely. At this

point I would propose only that even this notable circumstance need not pose any

impediment to our deliberations. From the standpoint of the basic metric which is

founded on absolute judgments of equality, any such extrapolation in judgments of

color – especially to ‘equally bright’ or ‘equal in hue’ or the like – is an accessory

judgment outside the province of the basic metric. That is not its business, or its

competence. At most the accessory judgment can be used for some quick and easy

labels, but it should never be applied to delineate exact concepts.

We will return to these phenomena in the final paragraphs of Article 2 [Chap. 4].
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Section 7: The Theory of Coordinate Assignment

We had thought (in the first part of Section 6, preceding) that we had solved the task

of finding coordinates in terms of three calibration colors for an arbitrary color. We

considered the task to have been solved in empirical terms by the establishment of

relevant color equivalences. For such an equivalence, colors must be given in
concreto, in a form amenable to experimental manipulation. In comparison, the

spectral composition of the light in question – its function of wavelength f (λ) – need
not be known. Let us now examine the converse situation, in which a light is known

only as a numeric function of wavelength. The task is to find, solely by calculation,

the color vector to be assigned to the light.

The task can be solved, when a spectrum having a known energy distribution

has been thoroughly calibrated as a standard, i.e., the ordinates of a continuous

sequence of narrow-band lights of that spectrum have been evaluated experimen-

tally by real color matches to produce three continuous functions of wavelength.

We call these the color-mixture functions (CMF). In graphical representation color-

mixture curves [Eichkurven] are color-matching functions [Aichkurven] for the

spectrum. They are formed with reference to three calibration colors which are

chosen in advance, as a matter of procedure. Figure 3.3 shows the color-mixture

curves of the interference spectrum of sunlight,(e) with respect to three spectral

colors. The first is at the far red end of the spectrum, the second is green at

λ ¼ 505 μμ, and the third is at the far violet end depending on the stimulus

quality. The intensities of these calibration lights are not to be chosen so that they

appear at any arbitrary heights along the spectrum. Instead the proportion of these

three color-mixture curves is meant above all to produce white, that is to say, a color

which has the stimulus quality of sunlight. This has the consequence for the color-

mixture curves, as we shall see, that between each one of them and the abscissa

there is an area which is subject to algebraic evaluation and which is set to be equal

in area for all three. A standard of measure is chosen so that this common area is set

to 1000 arbitrarily for each one. This convention supplants the difficult task of

Fig. 3.3 Color-mixture

curves of the interference

spectrum of sunlight, in

relative coordinates across

the spectrum. (Reproduced

from Schr€odinger, 1920)
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determining the absolute strength of these calibration lights, that is to say it

dispenses with the task altogether.

The relation of any three trichromatic coefficients to the color-mixture curve

is independent of this particular form of the calibrated spectrum. That is provided

the three pertain to the same abscissa (the same wavelengths). An increase in the

intensity of light (its energy) at one place in the spectrum will change all three

trichromatic coefficients by the same ratio. The form of the spectral cone is given in

terms of affine geometry, because of the ensuing changes in those ratios. The

precise form of the color-mixture curves is largely dependent on the energy

distribution, by comparison. Then by a judicious choice of the energy distribution,

one of the color-mixture curves might even be given an entirely arbitrary form

within the visible region of the spectrum.(f) The form of the other two would then be

uniquely constrained, however.

The notion of the energy distribution across the said spectrum may lead to a few

ambiguities in this discussion or similar discussions. One should by no means take

the function of wavelength Φ(λ) – in the sense defined previously – to mean, say,

the source of light which serves to create the spectrum. The distribution of energy

depends not only on its source, but also on the nature of dispersion across the

spectrum.

If we consider a spatial position on the spectrum, a small band of wavelengths

from λ to Δλ will be incident on it. How large this band may be, will depend on the

strength of dispersion dx/dλ (where x is a spatial coordinate along the spectrum) and

on the width of the aperture image. The wavelength function of spectral light φ(λ)
which dominates in the said spatial position, is null everywhere except between λ
and λ + Δ λ. There it may count as constant. With a suitable arrangement of prisms it

corresponds to the Φ(λ) of the light source, excepting losses due to reflection. That
φ(λ) and Φ(λ) agree is not at all so immediately enlightening as is tacitly assumed

by most expositions of the topic. Rather it is a consequence of the cosine law of

geometric optics. The solid angle of a (small) cone of incident rays is transformed

in inverse relation to the increase in incident area of each optical image. Then under

the law a constant product is formed by the solid angle multiplied by the area of the

image incident on the plane.

Then the function φ(λ) of a spectral source is what we may call a ‘rectangular
function’. Intensity is given by the area of the rectangle, in other words as the

product of the height Φ(λ) and the base Δλ. This product is what we had sought to

find for the distribution of energy as a function of λ. Only the first of the product’s
two components – height – is a property of the light source itself; the second

depends only on the type of dispersion, by comparison.

It follows from this that Δλ is the quotient of the image width and the dispersion

Δλ ¼ b : dx=dλð Þ ð3:2Þ

Δλ is primarily proportional to image width, across the entire spectrum. It

depends on wavelength for two reasons: first because the increase varies somewhat,

and second because dispersion does vary – strongly across the prismatic spectrum.
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If one works in the neighbourhood of the diffraction limit, variations in b may be

neglected. The rapid increase in dispersion towards violet wavelengths will then

provide an accurate picture of the distortion which applies to the function Φ(λ) of
the light source under a given type of dispersion. The simplest arrangement, at least

theoretically, obtains when one uses an optical grating, and projects the spectrum

across both sides of the direction normal to the grating. It is simplest because both

b and dx/dλ are roughly independent of λ. Therefore the distribution of energy is a

faithful image of Φ(λ), that is to say, equal to Φ(λ) times a small and constant

interval of λ. Yet in the practical use of gratings there are idiosyncratic effects of

their sulcate form, which lead us to suspect considerable, completely unsurveyable

complications. In abstraction from such complications, for the sake of simplicity we

may consider ourselves justified in calculating results only for the spectrum from an

ideal grating. After all these critical asides, we will still assume that the energy

distribution – i.e., the area of our rectangular spectral function – has the form:

C � ϕðλÞ ,

where C is a small constant with the dimension of length, andΦ(λ) indicates the
λ-function of the light source.

Let us turn once again to the task we set out at the beginning of this section. That

was to find by calculation the color vector, or the three color coordinates, for a given

function of wavelength f (λ). We introduce as known three color-mixture functions

x1(λ), x2(λ), and x3(λ) for the spectrum of the energy distribution that we have just

considered. Let us divide the visible spectrum of wavelengths into n equal sections,
each of about a short width C. Then we may think of the light f (λ) as consisting of

the superposition of n spectral lights developed from lights given immediately in

the spectrum, each by multiplication with the quotient f (λ)/Φ (λ). The coordinates
of such a spectral light are then:

f λð Þx1 λð Þ
Φ λð Þ ,

f λð Þx2 λð Þ
Φ λð Þ ,

f λð Þx3 λð Þ
Φ λð Þ ,

and so the color coordinates of f (λ) are:

Xn
1

f x1
Φ

,
Xn
1

f x2
Φ

,
Xn
1

f x3
Φ

: ð3:3Þ

We ought to be able to replace these sums by definite integrals, and maintain

adequate precision. Then for the desired color coordinates of f (λ) we find three

numbers:
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1

C

Z
f x1
Φ

dλ,
1

C

Z
f x2
Φ

dλ,
1

C

Z
f x3
Φ

dλ: ð3:4Þ

Concerning the constant C, there is little interest in ascertaining its value by

experiment. It becomes superfluous through the normalization of the color-mixture

functions, which normalization was alluded to earlier. An especially simple analytic

form is obtained for the coordinates of a light drawn from the spectrum. Namely,

one obtains for f ¼ Φ:

1

C

Z
x1 dλ,

1

C

Z
x2 dλ,

1

C

Z
x3 dλ: ð3:5Þ

If one then changes the scale of two of the color-mixture functions arbitrarily so

that the three integrals become equal, then the incident light will be assigned three

equal color coordinates. In doing so, one has chosen three such lights of the

previously arranged stimulus qualities as calibration lights. They appear the same

as the illumination source when they are mixed together. In the main, there is little

else to say about the absolute intensity of the calibration colors as lights. There is

just as little to decide between cases when the illumination source in its actual value

is chosen as a norm, and cases when it has some other intensity, say as some

multiple of C. To that purpose one ought – one does as a matter of course – to

transform the scale of each of the three color-mixture functions proportionally, so

that the three integrals produce some round-numbered value like 1000. Ignoring the

factor 1/C one may then assign the triple

1000, 1000, 1000

as an approximation to the coordinates of the illumination source. Of course this

does not hold for the actual intensity of the source, just for some multiple of C.
Under this arrangement the color coordinates of the light f (λ) will become:

Z
f ðλÞx1ðλÞ
ΦðλÞ dλ ð3:40Þ

and so on. One may recognize that separate knowledge of f (λ) and Φ(λ) is

unnecessary to this calculation. Instead it is only the quotient f/Φ as a function of

wavelength which is necessary. One might call this the relative illumination

function of the light in question, taken relative to the illumination source considered

as norm. For a light f (λ) which we once again consider to be present in concreto, the
experimental registration of this relative function is a simple business using a

spectrophotometer. It is simple if the illumination source – for whose spectrum

the color-mixture curves are normalized – is present in concreto. This second

theoretical method of determining the coordinates can then be applied to a light

which is physically present and whose f (λ) is unknown beforehand. Certainly it is

justified to call the method ‘theoretical’ in this case, despite the series of
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spectrophotometric measurements that is undertaken. The reason is that this method

does not constitute color measurement in our sense: it is just a business of the

comparison of intensities of pairs of spectral lights, only ones that have a physical

congruence. This could be achieved just as well by a colorblind observer, or with a

bolometer (cf. our Introduction). A basic judgment of the equality of colors plays

only an accessory role here. The overweening part of this work has been achieved

once and for all by the mapping of the color-mixture curves.

Section 8: Transformation of Calibration Colors, or of the

Coordinate System

It may happen that one knows the coordinates of a number of colors – such as the

colors of a spectrum, or others still – relative to particular trichromatic coefficients.

One would like to derive their coordinates relative to a fresh triple of trichromatic

coefficients. Of course the new calibration colors must somehow be expressed

uniquely. We may assume that their nine coordinates have been established relative

to the original calibration colors following an established method, and that numeric

results are available. In computational terms the task comes down to a simple

transformation of one system of affine vector coordinates to another system. The

new coordinates will be a homogeneous linear function of the old, in other words.

That is an affine transformation, like that which we have encountered already,

though in a slightly different sense of the term.(g)

Let F be an arbitrary color, and F1, F2, F3 be the original calibration colors, so

that

F ¼ x1F1 þ x2F2 þ x3 F3, ð3:6Þ

and let the new calibration colors be A, B, C so that

A ¼ a1F1 þ a2F2 þ a3F3,

B ¼ b1F1 þ b2F2 þ b3F3,

C ¼ c1F1 þ c2F2 þ c3F3:

8<
: ð3:7Þ

We wish to find the new coordinates of F, meaning three numbers that we will

call ya, yb, yc which satisfy the following color equation

F ¼ yaAþ ybBþ ycC: ð3:8Þ

We substitute values for A, B, C from (Eq. 3.7) and collect terms for F1, F2, F3

with the following result:
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F ¼ a1ya þ b1yb þ c1ycð ÞF1

þ a2ya þ b2yb þ c2ycð ÞF2

þ a3ya þ b3yb þ c3ycð ÞF3:

8<
: ð3:9Þ

A comparison with (Eq. 3.6) produces the three ordinary equations:

a1ya þ b1yb þ c1yc ¼ x1,
a2ya þ b2yb þ c2yc ¼ x2,
a3ya þ b3yb þ c3yc ¼ x3,

8<
: ð3:10Þ

from which the y can be calculated unequivocally, provided that:

a1 b1 c1
a2 b2 c2
a3 b3 c3

������

������ 6¼ 0: ð3:11Þ

But as is well-known, that is just the condition under which the three vectors A,
B, and C are noncoplanar. Evidently that is what is required if three colors are to

take on the roles of calibration colors.

One attains this end more quickly and with better understanding, if one simply

assigns – for harmonization of the four color equations (Eqs. 3.6 and 3.7) – the

usual condition for the vanishing of a determinant. Those four equations are cast as

homogeneous equations in terms of F1, F2, F3, and 1.

F x1 x2 x3
A a1 a2 a3
B b1 b2 b3
C c1 c2 c3

��������

��������
¼ 0: ð3:12Þ

In this way one obtains the basic color equations for the new coordinates all at

once. The expression can be developed as:

a1 a2 a3
b1 b2 b3
c1 c2 c3

������

������F�
x1 x2 x3
b1 b2 b3
c1 c2 c3

������

������A� : . . . ¼ 0, ð3:120Þ

and from that it follows:

Section 8: Transformation of Calibration Colors, or of the Coordinate System 45



ya ¼
x1 x2 x3
b1 b2 b3
c1 c2 c3

������

������
a1 a2 a3
b1 b2 b3
c1 c2 c3

������

������ ¼
b2 b3
c2 c3

����
����

a1 a2 a3
b1 b2 b3
c1 c2 c3

������

������

x1 þ : . . .

8>>>>>><
>>>>>>:

ð3:13Þ

and so on. One may compare the color equations of (Eq. 3.7) with this system of

(as expected) linear homogeneous equations for the conversion of coordinates. One

recognizes that color coordinates, indeed colors themselves can be transformed in

contragredient fashion. This deserves to be recognized in spite of the extreme

simplicity of this state of affairs. It should be recognized because the distinction

between these two kinds of transformation formulae is not always drawn with

sufficient clarity. And with that, our overall task is done.

Two special cases will emerge as important in what follows, and we examine

them now. As previously mentioned, it is much easier to delimit the stimulus

quality of a color in words and symbols than it is to indicate its objective light

intensity. Only the two items of data together serve to represent the absolute values

of color coordinates, while knowledge of the stimulus quality can be gotten from

knowledge of the ratios of coordinates. Previously we saw that, given or having

postulated only the stimulus qualities of the original calibration colors, the

yet-undetermined task of ascertaining coordinates can be made into a well-formed

task. It is sufficiently specified if one stipulates equal areas under the three color-

mixture curves. In that way one chooses such colors for the three stimulus qualities

as primaries, as will sum to produce the undispersed light of the normal spectrum.

Since this undispersed light often comes close to meriting the name ‘white’, let us
call this convention – a useful one for normalization – the ‘convention about white’.
If this convention is satisfied for the original calibration colors, i.e., if

F1 þ F2 þ F3 ¼ W, ð3:14Þ

where W is the color of the undispersed light at some fixed intensity. Suppose then

that the new calibration colors are not known exactly, as had been assumed, but are

known only by their stimulus qualities. That is, the nine coefficients on the right-

hand side of the equations in (Eq. 3.7) are not known exactly. Rather, for each line

there is still a factor left undetermined, so that the schema for these coefficients

would be replaced by something of the form:

λ a1 λ a2 λ a3
μ b1 μ b2 μ b3
ν c1 ν c2 ν c3

8<
: ð3:15Þ

An additional stipulation offers a convenient form for the necessary and suffi-

cient supplement to fix this still-incomplete task fully.
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Aþ Bþ C ¼ F1 þ F2 þ F3 ¼ W ð3:140Þ

i.e., that the ‘convention about white’ also holds for the new coordinates. If one

expresses F1, F2, F3 on the left-hand side, and compares coefficients, the result is:

λa1 þ μb1 þ νc1 ¼ 1,

λa2 þ μb2 þ νc2 ¼ 1,

λa3 þ μb3 þ νc3 ¼ 1:

8<
: ð3:16Þ

These equations provide unique values for λ, μ, ν if the condition (Eq. 3.11) for

the determinant is fulfilled.

At this point we assume that the coefficients a1 . . . c3 have already been

normalized. Therefore we return to our original system of notation, omitting λ, μ,
ν, but then:

a1 þ b1 þ c1 ¼ a2 þ b2 þ c2 ¼ a3 þ b3 þ c3 ¼ 1 : ð3:160Þ

Wemay then ask ourselves what consequences that has for the coefficients of the

transformation in (Eq. 3.13). The following reformulation of the determinants is

instructive on that point,

a1 a2 a3
b1 b2 b3
c1 c2 c3

������

������ ¼
a1 þ b1 þ c1 a2 þ b2 þ c2 a3 þ b3 þ c3

b1 b2 b3
c1 c2 c3

������

������
¼

1 1 1

b1 b2 b3
c1 c2 c3

������

������ ¼
b2 b3
c2 c3

����
����þ b3 b1

c3 c1

����
����þ b1 b2

c1 c2

����
����

8>>>>>><
>>>>>>:

ð3:17Þ

along with two analogous reformulations.

The ‘convention about white’ has consequences in both coordinate systems for

the schema of coefficients for color equivalence: while there (Eq. 3.7) the three

coefficients of each column add to one, then too the coefficients of each row add to

one in the transformation formulae of (Eq. 3.13).

The second special case that we must consider, is one that should inform us of

changes that the three color-mixture curves suffer, contingent on changes in the

calibration colors. The transformation of (Eq. 3.13), valid for the triple of coordi-

nates for arbitrary colors, holds also for the continuous series of the trichromatic

coefficients for spectral colors. Namely that is the consequence if we apprehend x1
. . . x3 and ya . . . yc as the relevant functions of λ. Each new color-mixture curve then

becomes a specific superposition (with constant coefficients) of the three original

curves.

Above all one thing is clear, which proceeds immediately from the longhand

formulae of (Eq. 3.13). If the stimulus quality (direction) of the calibration colors

remains the same, and only their intensity (length) is modified, then the form of the
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color-mixture curves is unaltered. Each of them is multiplied only by a constant

factor. We will consider such a change as inessential, for the moment.

Now let us consider the second case, that only one of the calibration colors – say

F3 – is modified.

A ¼ F1 , B ¼ F2,

and of course F3 should not be translated arbitrarily, but must remain in the plane

of F1 and F3. That means the vectors F1, F3, C are coplanar, or in other terms:

1 0 0

c1 c2 c3
0 0 1

������

������ ¼ 0 ¼ c2:

The schema of coefficients in (Eq. 3.7) then reads:

1 0 0

0 1 0

c1 0 c3

Substituted in the formulae of (Eq. 3.13), that produces:

ya ¼ x1 � c1
c3
x3,

yb ¼ x2,

yc ¼
1

c3
x3:

8>><
>>:

ð3:18Þ

It is not the same color-mixture curve whose form is altered in this case, as the

one whose dependent calibration color has been changed. Rather it is one of the

two others. Specifically it is the curve whose color vector appears as the intersection

of the two planar sides of the fundamental triangle – at the intersection of those two

sides which remain unaltered. That color-mixture curve can be superimposed on

the other color-mixture curve whose color had been changed, using the specific

term �c1
c3

� �
:

If F3 had been altered arbitrarily instead, then the third color-mixture curve

would be superimposable on the first and the second, each differing by a respective

specific term. This result is important, in that it teaches us how far the spectral

distribution of the so-called fundamental stimuli may be established through

experimental data on dichromats. Healthy eyes exhibit only two kinds of

dichromacy: so-called red-blindness and green-blindness. Two directions in

color space can be established from those results: fundamental red and funda-

mental green. A third form of dichromacy is to be expected from the theoretical

perspective of the Young-Helmholtz theory: blue-blindness. Blue-blindness

occurs only with severe pathology of the eye, in cases where experimental results
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are much less than reliable. The direction attributable to fundamental blue is fairly

uncertain as a consequence. Our present deliberations will show us that just the

distribution of the blue sensation along the spectrum is unaffected by this lack of

reliability. Instead it is only the distributions of red and green which are affected,

and along each of those a short fragment of the blue distribution may be

superimposed without doing violence to the experimental data.

Section 9: Virtual-Valued Calibration Colors.

The Young-Helmholtz Theory

To begin, we make the simple but important comment that the possibility exists –

purely in computational terms, of course – that color coordinates may be

recalculated with reference to any three arbitrary basis vectors. Those include

triples for which one, two, or all three vectors lie outside the envelope described

in Section 6. Then there is no color to represent such vectors, meaning no color

which can be manifest in light. There is a way – and this is the only way – to ensure

the aim that all three calibration colors are positive for the totality of real color. The

way is for the chosen fundamental triangle to surround the said envelope entirely,

while in turn the triangle that is formed of the real color vectors is surrounded by the

envelope. The envelope is not itself a triangle; rather it is curved in places, though it

runs convex overall. And so there will always be colors which cannot be obtained

by the mixture of real calibration colors. For those colors, the relevant trichromatic

coefficients will needs be assigned one or two negative values instead.

Of course for such virtual calibration colors as are used in calculation, the

relations of their nine coordinates must be known with respect to the original, real-

valued calibration colors. The calculation then runs just as before. Having said that

much, it is also sufficient to know the virtual stimulus qualities, i.e., the directions

of the new basis vectors. Analytically this means six proportions of coordinates are

known. The absolute values may be normalized by the ‘convention about white’ as
they were previously. Vector addition of the new basis vectors then produces the

same intensity of undispersed light as does addition of the original, real-valued

calibration lights.

Fig. 3.4 The elementary-

stimulus curves, in relative

coordinates across the

spectrum. (Reproduced

from Schr€odinger, 1920)
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Let us follow a worked example to show how directions in color space may be

determined univocally with color measurements that have been garnered empiri-

cally, when the directions fall outside the real-valued color envelope. I cite an

example taken from von K€onig in the evaluation of what he calls elementary

stimuli. For the fundamental triangle, he chooses the smallest triangle which

encloses the real-valued colors completely. Two calibration colors are real-valued,

namely the colors at the far ends of the spectrum (directions OR andOV in Fig. 3.1).

The third is virtual, and falls on the dihedral formed by the plane acute angles ROG
and VOI. This derivation of the third stimulus quality as a line of intersection

between two planes is also uniquely determinate in affine geometry.

Figure 3.4 shows the corresponding primary curves, the so-called elementary

stimulus curves. Here the intensities of the calibration lights (lengths of the basis

vectors) are determined by the ‘convention about white’.
The basic fact about color dimensionality for normal trichromats, already known

to Newton, was originally expressed – since the exact form of the spectral cone was

still unknown – in the form that undoubtedly all colors may be shown to be mixtures

of three fundamental colors. Mostly red, green, and blue were cited, but sometimes

also red, green, and violet. Thomas Young was the first to tie this to the hypothesis

that three distinct processes or excitations are present simultaneously without

mutual interference as the physical correlate of color sensation in the eye. Only

three fundamental colors were thought each to activate one of these three processes;

all other processes were thought to do so in varying proportion. The totality of

mixture data would then have been explained easily, on one assumption. The

assumption was that the intensity with which any mixed light excites the first

fundamental process – let us suppose – is composed in an additive way from the

differential excitations that are produced by the light’s monochromatic compo-

nents. If one were to choose actual fundamental colors as calibration colors, then

the trichromatic coefficients of a color would be an accurate measure of the

excitation strength of the three fundamental processes in the presence of that

color. Clearly here the calibration of unit excitation strength for each fundamental

process is established in arbitrary fashion, as in the convention about white.

We should refrain from a thoroughgoing critique of this hypothesis here, though

many serious objections could be raised. Among the most daring of its corollaries, it

appears that under the hypothesis any color in our metric would be assigned very

specific states of the affected part of the retina. They would be three definite

quantitative excitation states. Then how is it, one may ask, that quite different

sensations – such as brown and golden yellow – can be occasioned by the same

condition of a single retinal location? Adherents of the theory may easily be misled

into some attempt to argue away these differences in sensation, by some explana-

tion in terms of ‘unconscious inference’. Now it is certainly possible that the

physiological correlate of this difference in sensation is due at least in part to a

central influence rather than to a retinal process (cf. von Kries’s ‘zone theory’). But
in no sense does any of this correspond to any physiological correlate of logical

inference (as indicated by the word ‘conclusion’). Rather, at most it indicates a

capacity for ratiomorphic intuition. We must presuppose at least one thing, to
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express the hypothesis in the elementary form it has in the preceding text. That is:

the eye must be in the same state of accommodation throughout. It would surely be

nonsensical to claim that under the same illumination – and, say, different pupil-

lary diameter – the same strength of excitation would be evinced. We need not

dwell on this point for our present purpose, not least since color equivalences on

the fovea are independent of accommodation states.

Ewald Hering has drawn special attention to such difficulties. Despite them,

Young’s hypothesis has proven to be indispensable as a working hypothesis. It is

the only hypothesis to date which enables a simple consolidation of the results of

measurement.

The remarks at the beginning of this section tell us directly that there is no way

three real stimulus qualities could stand as fundamental colors in the roles supposed

by Young’s theory or in the theory subsequently elaborated by von Helmholtz and
K€onig. No three real stimulus qualities can actually be combined to form all colors.

One might however adopt the received idea that one may assume a two-valued

excitatory process, which is set into action in one direction by a positive trichro-

matic coefficient, and in the other direction by a negative trichromatic coefficient. If

one were to believe that much, one would still have free choice among all possible

noncoplanar vector triples in the interior of the envelope. The facts of color

mixture themselves do not serve to distinguish any of those as special. In principle

any three linearly independent colors can be combined to form all others, as soon as

one admits the validity of ‘improper’ mixtures.

On closer consideration it does not appear outright absurd that the fundamental

colors may not stand just for directions within the envelope, but also for directions

outside the envelope. Those would be virtual stimulus qualities, meaning that the

envelope would be surrounded entirely by the fundamental color triangle. That

means only: no light elicits one fundamental process exclusively. Rather each acts

on all three, but in varying proportion. On the evidence of photochemical data, and

equally on the evidence of magnetic resonance phenomena (should one wish to

elevate such evidence to the level of theory formation), such a state of affairs

appears even more probable than another: that there should always be two of the

perhaps similarly-constituted processes which are robust to changes in a particular

mixture of lights that activates the third process strongly.

There would then be no objection, eg. to calling K€onig’s three elementary colors

‘fundamental colors’ (as cited above. Only one – green – is a virtual color.). There

would be no objection to interpreting K€onig’s ‘elementary stimulus curves’
(cf. Fig. 3.6) as the distribution of excitation values of the three fundamental

processes in sunlight. The only thing that is still lacking is a sufficient reason to

distinguish this triangle from all the others. Once again, as soon as one has decided

to admit virtual stimulus qualities as fundamental colors, then every triangle serves

the purpose so long as it encloses the envelope of colors. Every such triangle serves

the same purpose, at least from the standpoint of the states of affairs which that have

been introduced to this point. None is pre-eminent or distinctive.

Section 9: Virtual-Valued Calibration Colors. The Young-Helmholtz Theory 51



Section 10: The Relation of Dichromacy to Trichromacy

Let us recall the fact that there are people whose color space has only two

dimensions rather than three. They are dichromats. The argument of Sections 5–9

can be developed for the dichromatic eye as well as for the normal trichromatic eye.

That development will then be so much simpler, since it would have to deal with a

planar vector pencil rather than a spatial pencil. We do not need to develop that

argument separately. As we shall see in a moment, the color space of dichromats

can be derived directly from the color space of trichromats in a much simpler –

hence much more meaningful – way, on the basis of a simple but far-reaching

proposition of experience.

A priori it might be possible there would be no relation between a

two-dimensional color space for vision and a three-dimensional color space for

vision. Mixtures of light which appear the same to color-normal observers might

also be distinguished by color-blind observers, and vice versa. Overall it could still

be the case that the manifold of distinguishable lights would be smaller for the

color-blind.

Yet the facts are different: at the conclusion of an extended comparison of

colors, a color-blind observer will be found to have made a majority of errors –

from the standpoint of a normal observer. On the other hand, the normal observer

will never make errors from the standpoint of a color-blind observer. If one allows

the form of expression (which does not prejudice us in favor of any theory) that the

trichromat distinguishes three features and the dichromat only two of any light,

then one is struck by the thought that the color-blind observer does not distinguish

other features of the light, but rather two of the features which are apparent to the

normal observer. The color-blind observer fails to perceive the third at all. He will

recognize two lights as equal which correspond in all three features. If on the other

hand he should adjust two lights one against another, as a rule they will still be

distinct in the third feature. He will not have attended to that feature, and the lights

will appear unequal to the color-normal observer as a consequence.

It hardly needs to be added that adherents of the Young-Helmholtz theory will

try to identify these ‘three features’ with the excitation strengths of three funda-

mental processes. They will expect there to be three kinds of color blindness,

namely kinds in which the first, second, or third of the basic processes is lacking.

The theory would receive strong support if that were the case.

In our three-dimensional color space, we may visualize the dichromat’s color
vision best in the following way. We connect all the points (heads of vectors) that

appear (entirely) equal to him, by a system of curves. Immediately it emerges that

this system of curves forms a pencil of parallel lines.

Then let A and B be two distinct colors that are confused by a particular

dichromat.
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A¼d B : ð3:19Þ

To indicate that this is equality for a dichromat, we place a d over the equal sign.
Moreover, let C indicate an arbitrary third color. Then for the dichromat at least, an

identity holds:

C¼d C : ð3:20Þ

On each side of this equation we add the terms of another equation (Eq. 3.19)

multiplied by λ � 1.

Cþ λA¼d Cþ λB :

Then if the trichromatic color C + λ (A � B) does exist, i.e., if the pertinent

vector is part of the real-valued color space, then it follows for dichromats:

Cþ λðA� BÞ¼d C : ð3:21Þ

And if:

Cþ λ B� Að Þ

then there exists:

Cþ λðB� AÞ¼d C : ð3:210Þ

That is, (Eq. 3.21) holds for any real λ for which the trichromatic color on the

left-hand side does exist. Yet in real color space, these colors will cover the real-

valued segments of those lines drawn through the color point (the vector head) of an

arbitrary color C, parallel to the lines which connect points A and B. That is, their
color vector protrudes beyond color vector C by the addition of a multiplicandum of

the vector difference (A � B). That vector difference is not required to represent a

real-valued color, but nevertheless it does exist as a vector.

As soon as one definite pair of confusion colors is known for a dichromat –

meaning two colors which are indistinguishable to him but which are distinguished

by color-normals – then one knows that all colors will be confused that lie on a

parallel to the lines which connect those two colors.

Since the color manifold is actually reduced to two dimensions by the identifi-

cation of such a pencil of parallels, then it may be assumed also that all the

confusions have been exhausted for the dichromat in question. The claim is that

the converse of the proposition just proven also holds: only such pairs of colors will

appear equal to the dichromat, as lie on the same parallel. That proposition admits

an exact demonstration.
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If there were only a single pair of confusion colors A0 and B0 such that the vectors
A� B and A0 � B0 were not (directly or inversely) parallel, then it would follow that

the entire plane of colors

Cþ λðA� BÞ þ μðA0 � B0Þ

would appear identical to C for dichromats – insofar as this expression represents

real colors at all, meaning any part of the plane which lies in real-valued color

space. In that eventuality the sheaf of parallel planes would reduce the color

manifold to only one dimension. That contradicts the supposition that a dichromat

is still under discussion.

One may recognize immediately that if one of the fundamental vectors is given

for a color coordinate system – say that the vector F1 specifies a direction for the

pencil of parallels – then the first coordinate of the system does not matter at all for

the color-blind individual in question. Those and only those color pairs appear

equal to him, as correspond in their second and third coordinates. If F1 should be a

real-valued color vector, then colors of this stimulus quality would not be perceived

by him at all, at any arbitrary objective intensity. That is because any color of the

coordinates

ðx1, 0, 0Þ

appears the same as total darkness, at

0; 0; 0ð Þ

One might call these faux colors for dichromats.

Actually, this never happens: the faux colors for dichromats are always virtual

colors.

Suppose there were just three kinds of dichromats – that is, suppose one were

always to be led to the same three distinct directions for the pencils of parallels in

trichromatic color space, through investigation of a large number of color-blind

individuals. That would be very solid support for the Young-Helmholtz theory.

Uncertainty in the choice of fundamental colors – alluded to at the end of the

previous section – would be alleviated by the irrepressible force of conviction that

in each of these three conditions one of Young’s fundamental processes is lacking.

One might then transform these three directions, to interpret them as coordinate

axes. The color coordinates so derived would then be ascribed a deeper meaning

than any others. They would be a measure of the intensity with which the incident

color excites the three fundamental processes. Independently of any hypothesis, at

least these three numbers would have the advantage that one could tell at a glance

not only if two colors are equal (or of equal stimulus quality) for color-normals, but

also if they may be equal for one of the three groups of color-blind individuals.

There would be a contradiction – or at least a very great complication – in our

theory, if one found more than three distinct groups of color-blind individuals.
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As the investigations pursued by K€onig and others have shown, only two sorts of
dichromacy occur as characteristic physiological variants of healthy eyes. The lines

of confusion (those directions of pencils of parallels) fell along one of two affine-

geometric directions within the bounds of experimental error, for all eyes which are

dichromatic but which prove to be healthy otherwise. By the way – as had been

mentioned – those affine-geometric directions of normal trichromatic color space

do not represent any real color drawn from the origin. Those two directions drawn

from the origin by parallel vectors will both lie outside the envelope of real-valued

colors.(h)

One assumes that these two directions represent two of the three virtual funda-

mental colors, to be called fundamental red and fundamental green, for reasons

to be elaborated shortly. Correspondingly the two kinds of color blindness will be

called red-blindness and green-blindness.

Certainly blue-blindness – the third kind postulated by theory – has been

observed,(i) but only in areas of retinal pathology in severely damaged eyes (as in

retinitis or ablatio retinae). Those areas were also functionally damaged in other

respects, especially in acuity. Then the determination of lines of confusion is made

very difficult for the adapted eye on the basis of adjustments for color equality.

Nevertheless it does appear that these blue-blind observers judge a faux color with

close concordance among themselves.

Figure 3.5 illustrates the rough situation of these three directions of confusion F1

F2 F3 in relation to the spectral cone. For the sake of clarity the entire vector pencil

Fig. 3.5 The basic color

metric, represented as

intersecting a plane. F1 F2

F3 are three directions of

confusion. (Reproduced

from Schr€odinger, 1920)
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is represented as intersecting a plane – meaningless in itself – as is the trace of its

projection onto the plane.

In passing I would like to suggest that this two-dimensional projection can be

used on its own as a representation of the entire basic color metric, in place of the

spatial vector pencil. It has found much more frequent application than the spatial

construction. One calls this the color plane or the color triangle. A substitution is

made in this way for the third coordinate: colors of the same stimulus quality may

be projected onto the same point. One can distinguish those projected points by a

measure or a quantity where stimulus quality is assumed to be proportional to the

length of the vector in question. By judicious choice of the relative proportions of

the three coordinate directions (which will fix proportions in every other direction)

one can arrive at a color plane diagram for which Newton’s well-known centre-of-

mass construction holds. In that construction, the location of a mixture color is the

centre of mass of its components: its mass is the sum of their measures of mass.

Curves of the same color for color-blind observers are not intuitively evident in this

color plane, because of the missing third coordinate. Yet curves of the same

stimulus quality are evident. They are straight lines through the point of confusion

(vector head of the direction of confusion). The role that plane projective geometry

plays in the color plane is the same as the role that affine geometry plays in color

space. Vector coordinates become projective coordinates whose reference triangle

is outlined by the coordinate triangle.

However, the relationship of the two geometries is not exact. One has to make

the projective coordinates barycentric (i.e., one must translate their ‘unit point’ to
the centre of mass of the coordinate triangle) if a simple version ofNewton’s centre-
of-mass construction is to hold.

After this digression, let us turn once more to the spatial representation. We

bring this to the fore not only for its comparative simplicity, but also because it

alone will find application to the next part of the present work.

As was intimated, the directions F1 and F2 are more or less fixed by equations for

red-blind and green-blind observers. There is one peculiarity: the plane F1 F2

coincides with the plane ROG in an intermediate segment (cf. Fig. 3.1). The

implication is that some colors appear to be ‘mixtures’ of only fundamental red

and fundamental green: not only at the far red end of the spectrum, but also for

scarlet and orange colors up to about λ ¼ 630. The blue process is not at all

stimulated by lights at these wavelengths.

Fig. 3.6 K€onig’s
fundamental stimulus

curves, in relative

coordinates across the

spectrum. (Reproduced

from Schr€odinger, 1920)
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It must be noted 1) that K€onig took pains to simplify the representation in order

to arrive at consistency between the directions of confusion as they are given by

experiment, and to arrive at the result just mentioned. In reality the directions of

confusion are scattered across two small spatial angles. It must also be noted 2) that

the eye is quite insensitive to small additions of spectral blue or violet in this

domain of wavelength. Yet it may still be possible that exclusion of the third

fundamental process from this domain of wavelength is still only approximate.

The fundamental green F2 which we used in Section 9 lies nearer to red than

K€onig’s second elementary color (E2 in Fig. 3.5).

As mentioned, the location of F3 is quite uncertain. Indeed the locus that we have

given here in connection with K€onig (coplanar with F1 and far violet) represents

K€onig’s own investigations on blue-blind individuals very badly. As long as a more

definite localization is not possible, we may not want to shake our conviction in this

locus of record from the literature. K€onig’s so-called fundamental stimulus curves

are shown in Fig. 3.6.

Those are the color-mixture curves of the diffraction spectrum of sunlight,

drawn along fundamental vectors with the directions F1 F2 F3, and of such lengths

that they produce the color of sunlight once combined. The ordinates of the red

curve show the spectral distribution of the excitation strength of the red process, as

one allows the eye to be stimulated by the colors of the said spectrum in unbroken

succession. To that purpose the units of excitation strength are chosen arbitrarily,

provided that all three are represented for sunlight (or a light which appears the

same) in equal measure.

We still have to justify why we speak of red, green, and blue processes and so on,

not just of processes numbered 1, 2, and 3. After all this is not about real colors, but

rather only about the sensation which is represented by the excitation of a single

process, which process is unknown to us.

If one connects the direction of a fundamental color and the direction of white by

a plane, then that plane will intersect the color envelope in two lines. Of the two,

one lies in the acute angle between white and the fundamental color. Vectors of this

direction may be composed additively from white and the fundamental color. Yet

the relevant colors do not excite the fundamental process in isolation. Rather that

excitation is joined by the excitation strengths of all the processes as would produce

white. Now we do have an intuitive idea how such an addition of white would alter

a real color. We are accustomed to say that hue is unchanged or little changed in

that instance; rather only that color saturation is changed. Perhaps we ought to

assume that the colors which lie between white and the fundamental color (and

which are coplanar with them in direction) behave in the same way as the trans-

formation of a whitish version of a spectral color to the spectral color itself. It might

be thought possible that colors between white and the fundamental color would

elicit sole excitation of a particular fundamental process. Then we may believe that

those partial colors provide some qualitative image of the fundamental color, which

may be thought of as the more saturated result of a farther transformation.

The whitish exemplars of the fundamental colors are then a reddish purple

(roughly complementary to the hue at λ ¼ 494), a green of about λ ¼ 505, and a
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blue of about λ ¼ 470 (complementary to λ ¼ 573). This supports our system of

notation.

By the way, it may be recognized immediately that these spectral lights should

be attributed a straightforward meaning in experiment – which proceeds from the

representation of the relation between dichromatic and trichromatic vision by the

pencil of parallels. This does work for the first two lights. For the red-blind

individual, λ ¼ 494 appears indistinguishable from trichromatic white (sunlight)

of a particular intensity, as does λ ¼ 505 for the green-blind. The two ‘neutral
points’ lie so near to one another that sometimes they have been confounded or even

reversed in order. They have been confounded by inexact procedures, as well as by

the coloration of ocular media. That is one of the reasons why the fundamental

difference between red-blind and green-blind individuals had been denied for

so long.

Two neutral points around λ ¼ 470 and λ ¼ 573 were to be expected for a blue-

blind individual. In fact for the diseased eyes that have been mentioned, only one

neutral point has ever been found – and that was between λ ¼ 560 and λ ¼ 570.

These and yet another irregularity leave the position of F3 in doubt, insofar as one

might like to ascribe a meaning to these results for establishment of the fundamental

colors. If one wishes not to make the interpretation, the choice of F3 is entirely

arbitrary, of course.

We had already mentioned that a possible change in this position would not

occasion a change in the form of the blue curve, but in the forms of the red and

green curves. Each of those curves could be superimposed along a bounded

segment of the blue curve, which segment would depend on the new position of F3.

Unfortunately the visual function ofmonochromats cannot be used to better the

calibration of the fundamental colors. No such simple relation obtains between

monochromats on the one hand and dichromats and trichromats on the other, as

obtains between dichromats and trichromats. In the rod-free region of the central

retina, which region alone concerns us in the present work, it is very likely that

monochromats are completely blind. The sensitivity curve for their paracentral and

peripheral regions does not correspond, say, to one of the three normal fundamental

stimulus curves. Rather it corresponds to what is a normal sensitivity curve for

achromatic scotopic vision, which is just absent from rod-free regions.

We will not elaborate on the interesting cases of anomalous trichromacy at this

point.

Notes

a. Occasionally one designates other things as vector components: namely orthog-

onal projections onto the coordinate directions. Components of that kind are not

considered here, because the property of perpendicularity is meaningless here.

Clearly in metric geometry the two types of components stand in the relation

covariant $ contravariant. They coincide numerically if the basis vectors are

pairwise orthogonal and equal in length. [ff. 1, p. 428 original].
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b. Cf. von Kries, in: Nagel, W. A. Handbuch der Physiologie des Menschen, 3(1).

Braunschweig: Vieweg (1904), p. 116. [ff. 1, p. 432 original].

c. Cf. the third of Helmholtz’s articles cited above, and: Abney, W. de W. On the

change in hue of spectrum colours by dilution with white light. Proceedings of

the Royal Society London A (Mathematical, Physical, & Engineering Sciences),

December 10th, 83(560), 120-127 (1909). The “equivalences of hue” that Abney
establishes there by experimental means belong wholly to advanced colorimetry.

[ff. 2, p. 432 original].

d. Cf. especially Exner, F. Über die Grundempfindungen im Young-
Helmholtz’schen Farbensystem. Sitzungsberichte der Kaiserliche Akademie

der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse,

Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie, und Mechanik,

111, 857 – 877 (1902). [ff. 3, p. 432 original].

e. Adapted from Dietericis elementary stimulus curves (see below) in K€onig, A. &
Dieterici, C. Die Grundempfindungen in normalen und anomalen

Farbensystemen und ihre Intensitätsverteilung im Spektrum. [Fundamental stim-

uli of normal and anomalous color systems, and their intensity distributions

across the spectrum] Zeitschrift für Psychologie und Physiologie der

Sinnesorgane, 4, 241 – 347 (1893). [ff. 1, p. 433 original].

f. Only the signs of the trichromatic coefficients may not be altered ! [ff. 1, p. 434

original].

g. In § 5 above, our theme was that ordinary Euclidean-metric space must be

considered subject to all possible affine transformations. The purpose is to

liberate Euclidean-metric space from all those relational properties which are

meaningless for color space, though they may be properties in common intuition.

The change in a coordinate system that may have been established is

unconnected to those transformations; each transformation affects this system,

together with all the color vectors the system contains. Here all the color vectors

maintain their locations, and three new vectors are sought as basis vectors; that

is the reason why coordinates change value here. [ff. 1, p. 438 original].

h. Mainly one should note: K€onig, A. & Dieterici, C. Die Grundempfindungen in

normalen und anomalen Farbensystemen und ihre Intensitätsverteilung im

Spektrum. [Fundamental stimuli of normal and anomalous color systems, and

their intensity distributions across the spectrum] Zeitschrift für Psychologie und
Physiologie der Sinnesorgane, 4, 241 – 347 (1893). [ff. 1, p. 452 original].

i. Note especially: K€onig, A. Über « Blaublindheit ». Sitzungsberichte der

K€oniglich Preuβische Akademie der Wissenschaften zu Berlin, 34(2), 8. Juli,

718 – 731 (1897). [ff. 2, p. 452].
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Chapter 4

Outlines of a Theory of Photopic Colorimetry

(Part III): Advanced Colorimetry, or Full-

Blooded Colorimetry (Second Article)

Abstract There are familiar relations among colors which remain unrepresented in

the affine geometry of basic colorimetry. An advanced colorimetry will incorpo-

rate maximum color similarity. Advanced colorimetry applies Riemannian geom-

etry, not Euclidean geometry. A line element is proposed for color space; it

preserves additivity of brightness. The line element bridges heterochromatic dif-

ferences and just-noticeable differences in color. One problem is that the Bezold-
Br€ucke phenomenon pervades this range of conditions; a correction factor must

then be applied to the line element. Then two constraints conflict: the constraint that

both large and small differences are accounted for, and the constraint that Fechner’s
law holds uniformly across color space. This tension changes the theory of

advanced colorimetry to a transitional theory or heuristic account.

Keywords Colorimetry • Advanced colorimetry • Color vision • Color manifold •

Color space • Line element • Fechner’s law • Color similarity • Just-noticeable

difference • Affine geometry • Riemannian metric • Helmholtz line-element •

Pfaffian • Isolychne • Color wheel • MacAdam ellipse • Heterochromatic

brightness • Geodesic line • Projective transformation • Bezold-Brücke •

Schr€odinger

Section 1: The Need to Transcend the Basic Metric

In the first part of the present work, we were concerned with relations among colors

for which experimental data can be garnered exclusively by the use of judgments

of equality. By that we mean the adjustment of two adjacent color fields to achieve

complete indistinguishability. The line of separation between them disappears

if it is not marked by anything but their contingent difference in color. These

relations – commonly known as the laws of color mixture and which we have

called basic colorimetry or the affine geometry of color – found a complete and

adequate representation in the modelling by the color manifold of a spatial pencil of

vectors in affine geometry. We have shown there is an exact correspondence of raw

Schr€odinger, E. (1920c). Grundlinien einer Theorie der Farbenmetrik im Tagessehen. III.

Mitteilung. Annalen der Physik, vierte Folge, 63(22), 481–520. Copyright © 2006, as renewed.

Translated with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

© Springer International Publishing AG 2017

K.K. Niall (ed.), Erwin Schr€odinger’s Color Theory,
DOI 10.1007/978-3-319-64621-3_4
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color experience with the axioms of affine geometry. That is the reason we have

indicated repeatedly that such – and only such – relations between candidate

vectors have a correlate in colorimetry: those relations which remain invariant

under affine transformation. There are a multitude of simple geometric relations

for which that condition does not hold. So: the angle between two vectors, the

relative lengths of two vectors which differ in direction, and the separation between

the heads of two vectors (color points): all must remain without any correlate in

color space. That is because these magnitudes can be varied arbitrarily across a

wide range of values by a choice of representations among equally-well justified

formalisms (or what comes to the same thing, by the exercise of an affine transfor-

mation applied to the original representation).

On the other hand, both our intuition and the judgments about color that we make

in daily life tell us that our present formulation is far from complete. There are still

many relations among colors that have found no geometric correlate in our

vector space. Rather we have ignored them completely. We cannot tell at all from

our representation which of two colors of different stimulus quality may be

brighter, and which darker. The relative length of vectors has almost nothing to

tell us here. We may assign three quite arbitrary vectors to colors in the role of

calibration colors. For example a very bright color may be assigned quite a short

vector; at the same time a much darker color may be assigned a very long one. On

similar grounds we ought never to draw conclusions about the degree of difference

between particular colors from the separation of two color points. And yet we know

that judgments about the relative size of differences between distinct pairs of color

(‘this step in color is very much larger than that one’) are carried out decisively and
with conviction, at least for extreme examples.

It is far from astonishing that all of this lies outside the scope of the argument we

have developed to this point. Until now, two colors were either equal or unequal for

our purposes. We did not concern ourselves either with degrees of dissimilarity, nor

with any particular form of equality (‘in hue’, ‘in saturation’, ‘in brightness’). The
proposition which will be developed in this next part is that all conceptual schemes

of this type can be formulated and quantitatively substantiated solely by the notion

of adjustment for maximum similarity as it was described in the introduction to the

first part. The notion of adjustment b) which was mentioned there – concerning

just-noticeable difference – serves as an important anchor to hypotheses in

experiment, though they be very general.

One can imagine a closely allied attempt to specify concepts such as relative

brightness, color difference, and others quantitatively. One might think that among

the many equipotent representations in affine geometry, there might possibly be one

that is distinctive and suitable. It would be distinctive just in that relative lengths,

the (normally Euclidean) separation of color points or other similar properties

would actually retain the meaning that we automatically feel tempted to impart to

them. Such a significant interpretation would emerge as a very specific case of the

general proposition we might put forward. Such an impulse can be shown to be

impossible at once. To be clear, this impossibility proceeds from Fechner’s Law
for simple changes in intensity – which law does hold most of the time. Let us

consider two colors
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Að1þ εÞA ,

for which ε is chosen to be large enough that the colors are fully and clearly

distinguishable. At the same time the two are not distinguishable at all if ε is

10 times smaller. So then, the colors will also be indistinguishable.

10A 10þ εð ÞA

Yet the Euclidean separation of the vectors is the same for both sets of color

pairs, however one would like to elaborate the vector representation otherwise. It

would not be a congenial conclusion for us to say that two color intervals are the

same, when one is clearly distinguishable and the other lies below the threshold of

discriminability.

Section 2: A Measure of Difference. The Line-Element

of Color Space

Suppose that we did possess a measure of the difference between any two colors

X (with coordinates x1, x2, x3) and Y (with coordinates y1, y2, y3), that is, a function

s x1; x2; x3; y1; y2; y3ð Þ

which specifies the difference. Then it would be clear that an adjustment for

maximum similarity would need to be a way to minimize the function s under
certain accessory conditions in experiment for colors X and Y (e.g., setting

X constant and varying Y in a predetermined manner). That much is implicit in

the concepts, and requires no special assumption.

The general hypothesis – that we introduce as Helmholtz did – deals with the

measure of difference: more precisely, the measure of difference for colors in a

small neighbourhood.

We surmise:

Assumption 1: for y1¼ x1 + d x1, y2¼ x2 + d x2, y3¼ x3 + d x3 the square of s, for
which we can reasonably write ds2, the quadratic form of the differential coordinate

equation is:

ds2 ¼
X3
1

X3
k¼1

aik dxi d xk aik ¼ aki, ð4:1Þ

for which the aik indicate definite functions of x1, x2, x3.
Assumption 2: for any two just distinguishable colors the d xi (hence also ds)

should be considered differentials (meaning the aik do not vary markedly) and that

ds has the same value for every such pair of colors.
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The exact value which one bestows on ds for such a pair of colors is unimportant,

and indicates only a means of standardization. Primarily it is important that one

thinks of a standard color as having been chosen, and ds defined for increments in

just-noticeable intensity of that standard color – rather than for the relative

increase in intensity which is required here. Because of Fechner’s Law

(as commonly understood) – which holds true for a large part of color space(a) –

if the standard is chosen only for a local region it proves to be the case that exact

specification of the standard color is unnecessary. (I mention the standard color

only to indicate that the general validity of Fechner’s Law is quite an independent

matter. If it were invalid, then one would need to specify the standard color

precisely. Come to that, one would also have to fix ds to a value of one for just-

noticeably different colors. That would mean investing all subsequent formulae

with a constant term for proportionality.)

Naturally our second assumption is the essential one. The first assumption

must be derived faithfully from experiment, that is, strictly derived from mea-

surement of the discrimination of differences. I find it hard to believe that such

measurements would ever prove inconsistent. It is impossible to derive anything

but an integer-valued root from the relevant integer series, for obvious reasons.

(A change in sign across all the differentials must leave ds unchanged in all

instances.)

It is well known that the formulation (Eq. 4.1) completely specifies a metric –

under the general classification set out by Bernhard Riemann – for the manifold of

number triples (x1 x2 x3) if one conceives ds as the line element of the manifold.

Now – and only now – we may speak of an actual metric for color space. Its general

form is invariant for this formulation, not only under the linear transformations

considered earlier, but also under quite arbitrary transformations of the xi. Still of
course the aik alter their form in the process in a familiar manner. The general

proposition then holds for every system of trichromatic coefficients. As soon as we

want to try a new system of particular functions aik, we must employ an entirely

different system, meaning an entirely different triad of fundamental colors. Of

course we would hope and expect that the line element would take on its simplest

form for the ‘true’ fundamental colors – the ones we arrived at in the first section by

entirely different methods.

For many purposes, that is to say when the comparison of very similar colors is

in question, we find that Helmholtz’s differential formula is a sufficient statement.

For other purposes, especially in ‘strongly heterochromatic’ photometry, we require

a measure of difference s which also holds for definite and finite differences of

color. Attention should be paid to the fact that according to (Eq. 4.1), ds is a

homogeneous function of degree one for d xi , but it is not the differential expression
of a specific coordinate function. Nevertheless there is only one significant gener-

alization – in fact one can say there is only one generalization possible at all – of

Helmholtz’s measure of difference, if one does not regard the establishment of such

a measure as altogether impossible for very different colors. That assumption

follows.
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Assumption 3: The difference of arbitrary colors is to be judged by the magni-

tude of: Z
ds

taken as the shortest connecting line (geodesic line) between two color points in the

manifold whose metric is established by (Eq. 4.1).

It need hardly be mentioned that what is meant as the shortest line or geodesic

line may not be a straight line of vector space. Rather this is to be understood as the

curve for which the integral takes on its smallest value.

With reference to Assumption 2, our Assumption 3 amounts to this much in the

intuitive language of colorimetry: Two colors will be declared greater in similarity,

the fewer just-noticeable steps that can be established in a continuous progression

from one to the other – if one chooses the intervals for this procedure as skillfully

as possible.

To offer an easily visualizable representation, we ought to retain the vector space

that we used in the first section. We ought to add even more specialized content. Yet

we should keep in mind that concepts like the length of a curve, perpendicularity

(or any concept of angle), direction outwards from a point, or any such concepts are

no longer to be judged in terms of immediate intuition, but rather in terms of

Riemannian geometry. Then we may proceed to apply entirely arbitrary trans-

formations to the coordinates, which will prove useful in the following section.

Here is a description to provide an intuitive grasp of our three assumptions,

should we choose to identify the terms ‘equally distant’ and ‘equal magnitude of

difference’ a priori:
Color points count as equally far from a color point F, that are equally discrim-

inable from F (Assumption 2). Those points lie about a small ellipsoid, whose

centroid is F (Assumption 1). Every diameter of all these small ellipsoids counts as

the same in length (Assumption 2). One can derive surfaces of equal separation

distance around F, for small separations: that is, one can expand all diameters of the

first ellipsoid – which we will call an ‘scatter ellipsoid’ – by the same proportion,

meaning that similar and similarly situated ellipsoids are formed by expansion. The

proportion of expansion is the proportion of separation distance (Assumption 1).
Strictly speaking, this Euclidean construction can only be performed over an

infinitely small neighbourhood. In order to construct surfaces that lie at equal and

finite distances from F, one does not expand the diameter of the scatter ellipsoid

proportionally in the same direction (in the Euclidean sense). Instead one expands

along the straightest direction in the Riemannian sense. That is, it follows along

the geodesic by equal sections of the line integralZ
ds,

which is the measure of separation. (Assumption 3)
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At this point we will begin by drawing some general conclusions from these

assumptions, still not specifying the coefficients aik. Along the way we will propose
a particular line element and investigate that further. Although certain not to be

exactly what is needed, this will prove to be the best approximation to reality that

maintains maximum simplicity.

Section 3: The Notion of Brightness

Many people deny the very possibility of a photometry of strongly different colors.

Against that opinion, there is no doubt that one can adjust two colors that differ only

a little in stimulus quality (colloquially, in hue and saturation) so that they attain the

same brightness.

One can adjust these to the same brightness by suitably altering the objective

intensity of one of the colors. We will tie our concept of brightness to these ‘nearly
monochrome’ comparisons of brightness, which also seem to be gaining dominance

as an experimental manipulation. Clearly our notion here is of an adjustment for

maximum similarity.

Let OF and OF0 (Fig. 4.1) stand for the directions of two adjacent color vectors

in a neighbourhood. Let F be a fixed point on the first vector and F0 a variable point
along the other. In order to find the position of F0 which lies closest to point F, we
have drawn an ellipsoid of equal separation of such size that it that just touches the

line OF0. The point of contact F00 is the point that is selected by the process of

adjustment. That is, in the colloquial language we would adopt: F00 and F are

equally bright. If we proceed with this same construction for all possible directions

Fig. 4.1 OF and OF0 stand
for directions of adjacent

color vectors. Points F and

F00 are equally bright; the

ellipse (projection of an

ellipsoid) joins points of

equal brightness about F.
(Reproduced from

Schr€odinger, 1920c)
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which lie in the neighbourhood of OF, then the points of equal brightness F00

subtend a surface element. We can assign a short name to this surface element:

the ‘surface of equal brightness’ for F. Since one can construe the tangent cone from
O to one of these small ellipsoids as a cylinder with the axis OF, then the surface

element of equal brightness is simply the plane section of the ellipsoid with that

cone’s diameter. Then the equation of the ellipsoid(b) is:

aik d xi d xk ¼ constant ð4:2Þ

If the coordinates of F are x1 x2 x3, and those of F00 are x1 + d x1, x2 + d x2, x3 +
d x3, then the direction of progression along OF towards the point F – call that δx1
δx2 δx3 – (a pure change in intensity) is governed by

δx1:δx2:δx3 ¼ x1:x2:x3 :

The dx2 [Trans.: dxi] satisfy the equation of the plane with the diameter which runs

perpendicular to the direction that defines the ellipsoid of (Eq. 4.2). Then:

aik d xi d xk ¼ 0; ð4:3Þ

which is the differential equation of the surface element of equal brightness for the

point x1, x2, x3. In the sense given by Riemannian geometry, it lies in the direction

OF perpendicular to point F.
Now if the notion of brightness is to make any sense, one must require that two

colors which are equally bright to a third color, must also be equally bright to one

another. One may use that fact in the following construction. One takes a step from

F along the surface element of equal brightness in any direction – a small step out to

a pointG. From there one takes a step along the surface of equal brightness through

G, then again a step in an arbitrary direction until H is reached, and so on. In that

way one obtains a stretch of equal brightness along a curve. Incidentally, such a

curve may have arbitrary inflections. One can now arrange matters that after

covering a certain path, one again encounters a point of OF: call that K. One
must require that K corresponds to F, if the notion of brightness is to make sense.

If this holds for any chosen path, then all the surface elements of (Eq. 4.3) are

capable of being consolidated into integral surfaces. The stretches of equal bright-

ness that have been described must traverse those surfaces. The Pfaffian differential
expression on the left-hand side must then be integrable; there must exist a

multiplier μ (x1, x2, x3) such that:

∂ μ aik xi
∂xl

¼ ∂ μ ail xi
∂xk

for
k, l ¼ 1, 2, 3

k 6¼ l:

It is well-known that this is by no means the case for entirely arbitrary functions

of aik. It obtains only if the aik satisfy a specific condition. Namely it must be the

case that:
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μ � ∂ aik xi
∂xl

� ∂ ail xi
∂xk

� �
¼ � aik xi

∂μ
∂xl

� ail xi
∂μ
∂xk

� �
:

If one multiplies each of the three equations of this type (which are found for the

three combinations of (k , l )) by apm xp, where m is the third index, and then these

are summed, then the right-hand sides are zero identically. So it must be the case

that:

ς
ðk l mÞ

apm xp
∂ aik xi
∂xl

� ∂ ail xi
∂xk

� �
¼ 0 :

The unusual summation sign is meant to indicate that apart from summations

over the indices i and p (not shown explicitly, according to convention), the triple

index of (k , l ,m) must iterate over these combinations of values: (1, 2, 3), (2, 3, 1),

and (3, 1, 2). The relation can be somewhat further simplified. Since a i k ¼ a k i, it

holds that:

∂ aik xi
∂xl

� ∂ ail xi
∂xk

¼ xi
∂aik
∂xl

� ∂ail
∂xk

� �
:

And therefore:

ς
ðk l mÞ

apm
∂ aik
∂xl

� ∂ ail
∂xk

� �
xi xp ¼ 0 : ð4:4Þ

This condition is necessary for (Eq. 4.3) to be integrable. Moreover it can also

be shown that this condition is also sufficient.(c)

Under our assumption, in the first place the aik are empirically determinable

coordinate functions, measured through the discrimination of differences. It is

entirely imaginable they do not satisfy the differential equation (Eq. 4.4). In that

case the notion of brightness would have no comprehensible quantitative meaning.

Whether it has such meaning is a matter for experiment. Perhaps it would be best to

apply methods of photometry through a progression of small steps over closed

cycles of colors. Then one may examine whether the product of all the successive

ratios of brightness results in a value of one. Or else perhaps the frequent replication

of this experiment will uncover a systematic departure from unity. In the latter case

the concept of brightness would have to be abandoned as meaningless: that is itself

illuminating aside from other theoretical considerations.

A pronounced lack of clarity dominates this notion of brightness in the

scientific literature. Such lack of clarity might arouse the suspicion that the latter

situation does hold in nature, after all. Fortunately at my present institution, such

investigations were conducted while the present article was being written. Bright-

ness measurements of the kind described were conducted for cycles on
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Ostwald’s tableaux of colors. The results will be published in a multipage report

very soon. The integrability of (Eq. 4.3) was documented to a very good approx-

imation. In the following we will consider the condition as having been fulfilled

precisely. We still hold its determination to be important, since the result is

purely empirical, and since it could possibly turn out differently under other

conditions (for example, in parafoveal vision or by intrusion of the Purkinje

phenomenon).

Then for a suitable choice of the multiplier μ (x1, x2, x3) there is a function h (x1,
x2, x3) for which:

∂h
∂xk

¼ μ aik xi k ¼ 1, 2, 3 : ð4:5Þ

For progression across the surface:

h ¼ const:,

which pares color space into planes nested like the layers of an onion along which

(Eq. 4.3) is satisfied. The planes are orthogonal planes (in the Riemannian geomet-

ric sense) to color vectors drawn from the origin. We will call them planes of equal

brightness, or isolychnes. The provisional role of a measure of brightness will be

assigned to h.
Yet h is in no way constrained by (Eq. 4.5). Each monotone function of

h represents a single bundle of surfaces. Each is equally justified a priori as a

measure of brightness – and so an operation of normalization is called for. The

normalization can be prefigured as simple only if we may assume that the

isolychnes are similar (in the sense of elementary geometry) in vector space

and similarly situated in vector space with respect to the origin. In experimen-

tal terms that means despite proportional changes in objective intensity, equal-

ity of brightness (and also color equivalence) is preserved for pairs of light

mixtures. We are aware that this constancy is in no way a consequence of the

constancy of color equivalence. Nonetheless we believe the assumption of

constancy to be justified at least as an approximation, on the basis of general

experience. That runs counter to the data presented by A. K€onig,(d) which data

may be based on the Purkinje phenomenon at least in part (see the end of

Section 10, however).

One can then normalize the brightness parameter h, so that it becomes propor-

tional to the intersection of the isolychne with any color vector (just because this

intersection varies proportionally from isolychne to isolychne, for all colors). In

experimental terms this means one agrees to designate a surface illuminated by two,

three, or four lightbulbs to be two, three, or four times as bright.(e) For the purposes

of calculation, it means that h should be a homogeneous function of degree one in

the coordinates. Then by Euler’s theorem for homogeneous functions:
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h ¼ x1
∂h
∂x1

þ x2
∂h
∂x2

þ x3
∂h
∂x3

¼ xk
∂h
∂xk

,

therefore from (Eq. 4.5):

h ¼ μ � aik xi xk ; μ ¼ h

aik xi xk
:

Substituting in (Eq. 4.5):

∂logh
∂ xl

¼
P
i

ail xiP
i

P
k aik xi xk

l ¼ 1, 2, 3 : ð4:6Þ

These three equations determine log h up to an additive constant. In other words
they determine h up to a ratio which is a negligible proportional factor.

Section 4: A First Estimate of the Line-Element

In order not to complicate the subsequent calculations too far, we will derive them

presently for the specific line element I am recommending, which I maintain

represents a fair approximation over a large part of color space. Of course the

most conservative tack would be to determine aik over the entire color space by

experiment. Such an effort would consist of the measurement of difference thresh-

olds for every color, in all possible directions of excursion. Only then with exper-

imentally determined coefficients could the theory of maximally similar colors be

demonstrated strictly for the most varied excursions. The theory of brightness that

we have put forward is just a special case of that larger theory. Unfortunately such a

complete line of investigation would be hopelessly difficult if it were to be carried

out by experiment. The line element has only been measured in experiment along a

few color vectors,(f) and along certain curves of the spectral cone.(g) Measurements

along the spectral cone to white (sensitivity to ‘changes in saturation’) are almost

entirely lacking. For that direction there are only a few measurements made by

M. Gottlieb(h) (and those were for pigments, not for spectral colors). Good infor-

mation may well be generated with the help of Ostwald’s splendid color atlas, but

for the fact that color coordinates for these colors have not been defined. The exact

determination of those coordinates will require substantial effort.

There is nothing left to do but to attempt to characterize the line element by

hypothesis in a way which satisfies the principal constraints. The hypothesis can

then be examined rigorously, on one hand by the measurement of difference

thresholds, and on the other by the adjustment of maximally similar colors.
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H. von Helmholtz tried the following proposition, based on considerations that

emerged from Fechner’s Law. His proposition was meant to apply to xi that have
been linked to actual fundamental colors.

aik ¼ 0 f or i 6¼ k ; aii ¼ 1

3 x2i
, ð4:7Þ

which means:

ds2 ¼ 1

3

d x21
x21

þ d x22
x22

þ d x23
x23

� �
: ð4:8Þ

This proposition has not held up, insofar as its predictions did not correspond to

K€onig’s measurements of color difference thresholds across the spectrum. They do

not correspond as the xi are interpreted as fiducial coordinates for the faux colors of
dichromats. There would have to be new fundamental colors calculated ad hoc, in

order to make the line element somewhat constant for just-noticeably different pairs

of colors. The simple notion of dichromacy that we detailed in Section 10 of the first

part [Chap. 3] would be thrown overboard.

The line element (Eq. 4.8) leads to something else – whichHelmholtz seems not

to have noticed – that is, to an absurd brightness function. In itself it contradicts

experience, quite apart from its relation to the theory of dichromacy. One is easily

convinced that the integrability condition and the assumption of homogeneity (from

the previous paragraphs) are satisfied. Then formula (Eq. 4.6) taken together with

the specific values (Eq. 4.7) of aik produces:

∂logh
∂ xl

¼ 1

3 xl
l ¼ 1, 2, 3 ,

and therefore:

h ¼ constant •
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 x2 x33

p
:

Yet this brightness function is absurd, since e.g. it produces a hideous

dromedary-like curve with two pronounced maxima as a brightness distribution

for the spectrum of sunlight. It produces that result both for K€onig’s fundamental

stimulus valences – derived from the elementary theory of dichromacy – as well as

for von Helmholtz’s ad hoc conversion values for the fundamental stimulus

valences. And this brightness function – together with its line element – is unac-

ceptable for a more general reason still.

In recent times – namely through the researches of W. Abney(i) and subsequently
those of F. Exner,(j) as well as K.W.F. Kohlrausch(k) – it has been demonstrated

that brightness is an additive property of color, at least to a good approximation.

That is, when equally bright lights are combined, equally bright lights are produced.

This additivity property of brightness is not a consequence of the additivity of color
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matches. Helmholtz even doubted that additivity holds for brightness, though he

steadfastly asserted the additivity of color matches. His assertion was based on a

few very interesting trials with color wheels; we will come back to examine his

evidence more closely in Section 6. There we shall show how Helmholtz
misinterpreted these results; in reality they do not contradict the additivity of

brightness. We will use the latter claim as a guide in our search for the right line

element. Our method of presentation has the advantage that we do not commit

ourselves to a fixed solution. At worst we will arrive only at a rough approximation

to the real situation, which approximation may always be improved.

Now if

h ð x1, x2, x3 Þ þ h ð x01, x02, x03 Þ
¼ h ðx1 þ x01, x2 þ x02, x3 þ x03Þ

�
ð4:9Þ

counts as an identity for any two triples of values xi and x0i, then by differentiation

for xl it follows that:

∂h
∂xl

ðx1, x2, x3Þ ¼ ∂h
∂xl

ðx1 þ x01, x2 þ x02, x3 þ x03Þ l ¼ 1, 2, 3

and since once again xi and xi + x0i are two arbitrary triples of values, then the three

partial differential quotients ∂h
∂xl

must be constants. Then h must be of the form

h ¼ a1 x1 þ a2 x2 þ a3 x3 , ð4:10Þ

i.e. homogeneous and linear, so that the requirement of integrability (Eq. 4.9) is

still satisfied. In passing we note that this form is not altered by linear transforma-

tion, so it holds for arbitrary choices of calibration colors.

In order to be consonant with experience, our line element must produce

a1 x1 þ a2 x2 þ a3 x3 ¼ constant ð4:11Þ

as the isolychnes of a bundle of planes. I.e., according to Section 3, it must be

constituted so that the planes of the bundle always stand perpendicular (that is,

perpendicular in the sense given by Riemannian geometry) to the direction of the

radial vectors (d x1: d x2: d x3 ¼ x1: x2: x3)Now the transformation

ξ1 ¼
ffiffiffiffiffiffiffiffiffiffi
α1 x1

p
, ξ2 ¼

ffiffiffiffiffiffiffiffiffiffi
α2 x2

p
, ξ3 ¼

ffiffiffiffiffiffiffiffiffiffi
α3 x3

p

maps radial vectors to radial vectors, but it maps the bundle of planes (Eq. 4.11)

onto a collection of concentric spheres.

ξ21 þ ξ22 þ ξ23 ¼ constant

Then in ξ i space, the Euclidean line element
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4 ðdξ21 þ dξ22 þ dξ23Þ ¼ α1
d x21
x1

þ α2
d x22
x2

þ α3
d x23
x3

¼ ds2

would also satisfy our requirements.

This simplest of premises, which was brought to my attention as an insightful

observation made by W. Pauli Jr., is blocked by Fechner’s Law. Actually if one

varies colors of the same stimulus quality but of different intensities, and if those

colors vary only in intensity,

d x1 ¼ ε x1, d x2 ¼ ε x2, d x3 ¼ ε x3 ε∠∠1ð Þ,

then the outcome would be

d s ¼ ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 x1 þ α2 x2 þ α3 x3

p

which is not constant for constant ε as required by Fechner’s Law. Rather it is
constant when ε is inversely proportional to the square root of brightness. That runs
counter to experience.

Yet we do not need to abandon the advantages of the real isolychnes we have

established. That is because the isolychnes change – as one may recognize from

equation (Eq. 4.3) – if the factor of an arbitrary function of the coordinates is added

to the line element. If we choose the reciprocal of brightness as that factor,

1

a1x1 þ a2x2 þ a3x3
,

then we obtain constant intervals following Fechner’s Law not only for the same

stimulus quality but also over the whole gamut of color, as experience appears to

require over a large region of color space.

On the basis of these considerations, we should like to propose the following line

element as the one likely to hew most closely to the facts:

aik ¼ 0 , i 6¼ k ,

aii ¼ αi
xi ðα1 x1 þ α2 x2 þ α3 x3Þ , i e:,

ds2 ¼ 1

α1 x1 þ α2 x2 þ α3 x3

α1 dx21
x1

þ α2 dx22
x2

þ a3 dx
2
3

x3

� �
,

8>>><
>>>:

ð4:12Þ

where the ai are certain constants determined by experiment. They are selected so

that the following expression

h ¼ a1 x1 þ a2 x2 þ a3 x3

measures the brightness of the color (x1 x2 x3).
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The consequent application of this line element delivers the brightness function

just cited, which is consonant with experience. It is consonant with Fechner’s Law
for intensity, and produces the same constants for all colors.

This is not the only possible line element which can satisfy the said constraints,

since it is not invariant under linear transformations of the xi . Any form to which it

may be linearly transformed would serve equally well as a possible line element.

We assume that the simple form given by (Eq. 4.12) holds for the actual

fundamental colors – which we consider to have the form derived by K€onig and

Dieterici, at least provisionally.

Section 5: Noticeable Differences in Color

Across the Spectrum

As an additional reality check, we look to derive from our initial proposition the

noticeable differences in color across the spectrum. These are measured in rational

fashion, always by equalizing the difference in brightness of the spectral colors to

be compared. Otherwise the result depends on the particular distribution of intensity

or of brightness in the spectrum which is employed. One progresses forward from a

position λ to a neighbouring position d + d λ which is distinguishable from λ even
when and just discernably when one matches differences in brightness as well as

possible.

Let

xi, xi þ d xi

be the coordinates of the just-noticeably different hues λ, λ + d λ, as they occur in

spectral order. The line element is not gauged between these, but between

1 þ εð Þ xi , xi þ d xi

The requisite value of ε for the comparison of brightness is easily established as

d log h.And therefore:

ds2 ¼ aik ðxi dlogh� d xiÞ ðxk dlogh� d xkÞ
¼ aik xi xk dlog

xi
h
dlog

xk
h

:

(
ð4:13Þ

Then for our line element (Eq. 4.12)

ds2 ¼ a1 x1
h

d log
x1
h

� �2
þ a2 x2

h
d log

x2
h

� �2
þ a3 x3

h
d log

x3
h

� �2
ð4:14Þ

with
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h ¼ a1 x1 þ a2 x2 þ a3 x3 :

Here we treat h and the xi as functions of λ. Deviations from λ are marked by a

prime mark. A form suited to numeric methods proves to be:

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 x1
h

x1
0

x1
� h

0

h

 !2

þ α2 x2
h

x2
0

x2
� h

0

h

 !2

þ α3 x3
h

x3
0

x3
� h

0

h

 !2
vuut � dλ

ð4:15Þ

It is a ticklish business to determine these numeric results from empirical data,

because of the appearance of differential quotients in the expression. The numeric

data that we use were given by Helmholtz(l) for the same purpose, and based on

careful adjustment values. But Helmholtz gives the values r, g, v for K€onig’s
elementary colors. We transform them instead to fundamental colors using the

coefficients provided by K€onig.(m) It helps to incorporate multiplication by the

constants ai in this conversion. That is, we include the xi from here on (in the

sections to follow, too) not in such units of the fundamental colors as mix to

produce white, but rather in such units as appear equally bright – those which

have the same brightness values in mixtures. The brightness function becomes:

h ¼ x1 þ x2 þ x3 , ð4:100Þ

Then in the general case the line element is:

ds2 ¼ 1

h

d x21
x1

þ d x22
x2

þ d x23
x3

� �
ð4:120Þ

and in the case we are considering presently:

d s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1
h

x10

x1
�h0

h

� �2

þ x2
h

x20

x2
�h0

h

� �2

þ x3
h

x30

x3
�h0

h

� �2
s

� dλ : ð4:150Þ

I would like to thank F. Exner for his kindness in supplying the ai from his recent

experimental trials. (Our focus is on the proportions of ai .)

a1 ¼ 43 � 33, a2 ¼ 32 � 76, a3 ¼ 1: ð4:16Þ

In the derivation of fresh xi from the elementary valences r, g, v we find that:

x1 ¼ 45 � 6 r � 6 � 84 g þ 4 � 56 v,
x2 ¼ 6 � 57 r þ 26 � 3 g ,

x3 ¼ v:

8<
: ð4:17Þ

The same formulae hold for the tacit quantities.
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Finally, for d λ I use Uhthoff’s(n) recent experimental results.

The accompanying Table 4.1 is self-evident.

The first nine columns show Helmholtz’s(o) data, recalculated by the formula

given above. The last four columns are: 1) 100 times the derived square root, 2)

Uhthoff’s observations, 3) the product of those two, which should be a constant

value, and 4) the mean of column 3 divided by column 1, computed as d λ.
The requirement for the constancy of ds is not at all well-satisfied, just as it was

not well-satisfied for Helmholtz. Yet if we plot the observed and calculated values

of d λ (Fig. 4.2), one notes that the general trend of detectable difference is captured
by theoretical values across the spectrum. Those values are just a little exaggerated,

in that extreme values are shifted towards red.

In no way do I wish to claim that one can mount a strong argument in favor of the

proposed line element from this rough correspondence. Yet I do believe that one

could not have expected a better correspondence from an entirely accurate theory.

One may consider that none of these numbers was adopted ad hoc to be used in the

calculation. Rather the numbers arose from very heterogeneous sets of observations

(from K€onig, Uhthoff, and Exner). Moreover the true positions of the fundamental

colors are by no means certain yet, as was shown by our analysis at the end of the

first part of the present work. In particular, interpolation of differential quotients

(whose values are crucial and decisive here) is always an uncertain and risky

business from curves of purely empirical, altogether irregular form – as for K€onig’s
curves. One may recognize the errors which can creep in, from the notable position

of the theoretical point at λ ¼ 530. Helmholtz’s calculations produce an outlier, as
do mine; both fall outside the theoretical trend.

The mean of the ds for just-noticeably different colors proved to be very close to

0.01 (cf. Table 4.1, next-to-last column). According to theory, this number should

correspond to Fechner’s step – his increment of intensity. Unfortunately the reckon-

ing is not exact, since different observers produced very different values for that

increment. The values vary with the method used, but they may also be subject to

individual differences. The largest value is given by K€onig as 1/57. Other results

listed by von Kries (in Nagel’s Handbuch der Physiologie, 3(1), p. 250) are: Arago
1/130, Masson 1/120, Volkmann 1/100, Helmholtz 1/167, Aubert 1/186. The num-

ber 1/94 which we have calculated here sits very comfortably among those values.

Section 6: Helmholtz’s Color-Wheel Experiments Which

Seem to Contradict Additivity of Brightness

Now we turn to Helmholtz’s experiments with a color wheel, which were men-

tioned earlier. On the basis of those experiments he concluded wrongly that an

additive rule could not be formulated for the brightness of mixtures. His experi-

ments provide an illustration of the need for a adjustment for maximally similar
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colors, which is not the same as a ordinary comparison of brightness.Helmholtz did
not recognize this, and that is where his error lay.

The experiment runs as follows. One covers a color wheel with a mixture of two

pigment colors F and V, with the exclusion of a small angular extent ε’ (about 1/50
to 1/100th of the circle) which remains dark at first. We call this mixture back-

ground G. More precisely, F or V should be the colors which appear when one

covers the entire extent 2π - ε’ with the first (or second, respectively) pigment as the

wheel rotates.G is its color if λ0 is covered by the first pigment and μ0 by the second,
so that λ0 + μ0 ¼ 2π - ε’. Then:

G ¼ λ Fþ μ V ; λ þ μ ¼ 1

λ ¼ λ
0

2π � ε0 , μ ¼ μ
0

2π � ε0

" #
: ð4:18Þ

F should be the darker pigment. – Say the angle ε’ around an inner ring is also

covered byF. Along an adjacent outer ring, only a section of angle ε’ is covered byV –

the angle ζ’. At the same time ε’- ζ’ is covered in black.(p) Then ζ’ is varied in extent, so
that the border between the two rings becomes its most indistinguishable. In other

words the two colors become least distinguishable.Helmholtz identifies this operation
as an adjustment for equal brightness. According to him, increments in color

ε0

2π � ε0 F ¼ ε F ;
ζ0

2π � ε0
V ¼ ζ V

ε ¼ ε0

2π � ε0
, ζ ¼ ζ0

2π � ε0

� 	 ð4:19Þ

relative to the background G will have changed the brightness in equal strength.

Then if brightness were an additive property, it would also be the case that the

Fig. 4.2 Observed and

calculated values of dλ are

plotted along the spectrum.

The observed values are

from Uhthoff. (beobachtet:
observed; berechnet:
calculated) (Reproduced

from Schr€odinger, 1920c)
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brightnesses of F and V would vary inversely with the increments ε and ζ, or with
the small angles ε0 and ζ0.

h ðFÞ
h ðVÞ ¼

ζ

ε
¼ ζ0

ε0
ð4:20Þ

This proportion would necessarily prove to be constant, independent of the

background color. That is just not the case. The ratio of angles varies markedly –

up to ½ in extreme cases. The ratio varies in this direction: it appears to favor the

color that is less well-represented (because of its ‘brightening power’) in the

background. Helmholtz attributed this to a generalization of Fechner’s Law.
Now we should like to show that the ratio of angles ζ’/ε’ does not simply coincide

with a brightness ratio, and that this proportion should not be expected to be

independent of the background color. Certainly the observed changes in the ratio of

angle with the background color may be predicted from our line element (Eq. 4.12, or

else Eq. 4.120) which implies the brightness function of (Eq. 4.10, or Eq. 4.100). That
allows us to predict the observed variation in angular ratio with background color.

IfOF andOV (Fig. 4.3) are the color vectors of pure pigments (in the sense given

previously) then the head of the vector for the background

G ¼ λ F þ μ V λþ μ ¼ 1½ �

lies along the connecting line FV. A particular position is indicated for G. One
obtains the color of the inner ring, when one adjoins to OG a small vector GG0 that
has direction


!
OF and length ε • OF. (This and the following constructions are

Fig. 4.3 This construction

illustrates the calculation of

a color equal in brightness

to two others. OF and OV
are the color vectors of pure

pigments. (Reproduced

from Schr€odinger, 1920c)

Section 6: Helmholtz’s Color-Wheel Experiments Which Seem to. . . 79



developed in the Figure for an intermediate position, and for the two end positions

where G coincides with F or V.) For the outer ring, what is added to OG is a vector

GG00 of direction

!
OV and a requisite length so that G00 is situated closest to G0.

As before, one inscribes a scatter ellipse about G0 (Eq. 4.2) of such size that it just

touches the line GG00 (the parallel to OV through G). G00 is its point of contact. That
point lies on the plane of the diameter conjugate to GG00 (analogously for the

extrema of FF00 and VV00), not on the plane of the diameter conjugate to OG
(similarly for OF and OV). Therefore in general it is not equally bright to G0

(similarly for F0, V0). Only in the borderline case in which G coincides with V are

the two directions – hence the two conjugate planes – identical. An ordinary

comparison of brightness is available only in that case.

The brightness ratio of the two pigments may be calculated directly from the

ratio of the small supplementary angles only if the color which is manipulated in

experiment is the same as the background color.

Having said that, one recognizes immediately from the Figure that GG00 must be

lengthened in all other cases, in order to intersect the plane conjugate to GO. A
shorter addition to the variable color V (shorter than would be necessary for

equality of brightness) suffices to establish maximum similarity. That means,

(if one commits Helmholtz’s error) the variable color appears to have a relatively

stronger brightening effect against a background of a different color than against a

background of its own color: that is what Helmholtz found. One may also conjec-

ture that the discrepancy becomes even greater the more the directionsOG andGG00

diverge from one another (i.e., the nearer G draws to F).
This last conclusion is uncertain, however. The form of the scatter ellipsoid

changes too, if its centroid slides along the line V0 F0.
Here is the quantitative situation. If the coordinates of

F � � � � yi
V � � � � zi
G � � � � xi ¼ λ yi � μ zi

and the coordinates of

G0 are xi þ ε yi
G00 are xi þ ζ zi:

then the vector GG00 has as its components

ζ zi � ε yi :

The vector must be conjugate to the direction GG00 (relative to the scatter

ellipsoid of G0), whose components behave as:

zi
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That is, it is necessary that either

aik ð ζ zi � ε yi Þ zk ¼ 0

or

ζ

ε
¼
P
i

P
k aik yi zkP

i

P
k aik zi zk

: ð4:21Þ

According to (Eq. 4.20), this is the apparent ratio of brightness of the fixed

color F to the variable color V. Here the aik are meant – strictly speaking their

values at point G0. Naturally Gmay be substituted with adequate precision for those

values, and therefore they may be substituted for xi ¼ λ yi + μ zi as well.
As we have seen, then, the real ratio of brightness must be given by the same

formula as if one set out to assign aik their value at point V.
Let us refine this step for our line element (Eq. 4.120), and stipulate that:

aik ¼ 0 ½ i 6¼ k � : aii ¼ 1

ðx1 þ x2 þ x3Þ xi ,

This produces:

ζ

δ
¼

z1
x1
� y1 þ z2

x2
� y2 þ z3

x3
� y3

z1
x1
� z1 þ z2

x2
� z2 þ z3

x3
� z3 , ð4:22Þ

where xi ¼ λ yi + μ zi. One can recognize that the correct brightness ratio results, if
the xi coincide with zi .

Just how the apparent ratio of brightness varies with the background color (xi),
may be clarified in the following way. Three weighting factors zi / xi are added

‘under hypothesis’ to the fundamental stimulus valences of formula (Eq. 4.22).

A fundamental valence receives a stronger weight in formation of the ratio, the

more it predominates in the variable color (zi ) over the background color (xi). The
background color will not coincide with the variable color because of an admixture

of the fixed color (yi). The weighting factors will favor just those fundamental

valences in which the variable color is amply represented – also with respect to the

fixed color. The effect is stronger, as the background diverges from the variable

color. That is, weighting favors the variable color more and more, the more strongly

the background diverges – just as Helmholtz had found.

A quantitative comparison is excluded, since coordinates are unknown for the

colors which von Helmholtz used. Yet there is something one may insist upon.

Since Helmholtz had used three different pigments in three combinations, one can

examine whether the results of the three extreme cases for G ¼ V, are consistent

results. In other words we can see if the product of the brightness ratios
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Red

Blue
� Blue

Green
� Green

Red

is equal to unity, as theory demands in this case (since a pedestrian measure of

brightness applies just in this case). If one constructs these ratios from the data

found in the place cited, unfortunately we find:

1:33 � 0:41 � 1:20 ¼ 0:66

When combined in the same way, the other extreme cases produce 1.55. For a

background mixture of half-and-half, the result is 1.19.

In these respects the experiments do not correspond to theory – yet also not to the

collective experience of Abney, Exner, and Kohlrausch, who apply methods which

enable much greater precision. If the variable color does coincide with that of the

background, this business is really only one of a simple change in intensity for the

outer ring (given a constant inner ring). That may be carried out much more

conveniently and exactly using a polarimeter. Then one need not stop the disk to

change the color wheel with each alteration. Rather the various adjustments can be

lined up continuously, and compared in value. In just this way Exner has deter-
mined with great precision a constancy in brightness value for a pigment color in

the most diverse of mixtures.

Section 7: Geodesics. The Measurement of Finite

Differences. Heterochromatic Photometry

Until now we have always employed a propositional expression for the line element

in differential form – as a measure of difference between pairs of colors which

differ but little. We have made no use of the third assumption in Section 2, which

sets out to measure differences in the line integral of ds along a shortest connecting
line for starkly different colors. We will use it now in order to evaluate what theory

has to say on the subject of strongly heterochromatic photometry. Does it coincide

or not with the ‘nearly monochrome’ study of photometry in small increments,

which we have given as sole support to the definition of brightness?

Once again let us consider a fixed color point F, plus another point F0 which is

variable in its radial vector. Here the radial vector does not pass close to F; rather it
may take an arbitrary direction. We seek the position F00 from F0 which lies closest

to F. Then F00 is the foot of the perpendicular geodesic which extends from F to

the radius vector OF0. One may ask if this point of the foot lies along the same

isolychne as F:

x1 þ x2 þ x3 ¼ constant

In order to calculate the geodesic line, we apply a transformation to line element

(Eq. 4.120)
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ξ1 ¼
ffiffiffiffiffiffi
x1

p
, ξ2 ¼

ffiffiffiffiffiffi
x2

p
, ξ3 ¼

ffiffiffiffiffiffi
x3

p ð4:23Þ

to bring the line element into the form:

ds2 ¼ 4 � d ξ21 þ d ξ22 þ d ξ23
ξ21 þ ξ22 þ ξ23

ð4:23aÞ

We note that if one interprets the ξ i provisionally as rectilinear coordinates, then

complete spherical symmetry about the origin holds over the space of ξ i. Hence in

this ξ i space, the geodesics between two color points must be plane curves, such as

a plane curve of Y and Z in the plane Y Z O. Let us then introduce polar coordinates
r and ψ to this plane. The expression of ds2 in terms of d r and d ψ must remain the

same, independent of the pose of the plane. By specialization (such as for ξ 3 ¼ 0)

we see that that expression must read:

ds2 ¼ 4
d r2

r2
þ d ψ2

� �
¼ 4 ½ ðd logrÞ2 þ d ψ2 � : ð4:24Þ

From this we recognize that the geodesics – which are straight lines in terms of

the variables ψ and log r – are plane logarithmic spirals in ξ i space, whose

asymptotic point lies at 0. We may write their equation in ψ and r [which in reality

contains only two independent constants; two other constants pertain to the arbi-

trary pose of the plane] in this form:

ψ � ψ
0

ψ
00 � ψ 0

¼ log

r

r
0

log r
00

r
0

, ð4:25Þ

where ψ 0, r0, ψ 00, r00 are constants. Namely they are polar coordinates of the points

Y and Z through which the geodesic lines pass.

Under the following limited conditions:

a
�

ψ 0 ¼ ψ 00 : r0 6¼ r00 ; b
�

ψ 0 6¼ ψ 00 : r0 ¼ r00

this result is obtained:

a
�

ψ ¼ constant ; b
�

r ¼ constant ð4:26Þ

Those a) are lines through the origin, not only in ξ-i but also in xi - space, since it
follows from (Eq. 4.23) that fixed ratios of ξ i will imply fixed ratios of xi as well.
Then we note:

According to our theory, in the transition from an intense illuminant color to a
weak illuminant color of the same stimulus quality (that is, under a simple change
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in absolute intensity without change in the composition of the light mixture) one
moves along a shortest series of color points.

We will return to this subject in Section 10.

b) gives us circles centred on the origin – or otherwise expressed, great circles of
a sphere circumscribing the origin.

ξ21 þ ξ22 þ ξ23 ¼ const:

These spheres in ξ - space are nothing else (following Eq. 4.23) than our

isolychnes in x- space (cf. Eq. 4.100). Therefore the geodesic between two

equally-bright points is one such great circle in ξ - space, and it is a plane curve

in x- space on the isolychne (namely an ellipse, as we shall see). Since the

isolychnes – as we know already – are orthogonal (in the sense given by Riemann-

ian geometry) to any radial vector, then those plane curves form the set of geodesic

normals between any two of their radial vectors.

In that way, the question we posed in the preamble has been answered. The foot

and the head of the perpendicular (i.e., the normal) always lie on the same

isolychne. Heterochromatic photometry – insofar as it is feasible – should produce

the same result as incremental, nearly monochrome photometry, according to our

theory.

For later use we note something which is immediately evident from the form of

the line element given in (Eq. 4.23a). On the isolychnic spheres of ξ - space, our
metric coincides with the ordinary Euclidean metric. The standard of measure

changes, however, from sphere to sphere; in fact the sphere’s radius serves as the
unit of length. The metric relations, and with them all the geometry within an

isolychne have become entirely perspicuous by means of our ξ - transformation.

Namely, that geometry is reduced to ordinary spherical trigonometry. It is in those

terms that the angle between two line elements can be judged, or that perpendic-

ularity and so forth can be judged.

In the next section we will discuss the general path of geodesics in x- space.
Here by way of an appendix – since it is so easily developed – is an exposition of

calibration. In our theory such calibration gives the measure of difference

between two finitely different colors, meaning any two arbitrary colors. We

began with that subject in Section 2, along the geodesic following (Eqs. 4.24 and

4.25):

ZZ
Y

d s ¼ 2

ZZ
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d log rð Þ2 þ dψ2

q

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log r00

r0
ψ 00� ψ 0

� �2
s

þ 1 �
ZZ
Y

d ψ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log r002

r 02

� �2
þ 4 ψ 00 � ψ 0ð Þ2

r
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4:27Þ
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where of course r0, ψ 0, r00, ψ 00 now have reference to the endpoints Y and Z. It is
therefore plausible to say that the measure of difference brings together two

components: difference in brightness – indicating the ratio of lengths of radial

vectors in ξ - space – and difference in color – in a narrow sense for which the

angle between these radial vectors is the measure. In the intrinsic coordinates yi and
zi of the color points Y and Z, and their associated brightnesses, say:

hy ¼
X

yi , hz ¼
X

zi

one obtains, obviously since:

hy ¼ r
02 , hz ¼ r002 ,

arccos

ffiffiffiffiffiffiffiffiffiffi
y1 z1

p þ ffiffiffiffiffiffiffiffiffiffi
y2 z2

p þ ffiffiffiffiffiffiffiffiffiffi
y3 z3

pffiffiffiffiffiffiffiffiffiffi
hy hz

p ¼ ψ 00 � ψ 0

the following expression for the measure of difference:

ZZ
Y

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

hz
hy

� �2

þ 4 arccos

ffiffiffiffiffiffiffiffiffiffi
y1 z1

p þ ffiffiffiffiffiffiffiffiffiffi
y2 z2

p þ ffiffiffiffiffiffiffiffiffiffi
y3 z3

pffiffiffiffiffiffiffiffiffiffi
hy hz

p
 !2

vuut :

ð4:28Þ

As an example I have evaluated this expression using the data of Table 4.1 for

red at λ ¼ 640 and cyan blue at λ ¼ 480, but maintaining equal brightness. One

obtains a value very close to 1. This indicates that for viewing conditions under

which Fechner’s intervals have – say, a value of 0.01 – that a progression of at least
100 intermediate just-noticeable steps should be established if one selects the

intermediate steps as skillfully as possible.

Section 8: Description of the Paths of Geodesics in x-Space

It is of some interest to present a clearer representation of the paths of geodesic lines

in our vector space of xi, so meaningful in basic colorimetry. One awkwardness of

transformation (Eq. 4.23) is that it is not a one-to-one correspondence.(q) The

positive octant of x- space, to which it is restricted in domain, is mapped onto

each of the 8 octants of ξ - space. Consider the consequence: for example if one of

our logarithmic spirals continues on from the first ξ - octant, it intersects a

coordinate plane and continues to another octant. Then the corresponding curve

in x- space doubles back to the first octant, and steadily approaches the origin

(or better stated: it reduces the sum Σxi). From there it continues to the second

coordinate plane, from there to the third, and so on. Thus the curve approaches the
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origin asymptotically by repeated turns on the three positive quadrants of the

coordinate planes, always remaining in the first octant.

How is the plane through the origin of ξ - space transformed in x- space? Each
such plane – along which every geodesic runs – such as:

γ1 ξ1 þ γ2 ξ2 þ γ3 ξ3 ¼ 0 : ð4:29Þ

represents

γ1
ffiffiffiffiffi
x1

p þ γ2
ffiffiffiffiffi
x2

p þ γ3
ffiffiffiffiffi
x3

p ¼ 0

or

γ21 x1 ¼ γ22 x2 þ γ23 x3 � 2 γ2 γ3
ffiffiffiffiffiffiffiffiffiffiffi
x2 x3

p

or

ðγ21 x1 � γ22 x2 � γ23 x3Þ2 ¼ 4 γ22 γ
2
3 x2 x3 ð4:30Þ

That is a second-degree conic with its apex at the origin. If one traces its intersec-

tion with the coordinate planes, then in every case a doubly-counted line is formed

(e.g., for x1 ¼ 0):

ðy22 x2 � y23 x3Þ2 ¼ 0

The cone has a point of contact with all three coordinate planes.

Let us now consider (as we did in “Sect. 10” of the first part) the intersection of

our vector pencil with a plane, say with the isolychne

x1 þ x2 þ x3 ¼ const:

Its projection onto the coordinate planes is the well-known color triangle. With

the conventions that have been adopted for our representation, this proves to be

equilateral. The projections of our conic are conic sections which are themselves

geodesic, since they lie in the isolychne. Since they lie at least in part in the interior

of the triangle, and since they never pass beyond it – a conic section has no point of

inflection – they lie entirely in its interior, meaning they must be ellipses.

And so almost without benefit of calculation, we have gained a unified intuitive

grasp of the complete set of geodesic lines on an isolychne: that is the complete

set of ellipses inscribed in the color triangle. That is because there must be a

geodesic line in any prescribed direction which proceeds through any point. If we

then add tangents to the points of the isolychne as well, then those ellipses are

uniquely determined by the additional constraint as having a point of contact with

the sides of the color triangle.
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We should still dispel some residual ambiguity concerning the shortest line to

connect two points on the color triangle of the isolychne. In general given two

points there are two ellipses which can be inscribed including them. That means

four geodesic elliptical arcs: which of them is shortest?(r)

As we have intimated, one octant in ξ - space – say the first – suffices to map the

first x- octant, which is the only one of interest to us. Now that part of the plane

(Eq. 4.29) which lies in the first octant obviously represents that part of the cone

(Eq. 4.30) that lies between two lines which touch the coordinate planes. Suppose

one seeks those points which correspond to the two other portions of the envelope

in the first ξ - octant. Then one needs to reflect the remaining portions of the plane

(Eq. 4.29) through the coordinate planes into the first ξ - octant. By that means one

finds one of the triangles inscribed in the first ξ - octant (( ) ABC in Fig. 4.4).

This is just the triangle which is deformed into the positive x- cone by transfor-

mation (Eq. 4.23). Under the transformation, corners become rounded, and ( ) A, ( )
B, and ( ) C transform into the lines of contact. Then we see that the shortest

connecting lines between two points are just those elliptical arcs which do not

contain points of contact. Of the four possible arcs, only one ever satisfies this

condition. Naturally in ξ - space the arc segment FG will be shortest between F and

G, and not say the bent segment GCF or even GBAF for example.

Something similar holds for the logarithmic spirals, of course. They project onto

triangle ABC as the path of a buckled curve, which converges to O as it winds

around the triangle. The path of this curve is smoothed in x- space, and it winds

around the cone in the same way as the threads of a conical screw. The screw’s pitch
decreases without bound as it leads to the origin as asymptote. Yet what serves as

shortest is still just the segment between two successive points of contact on the

coordinate planes.

Fig. 4.4 One of the octants

of ξ – space, showing the

transformed triangle ABC
as well as the geodesic arc

FG. (Reproduced from

Schr€odinger, 1920c)
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Previously we spoke of the isolychne color triangle, that happened to be equi-

lateral by virtue of our special assumptions. Clearly these two constraints are not

essential, since the property of contact is invariant under the linear transformations

in question. The second-order conics inscribed in a triangle will become – under

affine transformation – once again second-order conics inscribed in a triangle

[Trans.: technically, one may use the less familiar ‘trihedral’ throughout]. A similar

situation holds for the projective transformation of the ellipses inscribed in a

triangle. And so we find the following:

1. Consider an arbitrary color triangle drawn on the true fundamental colors

(but with arbitrary units!) and that all the colors on it are positioned to have equal

brightness. Then according to our theory, the inscribed ellipses indicate shortest
transitions between two equally bright colors, where all the tints in the transition
series can be assumed to be equally bright.

2. The elliptical arcs fix the succession of the stimulus qualities by which a quickest
transition may be arranged, for pairs of colors which differ in brightness too.
This means brightness and stimulus quality can be varied simultaneously in a

determinate and lawful way.

The nature of this lawful relation is given in ξ - space by the logarithmic spirals

(Eq. 4.25). If one introduced xi into this equation, then one would not gain an

intuitive picture by one’s effort. The differential form of the law is perfectly

intuitive:

d ψ ¼ c d log r c ¼ ψ 00- ψ 0

log r00
r0

" #
:

since from (Eq. 4.24) it follows that:

ds ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd log rÞ2 þ d ψ2

q
:

The whole increment ds then consists of two parts: the increment of brightness

d log r (¼ ½ d log h) and the increment of stimulus quality d ψ . These are

proportional to one another along a geodesic path. That is, if one needs to appor-

tion equal changes in brightness at the pace of changes in stimulus quality, then

one has available the change in brightness necessary to assign increments of

stimulus quality in a specific way. One can choose them as equally-noticeable

differences for fixed brightness. One varies the brightness by a fraction (or by a

fixed multiple) that is constant along the geodesic line. That fraction is the equally-

noticeable increment of brightness when stimulus quality is fixed.
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Section 9: Special Cases. Changes in Hue

With the Addition of White

The geodesic connection is a straight line only in special cases even in x- space:
those cases for which the shortest series of colors coincides with the mixture colors

of the endpoints. We foreshadowed one such special case in Section 7 (progress

along a radial vector, that is, for unchanged stimulus quality). The only other

possibility occurs when an elliptical arc of equally-bright colors degenerates into

a straight line. That is the case if the line connecting the two colors passes through a

corner of the color triangle (or in terms of the vector space: if it intersects a

coordinate axis). In the doubly-counted portion of this line, the ellipse is degenerate

insofar as it lies within the color triangle. The colorimetric peculiarity of this case is

that far spectral endpoint colors coincide in one ratio of coordinates (e.g., x2/x3 ).
This theoretical statement coincides remarkably with a result by W. Abney.(s) He

took care to select the most similar pure (undesaturated) spectral color to a spectral

color diluted with white, the latter from the long-wave portion of the spectrum. For

ease of comparison brightness was uncontrolled, meaning it was made equal only as

far as possible. Abney found – and proved quantitatively – that in such comparisons

it is always those pure colors that are chosen, which match the red / green ratio of

the spectral colors diluted with white. The hue appears to be shifted somewhat by

the dilution with white – towards that yellow (at λ ¼ 577) which has the same red /

green ratio as white. This is just as predicted by theory, insofar as the spectral curve

along the part of the spectrum in question can be considered to align closely with

the outer border F1 F2 (cf. Fig. 4.5) of the color triangle. Then that spectral color

which has the same red/green ratio as the dilute color V is the color A, which can be

Fig. 4.5 The color triangle

F1F2F3, showing the

spectrum locus and the

geodesic normal of AF3 to

F1F2. (Weiss: white;
verd€unnte Farbe: dilute
color; €ahnlichste Farbe:
most similar color;

invariables Gelb: unique
yellow) (Reproduced from

Schr€odinger, 1920c)
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found on the line VF3 which connects to the third corner of the triangle. It is

perspicuous from our ξ - transformation that not only is this connecting line a

geodesic line, but also that it stands perpendicular to F1 F2 at A, the point of

intersection. It really does constitute the geodesic normal of V to F1 F2. That ξ -

transformation maps F1 F2 and F3 A to orthogonal great circles in the pertinent

isolychne sphere.

The result is somewhat muted in value, since Abney did not employ just the right

fundamental colors (those of K€onig). The differences are not great, however.
I would also like to put the issue forward, whether Abney’s expression is entirely

fitting when he says that colors of the same hue were sought. My intuition is that

spectral red is very saturated, while the yellow is much less saturated and much

closer to white. It does not surprise me then, that with the addition of white, one

looks nearer to yellow for the most similar color. Yet that is, I believe, better

attributed to the sharp decline of saturation in this spectral direction than perhaps to

say that red becomes yellowish by the addition of white. In trials I have run, it

appeared to me quite the opposite: red acquired a purple tinge.

By contrast, the theory of shortest color paths brings another definition of

equality in hue close to hand. Let me emphasize explicitly that what is meant

here is not a ‘consequence of theory’. Theory can make no pronouncement at all on

sensation. Clearly theory only enters into the attempt to wield a concept differently

or more profoundly, whose quantitative employment has proved superficial to date,

and when a concept does not jibe with sensation. Theory enters in so that the

concept may correspond better to sensation, if possible.

In order to put the matter shortly, it was common practise until now to call all

mixtures of white and a spectral light of wavelength λ as ‘equal in hue’. The hue

was then characterized by giving the wavelength. On the other hand it is known that

hue – subjectively evaluated – is changed by the addition of white to a mixture.

Now I should like to make the link clearer (as Helmholtz did in a similar

situation, by the way) that the series of color mixtures is not the shortest path to

bridge spectral colors and white. It seems likely to me that the fastest progression

from any distinctive color to colorlessness proceeds without change in hue.

That is because any new mark of difference between adjacent colors in a series

would be superfluous, and would needs lengthen the path.

That a given color is ‘equal in hue’ to another would then imply a definition of all

the colors as equal in hue which lie on its shortest line to white.

At least this definition is consistent, and it has consequences. Whether it really

represents sensation in a better way than the definition given previously, is clearly a

matter for subjective judgment.

What specifically would this definition tell us? Figure 4.6 illustrates the pencil of

geodesic lines through the white point of a color triangle. We would like to think

this captures the loci of equally bright colors. Only the connections between

fundamental colors and their complements are straight lines. Only in those cases

would their mixtures with white be constant in hue. For all intermediate colors, their

mixtures with white appear pushed towards the dominant fundamental color. That

means towards the fundamental color most strongly represented – as compared to
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the mixture ratio of the three fundamental colors which appears to be colorless.

Then following our assumption for a color in close proximity to the white point, one

finds its equivalent in hue along the edge of the triangle, by proceeding along one

curve of the bushel. The bushel draws together a three-pointed star from the

locations of the fundamental colors.

Colors which can actually be produced are found along these curved segments,

that constitute the projection of the amply-described envelope from the first part of

this article. One may recognize that the appearance of a color will hardly be

distinctive, when the color is from a part of the spectrum in which the arcs of the

ellipse depart but little from straight lines. The colors that will be most strongly

distinctive are in red and orange, and then in the indigo and violet regions.

One should expect a number of changes when a spectrum is flooded by white in

increasing strength. One change is that all the colors draw towards the nearest

fundamental color. Another is that, as in the Bezold-Br€ucke phenomenon, the three

fundamental components of hue are preserved, but with fairly abrupt transitions

towards nearby yellow and blue-green. As complementary colors to fundamental

blue and fundamental red, these colors are likewise persistent, but will not be very

salient since neighbouring colors draw away from them.

I have carried out a rudimentary trial with the diffraction spectrum of sunlight

from a grating about a meter in length. I did this at a time when the theoretical

stance just outlined was as yet unclear. These expectations were fulfilled insofar as

three hues actually did persist – with abrupt transitions – under conditions of strong

desaturation. It appeared to me that red acquired a distinct rosy tinge, which brought

it closer to fundamental red in hue. The persistent color at the long-wave end was

not blue, however. As many observers have determined already, it was a purplish

violet (quite a whitish one, of course). The prominence of red was more distinct

than in the pure undilute spectrum.

Fig. 4.6 The curves that

form a pencil of geodesic

lines emanating from the

white point of a color

triangle. (Rot: red; Gelb:
yellow; Gr€un: green;
Blaugr€un: blue-green; Blau:
blue; Purpur: purple).
(Reproduced from

Schr€odinger, 1920c)
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I would not hazard to base a proposal for the constitution of the third funda-

mental color on the theory of changes in hue which has been proposed. Such a

theory remains uncertain, and it may depart from the views of other, more experi-

enced investigators. But our result that the third fundamental color must be reddish-

violet rather than blue – if the theory makes sense – is consonant with the

proposition that has been expressed by K€onig himself(t) in his later work. It is so

plainly consonant that we seem to glimpse an error in the commonly-agreed

position of the third fundamental, rather than an error in the theory.

One may adjust the point F3 – holding the location of the spectral curve constant

– downwards and to the left, so that the line WF3 no longer intersects the spectral

curve, but rather intersects the violet end of the line of purples. By that operation the

geodesics are to be redrawn as inscribed ellipses of the transformed triangle, as

should be clear. In that way the shift in position towards reddish-violet seems

reasonable, as do the results from blue-blind observers which K€onig describes in

the same text.(u)

Section 10: The Bezold-Br€ucke Phenomenon. Prospects for

Future Improvement to the Line Element

A near relative to the question of change in hue by the addition of white is the

question of change in hue induced by mere diminution of the objective intensity of a

light mixture (without change of percentage in its composition). One might call

this: difference in hue among colors of the same stimulus quality. In like manner,

the hue of these colors moves towards that of the closest fundamental color. Under

very low-light conditions, only three hues remain in the spectrum, with quite abrupt

transitions just as for a spectrum diluted with white (the Bezold-Br€ucke
phenomenon).

We may understand how this appearance is not subsumed by our theory of the

line element, given the simple qualitative explanation of the effect provided by

Br€ucke.
First: the phenomenon is really not subsumed by the theory. It has been said that

one may demand no immediate proposition of experience from theory. Then let us

examine the compelling assumption that to a given color the most similar color of

a given brightness (higher or minimal) is equal in hue. The assumption is that the

quickest transition can be arranged by proceeding to salient colors of the same hue.

Yet the geodesic normals to the isolychnes are the radial vectors. As a consequence,

colors of the same stimulus quality should also be equal in hue; change in hue

should not be manifest on the mere basis of change in objective intensity.

This failure of theory is unremarkable for the reason that it is based wholly on

the assumption that Fechner’s Law holds for increments of intensity. Surely it only

represents an approximation to reality, as does the Law itself. According to Br€ucke
the appearance in question depends on a subliminal threshold effect – sublimation
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in whole or in part of the affected color in relation to white. The effect works on the

fundamental valence that is most weakly represented. (Here it is assumed that the

threshold values of fundamental valences behave in the same way as does the

fundamental valence of white – in other words: white disappears colorlessly below

threshold.)

Even for reasons of mathematics, Fechner’s Law must lose its validity around

the absolute zero of sensation. At that point an indefinitely large sensitivity to

difference arises. (Our line integral
R
ds diverges as one attempts to approach the

origin.) At the detection threshold, this stands in blatant contradiction to experi-

ence, since there changes in stimuli stop being perceived entirely. Instead, the Law

would have it that sensitivity becomes ever greater as the strength of the stimulus

diminishes. Appreciable deviations from this Law should then also be present for

much larger stimulus values; that much is also validated by experience.

Then we cannot expect that a phenomenon will be accounted for by our theory,

when the effect depends primarily on approximation to a detection threshold. At

least we shall not expect that, so long as we depend on Fechner’s Law as a rough

guide.

Helmholtz also tried to produce a rough sort of correction, though of course it

was for his line element, which we have seen is unusable.

One might have – as a second approximation – not identified the xi in (Eq. 4.12
0)

with the fundamental valences. One could have identified the xi with the funda-

mental valences augmented by a small but definite constant εi. (Helmholtz relates
the εi to entoptic light, “the intrinsic light of the retina”.) Keeping to the notation of
the first part, one would have to make the following substitution:

xi þ εi for xi

And so the disappearance of the denominator is avoided as a fundamental valence

disappears. In the present article I have distanced myself from introducing such a

correction, so not to complicate the material further – since it is not simple to begin

with. Clearly the metric of color space is unchanged, but it is then deferred to the

affine space we considered in the first part [Chaps. 2 and 3]. Using such a

correction, the isolychnes would be slightly deformed, if only because in actual

experiment we adjust the objective properties of the fundamental valences xi , not
“entoptically” adjusted terms xi + εi which are simpler for representation of the

metric. I reckon the shape of the deformed isolychnes as:

x1 þ x2 þ x3 - log xε11 xε22 xε33
� � ¼ const:

Then there should be deviations from additivity of brightness, particularly in the

case of trifling brightness (for large xi the logarithmic term recedes). Then there

should also be deviations in the brightness ratio for clearly distinct colors, as K€onig
found in experiment.(v)

Overall one can say: either this correction or a similar correction factor may be

applied to our line element. The need to apply them is beyond all doubt, because of
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the approximate nature of Fechner’s Law. These corrections debase all the ‘laws’
which we have established for our ‘advanced colorimetry’ – for example the precise

correspondence between strongly heterochromatic photometry and the photometry

of small differences. Such ‘laws’ only have the status of simple approximations.

Therefore we would have them known as such – and only as such – from the very

outset. The value of theory seems to us to lie in this: theory shows us the intrinsic

connection of all these heuristics. At the same time it shows us the intrinsic

connection of deviations of the actual color manifold from our idealized,

“purely Fechnerian” color manifold. Assays for the greater number of these

deviations wait for the thorough and precise experimental research which has yet

to be conducted.

(Submitted March 1920)
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∂ μ aik xi
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¼ ∂ μ ail xi
∂xk
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k, l ¼ 1, 2, 3

k 6¼ l:
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μ � ∂ aik xi
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� ∂ ail xi
∂xk

� �
¼ � aik xi

∂μ
∂xl

� ail xi
∂μ
∂xk
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ς
ðk l mÞ

apm xp
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� ∂ ail xi
∂xk

� �
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∂ aik xi
∂xl

� ∂ ail xi
∂xk

¼ xi
∂aik
∂xl

� ∂ail
∂xk

� �
:
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ς
ðk l mÞ

apm
∂aik
∂xl

� ∂ail
∂xk

� �
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Chapter 5

A Metric of Color

Abstract Color space is a generalization of the color diagram; it embodies the laws

of color mixture for human color vision. If it is based on color-matching judgments

alone, the color metric is an affine geometry of a spatial pencil of vectors having a

common origin. (Its projective representation is less clear and less useful as

confined to a color plane or a color triangle.) A metric of color implies a line

element for differences of color. The line element should reconcile the results of

strongly heterochromatic photometry with those of photometry which proceeds by

just-noticeable differences. There is an assumption implicit in the some versions of

the line element: that the Weber–Fechner law holds precisely true over the entire

color space. This summary article presages Schr€odinger’s detailed development of

colorimetry, published shortly afterward.

Keywords Color vision • Color metric • Color space • Color manifold • Color

mixture • Affine geometry • Color triangle • Color coordinates • Trichromatic •

Dichromatic • Heterochromatic photometry • Riemannian metric • Line element •

Pfaffian • Helmholtz line-element • Fechner’s law • Just-noticeable difference •

Geodesic line • Isolychne • Chromatic brightness • Bezold-Brücke • Schr€odinger

The task of physiological optics is the determination of colors and their relations

through precise experimental measurement.(a) In this domain of physiological

optics, the basic observation is this: As opposed to the enormous manifold

composed of lights that have the most diverse spectral composition – as stimuli
distinguished purely in physical terms – there stands a very much smaller manifold

of colors – as responses to those stimuli. As is familiar, a light is characterized by

its wavelength function f (λ). All possible lights, i.e. f (λ), fall into broad categories

such that any two lights of the same group – when presented to neighbouring areas

of the eye (meaning always in the centre of the retina, the fovea centralis!) – are

completely indistinguishable (for example white sunlight, and white from the

combination of complementary colors). We call such a category a color, and the

associated lights are the same in color. Among normal, color-capable individuals,

the color manifold is of dimension three.

Schr€odinger, E. (1920). Farbenmetrik. Zeitschrift f€ur Physik, 1(5), 1 April, 459–466.
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The second basic observation is this: Lights of the same color can replace one

another fully in mixtures. The color of a mixture is completely determined by its

constituent colors. That justifies us in speaking not only of an addition (and later of

the subtraction) of lights (as the concatenation of the respective wavelength

functions), but also in speaking of the addition of colors. Another notion emerges

from this: the multiplication of a color by a number (a scalar). On those two notions

rests the classical edifice of color theory, in the tradition of Newton, Maxwell,
Helmholtz and K€onig, commonly known as “the laws of color mixture”.

A representation may be given for this consistent and complete state of affairs.

The representation maps these facts onto the affine geometry of a spatial pencil of

vectors which emerge from a single point. (A representation that is confined to a

color plane or a color triangle may seem more functional, but it is less clear, less

transparent, and so less suited to our purposes.) Each color is assigned a point in

space, or the corresponding radial vector. The addition of colors corresponds to

vector addition. The customary ‘vocabulary’ of the representation can be derived

immediately from this convention. For example, colors which are related to one

another by a simple change in light intensity (colors “of the same stimulus quality”
as von Kries puts it) lie along the same radial vector. In that much, vector lengths

behave like intensities. Similarly the vector for a two-color mixture is coplanar with

the vectors of the constituent colors, and so forth.

Just as in affine vector geometry, a numeric representation of colors may be

obtained. One may specify three numbers (x1, x2, x3) by which three basis vectors

F1, F2, F3 must be multiplied and then summed, to produce a given color:

F ¼ x1 F1 þ x2 F2 þ x3 F3 : ð5:1Þ

However, the three basis vectors F1 F2 F3 cannot be chosen so that they represent

real colors at the same time that any arbitrary real color F can be produced by their

mixture. That is, they cannot all be represented as purely positive values of the xi in
the manner just outlined. The reason is that colors do not fill the entire space of our

construction. Rather only the interior and the surface of a cone (‘the color enve-

lope’) are filled, and those approximate the outlined form of our Figure. The pure

spectral colors lie along the curved part of the surface (R G V). Along the plane

angle R O V lie saturated purple mixtures that are produced by light from the far

ends of the visible spectrum. All the more complicated mixtures of light, including

white, lie somewhere in the interior. In passing, one recognizes right away that the

color of any arbitrarily complicated mixture of light – white included – can be the

combination of two spectral colors. One of them can even be chosen arbitrarily,

within set limits. – Now due to its convex form, our color envelope will jut out

partly over the sides of any triangle whose edges lie along the envelope’s surface. It
follows that in fact the totality of all colors may not be mixable from any three real
fundamental colors (Fig. 5.1).

At this point one can either admit ‘virtual color vectors’ (which lie outside the

‘envelope’) as basis vectors, or else admit negative values of the xi . Both expres-

sions are permitted. The latter – say for a negative x1 with positive x2 and x3 – means
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that to the appointed color F one must mix a precisely determined amount of F1 .
That mixture will appear identical to a precisely determined mix of F2 and F3 . In
this way F is unequivocally determined, just as it would be by wholly positive

values of xi . In no case – by the rules of mixture found for normal, color-capable

eyes – does any triple (either real or virtual) of fundamental colors appear to be

distinctive over and above other triples. After the successful assignment of colors to

positions, in principle any (noncoplanar!) vector triple is equally well suited to

representation of the coordinate frame.

There are some cases when a definite and certainly virtual triple of fundamental

colors can be designated for which the xi are always positive. This occurs in the

state of affairs known as partial color-blindness, or ‘dichromacy’. For such color-

blind individuals (‘dichromats’), the color manifold has only two dimensions. There

are three types of dichromacy; among them the third type (‘blue-blindness’) arises
seldom, and only as a result of pathology. At the same time, red-blindness and

green-blindness occur in otherwise healthy eyes, as an anomaly of physiology. Each

type can be characterized by specifying a particular virtual direction of color vector,

which has the following significance: For the dichromat in question, an arbitrary

color does not change its appearance at all, if the point representing a color is

displaced parallel to that direction, or if one adds a vector which has that

direction. If one chooses vectors of these three directions as basis vectors, then
only two of the three xi� values will have import for any dichromat. The third

escapes his perception, so to speak. Under this formulation it could be admitted

(Helmholtz, K€onig) that color vision arises from the action of three fundamental

processes in the eye. These act in concert, and change in proportion for different

colors. Their (the fundamental processes) activation strengths are a measure of the

xi , which can be specified in that way. One of each of them is missing in the

Fig. 5.1 A coordinate

representation of color

space with three basis

vectors F1 F2 F3, and a

spectral locus RGV
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dichromat eye, and this explains the triple of colorblindness types. The nomencla-

ture of ‘red’-, ‘green’-, and ‘blue’-blindness has its origin in the real-valued

‘characteristic colors’ which are coplanar to both a dichromatic basis vector and

the vector for white. Those characteristic colors may be conceived as a whitish

transformation of a fundamental stimulus which is not expressible on its own.

2. As has been stated, so long as an experiment only takes into account the

complete equality (indistinguishability) of two colors to be compared, and so long

as this counts as the distinctive relation between them, then color provides a

meaningful model only for the affine geometry of our vector pencil. It follows

from the nature of affine invariance, that consequently from our representation we

are able to derive nothing about greater or lesser degrees of similarity, and nothing
about the ratio of brightness between colors of different stimulus type (vector

direction). According to a foundational idea that also can be traced back to

Helmholtz,(b) it ought to be possible to understand all the other relations between

colors – equality of brightness, equality of hue, and so on – by the ability of

judgment to select the most similar from among many color pairs along an ordered

and continuous series of such pairs. That pair is most similar which shows a smaller

difference than the pair immediately preceding it and the pair immediately follow-

ing. Of course this assumes that such a color pair is present in the series. For

example, in heterochromatic photometry a color point may be held constant, and

another point displaced along a radial vector and adjusted for ‘sameness of bright-

ness’. Then that heterochromatic photometry is simply an approach to photometry

by a method of adjustment for maximum similarity. To pursue this notion further,

one needs a measure of similarity – or equivalently, a measure of difference. To

that end we make the very broad assumption that this measure is given by the length

of the geodesic line between the two color points under a general Riemannian
metric which we establish for our vector space. Specifically, for small differences

this is given as the line element of the metric:

ds2 ¼
X3
i¼1

X3
k¼1

aik dxi dxk : ½ aik ¼ aki� ð5:2Þ

According toHelmholtz, this line element (i.e., the aik as functions of the xi ) is to
be specified so that the ds is assigned the same value for every just-noticeably
different pair of colors. It is crucially important that the aik are determinable
empirically. One expects that they would assume a particularly simple form,

should the determination of these coordinates happen upon actual fundamental

colors.

Here is a first general corollary for color pairs that are not much different

(xi and xi + dxi) as a condition of equal brightness (i.e., maximum similarity,

given radial displacement of one color).
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X
i

X
k

aik xi dxk ¼ 0: ð5:3Þ

Given a fixed xi , one may call this an equation for equally-bright surface
elements in terms of the variable (relative) coordinates dxk . It is of some interest

that for arbitrary aik , such surface elements do not assemble themselves into

integral surfaces of equal brightness (or ‘isolychnes’). That is because – in general –
a Pfaffian expression in three differentials has no integrating factor. Yet experience
speaks to the issue, to the effect that this is the case here. If one assumes that much,

and then one requires the normalization of the brightness function h – that it should
be a homogeneous first-degree function in xi – one obtains the following differential
equations as the form of the expression.

∂log h
∂xl

¼
P

i ail xiP
i

P
k aik xixk

l ¼ 1, 2, 3: ð5:4Þ

Neither the available experimental data – nor any which could be hoped for –

about difference thresholds suffice for the direct and complete experimental deter-

mination of the aik . One is consigned to evaluating various rough formulations from

experiment. Helmholtz was led to the following formulation by the outcome of

certain badly-calibrated experiments with colored disks (see below):

ds2 ¼
X

i

dx2i
x2i

ð5:5Þ

but this fails in each and every direction. It is not only that it returns merely

middlingly correct values for difference thresholds across the spectrum, if it is

applied to fundamental colors chosen freshly ad hoc – which depart radically from

the dichromatic primaries. It is also that – according to (Eq. 5.4) – it produces quite

the impossible function

h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 x2 x33

p

for brightness. To satisfy that function, the spectrum of sunlight would need to

exhibit two prominent maxima of brightness. They would be as prominent whether

one chose to employ dichromatic primaries, or else the fundamental colors calcu-

lated ad hoc.

Empirical results (Abney, F. Exner, K.W.F. Kohlrausch) indicate that bright-

ness behaves additively in mixtures, to a fine approximation.

h x1; x2; x3ð Þ þ h y1; y2; y3ð Þ ¼ h x1 þ y1; x2 þ y2; x3 þ y3ð Þ: ð5:6Þ

From this functional equation, it follows straightforwardly that:

h ¼ α x1 þ β x2 þ γ x3 , ð5:7Þ
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where α, β, and γ are constants. If one incorporates these in specifying the

coordinates – by altering the scales of units – then one obtains the yet simpler form

h ¼ x1 þ x2 þ x3: ð5:8Þ

The simplest line element produced by this brightness function, which at the

same time does justice to the Weber-Fechner law (valid within wide bounds) for

pure changes in intensity, is:

ds2 ¼
X3
i¼1

dx2i
xiðx1 þ x2 þ x3Þ ð5:9Þ

This attempt at calculation leads to two propositions: 1) that this line element

follows the empirical difference threshold for spectral colors, at least in broad

outline without use of any assumption ad hoc, and 2) that this threshold also

replicates a quantitative property of the Fechner interval with a degree of approx-

imation that might be expected, given the exigencies of using very heterogeneous

materials in experiment. (The desired property is a constant ds for any noticeably

different pair of colors.)

Even Helmholtz’s above-mentioned experiments with a color wheel find an

explanation. Those results were obtained with a mixture of two very different

pigments – such as red and blue, where a small extra portion of red must be added

in order to attain the same increase in brightness as occurs with a small but definite
addition of blue. The extra red must be added in larger quantities, the greater the
original quantity of red. Naturally the converse holds too: a small addition of blue is

more strongly ‘knocked down’ in its brightening effect by the amount of blue present

at first. More strongly, that is, than by the amount of red already present. This

appears to contradict the additivity of brightness (which was Helmholtz’s express
opinion). As a matter of fact this does not contradict additivity at all.

In reality what was adjusted for was not equal brightness, but rather maximum

similarity – that is, adjustment to the fullest possible blurring of the dividing line

between the two shades of color. Helmholtz overlooked the fact that the minimum

condition for this situation is not the aforementioned equation (Eq. 5.3). Rather

another different equation results, if the variable color is changed not along its

radial vector as in Eq. (5.3), but in another direction, namely by small additions of

one of these two pure pigments. An exact computation with our line element

(Eq. 5.9) – which strictly fulfils the additivity constraint – does in fact produce

the observed variation of the apparent brightness values of the two colors, in just

the direction given above – the direction observed by Helmholtz!
In the above, we have sought fundamental support for our notion of brightness in

the comparison ofminimally different color pairs. The general brightness function
was found by integration over those. This procedure does not emerge from a purely

theoretical construction. Rather the procedure is entered into by predilection in

experiment (as in the intercalation of intermediate colors). Further experiment
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teaches us that direct comparison of the brightness of strongly different hues may

be difficult. Yet insofar as it may be accomplished, it leads to nearly the same result

as the intercalation of intermediate steps. One may ask if theory produces this same

result, i.e., if the geodesic normal to a color point F runs along any radial vector in

the isolychne that intersects F.
The geodesic lines of our metric arise in a space where one considers the

ffiffiffiffi
xi

p
to be

arrayed as independent coordinate axes, but they are pictured as plane logarithmic

spirals centred on the origin. In the xi vector space,
(c) they wind around cones whose

bases are elliptical, which have their peaks at the origin, and which have points of

contact with all three coordinate planes. This is a similar arrangement to the threads

of a conical screw, but with threads whose turns diminish infinitely and asymptot-

ically towards the origin. There are a couple of special cases: a) the radial vectors

themselves, and b) the elliptical conic-sections which are the intersection of the

isolychnes and the cone itself. The geodesic connection of two equally-bright points

then runs along the isolychne (for case (b)). Otherwise the connection has a normal

direction to all its radial vectors. In terms of Riemannian geometry, that is the force
of the general equation (Eq. 5.3) which holds for any line element along the

isolychne. (The isolychnes are plane segments orthogonal to the the radial vectors.)

Then the question posed earlier is answered in the affirmative: our theory does

ensure an exact correspondence of strongly heterochromatic photometry, with

photometry that proceeds by gentle increments.

A closed-form equation results, for the length of the geodesic between two

points with the color coordinates designated by yi and zi .

Zzð Þ

yð Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log z1þz2þz3

y1þy2þy3

� �2

þ 4 arccos
ffiffiffiffiffiffiffi
y1 z1

p þ ffiffiffiffiffiffiffi
y2 z2

p þ ffiffiffiffiffiffiffi
y3 z3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1þy2þy3ð Þ z1þz2þz3ð Þ

p
� �2

vuut ð5:10Þ

This provides a measure of the difference between two colors, that is, it gives the

minimum number of just-noticeable intervals which serve to bridge one color to

another. The first item under the radical sign vanishes when the points are equally
bright; the second vanishes when they are colors of the same stimulus quality (i.e.,
colors that fall along the same radial vector).

As has been intimated, the geodesics lie along the surfaces of cones, not on planes
through the origin. Therefore except in special cases, the “shortest series of colors”
does not coincide with a series produced by elementary color-mixture. Consider the

familiar color-triangle diagram –which we have not made any use of, but which just

turns out to be an arbitraryplane section of our vector pencil. In the color triangle, the
fastest transition is not achieved along straight lines. (Elementary mixtures fall along

straight segments.) Rather the fastest transition falls along the curved arc of an ellipse

which intersects both points, and that has points of contact with all three sides of the

color triangle. In general there will be two such ellipses, and consequently four
elliptical arcs which join the points. From those four we choose the arc which

contains no point of contact. If the colors are the same in stimulus quality, then
the arc of fastest transition proceeds from one to the other maintaining the same
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stimulus quality (pure change in intensity). If the colors are the same in brightness,
the arc maintains constant brightness. If the two points are different in both, then the

law of geodesic connection may be expressed as follows: the whole of the necessary

change in brightness is equally distributed across changes in stimulus quality,
such that the ratio of the two is constant for each small increment along the shortest

series of colors. (Onemay compare our earlier remarks about the two terms contained

underneath the square root sign in expression Eq. (5.10).)

There is ample room for speculation about deviation of the shortest series of

colors from the series that represents color mixture – especially on the subject of

changes in hue which follow from the addition of white. Let us omit such

speculation here, for the sake of space. Changes in hue which accompany simple

variations in intensity have certainly been observed (cf. the ‘Bezold-Br€ucke phe-

nomenon’). Such changes in hue have not yet been incorporated in this theory in

its present formulation.

The fact that this theoretical standpoint is only transitional, follows from the

assumption implicit in our line-element (Eq. 5.9): that theWeber-Fechner law (for

simple changes in intensity) holds precisely true over the entire color space. That

stands not only in contradiction to experience – it stands in contradiction to all
possible experience (as when it predicts continuing increase in sensitivity as one

moves towards intensity zero!). At any rate we still await the form of a correction

under which all the propositions put forward here as “laws” are more plausibly

downgraded to the status of approximations. From this point onwards they
should only be considered as such – as approximations. To me it seems that the

value of theory lies in this: that it brings to light the internal connections of all these

heuristics. At the same time it brings to light the internal connections among all the

discrepancies between our idealized ‘purely Fechnerian’ color manifold, and the

actual color manifold. In most cases those discrepancies still await a painstaking

and exact empirical investigation. I do not believe that the “riddle of color is solved

once and for all”. I do think I have cleared a fertile path to its understanding once

again. Thus we may catch sight of the fortunate intuitions of the old Master. He may

have stumbled a little on this path, and as a consequence he may have thought it

should be avoided afterwards as impassable to future research.

Notes

a. Lectures delivered at the meetings of the Vienna Gauverein on February

26, March 4, and March 11 of 1920. A more comprehensive publication will

appear shortly, in Annalen der Physik.

b. Helmholtz, H.L.F. von. Handbuch der physiologischen Optik. 2e Auflage.

Hamburg und Leipzig: Leopold Voβ , pp. 434 – 472 (1896) (passage suppressed
in the 3rd edition of 1909-11). [ff. 1, p. 462 original]

c. Disregarding the abstraction, at this point one ought to think of the xi as
orthogonal coordinates too, since the metric is determined by (Eq. 5.9) inde-

pendently anyways. [ff. 1, p. 465 original]
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Kapitel 5

Farbenmetrik

1. Auf dem Gebiete der physiologischen Optik, das sich die Festlegung der Farben

und ihrer Beziehungen untereinander durch das exakte, messende Experiment zur

Aufgabe macht, ist die Grunderfahrung diese, daß der ungeheuren

Mannigfaltigkeit von Lichtern der verschiedensten spektralen Zusammensetzung,

als lauter physikalisch verschiedenen Reizen, eine sehr viel kleinere

Mannigfaltigkeit von Farben, als den Reaktionen auf diese Reize, gegenübersteht.1

Ein Licht wird in bekannter Weise durch Angabe einer Wellenlängenfunktion f (λ)
gekennzeichnet. Alle m€oglichen Lichter i.e. f (λ) ordnen sich in große Gruppen derart,
daß irgend zwei Lichter derselben Gruppe, auf angrenzenden Feldern dem Auge (wir

meinen immer die Netzhautmitte, die fovea centralis!) dargeboten, v€ollig
ununterscheidbar sind (Beispiel: Sonnenweiß – Weiß aus Komplementärfarben).

Eine solche Gruppe nennen wir eine Farbe, bzw. die Lichter gleichfarbig. Für
normale, farbent€uchtige Individuen ist die Mannigfaltigkeit der Farben von
der Dimensionszahl drei.

Die zweite Grunderfahrung ist die, daß gleichfarbige Lichter einander auch in
Mischungen vollkommen vertreten k€onnen. Die Farbe einer Mischung ist

vollkommen festgelegt durch die Farben der Konstituenten. Das berechtigt uns,

nicht nur von einer Addition (und eventuell Subtraktion) von Lichtern (Superpo-

sition der betreffenden Wellenlängenfunktionen), sondern auch von einer Addition
von Farben zu sprechen. Auf diesem Begriff und dem daraus abgeleiteten:

Multiplikation einer Farbe mit einer Zahl, beruht das klassische Gebäude der

Farbenlehre von Newton, Maxwell, Helmholtz, K€onig, gew€ohnlich als „Gesetzte

der Lichtmischung“ bezeichnet.

Es läßt sich eine Darstellung dieses in sich vollkommen abgeschlossenen

Tatsachenkomplexes geben, wobei derselbe abgebildet wird auf die affine

von Erwin Schr€odinger. Zeitschrift für Physik, 1(5), 1920, S. 459–466. Mit einer Abbildung

(Eingegangen am 1. April 1920.)
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Geometrie des von einem Punkte entspringenden räumlichen Vektorb€uschels.
(Gebräuchlicher, aber weniger klar und durchsichtig, darum für unsere Zwecke

weniger geeignet, ist die Darstellung in der Farbenebene oder dem

Farbendreieck). Jeder Farbe ist ein Raumpunkt oder der betreffende Radiusvektor

zugeordnet. Der Addition von Farben entspricht die Vektoraddition. Aus dieser

Festsetzung ist das übrige „Vokabular“ der Abbildung sofort abzuleiten, z. B. daß

Farben, die durch bloße Intensitätsänderung des Lichtes auseinander hervorgehen

(Farben gleicher Reizart, wie v. Kries sagt) auf demselben Radiusvektor liegen,

daß dabei die Vektorlängen sich wie die Intensitäten verhalten, daß der Vektor einer

binären Mischfarbe mit den Konstituenten komplanar ist usw.

Wie in der affinen Vektorgeometrie läßt sich eine zahlenmäßigeDarstellung der
Farben gewinnen, indem man drei Zahlen angibt (x1, x2, x3) mit denen drei

Grundvektoren F1, F2, F3 multipliziert und addiert werden müssen, um die

vorgelegte Farbe F zu ergeben:

F ¼ x1 F1 þ x2 F2 þ x3 F3 : ð1Þ

Die drei Grundvektoren F1 F2 F3 k€onnen aber nicht so gewählt werden, daß sie

wirklichen Farben entsprechen und zugleich jede beliebige wirkliche Farbe F aus

ihnen mischbar ist, d.h. mit lauter positiven Werten der xi auf die obige Weise

dargestellt werden kann. Der Grund ist der, daß sich bei unserer Abbildung nicht

der ganze Raum mit Farben füllt, sondern nur das Innere und die Oberfläche eines

Kegels („Farbdüte“) von etwa der nebenstehend gezeichneten Gestalt. Auf dem

gew€olbten Teil der Oberfläche ( R G V ) liegen die reinen Spektralfarben, auf dem

ebenen Winkel R O V die aus den Endlichtern des Spektrums herstellbaren

gesättigten Purpurgemische. Alle komplizierteren Lichtgemische, so auch das

Weiß, liegen irgendwo im Innern, übrigens erkennt man sofort, daß die Farbe

jedes beliebig komplizierten Lichtgemisches, ebenso wie das Weiß, auch aus

zwei Spektralfarben gemischt werden kann, von denen eine sogar noch, innerhalb

gewisser Grenzen, beliebig wählbar ist. – Da nun unsere Farbdüte wegen ihrer

konvexen Gestalt über jedes Dreikant, dessen Kanten auf ihrer Oberfläche liegen,

teilweise hinausragt, so folgt, daß sich in der Tat aus keinem reellen

Grundfarbentripel die Gesamtheit aller Farben ermischen läßt (Abb. 5.1).

Man kann nun entweder auch „irreelle Farbvektoren“ (außerhalb der „Düte“
gelegene) als Grundvektoren zulassen, oder negative Werte für die xi . Beides ist
zulässig. Das Letztere, z. B. ein negatives x1, bei positiven x2, x3 bedeutet, daß man

der so gekennzeichneten Farbe F erst eine genau bestimmte Menge von F1

zuzumischen hat, welches Gemisch dann einem genau bestimmten Gemisch von

F2 und F3 gleich erscheint. Hierdurch ist F ebenso eindeutig festgelegt, wie bei

durchaus positiven xi . In keinem Falle erscheint durch die Mischungstatsachen
des normalen farbent€uchtigen Auges allein ein bestimmtes (reelles oder

irreelles) Grundfarbentripel vor den €ubrigen ausgezeichnet; nach erfolgter

Lokalisation der Farben eignet sich jedes (nicht komplanare!) Vektortripel

prinzipell gleich gut zur Koordinatendarstellung.
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Die Auszeichnung eines bestimmten und zwar irreellen Grundfarbentripels, für
welches die xi stets positiv sind, erfolgt durch die Tatsachen der partiellen

Farbenblindheit („Dichromasie“). Für diese Farbenblinden („Dichromaten“) hat

die Farbmannigfaltigkeit nur zwei Dimensionen. Es gibt davon drei Typen,

wovon allerdings der dritte („Blaublindheit“) nur selten und nur pathologisch

vorkommt, während Rotblindheit und Grünblindheit als physiologische Anomalie

an sonst gesunden Augen auftreten. Jeder Typus läßt sich durch Angabe einer

bestimmten irreellen Farbvektorrichtung kennzeichnen, welche für ihn folgende

Bedeutung hat: für den betreffenden Dichromaten ändert eine beliebige Farbe ihr

Aussehen gar nicht, wenn sich der Farbpunkt parallel zu dieser Richtung
verschiebt oder wenn man einen Vektor dieser Richtung addiert. Wählt man

Vektoren dieser drei Richtungen zu Grundvektoren, so kommt es für jeden

Dichromaten nur auf zwei von den drei xi� Werten an, der dritte entgeht sozusagen

seiner Wahrnehmung. Es ist die Auffassung zulässig (Helmholtz, K€onig), daß das

Farbensehen durch drei physiologische Grundprozesse im Auge zustande kommt,

die bei den verschiedenen Farben in wechselnden Verhältnissen zusammenwirken,

für deren (der Grundprozesse) Erregungsstärken die in dieser speziellen Weise

bestimmten xi ein Maß sind und von denen je einer dem dichromatischen Auge

fehlt, woraus sich eben die Dreizahl der Typen erklärt. Die Bezeichnung als „Rot“-,

„Grün“-, „Blau“ – Blindheit hat ihren Grund in der Färbung desjenigen reellen

„Farbenfächers“, der mit je einem dichromatischen Grundvektor und mit dem

Weißvektor komplanar ist, und deshalb als weißliche Abwandlung der isoliert

nicht ausl€osbaren Grunderregung aufzufassen ist.

Abb. 5.1
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2. Solange das Experiment nur die v€ollige Gleichheit (Ununterscheidbarkeit)

zweier verglichener Farben in Betracht zieht und als ausgezeichnete Beziehung

zwischen ihnen gelten läßt, hat, wie gesagt, nur die affine Geometrie unseres

Vektorbüschels für die Farben Bedeutung. Aus dem Charakter der affinen Invarianz

folgt, daß wir deshalb aus unserer Darstellung nichts über den gr€oßeren oder

geringeren Grad von Ähnlichkeit, nichts über das Helligkeitsverhältnis von

Farben verschiedener Reizart (Vektorrichtung) ablesen k€onnen. Nach einem

Grundgedanken, der gleichfalls auf Helmholtz2 zurückgeht, dürfte es m€oglich
sein, alle übrigen Beziehungen zwischen Farben, z. B. Gleichheit der Helligkeit,

Gleichheit des Farbtons, usw. zu verstehen aus der Fähigkeit des Urteils, aus einer

vorgelegten kontinuierlichen Folge von Farbenpaaren das ähnlichste

herauszusuchen, d.h. dasjenige, das einen kleineren Unterschied aufweist, als die

unmittelbar voraufgehenden und nachfolgenden; vorausgesetzt natürlich, daß ein

solches Farbenpaar sich in der Reihe vorfindet. Die heterochrome Photometrie z.B.,

bei der etwa ein Farbpunkt festgehalten, der andere auf einem Radiusvektor

verschoben und auf „gleiche Helligkeit“ eingestellt wird, soll nichts anderes als

eine Einstellung auf gr€oßte Ähnlichkeit sein. Um diesen Gedanken durchzuführen,
ben€otigt man ein Maß der Ähnlichkeit bzw. des Unterschiedes. Wir machen

darüber die sehr allgemeine Annahme, daß es geliefert wird durch die Länge der

geodätischen Linie zwischen den beiden Farbpunkten in einer allgemeinen

Riemannschen Metrik, die wir in unserem Vektorraum etablieren: bzw. bei kleinen

Unterschieden, durch das Linienelement dieser Metrik:

ds2 ¼
X3
i¼1

X3
k¼1

aik dxi dxk : aik ¼ aki½ � ð2Þ

Dieses Linienelement (d.h. die aik als Funktionen der xi) ist, nach Helmholtz, so
zu bestimmen, daß ds denselben Zahlenwert bekommt f€ur jedes eben
unterscheidbare Farbenpaar; prinzipell sind also die aik empirisch zugänglich.
Man wird erwarten, daß sie dann besonders einfache Gestalt annehmen, wenn die

Koordinatenbestimmung auf die wahren Grundfarben erfolgt ist.

Zunächst folgt allgemein für wenig verschiedene Farbenpaare (xi und xi + dxi)
als Bedingung gleicher Helligkeit (d.i. gr€oßter Ähnlichkeit bei radialer
Verlagerung der einen Farbe):

X
i

X
k

aikxi dxk ¼ 0: ð3Þ

Mann kann das, bei festgehaltenen xi, die Gleichung des gleichhellen
Flächenelements in den laufenden (relativen) Koordinaten dxk nennen. Es ist von
Interesse, daß bei beliebigen aik diese Flächenelemente sich nicht zu

Integralflächen gleicher Helligkeit („Isolychnen“) zusammenfügen werden, da ein

Pfaffscher Ausdruck in drei Differentialen im allgemeinen keinen Multiplikator

hat. Die Erfahrung spricht aber dafür, daß dies hier doch der Fall ist. Nimmt man
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das an und verlangt zur Normierung der Helligkeitsfunktion h, daß sie homogen

vom 1. Grade in den xi sein soll, so erhält man für sie die Differentialgleichungen

∂log h

∂xl
¼

P
i ail xiP

i

P
k aik xixk

l ¼ 1, 2, 3: ð4Þ

Zur unmittelbaren und vollständigen empirischen Festlegung der aik reicht

weder das vorhandene noch das irgend zu erhoffende Versuchsmaterial über
Unterschiedsschwellen aus. Man ist darauf angewiesen, verschiedene Ansätze an

der Erfahrung zu prüfen. Der Ansatz, auf den Helmholtz durch gewisse, unrichtig

gedeutete Farbscheibenversuche (s. unten) geführt wurde, nämlich

ds2 ¼
X

i

dx2i
x2i

ð5Þ

versagt in aller und jeder Richtung. Nicht nur gibt er die

Unterschiedsempfindlichkeit im Spektrum bloß dann einigermaßen richtig wieder,

wenn man ihn auf neue, von den dichromatischen gänzlich abweichende, ad hoc

gewählte Grundfarben bezieht, sondern er liefert auch nach (4) die ganz

unm€ogliche Funktion

h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 x2 x33

p

für die Helligkeit, wonach das Sonnenspektrum zwei ausgeprägte

Helligkeitsmaxima aufweisen müßte, und zwar gleichviel ob man die

dichromatischen oder die ad hoc berechneten Grundfarben benutzt.

Die Erfahrung (Abney, F. Exner, K.W.F. Kohlrausch) spricht dafür, daß die

Helligkeit sich in Mischungen mit großer Annäherung additiv verhält:

h x1; x2; x3ð Þ þ h y1; y2; y3ð Þ ¼ h x1 þ y1; x2 þ y2; x3 þ y3ð Þ ð6Þ

Aus dieser Funktionalgleichung folgt leicht

h ¼ α x1 þ β x2 þ γ x3 , ð7Þ

wo α, β, γ Konstante; zieht man sie, durch Änderung der Einheiten, in die

Koordinatenbestimmung, so hat man noch einfacher

h ¼ x1 þ x2 þ x3: ð8Þ

Das einfachste Linienelement, das diese Helligkeitsfunktion liefert und

gleichzeitig dem innerhalb weiter Grenzen gültigen Weber-Fechnerschen Gesetz

für reine Intensitätsänderungen Rechnung trägt, ist
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ds2 ¼
X3
i¼1

dx2i
xi x1 þ x2 þ x3ð Þ ð9Þ

Der Rechenversuch ergibt, daß dieses Linienelement ohne jede ad
hoc-Annahme auch dem empirischen Verlauf der Farbunterschiedsschwelle
f€ur Spektralfarben mindestens in groben Z€ugen gerecht wird und auch die

quantitative Beziehung dieser Schwelle zur Fechnerstufe mit dem Grade der

Annäherung wieder gibt, der bei der notgedrungenen Verwendung sehr

heterogenen Versuchsmaterials erwartet werden darf (die zu fordende Beziehung

ist: Konstanz von ds für jedes eben unterscheidbare Farbenpaar).

Auch die oben erwähnten Helmholtzschen Farbscheibenversuche finden ihre

Aufklärung. Diese hatten ergeben, daß in einem Gemisch zweier stark

verschiedener Pigmente, etwa Rot und Blau, ein weiterer kleiner Rotzusatz, um

damit dieselbe Helligkeitsvermehrung zu erzielen, wie mit einem bestimmten
kleinen Blauzusatz, um so gr€oßer bemessen werden muß, je mehr Rot das

Gemisch von Haus aus schon enthält; und natürlich vice versa: ein kleiner

Blauzusatz wird durch schon vorhandenes Blau in seiner aufhellenden Wirkung

stärker „geschlagen“ als durch schon vorhandenes Rot. Das scheint der Additivität
der Helligkeit zu widersprechen (wieHelmholtz ausdrücklich betont), widerspricht
ihr aber in Wahrheit nicht.

In Wahrheit wurde nämlich, bewußt, nicht auf gleiche Helligkeit, sondern auf

gr€oβte Ähnlichkeit, d.h. auf m€oglichstes Vorschwimmen der Grenzlinie zwischen

den beiden Nuancen eingestellt. Helmholtz hat übersehen, daß sich hierfür als

Minimalbedingung durchaus nicht die frühere Gleichung (3), sondern eine

abweichende ergibt, wenn die veränderliche Farbe nicht, wie dort, auf ihrem

Radiusvektor, sondern in anderer Richtung, nämlich durch kleine Zusätze eines

der beiden reinen Pigmente variiert wird. Die genaue Durchrechnung mit unserem
Linienelement (9), das die Additivität strenge erfüllt, ergibt in der Tat eine Vari-

ation des scheinbaren Helligkeitswertes der beiden Farben genau in dem oben

angegebenen, vom Helmholtz beobachteten Sinn!

Wir haben oben unseren Helligkeitsbegriff grundsätzlich gestützt auf den

Vergleich wenig verschiedener Farbenpaare [Gl. (3)], und die allgemeine

Helligkeitsfunktion daraus durch Integration abgeleitet. Dieser Weg ist nicht eine

rein theoretische Konstruktion, sondern wird auch vom Experiment mit Vorliebe

betreten (Einschaltung von Zwischenfarben). Das Experiment lehrt weiter, daß der

direkte Helligkeitsvergleich stark verschiedener Farbt€one zwar schwieriger ist,

aber, soweit ausführbar, zu nahe demselben Ergebnis führt, wie die Einschaltung

von Zwischenstufen. Es fragt sich, ob die Theorie dasselbe ergibt, d.h. ob das

geodätische Lot von einem Farbpunkt F auf einem beliebigen Radiusvektor in

der durch F gelegten Isolychne verläuft?

Die geodätischen Linien unserer Metrik ergeben sich in einem Bildraum, in

welchem man die
ffiffiffiffi
xi

p
als rechtwinkelige Koordinaten aufgetragen denkt, als die

ebenen logarithmischen Spiralen um den Ursprung. Im Vektorraum der xi
3 winden

sie sich auf den elliptischen Kegeln, die ihre Spitze im Ursprung haben und alle drei
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Koordinatenebenen berühren, ähnlich den Zügen eines konischen Bohrers aber mit

unbegrenzt abnehmender Gangh€ohe asymptotisch in den Ursprung hinein.

Grenzfälle bilden a) die Radienvektoren selbst, b) die Schnittellipsen der genannten

Kegel mit den Isolychnen. Die geodätische Verbindung zweier gleichheller Punkte

verläuft also [nach b)] auf der Isolychne; sie steht außerdem auf allen ihren

Radienvektoren senkrecht; das ist nämlich, im Riemanngeometrischen Sinne, der

Inhalt der allgemeinen Gleichung (3), die für jedes Linienelement der Isolychne gilt

(die Isolychnen sind Orthogonalflächen der Radienvektoren).

Die oben gestellte Frage ist also zu bejahen: unsere Theorie fordert exakte

Übereinstimmung der stark heterochromen Photometrie mit der Photometrie

durch sanft abgestufte Zwischenfarben.

Für die Länge der Geodätischen zwischen zwei Punkten mit den

Farbkoordinaten yi bzw. zi ergibt sich der geschlossene Ausdruck

Zzð Þ

yð Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log z1þz2þz3

y1þy2þy3

� �2

þ 4 arccos
ffiffiffiffiffiffiffi
y1 z1

p þ ffiffiffiffiffiffiffi
y2 z2

p þ ffiffiffiffiffiffiffi
y3 z3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1þy2þy3ð Þ z1þz2þz3ð Þ

p
� �2

vuut ð10Þ

Er bildet ein Maß für die Verschiedenheit der beiden Farben, d.h. für die

minimale Zahl ebenmerklicher Zwischenstufen, durch die sich der Übergang von

der einen zur anderen bahnen läßt. Das erste Glied unter der Wurzel verschwindet

für gleichhelle, das zweite für Farben gleicher Reizart (d.i. Farben auf demselben

Radiusvektor).

Da die Geodätischen, wie erwähnt, auf Kegeln, nicht auf Ebenen durch den
Ursprung verlaufen, so fällt, von speziellen Fällen abgesehen, die „kürzeste
Farbreihe“ nicht mit der Reihe der Mischfarben zusammen. In der bekannten

Dreiecksdarstellung, von der wir hier sonst nicht Gebrauch gemacht haben, die

sich aber einfach als beliebiger ebener Schnitt unseres Vektorenbündels ergibt,

stellt sich heraus: der rascheste Übergang vollzieht sich nicht auf der Geraden (auf

der die Mischfarben liegen), sondern auf dem Bogen einer Ellipse, welche durch die

beiden Punkte geht und alle drei Seiten des Farbendreiecks berührt. Es gibt im

allgemeinen zwei solche Ellipsen, daher vier verbindende Ellipsenbogen: von

ihnen ist derjenige auszuwählen, der keinen Berührungspunkt enthält. Sind die

Farben reizartgleich, so vollzieht sich der rascheste Übergang bei konstanter

Reizart (reine Intensitätsänderung); sind sie gleichhell, bei konstanter Helligkeit.
Sind sie in beiden verschieden, so läßt sich das Gesetz der Geodätischen auch so

aussprechen: Die ganze notwendige Helligkeitsänderung ist gleichmäßig auf die

Reizartänderungen aufzuteilen, derart, daß das Verhältnis beider auf jedem

kleinen Schritt entlang der kürzesten Farbreihe konstant ist [man vergleiche die

Bemerkung hinsichtlich der beiden Terme unter der Quadratwurzel in dem

Ausdruck (10)].

An die Abweichung der kürzesten Farbreihen von der Reihe der Mischfarben

lassen sich noch Spekulationen knüpfen betreffend die Änderung des Farbtons
beim Zumischen von Weiß, die wir hier um der Raumersparnis willen
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unterdrücken. Die Farbtonänderung bei bloßer Intensitätsvariation, die gleichfalls

mit Sicherheit beobachtet ist (vgl. das „Bezold – Br€uckesche Phänomen“), wird von

der Theorie auf ihrem gegenwärtigen Standpunkt noch nicht erfaßt.
Daß dieser Standpunkt nur ein vorläufiger ist, folgt schon daraus, daß unser

Linienelement (9) die exakte Gültigkeit des Weber – Fechnerschen Gesetzes (für
bloße Intensitätsänderung) für den ganzen Farbenraum fordert, was nicht nur mit

der tatsächlichen, sondern sogar mit jeder m€oglichen Erfahrung im Widerspruch

steht (unendliches Anwachsen der Empfindlichkeit bei der Intensität Null!) Es wird
sich darum jedenfalls eine Korrektur gefallen lassen müssen, durch welche

wahrscheinlich alle hier aufgestellten „Gesetze“ auf den Rang von Näherungen

herabgedrückt werden. Nur als solche wollen sie darum von vornherein
aufgefaßt sein. Der Wert der Theorie scheint uns darin zu liegen, daß sie den

inneren Zusammenhang all dieser Näherungsgesetze in Evidenz setzt, zugleich aber

auch den inneren Zusammenhang aller Abweichungen der realen von unserer

idealisierten „rein Fechnerschen“ Farbenmannigfaltigkeit; Abweichungen, die in

den meisten Fällen erst der genauen experimentellen Durchforschung harren. – Wir

glauben nicht, das „Rätsel der Farbe endlich und endgültig gel€ost“, wohl aber einen
fruchtbaren Weg wieder freigelegt zu haben, den des Altmeisters glückliche Intu-

ition erspäht, sein Fuß unter leichtem Straucheln betreten hatte, weshalb ihn die

weitere Forschung seither für ungangbar gehalten und gemieden hat.

1. Vorgetragen in den Sitzungen des Gauvereins Wien am 26. Februar, 4. und 11.

März 1920; die ausführliche Ver€offentlichung erfolgt demnächst in den Annalen

der Physik.

2. H. v. Helmholtz, Handbuch der physiologischen Optik, 2. Aufl., S. 434 –

472 (in der 3. Auflage unterdrückt).
3. Unbeschadet der Allgemeinheit darf man sich jetzt auch die xi als

rechtwinkelige Koordinaten denken, da die Metrik ohnedies separat durch

(9) festgelegt ist.
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Chapter 6

A Theory of Pigments of Maximum

Luminous Efficiency

Abstract Non-fluorescent pigments capable of reflecting saturated light close to

narrow-band spectral lights may only be manufactured with vanishingly low reflec-

tance. Schr€odinger asks what maximum intensity of light across the visible spec-

trum can be reflected from a pigment color, and what the reflectance function of a

pigment must be to attain such a maximum. He describes a two-dimensional

manifold of optimal pigments. The manifold represents those pigments under

arbitrary illumination conditions, provided the illuminant is present in an unbroken

way across the visible spectrum. Under this scheme all possible optimal pigment

colors are represented, each by a single exemplar.

Keywords Color vision • Luminous efficiency • Pigment color • Spectral curve •

Illumination conditions • Pigment manifold • Reflectance function • Bivalent

pigment • Pigment appearance • Absorptive pigment • Spectral reflectance •

Optimal pigment • Reflectance coefficient • Monochromatic region •

Barycentric • Projective coordinates • Schr€odinger

Section 1: Problem Statement

It is known that the color of light which is reflected from a patch of pigment never

attains that degree of saturation which is characteristic of pure spectral lights. The

reflected light always appears more or less whitish beside narrow-band light of the

same hue. The reflected light may be reproduced as a mixture of the narrow-band

light plus a certain amount of white light. It is not a technical barrier which prevents

us making a pigment color of the saturation possessed by spectral light. That

impossibility is one of principle, to some extent. Here is one constraint: the mixture

of two spectral lights which are not too far apart from one another will match a light

which lies between them in hue, but the result will be whiter. To attain the full

saturation of a spectral light, the pigment would actually have to reflect back only

an infinitesimal band of wavelengths, while absorbing all others completely. But

Schr€odinger, E. (1920d). Theorie der Pigmente von gr€oβter Leuchtkraft. Annalen der Physik,
vierte Folge, 62(15), 603–622. Copyright © 2006, as renewed. Translated with permission from

Wiley-VCH Verlag GmbH & Co. KGaA.

© Springer International Publishing AG 2017

K.K. Niall (ed.), Erwin Schr€odinger’s Color Theory,
DOI 10.1007/978-3-319-64621-3_6
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then it would surely appear extraordinarily dark – as Helmholtz remarked – and in

the limit it would appear black.

In general, pigments capable of narrow-band spectral saturation may only be

manufactured with vanishingly low reflectance (we will address the necessary

constraints shortly).

The reason for the whitish cast of pigment colors becomes more intuitive by

inspection of the Newton–K€onig color diagram. The reason is the convexity of the

spectral curve R G V (cf. Fig. 6.1). The pigment color is represented as the centre of

a given linear distribution of mass along that spectral curve. The distribution of

mass is determined by the reflectance function (coefficient of reflectance as a

function of wavelength) and by the incident illumination. Generally the centre of

mass P falls in the interior of real color segments (bounded by the spectral curve

and the ‘line of purples’ RV). This means the pigment color may be produced as a

certain mixture of a spectral light S and a white light W, or else as some mixture of

purple with W.

This situation admits an exception only if the reflectance is confined wholly to

the short-wave, or else wholly to the long-wave end of the spectrum: specifically if

the distribution of mass covers from V to J only (λ about 475 μμ) or from R to

O only (λ about 630 μμ). According to K€onig, these ends of the spectral curve –

whose boundaries are naturally less sharp than just cited, by the way – fall strictly

along straight lines. The centres of mass for such pigments would then fall onto the

spectral curve; they would not be inferior in saturation to corresponding spectral

lights.

Orangy-red and indigo-violet pigments may be manufactured to reflect light of

appreciable intensity (if not very elevated intensity) and with full saturation in

spectral terms.

It should be recalled that the points R and V each represent a bounded region of

wavelength, namely the two monochromatic ends of the spectrum (up to λ ¼ 655

and λ ¼ 430). Then as the reflectance pertains to these ends of the spectrum, each

will integrate a finite point-mass (and not only the width of a spectral line).

One may pose the question: how large a maximum strength of light can be

realized with a pigment, for any point of the red-orange region, or of the indigo-

violet region, or just as well for a point along the line of purples? One may also pose

Fig. 6.1 The Newton–
K€onig diagram, with

spectral curve RGV.
VJ and RO approximate

straight-line segments

(Reproduced from

Schr€odinger 1920d)
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the same question for points which approach the borders of these regions – if one

dispenses with the requirement that they reach saturations attainable with pure

lights of high intensity. And so finally one is led to ask of an arbitrary point on the

real color surface:

A central question: What is the maximum intensity of light in which this point

may be manifest as a pigment color? And how must those pigments be constituted –

in their reflectance functions – to provide that maximum intensity? The answer to

this question is the object of the small article which follows.

Consider any three reference points in the color plane which do not lie in a

straight line. These may be points that represent K€onig’s fundamental sensations,

points that represent three real-valued calibration lights, or any other three points

inside or outside the region of real-valued colors. Suppose then one considers

values of units for these points somehow to have been established. Then as is

well known, we are used to define any color by a set of three numbers – that is, by

the number of units of the three fundamental colors which have been selected, and

from which any color can be mixed – in an unusual if not in the ordinary way.(a)

Considered as proportional values, the three trichromatic coefficients form a trian-

gle of origin, as the projective coordinates of a triangular barycentric coordinate

system.(b) The colors of representative points may be gauged by the coordinate

triangle, namely by this triangle of fundamental colors. The sum of these trichro-

matic coefficients is the mass of the points represented, and their sum is designated

a standard quantity of color. Among representative colors of distinct position

(colors of different “stimulus qualities” as von Kries says so aptly), the sum is

by no means a measure of their proportional brightness. That is, except perhaps by

careful selection of the units of the fundamental colors chosen. That much is still an

unanswered question, one which need not be re-opened here.

For colors of the same stimulus quality (those which fall on the same point, and

which can be made equal merely by changing their objective intensity) the quan-

titative value of their objective intensity will be proportional, and accordingly it is

surely a monotonic measure of brightness – ceteris paribus. Then let us expand our

two-dimensional spatial representation of the color domain to a three-dimensional

one. We do so by establishing a unit based on the ordinate for each real-valued color

point, at a normal to the color diagram. In that way a surface is formed of the

pigment colors of largest value, or of the maximal intensity of light, or else – ceteris

paribus – of greatest brightness, as discussed. This surface follows trajectories

along real-valued color segments over the middle of the diagram, and it has ordinate

values of zero at the boundary region of the curved part of the diagram. Along the

three straight-line segments, it declines to small ordinate values which connect to

form a continuous curve. This surface should be considered together with the usual

real-valued color surface (represented in Fig. 6.1) and also with three vertical

‘walls’ formed by the ordinates at the border of the diagram. These surfaces

demarcate the region of colors which can be represented in pigments within our

three-dimensional model. Incidentally we have selected this three-dimensional

model as an aid to visualization just for the moment. We will not emphasize the

model in what follows. (It becomes impractical, because an absence of objective
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intensity should not be represented as a single point, but should be represented as

holding across the entire base plane.)

All that which has been said will hold for arbitrary illumination of the pigments.

One qualification is that their exact physical composition and intensity must be

determined in advance, and maintained despite other considerations. Of course the

locus of the color surface changes with different illuminants, which surface repre-

sents an upper bound for our representation of the domain of pigments. All its

ordinates increase in proportion to the intensity of an illuminant. Yet the form of

the surface also varies with the composition of the illuminant. For example, under

bluish illumination blue hues may be produced more easily with appreciable

saturation and intensity, relative to white or reddish illumination – the latter

facilitates the production of saturated, intense red pigments, and so on. We aim to

obtain a certain result for pigments of maximum luminous efficiency – for a given

stimulus quality. I will call these optimal pigments for short. In a sense this result

will prove to be entirely independent of illumination. It will prove to be the case that

the same pigments are always optimal under arbitrary illumination. At least, a

two-dimensional manifold of pigments – i.e. of reflectance functions – can be

given, which are illumination-independent. They are even defined independently

of the precise form of the spectral curve given in Fig. 6.1. Under any arbitrary

illumination, the manifold represents the pigments which are optimal under that

illuminant.

Section 2: The Search for a Pigment Manifold Which

Captures the Outer Surface

In order to make this representation definite, let us adopt the following specific

coordinate convention for pigments. We choose K€onig’s fundamental sensation

points as reference points. The illuminant may be freely determined, given that it

should be known in advance to include all visible wavelengths. In this context we

may still think of sunlight. We translate the color of ideal white and all neutral gray

pigments under this illuminant to the centre of mass of the reference triangle. That

color is the color of all pigments which share a constant reflectance function;

clearly an ideal white pigment of reflectance 1 will be assigned the coordinates

(1, 1, 1). If then

x1 λð Þ x2 λð Þ x3 λð Þ

are K€onig’s fundamental stimulus curves for the interference spectrum of the

illuminant under such a measure as sets:

Z
x1 λð Þ dλ ¼

Z
x2 λð Þ dλ ¼

Z
x3 λð Þ dλ ¼ 1 , ð6:1Þ
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then the coordinates of a pigment with the reflectance function r (λ) are:

p1 ¼
Z

x1 λð Þ r λð Þ dλ, p2 ¼
Z

x2 λð Þ r λð Þ dλ, p3 ¼
Z

x3 λð Þ r λð Þ dλ, ð6:2Þ

and its magnitude becomes:

q ¼ p1 þ p2 þ p3 ¼
Z

x1 þ x2 þ x3ð Þ r dλ : ð6:3Þ

Naturally for r we admit only values between 0 and 1, borders included. The

values of p have the same range, while q falls between 0 and 3. This coordinate

representation is independent of the intensity of the illuminant. As a consequence

of our convention about the coordinates of white pigment, the ‘unit quanta of the

fundamental sensations’ will vary automatically in step.

We constrain the possible forms of the reflectance function for optimal pig-

ments, first by the following proposition – which is fundamental to our present little

investigation:

Suppose that a pigment lies in the neighbourhood of three positions along the

spectrum which do not lie along a straight line of the color triangle. Suppose too,

that one of the three has a reflectance different from 0 or 1: that it has a reflectance

between 0 and 1. Then the reflectances at these three positions can be transformed

so that a strongly reflective pigment of the same stimulus quality can be found.

From any three narrow-band lights, there may be combined a positive unit of the

color possessed by the pigment. That may still be an operation in some unusual

sense, meaning perhaps with one or two negative coefficients in the mixture. Now if

reflectances at the three positions lie between 0 and 1, then I can transform them by

small amounts (increasing them or decreasing them) so that the assigned units of

color stand in the proper proportion, and so that a strongly reflective pigment of the

same stimulus quality is produced. In symbolic form: let

λ ¼ a, λ ¼ b, λ ¼ c

be the three positions in the spectrum. Then the assumption of noncollinearity

implies:

x1 að Þ x2 að Þ x3 að Þ
x1 bð Þ x2 bð Þ x3 bð Þ
x1 cð Þ x2 cð Þ x3 cð Þ

������

������ 6¼ 0 : ð6:4Þ
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The equations

x1 að Þ δa þ x1 bð Þ δb þ x1 cð Þ δc ¼ p1 δ
x2 að Þ δa þ x2 bð Þ δb þ x2 cð Þ δc ¼ p2 δ
x3 að Þ δa þ x3 bð Þ δb þ x3 cð Þ δc ¼ p3 δ

8<
: ð6:5Þ

then have solutions in δa, δb, δc, for given small δ> 0 . If one then transforms, along

short segments (ε > 0)

a � λ � aþ ε, b � λ � bþ ε, c � λ � cþ ε, ð6:6Þ

and transforms the reflectance r ( λ ) in relative fashion as:

r að Þ þ δa, r bð Þ þ δb, r cð Þ þ δc ð6:7Þ

then the pigment coordinates of (Eq. 6.2) are altered by the left-hand side of

(Eq. 6.5) as multiplied by ε – which indicates stimulus quality. This changes the

unit or quantum of (Eq. 6.3) to a positive magnitude (but not because of Eq. 6.5),

which is:

ε δ p1 þ p2 þ p3ð Þ ¼ ε δ q,

which was the proposition to be proven.

It follows that the reflectance of optimal pigments cannot be different from zero

or one along a finite portion of the bent part of the spectral curve. In the same way

the reflectance of optimal pigments cannot be different from zero or one along finite

portions of both straight-line end segments. It is clear that for the bent portion and

one of the straight portions that the reflectance can take only one of these limiting

values.

To be concise, I will call a pigment ‘bivalent’ for a region of wavelengths along
which the pigment’s reflectance is always zero or one. I will call a pigment

‘bivalent’ altogether whose reflectance always takes on one of these two values

across the spectrum.

The proof given above fails for one of the two straight-line (or ‘dichromatic’)
spectral regions, because of the vanishing of the determinant (Eq. 6.4). Moreover

we may consider that the endpoints R and V of the spectral curve each represent a

finite (‘monochromatic’) region of wavelengths. Yet our proof does not exclude the
case in which deviations from bivalence occur in both monochromatic regions

simultaneously – but then nowhere else. Then such deviations still appear possible,

either

1) in one dichromatic region including the bordering monochromatic region, or

2) in both monochromatic regions simultaneously.

Nevertheless we ought to confine our observations to bivalent pigments, if we

only put value on knowing each optimal pigment color by at least one of its
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representatives: that is, if we choose not to count physiological duplicates. It is

easy to see how the bivalence of cases 1) and 2) can be made to coincide without

change in the appearance of the pigments by successive transformations of the

reflectance function.

So, if the three points a, b, c lie along a straight line of the color diagram, then the

determinant (Eq. 6.4) disappears and the equations in Eq. (6.5) have nonvanishing

solutions in δa, δb, and δc for δ ¼ 0 . The relevant transformation (Eq. 6.7) does not

change the appearance of pigments. It can be applied repeatedly in the same sense

(or else it may be given a specific appreciable size at the outset), until one of the

three numbers r (a), r (b), or r (c) is brought to zero or one. This procedure can be

applied repeatedly, so long as r (λ) still contravenes the bivalence property at three

locations. That is to say, the pigment may be replaced by a bivalent pigment,

without change in its appearance – which was the point to be proven.

So now we restrict our considerations to bivalent pigments; we would like to find

the optimal ones among them. The reflectance of a bivalent pigment is a

non-monotonic function of λ. At one place or at several places the function switches
from zero to one or from one to zero; I call such a position a switch point (1! 0) or

(0 ! 1). The arrow is to be taken to indicate increasing wavelength. One realizes

quickly that the total number of switch points for optimal pigments cannot be

greater than two. Indeed this shows how duplicates are excluded once more. Now

the following proposition holds, which is analogous to the first proposition on many

points:

Suppose a pigment has three switch points that do not lie on a straight line in the

color diagram. Then the pigment’s reflectance can be transformed by translation of

its switch points, so that a luminously efficient pigment of the same stimulus quality

is produced. This implies the original pigment cannot be optimal.

The proof of this proposition runs just the same way as before; therefore it may

not need to be conducted in extenso. Its basis is that a pigment color can be

produced as a mixture of the three switchpoint colors, at least in the unusual

sense if not otherwise. Then a translation of the switchpoints that is suitably chosen

for its direction and magnitude will lead to the desired reinforcement of luminous

efficiency without change in stimulus quality.

Even three or more collinear switchpoints appear possible. Yet so long as three

of them are present they may be translated without change in appearance of the

pigment, so that they coincide. After that, at most two will still remain. This may

become perspicuous in the following manner – e.g. for the long-wavelength seg-

ment RO – more clearly than by a logical argument analogous to that pursued

earlier.

Let a pigment be given which is bivalent over all the spectrum except over RO,
but whose reflectance may be arbitrarily formed along the segment RO of the

spectrum – including its limits. (Compare Fig. 6.2, which is somewhat peculiar

but quite readily understandable. There the reflectance coefficient is erected as a

perpendicular outside the spectral curve.) Our task is to replace the given pigment

by one which is bivalent over RO, one which has as few switchpoints over RO as

possible, and which is physiologically equivalent to the original.
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For the latter condition to hold, it must be the case – according to Grassmann’s
proposition that mixtures of equal-appearing lights will produce equal-appearing

lights – that “component colors” which are produced just by the reflectance of RO
will be the same for the transformed color as for the originally given color. The

point which represents that component color lies somewhere along RO, at least. In
order to end up with as few switchpoints as possible, we ‘generate’ the component

color in different ways. Our choice of method depends whether the given pigment

reflects entirely or absorbs entirely the section that lies adjacent toO in the direction

of violet.

In both cases we begin with complete absorption along RO. Then in the first

case (as indicated by the sign) we displace a switchpoint (0! 1) from the red end of

the spectrum towards violet – and simultaneously displace the switchpoint (1 ! 0)

from O towards red. We do this with a relative pace such that the reflectance which

is produced in this way across region RO will always match the stimulus quality of

the component color. Clearly this can be achieved, and it may be advanced so far as

to produce a quantum of the component color. The progress of this process may

only be thwarted if one of the switchpoints crosses over the locus of the component

color. Yet that may not occur before the quantum of the component color has been

reached. Otherwise only spectral lights would remain “unused” between the

switchpoints; those spectral lights would either be redder without exception or

yellower without exception than the component color itself. From those no quantum

of the component color could ever be mixed. The latter could not be mixed from the

light that would then be available – which simply contradicts the assumption.

In the second case under which movement from O towards violet connects to a

region of absorption, we produce component colors of increasing strength by a

single region of reflectances which contains the position of the component color in

its interior. Once again proceeding from the r in RO which vanish identically, we

displace a switchpoint (1! 0) out from the component color in the direction of red.

At the same time we displace a switchpoint (0 ! 1) out from the component color

in the direction of violet. We do this with a relative pace such that the stimulus

quality of the component color is maintained. In this way its quantum must be

reached, on similar grounds as have been argued above. This happens before – or at

worst at just the moment when – the progress of this process is thwarted because the

Fig. 6.2 The relative

spectral reflectance of a

pigment which is bivalent

across the spectrum –

except over segment RO,
where it is arbitrarily

formed. (Reproduced from

Schr€odinger 1920d)
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first switchpoint reaches the red end of the spectrum, or else the second switchpoint

reaches point O.
This completes our task.

If one is led to a single switchpoint by the procedures that have been sketched –

which can occur in exceptional cases – then a second is possible in the spectrum

somehow. If there are two, however, they must be the only ones – if the pigment is

indeed optimal.

Another thing may occur: the two switchpoints to which one is led, may both lie

along the monochromatic ends of the spectrum. The two then coincide in a single

point R of the color diagram, and a third switchpoint might be possible somewhere

along the spectrum. But then one can recognize something right away about the

isolated monochromatic region of reflectance or region of absorption in question.

That region can be displaced to the far end of the spectrum – so that once again

there is only one monochrome switchpoint.

If we survey all that has been said, we obtain by way of conclusion – after

excluding many duplicate cases – amanifold of optimal pigments. That proves to

be a two-dimensional manifold of bivalent pigments which have only one or

two switchpoints. Every optimal pigment color must have at least one representa-

tive among these pigments.

We have now only to exclude a few small groups of candidates which are

certainly not optimal. Of the remainder it will be shown that no other two pigments

of the same stimulus quality arise among them. Thus it will be shown that these

pigments are really all optimal. They simply represent the outer manifold that was

alluded to at the beginning; they represent it without duplicates, by single

exemplars.

Next we will categorize the bivalent pigments of one switchpoint and two

switchpoints in groups, as follows. These categories are clearly evident on inspec-

tion of the adjacent Figure (Fig. 6.3). The baseline represents the visible spectrum,

while reflectance is plotted on the ordinate.

We exclude the following as being clearly non-optimal:

a) from the long-wave pigments, those pigments whose reflectance does not reach

to the short-wave border of monochromatic red;

b) from the middle pigments, those whose switchpoints both fall either between

O and the red end of the spectrum, or both between J and the short-wave end.

Clearly for those an increase in the intensity of light is possible, by extension of

the domain of reflectance;

c) from the short-wave pigments, those whose reflectance does not reach the long-

wave border of monochromatic violet;

d) from the middle-absorptive pigments, those which have one switchpoint inside

monochromatic red, and the other, inside of monochromatic violet – since the

purple in question may be intensified by the extension of both domains of

reflectance until one of the two switchpoints reaches a border of the monochro-

matic domain. (Those with two identically-colored monochromatic

switchpoints were excluded before – as duplicates – and were replaced by

end-spectrum pigments.)
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At this point a demonstration must still be conducted to show that – after the

exclusions a) to d) – all the remaining pigments are distinct from one another in

stimulus quality.

In this deliberation we anticipate those three subgroups, whose points are

represented to lie along one of the three straight-line segments which border the

diagram. They enter into competition only among themselves. The accuracy of this

claim is clear for them without further explanation, as the exclusion conditions a) to

d) hold decisively for them.

For the rest, an ungainly proof must be conducted piecemeal. That is, it must

begin by considering each of the four groups on their own, then comparing them to

one another, then taking into consideration all possible combinations of switchpoint

positions. Nonetheless we should cover those cases, neglecting end-spectrum

pigments, since they can be considered after all as degenerate cases of middle

pigments, or else of middle-absorptive pigments.

Let us now compare:

A. Middle pigments only

For widely separate locations of reflectance regions, a superposition of centres of

mass is not possible. That much holds just as well for more broadly circumscribed

locations. Reflectance regions (after excision of the saturated spectral pigments

described above) must also contain bent parts of the spectral curve. Then the centre

of mass of the unshared outer parts of the broader reflectance regions will fall

outside the segments which belong to the smaller reflectance regions. The former

must shift the centre of mass of those segments. The same thing holds if the

reflectance regions overlap. The shared middle portion – with which each unshared

outer part is combined – cannot lead to the same point twice.

Fig. 6.3 The relative spectral reflectance of bivalent pigments of one switchpoint and of two

switchpoints, as four groups. (Langendpigmente: long-wave pigments; Mittelpigmente: middle-

wave pigments; Kurzendpigmente: short-wave pigments; Mittelfehlpigmente: pigments which

absorb middle frequencies; rot: red; violett: violet) (Reproduced from Schr€odinger 1920d)
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B. Middle-absorption pigments only

Here we always begin with a pigment that covers both absorption regions at

once. Always consider that the centre of mass of this “difference pigment” may be

displaced differently by the relevant complementaries.

C. Middle pigments with middle-absorptive pigments

α) The reflectance region of the first and the absorption region of the second

pigment are far separate. Then the middle-absorptive pigment arises from the

middle pigment by the addition of reflectances which may not possibly leave

its centre of mass unchanged.

β) The reflectance region falls within the absorption region. This case requires

no explanation.

γ) The absorption region falls within the reflectance region (see Fig. 6.4). Then

the entire color region comes apart into three stripes. If the pigments are to be

of the same stimulus quality, their centre of mass (i.e., that of the sections of

spectral curve which border them) would have to lie along a single line in

such a way that the middle stripe’s centre of mass does not lie in the centre.

Clearly, that is impossible.

δ) The absorption region and the reflectance region overlap (see Fig. 6.5). There
would have to be a substantive point in the interior of each of the hatched

areas I, II, and III, so that the three points lie along a straight line. Of course

point III must not lie in the middle between I and II. That is because the

Fig. 6.4 An aid to

visualization of the

condition in which the

absorption region falls

within the reflectance

region. (Reproduced from

Schr€odinger 1920d)

Fig. 6.5 The condition in

which the absorption region

and the reflectance region

overlap. (Reproduced from

Schr€odinger 1920d)
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addition of the curve II to III would have to make the centre of mass of III

coincide in one point, as does the addition of the pair of curves at I. Clearly

that is impossible.

We had arrived at a two-dimensional manifold of pigments. That manifold

represents all the optimal pigment colors completely, each by a single example.

And surely – as had been foreshadowed – it represents them under entirely

arbitrary conditions of illumination, so long as they subsume all wavelengths.

Two things have not happened here: 1) the definition of our pigments has not made

any reference to illumination conditions, and 2) in this investigation we have not

used any other property, than those which tacitly eschew any kind of homogeneous

illumination.

One may recognize that our pigments do not lose their optimal character, even if

the incident illumination exhibits spectral gaps. One can recognize this directly in

the transition between illumination conditions that are little different, in which

small ordinate values bridge gaps which one may dampen to zero in a regular

manner. Certainly a pigment will generally change its position in the color diagram

as a consequence, but not its physical composition. So it remains optimal even in

the borderline case. Naturally then an unambiguous mapping from the manifold of

pigments to the optimal colors is not maintained. It is not maintained because large

sets of pigments become identical in color, namely all those whose switchpoints fall

into a spectral gap of the incident illumination. In the same way for this case, the

trend of reflectance within such a gap has no influence at all on the appearance of

the pigment.

I would direct the reader to the end of the present article for a short summary of

the main results which have been obtained so far – a summary free of such terms of

art as have been introduced.

Section 3: Concerning the Answers to Questions About

Maximum Attainable Intensity of Light, About Highest

Attainable Saturation, and About Necessary Conditions

for Maximally Luminous Pigments

It is now clear how one should proceed in calculation to answer the first part of the

central question posed in the first section, for any particular case. That first part

was: what is the maximum intensity of light which may be manifested by a pigment,

for a particular point of the color diagram?

This question makes sense only for a given illumination condition, of course. In

preparation one needs to derive a Table of the three integrals of the fundamental

stimulus curves for the interference spectrum of the illuminant in question:
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Z λ

λ0

x1 λð Þ dλ,
Z λ

λ0

x2 λð Þ dλ,
Z λ

λ0

x3 λð Þ dλ,

where λ0 is the short-wave limit of the visible spectrum, while the upper bound of

λ0 extends to the long-wave end of the spectrum. The coordinates of the optimal

colors may be read from such a Table with little effort. For more frequent use, one

may unite these in a Table with double-entry columns. By a reasonable process of

trial-and-error – I do not see a simpler method – or perhaps best by graphical means,

one can ascertain switchpoints. By graphical means, one can always trace one

integral as a function of the others, and construct chords of the correct slope. That is

a way one can ascertain those switchpoints (limits of integration) for which the

three coordinates of the pigment fix the ratio given by the point listed in the Table.

In turn these coordinates indicate which fraction of the red-, green-, and blue-

sensations are stimulated under the given illuminant for the given stimulus quality,

when compared to the red-, green-, and blue-sensations stimulated under the same

illuminant but for an ideal white pigment, three coordinates indicate which frac-

tions will be maximally excited by a pigment.

Of course the same deliberation and calculations may be used with other curves,

say color-mixture curves drawn from three real-valued calibration lights, in place of

the fundamental stimulus curves. In that case optimal coordinates acquire a more

concrete meaning, one even superficially free of any hypothesis about the origins of

the color sense.

I would almost hold the actual commission of the preliminary calculations – as

they have been portrayed – to constitute useless labor, because it is so very

uncertain if the preliminary results that are delivered will prove at all worthwhile

in some practical way. It is quite uncertain that they will prove to be suited to

daylight, or to K€onig’s color-mixture curves.

In passing I would like to mention a related question which has just been touched

upon, and which may be dearer to a practitioner’s heart. Namely: what is the

maximum saturation of a given hue that can be produced by a pigment, supposing

that brightness will be maintained above a given threshold?

Doubtless the said pigment is to be found in our outer manifold – certainly

along a half-ray through the position of white.(c) The pigment will be found as far

out as possible – so far out, that the desired brightness lies at least above

threshold. One would need to construct a “brightness surface” here, just as before
a “quantitative surface” was constructed along the line of colors. The ordinates of

the brightness surface would represent the brightness of the optimal colors.

Brightness should be susceptible to a calculation which results in unique values.

If the operationalization of this concept is to be determinate, it must be defined

from the three given coordinates – which of course are calculated uniquely from

pigment color. Yet opinions do vary widely how this is to be accomplished. Some

hold brightness to be a linear function of coordinates with constant coefficients,

namely the “specific brightnesses” of fundamental stimuli. Others – among

them Helmholtz in his treatise on the application of Fechner’s Law to color
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systems – believe that other associations must be considered, which are more than

strictly additive in nature.

The problem of a correct understanding of the concept of heterochromatic

brightness is an extraordinarily important one. It has a much more far-reaching

importance than does our preceding investigation. Before long I will offer a much

better exposition of this subject in another forum. Clearly for us this has only an

accessory role. If one really did compound optimal mixtures of light – of the desired

hues in increasing saturations according to the procedure outlined – then it might be

discoverable from them just what would satisfy the demand. That would indicate

just how much these constructs are established on reasonable grounds, and are not

just verbal recipes.

Then consider the second part of the central question that has been posed,

which was: how must optimal pigments be constituted – meaning in their reflec-

tance functions? – This will not be answered in a thoroughgoing way by our

two-dimensional manifold of pigments. Note that all the excluded duplicates are

equally optimal. An optimal pigment does not entirely need to be bivalent; it may

possess more than two switchpoints; and so forth. . .
The uncertainties that arise all have their basis in the existence of dichromatic

and monochromatic regions of the spectrum. In those regions the reflectance

function is in the widest sense arbitrary, under certain conditions. What is licensed

there and what is not, is a matter that may be surveyed easily for any eventuality,

given the results of our earlier deliberations. I maintain that an airtight enumeration

of all possible cases would be both uninteresting and superfluous. The question here

is always whether the reflectance function may or may not take on one of the

described forms by a suitable transformation.

By way of example, a pigment which is reflective continuously from the short-

wave end to point O (at the border of orange) will be an optimal pigment, however

its reflectance function may run in the long-wave portion. That is because this

pigment may be transformed into a middle-absorption pigment.

By contrast, deviations from bivalence in the dichromatic region are inadmissi-

ble for pigments whose reflectance is confined to the section from the long-wave

end up to point O. Such deviations are admissible in the monochromatic portion

only if the dichromatic portion is completely reflective. Otherwise the pigment

would be mapped to a prohibited middle pigment by transformation (see above,

exclusion b)).

Of course, very similar scenarios hold for analogous cases at the short-wave end

of the spectrum.

Section 4: Comparison to Experience

Wilhelm Ostwald has drawn some consequences from purely empirical work,

drawing on his broad experimental investigations of pigments. He finds that to

achieve the greatest purity of color for pigments, it is advisable that only
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reflectances of one or zero should occur, with their step transitions being steep.

Further, there should be only either one compact region of reflectance, or else one

compact region of absorption.(d)

In that much, Ostwald’s empirical findings coincide exactly with the major

conditions for optimal pigments which we have established theoretically.

Ostwald puts forward other requirements for the achievement of maximum

purity. One is that the absorption or else the reflectance should encompass exactly

a ‘half-color’, meaning a region that extends just from a spectral color to its

complementary color. In order to gain at least a qualitative understanding of this

requirement, let us recall whatOstwaldwould have us understand by purity. That is
the fraction of a pure color that is contained in the global impression which is

evoked by a mixture, and which may be abstracted from it conceptually. Certain

fractions of white and black may still enter into this fraction of pure color as an

impurity or cloudiness.

According to Ostwald, a color’s black content may be permitted to increase

e.g. if one mixes it with an ideal black pigment on a color wheel – i.e., with a

non-reflective pigment, or better, with a black hole. With recourse to Talbot’s Law
it may be concluded – whatever one may judge black to be, in terms of sensation –

that at any rate a relatively negligible intensity of light is the objective correlate

of what Ostwald calls black content.

Now it is clear that those optimal pigments will have very low intensities of

light, if their reflectance is restricted to a much too small region of the spectrum.

According to Ostwald in other words, they will have an elevated black content, and
therefore will exhibit little purity. On the other hand, pigments whose reflectance

encompasses too large a portion of the spectrum will be intense; they will contain

little black, but will contain a lot of white as a consequence. The latter follows from

well-known general laws of light mixture. Ostwald’s pigments of maximum purity

are to be found only among our optimal pigments. That is a natural consequence of

the proposition that a pigment of little light intensity and the same stimulus quality

as another will possess the same white content, but a higher black content –

meaning lesser purity.

The restriction of a region of reflectance to the region between two complemen-

tary colors is evidently a practically demonstrated compromise between the Scylla

of whitish impurity and the Charybdis of blackish cloudiness. Or to express the

matter asHelmholtz did, using a form of expression which is geared to the objective

composition of a mixture of light rays: a means to attain maximal color saturation

without too great a loss of light through absorption.

Because of the nature of this compromise, it might be expected that the best of

the pigment colors produced by Ostwald would have a residual quality of cloudi-

ness, that is, a middling gray which is produced by a mixture of not-so-different

proportions of white and black. Ostwald’s account of purity corresponds quite

nearly to that for some pigments (loc. cit. p. 560). For many others however,

namely for the blue and green pigments, the proportion of black is substantially

greater than the proportion of white.
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Nonetheless I cannot refrain from remarking that I have used Ostwald’s termi-

nology here, only to be able to compare – to some extent – my theoretical results

with the facts which he has shown. It is not as if I might have been convinced that

the same level of quantitative determinacy is a feature of constructs such as ‘purity’,
‘black content’, or ‘gray’, when compared to the physiological constructs of the

Helmholtz-K€onig color metric. With all the respect due to Ostwald’s valuable and
painstakingly forged results, I consider e.g. the absolute values he has determined

for ‘purity’ and ‘gray’ from reflectance values to hold for at most two positions of

the spectrum, even if they are special positions (maximum and minimum). All that

provides for a good rule-of-thumb, at best; it is in no way suitable to a precise

definition of these concepts.

Summary

1. The pigments – of a given stimulus quality – which reflect the greatest intensity

of light will have the following constitution:

a) At no place in the spectrum do they have another reflectance coefficient other

than zero or one.

b) Their reflectance shows at most two points of inflection (‘switchpoints’ from
0 to 1 or from 1 to 0). Their reflectance is not zero throughout.

c) If their reflectance is confined to one of the two dichromatic regions of the

spectrum – including the adjacent monochromatic region – then they reach at

least to one end of that region.

d) If the reflectance is confined to the monochromatic regions, then the reflec-

tance covers at least one of the two entirely.

e) If the absorption is confined to one monochromatic region, then it begins at

the end of the spectrum.

2. The pigments as described possess the specified property under arbitrary illu-

mination; i.e. under any arbitrary illumination, none of them will be exceeded in

light intensity by any pigment that reflects light of the same stimulus quality with

it under just that illuminant.

3. If the illuminant shows no spectral gaps, then the pigments are all distinct from

one another in physiological terms. They overlap the line of real-valued colors

simply and exactly, including its boundaries.

4. Apart from the pigments cited in 1., there are other maximally luminous

representatives of their stimulus quality. Incidentally this property holds for all

those pigments whose absorption is confined to one of the monochromatic or

dichromatic ends of the spectrum. The reflectance functions of those pigments

may vary quite arbitrarily within those regions otherwise. Overall, admissible

deviations from the properties listed in 1. all pertain to the monochromatic and

dichromatic regions. Of course any such pigment which is composed as an

exception will match one of the pigments of the manifold cited at the beginning.
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Which of those pigments the exception will match, depends in general on

illumination conditions.

5. These theoretical results match several of WilhelmOstwald’s empirical findings.

Vienna, December 1919, II. Institute of Physics at the University

(Submitted December 22, 1919)

Notes

a. In an unaccustomed sense, I deem a color as capable of being mixed, even if it

lies outside the triangle of fundamental colors. Then one or two of the trichro-

matic coefficients will be negative. The practical meaning of this kind of mixture

is by now familiar. [ff. 1, p. 605 original]

b. By ‘barycentric’ I mean a system of triangular coordinates whose ‘origin’ lies at
the centre of mass of the coordinate triangle. This convention should not be

confused with the arbitrary – but convenient and therefore frequently used –

translation of the position of white to the centre of mass. [ff. 2, p. 605 original]

c. One should note that in the color diagram we have established for our pigments,

it is not the white of sunlight which is located at the centre, but rather the color

of an ideally reflective surface. In other words the color of incident light lies at

that centre. Here the ‘position of white’ does not lie at the said central location;

rather it lies at the position assigned to sunlight. [ff. 1, p. 618 original]

d. Ostwald, Wilhelm 50.: Das Fechnersche Gesetz., pp. 417 – 419. Beiträge zur

Farbenlehre (erstes bis fünftes Stück). Berichte über die Verhandlungen der

k€oniglich sächsischen Gesellschaft der Wissenschaften zu Leipzig, 34(3),

365 – 571, p. 471 ff. (1917). ; Ostwald, W. Neue Forschungen zur Farbenlehre.

Physikalische Zeitschrift, 17, 322 – 332, p. 328 ff. (1916). [ff. 1, p. 619 original]
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Chapter 7

On the Origin of the Eye’s Sensitivity Curves

Abstract The spectral brightness sensitivity function of the ordinary human eye

may be considered in terms of the availability of natural sources of illumination.

The human eye possesses both a cone system of vision and a rod system of vision.

Here it is speculated that their peak brightness sensitivities arose in phylogenetic

development, with the cone system being relatively recent in appearance. The older

rod system became adapted to the role of low-illumination, or ‘twilight’ vision. The
comparative physiology of vision offers support to these conjectures, based on

differences in illumination for terrestrial animals and aquatic animals.

Keywords Color vision • Visual sensitivity • Cone response curve • Cone

sensitivity • Rod response curve • Rod sensitivity • Phylogeny of vision •

Photopic vision • Scotopic vision • Resonance curve • Development of vision •

Aquatic vision • Evolution of vision • Schr€odinger

It is well-known that our eyes are sensitive to only a relatively small portion of the

radiation that is emitted by a glowing object. The visible region of the electromag-

netic spectrum extends from about λ ¼ 800 μμ to λ ¼ 400 μμ. If one asks why our

sensitivity to light has developed in just this region and not in another of longer or

shorter wavelengths, there can be no doubt about the answer. Namely the visible

region extends across either side of the peak intensity of sunlight. It seems that

the eye has developed to make best possible use of that light source which was

almost the only one available to us before the advent of civilization.(a) One may

consider certain constraints on the possibility of organic assembly in the biological

task of capturing this peak energy; one might call them ‘accessory conditions’ to the
task. The addition of some conditions – such as a broader spectral extent for the

visible region – would be difficult to balance with the trivial advantage they might

bring.

In the adjacent Figure, E represents the energy distribution of the sun, following

Abbot’s measurements.(b) This is the distribution for such ordinary conditions

(at sea level, in Washington, for a solar elevation of 45� from the horizon) as should

be considered in the development of the visual system. Under these conditions the

Schr€odinger, E. Über den Ursprung der Empfindlichkeit des Auges. Die Naturwissenschaften, 12
(45), November, 925–929 (1924).
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distribution peak is in the blue-green at about λ ¼ 515 μμ. One may note the much

steeper descent of the curve towards shorter wavelengths than towards longer

wavelengths. This has its origin in the overall effect of absorption within the sun

itself,(c) and with absorption through the earth’s atmosphere. (The strong

Frauenhofer line A at λ ¼ 760 μμ of absorption by oxygen is roughly interpolated

from Langley’s historical measurements, since for us this is otherwise of no

consequence.) Z and Z0 are cone response curves for data from two different

observers.(d) They represent the distribution of brightness – derived from measure-

ments of brightness across the spectrum – for a light-adapted eye, and for an ideal

spectrum of a flat energy distribution whose curve E would be given as a horizontal

line, and along which an energy-measuring device (bolometer or thermocouple)

would display a constant reading. Then the ordinates of those Z-curves are a

measure of the brightness which equal amounts of energy of different wave-

lengths produce in the eye, or as one may call it: the spectral sensitivity distribution

of the eye. The maximum sensitivity is found at yellowish-green between

λ ¼ 550 μμ and 560 μμ, that is, noticeably towards red when compared to the

energy maximum of sunlight on earth. Under our biological hypothesis, this might

be sufficiently explained by the strongly asymmetric trend of the curve E. Certainly
if a more optimal employment is the goal, the maximum of sensitivity would be

shifted a little towards the more gently descending curve E.
What has been said above relates to brightness sensitivity for the ordinary

process of vision in a normally light-adapted eye. In physiological terms this

means it relates to the activity of cones in the retina. As is now known, we possess

a second vehicle for vision: the so-called rods. The rods, sometimes mixed with

cones, form a palisade-like surround to the retina. Rods are especially numerous in

the periphery of the retina. There cones occur less and less frequently, while only

very closely-packed cones are present in a small neighbourhood that is the locus of

highest acuity (about 1½� of visual angle). In contrast to the cones, an almost

colorless (perhaps a little bluish) sensation is mediated by the rods, and this quality

is independent of wavelength. They are completely colorblind. A second predom-

inate quality of the rod process is its extraordinary capacity to adapt to low

intensities of light. The more the ambient illumination of our environment

decreases, the more that ‘rod vision’ mixes with the so-called photopic vision of

the cones. At lower light levels, finally only rod vision remains (so-called ‘twilight
vision’(e)). This allows the spectral sensitivity curve of the rod process to be

determined independently. It turns out (cf. curve St of our Fig. 7.1(f)) that this is
strongly displaced towards shorter wavelengths, when compared to the curves for

cones. It has its maximum around λ¼ 517 μμ,(g) in the blue-green. Anyone can see
an obvious consequence of this displacement. An example is given at the onset of

twilight in a picture gallery. As a consequence of the increasing intrusion of rod

vision, the brightness of red hues decreases much more quickly than that of blue

hues. By contrast, the latter acquire a particularly strong luminous quality (the

Purkinje phenomenon). By a sudden switch to a strong artificial light source, one

can reverse this relation of brightness once more. One gains quite a strong
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impression of the state of affairs which can also be expressed exactly by the

measurement of the said displacement of the distribution peaks.

What is the origin of this remarkable displacement of the rod curve towards short

wavelengths? I do not recall having seen any attempt at an explanation for this. I am

fully aware that I have only a small part of the knowledge necessary to evaluate this

question. Nonetheless I would like here to put forward several possible explana-

tions, for the sake of discussion. This may at least draw the attention of others who

may be better suited to passing judgment on the matter.

In the first place, naturally it would be possible that the inner mechanism of the

rod apparatus has led to a somewhat different solution. The organic conditions of

the rod makeup deviate so much from those of the cone apparatus. Then for its

maximum (biological) function, or the best-possible exploitation of the available

light source, ‘altered accessory conditions’ may have led to a different solution. Of

course one would be throwing in the towel by adopting such an explanation

outright, meaning one would be renouncing a real explanation. Moreover,

according to the view advanced recently by F. Exner(h) and F. Aigner(i) on the

nature of retinal excitation, it is likely that the mechanisms of rod vision and cone

vision are qualitatively identical. Their view is that all these cases are a matter of

electromagnetic resonators in nerve endings. Those resonators would operate

within a bounded domain of wavelengths, following a resonance curve similar

to those familiar from other physical phenomena. The breadth and intensity of the

resonance domain are determined by two physical constants of the resonator: its

eigen- (or natural) frequency, and its damping coefficient. These resonance coeffi-

cients are that which – in biological terms – would have adapted to external

conditions. On that point, three different kinds of resonators must be taken into

Fig. 7.1 The energy

distribution E of the sun,

with cone response curves Z
(H. Bender) and Z0

(F. Exner), Frauenhofer line

A, and a spectral sensitivity

curve St for the rod process.
R, G, and B are the red,
green, and blue curves.
(Reproduced from

Schr€odinger, 1924)
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consideration for color vision with cones. Their resonance domains are represented

in the previous Figure by curves R (for red), G (for green) and B (for blue). The Z-
curve is seen to be composed of these by the addition of certain equations.(j) For the

moment we will not dive into these details any more closely. By contrast, rods

should be represented as a single kind of resonator, whose domain of resonance is

represented directly by the St-curve of the figure. Why then – speaking in the

vocabulary of the theory at hand – is it that the resonators for rods cover a domain

that is shifted so much farther towards blue than the resonators for cones (that is, the

resonators for red and for green), which are tuned primarily to the brightness of

daylight?

A real explanation would be one which does not appeal to unknown constraints

on organic assembly. In my opinion, a real explanation will only be found if the rod

system has developed differently than the cone system, under the influence of

another illuminant with a different energy distribution curve. At this point the

following possibilities seem to be open.

1. The special adaptability of the rod apparatus to residual light levels raises the

proposition that this concerns the visual organ of a nocturnal animal. What then

is the energy distribution curve of light at night? For what concerns starlight, we

know the spectra of an extraordinarily large number of individual stars. We

know from their color index as well, that many are redder and others are bluer

than our Sun. From a table(k) of the brightest stars visible in our region, I find

among 42 stars that there are 25 bluer and only 16 redder than our Sun. By

contrast, light reflected from the moon, which perhaps has greater meaning for

the visual capacities of a nocturnal animal, is somewhat redder than sunlight(l)

(by some 0.5 of a magnitude in the color index). So this hypothesis seems to

offer no satisfactory explanation.

2. Secondly one may consider that the phylogenetic development of the rod system

extends so far back in the past, that its peak sensitivity indicates a higher solar

temperature than the current temperature. Actually the Sun is one of the

so-called dwarf stars, according to the findings of recent astrophysical research.

It is already in the declining arc of its development, meaning that it is in the

process of cooling. While its current surface temperature lies between 5900 and

6000� K, its maximum temperature once attained 6600�, according to

Eddington’s calculations.(m) Following Wilhelm Wien’s displacement law, this

change in temperature towards a higher temperature would represent a displace-

ment towards shorter wavelengths in the ratio:

6000=6600 ¼ 0:91

The wavelengths of the two sensitivity peaks stand in the ratio:

517=550 ¼ 0:94
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Then indeed one could say there has been a development in the first stages of the

sun’s cooling, in which the rod curve was established in something like its present

composition in relation to the cone curve. Given the uncertainty of dating such

intervals of time, I would not dismiss this hypothesis unqualifiedly. Nevertheless it

loses its plausibility if we consider that Eddington estimates the entire time for the

developmental life of a star (from dark red embers to its maximum temperature and

back to dark red) as some tens of billions of years. Even the oldest granites are estimated

to be atmost 1–1½ billion years old(n) by reliablemethods using radioactive decay. The

development of the visual capacity of our forebears must be of far more recent date.

3. The third, most likely explanation seems to me to lie in the blue-green color

which water exhibits in thick layers. For an aquatic animal that lives under the

surface at some depth, the composition of sunlight must be transformed in just

about the way we need for our explanation. Such an animal would have

particular need of robust adaptation to different levels of brightness, too, if it

explored changes in depth under the water’s surface. Under this hypothesis, the
rod system would be an older system of vision which emerged during the age of

aquatic life. These two organs – the rods and cones – serve the same purpose;

they bear a certain parallel to the famous case of gills and lungs. Under the

hypothesis one would need to assume that the cone system had achieved its full

fruition in animals which sought daylight, while rods were still urgently needed

for use underwater. Moreover one needs to assume that cones assumed the

principal function over time. The rods – relegated to the function of an accessory

organ – no longer played a sufficiently important biological role to occasion their

full adaptation to the altered conditions of illumination after the animals

proceeded from aquatic to terrestrial life.

Following this notion most cases of complete colorblindness, which amount to

a return to pure rod vision, actually would represent an atavistic state.

This subject tempts one to further speculation on the gradual development of

daylight vision into color vision. Of course the grounds for speculation in this

matter are appreciably less certain. One may hold it probable that the origin of cone

vision lay – like that of rod vision – in an undifferentiated type of vision without

color. In fact isolated cases of complete colorblindness are known, which appear

not to be rod vision at all.(o) The hypersensitivity to light is absent which is

observed otherwise in totally colorblind observers. The peak of brightness sensi-

tivity lies at just the same place as in the cone curves of young observers, namely at

λ ¼ 550 μμ. Further, this kind of colorless cone vision can also be found in the far

periphery of the retinae of normal eyes. One can imagine that these border areas –

biologically less significant – have not participated in the continuing evolution. The

next stage of evolution would have been towards dichromacy, that is, yellow-blue

vision. On the normal retina there is a region between the color-capable centre and

the completely color-blind border just mentioned. This inbetween region is also

found in insects (in bees: von Hess and von Frisch, and in hummingbird hawk-

moths: Knoll). This forms by far the most common kind of partial colorblindness.

Yet a complication emerges at this point: there are two types of colorblindness. The
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most common is that for which the ‘yellow curve’ takes the normal place of the red

curve (R in the Figure). There is also that for which the yellow curve takes the

normal place of the green curve (G). The relatively high prevalence of just these

kinds of anomalies (in some four percent of men!) seems to me to indicate that the

decomposition of a long-wave excitation curve into a red curve and a green curve

represents the most recent stage in the evolution of our visual system. Conse-

quently it is the least firmly established, and the most susceptible to disturbance or

regression. – Let me emphasize once more that the remarks of this last section are

simply vague intimations.

As I see the matter, the import of the location of the rod peak – that which I held

to be most likely – coincides materially with the view held by C. von Hess. This
finds support in the rich data of his research. Here are several citations of passages

from his ‘Color theory’ (Farbenlehre)(p):

P. 81: “The measurements I have made on over 100 types of animals. . . lead
unanimously to the unexpected result that fish and invertebrates are in accord

in their reactions to diverse spectral radiations. They show the same behavior as

a dark-adapted normal observer under low-light conditions, or as a completely

colorblind person at any light level.”

P. 103: “ . . . that I was able to demonstrate a strong attenuation at the long-wave end

of the spectrum for all the aquatic animals previously investigated, i.e., I could

demonstrate one of the defining characteristics of complete color-blindness. The

strong absorption of long wavelengths in water – and their consequently trivial

biological importance – renders this behavior comprehensible.”

P. 83: “. . . what a large importance must be assigned to the ability to adapt to

different light conditions. . . by fish, who swim from the shallows to the depths.”

P. 82: “The transition by vertebrates to life in air led . . . to a fundamental devel-

opment of the sensory neural system. This comes to expression in the develop-

ment of a color sense, and in the thorough exploitation of long-wave radiation.”

P. 80: “In visual systems that have developed along the same principle as the

vertebrate eye. . . the transition to life in air dictated a neural reconstruction,

evidently due to the influence of very much larger amounts of long-wave

radiation which arrive at the eye. Among other changes, this is expressed as a

significant extension of the visible spectrum at the long-wave end.”

P. 47: “Consequently this is tantamount to saying that complete colorblindness in

humans can be considered as arrested development at an early stage of devel-

opment, one which we now encounter among vertebrate species only in fishes.”

P. 29: “ . . . that in our current state of knowledge, the white-black sensation is to be
considered ancient and ancestral; it seems an accordingly well-established

capability. At the same time we may consider the dimension of color sensation

as a relatively new phylogenetic acquisition, which entered into the development

of vertebrates only with the transition from aquatic life to life in air.”

Now admittedly Hess’s prediction of total colorblindness has proven to be

wrong in a few cases, namely for invertebrates which live in air. And it would
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be too odd, if all our insect-pollinated flowers had donned their fine-colored

raiment for nothing at all! So in fact von Frisch can furnish certain proof of a

color sense in the honey bee,(q) as Knoll does for a variety of hawkmoth. For

example, a bee can easily pick out a blue-colored paper from a randomly arranged

array of gray papers of the most widely disparate levels of brightness. – Hess’s
error lies mainly in the following: that in the absence of other criteria, he believes he

ought to be able to draw conclusions about total colorblindness just from the

correspondence of a sensitivity curve with that of completely colorblind persons.

Therefore it is of particular value to note here, that vonHess could adduce the proof
of total colorblindness by something like an infallible method for one aquatic

species, namely the cephalopods, by a particularly sensitive pupillary response.

If one stimulates the human eye by a moderately quick alternation of two colorless

lights of different brightness, then the alternation results in a sudden and succes-

sive dilation and contraction of the pupil. This is an objective procedure for

demonstrating differences in brightness. Yet if one of those lights is colorless

and the other colored (or if the two are differently colored), then a pupillary

response occurs also for two lights of approximately equal brightness, to be

more precise a contraction with each alternation. This form of response is

unchanged, if one alters the brightness of one of the two lights within a certain

finite range of their brightness ratio. The magnitude of this range of ‘attenuation
to change’ is a measure of the qualitative/color difference of the two light stimuli.

Doubtless the phenomenon is to be interpreted so that as a consequence of the

individually specific habituation effects of the two lights, each of them acts at its

onset as the brighter in pupillary-motor terms. Accordingly, attenuation to change is

completely lacking in completely colorblind observers. It is also lacking in ceph-

alopods, as von Hess has shown, although they demonstrate a distinct reflexive

pupil action otherwise.

I have to point out a crucial difference between Hess’s conception and mine.

Hess is an opponent of von Kries’s ‘zone theory’, which attributes twilight (scoto-

pic) vision and daylight vision to the two anatomically established neural systems:

rods and cones, respectively. Hess speaks only of a “transformation of the neural

receptive system” through the transition to terrestrial life. Yet it is just in our

phylogenetic deliberations that I glimpse strong support for the zone theory. Stated

quite generally, suppose it had been the case that a reconstruction of the visual

system did take place. And suppose it took place in the sense that there was a

development of the color sense, with displacement of the sensitivity curves towards

longer wavelengths. Then it would hardly be expected that our greatly transformed

eye would exhibit noticeable traces of ‘archaic’ vision. One such archaı̈sm is the

manner in which the eye regresses completely at minimal light levels, so far as the

lack of a color sense and so far as the spectral sensitivity distribution are concerned.

These characteristics support much better the notion that alongside the essential

retention of the old visual system – which took on other, less biologically-

important functions – a new system was added. The new system adapted to the
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new requirements, and it developed divergent properties as a consequence. The old

rod system adopted the role of a twilight system. It was especially suited to that in

advance by the great breadth of its capacity for adaptation.

Notes

a. As far as I know, this notion was first expressed clearly by Otto Lummer in:

Lummer, O. Grundlagen, Ziele und Grenzen der Leuchttechnik (Auge und

Lichterzeugung). München und Berlin: Oldenbourg Verlag (§ 86) (1918).

Lummer shows the converse: that our eyes – constituted just as they are –

will best exploit the light of a glowing body that radiates energy of any

temperature, just when the color temperature of that body is the same as the

Sun’s. That is why – for the sake of economy – we must take care that our

artificial light sources approach the color temperature of sunlight ! [ff. 1, p. 925

col. 1 original]

b. Abbot, C. G. The sun’s energy-spectrum and temperature. Astrophysical Jour-

nal, 34, 197-208 (1911). – The area which lies between any two ordinates of the

E- curve provides a measure of the energy falling within the spectral interval of

wavelengths demarcated by the ordinates (for the solar spectrum on earth).

[ff. 2, p. 925 col. 1 original]

c. Cf. Milne, E. A. Radiative equilibrium in the outer layers of a star: the temper-

ature distribution and the law of darkening. Monthly Notices of the Royal

Astronomical Society. 81, 361-375 (1921). [ff. 3, p. 926 col. 1 original]

d. We should like to illustrate the range of individual differences by tracing two

curves. Z was obtained from the young Hedwig Bender by flicker photometry

(see Lummer above, loc. cit. p. 61). Z0 was obtained from the seventy-year old

Franz Exner by the direct method: Exner, F. Zur Kenntnis der

Grundempfindungen im Helmholtz’schen Farbensystem. Sitzungsberichte der

Kaiserliche Akademie der Wissenschaften in Wien, mathematisch-

naturwissenschaftliche Klasse, Abteilung 2a: Mathematik, Astronomie, Physik,

Meteorologie, und Mechanik, 129, 27 – 46 (1920), cf. p. 41, as calculated by

Aigner, F. Ibid. 131, p. 305 (1922). An explanation of the displacement between

these two curves is due chiefly to coloration of themacula lutea, which color is

stronger in older eyes. The stronger color absorbs short-wave light more readily.

[ff. 1, p. 925 col. 2 original]

e. Compare for example, the text by O. Lummer in:M€uller-Pouillet, Lehrbuch der
Physik, 10. Auflage, Band II, 3, p. 399ff. Von Kries is the originator of the zone
theory, or ‘Duplizitätstheorie’. [ff. 1, p.926 col. 1 original]

f. From: Lummer, O. Grundlagen, Ziele und Grenzen der Leuchttechnik (Auge

und Lichterzeugung). München und Berlin: Oldenbourg Verlag, p. 61 (1918).

Actually the curves used here were derived from measurements on completely

color-blind individuals, the majority of whom have only rod vision. [ff. 2, p. 926

col. 1 original]
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g. Also note Exner, F. Sitzungsberichte der Kaiserliche Akademie der

Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse,

Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie, und Mechanik,

131, p. 622 (1922). Data on the monochromat Beysell. [ff. 3, p. 926 col.

1 original]

h. Exner, F. Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in

Wien, mathematisch-naturwissenschaftliche Klasse, Abteilung 2a: Mathematik,

Astronomie, Physik, Meteorologie, und Mechanik, 131, p. 615 (1922).

[ff. 1, p. 926 col. 2 original]

i. Ibid. Aigner, F. p. 299. [ff. 2, p. 926 col. 2 original]

j. In this the ‘blue curve’ has almost no role at all. The sensation of brightness

depends almost exclusively on the sensations of red and green. See Exner, F. Zur
Kenntnis der Grundempfindungen im Helmholtz’schen Farbensystem.

Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien,

mathematisch-naturwissenschaftliche Klasse, Abteilung 2a: Mathematik,

Astronomie, Physik, Meteorologie, und Mechanik, 129, 27 – 46 (1920).

[ff. 3, p. 926, col. 2 original]

k. Scheiner, J. & Graff, K. Astrophysik. Leipzig, Berlin: B.G. Teubner, p. 325
(1922). [ff. 1, p. 927, col. 1 original]

l. Ibid. p. 256. [ff. 2, p. 927 col. 1 original]

m. Eddington, A.S. Applications of the theory of the stellar absorption coefficient.

Monthly Notices of the Royal Astronomical Society, 83, 98-109 (1922). I take

these data from the exemplary report by Jean Bosler L’évolution des étoiles.

Paris (1923). [ff. 3, p. 927, col. 1 original]

n. Lawson, R.W., this Journal: Über absolute Zeitmessung in der Geologie auf

Grund der radioaktiven Erscheinungen. Die Naturwissenschaften. Two parts: 5

(26), 429-435 & 5(27), 452-459 (both 1917). [ff. 1, p. 927, col. 2 original]

o. Exner, F. (1922). Sitzungsberichte der Kaiserliche Akademie der

Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse,

Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie, und Mechanik,

131, p. 636 (1922). [ff. 2, p. 927 col. 2 original]

p. Hess, C. von. Farbenlehre. In L. Asher und K. Spiro, Ergebnisse der

Physiologie, 20. Jahrgang, München und Wiesbaden: J.F. Bergmann, 1 –

51 (1922). [ff. 1, p. 928, col. 1 original]

q. Note for example the lectures given this year by these researchers to scientific

conferences. [ff. 1, p. 928 col. 2 original]
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Kapitel 7

Über den Ursprung der

Empfindlichkeitskurven des Auges

Bekanntlich ist unser Auge nur für einen verhältnismäβig kleinen Teil der

Strahlung, die ein glühender K€orper aussendet, empfänglich; das sichtbare Gebiet

des Wärmespektrums erstreckt sich von etwa λ¼ 800 μμ bis λ¼ 400 μμ. Fragt man

sich, warum wir unseren Lichtsinn gerade in diesem Bereich ausgebildet haben

und nicht in einem anderen, bei gr€oβeren oder kleineren Wellenlängen, so kann die

Antwort nicht zweifelhaft sein. Das sichtbare Gebiet liegt nämlich zu beiden

Seiten des Intensitätsmaximums der Sonnenstrahlung. Es scheint, daβ sich das

Auge auf bestm€ogliche Ausnützung derjenigen Lichtquelle eingestellt hat, die vor

menschlicher Kultur fast die einzige in Betracht kommende war.1 Sozusagen als

„Nebenbedingungen“ bei dieser biologischen Maximumsaufgabe wird man sich

gewisse Beschränkungen der organischen Konstruktionsm€oglichkeit zu denken

haben, welche z.B. eine gr€oβere spektrale Ausdehnung des Sehbereiches, im

Vergleich zu dem geringen Vorteil den sie gebracht hätte, zu sehr erschwert

haben m€ogen.
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E: Energieverteilung der Sonne; Z: Zapfenkurve nach H. Bender; Z0:
Zapfenkurve nach F. Exner; St: Stäbchenkurve; R G B: Rot- , Grün- , Blaukurve.

In beistehender Figur ist E die Energiekurve der Sonne, nach den Messungen

Abbotts2 berechnet, für solche mittlere Verhältnisse, wie sie bei Bildung des

Sehorgans durchschnittlich in Betracht gekommen sein m€ogen: Meeresniveau

(Washington), 45� Sonnenh€ohe. Das Maximum der Strahlung findet sich unter

diesen Verhältnissen bei etwa λ ¼ 515 μμ im Blaugrün. Bemerkenswert ist das

viel steilere Absinken der Kurve gegen kurze Wellen als gegen lange Wellen hin,

was von der vereinigten Wirkung der Absorption in der Sonne selbst3 und in der

Erdatmosphäre herrührt. (Die starke Sauerstoffabsorption bei der Fraunhoferschen

Linie A, λ ¼ 760 μμ, ist nach älteren Messungen Langleys nur schätzungsweise
hineinkorrigiert, für uns übrigens ohne Belang.) Z bzw. Z0 ist die sog. Zapfenkurve
nach Messungen zweier verschiedener Beobachter.4 Es ist das die aus

Helligkeitsmessungen im Spektrum errechnete Helligkeitsverteilung für ein

helladaptiertes Auge in einem idealen Spektrum von konstanter Energie, dessen

E-Kurve durch eine horizontale Gerade gegeben wäre, dem entlang geführt ein
Energiemesser (Bolometer oder Thermosäule) konstanten Ausschlag zeigen

würde. Die Ordinaten der Z-Kurve sind also ein Maβ für die Helligkeit, welche

gleiche Energiemengen von verschiedener Wellenlänge im Auge hervorbringen,

man kann sagen: für die spektrale Empfindlichkeitsverteilung des Auges. Das

Empfindlichkeitsmaximum liegt im Gelbgr€un bei λ ¼ 550 μμ bis 560 μμ, also
merklich rotwärts vom Energiemaximum der irdischen Sonnenstrahlung. Das

erklärt sich nach unserer biologischen Hypothese wohl hinlänglich aus dem stark

unsymmetrischen Verlauf der E-Kurve. Es ist klar, daβ eine etwas bessere
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Ausnützung erzielt wird, wenn das Empfindlichkeitsmaximum ein wenig nach der

Seite des sanfteren Abfalles der E-Kurve verschoben ist.

Das bisher Gesagte bezieht sich auf die Helligkeitsempfindung bei der

gew€ohnlichen Art des Sehens mit normal-helladaptiertem Auge, physiologisch

gesprochen auf die Tätigkeit der Netzhautzapfen. Nun besitzen wir, wie man heute

weiβ, noch einen zweiten Sehapparat, die sog. Stäbchen, die, mit den Zapfen

vermischt, palisadenf€ormig die Netzhaut bedecken, und zwar besonders zahlreich

die peripheren Teile, wo die Zapfen immer seltener werden, während in einer kleinen

Umgebung der Stelle des deutlichsten Sehens (ca. 1½� Winkeldurchmesser) nur die

hier besonders dicht stehenden Zapfen vorhanden sind. Im Gegensatz zu den Zapfen

vermitteln die Stäbchen eine fast farblose (vielleicht ein wenig bläuliche)

Empfindung, deren Qualität von der Wellenlänge unabhängig ist – sie sind total

farbenblind. Die zweite hervorstechende Eigenschaft des Stäbchenapparates ist

seine auβerordentlich groβe Anpassungsfähigkeit an geringe Lichtstärken. Je mehr

die allgemeine Erhellung unserer Umgebung abnimmt, um somehr mischt sich in das

sog.Tagessehen der Zapfen das „Stäbchensehen“ und bleibt schlieβlich bei niederen
Lichtstärken allein zurück [sog. „Dämmerungssehen“5]. Das macht die getrennte

Bestimmung der spektralen Empfindlichkeitskurve des Stäbchenapparates m€oglich,
und es zeigt sich [Kurve St unserer Figur6], daβ sie gegenüber der Zapfenkurven stark
gegen kurzeWellenlängen verlagert ist, sie hat ihrMaximumbei etwa λ¼ 517 μμ7) im
Blaugr€un. Eine stark in die Augen fallende Folge dieser Verschiebung ist für
jedermann leicht zu beobachten, z. B. in einer Bildergalerie bei einbrechender

Dämmerung. Infolge wachsender Beteiligung des Stäbchensehens nimmt die

Helligkeit der roten Farbt€one viel stärker ab als die der blauen, welch letztere im

Vergleich eine eigentümlich starke Leuchtkraft gewinnen (Purkinjesches Phänomen);

durch pl€otzliches Einschalten einer starken künstlichen Lichtquelle kann man das

Helligkeitsverhältnis wieder umkehren und gewinnt dann einen sehr starken Eindruck

von der Tatsache, die sich für die exakte Messung in der besprochenen Verlagerung

des Kurvengipfels ausspricht.

Woher rührt nun diese merkwürdige Verlagerung der Stäbchenkurve nach

kurzen Wellenlängen? Ich erinnere mich nicht, irgendwo den Versuch einer

Erklärung dafür gefunden zu haben. Im vollen Bewuβtsein, daβ ich nur über
einen Teil der zur Beurteilung dieser Frage n€otigen Kenntnis verfüge, m€ochte ich

gleichwohl hier einige Erklärungsm€oglichkeiten zur Diskussion stellen, sei es auch

nur, um die Aufmerksamkeit anderer darauf zu lenken, die zu ihrer Beurteilung

berufener sind.

Erstens wäre es natürlich m€oglich, daβ der innere Mechanismus des

Stäbchenapparates, seine organischen Konstruktionsbedingungen, von denen des

Zapfenapparates so stark abweichen, daβ bei der “biologischen Maximumsaufgabe”

bestm€oglicher Ausnützung der zur Verfügung stehenden Lichtquelle die “veränderten
Nebenbedingungen” zu einer etwas verschiedenen L€osung geführt haben. Eine solche
Erklärung annehmen, hieβe natürlich die Flinte ins Korn werfen und auf

eine eigentliche Erklärung verzichten. Nach den neuerdings von F. Exner8 und

F. Aigner9 vertretenen Ansichten über die Natur der Netzhauterregung ist es überdies
wahrscheinlich, daβ der Mechanismus des Stäbchensehens und des Zapfensehens
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qualitativ der nämliche ist. Danach soll es sich in allen Fällen um elektromagnetische

Resonnatoren in den Nervenenden handeln, die innerhalb eines gewissen

Resonanzbereiches auf die verschiedenen Wellenlängen nach einer von anderen

physikalischen Erscheinungen her wohlbekannten Resonanzkurve ansprechen,

wobei Lage und Breite des Resonanzgebietes durch zwei physikalische Konstanten

des Resonators (Eigenschwingungszahl und Dämpfung) bestimmt sind. Diese

Resonatorenkonstanten wären also dasjenige, was sich den äuβeren Bedingungen

biologisch angepaβt hat. Dabei müssen – worauf wir im Augenblick nicht näher

eingehen wollen – für das farbige Zapfensehen drei verschiedene Resonatorenarten

in Anspruch genommen werden; ihre Resonanzgebiete werden durch die Kurven R
(„Rot“), G („Grün“), B („Blau“) der Figur dargestellt, aus denen sich durch gewisse

additive Verknüpfung die Z-Kurve zusammensetzt.10 Dagegen sollen die Stäbchen

nur eine Resonatorenart enthalten, deren Resonanzgebiet direkt durch die St-Kurve
dargestellt wird. Warum haben nun – so würden wir in der Sprache dieser speziellen
Theorie fragen – die Stäbchenresonatoren ihr Ansprechgebiet so viel weiter nach Blau

verschoben als diejenigen Zapfenresonatoren, die hauptsächlich die Helligkeit im

Tagessehen vermitteln? (D. i. die Rot- und Grünresonatoren.)
Eine wirkliche Erklärung, welche sich nicht auf unbekannte organische

Konstruktionsbedingungen beruft, kann m. E. nur darin gefunden werden, daβ der

Stäbchenapparat sich unter der Einwirkung eines anderen Beleuchtungslichtes

mit anderer Energieverteilungskurve ausgebildet hat als der Zapfenapparat. Hier

scheinen mir nun folgende M€oglichkeiten sich darzubieten.

1. Die besondere Anpassungsfähigkeit des Stäbchenapparates an geringe

Lichtstärken läβt daran denken, daβ es dabei um das Sehorgan eines Nachttieres

sich handelt. Wie steht es nun mit der Energieverteilungskurve des nächtlichen

Lichtes? Was das Sternenlicht betrifft, so kennen wir die Spektren einer

auβerordentlich groβen Zahl einzelner Sterne und wissen, auch schon aus dem

Farbenindex, daβ viele r€oter, andere blauer sind als die Sonne. In einer Tabelle

der hellsten in unseren Gegenden sichtbaren Sterne11 finde ich unter 42 Sternen

25 blauer, nur 16 r€oter als die Sonne. Dagegen ist das Licht des Mondes, dem für
die Sehleistungen eines Nachttieres doch wohl eine erhebliche Bedeutung

zukommt, ein wenig r€oter als das der Sonne12 (etwa 0,5 Gr€oβenklassen im

Farbenindex). Diese Hypothese liefert also wohl keine befriedigende Erklärung.

2. Man kann zweitens daran denken, daβ die Entstehung des Stäbchenapparates

phylogenetisch so weit zurückliegt, daβ sein Empfindlichkeitsmaximum noch

auf eine h€ohere Sonnentemperatur zurückweist als die jetzt herrschende.

Tatsächlich geh€ort nach den Ergebnissen der neueren astrophysikalischen

Forschung die Sonne zu den sog. Zwergsternen und befindet sich schon auf

dem absteigenden Ast ihrer Entwicklung, d.h. sie ist im Abk€uhlung begriffen.

Während ihre gegenwärtige Temperatur zwischen 5900 und 6000� absolut liegt,
hat ihre Maximaltemperatur nach Eddingtons Berechnung 6600� betragen.13

Nach dem Wienschen Verschiebungsgesetz würde dieser Temperaturänderung

eine Verschiebung des Energiemaximums zu einer für die h€ohere Temperatur

im Verhältnis
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6000=6600 ¼ 0, 91

k€urzeren Wellenlänge entsprechen. Die Wellenlängen der beiden

Empfindlichkeitsmaxima stehen im Verhältnis

517=550 ¼ 0, 94

Es hat also tatsächlich in den ersten Stadien der Abkühlung das Sonnenlicht eine

Zusammensetzung gehabt, die zur Stäbchenkurve in etwa demselben Verhältnis

steht, wie seine gegenwärtige Zusammensetzung zur Zapfenkurve. Bei der

Unsicherheit aller Zeitschätzungen auf diesem Gebiet m€ochte ich die Hypothese

nicht unbedingt verwerfen. Immerhin verliert sie an Wahrscheinlichkeit, wenn wir

bedenken, daβ Eddington die gesamte Entwicklungsdauer eines Sternes (von

Dunkelrotglut über die Maximaltemperatur zur Dunkelrotglut) auf einige

Zehnmilliarden Jahre schätzt, während selbst die ältesten Granite nach der ziemlich

zuverlässigen radioaktiven Methode auf h€ochstens 1–1½ Milliarden Jahre zu

schätzen sind,14 die Entwicklung des Sehverm€ogens unserer Ahnen also doch

wohl sehr viel jüngeren Datums sein muβ.

3. Die dritte und wahrscheinlichste Erklärung scheint mir in der gr€unblauen
Farbe zu liegen, die das Wasser in dickeren Schichten zeigt. Für ein

Wassertier, das in einiger Tiefe unter der Oberfläche lebt, muβ die

Zusammensetzung des Sonnenlichtes tatsächlich in ungefähr dem Sinne

geändert werden, den wir zur Erklärung n€otig haben. Auch die starke

Anpassungsfähigkeit an verschiedene Helligkeiten würde ein solches Tier

besonders n€otig haben, wenn es wechselnde Tiefen unter dem Wasserspiegel

aufsucht. Der Stäbchenapparat würde also nach dieser Hypothese ein älteres

Sehorgan sein, das zur Zeit des Wasserlebens entstanden ist. Die zwei

demselben Zweck dienenden Organe: Stäbchen, Zapfen würden eine gewisse

Parallele bilden zu dem wohlbekannten Fall: Kiemen, Lunge. Dabei müβte man

annehmen, daβ der Zapfenapparat bei den das Tageslicht aufsuchenden Tieren

zur vollen Ausbildung gelangte, während die Stäbchen für den Gebrauch unter

Wasser immer noch dringend ben€otigt wurden; ferner, daβ die Zäpfchen mit der

Zeit die Hauptfunktion übernahmen und die zu Hilfsorganen herabgedrückten
Stäbchen keine genügende biologische Wichtigkeit mehr besaβen, um ihre

genaue Anpassung an die veränderten Beleuchtungsverhältnisse herbeizuführen,
nachdem die Tiere vomWasserleben ganz zum Landleben übergegangen waren.

Die meisten Fälle von totaler Farbenblindheit, die in einer Rückkehr zum

reinen Stäbchensehen bestehen, wären nach dieser Auffassung ein eigentlicher

Atavismus.

Der Gegenstand verlockt zu weiteren Spekulationen über die allmähliche

Ausbildung des Tagessehens zum Farbensehen. Freilich wird der Boden damit

zusehends unsicherer. Man wird es für wahrscheinlich halten, daβ das erste

Zapfensehen ein undifferenziertes farbloses Sehen war wie das Stäbchensehen. In

der Tat sind seltene Fälle totaler Farbenblindheit bekannt, die augenscheinlich kein
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Stäbchensehen sind.15 Es fehlt die sonst bei Totalfarbenblinden beobachtete

Lichtscheu, und das Maximum der Helligkeitsempfindung liegt genau an derselben

Stelle wie bei der Zapfenkurve junger Augen, nämlich bei λ¼ 550 μμ. Ferner findet
sich diese Art des farblosen Zapfensehens auch in den periphersten Teilen der

Netzhaut normaler Augen; man kann sich denken, daβ diese biologisch minder

wichtigen Randpartien die weitere Entwicklung nicht mitgemacht haben. Das

nächste Entwicklungsstadium dürfte das der Dichromasie, des Gelb-Blausehens,

gewesen sein. Es findet sich auf der normalen Netzhaut zwischen der

farbentüchtigen Mitte und der eben erwähnten total farbenblinden Randzone, ferner

bei Insekten (Bienen nach v. Hess und v. Frisch, Taubenschwänzen nach Knoll),
endlich bildet es die weitaus häufigste Art der partiellen Farbenblindheit. Hier

zeigt sich allerdings die Komplikation, daβ es zwei Typen dieser Farbenblinden

gibt, solche, bei denen die „Gelbkurve“ die Lage der normalen Rotkurve (R in der

Figur) hat, diese sind die häufigsten, und solche, bei denen sie die Lage der

normalen Grünkurve (G) hat. Die relativ groβe Häufigkeit gerade dieser Art von

Anomalien (etwa 4% aller Männer!) scheint mir darauf hinzudeuten, daβ die

Zerfällung der langwelligen Erregungskurve in eine Rot- und Grünkurve das letzte
Stadium der Entwicklung unseres Sehorgans ist, daher noch am schlechtesten

fixiert, Rückfällen und St€orungen am meisten ausgesetzt ist. – Ich betone aber

nochmals, daβ es bei den Bemerkungen dieses letzten Absatzes nur um vage

Vermutungen sich handelt.

Wie ich sehe, trifft dieDeutung der Lage des Stäbchenmaximums, die ich für die
wahrscheinlichste halte, sachlich vollkommen zusammen mit der Ansicht von

C. von Hess und erfährt durch dessen reiches Versuchsmaterial eine Stütze. Ich
führe einige Stellen aus der „Farbenlehre“ dieses Forschers16 hier an:

S. 81: „Meine Messungen an über 100 Tierarten . . . führen übereinstimmend zu

dem unerwarteten Ergebnisse, daβ hinsichtlich der Reaktionen gegenüber
verschiedenen spektralen Strahlungen Fische und Wirbellose

übereinstimmendes und das gleiche Verhalten zeigen wie der dunkeladaptierte,

bei herabgesetzter Lichtstärke sehende normale und wie der total farbenblinde

Mensch bei jeder Lichtstärke.“

S. 103: „ . . . daβ ich für alle bisher untersuchten Wassertiere starke Verkürzung des
Spektrums am langwelligen Ende, d.h. eines der charakteristischen Merkmale

der totalen Farbenblindheit nachweisen konnte; die starke Absorption jener

langwelligen Strahlen im Wasser und ihre entsprechend geringe biologische

Bedeutung macht dieses Verhalten verständlich.“

S. 83: „ . . . von wie groβer Bedeutung die Fähigkeit der Anpassung an verschiedene
Lichtstärken . . . sein muβ . . . für Fische, die von der Oberfläche zur Tiefe

schwimmen . . .“
S. 82: „Bei den Wirbeltieren führte der Übergang zum Luftleben . . . zu einer

wesentlichen Weiterbildung des nerv€osen Empfangapparates, die in der

Entwicklung eines Farbensinnes und der ausgiebigeren Verwertung langwelliger

Strahlen zum Ausdruck kommt.“
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S. 80: „Bei den nach dem Prinzip des Wirbeltierauges gebauten Sehorganen . . . hat
sich . . . mit dem Übergange zum Luftleben, offenbar unter dem Einflusse der

jetzt in viel gr€oβeren Mengen zum Auge gelangenden langwelligen Strahlen,

eine Umbildung der nerv€osen Substanz vollzogen, die unter anderem in einer

wesentlichen Ausdehnung des Spektrums nach der langwelligen Seite zum

Ausdrucke kommt.“

S. 47: „Danach liegt es nahe, die totale Farbenblindheit beim Menschen als

Stehenbleiben auf einer niederen Entwicklungsstufe aufzufassen, der wir in

der Wirbeltierreihe nur noch bei Fischen begegnen.“

S. 29: „ . . . daβ nach dem heutigen Stande unserer Kenntnisse die Schwarz-

Weiβempfindung als ein stammesgeschichtlich uralter und wohl entsprechend

gefestigter Besitz zu betrachten ist, während wir in den farbigen

Empfindungsreihen einen phylogenetisch verhältnismaβig jungen Erwerb zu

sehen haben, der in der Wirbeltierreihe erst mit dem Übergange vom Wasser-

zum Luftleben zur Entwicklung gekommen ist.“ – – –

Nun hat sich allerdings in einigen Fällen, namentlich für die luftlebenden

Wirbellosen, die Hesssche Diagnose auf totale Farbenblindheit als irrtümlich

herausgestellt. Es wäre ja auch gar zu merkwürdig, wenn alle unsere

insektenbefruchteten Bl€uten ihr herrliches Farbenkleid für nichts und wieder

nichts sollten angelegt haben! So konnten denn in der Tat v. Frisch für die

H€onigbiene, Knoll für eine Schwärmerart den Nachweis des Farbensinnes mit

Sicherheit erbringen,17 indem z.B. die Biene ein blaues Farbpapier aus einer groβen
Anzahl regellos angeordneter Graupapiere von den verschiedensten

Helligkeitsstufen leicht herausfindet. – Der Hesssche Irrtum bestand hauptsächlich

darin, daβ er beim Fehlen anderer Kriterien allein schon aus der Übereinstimmung

der Empfindlichkeitskurve mit derjenigen des totalfarbenblinden Menschen auf

totale Farbenblindheit schlieβen zu dürfen glaubte. Da ist es denn von besonderem

Wert, daβ v.Hess wenigstens für eine wasserbewohnende Tiergattung, nämlich die

Cephalopoden, den Nachweis der totalen Farbenblindheit noch auf einem ziemlich

untrüglichen Wege erbringen konnte, nämlich durch eine besonders sinnreiche

Pupillenreaktion. Bietet man dem menschlichen Auge in mäβig raschem Wechsel

zwei verschieden helle farblose Lichter dar, so erfolgt beim Lichtwechsel

abwechselnd pl€otzliche Kontraktion und Dilatation der Pupille, als ein

objektivier Nachweis des Helligkeitsunterschiedes. Ist aber das eine Licht

farblos, das andere farbig (oder auch beide verschieden farbig), so tritt auch bei

annähernd gleicher Helligkeit der beiden Lichter eine Pupillenreaktion auf, und

zwar pl€otzliche Kontraktion bei jedem Lichtwechsel. Diese Reaktionsweise

bleibt, wenn man die Helligkeit des einen der beiden Lichter abändert, innerhalb

eines gewissen endlichen Bereiches des Helligkeitsverhältnisses bestehen, und

die Gr€oβe dieses Bereiches der „Wechselverengerung“ ist ein Maβ für die

qualitativ-farbliche Verschiedenheit der beiden Lichteindrücke. Die Erscheinung
ist zweifellos so zu deuten, daβ infolge des spezifisch verschiedenen

Ermüdungseffektes der beiden Lichter jedes von ihnen bei seinem Auftauchen als

das pupillomotorisch hellere wirkt. Dementsprechend fehlt die
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Wechselverengerung v€ollig beim totalfarbenblinden Menschen, und sie fehlt, wie

v. Hess zeigt, auch bei den Cephalopoden, die im übrigen ein deutliches

reflektorisches Pupillenspiel zeigen.

Auf einen wesentlichen Unterschied der Hessschen Auffassung und der meinen

muβ ich noch hinweisen. Hess ist ein Gegner der Kriesschen „Duplizitätstheorie“,

die das Dämmerungssehen, bzw. das Sehen am hellen Tage, den zwei anatomisch

festgestellten Nervenendorganen, den Stäbchen bzw. den Zapfen, zuweist. Hess
spricht daher einfach nur von einer „Umbildung des nerv€osen Empfangsapparates“

beim Übergang zum Landleben. Ich erblicke aber gerade in unseren

phylogenetischen Betrachtungen eine starke Stütze der Duplizitätstheorie. Hätte,

ganz allgemein gesprochen, eine Umbildung des Sehorgans stattgefunden im Sinne

der Entwicklung eines Farbensinnes und der Verschiebung der

Empfindlichkeitskurven nach längeren Wellen, dann wäre doch kaum zu erwarten,

daβ unser stark umgebildetes Auge noch derart merkliche Spuren jener

„altertümlichen“ Art des Sehens aufweist, in die es bei geringen Lichtstärken

sogar gänzlich zurückverfällt, sowohl was den Mangel des Farbensinnes als auch

was die spektrale Empfindlichkeitsverteilung anlangt. Diesem Verhalten entspricht

viel besser die Auffassung, daβ unter wesentlicher Erhaltung des alten

Sehapparates, welcher andere, biologisch weniger wichtige Funktionen

übernimmt, ein neuer Apparat hinzugebildet wurde, der sich den neuen

Anforderungen angepaβt und daher wesentlich abweichende Eigenschaften

erhalten hat. Der alte Stäbchenapparat dagegen übernahm die Rolle eines

Dämmerungsorganes, wofür er durch seine groβe Adaptationsbreite von vornherein
besonders geeignet war.

1. So viel mir bekannt, hat diesen Gedanken zum ersten Mal klar ausgesprochen

Otto Lummer, Ziele der Leuchttechnik (§ 86). München und Berlin 1918.

Lummer zeigt umgekehrt, daβ unser Auge so, wie es ist, unter allen

Temperaturstrahlern einen glühenden K€orper von Sonnentemperatur am

besten ausnützt. Das ist der Grund, weshalb wir aus Ökonomiegründen uns

bemühen müssen, unsere künstlichen Lichtquellen der Sonnentemperatur zu

nähern!

2. C.G. Abbott, Astrophysical Journal, 34, 197. 1911. Die Fläche zwischen irgend
zwei Ordinaten der E – Kurve ist ein Maβ der Energie, die auf das betreffende

Wellenlängenintervall im Spektrum der irdischen Sonnenstrahlung entfällt.

3. Siehe E.A. Milne, Monthly Notices of the Royal Astronomical Society 81,

375. 1921.

4. Durch Anführung zweier Kurven wollen wir die individuelle Variationsbreite

illustrieren. Z ist von der jungen Hedwig Bender mit dem Flimmerphotometer

gewonnen (s.O. Lummer, 1. c. S. 61), Z0 von dem siebzigjährigen Franz
Exner nach direkter Methode (Sitzungsber. d. Akad. Wien, Mathem.-naturw.

Kl. IIa 129, 41. 1920; berechnet von F. Aigner, ibid. 131, 305. 1922). Die
Verlagerung der Kurven gegeneinander wird zum gr€oβten Teil auf der
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stärkeren Färbung des gelben Flecks in älteren Augen beruhen, wodurch das

kurzwellige Licht stärker absorbiert wird.

5. Man vgl. z.B. M€uller – Pouillet, Lehrbuch der Physik, 10. Aufl., Bd. II,

3 (O. Lummer) S. 399 ff. – Der Begründer der “Duplizitätstheorie” ist v. Kries.
6. Nach Lummer, Ziele der Leuchttechnik S. 61. In Wahrheit ist die hier benützte

Kurve durch Messungen an Totalfarbenblinden gewonnen, die in der Mehrzahl

reine Stäbchenseher sind.

7. Siehe auch F. Exner, Sitzungsber. d. Akad. Wien, Mathem.-naturw. Kl. 131,

622. 1922. Angabe über Monochromat Beyssell.
8. F. Exner, Sitzungsber. d. Akad. Wien, Mathem.-naturw. Kl. IIa 131, 615. 1922.

9. F. Aigner, ibid. S. 299.
10. Die „Blaukurve” spielt dabei fast keine Rolle. Die Helligkeitsempfindung

hängt fast ausschlieβlich an der Rot- und Grünempfindung. Siehe F. Exner,
Sitzungsber. d. Akad. Wien, Mathem.-naturw. Kl. 129, 27. 1920.

11. Scheiner-Graff, Astrophysik S. 325., Teubner 1922.

12. Ibid. S. 256.

13. A.S. Eddington, Monthly Notices 83, 98. 1922. Ich entnehme die Angaben

dem vortrefflichen Bericht von Jean Bosler, L’évolution des étoiles.

Paris 1923.

14. R.W. Lawson, Diese Zeitschr. 1917, H. 26/27.
15. F. Exner, Sitzungsber. d. Akad. Wien, Mathem.-naturw. Kl. IIa 131, 636. 1922.

16. In „Ergebnisse der Physiologie” 20, 1, 1922; bei J.F. Bergmann, München
u. Wiesbaden.

17. Vgl. z. B. die Vorträge dieser beiden Forscher auf der diesjährigen

Naturforscherversammlung
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Chapter 8

On the Subjective Color of Starlight

and the Quality of Twilight Sensation

Abstract A popular account is given to explain the subjective color of starlight.

One’s predominant sensation while observing a star in the visual field is given by

scotopic or ‘twilight’ vision, mediated by the rod cells of the eye. The hue of the

characteristic rod sensation can be assessed. There is yet another influence on

starlight color, however. Conditions for emergence of the Bezold-Br€ucke phenom-

enon are ideally fulfilled in the observation of starlight. A complete explanation of

the color of starlight is provided by the effects of contrast on rod ‘blue’, together
with the Bezold-Brücke phenomenon.

Keywords Color vision • Starlight • Nocturnal vision • Cone cells • Cone

sensitivity • Rod cells • Rod sensitivity • Tritanopia • Anomalous trichromat •

Bezold-Brücke • Purkinje • Schr€odinger

Recently in this Journal Mr. Bottlinger(a) has been very convincing in pointing out

the contradiction between the temperature of fixed stars and the color names that we

give them, in comparison to the names given to terrestrial light sources of known

temperature. Likewise this contradiction occurred to me some time ago. An expla-

nation presented itself to me, which I sought to reinforce with some experimental

trials on the quality of sensation in twilight. Although these experiments have not

yet come to full conclusion, I would like to report briefly on the train of my

thoughts, now that the problem has been put forward for discussion.

It has often been stressed, as it was by Bottlinger in the note under discussion,

that ‘the notion of white is quite a variable one’. White is displaced away from the

hue that prevails across the field of view. If we don a pair of not-too-strongly

colored glasses, after a while we hardly notice that colors are transformed with

respect to their normal appearance. Certainly in part this may be attributed to the

“specific adaptation” which emerges in simple aftereffects as complementary color.

Partly – and perhaps to a large extent – this may be a matter of a purely psycho-

logical circumstance, that is, a displacement in judgment about color. Under that

condition, it follows in simultaneous color contrast that strongly saturated colors

may not be more strongly inducing of an effect, but rather more weakly inducing

Schr€odinger, E. Über die subjektiven Sternfarben und die Qualität der Dämmerungsempfindung.

Die Naturwissenschaften, 13(18), May, 373–376 (1925).

© Springer International Publishing AG 2017

K.K. Niall (ed.), Erwin Schr€odinger’s Color Theory,
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than a less saturated color. One may be reminded of a well-known demonstration

involving flowers.

The predominant sensation while observing a star in the visual field is normally

one of twilight vision – or theoretically put, that of rod cells. As we term it, the

sensation is of ‘rod white’ or ‘rod gray’. Actually the sensation is of a single color,

but it is in no sense colorless. That is, it is not identical with the gray of daylight

vision; rather it is bluish. It is a matter of a shift in judgment – of the kind discussed

above – that we are most often unconscious of this situation. Yet with that, it is clear

that judgment of the color of a star seen in strictly foveal view will also be shifted –

although as Bottlinger notes correctly, the twilight system of vision is not directly

involved. Then of course the color will be judged such that the star’s color will draw
closer to the color sensation complementary to the rod sensation.

What do we know about the hue of this twilight sensation? Let us delve into the

question – interesting in and of itself – more thoroughly than may inevitably be

necessary for the purpose at hand. Qualitative research by Nagel and von Kries(b)

has shown at any rate that the ‘rod color’ is quite noticeably blue. A quantitative

determination for Nagel as a deuteranope (so-called ‘green-blind’) showed equiv-

alence to this rod color at λ ¼ 480–485 μμ in daylight vision. It should be

emphasized that this is not a matter of determining the hue, but rather the satura-

tion of Nagel’s rod sensation. As is well-known, that is because to the partially

colorblind there are only two hues. For him the spectrum presents a range of

saturation, from yellow through white to blue. Then for Nagel those values

λ < 480 must also match the twilight color, with the addition of a suitable amount

of white.

By an original and inventive procedure, vonHauer(c) has attempted to determine

these wavelengths for ordinary people. Suppose one illuminates a larger

(parafoveal) area of the retina with bright white light, and then decreases the light

suddenly. Then to achieve a color equivalence with a neighbouring area that has not

been illuminated before, one requires two things. Understandably one requires less

white in the previously unilluminated field, but one must also add some blue to

it. To be precise, Hauer finds that one must add λ ¼ 457, 460, or 465 μμ for each of

three normal experimental subjects. He reasons as follows: in the early application

of strong illumination, the rods are excluded. Only the cones are adapted. After

the light intensity is decreased, rods are at an advantage in the adapted field during

the immediate rise of dark adaptation. They are at an advantage as they compete

with the already-adapted cones there. In comparison they vie with unadapted cones

in the comparison field. Therefore the blue is the rod color. Even if this interpre-

tation holds, yetHauer’s experiment is restricted to a very special case: incomplete

dark adaptation of short duration with a strong participation of daylight vision.

(No more time is given in the trial than is supposed for the white-light adaptation of

cones.) No definite conclusions may be drawn from this about sensations in the

near-fully dark-adapted eye, as is most often employed for star-gazing.

To begin purely qualitatively, one can convince oneself easily of the blueness of

twilight color using the simplest of means. To this end I use two abutted brass tubes

at right angles, each of about 2 cm. in diameter and about 20 cm. in length. The
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assembly contains a white surface angled to 45� at the tube’s bend. Otherwise they
are lined with black velvet and outfitted with multiple shutters. At one open end of

the tube assembly, one eye is attached by a completely light-tight connection, using

a camera condenser of black paper and a stiff eye patch with an aperture. The other

end of the tube serves to regulate the attenuated daylight illumination that is visible

on the white surface. That end has a second white surface which seals at 45�; there
is a small variable aperture at that end of the tube. Then if one places one’s eye on
this apparatus, after a few minutes of dark adaptation one sees a patch with both

eyes open, in the middle of the field provided by the brightly-lit eye. That field can

be the room itself; one sees a small floating patch of a twilight (scotopic) field. The

best effect occurs when one projects that onto a dark corner of the room; then one

may compare it easily to arbitrary daylight colors. The relatively strong subjective

brightness of this patch is indeed striking, and it may be compared throughout with

the field that is seen by the brightly-lit eye. An evident increase in brightness occurs

when one’s gaze is suddenly averted, and this effect is beautifully demonstrated.

Another effect is easily demonstrated too: the complete colorblindness of the rods

may be shown by putting colored glass in front of the illumination window. The hue

of this patch is called a flat reddish blue by normal observers, something like pale

lilac. The color phenomenon is still more striking if one performs the demonstration

in the evening under artificial illumination. For the darkened eye, naturally the

quality of illumination is irrelevant. Still the displacement in judgment for the

brightly-lit eye due to the yellow or reddish-yellow of the artificial light source

does increase the disparity of ‘white’ from the unaltered twilight color.

In order to determine hue quantitatively, the darkened tube of the apparatus was

mounted in a binocular viewing arrangement next to a spectrophotometer telescope,
(d) which – instead of a plain oculus – had a divided ocular field which contained a

Nicol prism. Then the brightly-lit eye could mix: 1) an arbitrary spectral color on

the face of a second Nicol prism placed between the collimator and a first prism,

with 2) daylight entering into the apparatus sideways by reflection. This mixture

can be adjusted for different ratios and different overall intensity. And so it can be

used to match the color of the twilight patch – given that that does not fall within the

spectral ‘gaps’.
Trials were run with four normal trichromats. Almost always they adjusted

wavelength to values smaller than 430 μμ in the narrow-band violet end of the

spectrum. Within this region adjustments were strongly variable – which makes

sense, because along there hue does not change across the spectrum. An observer

well-acquainted with use of the spectroscope reported that he would rather have still

a little more red in the comparison color than is present in the far violet. None-

theless adjustments occurred for all the observers separately in which λ > 430 μμ –

some up to about λ¼ 445 μμ (indigo), but never to greenish-blue, however. Values
greater than λ¼ 430 μμ occurred after more than a half-hour of adaptation for three

of the four observers; still one cannot really speak of a trend here. Neither does

there seem to be much evidence of a clear influence of the subjective brightness of

the twilight patch.
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My own result was a complete outlier – I am an anomalous trichromat: to be

precise, deuteranomalous or ‘red-sighted’. Subjectively I judge the patch to be

greenish-blue. Accordingly my estimates lie around cyan, close to Fraunhofer’s
F line. Since hue varies strongly in this region, these estimates have much better

replicability than estimates by normal observers. A very pronounced influence is

exerted by the subjective brightness of the twilight patch. For a subjectively dark

patch I adjust the comparison field towards longer wavelengths; for a subjectively

bright patch more towards the short-wave. For all that it is the same whether

brightness is varied as a function of the intensity of illumination, or the adaptation

state, or through more or less paracentral observation. The outer limits of the

twilight color – as it is intentionally manipulated in these ways – lay at

λ ¼ 484 μμ (for an extremely bright patch) and λ ¼ 495 μμ (for an extremely

dark one).

Of course the responses of color-anomalous and color-blind observers are of

secondary interest to our present purpose. I think it certain that in general the

twilight color for normal observers is an unsaturated red-violet, perhaps somewhat

redder than violet at the end of the spectrum. Under particular circumstances which

have not yet been wholly specified, perhaps this shifts to indigo but it never moves

to green.

Does the predominance of this rod-blue or rod-violet in the visual field allow us

to understand the subjective color of starlight? To a large extent yes, but not

completely. It stands to reason that white sun-like stars must appear yellow ‘by
contrast’. Similarly, only stars that are considerably bluer than the sun will appear

to be white. An observation made by Bottlinger also fits our explanation excep-

tionally well. He observes that α-Lyrae (color temperature of about 10,000�)
actually appeared blue when near a yellowish-red flame. In that situation the

otherwise predominant rod color was replaced by the color of the flame. We

know from a famous experiment with colored shadows that in such a context

even ordinary daylight appears blue.

What about red stars from 2000� to 3000�? Here the mere hypothesis of contrast

is insufficient. A subjective displacement towards red on the basis of contrast with

the twilight color is ruled out; we have established that such a displacement in

judgment never moves towards green in normal trichromats. Even an explanation

in objective terms seems to be ruled out, though the light of these stars does not

correspond to a terrestrial light source of the same temperature, because of their

strong absorption band in the short-wave region of the spectrum. One can easily

overlook the fact that the resulting color cannot really move back into ‘deep red’.
Bottlinger’s most interesting demonstration with the artificial star and an incandes-

cent lamp also shows it is not the absorption bands which cause reddening, but

rather the conditions of observation.

Yet now this subjective reddening can be explained very simply in another way.

We have only to free ourselves from the admittedly widespread conception that the

photopic color of a white-hot body – say a metal filament lamp – is actually white.

If that were the case, then one would not have to fit it with a fairly strong blue or

blue-green filter in order to convert it to a ‘daylight lamp’. For example, even to
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untrained judgment a ‘Philips Argenta’ lamp appears to glow a warm golden-

yellow in daylight. That is, it appears yellow with a distinct tinge of reddish color

– and I have had this confirmed by normal trichromats. In what follows, it is

important to note that a greenish-yellow never occurs in grey-body radiation.

The sequence of colors that emerges with rising temperature proceeds from

reddish-yellow through yellow to white. This occurs without crossing over the

border from pure yellow to green. It also seems that when this sequence is extended

beyond the temperature of our sun, no hue emerges with a preponderance of green –

in the sense of the three-component (trichromatic) theory. Rather, only greenish-

blue to bluish hues occur – naturally less saturated colors.

Having said that much, let us recall the long-known Bezold-Br€ucke
phenomenon.(e) This consists of a characteristic transformation of the spectral

color sequence when the intensity of light is lowered substantially. The spectrum

becomes divided into three almost monochrome regions: red, green, and violet.

Two abrupt transitions emerge between red and green, and green and violet. The

most striking part is the radical compression of the yellow region, in which all

reddish-yellow hues transition towards red, and all greenish-yellows transition

towards green. This is not some business or phenomenon of twilight (scotopic)

vision. When that is involved, then the entire spectrum loses its color (that is, it

assumes the twilight color throughout). Von Kries proposes that the phenomenon is

strongest in a small visual field with maximum exclusion of the process of dark

adaptation. According to the trichromatic theory it is based on the following: with

the lowering of light intensity, the two weaker contributions of fundamental

sensation dip below threshold, and only the strongest component remains active.

Consequently any color will approach that fundamental color, which is most

strongly represented in it. In the process the color will gain in saturation. Under

the trichromatic theory, that is because a lack of saturation (or an ‘admixture of

white’) depends on the three fundamental components acting in equal measure to

produce a common effect. To clarify: the weakest component is acted upon as well,

while the advantage of the two stronger components over the weaker one will

determine the color characteristic of the result. Based on this idea, F. Exner(f) was
able to locate three of the four intersection points of the so-called fundamental

response curves. Confirming what A. K€onig had found by completely different

methods, Exner was able to locate the three with heightened precision by means of

the Bezold-Brücke effect.
A physiological explanation is now at hand for the fact that cooler stars appear to

have such a pronounced red color. Conditions for the emergence of the Bezold-

Brücke phenomenon are ideally fulfilled by the minimal light level of the tiny field

subtended by the star, and by its extremely small size. The star is seen foveally

insofar as it is seen as colored at all. Then there must be a strong approximation of

the color, towards the fundamental color which is dominant in it. For reddish-

yellow that is fundamental red. (According to K€onig and Exner, even sodium

yellow – which we hardly experience as reddish – has something like 33% more

fundamental red than fundamental green.)
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The red which arises this way is a fairly saturated red, aligned more or less with

fundamental red. It is no longer very strongly changed by contrast with twilight

color, as is otherwise to be expected from experience. Also, fundamental red is

known not to be pure red in psychological terms. Rather it is somewhat bluish. In

the context of rod stimulus it ought to be experienced as pure red.

Following on that explanation, yellowish-green, greenish-yellow or bluish-green

stars ought to appear saturated green. There may not be such stars however, at least

not along the normal scale of black-body temperatures. Such a claim could easily be

substantiated using artificial starlight. It should be demonstrable as well that a truly

white star – for example one produced by a good daylight lamp – appears yellow

(by its contrast with rod blue) rather than red as Bottlinger’s incandescent-lamp star

had appeared.

Also, the pure blue of α – Lyrae seen beside a nocturnal flame is fully

understandable only with reference to Br€ucke’s phenomenon. Objectively, the

color of an A – star still must be a fairly unsaturated, somewhat greenish blue.

If one could raise the brightness of a red star significantly, its saturation of red

would needs be diminished. Its color would necessarily move towards yellow. I

made such an observation on the occasion of the last opposition of the planetMars;
I do not know if the observation would be confirmed by normal trichromats. And

now some light is cast, too, on the paradoxical state of affairs that red stars appear to

be so little red to us ‘red-sighted’ people. Namely our anomaly consists in this: that

our ‘green sensitivity curve’ approaches our ‘red curve’. That is, the ‘green curve’ is
shifted towards longer wavelengths. As a consequence, to us all reddish-yellow

hues contain relatively more fundamental green and less fundamental red. The

relation of the two components is nearer to identity than for normal observers. Since

the Bezold-Brücke shift affects the difference of these two components, it is clear

that the shift will apply to this region of the spectrum less easily and less distinctly

for color-anomalous observers than for normal observers.

In summary it seems to me that a complete explanation of the subjective color of

starlight is provided by the effects of contrast with rod blue, together with the

Bezold-Brücke phenomenon.

By way of a postscript, I would like to add the following note to the contrast

theory. At one point in his Physiological optics, Helmholtz remarks that one might

free oneself of the shift in color judgment under artificial illumination. By means of

a black-lined tube, that might be achieved by fading a small patch to black within an

illuminated ‘white’ field. The ‘entoptic light of the retina’ would then serve as a

comparison, superimposed on the dark background of the tube wall; that compar-

ison would allow the reddish-yellow cast of the area to be recognized. Now I would

not like to judge whether the intrinsic activity of the retina really plays a central role

in this, or better, if the stimulus is just light weakly reflected from the tube wall. At

any rate I think it extremely likely that the quality of color for real entoptic light

coincides substantially with our twilight color. Then the objection can hardly be

raised to the explanation given above for the color of starlight, that the light of the

night sky is altogether too weak to elicit a noticeable activation of the rods.
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I would like to return shortly in another work to the remarkable difference in

twilight color that was alluded to above, between normal and anomalous trichro-

mats. I believe this may be explained solely by a difference in photopic systems.

The rod color is ‘really’ one and the same for both at the same time – and perhaps

for all eyes as well. It is known that the spectral excitation curve of the rod system is

not altered in the least by any kind of disturbance of the color sense. Neither does

the variation with brightness need to be real, as it was above for anomalous

observers; that is, it does not really need to be a variation in the twilight color.

Rather, it may be a transformation of the comparison field due to the Bezold-Brücke
effect. The unchanging nature of the rod apparatus ought to be closely tied to its

phylogenetic development – as should be the particular color characteristic of the

sensation it delivers.(g)
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e. Br€ucke, M.E. Über einige Empfindungen im Gebiet der Sehnerven.

Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien,

mathematisch-naturwissenschaftliche Klasse, Abteilung 2a: Mathematik,

Astronomie, Physik, Meteorologie, und Mechanik, 3, 39 – 77 (1878). ; Exner,
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Kapitel 8

Über die subjektiven Sternfarben und die

Qualität der Dämmerungsempfindung

Neulich hat an dieser Stelle Herr BOTTLINGER1 in sehr treffender Weise auf den

Widerspruch hingewiesen, welcher besteht zwischen der Temperatur der Fixsterne

und der Farbbezeichnung, die wir ihnen geben, im Vergleich mit der

Farbbezeichnung irdischer Lichtquellen von bekannter Temperatur. Mir ist vor

einiger Zeit der Widerspruch gleichfalls aufgefallen, und es hat sich mir eine

Erklärung aufgedrängt, die ich durch einige Versuche, die Qualität der

Dämmerungsempfindung betreffend, zu erhärten suchte. Obwohl dieselben noch

nicht v€ollig abgeschlossen sind, m€ochte ich doch kurz über den Gedankengang

berichten, da das Problem einmal zur Diskussion gestellt ist.

Es ist schon oft, so auch von BOTTLINGER in der erwähnten Note, betont

worden, daβ „der Begriff Weiβ sehr variabel ist“. Er verschiebt sich gegen den im

gesamten Gesichtsfeld vorherrschenden Farbton; wenn wir eine nicht allzu stark

gefärbte Brille aufsetzen, bemerken wir nach einiger Zeit kaum mehr etwas davon,

daβ alle Farben gegenüber ihrem normalen Aussehen verändert sind. Das ist zu

einem Teil gewiβ auf dieselbe „spezifische Ermüdung“ zurückzuführen, die sich in
den negativ komplementären Nachbildern äuβert; teilweise – und wahrscheinlich

zum gr€oβeren Teil – handelt es sich aber wohl um eine rein psychologische

Angelegenheit, eine Verschiebung des Farburteils. Es folgt dies daraus, daβ stark

gesättigte Farben im Simultankontrast nicht etwa stärker sondern schwächer

induzierend wirken als wenig gesättigte – man denke an den bekannten

Florversuch.

Die beim Betrachten eines Sternes im Gesichtsfeld vorherrschende Empfindung

ist nun normalerweise die des Dämmerungssehens oder, theoretisch gesprochen,

die der Stäbchen. Man pflegt sie als „Stäbchenweiβ“ oder „Stäbchengrau“ zu

bezeichnen. In Wahrheit ist sie zwar einfärbig, aber keineswegs farblos,

d.h. nicht identisch mit einem Grau des Tagessehens, sondern bläulich. Daβ wir

von Erwin Schr€odinger, Zürich. Die Naturwissenschaften Dreizehnter Jahrgang 1. Mai 1925
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uns dieses Umstandes meist nicht bewuβt sind, liegt offenbar an einer

Urteilsverschiebung von der oben besprochenen Art. Dann ist aber klar, daβ
dabei auch das Urteil über die Farbe eines streng foveal gesehenen Sterns – obwohl
hier, wie BOTTLINGER richtig bemerkt, der Dämmerungsapparat nicht direkt

beteiligt ist – sich gleichwohl mit verschieben wird, und zwar ungefähr in dem

Sinne, daβ die Sternfarbe der zur Stäbchenempfindung komplementären

Farbempfindung näherrückt.
Was wissen wir nun über den Farbton der Dämmerungsempfindung? Es sei

gestattet, uns über diese an und für sich interessante Frage etwas eingehender zu

verbreiten, als für den vorliegenden Zweck gerade unumgänglich n€otig wäre.

Qualitative Versuche von Nagel und v. Kries2 haben gezeigt, daβ die

„Stäbchenfarbe“ jedenfalls sehr merklich blau ist. Eine quantitative Bestimmung

ergab für den deuteranopen (sog. grünblinden) Nagel Gleichheit der

Dämmerungsfarbe mit λ ¼ 480–485 μμ des Tagessehens. Es muβ aber betont

werden, daβ es sich dabei eigentlich nicht um die Bestimmung des Farbtons,

sondern der Sättigung von Nagels Stäbchenempfindung handelt, weil es

bekanntlich für den partiell Farbenblinden überhaupt nur zwei Farbt€one gibt; das

Spektrum ist ihm eine reine Sättigungsreihe von Gelb über Weiβ nach Blau. Es muβ
also für Nagel auch jedes λ < 480, mit passendem Weiβzusatz die

Dämmerungsfarbe kopieren.

Die Wellenlänge für normale Personen festzulegen, hat v. Hauer3 nach einer

eigenartigen und geistvollen Methode versucht. Belichtet man ein gr€oβeres
(überfoveales) Feld der Netzhaut mit starkem Weiβ und setzt die Lichtstärke

dann pl€otzlich herab, so ben€otigt man zur Erzielung einer Farbengleichung mit

einem benachbarten nicht vorbelichteten Feld, auf dem letzteren nicht nur –

selbstverständlich – weniger Weiβ, sondern man muβ diesem Weiβ etwas Blau

zusetzen, und zwar findet Hauer λ ¼ 457, 460, 465 μμ für drei normale

Versuchspersonen. Er deutet dies so: während der starken Vorbelichtung sind die

Stäbchen ausgeschaltet, und es werden nur die Zapfen erm€udet. Nach dem

Herabsetzen der Lichtstärke sind bei der sogleich beginnenden Dunkeladaptation

die Stäbchen auf dem erm€udeten Feld im Vorteil, weil sie hier mit erm€udeten
Zapfen konkurrieren, auf dem Vergleichsfeld hingegen mit nicht ermüdeten. Der
Farbton des Blau ist also die Stäbchenfarbe. Auch wenn diese Deutung zutrifft,

bezieht sich der Hauersche Versuch doch auf einen sehr speziellen Fall: kurze und

unvollkommene Dunkeladaptation – es steht nicht mehr Zeit zur Verfügung als die
Weiβermüdung der Zapfen andauert – bei noch starker Beteiligung des

Tagesapparates. Auf die Empfindung des stark dunkeladaptierten Auges, wie es

beim Sternesehen meistens vorliegt, lassen sich daraus wohl keine sicheren

Schlüsse ziehen.
Sich von der Bläue der Dämmerungsfarbe, zunächst rein qualitativ, zu

überzeugen, gelingt leicht mit den einfachsten Mitteln. Ich bediene mich dazu

zweier rechtwinkelig aneinandergesetzter Messingrohre von etwa 2 cm

Durchmesser und je 20 cm Länge, die an der Knickstelle unter 45� eine weiβe
Fläche enthalten, im übrigen aber mit schwarzem Sammet ausgekleidet und mit

zahlreichen Blenden versehen sind. An das eine offene Ende des R€ohrensystems
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wird das Auge mittels einer durchlochten steifen Augenbinde und eines

Cameraauszuges aus schwarzem Papier vollkommen lichtdicht angesetzt, das

andere Ende dient zur regulierbaren Beleuchtung der weiβen Sichtfläche mit

geschwächtem Tageslicht, dieses Ende wird durch eine zweite weiβe Fläche unter
45� abgeschlossen, der gegenüber das Rohr ein kleines regulierbares Loch hat.

Setzt man nun das eine Auge an diese Vorrichtung an, so sieht man nach einigen

Minuten Dunkeladaptation bei ge€offneten beiden Augen inmitten des von dem

Hellauge gelieferten Gesichtsfeldes, z. B. des Zimmers, ein Dämmerungsfeldchen

schweben, das man am besten in eine dunkle Zimmerecke projiziert und dann

bequem mit jeder beliebigen Tagesfarbe vergleichen kann. Sehr frappant ist die

relativ groβe subjektive Helligkeit des Feldes, die durchaus mit den vom Hellauge

gesehenen vergleichbar ist. Sehr sch€on zeigt sich das bekannte Aufleuchten beim

Abwenden des Blickes, auch ist die totale Farbenblindheit der Stäbchen durch

Vorhalten farbiger Gläser vor das Beleuchtungsfenster leicht zu demonstrieren.

Der Farbton dieses Feldchens wird von Normalen als ein mattes r€otliches Blau
bezeichnet, etwa wie blasser Flieder. Der Farbeffekt ist noch viel auffallender,

wenn man den Versuch des Abends bei künstlicher Beleuchtung anstellt. Für das
Dunkelauge ist die Qualität der Beleuchtung natürlich irrelevant, aber die

Urteilsverschiebung des Hellauges durch das Gelb oder Rotgelb der künstlichen
Lichtquelle vergr€oβert den Abstand des „Weiβ“ von der ungeänderten

Dämmerungsfarbe.

Um den Farbton quantitativ festzulegen, wurde das Dämmerungsrohr zur

binokularen Durchsicht neben ein Spektrometerfernrohr montiert,4 das statt des

Okulars einen Okularspalt mit vorgesetztem Nicol trug. Das Hellauge konnte auf

der Stirnfläche eines zwischen Kollimator und Prisma eingebauten zweiten Nicols

eine beliebige Spektralfarbe mit seitlich in den Apparat reflektiertem Tageslicht in

variablem Verhältnis und variabler Gesamtintensität mischen und so die Farbe des

Dämmerungsfeldes – vorausgesetzt, daβ sie nicht in die spektrale „Lücke“ fällt –

kopieren.

Es wurden vier normale Trichromaten untersucht. Diese stellten fast immer eine

Wellenlänge kleiner als 430 μμ in der monochromvioletten Endstrecke des

Spektrums ein. Innerhalb dieses Gebietes schwankte die Einstellung stark, was

selbstverständlich ist, weil sich hier der Farbton im Spektrum nicht mehr ändert.

Ein spektroskopisch gut geschulter Beobachter gab an, daβ er eher noch ein wenig

mehr rot in der Vergleichsfarbe wünschen würde, als im Endviolett enthalten ist.

Immerhin kamen bei allen Beobachtern vereinzelt auch Einstellungen λ > 430 μμ,
bis etwa λ¼ 445 μμ (Indigo) vor, niemals jedoch bis zu einem gr€unlichen Blau. Bei

drei von den vier Beobachtern ereigneten sich die Überschreitungen von λ ¼ 430

nach mehr als halbstündiger Adaptation, doch kann man nicht von einem deutlichen

Gang sprechen. Ebensowenig war ein deutlicher Einfluβ der subjektiven Helligkeit
des Dämmerungsfeldes nachweisbar.

Gänzlich abweichend war mein eigener Befund – ich bin anomaler Trichromat,

und zwar deuteranomal – „rotsichtig“. Subjektiv beurteile ich das Feld grünblau,
und dementsprechend liegen auch meine Einstellungen im Cyan, nahe der

Fraunhoferschen Linie F. Da in dieser Gegend der Farbton sehr stark variiert,

8 Über die subjektiven Sternfarben und die Qualität der Dämmerungsempfindung 161



sind sie viel besser reproduzierbar als die der Normalen; dabei zeigt sich ein sehr

ausgesprochener Einfluβ der subjektiven Helligkeit des Dämmerungsfeldes, bei

subjektiv dunklem Feld stelle ich das Vergleichsfeld langwelliger, bei subjektiv

hellem Feld kurzwelliger ein, einerlei ob die Helligkeit durch die

Beleuchtungsstärke, den Adaptationszustand oder durch mehr oder weniger

parazentrale Beobachtung variiert wird. Die äuβersten Grenzen der auf diese

Weise absichtlich variierten Dämmerungsfarbe waren λ ¼ 484 μμ (bei extrem

hellem Feld) und λ ¼ 495 μμ (bei extrem dunklem Feld).

Für unsere gegenwärtige Absicht ist das Verhalten der Anomalen und Anopen

natürlich von untergeordnetem Interesse. Für die Normalen sehe ich als gesichert

an, daβ ihre Dämmerungsfarbe im allgemeinen ein ungesättigtes Rotviolett,

vielleicht noch etwas r€oter als das Endviolett des Spektrums ist, unter gewissen

Umständen, die noch nicht v€ollig geklärt sind, vielleicht gegen Indigo geht, niemals

aber nach Grün zieht.

Läβt nun das Vorherrschen dieses Stäbchenblau oder –violett im Gesichtsfeld

die beobachteten subjektiven Sternfarben verstehen? Zum groβen Teil ja, aber nicht
restlos. Daβ die weiβen Sonnensterne „durch Kontrast“ gelb erscheinen müssen,
leuchtet ein; ebenso, daβ erst Sterne, die erheblich blauer sind, als die Sonne, weiβ
erscheinen werden. Auch stimmt zu unserer Erklärung ausgezeichnet die

Beobachtung Bottlingers, dem α-Lyrae (Temperatur etwa 10,000�) in der

Umgebung eines gelbroten Feuers tatsächlich blau erschien. Dabei war eben die

sonst vorherrschende Stäbchenfarbe durch die Farbe des Feuers ersetzt, und daβ
gegen diese schon gew€ohnliches Tageslicht blau wirkt, wissen wir aus dem

bekannten Versuch der farbigen Schatten.

Wie steht es aber mit den Rotsternen von 2000 bis 3000�? Hier reicht die

Kontrasttheorie allein offenbar nicht aus. Eine subjektive Verschiebung gegen

Rot auf Grund des Kontrastes gegen die Dämmerungsfarbe ist ausgeschlossen, da

wir festgestellt haben, daβ diese für normale Trichromaten keinesfalls gegen Gr€un
zieht. Auch eine objektive Erklärung erscheint ausgeschlossen, obwohl ja das Licht

dieser Sterne wegen der starken Bandenabsorption im kurzwelligen Teil nicht

genau mit dem einer irdischen Lichtquelle von gleicher Temperatur übereinstimmt.

Man überblickt aber leicht, daβ die resultierende Farbe dadurch nicht wirklich ins

„Tiefrot“ rücken kann, auch zeigt der h€ochst interessante Bottlingersche Versuch

mit dem künstlichen Glühlampenstern, daβ nicht die Absorptionsbanden die

R€otung bewirken, sondern die Art der Betrachtung.

Diese subjektive R€otung erklärt sich nun aber sehr einfach auf andere Weise, nur

müssen wir uns von der freilich sehr weitverbreiteten Vorstellung losmachen, es sei

die Tagesfarbe eines weiβglühenden K€orpers, z.B. einer Metallfadenlampe,

wirklich weiβ. Wäre das der Fall, so brauchte man eine solche Lampe nicht erst

mit einem ziemlich starken blauen bis grünblauen Filter zu versehen, um sie in eine

„Tageslichtlampe“ zu verwandeln. Auch nach dem unmittelbaren Urteil erscheint

z.B. eine „Philips Argenta“, am hellen Tage gebrannt, in einem warmen Goldgelb,

d.h. Gelb mit einem deutlichen Zug ins R€otliche – was ich mir von normalen

Trichromaten habe bestätigen lassen. Es ist für das Folgende wichtig zu bemerken,

daβ ein gr€unliches Gelb bei grauer Temperaturstrahlung überhaupt nicht auftritt,
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die Farbe geht mit steigender Temperatur von Rotgelb über Gelb nach Weiβ, ohne
daβ die Grenze des reinen Gelb gegen Grün zu überschritten wird. Auch scheint es,
daβ bei Fortsetzung der Reihe über die Sonnentemperatur hinaus wieder keine

Farbt€one mit dem Hauptanteil Grün – im Sinne der Dreikomponententheorie –

auftreten, sondern nur grünblaue bis blaue, natürlich wenig gesättigte T€one.
Dies vorausgeschickt, erinnern wir an das seit langem bekannte Bezold-

Br€uckesche Phänomen.5 Es besteht darin, daβ die Farbenfolge des Spektrums

bei starker Herabsetzung der Lichtstärke eine eigentümliche Veränderung erfährt,

indem das Spektrum in drei fast monochrome Bezirke: Rot, Grün, und Violett,

zerfällt mit zwei sehr schroffen Übergangsstellen zwischen Rot und Grün, Grün
und Violett. Am auffallendsten ist das v€ollige Zusammenschrumpfen des gelben

Bereiches, indem alle r€otlichgelben T€one gegen Rot, die gr€unlichgelben gegen

Gr€un wandern. Dabei handelt es sich nicht etwa um eine Erscheinung des

Dämmerungssehens. Tritt dieses ein, so entfärbt sich ja das ganze Spektrum

(bzw. nimmt die Dämmerungsfarbe an). Von Kries hebt hervor, daβ besonders

auf kleinem Feld und bei m€oglichstem Ausschluβ von Dunkeladaptation

das Phänomen deutlich ist. Es beruht nach der Dreikomponententheorie

darauf, daβ bei Herabsetzung der Lichtstärke die beiden schwächeren

Grundempfindungskomponenten unterschwellig werden und die stärkste allein

übrig bleibt, wodurch jede Farbe derjenigen Grundfarbe sich nähert, die in

ihr am stärksten vertreten ist; dabei muβ sie zugleich an Sättigung zunehmen,

da ja der Mangel an Sättigung oder das „beigemischte Weiβ“ nach der

Dreikomponententheorie auf dem Zusammenwirken der drei Komponenten in

gleicher Stärke beruht, und zwar natürlich in der Stärke der schwächsten

Komponente, während der Überschuβ der beiden stärkeren über die schwächste

den bunten Charakter der Farbe bestimmt. Auf Grund dieser Vorstellung konnte

F. Exner6 von den vier Schnittpunkten der sog. Grundempfindungskurven, die

A. K€onig auf ganz anderem Wege gefunden hatte, mittels des Bezold-Brückeschen
Phänomens drei mit erheblicher Genauigkeit bestätigen.

Die physiologische Erklärung dafür, daβ die kühleren Sterne so ausgesprochen

rot erscheinen, liegt nun auf der Hand. Durch die äuβerste Kleinheit und immerhin

recht geringe Lichtstärke des Sternscheibchens, das gleichwohl, sofern es

überhaupt farbig erscheint, foveal gesehen wird, sind die Bedingungen für das

Auftreten des Bezold-Brückeschen Phänomens in idealer Weise erfüllt. Es muβ
daher eine weitgehende Annäherung an diejenige Grundfarbe stattfinden, die in der

Farbe vorherrscht, und das ist bei r€otlichem Gelb das Grundrot. (Selbst Na-Gelb,

das wir kaum noch r€otlich empfinden, enthält nach K€onig und Exner noch etwa

33% mehr Grundrot als Grundgrün!)
Daβ das so zustande kommende, dem Grundrot mehr oder weniger

nahestehende, ziemlich gesättigte Rot durch den Kontrast mit der

Dämmerungsfarbe nicht mehr sehr stark verändert wird, ist nach sonstiger

Erfahrung zu erwarten; übrigens ist das Grundrot psychologisch bekanntlich kein

reines Rot, sondern etwas bläulich. Bei „Stäbchenstimmung“ dürfte es gerade als

reines Rot wirken.
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Gelbgrüne, grüngelbe oder blaugrüne Sterne sollten nach dieser Erklärung

gesättigt grün erscheinen. Es gibt sie aber wohl nicht, jedenfalls nicht in der

normalen Temperaturreihe. An künstlichen Sternen dürfte sich die Behauptung

leicht bestätigen lassen. Auch müβte sich zeigen, daβ ein wirklich weiβer Stern,
z.B. mit einer guten Tageslichtlampe hergestellt, nicht wie der Bottlingersche

Glühlampenstern rot, sondern (durch Kontrast mit Stäbchenblau) gelb aussieht.

Auch das reine Blau von α-Lyrae neben dem nächtlichen Feuer ist ganz

verständlich nur mit Berücksichtigung des Brückeschen Phänomens. Objektiv

muβ die Farbe eines A-Sternes noch ein ziemlich ungesättigtes, etwas grünliches
Blau sein.

K€onnte man die Helligkeit eines Rotsternes stark erh€ohen, so müβte die

Sättigung des Rot abnehmen, und es müβte eine Annäherung an Gelb stattfinden.

Ich habe diese Bemerkung am Mars bei seiner letzten Opposition gemacht, weiβ
aber nicht, ob sie von normalen Trichromaten bestätigt wird. Übrigens fällt auch auf

die paradoxe Tatsache, daβ wir „Rotsichtigen“ die Rotsterne überhaupt nur so

wenig deutlich rot sehen, jetzt einiges Licht. Unsere Anomalie besteht nämlich

darin, daβ unsere „Grünkurve“ der „Rotkurve“ angenähert, d.h. gegen langeWellen

verschoben ist. Infolgedessen enthalten alle rotgelben Farbt€one für uns relativmehr

Grundgrün und weniger Grundrot, das Verhältnis der beiden Komponenten ist der

Einheit näher gerückt, als für den Normalen. Da die Bezold-Brückesche
Verschiebung auf der Verschiedenheit der beiden Komponenten beruht, ist es

klar, daβ sie für den Anomalen in diesem Spektralgebiet weniger leicht eintreten

und weniger ausgesprochen sein wird, als für den Normalen.

Zusammenfassend scheint es mir, daβ die subjektiven Sternfarben durch den

Kontrast mit dem Stäbchenblau in Verbindung mit dem Bezold-Brückeschen
Phänomen ihre vollkommene Aufklärung finden.

Nachtragsweise m€ochte ich zur Kontrasttheorie noch folgendes erwähnen.

Helmholtz bemerkt einmal in der „Physiologischen Optik“, daβ man von der

Verschiebung des Farburteils bei künstlicher Beleuchtung sich befreien k€onne,
indem man mittels einer innen geschwärzten R€ohre ein kleines Feld einer

beleuchteten „weiβen“ Fläche sich ausblendet. Das „Eigenlicht der Netzhaut“ auf

dem dunklen Hintergrund der R€ohrenwand diene alsdann zum Vergleich und lasse

die rotgelbe Färbung des Feldes erkennen. Ob nun bei diesem Versuch wirklich

schon die Selbsterregung der Netzhaut die Hauptrolle spielt oder vielmehr eine

Erregung durch das schwache von der R€ohrenwand kommende Licht, m€ochte ich

nicht entscheiden. Jedenfalls halte ich für äuβerst wahrscheinlich, daβ auch die

Farbqualität der wirklichen Selbsterregung mit der Dämmerungsfarbe merklich

übereinstimmt, so daβ gegen die oben gegebene Erklärung der Sternfarben kaum

der Einwand zu erheben ist, das Licht des Himmelsgrundes sei überhaupt zu

schwach, um eine merkliche Erregung der Stäbchen hervorzubringen.

Auf die oben erwähnte merkwürdige Verschiedenheit der Dämmerungsfarbe für
normale und anomale Trichromaten m€ochte ich demnächst in anderem

Zusammenhang zurückkommen. Sie läβt sich, glaube ich, aus der Verschiedenheit
des Tagesapparates allein erklären, während die Stäbchenfarbe selbst „in

Wirklichkeit“ für beide – und wahrscheinlich für alle – Augen die nämliche ist;
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wird doch auch die spektrale Anregungskurve des Stäbchenapparates bekanntlich

durch Farbensinnst€orungen irgendwelcher Art nicht im geringsten beeinfluβt. Auch
die oben am Anomalen gefundene Variation mit der Helligkeit braucht nicht echt,

d.h. nicht wirklich eine Variation der Dämmerungsfarbe zu sein, sondern liegt

wahrscheinlich an einer Bezold-Brückeschen Veränderung des Vergleichsfeldes.

Die Unveränderlichkeit des Stäbchenapparates sowie auch der spezielle

Farbcharakter der von ihm vermittelten Empfindung dürften eng mit seiner

phylogenetischen Entstehung zusammenhängen.7
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Chapter 9

On the Relation of the Tetrachromatic Theory

to the Trichromatic Theory

Abstract The trichromatic and opponent-process theories are two very different

conceptions of the color continuum – perhaps. The formal relation between these

two theories of human color vision (i.e., the three-color and the four-color theories)

may be understood as a mere transformation of variables in color space. A projec-

tive transformation of the color plane unifies the two representations. A simple

diagram can be constructed to illustrate relations of color for both the Young-

Helmholtz trichromatic theory and the Hering opponent-process theory at once.

Schr€odinger adds some remarks on the likely phylogenetic development of color

vision.

Keywords Color vision • Color theory • Color diagram • Trichromatic • Opponent-

process • NCS system • Young-Helmholtz • Fundamental colors • Unique colors •

Opponent-color • Projective transformation • Barycentric • Chromaticity

coordinates • Alychne • Spectral curve • Line of purples • Coordinate

transformation • Spectral distribution function • Color triangle • Twin

coordinates • Dichromacy • Phylogeny of vision • Schr€odinger

There are two very different conceptions of the color continuum. At least, it is plain

that they have appeared to contrast until now. The trichromatic theory is usually

associated with the name of Helmholtz, while the tetrachromatic theory (which is

more frequently called the opponent-process theory) has been staunchly defended

by Hering, though its origins can be traced to Aubert. Helmholtz’s theory main-

tains, in keeping with the undisputed three-dimensionality of the color continuum,

that every color may be thought of as a mixture of three fundamental colors:

fundamental red, fundamental green, and fundamental blue (or violet). Hence the

trichromatic theory stands in clear opposition to immediate intuition, since pure

yellow affords naı̈ve observers a psychologically homogeneous sensation of color

just as do red, green and blue. The naı̈ve observer, try as he or she might, does not

apperceive a mixture of equal redness and greenness, as should be the case on the

trichromatic theory. Likewise the sensation of pure white has nothing to do with any
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of the colors mentioned. Rather it appears homogeneous, not to be analysed further

in psychological terms, though on the trichromatic theory white arises from a

mixture of equal proportions of all three fundamental colors.

In contrast the tetrachromatic theory bears a close connection to the psycholog-

ical color manifold.Hering states that every particular color has, besides a ‘valence
of whiteness’, another two chromatic valences. The first of these chromatic

valences is called a ‘red-green’ valence – which is either red or green for any

specific color – while the second is called a ‘blue-yellow’ valence, which is either

blue or yellow. This addresses two psychological findings: firstly, that sensations of

redness and greenness are incompatible, as are sensations of blueness and

yellowness, and secondly, that every sensation of color can be classified by its

hue as lying between one of the two colors of the first pair and one of the two

colours of the second ‘opponent-color’ pair. An increase in the ‘valence for

whiteness’ corresponds to an increase in brightness, and to desaturation (i.e., a

tendency to white) when other chromatic valences are unchanged. A decrease in the

valence for whiteness corresponds to shading and darkening. Yet if chromatic

valence supervenes on a pure valence for whiteness, then brightness ought not to

remain unchanged; rather a certain ‘brightening’ effect is attributable to redness and
yellowness, and a certain ‘darkening’ effect is attributable to greenness and

blueness.

As is well known, this theory provides the impulse for – or more likely just the

occasion for – Hering’s distinctive biochemical interpretation of visual function,

which still has many supporters today. Surely it seems natural that many psychol-

ogists are among these supporters. Opponents of the theory retort that their claims

may not be parsimonious – in other words, that they have multiplied the variables of

the theory needlessly, at variance with the empirically determined tridimensional-

ity of the color continuum. Hence their theoretical terms may not allow the results

of quantitative color research to be expressed adequately or sufficiently. Von Kries
has clearly taken a conciliatory position in what he calls his ‘zone theory’.(a) In this
theory, the trichromatic theory finds a model in the physiological processes of the

retina; in counterpoint, the tetrachromatic theory would hold true for a more

centripetally located ‘zone’ of the visual system, whereby the latter theory’s closer
connection to the psychologically-defined color continuum would be made

comprehensible.

Von Kries’s twist on the theory is quite plausible, in my opinion. Nonetheless,

what I want to show in this article is completely independent of a deeper explication

of the physiological substrate of visual processing. Simply, it is a matter of

ascertaining that the purely formal relation between the two theories – the trichro-

matic and tetrachromatic theories – can be comprehended as an exceptionally

simple relation, namely, as a mere transformation of variables. This material is

not especially profound from a purely mathematical point of view, but all the same

it has never been expressed with full clarity until now, so far as I know. Certainly

this has not been recognised by many authors; otherwise debate would have

proceeded along different lines. The apparent numerical contrast between the
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two – which through a choice of notation was settled upon as something essential –

may have helped obscure this point.

Consider the standard color triangle of Helmholtz’s theory (Fig. 9.1). The pro-

portions of fundamental colors in a color – which we will call its coordinates,

designated by x1 , x2 , x3 – represent, in geometric terms, the projective or

barycentric coordinates of a point that denotes the color in question. We choose

the ‘centre of mass’ or barycentre (a geometric convention) of the triangle as the

origin of coordinates (in the sense given by projective geometry). Whereas the

coordinates of projective geometry only have meaning as relational quantities,

chromaticity coordinates have the absolute significance that their sum x1þ
x2þ x3 specifies the measure that one must apportion to a color point, in order

to derive the outcome of a color mixture, consistent with the familiar ‘centre of

mass’ construction. A further – and by the way, not entirely necessary – convention

which concerns the independently-chosen units of the calibration lights, is that

white is translated to the centre of mass of the triangle (call this the

‘physiophysical’ convention).
The three chromaticity coordinates of spectral lights in the diffraction spectrum

of terrestrial daylight, distributed as a function of wavelength, are called ‘funda-
mental stimulus curves’ or FSC.(b) By the way, the relevant color points for an

arbitrary spectral distribution of intensity lie on the dashed curve of Fig. 9.1.

One can relate the spectral colors, and then naturally, all other colors at the same

time, not only to the triangle of reference that has been established (which indeed

should be accorded special significance in Helmholtz’s theory, because of investi-
gations carried out with dichromats), but also one can relate them to arbitrarily

Fig. 9.1 K€onig’s color triangle. (Reproduced from Schr€odinger 1925)
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chosen triangles. As is well known, this is simply a linear homogeneous transfor-

mation of coordinates. Of course the form of the FSC is changed, though each new

FSC can be superposed on the original curve (with certain constant coefficients).

One may ask whether or not the triangle of reference can be given such a form that

the obtained FSCs can be pronounced to be Hering’s valence curves. To this end

they would need only to satisfy certain qualitative constraints, as I have suggested,

since quantitative findings for the valences of Hering’s theory have not been

established.

Hering’s valence measures follow this qualitative trend across the spectrum:

homogeneous long-wave lights, from the red end of the spectrum up to λ ¼ 575 μμ
(unique yellow) have first an increasing, then a diminishing red valence, and

increasing yellow valence besides. Just at unique yellow, red valence crosses

over to become green valence. Up to λ ¼ 495 μμ (unique green) yellow valence

diminishes as green valence increases, and from that point up to λ ¼ 472 μμ
(unique blue) green valence diminishes as blue valence increases. From there,

red valence again takes the place of green valence, it traverses a secondary peak,

and then disappears at the same time as blue valence, at the violet end of the

spectrum. Unique yellow and unique blue are complementary colors, that is, they

lie on a line on the color triangle through the point assigned to white. There is no

physically homogeneous unique red; unique red is represented by extreme spectral

red with a small portion of blue added, which makes the mixture complementary to

unique green. The ‘whiteness’ valence should have the following property across

the spectrum: it should yield the empirically observable spectral distribution

function for brightness, with regard for a certain’brightening’ influence of the

valences for red and yellow, and a ‘darkening’ influence of the valences for

green and blue.

One may now look for corresponding wavelengths in K€onig’s color triangle, or
better yet in K€onig’s FSCs, in which they are represented accurately as the

abscissae of the points of intersection of each pair of FSCs: first of all, that which

is complementary to K€onig’s fundamental blue (the long-wavelength intersection

of the red and green curves, at approximately λ ¼ 577 μμ); second, the wavelength
that is complementary to fundamental red (the intersection of the green and blue

curves, at approximately λ ¼ 497 μμ); third, the wavelength of fundamental blue

(the short-wavelength intersection of the red and green curves, at approximately

λ ¼ 469 μμ). These three wavelengths correspond to the wavelengths specified

above for Hering’s unique yellow, unique green, and unique blue. These intersec-

tions of the FSCs are fairly precise, as determined by several methods.(c) (On the

other hand, it is well known that the psychological results for a normally function-

ing eye were of first consideration in establishing Hering’s unique colors – where

yellow is pure yellow, without a tinge of red or green, for example.) – In this way

the nearly exact correspondence of Hering’s unique red with K€onig’s fundamental

red is obtained, so we may say the following: Hering’s unique colors correspond

precisely in hue with fundamental red, fundamental blue, and their complements,

while fundamental green (whose wavelength lies very close to that of the
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complement of fundamental red, by the way) does not have any special role in

Hering’s theory.(d)

The lines that intersect the two complementary color pairs just named, and

which intersect at the position of white, are the lines RW and BW of Fig. 9.1. If

one constructs these on the sides of a new color triangle, there is a direct and

unequivocal consequence of the geometrical meaning of projective coordinates: the

two new ‘FSCs’ that are assigned to the new coordinates will exhibit the correct

change of sign for the positive ordinate of one (assigned to BW) and the negative

ordinate of the other. The change of sign is correct in that the FSC will now indicate

red and green valences, respectively, in exactly Hering’s sense. Likewise the

positive ordinate of the other new FSC (assigned to RW) will indicate yellow

valences and its negative ordinate will indicate blue valences. This results from

the fact that each projective coordinate of every point is proportional to the

perpendiculars drawn from that point to one side of the color triangle, and the

sign of that coordinate changes if the point traverses the relevant side of the triangle.

For the moment the choice of a third side for the triangle has not been made. The

question is how this line can be drawn so that the new third FSC can be considered a

valence for whiteness in Hering’s sense.
Since one would like to have a surveyable procedure by which to choose this

third side, let us interpose some steps. We choose the side such that the relevant

spectral distribution function for the brightness of the interference spectrum of

daylight acts as the new third FSC. According to the comprehensive investigation

made by Franz Exner(e) into the estimation of the brightness of arbitrary colors

from their fundamental stimulus weights (in K€onig’s system), this is both possible

and exceedingly simple. Exner says that brightness is expressed through the

fundamental stimulus weights x1 , x2 , x3 by the following homogeneous linear

equation:

h ¼ α x1 þ β x2 þ γ x3 ,

Exner found that the values of these three coefficients, which are to be

interpreted only as ratio values, were:

α ¼ 1 β ¼ 0:756 γ ¼ 0:024 ð9:1Þ

Now one only needs to choose for the third side of the new triangle that line

which satisfies the following equation relative to K€onig’s triangle:

α x1 þ β x2 þ γ x3 ¼ 0: ð9:2Þ

Consequently the third of the new coordinates of this linear expression is indeed

proportional to brightness. The line (Eq. 9.2) is constructed in Fig. 9.1, and, for

reasons to be discussed shortly, is called the ‘alychne’ (which means ‘lightless’).
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In K€onig’s triangle, the lines RW and BW satisfy the equations

x3 � x2 ¼ 0

x2 � x1 ¼ 0:
ð9:3Þ

The conversion formulae, which transform the triangle which is constructed

from the lines just mentioned, have the following form:

x01 ¼ a ð x3 � x2 Þ
x02 ¼ b ð x2 � x1 Þ
x03 ¼ c ð α x1 þ β x2 þ γ x3 Þ

ð9:4Þ

Here the choice of a, b, and c is arbitrary at first. It is convenient to fix them by

the constraint that

x01 þ x02 þ x03 � x1 þ x2 þ x3 ð9:5Þ

should obtain identically. This leaves unchanged the ‘mass’ with which each color

enters into the ‘centre of mass’ construction. The barycentric coordinates x0i can be

applied to the color continuum as depicted in Fig. 9.1, and interpreted in relation to

the new color diagram, without need or benefit of distortion of the Figure. The

constraint (Eq. 9.5) leads to:

a ¼ α þ β � 2 γ

α þ β þ γ

b ¼ 2 α � β � γ

α þ β þ γ

c ¼ 3

α þ β þ γ

ð9:6Þ

There obtains, by substitution of Eq. (9.1) into Eq. (9.4) the numeric formulae

x01 ¼ 0:960 ð x3 � x2 Þ
x02 ¼ 0:685 ð x2 � x1 Þ
x03 ¼ 1:685 x1 þ 1:274 x2 þ 0:040 x3:

ð9:40Þ

Before we examine this derived representation more closely, let me append a

few remarks about the intriguing line of Eq. (9.2) discussed by Exner, which we

call the alychne.

This line is – as may seem somewhat mystical at first reading – the geometrical

locus of colors of vanishing brightness. Naturally these colors of vanishing

brightness are all virtual; the line does not intersect the surface that represents

real colors. Two such colors have been chosen as fundamental colors in this

representation (Eq. 9.40); the third fundamental color is white. Actually there is
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nothing at all mystical about these colors. What it means to add such a color to a

mixture cannot only be specified, it can easily be accomplished – for example, as on

a color-mixing rotor – more easily than, say, the addition of one of K€onig’s
fundamental colors. It simply means a change in hue (or possibly saturation) with

brightness held constant. So, for example, if one chooses two colored papers of the

same brightness, and combines them in a rotor in various proportions, then all these

mixtures will be distinguished solely by their varying content of a particular color

situated on the line (Eq. 9.2). The position of this color will be maintained while one

brings the line (Eq. 9.2) into intersection with the line which connects the positions

of the two colored papers.

As can be seen, the alychne passes quite close to K€onig’s fundamental blue. That

is a consequence of the small values for brightness γ of fundamental blue. Now it is

common knowledge that the choice of this fundamental blue is pretty much

conventional, since the accuracy of spectral calibration allows for a much broader

range of error than for fundamental red and fundamental green, and since tritanopia

occurs nearly always in severely disordered visual organs, with which sustained and

precise experimentation cannot be carried out. In any case, a very small translation

of the position of blue, which suffices to translate that point on to the alychne, seems

to be in the admissible range. K€onig’s FSCs would then be quite unnoticeably

altered, and one can even see to it that the abscissae of their intersections are

preserved (which positions, of course, have been confirmed by other methods(f)), as

one translates the position of blue outwards along the line BW. This modification

would have the practical advantage, anyhow, that γ would have a value of zero, that
is, one could calculate the brightness of any color from its content of red and green

without consideration of its blue content, which as things stand, contributes almost

nothing to brightness. Also the determination of this small coefficient of blue has

been so inconsistent and unreliable among different observers [Kohlrausch(g)

reports 0.047; Ives(h) reports 0.011 both expressed in terms of α ¼ 1], that it

would not be too risky to appraise these values as error residuals, which indeed

could be found to be negative from time to time. From the standpoint of the Young-
Helmholtz theory, the interpretation that the blue sensation can be attributed a

brightness that is strictly zero – an interpretation which might as well count as

having been demonstrated by experiment – carries considerable significance. The

‘blue process’ of this theory would then be something to be considered essentially

different from the other two processes, insofar as it modifies only the quality of

sensation of light and leaves its intensity unchanged.

I do not want to make use of this observation in what follows, so that it should

not appear that we must, or want to, do violence to the observed data.

Let us return to formula (Eq. 9.40). Figure 9.2 depicts the new ‘fundamental

stimulus curves’ that represent these formulae. The FSCs are the loci of the three

quantities x0i as a function of wavelength for the interference spectrum of daylight.

Here we use K€onig’s original values for the x0i. As predicted, the initial two curves
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are an exact portrayal ofHering’s color valences, if one takes the negative ordinate
of x01 to indicate red valence, and the positive ordinate of the same curve to indicate

green valence. Further, one may take the negative ordinate of x02 to indicate yellow

valence and its positive ordinate to indicate blue valence. The intersections on the γ
axis are unique yellow, unique green and unique blue, while naturally, unique red

cannot appear, since it does not occur in the spectrum. The third curve (whose

ordinate is presented in the Figure with the ordinate to twice its proper scale, for

reasons of space) simply gives the proportion of brightness, and is numerically

identical to Franz Exner’s distribution (loc. cit. p. 40, his Table 4 & Fig. 2) which is

derived from K€onig’s original data by means of his own calculations(i) of the values

(which we have used) of proportions of brightness (α, β, γ). Still, the values of x03
cannot yet be identified asHering’s valence for white, because these – according to
Hering’s followers – should not determine brightness by themselves. Rather, color

valences should have specific brightening or shading effects when they are added

in. It would be simple, and possible at least in at least 12 ways, to modify the

curves by a second linear transformation, so that the initial two curves could be

interpreted as Hering’s color valences, as before, while the third could be

interpreted as Hering’s valence for white. It could be interpreted that way with

due consideration of the putative specific brightness characteristics of the color

valences. In other words one might incorporate the specific brightness effects into

the color valences in a purely formal way. To that end, one needs only to posit

Fig. 9.2 Hering’s valence curves, derived from K€onig’s fundamental stimulus curves. (Rot: red;
Gelb: yellow; Gr€un: green; Blau: blue; Hell: bright) (Reproduced from Schr€odinger 1925)

174 9 On the Relation of the Tetrachromatic Theory to the Trichromatic Theory



x001 ¼ � A x01
x002 ¼ � B x02
x003 ¼ x03 þ A x01 þ B x02
Brightness ¼ x001 þ x002 þ x003 ¼ x03

� � ð9:7Þ

A and B are positive coefficients that are almost entirely arbitrary. Naturally the

positive x001 are to be interpreted as red valences here – exactly opposite to what we

obtained before, and the negative x001 are to be interpreted as green valences;

similarly with x002. Brightness is the sum of trichromatic coefficients; red and yellow

have a brightening effect, while blue and green have a darkening effect. (Of course,

one could just as easily bring about the opposite by applying a negative sign to

A and B. This bizarre interpretation does not lack for proponents in recent literature,
either.(j))

According to the interpretation originally propounded by Hering’s followers,

white valences should be given by scotopic values. Consequently A and B should be

determined such that x003 coincides with the spectral luminous efficiency function for

scotopic vision, which has its maximum at approximately λ ¼ 505 μμ for the solar

interference spectrum. As von Kries has emphasized strongly,(k) this conception of

the scotopic brightness values, as pure white valence independent of the influence

of color valences, is no longer accepted; it is contradicted by the fact that deuter-

anopes show a Purkinje phenomenon in the large magnitude of 1:100 for certain

mixtures that are photopically matched and colorless to the deuteranope, but

without there being a noticeable difference in hue when intensity is diminished.

This phenomenon prevents one from describing the strong difference between

photopic and scotopic brightness in trichromats merely through the exclusion of

color valences. Our present deliberations add something to this argument. On closer

inspection it proves to be impossible to choose the above-mentioned quantities

A and B so that x003 represents scotopic brightness. Otherwise it should be possible to
construct the scotopic brightness function from linear combinations of K€onig’s
original FSCs (with the appropriate positive or negative coefficients). One recog-

nizes almost at first glance that this is impossible, since the maximum of the

scotopic brightness function lies at a point at which all three FSCs have relatively

small values. However, I have tried to fit the curves, in that I have tried to establish a

correspondence at three points: at the peak of the scotopic luminous efficiency

curve and at two positions of medium height. In this way, one arrives at completely

nonsensical values of the coefficients, which confer very large negative values on

other points of the fitted curve.

The only reasonable interpretation of the white valence in the compass of the

tetrachromatic theory may be that proposed by von Kries, namely that they are

values for peripheral vision.(l) It turns out that the disappearance of the quality of

hue in eccentric vision hardly involves any change at all in brightness. A clear

difference is not found between central or parafoveal chromatic brightness, and

peripheral achromatic brightness, provided one light-adapts fully in the determina-

tion of the latter, and if one takes into account the coloration of the macula in the
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case of strict central view.(m) That is just the interpretation of our representation

(Eq. 9.40) in which, besides white, two ‘zero-brightness’ colors on the alychne are

chosen as fundamental colors. At this point, there remains no reason to implement

further the transformation (Eq. 9.7); the x01 that are introduced in (Eq. 9.4
0) appear as

the simplest quantitative expression of the tetrachromatic theory.

This expression has several interesting and serendipitous features. Recently, it

has been emphasized by many authors(n) how much more expedient it is for the

execution of real constructions on the color triangle to use a right-angled triangle

instead of an equilateral one, perhaps with separate scales for the ordinate and

abscissa. Independent Cartesian coordinates for this right-angled triangle can be

plotted simply as:

x ¼ x01
x01 þ x02 þ x03

y ¼ x02
x01 þ x02 þ x03

,

ð9:8Þ

while the quotient corresponding to the third trichromatic coefficient is given by

the sum of trichromatic coefficients, either algebraically as 1 – x � y, or, geomet-

rically, as the deviation of the color point from the hypotenuse [measured in some

suitable unit; the hypotenuse is the line segment that extends between the points

(1,0) and (0,1) on the coordinate axes].

If we perform these operations on the color coordinates x0i, we will arrive at

Fig. 9.3, in which K€onig’s original fundamental colors are incorporated, as well as

the spectral curve. White lies at the origin. The x and y coordinates express content
of green, red, blue, and yellow, each according to their sign. The distance of a point

from the hypotenuse – which hypotenuse we recognize readily as the alychne –

calibrates the brightness of a unit amount of the relevant color. As may be recalled,

we left this unit (i.e. the sum of coordinates) invariant in the transformation

(Eq. 9.40). Therefore it has the same value as in K€onig’s system, and these are the

masses depicted in Fig. 9.3, which are associated with a color point in the execution

of the ‘centre-of-mass’ construction. – Hence there is a familiar question that can be

answered on inspection of the figure: how do the brightnesses of two (simple or

compound) lights behave in a complementary mixture? One only has to divide the

distance of each of the lights from the alychne by its distance from the position of

white. If one wants to find two complementary colors of equal brightness, one will

find that they lie on a conic section, which has the position of white as its focus and

the alychne as its directrix.

These are relatively trivial consequences, which by the way, already hold true

mutatis mutandis for K€onig’s color triangle, once the alychne has been constructed

in accord with Exner’s data. The change of geometrical notation is merely meant to

achieve this simplification: that the two altitudes of K€onig’s triangle are now

perpendicular to one another, and that the alychne, whose construction was com-

paratively troublesome before, since it required the use of special values of α, β, and
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γ, now just becomes a 45� line. One might expect that now K€onig’s triangle has lost
its simple character as a consequence, since it can only be transposed to the

Figure by recourse to the numeric constants α, β, and γ.
Quite remarkably, that is not the case. K€onig’s triangle of primaries red, green,

and blue (Fig. 9.3) whose vertices lie (according to formula (Eq. 9.40)) on the points
(1,0,0), (0,1,0), and (0,0,1) of the untransformed coordinates, proves to be right-

angled. The vertex of its right angle is at fundamental red. This happens purely by

chance, one might say, or in consequence of happenstance numeric values of the

coefficients of (Eq. 9.40). These are dependent on Exner’s empirically-derived

coefficients of brightness α, β, and γ, respectively. In the same way, the legs of this

triangle prove to stand in the relation 1:
ffiffiffi
2

p
to one another. That is not simply a

new-found chance occurrence, however. Rather it is a necessary consequence of the

former state of affairs, when one reflects that the x and y coordinates of the vertices
of K€onig’s triangle must have the following form (according to Eqs. (9.4), (9.5),

and (9.8)):

0; � bð Þ

Fig. 9.3 Hering’s color values in terms of units plotted as independent Cartesian coordinates.

(Urgr€un: unique green, Gr€undgr€un: fundamental green; Urgelb: unique yellow; Urblau: unique
blue; Gr€undblau: fundamental blue; Gr€undrot: fundamental red; Urrot: unique red) (Reproduced
from Schr€odinger 1925)
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�a; bð Þ
a; 0ð Þ

And one may add that the particular values of α, β, and γ only specify these

quantities:

a ¼ 0:960

b ¼ 0:685

Once this is recognized, one may consider that if a right angle should occur at

fundamental red, then the two right triangles that lie under the x-axis, which are

components of the larger right triangle whose hypotenuse lies on the x-axis, must be

similar both to the larger triangle and to each other. (Conversely, if these two

triangles are similar to each other, then a right angle occurs at fundamental red, and

the two triangles are similar to the larger triangle of which they are the compo-

nents.) Then the legs of these two smaller triangles stand, in absolute value, at

a=2, b on the left

b , a on the right

This similarity then implies:

a ¼ b
ffiffiffi
2

p

This relation obtains in the above-mentioned numeric values to an accuracy of

less than one percent. Then the smaller (right-hand) leg of K€onig’s triangle is:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ b

ffiffiffi
3

p

and its larger (left-hand) leg is

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2=4ð Þ

q
¼ b

ffiffiffi
6

p

K€onig’s triangle is therefore similar to all the aforementioned triangles; likewise

it has the proportion of sides 1:
ffiffiffi
2

p
, as was claimed.

If one identifies the legs of K€onig’s triangle with unit scales of mass on the

abscissa and ordinate of a right-angled coordinate system that is formed by those

legs, then the Cartesian coordinates of color points have the following interpretation

relative to that coordinate system:
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x3
x1 þ x2 þ x3

,

x2
x1 þ x2 þ x3

,

which are K€onig’s values of blue and his value of green expressed in terms of the

sum of coordinates, respectively. The corresponding quotient for K€onig’s value of
red is easily recovered as the sum of coordinates by subtracting both these quan-

tities from 1 (or alternatively, by distance from the hypotenuse of K€onig’s triangle).
Our representation achieves the following, then: it depicts color valence

according to theHelmholtz-K€onig trichromatic system and color valence according

to Hering’s tetrachromatic system in one diagram. It even depicts both in their

simplest form, the form most convenient for practical geometric constructions. In

this form,Hering’s coordinate axes are simply the altitudes of K€onig’s right-angled
triangle. At the same time, this presentation brings the brightnesses of all (simple

and compound) lights – according to Exner’s measurements – to an immediately

perspicuous form. The very possibility of this theoretical consolidation depends

upon the empirical values of the specific brightness function for the fundamental

colors, as they have been determined by Exner and, above all, on the relationship

between the brightnesses of green and red (as we shall see in a moment).

In order to construct this twin system of coordinates, still another particular

datum is required besides those already ascertained – for example, that fundamental

blue must have its position at x ¼ 0.960. This necessity would have been

transcended, had Exner’s value for γ been exactly zero, instead of 0.024, as it

is. For in that case fundamental blue would lie on the alychne, and consequently be

found at x ¼ 1. I have already alluded to the fact that no experimental observation

bars such a small translation of fundamental blue (which is accompanied by a small

conversion of K€onig’s red and green curves). I have attributed almost no conse-

quence to this remark, in order not to create the suspicion that the desired simpli-

fication depends on this step. I will not use this method even now, but I will use a

still simpler method. It appears to me that the real but small value of γ, which has

been derived from Exner’s experiments with color rotors, is still not a sufficiently

secure reference point for any conjecture how fundamental blue might be translated

in order to produce a better approximation to a brightness-free color, as we have

determined it to be already. In practise the insignificant brightness of blue, which

has been used conscientiously in calculations until now, proves to be so

unimportant that there is hardly an experimental result that could be used to

claim definitively that it would be a mistake simply to omit it. The daylight

brightness function that has been calculated by Exner is modified extremely little

by exclusion of the brightness of blue, much less than the not wholly insignificant

deviation of the theoretical from the obtained brightness function that is found at the

short-wave end of the spectrum (in addition, this latter deviation is diminished by

the exclusion of the brightness of blue!). If with these most saturated of blue hues,

contribution of the blue content to brightness cannot be proved with certainty, it can
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also be observed how much less this is the case with other colors. We have already

intimated above that Ives finds a value for blue that is less than half as large as that

which Exner finds; in contrast we may add that they are completely in accord in

reporting the important value for green – Ives has this as 0.750 and Exner has it as
0.756 (the value of red is constant and set exactly to one, as above).

Shortly put, we think ourselves justified for the moment in assigning γ ¼ 0, even

without compensating for this by modification of the FSC. The numeric coeffi-

cients in equation (Eq. 9.40) become:

x01 ¼ x3 - x2

x02 ¼ 0:708 x2 - x1ð Þ ¼ 1ffiffiffi
2

p x2 - x1ð Þ

x03 ¼ 1:708 x1 þ 1:292 x2 ¼ 1 þ 1ffiffiffi
2

p
� �

x1 - 2 -
1ffiffiffi
2

p
� �

x2 ,

ð9:9Þ

The mutual perpendicularity of the two coordinate axis pairs of Fig. 9.3 is not

only maintained, but becomes still more exact, in that the
ffiffiffi
2

p
ratio holds with

greater accuracy for the new coefficients.

1 : 0:708 ¼ 1:41 . . . ¼
ffiffiffi
2

p

If one poses the question more closely how this relation might come about, with

the aid of Eqs. (9.4) and (9.6), one finds for (α ¼ 1, γ ¼ 0) that:

2 - β

1 þ β
¼ 1ffiffiffi

2
p

or, numerically,

β ¼ 5� 3
ffiffiffi
2

p
¼ 0:75736 . . . observed : 0:756ð Þ:

We may attribute the slightly errant value for the observed brightness of green to

rounding error.

All previously established conventions now become completely superfluous to

the production of this new diagram (the old ones are troublesome, despite their

apparent simplicity, since they must always be established numerically for some

20 points along the spectrum). The procedure is as follows: one plots color

coordinates for the spectral colors, or any colors of interest, in a right triangle

scaled to the dimensions 1:
ffiffiffi
2

p
, and puts the relative value of blue (that is, the value

divided by the sum of coordinates) as the abscissa, and the relative value of green

as the ordinate. Then one erects a pair of mutually perpendicular and intersecting

altitudes on this triangle; for both of these the distance between the positions of

white and blue is taken to be unity. Finally one draws Exner’s line through the
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position of blue, inclined at 45� to the two altitude lines. This Fig. 9.4 expresses the
K€onig-Helmholtz valences,Hering’s valences, and the brightnesses of colors all in

one, in the same way as in Fig. 9.3. The difference of the two figures should lie

in the degree of precision that is attained with the data which have been employed

to date.

I would like to leave the matter at that provisionally, and not deliberate on

whether the quite special simplification of Fig. 9.4 – through the inclusion of the

particular Exner-Ives numeric value for the relative brightness of green – bears

deeper meaning for the understanding of the visual process. It ought to be men-

tioned that Kohlrausch (loc. cit.) has found a fairly deviant numerical value for the

brightness of green, namely 0.618 (compare 0.756) and too, that Abney(o) has
claimed large individual differences in the coefficients, though these latter, to be

sure, are not derived from wholly unobjectionable methods. These methods have

led him to the paradoxical claim that anomalous trichromacy may consist merely

in the abnormal relation of the brightnesses of red and green. (The truth is that it is

necessary on a logical basis that coefficients of brightness can have no influence on

precise matches of colors, that is, if it is experimentally demonstrated that two

individuals fail to recognize each other’s color matches,(p) then the adequate

theoretical expression of this fact can never consist merely in a difference of

those brightness coefficients.)

Fig. 9.4 The direct

construction of Fig. 9.3

(largely unsimplified) from

K€onig’s untransformed

data. (Reproduced from

Schr€odinger 1925)
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With another value of the coefficient for green, that is, another than that given

by Exner and Ives, one is always able to arrange the construction of Fig. 9.4 such

that the altitudes of the right-angled K€onig triangle cross each other at a right angle.
One can easily assign them the same proportion of

ffiffiffi
2

p
:1 but thenHering’s two axes

do not have the same scale, and in consequence the alychne is no longer a 45� line
with respect to Hering’s axes.

With the same reserve respecting an interpretation that might run deeper,

I would like to allude to a further remarkable circumstance, namely that in

Fig. 9.4 the descending branch of the spectral curve nestles extremely closely to

the hypotenuse of a right isosceles triangle, which has RB as its horizontal base.

To return to the argument, it appears to me of undoubted importance for a deeper

understanding of the visual system to know that fundamental blue is a brightness-

free color – be it as it has been assumed here, or be it replaced by another that has as

much justification for its position. If this is right, then the three ‘components’ of the
visual system may not be all of the same kind, and the representation suggested by

theory, that the three components play a symmetric role, is invalidated. This could

be noteworthy in the search for a physiological substratum for these visual

functions.

II.

Let us now consider briefly another perspective on the relation of the trichro-

matic theory to the opponent-process (tetrachromatic) theory. For the moment I will

forebear from drawing direct reference to the graphical construction which has just

been developed.(q)

The principal contrast between these two conceptions had initially been

presented as follows: according to one, white and yellow are presented as psycho-

logical elements that are almost equipotent (in the case of white) or completely

equivalent (as for yellow) to the three other colors (namely red, green and blue). By

contrast, according to the other, white and yellow represent only the simplest of

mixtures: respectively, 1:1:1 (by definition) and 1:1:0 (empirically).

Now if one considers the phylogenetic origins of a light-perceiving organ, one

arrives at an almost self-evident conjecture: that in its earliest origins its function

would be restricted to detecting some sort of electromagnetic radiation, but natu-

rally only radiation of a restricted range of frequencies. That much is clear from the

enormous differences in physical effects of radiation ranging from radio waves to

gamma rays. A second stage of adaptation could be considered, should the organ

start to react differently – in a qualitative way – to different frequencies within this

range. In this respect a course of development like that of the ear is ruled out in

advance – in which ‘separate’ or distinct responses develop as finely graded steps

for each small range of frequencies. That is ruled out for a light-sensitive organ,

because it is never exposed to anything like pure frequencies under natural condi-

tions. (If somehow thin layers of self-luminous gases were to play an important

biological role, the situation might be different.) Then since preconditions are

lacking for the development of a capacity to discriminate individual frequencies

by separate mechanisms, another course is more likely. That is the development of a
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summary capacity to discriminate, where any preponderance of either short-wave

or long-wave components (compared to the ‘normal’makeup of light, i.e., sunlight)

becomes a cue, a distinctive feature of sensation. This cue forms the blue-yellow

scale, whose balance point is neutral white. The elemental simplicity of this scale is

not lost as deviations from the normal gradually acquire the character of sensations

themselves, in turn. The end state is dichromacy, which we observe in people with

partial colorblindness, in the peripheral retinas of color-normals, and apparently

also in many animals (e.g. insects).

In full analogy to this step, another step leads to the state of trichromacy. The

division of scale that had been based on the preponderance of short wavelengths or

long wavelengths, and which had been applied to the entire visible spectrum, is

replicated so that the division is applied solely to the range of long-wavelength

lights. Then yellow is sundered into red and green, as white had sundered into blue

and yellow. Yellow does not stand to lose its essential chromatic quality in this new

differentiation, just as white did not surrender its quality as a color before. Yellow is

to the pair red and green what white is to the color pair blue and yellow: that is, the

neutral point of their transition one to another.

This representation of a succession in development of the color sense is not

something to be proven by strictly quantitative methods. Yet to me it seems to

reveal the roots of the controversy surrounding the ‘elemental’ nature of white and
yellow, and their role as fundamental sensations. White and yellow really are

fundamental as sensations – sensations not of recent but of ancient origin. One

emerged from a monochromatic stage, and the other from a dichromatic stage.

Among the fundamental sensations which remain ‘undifferentiated’, one (blue)

emerged from the stage of dichromacy. The other two (red and green) are the

most recently acquired. This explains why the latter are more subject to impair-

ments and ‘regression’. It also explains why a disturbance of the ‘blue-sense’ does
not occur in isolation as an anomaly of physiology; under the trichromatic theory

this should be as likely as any other. The line of descent or phylogeny evinces no

such stage of development. The failure of a ‘blue-yellow’ process is regularly

accompanied by failure of the ‘red-green’ process; this presents itself as complete

congenital colorblindness. In fact cases have been discovered for which this visual

condition is not based on rod cells, but on a degeneracy or as one might say, on an

atavism (a reversion to earlier type) of the photopic mechanism.(r)

If this interpretation is right, the peripheral region of the retina can almost be said

to present a map of ancestral modes of vision, with the oldest forms lying furthest

out in the periphery. Given the biological importance of foveal vision, it seems

entirely reasonable that more recent differentiation would originate in the fovea,

and then radiate gradually to the periphery.

Although the present work is of a purely theoretical nature, I would like to take

this opportunity to offer my deepest thanks to the Stiftung f€ur wissenschaftliche

Forschung at the University of Z€urich. Through its generosity, it has been

possible for me to engage in the experimental study of several problems in the

domain of color. This circumstance has been the stimulus for the present theoretical

investigation as well.
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Notes

a. Compare, for instance Kries, J. von. 3. Gesichtsempfindungen, XII. Übersicht

der Tatsachen, Ergebnisse für die theoretische Auffassung des Sehorgans:

Zonentheorie. In: Wilibald Nagel, Ed. Handbuch der Physiologie des Menschen:

Physiologie der Sinne, 3(1). Braunschweig: Vieweg und Sohn, 269 – 274 (1905).

Also as Kries, J. von. Die Gesichts-Empfindungen und ihre Analyse. Leipzig:

Viet & Comp., 178 Seite (1882). [Gelangt gleichzeitig als Supplementband –

Band 2 – zur physiologischen Abtheilung des Jahrganges 1882 des Archives für
Anatomie und Physiologie zur Ausgabe.] This foundational article will be cited

as “J. v. Kries, GE” in what follows. [ff. 1, p. 472 original]

b. K€onig, A. & Dieterici, C. Die Grundempfindungen in normalen und anomalen

Farbensystemen und ihre Intensitätsverteilung im Spektrum. [Fundamental stim-

uli of normal and anomalous color systems, and their intensity distributions

across the spectrum] Zeitschrift für Psychologie und Physiologie der

Sinnesorgane, 4, 241 – 347 (1893). K€onig, A. Gesammelte Abhandlungen.

Leipzig: Johann Ambrosius Barth (1903). [ff. 1, p.473, original]

c. Cf. Reports such as: Exner, F. Über die Grundempfindungen im Young-
Helmholtz’schen Farbensystem. Sitzungsberichte der Kaiserliche Akademie

der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse,

Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie, und Mechanik,

111, 857 – 877 (1902). ; Steindler, O. Die Farbenempfindlichkeit des normalen

und farbenblinden Auges. Op. cit., 115, 39 – 62 (1906). Op. cit. Richtera, L. 122,
p. 1915 (1913) & Hauer, F. 123, p. 624 (1914). [ff. 1, p. 474 original]

d. Also see: A. K€onig u. C. Dieterici, in K€onig, A. Gesammelte Abhandlungen.

Leipzig: Johann Ambrosius Barth. footnote to p. 317 (1903). [ff. 1 , p. 475

original]

e. Exner, F., these Reports: Einige Versuche und Bemerkungen zur Farbenlehre.

[Some experiments and remarks on color theory] Sitzungsberichte der

Kaiserliche Akademie der Wissenschaften in Wien, mathematisch-

naturwissenschaftliche Klasse, Abteilung 2a: Mathematik, Astronomie, Physik,

Meteorologie, und Mechanik, 127, 1829 – 1864 (1918). ; Exner, F. Zur Kenntnis
der Grundempfindungen im Helmholtz’schen Farbensystem. [Towards a char-

acterization of the fundamental stimuli in Helmholtz’s color system]

Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien,

mathematisch-naturwissenschaftliche Klasse, Abteilung 2a: Mathematik,

Astronomie, Physik, Meteorologie, und Mechanik, 129, 27 – 46 (1920).

[ff. 2, p. 475 original]

f. See the citations above (F. Exner, O. Steindler, etc.). [ff. 1, p.477 original]

g. Kohlrausch, F.W.F. Beiträge zur Farbenlehre II. Die Helligkeit der

Pigmentfarben. [Articles on color theory II. Brightness of pigment colors]

Physikalische Zeitschrift, 21, 423 – 440 (1920). [ff. 1, p. 478 original]

h. Ives, H.E. The transformation of color mixture equations from one system to

another. II. Graphical aids. Journal of the Franklin Institute, 195(1), 23 –

44 (1923). [ff. 2, p. 478 original]
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i. Exner, F., these Reports: Zur Kenntnis der Grundempfindungen im

Helmholtz’schen Farbensystem. [Towards a characterization of the fundamental

stimuli in Helmholtz’s color system] Sitzungsberichte der Kaiserliche Akademie

der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse,

Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie, und Mechanik,

129, p. 40ff., the inscribed curves of Table IV and Figure 2 (1920). Concerning

the additional corrections to K€onig’s FSC which Exner applies: I am not able to

make use of them. The reason is that some flaws are apparent in the resulting

spectral curve of the color diagram (such as the appearance of concavities in the

wrong direction, meaning outwards). [ff. 1, p. 479 original]

j. Fr€ohlich, F.W. Grundzüge einer Lehre vom Licht- und Farbensinn. Jena: Gustav

Fischer, pp. 46, 51 & 82 (1921). [ff. 1, p. 480 original]

k. J. v. Kries, GE, p. 192ff. [ff. 2, p. 480 original]

l. J. v. Kries, GE, p. 203. [ff. 3, p. 480 original]

m. Cf. the discussion in v. Kries, J. Zeitschrift für technische Physik, 5, 327 &

340 (1924). [ff. 1, p. 481 original]

n. Journal of the Optical Society of America and Review of Scientific Instruments,

6, p. 527, August 1922. – Guild, J. The transformation of trichromatic mixture

data: algebraic methods. Transactions of the Optical Society, 26(2), 95 –

108 (1924). ; Guild, J. The geometrical solution of colour mixture problems.

Transactions of the Optical Society, 26(2), 139 – 174 (1924). [ff. 2, p. 481

original]

o. Abney, W. de W. Colour blindness and the trichromatic theory of colour vision.

Proceedings of the Royal Society London A (Mathematical, Physical, & Engi-

neering Sciences), April 14th, 83(565), 462 – 473 (1910). ; Abney, W. de W. -

Colour-blindness and the trichromatic theory of vision. Part II. Incomplete red or

green blindness. Proceedings of the Royal Society London A (Mathematical,

Physical, & Engineering Sciences), December 15th, 84(572), 449 – 464 (1910). ;

Abney, W. de W. Colour-blindness and the trichromatic theory of colour vision.

Part III. Incomplete colour blindness. Proceedings of the Royal Society London

A (Mathematical, Physical, & Engineering Sciences), December 22nd, 86(583),

42 – 56 (1911). ; Abney, W. de W. Colour-blindness and the trichromatic theory

of colour vision. Part IV. Incomplete colour-blindness. Proceedings of the Royal

Society London A (Mathematical, Physical, & Engineering Sciences), October 2
nd, 87(596), 326 – 330 (1912). [ff. 1, p. 486 original]

p. As is well-known, this is the case for normal and anomalous trichromatic

observers. [ff. 1, p. 487 original]

q. See also: Schr€odinger, E. Über den Ursprung der Empfindlichkeit des Auges.

Die Naturwissenschaften, 12(45), November, 925 – 929 (1924). [ff. 1, p. 488

original]

r. Exner, F., these Reports (2a), 131, p. 636 (1922). [ff. 1, p. 490 original]
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Exner, F. Über die Grundempfindungen im Young-Helmholtz’schen Farbensystem.

Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien, mathematisch-

naturwissenschaftliche Klasse, Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie,

und Mechanik, 111, 857–877 (1902).

Exner, F. Einige Versuche und Bemerkungen zur Farbenlehre. Sitzungsberichte der Kaiserliche

Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse,

Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie, und Mechanik, 127,
1829–1864 (1918).

Exner, F. Zur Kenntnis der Grundempfindungen im Helmholtz’schen Farbensystem.

Sitzungsberichte der Kaiserliche Akademie der Wissenschaften in Wien, mathematisch-

naturwissenschaftliche Klasse, Abteilung 2a: Mathematik, Astronomie, Physik, Meteorologie,

und Mechanik, 129, 27–46 (1920).

Fechner, G.T. Ueber ein psychophysisches Grundgesetz und dessen Beziehung zur Schätzung der

Sterngr€ossen. Berichte über die Verhandlungen der k€oniglich sächsischen Gesellschaft der
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Schr€odinger, E. Über den Ursprung der Empfindlichkeit des Auges. Die Naturwissenschaften, 12

(45), November, 925–929 (1924).
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