
Chapter 2
Representation of a Stochastic Process

Numerical analysis of engineering problems in a probabilistic framework requires a
representation of some stochastic processes, used for the description of the uncer-
tainties involved in the problem. To this purpose, a continuousmD-nV, in the general
case, stochastic process X(t, θ) needs to be represented by discrete values X i at some
discretization points i = 1, . . . , N . So, the main question becomes: “how can one
determine the optimal approximation process (or field) X̂(·)which will best describe
the original process X(·) with the minimum number of random variables {X i } ?”,
i.e.,

X(t, θ) ≈ X̂(t, θ) = {X i } (2.1)

Since, aswill be shown inChaps. 3 and 4, the computational effort in stochastic and/or
reliability analysis problems is proportional to the number of random variables, the
answer to this question is crucial and comes with respect to some error estimator as
will be discussed later. Along these lines, all SFEM approaches are based on some
kind of representation of the stochastic processes as a series of random variables.
Without loss of generality this description is given for a 1D-1V stochastic process.
The discretization methods can be generally categorized to the following groups:

1. Point discretization methods, where the random variables Xi are values of
X (t, θ) at some given points ti .

X̂(t, θ) = {Xi } = {X (ti , θ)} (2.2)

2. Average discretization methods, where the random variables Xi are weighted
integrals of X (t, θ) over a domain �i .

X̂(t, θ) = {Xi } =
{ ∫

�i

X (t, θ)c(t)d�i , t ∈ �i

}
(2.3)
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where c(·) are corresponding weights.
3. Interpolation methods, where the stochastic process can be approximated by

interpolation at some points. Usually it is implemented in combination with some
point discretization method.

4. Series expansion methods, where the stochastic process is represented as a trun-
cated finite series, expressed as the decoupled product of some random variables
with deterministic spatial functions. The most widely used methods of this cat-
egory are the Karhunen–Loève expansion (KL) and the spectral representation
(SR) methods. Both these methods belong to the family of spectral methods and
X̂(t) is expressed as an infinite series as

X̂(t, θ) =
∞∑
j=1

g j (t)ξ j (θ) (2.4)

where {ξ j (θ)} are random variables considered as the coefficients of the series
and g j (t) are deterministic functions over which the original field is projected.

2.1 Point Discretization Methods

The point discretization methods represent a stochastic process X̂(t, θ) as discrete
random variables at one or more points ti . The value of the process at point i is then
given by

X̂(ti , θ) = Xi = X (ti ) (2.5)

where ti are the coordinates of point i . Themean value and the variance of the random
variable Xi is the sample of the stochastic process at that point. The correlation
between two points can be approximated from the autocorrelation function

Rti ,t j = RX (ti , t j ) (2.6)

All the point discretization methods described next have three advantages

• The covariance matrix can be easily calculated.
• The covariance matrix is positive definite.
• The discrete random variables and the stochastic process have the same probability
distribution function and for this reason the simulation process is independent of
the type (pdf) of the process.

Themain disadvantage of point discretizationmethods in the framework of stochastic
finite element applications is that in order for the properties of the process to remain
constant within a finite element, the size of all the elements must be small enough
(fraction of the correlation length). As explained later (example 1 in Sect. 3.6), this
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condition leads in certain cases to a relative dense finite elementmeshwhich increases
the computational cost.

2.1.1 Midpoint Method

The midpoint method (MP) is implemented in a discretized domain and uses the
value of the stochastic process at the centroid t�i of the element i

X̂(ti , θ) = Xi = X (t�i ) (2.7)

where the t�i coordinates are obtained from the spatial coordinates of the nodes t (i)j
of the element as:

t�i = 1

N

N∑
k=1

t (i)j (2.8)

where N is the number of nodes of element i . For a finite element mesh consisting of
Ne elements the stochastic process X̂(t, θ) is defined by the random vector {Xi } =
[X (t�1 ), X (t�2 ), . . . X (t�Ne

)].

2.1.2 Integration Point Method

The integration method can be considered as an extension of the MP method by
associating a single random variable to each Gauss point of the finite element model
instead of the centroid of each element. The main drawback of this method is that
the total number of random variables involved increases dramatically with the size
of the problem at hand.

2.1.3 Average Discretization Method

The average discretization method defines the approximated process X̂(t, θ) in each
finite element i as the average of the original process over the volume �i of the
element

X̂(t, θ) = Xi = 1

�i

∫
�i

X (t, θ)d�i , t ∈ �i , (2.9)

In a finite element mesh consisting of Ne elements, the approximated process X̂(t, θ)

is defined by the collection {Xi } = [X1, . . . , XNe ] of these Ne random variables. The
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mean and covariance matrix of {Xi } are computed from the mean and covariance
function of X (t, θ) as integrals over the domain �i .

2.1.4 Interpolation Method

The interpolation method approximates the stochastic process X̂(t, θ) in an element
�i using the values of the process at q nodal coordinates t and corresponding shape
functions N (t) as follows:

X̂(t, θ) = Xi =
q∑
j=1

N j (t)X (t j ) t ∈ �i (2.10)

The nodal points do not necessarily coincide with the nodes of the element and the
shape functions N j can be chosen independently of the shape functions of the finite
element model. The mean value and variance of the approximated field within each
element are given by

E
[
X̂(t, θ)

] =
q∑
j=1

N j (t)E[X (t j )], t ∈ �i (2.11)

Var
[
X̂(t, θ)

] =
q∑
j=1

q∑
k=1

N j (t)Nk(t)RX (t j , tk), t ∈ �i (2.12)

Each realization of X̂(·) is a continuous function over �i which is an advantage
over the midpoint method. The main disadvantage of this method is that due to the
interpolation, the marginal pdf of X̂(·) is not fully consistent to the one of X (·).

2.2 Series Expansion Methods

2.2.1 The Karhunen–Loève Expansion

The Karhunen–Loève expansion1 of a zero-mean random process X (t, θ) is based
on the spectral decomposition of its covariance function defined as

CX (ti , t j ) = σX (ti )σX (t j )ρ(ti , t j ) (2.13)

1Named after the probabilist andmathematical statisticiansKari Karhunen (1907–1979) andMichel
Loève (1915–1992).
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where ρ is the correlation coefficient. By definition,CX (ti , t j ) is bounded, symmetric
and has the following spectral or eigen-decomposition:

CX (ti , t j ) =
∞∑
n=1

λnϕn(ti )ϕn(t j ) (2.14)

where ϕn and λn are orthogonal deterministic eigenfunctions and eigenvalues of
the covariance function, respectively, derived from the solution of the homogeneous
Fredholm integral equation of the second kind for the covariance kernel

∫
D
CX (ti , t j )ϕn(t j )dt j = λnϕn(ti ) (2.15)

where D is the domain in which the stochastic processes is defined. The key to
KL expansion is to obtain the eigenvalues and eigenfunctions by solving Eq. (2.15).
Because an analytical solution of Eq. (2.15) is tractable only is special cases, in
general a numerical solution is the only resort.

The eigenfunctions form a complete orthogonal set satisfying the equation

∫
D

ϕk(t)ϕl(t)dt = δkl (2.16)

where δkl is the Kronecker-delta function. Any realization of X (t, ω) can thus be
expanded over this basis as follows:

X (t, θ) =
∞∑
i=1

√
λnϕn(t)ξn(θ), t ∈ D (2.17)

where ξn(θ) is a set of uncorrelated random variables with mean E
[
ξn(θ)

] = 0 and
covariance function E

[
ξk(θ)ξl(θ)

] = δkl which can be expressed as

ξn(θ) = 1√
λn

∫
D
X (t, θ)ϕn(t)dt (2.18)

Equation (2.17) is known to converge in the mean square sense for any distribution
of X (t, θ). The KL expansion of a Gaussian process has the property that ξn(θ) are
independent standard normal variables. For practical implementation, the series is
approximated by a finite number of terms M , giving

X (t, θ) ≈ X̂(t, θ) =
M∑
n=1

√
λnϕn(t)ξn(θ) (2.19)
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The corresponding covariance function is then approximated by

ĈX (ti , t j ) =
M∑
n=1

λnϕn(ti )ϕn(t j ) (2.20)

Ghanem and Spanos (1991) demonstrated that this truncated series is optimal in
the mean square since the eigenvalues λn of Eq. (2.19) are converging fast to zero
(Fig. 2.1). Thus, the choice of the covariance eigenfunction basis {ϕn(t)} is optimal
in the sense that the mean square error resulting from a truncation after the M-th
term is minimized.

The variance error evar after truncating the expansion in M terms can be easily
computed as

evar = Var
[
X (t, θ) − X̂(t, θ)

] = σ 2
X −

M∑
n=1

λnϕ
2
n(t) (2.21)

The righthand side of the above equation means that the KL expansion always under-
represents the true variance of the field.

Analytical Solution of the Integral Eigenvalue Problem

For some types of covariance functions, the Fredholm integral equation of Eq. (2.15)
can be differentiated twice with respect to t j . The resulting differential equation then
can be solved analytically in order to yield the eigenvalues. An example of this class
is the first-order Markov process (see Sect. 1.3.2) defined in the symmetrical domain
D = [−a, a] and has the following covariance function:

C(ti , t j ) = σ 2exp

( |ti − t j |
b

)
(2.22)

http://dx.doi.org/10.1007/978-3-319-64528-5_1
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where σ 2 is the variance and b is a correlation length parameter. For σ = 1 Eq. (2.15)
can be written as

∫ a

−a
exp

( |ti − t j |
b

)
ϕn(t j )dt j = λnϕ(ti ) (2.23)

The eigenvalues and the eigenfunctions in Eq. (2.23) can easily be estimated as
follows:

• For n = odd,

λn = 2b

1 + ω2
nb

2
, ϕn(t) = cn cos(ωnt) (2.24)

where cn is given by

cn = 1√
a + sin(2ωna)

2ωn

and ωn is obtained from the solution of

1

b
− ωn tan(ωna) = 0 in the range

[
(n − 1)

π

a
,

(
n − 1

2

)
π

a
,

]
(2.25)

• For n ≥ 2 and n = even,

λn = 2b

1 + ω2
nb

2
, ϕn(t) = ln sin(ωnt) (2.26)

with

ln = 1√
a − sin(2ωna)

2ωn

(2.27)

and ωn being the solution of

1

b
tan(ωna) + ωn = 0 in the range

[ (
n − 1

2

)
π

a
, n

π

a
,

]
(2.28)

The solution of the Fredholm integral equation of the second kind is analytically
given in the section of solved numerical examples. In this part, we need to mention
that the aforementioned solutions stand for the cases of symmetrical domainsD . IfD
is not symmetrical, e.g.,D = [tmin, tmax ], then a shift parameter T = (tmin + tmax )/2
is required in order to obtain the solution and the Fredholm integral equation is solved
over the domain

D ′ = D − T =
[
tmin − tmax

2
,
tmax − tmin

2

]
(2.29)
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Thus, we have

X̂(t, θ) =
M∑
n=1

√
λnϕn(t − T )ξn(θ) (2.30)

Inspection of Eq. (2.23) indicates that the quality of the simulated stochastic field is
affected by the length of process relatively to the correlation parameter b and the
number of KL terms M . A detailed investigation of these sensitivities was preformed
in Huang et al. (2001) which revealed the following important properties:

1. A low value of a/b implies a highly correlated process and hence, a relative small
number of random variables are required to represent the stochastic process.
Correspondingly, fewer number of terms in the KL expansion are needed for a
qualitative representation.

2. The faster the autocorrelation function converges to zero, the wider is the corre-
sponding power spectral density hence, a greater number of terms is required to
sufficiently represent the underlying process by KL.

3. For a given M , the accuracy decreases as the fraction a/b increases.

For a fixed M , analytical KL gives significantly better results than numerical KL. A
short description of the numerical KL is following.

Numerical Solution of the Integral Eigenvalue Problem

For random processes where the analytical solution of the Fredholm integral equa-
tion is intractable, a numerical solution is necessary. One major category of such
solution schemes are the expansion methods such as the Galerkin, the collocation
and the Rayleigh–Ritz methods. Galerkin methods are essentially error minimiza-
tion schemes with respect to some residual calculated over the entire domain of the
solution. Assuming that each eigenfunction ϕn(t) of CX (ti , t j ) may be represented
by its expansion over a polynomial basis {hi (·)}, defined in the solution space, as

ϕn(t) =
∞∑
i=1

dn
i hi (t) (2.31)

where dn
i are unknown coefficients to be estimated, the Galerkin procedure targets

to an optimal approximation of the eigenfunctions ϕn(·) after truncating the above
series in N terms and computing the residual as

εN (t) =
N∑
i=1

dn
i

[ ∫
D
CX (ti , t j )hi (t j )dt j − λ j hi (t)

]
(2.32)

Requiring the residual to be orthogonal to the space spanned by the same basis we
get

< εN , h j >:=
∫
D

εN (t)h j (t)dt = 0, j = 1, . . . , N (2.33)
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which leads to the following matrix eigenvalue equation:

CD = �BD (2.34)

where

Bi j =
∫
D
hi (t)h j (t)dt (2.35)

Ci j =
∫
D

∫
D
CX (ti , t j )hi (t j )dt j (2.36)

Di j = d j
i (2.37)

�i j = δi jλ j (2.38)

where C,D,B and � are N × N -dimensional matrices. This generalized algebraic
eigenvalue problem of Eq. (2.34) can be solved forD and� andwith backsubstitution
we can estimate the eigenfunctions of the covariance kernel. This solution scheme can
be implemented using piecewise polynomials for the basis {hi (·)} of the expansion.

2.2.2 Spectral Representation Method

The spectral representation method was proposed by Shinozuka and Deodatis (1991)
andgenerates sample functions that are ergodic in themeanvalue and autocorrelation.
Its main property is that it expands the stochastic field to a series of trigonometric
functions with random phase angles. For a zero-mean, one-dimensional stationary
stochastic process X (t, θ) with autocorrelation function RX (ti , t j ) and two-sided
power spectral function SX (ω) we can define two mutually orthogonal real-valued
processes u(ω) and ν(ω) with corresponding orthogonal steps du(ω) and dν(ω),
respectively, such that

X (t, θ) =
∫ ∞

0

[
cos(ωt)du(ω) + sin(ωt)dν(ω)

]
(2.39)

The processes u(ω) and ν(ω) and their corresponding steps du(ω) and dν(ω), which
are random variables defined for ω ≥ 0, satisfy the following conditions:

E
[
u(ω)

] = E
[
ν(ω)

] = 0 for ω ≥ 0

E
[
u2(ω)

] = E
[
ν2(ω)

] = 2SX0(ω) for ω ≥ 0

E
[
u(ω) · ν(ω′)

] = 0 for ω, ω′ ≥ 0

E
[
du(ω)

] = E
[
dν(ω)

] = 0 for ω ≥ 0 (2.40)

E
[
du2(ω)

] = E
[
dν2(ω)

] = 2SX0(ω) for ω ≥ 0
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E
[
du(ω)du(ω′)

] = E
[
dν(ω)dν(ω′)

] = 0 for ω, ω′ ≥ 0, ω �= ω′

E
[
du(ω)dν(ω′)

] = 0 for ω, ω′ ≥ 0

In the second equation of Eq. (2.40), SX0(ω) is the differential spectral density func-
tion, whose first derivative is the spectral density function SX (ω)

dSX0(ω)

dω
= SX (ω), for ω ≥ 0 (2.41)

The inequality ω �= ω′ in the sixth relationship of Eq. (2.40) ensures that the fre-
quency ranges (ω + dω) and (ω′ + dω′) do not overlap. The spectral representation
of the stationary stochastic process of Eq. (2.39) has zero-mean value and autocor-
relation function equal to the target RX (τ ) since

E
[
X (t, θ)

] =
= E

{ ∫ ∞

0

[
cos(ωt)du(ω) + sin(ωt)dν(ω)

]}

=
∫ ∞

0

{
cos(ωt)E

[
du(ω)

] + sin(ωt)E
[
dν(ω)

]}
= 0 (2.42)

The autocorrelation function can be expressed as

E
[
X (t, θ)X (t + τ, θ)

] = E
{ ∫ ∞

0

[
cos(ωt)du(ω) + sin(ωt)dν(ω)

]

. . .

∫ ∞
0

[
cos(ω′ · (t + τ))du(ω′) + sin(ω′ · (t + τ))dν(ω′)

]}
(2.43)

=
∫ ∞
0

∫ ∞
0

cos(ωt) · cos(ω′(t + τ)}E[
du(ω)du(ω′)

]+
. . . +

∫ ∞
0

∫ ∞
0

sin(ωt) · sin(ω′{t + τ)}E[
du(ω)dν(ω′)

]+
. . . +

∫ ∞
0

∫ ∞
0

sin(ωt) · cos(ω′{t + τ)}E[
dν(ω)du(ω′)

]+
. . . +

∫ ∞
0

∫ ∞
0

sin(ωt) · sin(ω′{t + τ)}E[
dν(ω)dν(ω′)

]

Using the last three relations of Eq. (2.40) and the above relation for ω = ω′ together
with the trigonometric equality (cos(a − b) = cos a cos b + sin a sin b) we get
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E
[
X (t, θ)X (t + τ, θ)

] =
∫ ∞

0
cos(ωt)cos{ω(t + τ)}2SX (ω)dω + . . .

+
∫ ∞

0
sin(ωt)sin{ω(t + τ)}2SX (ω)dω + . . .

=
∫ ∞

0
cos(ωτ)2SX (ω)dω

Because the power spectral density function is an even function and sin(ωτ) an odd
one, it stands that

2
∫ ∞

0
SX (ω)dω =

∫ ∞

−∞
SX (ω)dω (2.44)

and
∫ ∞

−∞
SX (ω)sin(ωτ)dω = 0 (2.45)

Finally we get

E
[
X (t, θ)

] =
∫ ∞

−∞
SX (ω)cos(ωτ)dω

=
∫ ∞

−∞
SX (ω)eiωτdω =

= RX (τ ) (2.46)

Rewriting Eq. (2.39) in the following form:

X (t, θ) =
∞∑
k=0

[
cos(ωk t)du(ωk) + sin(ωk t)dν(ωk)

]
(2.47)

where ωk = k�ω and setting du(ωk) and dν(ωk) as

du(ωk) = Xk

dν(ωk) = Yk (2.48)

and if Xk andYk are independent randomvariableswith zero-mean value and standard
deviation equal to

√
2SX (ωk)�ω, it can be easily proven that Eq. (2.40) is satisfied.

By replacing Eq. (2.48) to (2.47) we get

X (t, θ) =
∞∑
k=0

[
cos(ωk t) · Xk + sin(ωk t)Yk

]
(2.49)
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From the other hand, if we define du(ωk) and dν(ωk) as

du(ωk) = √
2Ak cos(�k)

dν(ωk) = −√
2Ak sin(�k) (2.50)

where Ak = √
2SX (ωk)�ω and �k are independent random phase angles uniformly

distributed over the range [0, 2π ], it can be easily demonstrated that the conditions
of Eq. (2.40) are satisfied. Indeed we have

E
[
du(ωk)

] = E
[√

2Akcos(�k)
] =

= √
2Ak

∫ ∞

−∞
cos(�k)p(�k)d�k (2.51)

where p(�k) is the probability density function of the random variable �k with type

p(�k) =
{

1
2π if 0 ≤ �k ≤ 2π
0 else

By combing the last two equations we get

E
[
du(ωk)

] = √
2Ak

∫ 2π

0

1

2π
cos(�k)d�k = 0 (2.52)

In the same manner, we have E
[
dν(ωk)

] = 0. Consequently we calculate

E
[
du2(ωk)

] = E
[
A2
K cos

2(�k)
] =

= 2A2
k

∫ 2π

0

1

2π

(
1 + cos(�k)

) 1

2π
d�k

= 2A2
k

1

2π
= 2SX (ω) (2.53)

E
[
dν2(ωk)

]
is estimated in the same way. Finally, for the random field we get

X (t, θ) =
∞∑
k=0

[
cos(ωk t) · √

2
(
2SX (ωk)�ω

) 1
2 cos(�k) −

. . . − sin(ωk t)
√
2
(
2SX (ωk)�ω

) 1
2 sin(�k)

] =

= √
2

∞∑
k=0

(
2SX (ωk)�ω

) 1
2 cos(ωk t + �k) (2.54)
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2.2.3 Simulation Formula for Stationary Stochastic Fields

In order to have a realization of this X (t, θ) we need to truncate the summation of
Eq. (2.54) after N terms.

X̂(t, θ) = √
2

N−1∑
n=0

Ancos(ωnt + �n) (2.55)

where

An = (
2SX (ωk)�ω

) 1
2 for n = 0, 1, . . . , N − 1 (2.56)

ωn = n�ω

�ω = ωu

N
A0 = 0 or SX (ω0 = 0) = 0

The coefficient A0 is chosen zero such that the temporalmean value averaged over the
whole simulation time T0 = 2π

�ω
of the generated stochastic process X̂(t, θ) remains

zero in each generated sample. This is because if some power spectral contribution
is added at ω = 0, a random variable term is always present, shifting the temporal
(sample) average apart from being zero. In order to avoid having to impose this
condition the frequency shifting theorem was proposed by Zerva (1992) but with the
side effect of doubling the period of the simulated field.

In Eq. (2.56) ωu is usually applied as the uppercut off frequency after which the
power spectrum becomes practically zero. In order to estimate this frequency we use
the following criterion:

ωu∫
0

SX (ω)dω = (1 − ε)

∞∫
0

SX (ω)dω (2.57)

where ε 
 1 is the “admissible relative error”. The target autocorrelation function
RX̂ (τ ) is given by

RX̂ (τ ) =
ωu∫

−ωu

SX (ω)eiωτdω =
ωu∫
0

2SX (ω) cosωτdω (2.58)

The difference between these two functions

ε∗(τ ) = RX (τ ) − RX̂ (τ ) =
∞∫

ωu

2SX (ω) cos(ωτ)dω (2.59)
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corresponds to the mean square simulation error due to the truncation of the spectral
density function for |ω| � ωu , which is termed “truncation error”.

One sample function of the stochastic process can be generated by replacing the
phase angles �0, . . . , �N−1 in Eq. (2.55) with their corresponding sample values
φ0(ω), . . . , φN−1(ω), as these can be generated by some random number generator
as follows:

X̂(t, θ) = √
2

N−1∑
n=0

Ancos(ωnt + φn(θ)) (2.60)

It must be mentioned that the step �t of the generated sample functions must satisfy
the following condition in order to avoid aliasing.

�t ≤ π

ωu
(2.61)

The sample functions generated by Eq. (2.60) are obviously bounded by

∣∣X̂(t, θ)
∣∣ ≤ √

2
N−1∑
n=0

An (2.62)

For the cases of 2D and 3D spectral representation, Eq. (2.60) takes the form

X̂(t, θ) = X̂(t1, t2, θ) = √
2

N1∑
i=1

N2∑
j=1

Ai j [cos(ω1i t1 + ω1 j t2 + φ1
i j (θ)) +

+ cos(ω1i t1 − ω2 j t2 + φ2
i j (θ))]

and

X̂(t, θ) = X̂(t1, t2, t3; θ) = √
2

N1∑
i=1

N2∑
j=1

N3∑
k=1

Ai jk [cos(ω1i t1 + ω2 j t2 + ω3k t3 + φ1
i jk(θ)) +

+ cos(ω1i t1 + ω2 j t2 − ω3k t3 + φ2
i jk(θ)) +

+ cos(ω1i t1 − ω2 j t2 + ω3k t3 + φ3
i jk(ω)) + (2.63)

+ cos(ω1i t1 − ω2 j t2 − ω3k t3 + φ4
i jk(ω))]

respectively, with

Ai j = √
2SX (ω1, ω2)�ω1�ω2

Ai jk = √
2SX (ω1, ω2, ω3)�ω1�ω2�ω3
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�ω1,2,3 = ω(1,2,3)u

N1,2,3

ω1,2,3 = (t1, t2, t3)�ω1,2,3

The numbers N1,2 and N1,2,3 of independent angle phases ϕ(θ) generated randomly
in the range [0, 2π ] for the cases of two and three-dimensional random fields, respec-
tively, are:

N1,2 = 2N1N2 (2.64)

and
N1,2,3 = 4N1N2N3 (2.65)

respectively.

2.3 Non-Gaussian Stochastic Processes

In nature, most of the uncertain quantities appearing in engineering systems are
non-Gaussian (e.g., material, geometric properties, seismic loads). Nevertheless, the
Gaussian assumption is often used due to lack of relevant experimental data and for
simplicity in the mathematical implementation. It must be noted that this assumption
can be problematic in many cases. For example, in the case where the Young’s mod-
ulus is assumed to be a random variable following a Gaussian distribution, negative
values for the Young’s modulus may occur which have no physical meaning. For
this reason, the problem of simulating non-Gaussian stochastic processes and fields
has received considerable attention. However, the KL and Spectral representation
methods, as discussed above, are limited in generating realizations of Gaussian sto-
chastic processes due to the central-limit theorem, since the random variables in the
summation formulas are independent.

In order to fully characterize a non-Gaussian stochastic process all the joint mul-
tidimensional density functions are needed which is generally not possible. For
this reason a simple transformation of some underlying Gaussian field with known
second-order statistics can be used in order to simulate a non-Gaussian stochastic
process. If X (t, θ) is a stationary zero-mean Gaussian process with unit variance
and spectral density function (SDF) SX (ω), a homogeneous non-Gaussian stochastic
process y(t, θ) with power spectrum Sᵀ

y (ω) can be defined as

y(t, θ) = Y−1�[X (t, θ)] (2.66)

where � is the standard Gaussian cumulative distribution function and Y is the non-
Gaussian marginal cumulative distribution function of y(t, θ). The transformation
Y−1� is a memory-less translation since the value of y(t, θ) at an arbitrary point t
depends on the value of X (t, θ) at the same point only. The resulting non-Gaussian
field y(t, θ) is called a translation field.
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The main shortcoming of translation fields is that, although the mapped sample
functions of (2.66) will have the prescribed target marginal probability distribution
Y , their power spectrum will not be identical to Sᵀ

y (ω). Another important issue,
pointed out by Grigoriu (1984), is that the choice of the marginal distribution of
y(t, θ) imposes constraints to its correlation structure. In other words, Y and Sᵀ

y (ω)

have to satisfy a specific compatibility condition derived directly from the definition
of the autocorrelation function of the translation field as

Rᵀ
y (τ ) =

∫ +∞

−∞

∫ +∞

−∞
Y−1[�(X1)]Y−1[�(X2)]φ[X1, X2; RX (τ )]dX1dX2 (2.67)

where X1 = X (t, θ), X2 = X (t + τ, θ) and φ is the pdf of the underlying Gaussian
field. If these two quantities are proven to be incompatible through (2.67), then no
translation field can be found having the prescribed characteristics. In this case, one
has to resort to translation fields that match the target marginal distribution and/or
SDF approximately.

2.4 Solved Numerical Examples

1. For an 1D-1V, zero-mean, Gaussian stochastic process X (t, θ) defined in the
range [−a, a] and with autocorrelation function RX (ti , t j ) given by

R(ti , t j ) = σ 2exp

(
− |ti − t j |

b

)
(2.68)

Solve the Fredholm integral equation in order to estimate the eigenvalues and the
eigenfunctions of the KL expansion.

Solution:

The Fredholm integral equation of the second kind is defined as

∫ +a

−a
σ 2exp

( − c|ti − t j |
)
ϕ(t j )dt j = λϕ(ti ) (2.69)

where c = 1/b. Equation (2.69) can be written as

∫ ti

−a
σ 2e

(
−c|ti−t j |

)
ϕ(t j )dt j +

∫ +a

ti

σ 2e
(
−c|ti−t j |

)
ϕ(t j )dt j = λϕ(ti ) (2.70)

Differentiating the above equation once with respect to ti gives

λϕ′(ti ) = −σ 2ce−cti

∫ ti

−a
ect j ϕ(t j )dt j + σ 2cecti

∫ +a

ti

σ 2e−ct j ϕ(t j )dt j (2.71)
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and differentiating a second time gives

λϕ′′(t) = (λc2 − 2σ 2c)ϕ(t) (2.72)

If we define ω2 = −λc2+2σ 2c
λ

then Eq. (2.72) becomes

ϕ′′(t) + ω2ϕ(t) = 0 (2.73)

Thus, the integral inEq. (2.69) is transformed to the ordinary differential equations
of Eq. (2.73) and evaluating Eqs. (2.70) and (2.71) at t = −a and t = a we can
estimate its boundary conditions as

cϕ(a) + ϕ′(a) = 0

cϕ(−a) − ϕ′(−a) = 0 (2.74)

Solving these equations simultaneouslyweget the eigenvalues and eigenfunctions
described in Sect. 2.2.1.

2. Consider an 1D-1V truncated (its values are either bounded below and/or above),
zero-meanGaussian (TG) stochastic process X (t, θ), obtained fromanunderlying
Gaussian process (denoted by g(t, θ)), as follows:

X (t, θ) =
{
g(t, θ) if |g(t, θ)| ≤ 0.9

0.9 otherwise

Use the following two spectral density functions for the description of g(t, θ)

SDF1 : Sg(ω) = 1

4
σ 2
g b

3ω2e−b|ω| (2.75)

SDF2 : Sg(ω) = 1

2π
σ 2
g

√
πbω2e− 1

4 bω
2

(2.76)

with σ = 0.2 and b = 1. Generate realizations of the non-Gaussian process
X (t, θ) and estimate its power spectral density SXTG (ω).

Solution:

Spectrum SDF1 has zero power at ω = 0, while spectrum SDF2 has its maximum
value at ω = 0. For both spectra, b is a correlation length parameter. Simulate the
underlying Gaussian process g(t) according to SDF1 and SDF2 using the spectral
representation method and then get the truncated Gaussian process XTG(t, θ)

by truncating the simulated Gaussian process g(t, θ) in the following way: if
g(t, θ) > 0.9 set g(t, θ) = 0.9 or if g(t, θ) < −0.9 set g(t, θ) = −0.9.
Because the simulated non-Gaussian process XTG(t, θ) is obtained as a nonlinear
transformation of the underlying Gaussian process g(t, θ), its spectral density



44 2 Representation of a Stochastic Process

functions SXTG (ω) is going to be different from SDF1 and SDF2. The new spectral
density functions of the truncated fields can be computed by producing samples
XTG(t, θ) and computing the spectra from Eq. (1.28). The SXTG (ω) is eventually
determined by ensemble averaging.

2.5 Exercises

1. For a nonstationary Wiener–Levy stochastic process with covariance function

CX (ti , t j ) = σ 2 min(ti , t j ) (2.77)

where 0 ≤ t ≤ a, the Fredholm integral equation can be solved analytically. Find
the eigenvalues and eigenfunctions.

2. For an 1D-1V stationary and zero-mean Gaussian stochastic process X (t, θ)with
t ∈ [0, 1] the autocorrelation function RX (ti , t j ) is defined as

R(ti , t j ) = σ 2exp

( |ti − t j |
b

)
(2.78)

with σ being the standard deviation and b the correlation length parameter. Using
the KL expansion:

a. Calculate the first 10 eigenvalues and eigenfunctions by solving the
Fredholm integral equation analytically and numerically, for σ = b = 1.

b. For b = 1 estimate the approximated covariance function and compare it
with the exact one using M = 2, 5, 10 terms in the truncated KL.

c. Plot 1000 realizations of the approximated process and calculate its proba-
bility distribution at t = 0.5.

3. For the 1D-1V zero-mean Gaussian stochastic process X (t, θ) with autocorrela-
tion function

RX (τ ) = σ 2 b
2(b − 2τ)

(b + 3)
(2.79)

where b is the correlation length parameter, σ 2 is the variance of the stochastic
process and τ ∈ [0, 10]:
a. Generate 1000 realizations of the process for b = 1 and σ 2 = 0.8 using the

spectral representation method.
b. Discretize the domain in n = 11 points, i.e., 10 elements, and represent the

stochastic field at these points using the midpoint method.

http://dx.doi.org/10.1007/978-3-319-64528-5_1


2.5 Exercises 45

c. Use the local average method to simulate the random variables at the same
midpoints. Compare the properties of the random process with these of the
midpoint method.

4. For the Gaussian stochastic process of exercise 3, simulate the 1000 realizations
using the KL method for M = 1, . . . , 6 terms in the truncated series, and b = 1
and 10. Estimate the corresponding power spectrums and compare them with the
exact ones.

5. Generate 1000 realizations of (a) a lognormal translation process, and (b) a tri-
angular pdf translation process using the underlying Gaussian process with the
two spectral densities functions SDF1, SDF2 given in example 2 in the section of
solved numerical examples and then estimate the resulting non-Gaussian Spectra.
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