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Abstract We discuss a new class of doubly nonlinear evolution equations gov-
erned by time-dependent subdifferentials in uniformly convex Banach spaces, and
establish an abstract existence result of solutions. Also, we show non-uniqueness
of solution, giving some examples. Moreover, we treat a quasi-variational doubly
nonlinear evolution equation by applying this result extensively, and give some
applications to nonlinear PDEs with gradient constraint for time-derivatives.
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1 Introduction

This paper is concerned with a new class of doubly nonlinear evolution equations
governed by time-dependent subdifferentials. Let H be a real Hilbert space and V be
a uniformly convex Banach space such that V is dense in H and the injection from
V into H is compact. Also we suppose that the dual space V� of V is uniformly
convex. In this case, identifying H with its dual, we have

V ,! H ,! V� with compact embeddings.
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The doubly nonlinear evolution equation, as in the title, is of the following form:

.P; f ; u0/

(
@� t.u0.t//C @�' t.u.t//C g.t; u.t// 3 f .t/ in V� for a.e. t 2 .0;T/;
u.0/ D u0 in V:

(1)

Here 0 < T < 1, u0 D du=dt in V ,  t W V ! R [ f1g and ' t W V ! R [ f1g are
time-dependent proper, l.s.c. (lower semi-continuous) and convex functions on V
for each t 2 Œ0;T�, @� t and @�' t are their subdifferentials from V into V�, g.t; �/ is
a single-valued operator from V into V�, f is a given V�-valued function and u0 2 V
is a given initial datum. Suppose that @�' t is single-valued, linear and continuous
from V into V�.

The main aim of this paper is to show the existence of a solution to (P; f ; u0) under
some additional assumptions. Also, we touch the uniqueness question of solutions
to (P; f ; u0), together with an example for non-uniqueness of solutions in the general
case. We shall show the uniqueness of solutions under the strong monotonicity of
@� t .

Similar types of doubly nonlinear evolution equations have been discussed by
many mathematicians, for instance, Akagi [1], Arai [2], Aso et al. [3, 4], Colli [8],
Colli–Visintin [9] and Senba [14]. Most of them treated the case

@ t.u0.t//C @'.u.t// 3 f .t/ in H for a.e. t 2 .0;T/ (2)

and it should be noticed that the second term @' in (2) is independent of time and
there is no perturbation term g. There has been no theory on nonlinear evolution
equations governed by doubly time-dependent subdifferentials because of lack of
energy estimate up to date. In this paper we shall establish an abstract approach
to (1), specifying the time-dependence of  t and ' t. As to the application of (1),
we can treat nonlinear variational inequalities with gradient constraint for time-
derivatives (see Sect. 6), which is a new novelty of this paper.

Another aim of this paper is to treat a doubly nonlinear quasi-variational
evolution equation of the form:

.QP;f ; u0/

8<
:
@� 

t.u0.t//C @�'
t.uI u.t// C g.t; u.t// 3 f .t/ in V� for a.e. t 2 .0;T/;

u.0/ D u0 in V:

The solvability will be discussed in the same framework with (P; f ; u0) by means of
a standard fixed-point argument for compact operators. In this formulation, ' t.vI z/
is proper, l.s.c. and convex in z 2 V , and .t; v/ 2 Œ0;T� � L2.0;TIV/ is a parameter
which determines the convex function ' t.vI �/ on V . The dependence of function
v upon ' t.vI �/ is allowed to be non-local, in general. Therefore, the expression
of (QP;f ; u0) includes an extremely wide class of quasi-linear partial differential
equations or variational inequalities.
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1.1 Notations

Throughout this paper, let H be a real Hilbert space with inner product .�; �/ and norm
j � jH. Let V be a uniformly convex (hence reflexive) Banach space with uniformly
convex dual space V�. We denote by j � jV , j � jV� and h�; �i the norms in V , V�
and duality pairing between V� and V , respectively. Also, suppose that V is dense
and embedded compactly in H. Then, identifying H with the dual H�, we have
V ,! H ,! V�, where ,! stands for the compact embedding. Therefore, .V;H;V�/
is the standard triplet and

hu; vi D .u; v/ for u 2 H and v 2 V:

Also, let F W V ! V� be the duality mapping, which is single-valued and continuous
from V onto V�.

We here prepare some notations and definitions of subdifferential of convex
functions. Let � W V ! R [ f1g be a proper (i.e., not identically equal to infinity),
l.s.c. and convex function. Then, the effective domain D.�/ is defined by

D.�/ WD fz 2 VI �.z/ < 1g:

The subdifferential @�� W V ! V� of � is a possibly multi-valued operator and is
defined by:

z� 2 @��.z/ ” z� 2 V�; z 2 D.�/; hz�; y � zi � �.y/� �.z/; 8y 2 VI

and the domain of @�� is denoted by D.@��/, and set as D.@��/ WD fz 2
V I @��.z/ ¤ ;g. For basic properties and related notions of proper, l.s.c., convex
functions and their subdifferentials, we refer to the monographs of Barbu [6, 7].

Next, we recall a notion of convergence for convex functions, developed by
Mosco [12]. Let �, �n (n 2 N) be proper, l.s.c. and convex functions on V . Then,
we say that �n converges to � on V in the sense of Mosco [12] as n ! 1, iff. the
following two conditions are satisfied:

1. for any subsequence f�nkg � f�ng, if zk ! z weakly in V as k ! 1, then

lim inf
k!1 �nk .zk/ � �.z/I

2. for any z 2 D.�/, there is a sequence fzng in V such that

zn ! z in V as n ! 1 and lim
n!1�n.zn/ D �.z/:
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2 Main Theorems

We begin with the precise formulation of our problem (P; f ; u0).
We suppose that the duality mapping F W V ! V� is strongly monotone, more

precisely there is a positive constant CF such that

hFz1 � Fz2; z1 � z2i � CFjz1 � z2j2V ; 8z1; z2 2 V: (3)

(Assumption (A))

Let  t.�/ be a proper l.s.c. and convex function on V for all t 2 Œ0;T�. We
assume:

(A1) If ftng � Œ0;T� and t 2 Œ0;T� with tn ! t as n ! 1, then  tn.�/ !  t.�/ in
the sense of Mosco [12] as n ! 1.

(A2) There exist positive constants C1 > 0 and C2 > 0 such that

 t.z/ � C1jzj2V � C2; 8t 2 Œ0;T�; 8z 2 D. t/:

(A3) @� t.0/ 3 0 for all t 2 Œ0;T� and  .�/.0/ 2 L1.0;T/.

(Assumption (B))

Let ' t.�/ W V ! R [ f1g be a non-negative, finite, continuous and convex
function with D.' t/ D V for all t 2 Œ0;T�. We assume:

(B1) For each t 2 Œ0;T�, the subdifferential @�' t W D.@�' t/ D V ! V� is linear
and uniformly bounded, i.e., there exists a positive constant C3 > 0 such that

j@�' t.z/jV� � C3jzjV ; 8t 2 Œ0;T�; 8z 2 V:

(B2) ' t.0/ D 0 for all t 2 Œ0;T� and there exists a positive constant C4 > 0 such
that

' t.z/ � C4jzj2V ; 8t 2 Œ0;T�; 8z 2 V:

(B3) There is a function ˛ 2 W1;1.0;T/ such that

j' t.z/ � 's.z/j � j˛.t/ � ˛.s/j's.z/; 8s; t 2 Œ0;T�; 8z 2 V:

Remark 1 We derive from (B1) and (B2) that the subdifferential @�' t satisfies that

C3jzj2V � h@�' t.z/; zi � ' t.z/ � C4jzj2V ; 8z 2 V; 8t 2 Œ0;T� (4)

and from (B3) that the function t ! @�' t.z/ is weakly continuous from Œ0;T� into
V�.
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Remark 2 The assumption (B3) is the standard time-dependence condition of
convex functions (cf. [10, 13, 15]).

(Assumption (C))

Let g be a single-valued operator from Œ0;T� � V into V� such that g.t; z/ is
strongly measurable in t 2 Œ0;T� for each z 2 V , and assume:

(C1) For each t 2 Œ0;T�, the operator z ! g.t; z/ is continuous from Vw into V�,
i.e., if zn ! z weakly in V as n ! 1, then g.t; zn/ ! g.t; z/ in V� as n ! 1.

(C2) g.t; �/ is uniformly Lipschitz from V into V�, i.e., there is a positive constant
Lg > 0 such that

jg.t; z1/� g.t; z2/jV� � Lgjz1 � z2jV ; 8t 2 Œ0;T�; 8zi 2 V .i D 1; 2/:

Under the above assumptions we define the solution to (P; f ; u0) as follows.

Definition 1 Given f 2 L2.0;TIV�/ and u0 2 V , a function u W Œ0;T� ! V is called
a solution to .PI f ; u0/ on Œ0;T�, iff. the following conditions are fulfilled:

(i) u 2 W1;2.0;TIV/.
(ii) There exists a function � 2 L2.0;TIV�/ such that

�.t/ 2 @� t.u0.t// in V� for a.e. t 2 .0;T/;

�.t/C @�' t.u.t//C g.t; u.t// D f .t/ in V� for a.e. t 2 .0;T/:

(iii) u.0/ D u0 in V .

Now, we mention the first main result of this paper, which is concerned with the
existence of a solution to problem (P; f ; u0).

Theorem 1 Suppose that Assumptions (A), (B) and (C) hold. Then, for each u0 2 V
and f 2 L2.0;TIV�/, there exists at least one solution u to (P; f ; u0) on Œ0;T�.
Moreover, there exists a positive increasing function N0 W R3C ! RC with respect to
'0.u0/; j f jL2.0;TIV�/ and j˛0jL1.0;T/ such that

Z T

0

 t.u0.t//dt C sup
t2Œ0;T�

' t.u.t// � N0
�
'0.u0/; j f jL2.0;TIV�/; j˛0jL1.0;T/

�
: (5)

In Sect. 3, we shall prove Theorem 1, considering the approximate problems of
(P; f ; u0). It is known that the solution to (P; f ; u0) is not unique in general. In Sect. 4,
we give an example for non-uniqueness of solutions to (P; f ; u0) in the general case,
but we can show the uniqueness under strong monotonicity of @� t , as stated below.

Theorem 2 Suppose that Assumptions (A), (B) and (C) are fulfilled. In addition,
assume that @� t is strongly monotone in V�, more precisely,
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(A4) There exists a positive constant C5 > 0 such that

hz�
1 � z�

2 ; z1 � z2i � C5jz1 � z2j2V ; 8Œzi; z�
i � 2 @� t .i D 1; 2/; 8t 2 Œ0;T�:

Then, the solution to .PI f ; u0/ is unique.
In Sect. 4, we prove Theorem 2 using the additional assumption (A4) and

Gronwall’s inequality.

Remark 3 Colli [8, Theorem 5] and Colli–Visintin [9, Remark 2.5] showed several
criteria for the uniqueness of solutions to the following type of doubly nonlinear
evolution equations:

@ .u0.t//C @'.u.t// 3 f .t/ in H for a.e. t 2 .0;T/: (6)

For instance, if @' is linear and positive in H and @ is strictly monotone in H, then
the solution to (6) on Œ0;T� is unique.

3 Existence of Solutions to (PI f ;u0)

In this section, we discuss the solvability of (PI f ; u0) for f 2 L2.0;TIV�/ and u0 2
V .

Throughout this section, we suppose that all the assumptions of Theorem 1
are made. On this basis, we prove Theorem 1 by means of the approximation of
(PI f ; u0). Indeed, our approximate problem is of the following form with parameter
" 2 .0; 1�:

.PI f ; u0/"

8̂<
:̂
"Fu0

".t/C @� 
t.u0

".t//C @�'
t.u".t//C g.t; u".t// 3 f .t/ in V�

for a.e. t 2 .0;T/;
u".0/ D u0 in V:

(7)

We prove the existence-uniqueness of solution to (PI f ; u0)" for each " 2 .0; 1�.
Proposition 1 Assume (A), (B) and (C) are satisfied. Then, for each " 2 .0; 1�,
u0 2 V and f 2 L2.0;TIV�/, there exists a unique solution u" 2 W1;2.0;TIV/
to .PI f ; u0/" on Œ0;T� satisfying u".0/ D u0 in V and there exists a function �" 2
L2.0;TIV�/ such that

�".t/ 2 @� t.u0
".t// in V� for a.e. t 2 .0;T/;

"Fu0
".t/C �".t/C @�' t.u".t//C g.t; u".t// D f .t/ in V� for a.e. t 2 .0;T/:
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Moreover, there exists a positive increasing function N0 with respect to '0.u0/;
j f jL2.0;TIV�/ and j˛0jL1.0;T/, independent of " 2 .0; 1�, such that
Z T

0

 t.u0
".t//dt C sup

t2Œ0;T�
' t.u".t// � N0

�
'0.u0/; j f jL2.0;TIV�/; j˛0jL1.0;T/

�
: (8)

To show (8), we need the following lemma.

Lemma 1 (cf. [10, Lemma 2.1.1]) Assume .B/. Let v 2 W1;1.0;TIV/. Then, we
have:

d

dt
' t.v.t// � h@�' t.v.t//; v0.t/i � j˛0.t/j' t.v.t//; a.e. t 2 .0;T/: (9)

Proof We observe from (B3) that ' t.v.t// is absolutely continuous on Œ0;T� and
also observe from the definition of subdifferential that

' t.v.t// � 's.v.s// � h@�' t.v.t//; v.t/ � v.s/i
�' t.v.s// � 's.v.s//

�j˛.t/ � ˛.s/j's.v.s// for all s; t 2 Œ0;T�:

Then, we get (9) by dividing the above inequalities by t � s and letting s " t. ut
Proof (Proof of Proposition 1) Note that the approximate problem (P; f ; u0)" can be
reformulated in the following form:

8<
:
u0
".t/ D ."F C @� t/�1 . f .t/ � @�' t.u".t// � g.t; u".t/// in V

for a.e. t 2 .0;T/;
u".0/ D u0 in V:

(10)

Here, we put

B.t/z� WD ."F C @� t/�1z� for all z� 2 V�; t 2 .0;T/

and

F .t; z/ WD f .t/ � @�' t.z/� g.t; z/ for all z 2 V; t 2 .0;T/:

Now we show that the operator B.t/z� W Œ0;T��V� ! V is Lipschitz in z� 2 V�
and is continuous in t 2 Œ0;T�. We first fix any t 2 Œ0;T� to show that z� 2 V� 7!
B.t/z� 2 V is Lipschitz continuous. To this end, put zi D B.t/z�

i .i D 1; 2/. Then,

z�
i D "Fzi C zi;� for some zi;� 2 @� t.zi/:
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Hence, we infer from (3) and the monotonicity of @� t.�/ that

hz�
1 � z�

2 ; z1 � z2i Dh"Fz1 C z1;� � "Fz2 � z2;�; z1 � z2i
�"hFz1 � Fz2; z1 � z2i
�"CFjz1 � z2j2V ;

which implies that

jB.t/z�
1 � B.t/z�

2 jV D jz1 � z2jV � 1

"CF
jz�
1 � z�

2 jV� :

Thus, the operator B.t/z� is Lipschitz in z� 2 V� for all t 2 Œ0;T� with a uniform
constant 1="CF.

Next, we fix any z� 2 V� to show that t 2 Œ0;T� 7! B.t/z� 2 V is continuous.
Let z� 2 V� be an arbitrary element and put zt WD B.t/z�, hence "Fzt C @� t.zt/ 3
z�. Let fsng � Œ0;T� with sn ! t (as n ! 1). Note that

z� D "Fzsn C zsn� for some zsn� 2 @� sn.zsn/: (11)

Also, we observe from (A1) that @� sn converges to @� t in the sense of graph as
n ! 1 (cf. [5, 11]). Therefore, for Œzt; z� � "Fzt� 2 @� t , there exists a sequence
fŒzn; z�

n �g � V � V� such that Œzn; z�
n � 2 @� sn in V � V� for all n 2 N,

zn ! zt in V and z�
n ! z� � "Fzt in V� as n ! 1: (12)

Since the dual space V� is uniformly convex, the duality mapping F is uniformly
continuous on every bounded subset of V . Therefore, we observe from (12) that

z�
n C "Fzn ! z� � "Fzt C "Fzt D z� in V� as n ! 1: (13)

Hence, we infer from (11), (13) and the monotonicity of @� sn that

0 D lim
n!1hz� � z�

n � "Fzn; zsn � zni
D lim

n!1h"Fzsn C zsn� � z�
n � "Fzn; zsn � zni

� lim sup
n!1

"hFzsn � Fzn; z
sn � zni

�"CF lim sup
n!1

jzsn � znj2V ;

which implies from (12) that

zsn D B.sn/z
� ! zt D B.t/z� as sn ! t:
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Thus, the operator B.t/z� is continuous in t 2 Œ0;T� for all z� 2 V�.
Furthermore, it follows from (B1), (B3), (C2) and f 2 L2.0;TIV�/ that the

operator F .t; z/ W Œ0;T� � V ! V� is (strongly) measurable in t 2 Œ0;T� and
Lipschitz in z 2 V .

Now we show the existence-uniqueness of a solution to (10), i.e., (P; f ; u0)"
on Œ0;T�. To this end, for given u 2 C.Œ0;T�IV/, we define the operator S W
C.Œ0;T�IV/ ! C.Œ0;T�IV/ by:

S.u/.t/ WD u0 C
Z t

0

B.s/ŒF .s; u.s//�ds for all t 2 Œ0;T�:

Note that the operator B.�/ŒF .�; �/� W Œ0;T� � V ! V satisfies the Carathéodory
condition, B.�/ŒF .�; z/� is Lipschitz in z 2 V and B.�/ŒF .�; u/� 2 L1.0;TIV/ for
all u 2 C.Œ0;T�IV/. Therefore, by Cauchy–Lipschitz–Picard’s existence theorem,
we can prove that S has the fixed point u 2 C.Œ0;T0�IV/ for some small T0 2 .0;T�,
which is a unique solution to (P; f ; u0)" on Œ0;T0�. By repeating the above argument,
we can construct a unique solution u" to (P; f ; u0)" on the whole time interval Œ0;T�.

Next we show a priori estimate (8). To this end, multiply (7) by u0
" to obtain:

h"Fu0
".t/; u

0
".t/i C h�".t/; u0

".t/i C h@�' t.u".t//; u0
".t/i

Chg.t; u".t//; u0
".t/i

D h f .t/; u0
".t/i for a.e. t 2 .0;T/;

(14)

with �" 2 L2.0;TIV�/ satisfying �".t/ 2 @� t.u0
".t// in V� for a.e. t 2 .0;T/. It

follows from the definition of F and @� t , and Lemma 1 that:

h"Fu0
".t/; u

0
".t/i D "ju0

".t/j2V ; (15)

h�".t/; u0
".t/i �  t.u0

".t// �  t.0/; (16)

h@�' t.u".t//; u
0
".t/i � d

dt
' t.u".t// � j˛0.t/j' t.u".t// (17)

for a.e. t 2 .0;T/. Also, from (A2), (B2), (C2) and Schwarz’s inequality, we observe
that

jhg.t; u".t//; u0
".t/ij � jg.t; u".t//jV� ju0

".t/jV

�C1
4

ju0
".t/j2V C 1

C1
jg.t; u".t//j2V�

�1
4
 t.u0

".t//C C2
4

C 1

C1

�jg.t; 0/jV� C Lgju".t/jV
�2

�1
4
 t.u0

".t//C C2
4

C 2jg.t; 0/j2V�

C1
C 2L2g

C1C4
' t.u".t// (18)
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and

jh f .t/; u0
".t/ij � C1

4
ju0
".t/j2VC 1

C1
j f .t/j2V� � 1

4
 t.u0

".t//C
C2
4

C 1

C1
j f .t/j2V� (19)

for a.e. t 2 .0;T/. Thus, using (15)–(19), it follows from (14) that:

"ju0
".t/j2V C 1

2
 t.u0

".t//C d

dt
' t.u".t//

� M1

�j˛0.t/j C 1/' t.u".t//C M2.j f .t/j2V� C  t.0/C jg.t; 0/j2V� C 1
�

for a.e. t 2 .0;T/;

(20)

where M1 > 0 and M2 > 0 are constants independent of " 2 .0; 1�; for instance,

M1 D 2L2g
C1C4

C 1 and M2 D 2
C1

C C2
2

C 1. Multiplying (20) by e� R t
0 M1.j˛0.�/jC1/d� , we

get

"e� R t
0 M1.j˛0.�/jC1/d� ju0

".t/j2V C 1

2
e� R t

0 M1.j˛0.�/jC1/d� . t.u0
".t//C C2/

C d

dt

n
e� R t

0 M1.j˛0.�/jC1/d�' t.u".t//
o

(21)

� C2
2
e� R t

0 M1.j˛0.�/jC1/d� CM2e
� R t

0 M1.j˛0.�/jC1/d� .j f .t/j2V� C t.0/C jg.t; 0/j2V� C 1/

DW M3.t/.
Integrating (21) in time, we obtain

Z T

0

 t.u0
".t//dt C sup

t2Œ0;T�
' t.u".t//

� 3e
R T
0 M1.j˛0.�/jC1/d�

�
'0.u0/C

Z T

0

M3.�/d�

�
DW N0:

It is easy to see from the above construction of N0 that N0 is a positive increasing
function with respect to '0.u0/; j f jL2.0;TIV�/ and j˛0jL1.0;T/, and is independent of
" 2 .0; 1�. Thus, the proof of Proposition 1 has been completed. ut

Now, let us prove the main Theorem 1.

Proof (Proof of Theorem 1) Let u" be a solution to .PI f ; u0/" with initial datum u0,
which is obtained by Proposition 1, and let �" be a function in L2.0;TIV�/ such that

�".t/ 2 @� t.u0
".t// in V� for a.e. t 2 .0;T/ (22)

and

"Fu0
".t/C�".t/C@�' t.u".t//Cg.t; u".t// D f .t/ in V� for a.e. t 2 .0;T/: (23)
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From (B2), (8) and the Ascoli–Arzelà theorem, we see that there is a sequence f"ng
with "n # 0 (as n ! 1) and a function u 2 W1;2.0;TIV/ such that

u"n ! u weakly in W1;2.0;TIV/; in C.Œ0;T�IH/
and weakly- � in L1.0;TIV/ as n ! 1;

)
(24)

u"n.t/ ! u.t/ weakly in V for all t 2 Œ0;T� as n ! 1; (25)

Z t

0

 � .u0.�//d� � lim inf
n!1

Z t

0

 � .u0
"n
.�//d� � N0 for all t 2 Œ0;T�:

Next, we show that u"n ! u in L2.0;TIV/. To this end, we multiply (23) by
u0
"n

� u0 to get:

h"nFu0
"n
.t/; u0

"n
.t/� u0.t/i C h�"n.t/; u0

"n
.t/ � u0.t/i

Ch@�' t.u"n.t//; u
0
"n
.t/ � u0.t/i C hg.t; u"n.t//; u0

"n
.t/ � u0.t/i

D h f .t/; u0
"n
.t/ � u0.t/i for a.e. t 2 .0;T/:

(26)

Here, we have by the definition of @� t (cf. (22)) that

h�"n.t/; u0
"n
.t/ � u0.t/i �  t.u0

"n
.t// �  t.u0.t// for a.e. t 2 .0;T/; (27)

and by Lemma 1 that

h@�' t.u"n.t//; u
0
"n
.t/ � u0.t/i

D h@�' t.u"n.t/ � u.t//; u0
"n
.t/ � u0.t/i C h@�' t.u.t//; u0

"n
.t/ � u0.t/i

� d

dt
' t.u"n.t/ � u.t//� j˛0.t/j' t.u"n.t/ � u.t//

Ch@�' t.u.t//; u0
"n
.t/ � u0.t/i for a.e. t 2 .0;T/:

(28)

Therefore, from (26)–(28) we obtain that:

d

dt
' t.u"n.t/ � u.t//

� j˛0.t/j' t.u"n.t/ � u.t//C QL"n.t/C  t.u0.t// �  t.u0
"n
.t//;

(29)

for a.e. t 2 .0;T/, where QL"n.�/ is a function defined by:

QL"n.t/ WDh f .t/� @�' t.u.t// � g.t; u"n.t//; u
0
"n
.t/ � u0.t/i

C "njFu0
"n
.t/jV� ju0

"n
.t/ � u0.t/jV for a.e. t 2 .0;T/:
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Now, just as (20)–(21) in the proof of Proposition 1, by multiplying (29) by
e� R t

0 j˛0.�/jd� and integrating it in time, we get

e� R t
0 j˛0.�/jd�' t.u"n.t/ � u.t//

�
Z t

0

e� R s
0 j˛0.�/jd� QL"n.s/ds C

Z t

0

e� R s
0 j˛0.�/jd�f s.u0.s// �  s.u0

"n
.s//gds:

By (24) and (25) the first integral of the right hand side goes to 0 as n ! 1 and by
the weak lower semicontinuity of the functional v ! R t

0 e
� R s

0 j˛0.�/jd� s.v.s//ds on
L2.0; tIV/ the limit supremum of the second integral is bounded by 0 as n ! 1.
Hence we conclude that

lim sup
n!1

' t.u"n.t/ � u.t// � 0; hence u"n.t/ ! u.t/ in V; 8t 2 Œ0;T�; (30)

so that by the Lebesgue dominated convergence theorem,

u"n ! u in L2.0;TIV/ as n ! 1: (31)

Now we show that u is a solution of (PI f ; u0/ with initial datum u0. We first note
from (B1), (30) and the Lebesgue dominated convergence theorem that

@�'.�/.u"n.�// ! @�'.�/.u.�// in L2.0;TIV�/ as n ! 1 (32)

and by (8) that

"nFu
0
"n

! 0 in L2.0;TIV�/ as n ! 1: (33)

By (31)–(33) and (C2),

�"n D f �@�' t.u"n/�g.t; u"n/�"nFu0
"n

! f �@�' t.u/�g.t; u/ DW � in L2.0;TIV�/:

Therefore, from the demi-closedness of @� t in L2.0;TIV/�L2.0;TIV�/ it follows
that �.t/ 2 @� t.u0.t// in V� for a.e. t 2 .0;T/ and

�.t/C @�' t.u.t//C g.t; u.t// D f .t/ in V� for a.e. t 2 .0;T/:

Therefore, we conclude that u is a solution of (PI f ; u0/ and from a priori estimate (8)
that (5) holds for the same function N0 as in Proposition 1.

Thus, the proof of Theorem 1 has been completed. ut
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4 Uniqueness of Solutions to (P; f ;u0)

In this section, we discuss the uniqueness of solutions to (PI f ; u0).
We begin with showing a counterexample for uniqueness of solutions to (P; f ; u0).

Example 4.1 (cf. [8, Section 2]) Let ˝ D .0; 1/. Also, let V D H1.˝/ and H D
L2.˝/. Define a closed convex subset K of V by

K WD fz 2 V I jz.x/j � 1; jzx.x/j � 1; a.e. x 2 ˝g :

Then, we consider the following variational problem with constraint:

8̂̂
<
ˆ̂:

ut.t/ 2 K; a.e. t 2 .0;T/;Z
˝

ux.t; x/.uxt.t; x/ � vx.x//dx � 0; 8v 2 K; a.e. t 2 .0;T/;
u.0; x/ D 0; x 2 ˝;

(34)

where 0 < T < C1.
Here, for each t 2 Œ0;T� we consider the following convex functions:

 t.z/ D IK.z/; ' t.z/ D 1

2
jzj2V ; 8z 2 V:

Then we have:

1. z� 2 @� t.z/ if and only if z� 2 V�; z 2 K and hz�; v � zi � 0 for all v 2 K,

2. h@�' t.z/; vi D R
˝ z.x/v.x/dx C R

˝ zx.x/vx.x/dx for all v; z 2 V ,

and problem (34) is reformulated as (P;0; 0) with g.t; z/ D �z. Therefore, applying
Theorem 1, problem (34) has at least one solution u.

Moreover, for each constant c 2 .0; 1/ the function uc defined by

uc.t; x/ WD c.1� exp.�t// for all .t; x/ 2 .0;T/ �˝

is a solution to (34). Indeed, we observe that

.uc/t.t; x/ D c exp.�t/ 2 K; .uc/x.t; x/ D 0; .uc/xt.t; x/ D 0

for all .t; x/ 2 .0;T/ � ˝ . Therefore, for each c 2 .0; 1/, (34) is satisfied. Hence
fucgc2.0;1/ provides with an infinite family of solutions to (34).

Now, we prove Theorem 2 concerning the uniqueness of solutions to (P; f ; u0)
under the additional condition (A4) of strict monotonicity of @� t .
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Proof (Proof of Theorem 2) Let ui, i D 1; 2, be two solutions to (P; f ; u0) on Œ0;T�.
Subtract (P; f ; u0) for i D 2 from the one for i D 1, and multiply it by u0

1�u0
2. Then:

h�1.t/ � �2.t/; u0
1.t/ � u0

2.t/i C h@�' t.u1.t// � @�' t.u2.t//; u0
1.t/ � u0

2.t/i
Chg.t; u1.t// � g.t; u2.t//; u0

1.t/ � u0
2.t/i D 0 for a.e. t 2 .0;T/; (35)

where �i.t/ 2 @� t.u0
i.t// for a.e. t 2 .0;T/ (i D 1; 2/. From (A4) we observe that

h�1.t/ � �2.t/; u
0
1.t/ � u0

2.t/i � C5ju0
1.t/ � u0

2.t/j2V for a.e. t 2 .0;T/ (36)

and by Lemma 1 that

h@�' t.u1.t// � @�' t.u2.t//; u0
1.t/ � u0

2.t/i
D h@�' t.u1.t/ � u2.t//; u0

1.t/ � u0
2.t/i

� d

dt
' t.u1.t/ � u2.t// � j˛0.t/j' t.u1.t/� u2.t// for a.e. t 2 .0;T/:

(37)

Therefore, we observe from (35)–(37) and (C2) with the help of the Schwarz
inequality that

C5ju0
1.t/ � u0

2.t/j2V C d

dt
' t.u1.t/ � u2.t//

�j˛0.t/j' t.u1.t/ � u2.t//C jg.t; u1.t//� g.t; u2.t//jV� ju0
1.t/ � u0

2.t/jV

�j˛0.t/j' t.u1.t/ � u2.t//C 1

2C5
jg.t; u1.t//� g.t; u2.t//j2V� C C5

2
ju0
1.t/ � u0

2.t/j2V

�j˛0.t/j' t.u1.t/ � u2.t//C L2g
2C5

ju1.t/ � u2.t/j2V C C5
2

ju0
1.t/ � u0

2.t/j2V

for a.e. t 2 .0;T/. From the above inequality we infer that

C5
2

ju0
1.t/ � u0

2.t/j2V C d

dt
' t.u1.t/ � u2.t//

� K1.j˛0.t/j C 1/' t.u1.t/ � u2.t// for a.e. t 2 .0;T/;
(38)

for some constant K1 > 0 being independent of ui (i D 1; 2). Hence, applying the
Gronwall inequality to (38), we conclude that

u1.t/ � u2.t/ D 0 in V for all t 2 Œ0;T�:

Thus the proof of Theorem 2 has been completed. ut
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5 Doubly Nonlinear Quasi-Variational Inequality

In this section we discuss a doubly nonlinear quasi-variational inequality of the
form:

.QPI f ; u0/
(
@� 

t.u0.t//C @�'
t.uI u.t//C g.t; u.t// 3 f .t/ in V� for a.e. t 2 .0; T/;

u.0/ D u0 in V;

where  t.z/ and g.t; z/ are the same ones as before, and ' t.vI z/ is precisely
formulated below.

(Assumption (B’))

Putting

D0 WD
�
v 2 W1;2.0;TIV/

ˇ̌̌
ˇ
Z T

0

 t.v0.t//dt < 1
�
;

we define a functional ' t W Œ0;T� � D0 � V ! R such that ' t.vI z/ is non-negative,
finite, continuous and convex in z 2 V for any t 2 Œ0;T� and any v 2 D0, and

' t.v1I z/ D ' t.v2I z/; 8z 2 V; if v1 D v2 on Œ0; t�;

for vi 2 D0; i D 1; 2; and assume:

(B1’) The subdifferential @�' t.vI z/ of ' t.vI z/ with respect to z 2 V is linear and
bounded from D.@�' t.vI �// D V into V� for each t 2 Œ0;T� and v 2 D0, and
there is a positive constant C0

3 such that

j@�' t.vI z/jV� � C0
3jzjV ; 8z 2 V; 8v 2 D0; 8t 2 Œ0;T�:

(B2’) If fvng � D0, supn2N
R T
0
 t.v0

n.t//dt < 1 and vn ! v 2 C.Œ0;T�IH/ (as
n ! 1), then

@�' t.vnI z/ ! @�' t.vI z/ in V�; 8z 2 V; 8t 2 Œ0;T� as n ! 1:

(B3’) ' t.vI 0/ D 0 for all v 2 D0 and t 2 Œ0;T�. There is a positive constant C0
4

such that

' t.vI z/ � C0
4jzj2V ; 8z 2 V; 8v 2 D0; 8t 2 Œ0;T�:

(B4’) There is a function ˛ 2 W1;1.0;T/ such that

j' t.vI z/ � 's.vI z/j � j˛.t/ � ˛.s/j's.vI z/
8z 2 V; 8v 2 D0; 8s; t 2 Œ0;T�:
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We now state the final main theorem of this paper.

Theorem 3 Suppose that Assumptions (A), (B’) and (C) are fulfilled. Let f be any
function in L2.0;TIV�/ and u0 be any element in V such that

u0 2 D.'0. QvI �// for some Qv 2 D0 with Qv.0/ D u0:

Then .QPIf ; u0/ admits at least one solution u W Œ0;T� ! V in the sense that:

(i) u 2 D0 with u.0/ D u0 in V,
(ii) there is � 2 L2.0;TIV/ such that �.t/ 2 @� t.u0.t// in V� for a.e. t 2 .0;T/

and

�.t/C @�' t.uI u.t//C g.t; u.t// D f .t/ in V� for a:e: t 2 .0;T/:

Proof Let " be a fixed positive constant in .0; 1� and consider the Cauchy problem
for any given v 2 D0:

8<
:
"Fu0.t/C @� t.u0.t//C @�' t.vI u.t//C g.t; u.t// 3 f .t/ in V�

for a.e. t 2 .0;T/;
u.0/ D u0 in V:

(39)

Then, by virtue of Theorems 1 and 2, problem (39) possesses one and only one
solution u in the same sense of Definition 1, enjoying the estimate

Z T

0

f"ju0.t/j2V C  t.u0.t//gdt C sup
t2Œ0;T�

' t.vI u.t//
� N0 WD N0.'0.vI u0/; j f jL2.0;TIV�/; j˛0jL1.0;T//:

(40)

Now, putting

X.u0/ WD
�
v 2 W1;2.0;TIV/

ˇ̌̌
ˇ v.0/ D u0;

Z T

0

 t.v0.t//dt � N0

�
;

we define a mapping S W X.u0/ ! X.u0/ which maps each v 2 X.u0/ � D0 to the
unique solution u of (39), namely S v D u; note from (40) that u 2 X.u0/. Clearly
X.u0/ is non-empty, convex and compact in C.Œ0;T�IH/.

Next we show that S is continuous in X.u0/ with respect to the topology of
C.Œ0;T�IH/. Let v 2 C.Œ0;T�IH/, and let fvng be a sequence in X.u0/ such that
vn ! v in C.Œ0;T�IH/ (as n ! 1), and put un D S vn. Then we see that v 2
X.u0/, vn ! v weakly in W1;2.0;TIV/ and supn2N

R T
0
 t.v0

n.t//dt � N0. From (40)
it follows that there is a subsequence of fung (not relabeled) and a function u 2
W1;2.0;TIV/ such that

un ! u in C.Œ0;T�IH/; weakly in W1;2.0;TIV/ as n ! 1
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and

un.t/ ! u.t/ weakly in V for all t 2 Œ0;T� as n ! 1:

Also, we have

"Fu0
n.t/C @� t.u0

n.t//C @�' t.vnI un.t//C g.t; un.t// 3 f .t/ in V�
for a.e. t 2 .0;T/: (41)

Just as (30) in the proof of Proposition 1, we obtain by multiplying (41) for t D s
by u0

n.s/ � u0.s/ and using (3) that

"CFju0
n.s/� u0.s/j2V C d

ds
's.vnI un.s/ � u.s//

� j˛0.s/j's.vnI un.s/ � u.s//C NLn.s/ for a.e. s 2 .0;T/;
(42)

where

NLn.s/ D h f .s/� g.s; un.s// � @�'s.vnI u.s//; u0
n.s/ � u0.s/i

� "hFu0.s/; u0
n.s/ � u0.s/i C  s.u0.s// �  s.u0

n.s// for a.e. s 2 .0;T/:

Since g.�; un/ ! g.�; u/ and @�'.�/.vnI u/ ! @�'.�/.vI u/ (strongly) in L2.0;TIV�/
by conditions (C1), (B2’) and the functional w ! R t

0
 s.w.s//ds is lower semicon-

tinuous on L2.0;TIV/, it follows that

lim sup
n!1

Z t

0

NLn.s/ds � 0; 8t 2 Œ0;T�;

so that applying the Gronwall inequality to (42) yields that

lim sup
n!1

' t.vnI un.t/ � u.t// � 0; i:e: un.t/ ! u.t/ in V; 8t 2 Œ0;T�

and u0
n ! u0 in L2.0;TIV/ as n ! 1. This implies from (B1’) and (B2’) that

@�' t.vnI un.t// ! @�' t.vI u.t// in V� for all t 2 Œ0;T�, whence

"Fu0
n.t/C @� t.u0

n.t// 3 �n.t/ WD f .t/ � @�' t.vnI un.t// � g.t; un.t//

! f .t/ � @�' t.vI u.t// � g.t; u.t// DW �.t/ in V�

for a.e. t 2 Œ0;T� as n ! 1. Accordingly, by the demi-closedness of maximal
monotone mappings, we have �.t/ 2 "Fu0.t/ C @� t.u0.t// for a.e. t 2 Œ0;T�. As
a consequence, u satisfies (39), namely u D S v. By the uniqueness of solution
to (39) we conclude that S vn D un ! u D S v in C.Œ0;T�IH/ without extracting
any subsequence from fung. Thus S is continuous in X.u0/ with respect to the
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topology of C.Œ0;T�IH/. Therefore, by the Schauder fixed point theorem, S has at
least one fixed point u in X.u0/. This is a solution of (39) with v D u.

We showed above that for every small " > 0 the Cauchy problem

8<
:
"Fu0

".t/C @� t.u0
".t//C @�' t.u"I u".t//C g.t; u".t// 3 f .t/ in V�

for a.e. t 2 .0;T/;
u".0/ D u0 in V

admits at least one solution u" 2 W1;2.0;TIV/ enjoying estimate

"

Z T

0

ju0
".t/j2Vdt C

Z T

0

 t.u0
".t//dt C sup

t2Œ0;T�
' t.u"I u".t// � N0; 8" 2 .0; 1�:

Therefore, we can choose a sequence f"ng with "n # 0 (as n ! 1) and a function
u 2 D0 so that

un WD u"n ! u in C.Œ0;T�IH/; weakly in W1;2.0;TIV/ as n ! 1;

un.t/ ! u.t/ weakly in V for all t 2 Œ0;T� as n ! 1;

"nu0
n ! 0 in L2.0;TIV/ as n ! 1;

sup
n2N

Z T

0

 t.u0
n.t//dt � N0:

Now, in the same way just as in the convergence proof of Theorem 1 again, we
can infer from (B2’) and (C1) that the limit u satisfies

(
@� t.u0.t//C @�' t.uI u.t//C g.t; u.t// 3 f .t/ in V� for a.e. t 2 .0;T/;
u.0/ D u0 in V:

Thus u is a required solution to (QP;f ; u0). ut

6 Applications

In this section, we consider two applications of the general results (Theorems 1
and 3).

Let ˝ be a bounded domain in R
N .1 � N < 1/ with a smooth boundary

� WD @˝ , and let us set

V WD H1
0.˝/; H WD L2.˝/I

note that condition (3) is satisfied with CF D 1.
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(Application 1)

Let T > 0 be a fixed real number, and let Q WD .0;T/ � ˝ . Also, let � be a
prescribed obstacle function in C.Q/ such that

.0 </�� � �.t; x/ � ��; 8.t; x/ 2 Q; (43)

where �� and �� are positive constants.
Now, for each t 2 Œ0;T� define a closed convex set K.t/ in V by

K.t/ WD fz 2 V I jrz.x/j � �.t; x/ for a.e. x 2 ˝g :

Then, our variational inequality with constraint is of the form:

ut.t/ 2 K.t/ for a.e. t 2 .0;T/;Z
˝

a.t; x/ru.t; x/ � r.ut.t; x/ � v.x//dx C
Z
˝

g.t; u.t; x//.ut.t; x/ � v.x//dx
�
Z
˝

f .t/.ut.t; x/ � v.x//dx for all v 2 K.t/ and a.e. t 2 .0;T/;
u.0; x/ D u0.x/; x 2 ˝;

9>>>>>>=
>>>>>>;
(44)

where g.�; �/ is a Lipschitz continuous function on Œ0;T� � R, f is a function given
in L2.0;TIH/, u0 is an initial datum in V , and a.�; �/ is a prescribed function on Q
such that

.0 </a� � a.t; x/ � a�; 8.t; x/ 2 Q; a D a.t/ 2 W1;1.0;TIC.˝//;

where a� and a� are positive constants.
Now we show the existence of a solution to (44) on Œ0;T� by applying the abstract

result Theorem 1. To this end, for each t 2 Œ0;T� define proper l.s.c. and convex
functions  t, ' t on V and ˛.t/ by

 t.z/ WD IK.t/.z/ D
(
0; if z 2 K.t/;

C1; otherwise,
; 8z 2 V; 8t 2 Œ0;T�; (45)

' t.z/ WD 1

2

Z
˝

a.t; x/jrz.x/j2dx; 8z 2 V; 8t 2 Œ0;T� (46)

and

˛.t/ WD 1

a�

Z t

0

ˇ̌̌
ˇ @@� a.�; x/

ˇ̌̌
ˇ d�; 8t 2 Œ0;T�: (47)
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We see easily that

z� 2 @� t.z/ ” z� 2 V�; z 2 K.t/ and hz�; v � zi � 0; 8v 2 K.t/ (48)

and

h@�' t.z/; vi D
Z
˝

a.t; x/rz.x/ � rv.x/dx; 8z; v 2 V (49)

for all t 2 Œ0;T�. In our present case it is easy to check Assumptions .A/–.C/, except
for (A1). We prove (A1) in the following lemma.

Lemma 2 (cf. [11, Lemma 10.1]) For any sequence ftng � Œ0;T� with tn ! t (as
n ! 1),  tn converges to  t on V in the sense of Mosco as n ! 1.

Proof Assume that

fzng � V; zn ! z weakly in V and lim inf
n!1  tn .zn/ < 1: (50)

We may assume that zn 2 K.tn/ for all n. By definition

jrzn.x/j � �.tn; x/; a.e. x 2 ˝: (51)

Also, by � 2 C.Q/, given " > 0, there exists a positive integer n" such that

�.tn; x/ � �.t; x/C " for all x 2 ˝ and all n � n": (52)

Therefore, it follows from (51) and (52) that

jrzn.x/j � �.t; x/C "; a.e. x 2 ˝ and all n � n";

which implies that

zn 2 K".t/ WD fz 2 V I jrz.x/j � �.t; x/C "; a.e. x 2 ˝g for all n � n": (53)

Note that K".t/ is weakly compact in V , since the set K".t/ is bounded, closed
and convex in V . Therefore, it follows from (50) and (53) that

z 2 K".t/:

Since " is arbitrary, we have z 2 K.t/. Hence, we observe that

lim inf
n!1  tn .zn/ D 0 D  t.z/:
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Next, we verify another condition of the Mosco convergence. To this end, assume
z 2 K.t/. Note from � 2 C.Q/ that for each k, choose a positive integer Nk so that
Nk � k and

�.t; x/ � �.tn; x/C ��
k

for all x 2 ˝ and all n � Nk: (54)

Then, we observe from z 2 K.t/, (43) and (54) that

jrz.x/j � �.t; x/ � �.tn; x/C ��
k

�
�
1C 1

k

�
�.tn; x/;

for a.e. x 2 ˝ and all n � Nk, which implies that

ˇ̌̌
ˇ̌r
 

1

1C 1
k

z.x/

!ˇ̌̌
ˇ̌ � �.tn; x/; a.e. x 2 ˝ and all n � Nk: (55)

Putting

zn WD

8̂<
:̂

1

1C 1
k

z; if n � Nk for some k 2 N;

0; if 1 � n < N1;

we observe from (55) and z 2 K.t/ that tn ! t as n ! 1,

K.tn/ 3 zn ! z in V as n ! 1

and

lim
n!1 tn .zn/ D 0 D  t.z/:

Thus,  tn converges to  t on V in the sense of Mosco. ut
Taking account of (45)–(49), problem (44) can be reformulated in the abstract

form (P; f ; u0). Therefore, by Theorem 1, problem (44) admits a solution u 2
W1;2.0;TIV/.
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(Application 2)

Let us consider problem (44) with the diffusion coefficient a.t; x/ replaced by
a.t; x; u/, namely

ut.t/ 2 K.t/ for a.e. t 2 .0;T/;Z
˝

a.t; x; u.t; x//ru.t; x/ � r.ut.t; x/ � v.x//dx
C
Z
˝

g.t; u.t; x//.ut.t; x/ � v.x//dx �
Z
˝

f .t/.ut.t; x/ � v.x//dx

for all v 2 K.t/ and a.e. t 2 .0;T/;
u.0; x/ D u0.x/; x 2 ˝;

9>>>>>>>>=
>>>>>>>>;

(56)

where K.t/, f and u0 are the same as in Application 1; the obstacle function �
satisfies (43) as well. As to the function a.t; x; r/ we suppose that

8̂̂̂
<
ˆ̂̂:
.0 </a� � a.t; x; r/ � a�; 8.t; x/ 2 Q; 8r 2 R;

ja.t1; x; r1/ � a.t2; x; r2/j � La.jt1 � t2j C jr1 � r2j/;
8ti 2 Œ0;T�; ri 2 R; i D 1; 2; 8x 2 ˝;

(57)

where a�; a� and La are positive constants. Also, condition (43) is assumed and  t

is defined by (45) as well. Furthermore the .t; v/-dependent functional ' t.vI z/ is
given by

' t.vI z/ WD 1

2

Z
˝

a.t; x; v.t; x//jrz.x/j2dx; 8t 2 Œ0;T�; 8v 2 D0; 8z 2 V;

(58)
where

D0 D fv 2 W1;2.0;TIV/ j v0.t/ 2 K.t/ for a.e. t 2 Œ0;T�g:

The subdifferential @�' t.vI �/ of ' t.vI �/ is given by

h@�' t.vI z/;wi D
Z
˝

a.t; x; v.t; x//rz.x/ � rw.x/dx (59)

for all t 2 Œ0;T�, v 2 D0 and z; w 2 V . Note from (43) that

jrv0.t; x/j � �� for a.e. .t; x/ 2 Q;

which implies that

sup
t2Œ0;T�

jv0.t/jL1.˝/ � N��; 8v 2 D0; for some constant N�� > 0: (60)
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Therefore, it is easy to check by (57) that Assumption (B’) holds with

C0
3 WD a�; C0

4 WD 1

2
a�; ˛.t/ WD 1

a�
La.1C N��/t:

In fact, (B1’) and (B3’) are immediately seen from the definition of ' t.v; z/. Also,
if vn 2 D0; supn2N

R T
0
 t.v0

n.t//dt < 1 and vn ! v in C.Œ0;T�IH/, then we have

jh@�' t.vnI z/� @�' t.vI z/;wij

�
Z
˝

ja.t; x; vn.t; x// � a.t; x; v.t; x//jjrz.x/jjrw.x/jdx

�
�Z

˝

ja.t; x; vn.t; x// � a.t; x; v.t; x//j2jrz.x/j2dx
� 1

2

jwjV

and the last integral converges to 0 by the Lebesgue dominated convergence
theorem, so that @�' t.vnI z/ ! @�' t.vI z/ (strongly) in V�. Thus (B2’) holds.
Condition (B4’) is verified by using (43), (57) and (60) as follows:

j' t.vI z/ � 's.vI z/j

� 1

2

Z
˝

ja.t; x; v.t; x// � a.s; x; v.s; x//jjrz.x/j2dx

� 1

2

Z
˝

Z t

s
ja� .�; x; v.�; x//C av.�; x; v.�; x//v� .�; x/jjrz.x/j2d�dx

� 1

a�
.La C La N��/jt � sj � 1

2

Z
˝

a.s; x; v.s; x//jrz.x/j2dx

D 1

a�
La.1C N��/jt � sj's.vI z/;

where a� WD @
@�
a.�; x; v/ and av WD @

@v
a.�; x; v/.

By (58)–(59) problem (56) can be described as

(
@� t.u0.t//C @�' t.uI u.t//C g.t; u.t// 3 f .t/ in V�;

u.0/ D u0 in V:

By virtue of Theorem 3, this Cauchy problem admits a solution u 2 D0, so does
problem (56).

Remark 4 (44) is the variational formulation of (P; f ; u0). It seems similar to
hyperbolic variational problems and our abstract result might be evolved to the
hyperbolic case. However, in this paper, we do not touch it, since the mathematical
structure is essentially of parabolic or pseudo-parabolic type.
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Remark 5 Problems (P; f ; u0) and (QP;f ; u0) have a wide class of real world
applications, for instance, reaction-diffusion systems for multi-species bacteria
and solid-liquid phase transition systems with partial irreversibility (cf. [3, 4]).
Moreover, when such phenomena are considered in fluid flows, they are coupled
with various variational inequalities of the Navier-Stokes type which can be
described by our doubly nonlinear evolution equations, too.
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