
Chapter 7

Bioelectrochemical Systems for Transforming
Waste to Energy

Nishat Khan, Mohammad Danish Khan, Saima Sultana,

Mohammad Zain Khan, and Anees Ahmad

Abstract In recent years, BES has emerged as a new and promising approach for

wastewater treatment. BES use microorganisms to convert chemical energy to

electric energy and other value added chemicals. Compared to the conventional

techniques available, it has evolved as a low energy intensive technology with an

approach of integrated management of wastewater and recovering energy. This

chapter presents a review on the different types of BESs with a brief discussion of

their principle and anodic and cathodic reactions involved. Further, an overview is

presented of recent work with different types of wastewater used as substrate,

utilising different donors and acceptors of electrons involved and the various kind

of electrodes used in various BES setups. BES is still a relevantly new and

emerging field that deals with harnessing energy from wastewater with the potential

to change the wastewater remediation techniques in future with gross positive

energy recovery.

Keywords Bioelectrochemical system • Desalination • Energy generation •

Wastewater remediation

Nomenclature

AEM Anion Exchange Membrane

BES Bioelectrochemical System

CEM Cation Exchange Membrane

DCMEC Dual chambered Microbial Electrolysis Cell

DCMFC Dual Chambered Microbial Fuel Cell

IEM Ion Exchange Membrane

MFC Microbial Fuel Cell

MEC Microbial Electrolysis Cell
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MDC Microbial Desalination Cell

MSC Microbial Solar Cell

PEM Proton Exchange Membrane

PMFC Plant Microbial Fuel Cell

SCMEC Single Chambered Microbial Electrolysis Cell

SCMFC Single Chambered Microbial Fuel Cell

TEA Terminal Electron Acceptor

7.1 Introduction

Rapid industrialization and urbanization of the world has increased concerns for

more energy demand, clean water supply and fresh and healthy environment for the

better sustenance. The maximum portion of this energy comes from the

non-renewable sources (e.g. fossil fuels) but the ever decreasing supply and

increasing cost of fossil fuels has rendered researchers thinking lately of developing

and discovering the sources of energy that are ever sustaining and are not going to

end. These sources are the non-renewable sources like sun, water, wind and

geothermal energy. The depleting fossil fuel however, is not the only concern.

Global warming is also growing as a concern as the climate is changing abruptly

that may be damaging to humans and other living forms alike. According to NASA,

the global surface temperature has risen dramatically since year 2000 with year

2016 recorded as the warmest year (NASA 2016).

The increasing population and advancement in the lifestyle has lead to an

increased development of different types of waste like industrial waste, municipal

waste, agricultural and dairy waste. The conventional chemical methods of waste-

water treatment such as ozonolysis serve the purpose but are cost intensive and not

stable (Robinson et al. 2001). Other methods like chlorination tends to add an

additional requirement of removing chlorine before disposing water into water

bodies as chlorine affects the aquatic life. The traditional biological methods of

water treatment like activated sludge process leads to a lot of sludge production

(Wei et al. 2003), disposal of which is again a great issue.

With the rapid development of various sectors and increasing population, the

demand for fresh water has increased tremendously. Even though the Earth is 75%

water, most of it is saline and unfit for drinking and only 1% is available as fresh

water. Most of this fresh water is trapped as glaciers and snowfields. It is estimated

that by 2025, the population as high as around 1.8 billion people will be living in

water-scarce areas with around 67% of the world’s population living in water-

stressed regions as a result of excessive usage, over population, and climate change

(FAO-WATER 2017). To tackle this global menace, different methods are being

employed like wastewater recycling, desalination. However, these methods are

highly energy intensive (Al-Karaghouli and Kazmerski 2013). Thus, there is a

high need for the development of methods that not only produce fresh water but

uses lower energy expenses.
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Energy is the driving force of the future global economy. To lift the world out of

poverty, enormous energy is required to fulfill the need of the growing population.

According to EIA, the energy consumption of the world is expected to increase by

48% by the year 2040 (U.S. Energy Information Administration 2016). To match

the need of energy production and also making it more sustainable and environ-

mental friendly, the renewable sources can serve as a better alternative to the

non-renewable sources. In recent years, the method of producing energy from

waste electrochemically is gaining a lot of focus from the researchers around the

world. The electrochemically produced energy can not only alleviates the global

energy crisis but at the same time help reducing pollution by treating waste. Unlike

the traditional method of water treatment, bioelectrochemical systems (BESs) treats

the wastewater with no or minimal expense of energy with the help of microbes.

7.2 What Is BES?

BES is a technology that combines the biological and electrochemical processes for

waste remediation and side by side generation of value added products like elec-

tricity, hydrogen and other useful chemicals (Pant et al. 2012).

The basic principle of BES is the reduction of electron donor at anode by

electrochemically active microbes, transferring the generated electrons from

anode to cathode thereby generating electrical current (Harnisch and Schr€oder
2010). The output power efficiency of the BES depends upon the number of

electrons recovered and transferred to anode.

7.3 Types of BES

BES is a combination of different types of technologies that involve the same basic

principle of waste remediation with the help of microbes. But, the output of

different BES technologies can be different. There are four major types of BESs

namely Microbial Fuel Cell (MFC) wherein the final product is electricity from

wastewater, Microbial Electrolysis Cell (MEC) wherein hydrogen is mainly gen-

erated at cathode, Microbial Desalination Cell (MDC) where desalination of saline

water can be effectively performed, Microbial Solar Cell (MSC) where solar energy

is utilised to produce electricity.

7.3.1 Microbial Fuel Cell (MFC)

MFC is a type of BES (Fig. 7.1) where microorganisms catalyse the oxidation of

electron donors anaerobically at anode producing electrons and protons. These

7 Bioelectrochemical Systems for Transforming Waste to Energy 113



electrons flow across the external circuit reaching cathode and thus producing

electric current. The electron acceptors in turn accept these electrons at the cathode

(Logan et al. 2006; Khan et al. 2017). It has potential to substitute fossil fuels for

generating electricity.

7.3.1.1 Components and Configuration of MFC

The main components of MFC include an anaerobic anodic compartment, an

aerobic cathodic compartment, electrodes and a proton exchange membrane

(PEM) separating the electrodes connected through an external circuit. The mate-

rials used as anode and cathode vary widely from graphite rods (Khan et al. 2015),

carbon cloths (Elmekawy et al. 2014) to MWCNTs (Mehdinia et al. 2014), and

other polymeric electrodes (Yong et al. 2012). However, carbon-based electrodes

Fig. 7.1 Microbial Fuel Cell (MFC)
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are most common. The most commonly used PEMs are NAFION, ULTREX and

ZIRFON (Elmekawy et al. 2014; Khan et al. 2015).

There are two main configurations of MFC viz. Single Chambered Microbial

Fuel Cell (SCMFC) and Dual Chambered Microbial Fuel Cell (DCMFC).

SCMFC

In a SCMFC, anode is contained in an anaerobic compartment and cathode is

directly in contact with the air either with or without a PEM. The anaerobic

microbes release electrons and protons as they oxidise the substrate in the anodic

chamber. The flow of these electrons through the circuit generates current.

DCMFC
DCMFC consists of an anaerobic chamber for oxidation of the substrate and an

aerobic chamber where reduction of electron acceptors takes place. PEM separates

the two chambers. Microbes oxidise the substrate at anode releasing electrons and

protons. The movement of these released electrons across the circuit generates

current. The charge balance is maintained by protons diffusing through PEM to

cathode where they are accepted by terminal electron acceptors (TEA) like ferri-

cyanide (Rabaey et al. 2005). DCMFC has the advantage of simultaneous treatment

of two different waste streams (ter Heijne et al. 2010).

7.3.1.2 Different Types of Anolyte and Catholyte in MFC

Various types of substrates can be utilised in MFC both as anolyte and catholyte.

Anolyte may vary from glucose (Khater et al. 2015), acetate (Liu et al. 2005),

cellulose (Rezaei et al. 2009), to phenol (Luo et al. 2009), synthetic and real

wastewater (Elmekawy et al. 2014). However only oxygen can act as catholyte in

case of SCMFC but in case of DCMFC, many different types of electron acceptors

can be utilised as catholyte like copper (ter Heijne et al. 2010), chromium

(Tandukar et al. 2009; Gupta et al. 2017), dyes (Han et al. 2015) and sulphate

(Zhao et al. 2008) etc.

7.3.1.3 Anodic and Cathodic Mechanism Involved in MFC

Since MFC is a BES, its mechanism simply involves redox reaction taking place at

anode and cathode. Microorganisms under anaerobic conditions provided in the

anodic chamber of both single and dual chambered MFC catalyse the reduction of

substrate added to release electrons and protons. This can be represented as:

substrate!microorganisms
CO2 þ electronsþ proton ð7:1Þ

E.g. If acetate is present as electron donor,
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CH3COO
� þ 4H2O ! 2HCO�

3 þ 9Hþ þ 8e� ð7:2Þ

At cathode, reduction of oxygen or TEA takes place. This can be represented as:

terminal acceptorþ protons!electrons reduced formþ water ð7:3Þ

E.g. If oxygen is TEA:

O2 þ 4Hþ þ 4e� ! 2H2O ð7:4Þ

If ferricyanide is taken as TEA:

Fe CNð Þ3�6 þ e� ! Fe CNð Þ4�6 ð7:5Þ

7.3.2 Microbial Electrolysis Cell (MEC)

Hydrogen is considered as a source of green energy with zero pollution. Hydrogen

is basically obtained by three main methods: from fossil fuels by thermochemical

processes, by water electrolysis and by biological process like dark fermentation.

However the energy recovery from dark fermentation is rather low while the other

two processes are costly. MEC is considered an advanced version of MFC and can

serve as an alternative to cleaner hydrogen production.

MEC (Fig. 7.2) can be defined as a technique that utilises wastewater and

produce hydrogen by the catalytic action of microorganisms in the presence of

external power and fully anoxic conditions. The microbes oxidise the substrate at

anode releasing protons which undergo reduction to release hydrogen at cathode.

Cucu et al. suggested there can be two modes of hydrogen production in MEC by

either applying negative polarisation on anoxic cathode or by applying negative

polarisation on microbial biofilm at anode (Cucu et al. 2013). An external voltage of

over 0.14 V is ideally required for hydrogen production (Rozendal et al. 2006).

7.3.2.1 Composition and Configuration of MEC

MEC, just like MFC is composed of two chambers but unlike MFC, here both

chambers are maintained under anaerobic conditions. It also contains an anode, a

cathode, a PEM separating the two chambers. The electrodes used can be graphite

felt (Escapa et al. 2012b), graphite granules (Batlle-Vilanovaa et al. 2014), graphite

brushes (Cheng and Logan 2011) beside many others.
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Just like MFC, the two main configurations of MEC are:

SCMEC

In this type of setup, a single chamber lacking a membrane encloses both anode and

cathode under anaerobic conditions. The microbes act on substrate producing pro-

tons and electrons at anode. These generated protons are reduced to hydrogen at

cathode by the application of external potential over it.

DCMEC

DCMEC is composed of separate anodic and cathodic chambers connected through

PEM, both under the anaerobic conditions. The microbes in the anodic chamber act

on substrate librating electron and protons at anode. The released protons are

diffused to cathodic chamber via PEM and electrons through external circuit

where protons get reduced to hydrogen.

Fig. 7.2 Microbial Electrolysis Cell (MEC)
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Both SCMEC and DCMEC can utilise variety of substrate to produce hydrogen

but SCMEC is considered more economical for high hydrogen production rates as

suggested by Call and Logan (Call and Logan 2008).

7.3.2.2 Different Types of Anolyte and Catholyte in MEC

Variety of substrates can be utilised in MEC as anolyte like acetate (Cheng and

Logan 2011), glycerol (Escapa et al. 2009), domestic wastewater (Escapa et al.

2012b) etc. Unlike MFC, MEC contains anaerobic cathode where catholyte can be

abiotic with only hydrogen being produced by reduction of proton in the presence

of metal catalyst like platinum on cathode or it can be biotic where substrate like

sulphate (Luo et al. 2014a), sodium bicarbonate (Jeremiasse et al. 2010) and metal

ions like Cd (II) (Chen et al. 2016) can be reduced along with hydrogen production.

7.3.2.3 Anodic and Cathodic Mechanism Taking Place in MEC

At anode, oxidation of electron donor takes place. This step is similar as MFC.

substrate!microorganisms
CO2 þ electronsþ protons ð7:6Þ

E.g. If acetate is present as electron donor:

CH3COO
� þ 4H2O ! 2HCO�

3 þ 9Hþ þ 8e� ð7:7Þ

At cathode, under anoxic conditions reduction of protons generated at anode

takes place.

protons!electrons Hydrogen ð7:8Þ

Hþ þ e� ! 1

2
H2 ð7:9Þ

7.3.3 Microbial Desalination Cell (MDC)

With the growing population and industrialisation, the demand for fresh water has

increased drastically and this calls for the need to desalinate the sea water or

brackish water. The techniques available for desalination e.g. reverse osmosis,

electrodialysis and distillation are highly energy exhaustive. A new method has

evolved from the so called BESs, which is popularly known as Microbial Desali-

nation Cell (MDC) as shown in Fig. 7.3.
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MDC is a modification of MFC. It is an electrochemical technique of desalina-

tion where microbes act on the organic matter generating electric potential which

drives the ion transport through ion exchange membranes (IEMs) thereby removing

dissolved salts present in saline water (Cao et al. 2009).

MDC involves the basic principle of creating across the electrodes a sufficient

electric gradient. This gradient drives the anions towards anode and cations towards

cathode thus desalinating the water in the middle chamber (Kim and Logan 2013).

MDC serves three main goals viz decomposition of organic waste, energy gener-

ation and desalination.

Fig. 7.3 Microbial Desalination Cell (MDC)
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7.3.3.1 Components and Configuration of MDC

Since MDC is the modification of MFC, the basic components are similar

consisting of anodic and cathodic chambers. The cathodic chamber can be kept

under both anaerobic and aerobic conditions thereby reducing either protons to

release hydrogen gas at cathode or oxygen to form water. It also contains anode,

cathode, anion exchange membrane (AEM) and cation exchange membrane (CEM)

(Cao et al. 2009).

The two basic configurations of MDC are three chambered MDC and

Stacked MDC.

3-CHAMBERED MDC

This is the most basic configuration of MDC first designed by Cao and coworkers in

the year 2009 (Cao et al. 2009). It consists of three separate chambers linked

together through IEMs. The three chambers are anodic chamber, cathodic chamber

and a middle desalinating chamber. On the anodic side, AEM separates the middle

chamber while the middle and the cathodic chamber are connected through the

CEM. As the electric potential is generated between anodic and cathodic chamber

the desalination of the saline water in the middle chamber takes place (Brastad and

He 2013).

STACKED MDC
Stacked MDC also consist of separate anodic and cathodic compartment linked

through a series of IEM pairs forming multiple cell pairs with concentrate and

desalinates chambers. As the number of IEMs increases, the magnitude of filtration

also increases. However, the system’s internal resistance is also increased. There-

fore it is necessary to monitor the resistance and apply the appropriate number of

membrane to improve the performance of the system (Chen et al. 2011).

7.3.3.2 Anodic and Cathodic Mechanism Taking Place in MDC

At anode, oxidation of organic substrate takes place

substrate!microorganisms
CO2 þ electronsþ protons ð7:10Þ

The most common substrate taken in MDC is acetate

CH3COO
� þ 4H2O ! 2HCO�

3 þ 9Hþ þ 8e� ð7:11Þ

At cathode, reduction of either oxygen or proton takes place to form water or

hydrogen

O2 þ 4Hþ þ 4e� ! 2H2O ð7:12Þ
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Hþ þ e� ! 1

2
H2 ð7:13Þ

In middle chamber, the ions present in the saline water move towards anode and

cathode under the effect of electric potential gradient. As the electrons and protons

are generated at anode, AEM prevents the positively charged species from escaping

the anodic chamber causing the negative charge carriers from the middle chamber

to move into the anodic chamber to maintain the charge balance. At the same time

the consumption of protons in the cathodic chamber lead to the movement of

positive ions towards the cathodic chamber thereby causing desalination in the

middle chamber.

7.3.4 Microbial Solar Cell (MSC)

MSC (Fig. 7.4) is a collection of biotechnologies that integrates the photosynthetic

and electrochemical activity of microbes to harvest electricity directly from solar

Fig. 7.4 Microbial Solar Cell (MSC)
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energy. The technology establishes a synergic relationship between photosynthetic

organisms and electrochemically active microbes (Kadier et al. 2016).

MSC works on the basic principle of oxidation of organic substrate transferred to

anode that is produced by photosynthesis and thus producing electricity by flow of

electrons to the cathode for the reduction of electron acceptor usually oxygen (Strik

et al. 2011)

7.3.4.1 Component and Configuration of MSC

The basic components of MSC are same as MFC composing of an anode, a cathode

and an IEM. However, MSC are different from typical MFC in the involvement of

photosynthetic organisms either at anode or cathode.

The organisms involved in the fixing solar energy into electricity are higher

plants, photosynthetic bacteria and algae on basis of which MSC can be divided into

3 categories of plant MSC, algal MSC, MSC with phototrophic biofilm.

Plant MFC

PMFC is the most commonly investigated MSC. In PMFC, plants perform photo-

synthesis to synthesis organic matter that is excreted by the roots of the plants in

form of rhizodepositions onto the anode where exoelectrogens oxidise the matter to

release electrons thereby generating electricity (Timmers et al. 2010). The proof of

concept for PMFC was demonstrated by Striks and co-workers in 2008 (Strik et al.

2008a).

Algal MSC

Algal MSC is a growing field of harvesting energy from algae either by growing

algae in the anodic chamber and allowing the exoelectrogenic oxidation of the

organic matter synthesised (Xu et al. 2015) or by utilising the photosynthetic nature

of algae to produce oxygen insitu for reduction at cathode (Kakarla and Min 2014).

The biomass produced can either be directly fed as substrate in the anode of MFC or

it can be utilized to synthesise other value added products (Gouveia et al. 2014). Cui

et al. fed anode with dead algae and grew live algae at cathode and harvested

current (Cui et al. 2014). A photosynthetic algal MFC was developed by Strik et al.

by integrating photobioreactor with the anode of MFC to derive electricity by the

direct feeding of living algae (Strik et al. 2008b).

MSC with Phototrophic Biofilm

An autotrophic biofilm can be generated at anode to fix solar energy into substrate

that can be further oxidised to release electrons leading to the flow of electric

current (Pisciotta et al. 2010).

7.3.4.2 Anodic and Cathodic Mechanism Taking Place in MSC

(a) when photosynthetic organisms are present in the anodic chamber

122 N. Khan et al.



(i) solar energy fixed to form organic substrate

Carbon dioxideþ water!sunlight organic substrateþ oxygen ð7:14Þ

e.g.

CO2 þ H2O!sunlight CH2Oþ O2 ð7:15Þ

(ii) At anode,

substrate!microorganisms
CO2 þ electronsþ protons ð7:16Þ

C6H12O6 þ 6H2O ! 6CO2 þ 24Hþ þ 24e� ð7:17Þ

(iii) At cathode

terminal acceptorþ protons!electrons reduced formþ water ð7:18Þ
O2 þ 4Hþ þ 4e� ! 2H2O ð7:19Þ

(b) when photosynthetic organisms are present in the cathodic chamber

(i) At anode,

substrate!microorganisms
CO2 þ electronsþ protons ð7:20Þ

e.g. If acetate is present as electron donor:

CH3COO
� þ 4H2O ! 2HCO�

3 þ 9Hþ þ 8e� ð7:21Þ

At cathode, algae consume carbon dioxide to produce organic matter and

oxygen. The organic matter can be further utilised to produce value added products

while oxygen is utilised as TEA.

CO2 þ H2O!algae biomassþ O2 ð7:22Þ
terminal acceptorþ protons!electrons reduced formþ water ð7:23Þ

O2 þ 4Hþ þ 4e� ! 2H2O ð7:24Þ

Table 7.1 presents the summary of the work done in recent years on different

bioelectrochemical systems.
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Table 7.1 Summary of work done on different types of BES

Type of BES

Anode/

cathode Electron donor/acceptor Output References

Plant MFC Graphite

anode/

graphite felt

cathode

A.anomala, S. anglica, A.
donax grown in graphite

felt

Electricity+

biomass

Helder et al.

(2010)

Plant MFC Graphite

granule

anode/car-

bon felt

cathode

Ryegrass grown at anode/

Cr(IV)

Electricity + Cr

(IV) removal

Habibul

et al. (2016)

Biofilm MFC Gold elec-

trode/graph-

ite carbon

cloth

Algal biofilm grown at

anode

Electricity Lin et al.

(2013)

Algal MFC Carbon fibre

brush/Pt

coated car-

bon cloth

Dead microalgae bio-

mass/live algae

Biomass +

electricity

Cui et al.

(2014)

Algal MFC Carbon fibre

veil

electrodes

Acetate/algal feed from

bioreactor

Biomass +

electricity

Gajda et al.

(2015)

Algal MFC Graphite

rods

Live algae/ferricyanide Electricity Xu et al.

(2015)

Stacked MDC Carbon felt/

Pt coated

carbon cloth

Sodium acetate/phosphate

buffer with NaCl solution

in middle chamber

Desalination +

electricity

Chen et al.

(2011)

Photosynthetic

MDC

Graphite

paper

electrodes

Glucose/microalgal

biocathode with NaCl in

desalination chamber

Electricity +

biomass

Kokabian

and Gude

(2013)

Tubular MDC Carbon fibre

brush/Pt

coated car-

bon cloth

Sodium acetate/tap water

with NaCl and boric acid

in desalination chamber

Simultaneous

desalination and

boron removal +

electricity

Ping et al.

(2015)

MDC Carbon

graphite

electrodes

Municipal wastewater/tap

water with Ni, Pb

containing water in desa-

lination chamber

Removal of

heavy metal +

electricity

Mirzaienia

et al. (2016)

SCMEC Graphite

brush/Pt

coated car-

bon cloth

Sodium acetate/proton Hydrogen Call and

Logan

(2008)

Continuous

flow MEC

Graphite/Ni

based GDE

Domestic

wastewater + proton

Hydrogen Escapa et al.

(2012a)

DCMEC Graphite

brush

electrodes

Sodium acetate/sulphate

and proton

Sulphate removal

+ hydrogen

Luo et al.

(2014b)

(continued)
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7.4 Merits of BES:

1. BES is an energy efficient technology that does not require heavy external power

to operate.

2. Wastewater can be treated efficiently including toxic chemicals and recalcitrant

xenobiotic compounds.

3. In BES, the recovery of energy can be in the form if electricity, hydrogen,

potable water (through desalination) and other value added chemicals.

4. The technology has the potential to decrease the pre-treatment cost of the

conventional treatment of solid waste.

5. Very low secondary pollution in form of sludge and harmful gases is an added

advantage.

7.5 Conclusion

BES is a novel technology of harvesting energy from waste without any external

assistance. BES has broad application of pollutant removal, energy generation and

desalination. BES is one of the few technologies that combine the applications of

catalysts of different nature like chemical, microbial and enzymatic origin. It can

Table 7.1 (continued)

Type of BES

Anode/

cathode Electron donor/acceptor Output References

DCMEC High density

carbon fibre/

stainless

steel

Dilute sugarbeet juice/

proton

Hydrogen Ranjan et al.

(2015)

SCMEC Graphite

brush/Ni

foam based

graphene

Acetate/proton Hydrogen Cai et al.

(2016)

DCMFC Carbon

paper

electrodes

Rice straw/ferricyanide Electricity Hassan et al.

(2014)

SCMFC Carbon

paper/Pt

coated car-

bon paper

Cadmium chloride and

zinc sulphate with sodium

acetate /oxygen

Electricity +

heavy metal

removal

Abourached

et al. (2014)

DCMFC Graphite rod

electrodes

Dyes/oxygen Electricity + dye

removal

Khan et al.

(2015)

DCMFC Carbon felt/

stainless

steel

Sodium acetate/sodium

bromate

Bromate removal

+ electricity

Dai et al.

(2016)

DCMFC Graphite

electrode

Soak liquor/ferricyanide Electricity Rajeswari

et al. (2016)
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treat recalcitrant pollutants and toxic chemicals present in wastewater as suggested

by reports with synthetic and real substrates. It has a unique ability to not only treat

toxic pollutants but also at the same time generate electric power that makes it a

potent future technology. The results of extensive ongoing research and studies in

this field suggests that the technology still lags in power generation especially with

real waste stream as compared to synthetic waste stream. It is crucial to shift the

focus of research to treat real wastewater for generating power. It is also necessary

to work in the direction of upscaling the technology for better power production

with large volume and heavy loadings of waste for real time assessment of

performance on large scale.
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