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Equations Governed by Time-Dependent
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Abstract We discuss a new class of doubly nonlinear evolution equations gov-
erned by time-dependent subdifferentials in uniformly convex Banach spaces, and
establish an abstract existence result of solutions. Also, we show non-uniqueness
of solution, giving some examples. Moreover, we treat a quasi-variational doubly
nonlinear evolution equation by applying this result extensively, and give some
applications to nonlinear PDEs with gradient constraint for time-derivatives.
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1 Introduction

This paper is concerned with a new class of doubly nonlinear evolution equations
governed by time-dependent subdifferentials. Let H be a real Hilbert space and V be
a uniformly convex Banach space such that V is dense in H and the injection from
V into H is compact. Also we suppose that the dual space V* of V is uniformly
convex. In this case, identifying H with its dual, we have

V < H <> V* with compact embeddings.
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The doubly nonlinear evolution equation, as in the title, is of the following form:

W' (U (1)) + 050" (u(?)) + g(t,u(t)) > f(r) in V* fora.e. t € (0,T),
u(0) =up inV.

(P;f, uo)

ey

Here 0 < T < oo, u’ =du/dtinV, vy : V—RU{oco}and ¢’ : V — R U {oo} are
time-dependent proper, l.s.c. (lower semi-continuous) and convex functions on V
foreach t € [0, T], 0+ and d.¢" are their subdifferentials from V into V*, g(¢, -) is
a single-valued operator from V into V*, f is a given V*-valued function and uy € V
is a given initial datum. Suppose that d.¢’ is single-valued, linear and continuous
from V into V*.

The main aim of this paper is to show the existence of a solution to (P; f, u() under
some additional assumptions. Also, we touch the uniqueness question of solutions
to (P;f, up), together with an example for non-uniqueness of solutions in the general
case. We shall show the uniqueness of solutions under the strong monotonicity of
05y,

Similar types of doubly nonlinear evolution equations have been discussed by
many mathematicians, for instance, Akagi [1], Arai [2], Aso et al. [3, 4], Colli [8],
Colli—Visintin [9] and Senba [14]. Most of them treated the case

0y (U (1) + dp(u(?)) > f(r) in H fora.e.r € (0,7T) (2)

and it should be noticed that the second term d¢ in (2) is independent of time and
there is no perturbation term g. There has been no theory on nonlinear evolution
equations governed by doubly time-dependent subdifferentials because of lack of
energy estimate up to date. In this paper we shall establish an abstract approach
to (1), specifying the time-dependence of ¥’ and ¢'. As to the application of (1),
we can treat nonlinear variational inequalities with gradient constraint for time-
derivatives (see Sect. 6), which is a new novelty of this paper.

Another aim of this paper is to treat a doubly nonlinear quasi-variational
evolution equation of the form:

Y (/' (1)) + 059" (u; u(?)) + g(t,u(r)) > f() in V* forae.re (0,7),
u(0) =up inV.

(QP:f uo)

The solvability will be discussed in the same framework with (P; f, ug) by means of
a standard fixed-point argument for compact operators. In this formulation, ¢’(v; z)
is proper, l.s.c. and convex in z € V, and (¢,v) € [0, T] x L*(0, T; V) is a parameter
which determines the convex function ¢’(v;-) on V. The dependence of function
v upon ¢'(v;-) is allowed to be non-local, in general. Therefore, the expression
of (QP;f, up) includes an extremely wide class of quasi-linear partial differential
equations or variational inequalities.
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1.1 Notations

Throughout this paper, let H be a real Hilbert space with inner product (-, -) and norm
| - |m. Let V be a uniformly convex (hence reflexive) Banach space with uniformly
convex dual space V*. We denote by | - |y, | - |y+ and (-,-) the norms in V, V*
and duality pairing between V* and V, respectively. Also, suppose that V is dense
and embedded compactly in H. Then, identifying H with the dual H*, we have
V — H < V*, where — stands for the compact embedding. Therefore, (V, H, V*)
is the standard triplet and

(u,v) = (u,v) foru e Handv € V.

Also, let F : V — V* be the duality mapping, which is single-valued and continuous
from V onto V*.

We here prepare some notations and definitions of subdifferential of convex
functions. Let ¢ : V — R U {00} be a proper (i.e., not identically equal to infinity),
Ls.c. and convex function. Then, the effective domain D(¢) is defined by

D(¢) :={z € V: ¢(z) < o0}

The subdifferential d«¢ : V — V* of ¢ is a possibly multi-valued operator and is
defined by:

7€) =" eV, zeD@). (Fy—2) =p() — (), VyeV;

and the domain of d.¢ is denoted by D(d«¢), and set as D(d«¢) = {z €
V; 0«¢(2) # @}. For basic properties and related notions of proper, 1.s.c., convex
functions and their subdifferentials, we refer to the monographs of Barbu [6, 7].

Next, we recall a notion of convergence for convex functions, developed by
Mosco [12]. Let ¢, ¢, (n € N) be proper, L.s.c. and convex functions on V. Then,
we say that ¢, converges to ¢ on V in the sense of Mosco [12] as n — oo, iff. the
following two conditions are satisfied:

1. for any subsequence {¢,,} C {¢n}, if zx — z weakly in V as k — oo, then
liminf ¢, (zx) = ¢ (2);
k—>00

2. for any z € D(¢), there is a sequence {z,} in V such that

Zy—>zinVasn—oo and lim ¢,(z,) = ¢(2).
n—>oQo
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2 Main Theorems

We begin with the precise formulation of our problem (P; f, uo).
We suppose that the duality mapping F' : V — V* is strongly monotone, more
precisely there is a positive constant Cr such that

(Fz1 — Fzo,21 — 22) > Crlzi — 2213, Yz1, m € V. 3)

(Assumption (A))

Let ¥'(-) be a proper ls.c. and convex function on V for all r € [0,T]. We
assume:

(Al) If {t,} C [0, T] and ¢ € [0, T] with #,, — ¢ as n — oo, then ¥ (-) — ¥’(:) in
the sense of Mosco [12] as n — oo.
(A2) There exist positive constants C; > 0 and C, > 0 such that

V'(z) > Cilz|3 — Gy, Yt e[0,T), Yz e D).

(A3) 3+¥7(0) 30 forall ¢ € [0,7] and ¥ (0) € L'(0, T).
(Assumption (B))

Let ¢'(-) : V — R U {oo} be a non-negative, finite, continuous and convex
function with D(¢") = V for all 1 € [0, T]. We assume:

(B1) For each ¢ € [0, T], the subdifferential d+¢' : D(0x¢") = V — V* is linear
and uniformly bounded, i.e., there exists a positive constant C3 > 0 such that

10+¢"(2)|v+ < C3lzlv, Vre[0,T], Vze V.

(B2) ¢'(0) = 0 forall ¢ € [0,T] and there exists a positive constant C4 > 0 such
that

9'(x) = Calzl?, Vie[0,T], Vze V.
(B3) There is a function @ € W"1(0, T) such that
l¢'(2) = 9" (@] < |a(t) — ()¢’ (), Vs, t€[0,T], ¥z V.
Remark I 'We derive from (B1) and (B2) that the subdifferential d. ¢’ satisfies that
Cslzl} = (0+¢'(2).2) = ¢'(2) = Culzl},, Yz eV, Vi e0,T] )

and from (B3) that the function t — 0.¢’(z) is weakly continuous from [0, 7] into
V*.
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Remark 2 The assumption (B3) is the standard time-dependence condition of
convex functions (cf. [10, 13, 15]).

(Assumption (C))

Let g be a single-valued operator from [0, T| x V into V* such that g(z,z) is
strongly measurable in ¢ € [0, T] for each z € V, and assume:

(C1) For each t € [0, T], the operator z — g(t, z) is continuous from V,, into V*,
ie., if z, — zweakly in V as n — oo, then g(t, z,) — g(t,z) in V* as n — oo.

(C2) g(t,-) is uniformly Lipschitz from V into V*, i.e., there is a positive constant
L, > 0 such that

lg(t.z1) — g(t, 22) v+ < Lglzi —z2lv, Vte€[0,T], Vz; eV (i=1,2).

Under the above assumptions we define the solution to (P;f, ug) as follows.

Definition 1 Givenf € L?(0, T; V*) and uy € V, a functionu : [0, T] — V is called
a solution to (P;f, up) on [0, 7], iff. the following conditions are fulfilled:

(i) ue Wh2(0,T;V).
(ii) There exists a function £ € L?(0, T; V*) such that

£(f) € 0¥ (' (1)) in V* forae.t € (0,7),
E(1) + 040" (u(?)) + g(t, u(®)) = f(t) in V* fora.e.r € (0, 7).

(iii) u(0) = uoin V.

Now, we mention the first main result of this paper, which is concerned with the
existence of a solution to problem (P; £, uo).

Theorem 1 Suppose that Assumptions (A), (B) and (C) hold. Then, for eachuy € V
and f € L*(0,T;V*), there exists at least one solution u to (P;f,ug) on [0, T].
Moreover; there exists a positive increasing function Ny : R‘:’_ — R4 with respect to
@ (o), | flr2.r:v*) and |’ |1 .1y such that

T
/0 V(' (1))dr + SE(J)pT] @' (1)) < No (¢°(o). | flrzorve). 1 1 0m)) - (5)

In Sect. 3, we shall prove Theorem 1, considering the approximate problems of
(P; f, up). It is known that the solution to (P; f, up) is not unique in general. In Sect. 4,
we give an example for non-uniqueness of solutions to (P;f, 1) in the general case,
but we can show the uniqueness under strong monotonicity of d. ¥, as stated below.

Theorem 2 Suppose that Assumptions (A), (B) and (C) are fulfilled. In addition,
assume that 0" is strongly monotone in V*, more precisely,
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(A4) There exists a positive constant Cs > 0 such that
(& —B.a—2)>Csla -2l VYledy (i=1,2), Vrel0,T]

Then, the solution to (P;f, up) is unique.
In Sect.4, we prove Theorem 2 using the additional assumption (A4) and
Gronwall’s inequality.

Remark 3 Colli [8, Theorem 5] and Colli—Visintin [9, Remark 2.5] showed several
criteria for the uniqueness of solutions to the following type of doubly nonlinear
evolution equations:

IV (' (1)) + dp(u(t)) > f(1) inH forae.t e (0,T). (6)

For instance, if dg is linear and positive in H and 9V is strictly monotone in H, then
the solution to (6) on [0, T] is unique.

3 Existence of Solutions to (P;f, ug)

In this section, we discuss the solvability of (P;f, ug) for f € L*(0,T; V*) and u, €
V.

Throughout this section, we suppose that all the assumptions of Theorem 1
are made. On this basis, we prove Theorem 1 by means of the approximation of
(P;f, up). Indeed, our approximate problem is of the following form with parameter
e € (0,1]:

eFu (t) + 05 Y (U, (1)) + 050" (ue (1)) + g(t, uc (1)) 3 f(2) in V*
(P;f, uo)e fora.e.r € (0,7), 7
u:(0) = ug in V.

We prove the existence-uniqueness of solution to (P;f, ug). for each ¢ € (0, 1].

Proposition 1 Assume (A), (B) and (C) are satisfied. Then, for each ¢ € (0, 1],
uy € Vandf € L*0,T;V*), there exists a unique solution u, € W'2(0,T;V)
to (P;f,up)e on [0, T] satisfying u,(0) = ug in V and there exists a function &, €
L(0, T; V*) such that

(1) € 0y (ul(t)) inV* forae.t€ (0,T),
sFu;(t) + E.(0) + 040" (e (1) + g(t,u.(t)) = f(t) inV* forae. t <€ (0,7T).
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Moreover; there exists a positive increasing function Ny with respect to ¢°(up),
[f122¢0.75v+) and || ;1o 1), independent of & € (0, 1], such that

T
/o v (u, (1))dr + SE(J)P] @' (ue(t) < No (¢°(o). | flizorsv). 1 i) - (3
ref0.T

To show (8), we need the following lemma.

Lemma 1 (cf. [10, Lemma 2.1.1]) Assume (B). Let v € W' (0, T; V). Then, we
have:

d
dtfﬂr(v(f)) —{0x0'(v(1)), V' (1) = |/ D)@' (W(®). a.e.t€(0,T). (€))

Proof We observe from (B3) that ¢’(v(¢)) is absolutely continuous on [0, 7] and
also observe from the definition of subdifferential that

¢'((1) — ¢* (v(9) — (0" (v (1), V(1) — v(s))
=¢'(v(s)) — ¢* (v(5))
<|a(t) — a(s)|p*(v(s)) foralls,te [0, T].

Then, we get (9) by dividing the above inequalities by # — s and letting s 1 ¢. O

Proof (Proof of Proposition 1) Note that the approximate problem (P; f, ). can be
reformulated in the following form:

(1) = (eF + 9:9") ™ (f()) — 39" (e (1)) — (1, ue (1)) inV
forae.t € (0,7), (10)
us(0) = up inV.
Here, we put
B(1)7* = (eF + 059"~ 'z* forallz* € V*, 1 € (0,T)
and
F(t,2) :=f(t) — 0:0'(2) — g(t,z) forallzeV, t€(0,T).
Now we show that the operator Z(¢)z* : [0, T] x V* — V is Lipschitz in z* € V*
and is continuous in z € [0, T]. We first fix any 7 € [0, T] to show that z* € V*

A(1)z* € V is Lipschitz continuous. To this end, put z; = #(1)z’ (i = 1,2). Then,

zf = eFz + zix forsome z;x € 05Y'(z).



288 N. Kenmochi et al.

Hence, we infer from (3) and the monotonicity of d4v'(-) that

(Z} — 2,21 — ) =(eFz1 + 210 — €F22 — 220, 21 — 22)
>e(Fz1 — Fz,21 — 22)

>eCrlz — 2y
which implies that

*_

|B (1)} — B2y = 21 — 22]v < |2} — 25 v+

1
SCF
Thus, the operator Z(t)z* is Lipschitz in z* € V* for all ¢ € [0, T] with a uniform
constant 1 /eCp.

Next, we fix any z* € V* to show that r € [0, T] — Z(t)z* € V is continuous.
Let z* € V* be an arbitrary element and put 7 := Z(t)z*, hence ¢F7' 4+ 0.¥'(')
7*. Let {s,} C [0, T] with s, — t (as n — o0©). Note that

¥ = eF7" + 27 for some z7 € 0.y (7). (11)

Also, we observe from (A1) that d,.y*" converges to d«¥' in the sense of graph as
n — oo (cf. [5, 11]). Therefore, for [/, z* — eF7'] € 0+, there exists a sequence
{lzn. 2]} C V x V* such that [z,,2}] € 0x¢¥* in V x V* foralln € N,

Zn—>7Z inV and 7 > 7* —eF7 inV* asn — oo. (12)

Since the dual space V* is uniformly convex, the duality mapping F' is uniformly
continuous on every bounded subset of V. Therefore, we observe from (12) that

7 +eFz, —> 7 —eFZ + eFZ =2 inV* asn — oo. (13)
Hence, we infer from (11), (13) and the monotonicity of d.* that

0= lim (&~ P 2~

= 1_i)m (eFZ" 4+ 20 — 2 — eF2,, 2" — 2p)
n o0

> limsup e(F7™" — Fz,, 2" — z,)
n—>oo

>eCrlimsup |77 — Zn|%/s
n—>o0

which implies from (12) that

= Byt — 7 = B)T ass, — t.
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Thus, the operator Z(t)z* is continuous in ¢ € [0, T] for all z* € V*.

Furthermore, it follows from (B1), (B3), (C2) and f € L?(0,T;V*) that the
operator Z(t,z) : [0,T] x V. — V* is (strongly) measurable in z € [0,T] and
Lipschitzinz € V.

Now we show the existence-uniqueness of a solution to (10), i.e., (P;f, uo).
on [0,T]. To this end, for given u € C([0,T]; V), we define the operator S :
C([0,T]: V) — C([0,T]; V) by:

S(u)(®) := uop + /Ot%(s)[ﬁ(s, u(s))lds forall z € [0, T].

Note that the operator B(-)[# (-,-)] : [0,T] x V — V satisfies the Carathéodory
condition, B(-)[.# (-, z)] is Lipschitz in z € V and B(-)[.Z (-,u)] € L'(0,T;V) for
all u € C([0, T]; V). Therefore, by Cauchy-Lipschitz—Picard’s existence theorem,
we can prove that S has the fixed point u € C([0, Ty]; V) for some small T € (0, 7],
which is a unique solution to (P;f, up). on [0, Tp]. By repeating the above argument,
we can construct a unique solution u, to (P;f, ug). on the whole time interval [0, T].
Next we show a priori estimate (8). To this end, multiply (7) by u, to obtain:

(eFu (1), u, (1) + (5:(), u (1)) + (0" (e (1)), u (1))
+(g(t, ue (1), u (1)) (14)
= (f(),u,()) forae.te (0,7),

with & € L2(0, T; V*) satisfying &.(f) € 0xy'(u.(t)) in V* for ae. t € (0,7). It
follows from the definition of F and 9+, and Lemma 1 that:

(eFul (1), u,(1)) = elul(1)]3, (15)
(E:(1), ul (D)) = V' (ul(1)) — ¥'(0), (16)
(029" (us (1)), Ul (1)) > jtqo’(ug(t)) — |0/ (1)l (us (1)) (17)

fora.e.t € (0, 7). Also, from (A2), (B2), (C2) and Schwarz’s inequality, we observe
that

et 000, 10| = gt 1), Dl
<G OR + st

G

1 1
= P+ T+ (800l + Ll 0ly)’

0 L2
< w(u (r))+ 'g(’cl)' LR (18)
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and
O 0)] = OB+ FOR- < w @)+ + L Ok 19)

fora.e. t € (0,T). Thus, using (15)—(19), it follows from (14) that:

1 d
el O + V' (W) + ¢ (1)
< My (| O] + D' e () + Mo(|f D Pon + ¥1(0) + |21, 02 + 1) GO
forae.t € (0,7),

where M; > 0 and M, > 0 are constants independent of ¢ € (0, 1]; for instance,

2 t ’
My =2t +1and My = 2 + G + 1. Multiplying (20) by e~ /i M1/ 0+ e
get

t 7 1 T ’
ge—foMl(\a (r)\+l)df|u/£(t)|%/ + ze—foMl(\a (T)|+l)dr(¢t(u;(t)) +C)

d

— foMi(le/ ()| +Ddr ¢t
+ et o' ()] e

< Cze—f(iMl(\a'(r)Hl)df +Mze—f(;Ml(|d’(r)\+l)dr(|f(t)|%/* + ' (0) + |g(t, 0)|‘2/* +1)
-2

=: M5(1).
Integrating (21) in time, we obtain

T
/ VL) + sup ¢! (1(0)
0 t€l0,7]
. T
< 3ej;)1 M (| ()| +1)dr {(PO(MO) +/ M3(T)df} =: Np.
0

It is easy to see from the above construction of Ny that Ny is a positive increasing

function with respect to ¢°(ug), |f] 20.1;v+) and | |10 7, and is independent of

¢ € (0, 1]. Thus, the proof of Proposition 1 has been completed. O
Now, let us prove the main Theorem 1.

Proof (Proof of Theorem 1) Let u, be a solution to (P; f, up). with initial datum ),
which is obtained by Proposition 1, and let & be a function in L>(0, T; V*) such that

E:(1) € 05xY' (ul(r)) inV* forae.r€ (0,7) (22)

and

eFul (1) + £ (1) + 059" (ue(D) + g (1, us (1)) = f(t) in V* forae.te(0,T). (23)
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From (B2), (8) and the Ascoli—Arzela theorem, we see that there is a sequence {g,}
with &, | 0 (as n — 00) and a function u € W'2(0, T; V) such that

ue, — u weakly in W'2(0,T; V), in C([0, T); H)

(24
and weakly- * in L*°(0,7T;V) asn — oo,

ug, (1) — u(t) weakly in V for all t € [0, T] as n — oo, (25)

t t
/ Y (v))dr < lim inf/ V(. (tv))dt < N, forallt € [0, T).
0 n—>o00  [o n

Next, we show that u,, — u in L*(0,T; V). To this end, we multiply (23) by

/! / .
u,, — u to get:

(enFuy (1), uy (1) — ' (1)) + (&, (1), u;, (1) — u' (1))
+(0x 9" (e, (1)), 1y, (1) — ' () + (8(t, ug, (1)), uy, () — U/ (1)) (26)
= (f(0),u, () —u'()) forae.te(0,7).

Here, we have by the definition of 9.y’ (cf. (22)) that
(&, (1), up, (1) — /(1) = Y (ug, () — ' (W' (1))  forae.r€(0,7), (27)

and by Lemma 1 that

(00" (e, (1) i, (1) — u (1))
= (0x9" (ue,, (1) — u(0)), ug, (1) — ' (1)) + (00" (u(1)), g, (1) — /' (1))

d LAt (28)
2 0, () = ) = [/ (O] (e, () = u(0)
+ (00" (u(z)), ug (1) —u'(r)) forae.re (0,7).
Therefore, from (26)—(28) we obtain that:
d t t

< [0/ (D)]¢" (e, (1) — u(®)) + Le, (1) + ¥' (' (1) — ¥' (uf, (1)),
fora.e.t € (0,T), where le,, (+) is a function defined by:

Le, (1) == (f(1) = 0ug" (u(t)) — g(t. ue, (D). ], (1) — 1/ (1))
+ ea|Fu, (0)|y+|u, (1) —u'(n)ly  forae.t € (0,7).
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Now, just as (20)—(21) in the proof of Proposition 1, by multiplying (29) by
e~ hol'©ldT and integrating it in time, we get

e~ Rl @l gty (1) — (1))
t SE; ~ ! NI
< / e RO, (9)ds + / ¢ I OW g 1 (5)) — 9, ()Y ds.
0 0

By (24) and (25) the first integral of the right hand side goes to 0 as n — oo and by
the weak lower semicontinuity of the functional v — fot e~ Jo I/ @ldT s (4 (5))ds on
L%(0,t; V) the limit supremum of the second integral is bounded by 0 as n — oo.
Hence we conclude that

lim sup ¢’ (u, (f) — u(t)) <0, hence u,, (t) — u(t) in V, Vi€ [0,T], (30)

n—>o0o

so that by the Lebesgue dominated convergence theorem,
U, — u in L*(0,T;V) asn — oo. (31)

Now we show that u is a solution of (P; f, up) with initial datum u,. We first note
from (B1), (30) and the Lebesgue dominated convergence theorem that

350 (s, () = 350 (u(-)) in L*(0, T; V*) as n — oo (32)
and by (8) that
snFu;n — 0 in L2(0,T; V*) as n — oo. (33)
By (31)~(33) and (C2),
Ee, = [ — 09" (ue,) —8(t, ug,) —enFu, — f—0xq" (u)—g(t,u) =: £ in L*(0,T; V™).

Therefore, from the demi-closedness of 041" in I? 0,T;V)x I? (0, T; V*) it follows
that £(¢) € 05" (u/(¢)) in V* fora.e. t € (0, T) and

E(1) + 040" (u(®) + g(t,u(®)) = f(t) in V* forae.t € (0,7).
Therefore, we conclude that u is a solution of (P;f, uy) and from a priori estimate (8)

that (5) holds for the same function Ny as in Proposition 1.
Thus, the proof of Theorem 1 has been completed. O
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4 Uniqueness of Solutions to (P;f, u)

In this section, we discuss the uniqueness of solutions to (P; f, u).
We begin with showing a counterexample for uniqueness of solutions to (P; f, up).

Example 4.1 (cf. [8, Section 2]) Let 2 = (0,1). Also, let V. = H'(£2) and H =
L?(£2). Define a closed convex subset K of V by

K:={zeV;|zx)| <1, |zz(x)] <1, ae.x € £2}.
Then, we consider the following variational problem with constraint:

u(t) €K, ae.t€(0,7),
/ (2, x) (e (2, x) — v (x))dx <0, VveKk, ae.te(0,7T), (34)
Q
u(0,x) =0, xe82,

where 0 < T < +4-o0.
Here, for each t € [0, T] we consider the following convex functions:

1
V') =1Ik(2), ¢'() = ZIZI%,, Vze V.

Then we have:
1. z* € 0.«Y'(z) if and only if z7* € V*, z € Kand (z",v —z) <Oforall v € K,
2. (0+9'(2). v) = [oz(x)v(x)dx + [, ze(X)ve(x)dx forall v, z € V,

and problem (34) is reformulated as (P;0, 0) with g(z, z) = —z. Therefore, applying
Theorem 1, problem (34) has at least one solution u.
Moreover, for each constant ¢ € (0, 1) the function u. defined by

uc(t,x) := c(1 —exp(—t)) forall (r,x) € (0,T) x £2
is a solution to (34). Indeed, we observe that
(uo)(t,x) = cexp(—1t) € K, (u.)(t,x) =0, (u)u(t,x) =0

for all (t,x) € (0,T) x §2. Therefore, for each ¢ € (0, 1), (34) is satisfied. Hence
{uc}ee(o,1) provides with an infinite family of solutions to (34).

Now, we prove Theorem 2 concerning the uniqueness of solutions to (P;f, u)
under the additional condition (A4) of strict monotonicity of d.’.
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Proof (Proof of Theorem 2) Let u;, i = 1,2, be two solutions to (P; f, ug) on [0, T7.
Subtract (P; f, up) for i = 2 from the one for i = 1, and multiply it by u} —u},. Then:

(§1(1) — &2(0), uy (1) — U3y (1) + (99" (w1 () — x" (ua (1)), ) (1) — U5 (1)) (35)
+Hg(t.u1(1)) — g(t.ua (1), uy (1) —up(1)) = 0 forae.r€(0,7),

where (1) € 0+y'(u,(1)) fora.e.r € (0,T) (i = 1,2). From (A4) we observe that
(1) — £2(0), 1, (1) — ub(1) = Cs|uy (1) — up(1)[5, forae.r€ (0,7) (36)

and by Lemma 1 that

(020" (1 (1) — 00" (U2 (1)), U (1) — uy (1))
(059" (u1 (1) — uz (1)), ' (1) — w5 (1)) (37)

> Zgo’(ul(t) —uy(1)) — o/ ()| @' (u1 (f) — uz(t)) forae.t e (0,7).

v

Therefore, we observe from (35)—(37) and (C2) with the help of the Schwarz
inequality that

Coli (0~ 5O + § 9010~ :(0)

<1a ()19 ) = w2(0) + 0 0) = g0, 2D e 4 ) = oDy

<1 O1¢! @ (0 = 2(0) + (0.0 0) — gt + S () = 0
S Ol 0~ 00) + 2 )~ O+ § 0 0

fora.e. t € (0, T). From the above inequality we infer that

T = O + & o) )

<Ki(J&/®)| + D' (u1 (1) —uz(t)) forae.z€ (0,7),

(38)

for some constant K; > 0 being independent of u; (i = 1,2). Hence, applying the
Gronwall inequality to (38), we conclude that

ui(t) —ux(t) =0 in Vforall ¢t € [0, T].

Thus the proof of Theorem 2 has been completed. O
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5 Doubly Nonlinear Quasi-Variational Inequality

In this section we discuss a doubly nonlinear quasi-variational inequality of the
form:

D5V (W (1)) + 500" s u(t)) + g(t, u(r)) > £(£) in V* for ace. t € (0, T),

(QP:f uo) % u(0) =uy inV,

where ¥'(z) and g(t,z) are the same ones as before, and ¢'(v;z) is precisely
formulated below.

(Assumption (B’))

Putting
T
Doy :={v e W"0,T;V) ‘ / YW (@)dt < oo},
0

we define a functional ¢’ : [0, T] x Dy x V — R such that ¢'(v; z) is non-negative,
finite, continuous and convex in z € V for any ¢ € [0, 7] and any v € Dy, and

0 (v1;2) = ¢'(v2;2), Yz €V, if vy = vy 0n|0,1],

forv; € Dy, i = 1,2, and assume:

(B1’) The subdifferential d4¢'(v; z) of ¢'(v;z) with respect to z € V is linear and
bounded from D(d.¢'(v;-)) = Vinto V* foreach ¢ € [0, T] and v € Dy, and
there is a positive constant C such that

10x0"(v;2) v+ < Chlzlv, Yz €V, Yv e Dy, Vte[0,T].

(B2") If {v,} C Dy, sup,ey fyf ¥'(vh(1)dt < oo and v, — v € C([0,T];H) (as
n — 00), then

0+0"(Vn;2) — 049" (v;z) iIn V¥, VzeV, Ve [0,T] asn — oo.

(B3’) ¢'(v:0) = O forall v € Dy and ¢ € [0, T]. There is a positive constant C;
such that

¢'(v;2) > Cylz)3, Yz eV, Yv e Dy, Vtel[0,T].
(B4’) There is a function @ € W"!(0, T) such that

lo'(v:2) — @*(v:2)| < |a(®) — a(s)le*(v:2)
VzeV, YveDy, Vs, tel0,T].
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We now state the final main theorem of this paper.
Theorem 3 Suppose that Assumptions (A), (B’) and (C) are fulfilled. Let f be any
function in L*(0, T; V*) and uy be any element in V such that

uy € D(@°(;-)) for some ¥ € Dy with 7(0) = up.

Then (QP:f, uo) admits at least one solution u : [0, T] — V in the sense that:

(i) u € Dywithu(0) =uyinV,
(ii) there is & € L*(0,T;V) such that £(t) € 0y (U (t)) in V* for a.e. t € (0,T)
and

E(1) + 040" (u; u(t)) + g(t,u(t)) = f(t) in V* fora.e. t € (0, 7).

Proof Let ¢ be a fixed positive constant in (0, 1] and consider the Cauchy problem
for any given v € Dy:

eFu' (1) + 059" (W' (1) + 059" (v; u(®)) + g(t, u(®)) > f(¢) in V*
forae.t € (0,7), 39)
u(0) =up inV.

Then, by virtue of Theorems 1 and 2, problem (39) possesses one and only one
solution u in the same sense of Definition 1, enjoying the estimate

T
/ O + ' W)+ sup ¢ (v: ()
0 1€[0,T] (40)
<No:= NO(‘PO(U§ uo), |f|L2(0,T;V*)v Ia/lLl(O,T))'

Now, putting

T
X(up) = {v e W0, T:V) | v(0) = uy, / V' ()dt < Nyt s
0

we define a mapping .7 : X(uo) — X(up) which maps each v € X(up) C Dy to the
unique solution u of (39), namely .v = u; note from (40) that u € X(up). Clearly
X(uo) is non-empty, convex and compact in C([0, T]; H).

Next we show that .# is continuous in X(up) with respect to the topology of
C([0,T]; H). Let v € C([0,T]; H), and let {v,} be a sequence in X(uo) such that
v, — v in C([0,T); H) (as n — 00), and put u, = %v,. Then we see that v €
X(uo), v, — v weakly in W'2(0, T; V) and sup,cy fOT ¥ (v)(1))dt < Ny. From (40)
it follows that there is a subsequence of {u,} (not relabeled) and a function u €
W'2(0, T; V) such that

u, — uin C([0, T]; H), weakly in W'>(0,T; V) asn — oo
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and
u,(t) — u(f) weakly in V for all ¢ € [0, T] as n — oo.
Also, we have

eFu, (1) 4 0+ (u, (1)) + 05" (Vn3 un (1) + (1, un (1)) 3 f(2) in V*

41
fora.e. € (0,7). 1)

Just as (30) in the proof of Proposition 1, we obtain by multiplying (41) for t = s
by u! (s) — u/(s) and using (3) that

ECH ) i O+ § 0w () — uts)
< 1o’ (5)|@* (Vp; tn(s) — u(s)) + L,(s) forae.s e (0,7),

(42)

where

Lu(s) = (f(5) — g(s, un(s)) — Dx@* (va; u(s)), uy,(5) — ' (5))
—e(Fu'(s),ul,(s) —u'(s)) + ¥° (' (s)) — ¥°(u,(s)) forae.se (0,7).
Since g(-, u,) — g(-, u) and 30 (v,; 1) — 40 (v;u) (strongly) in L*(0, T; V*)

by conditions (C1), (B2’) and the functional w — fot ¥ (w(s))ds is lower semicon-
tinuous on L2(0, T; V), it follows that

n—>o0

t
lim sup / La.(s)ds <0, Vte[0,T],
0

so that applying the Gronwall inequality to (42) yields that

lim sup ¢ (vy; . () — u(®)) <0, i.e. u,(f) = u(®) inV, Vt € [0,T]

n—>o00

and ¥/, — ' in L*(0,T;V) as n — oo. This implies from (B1°) and (B2’) that
00" (Vs Uy (1)) — 04" (v; u(r)) in V* for all ¢ € [0, T], whence

eFu,, (1) + 029" (1) 3 (1) == f(1) — 0xg" (Vi un (1)) — (1, un (1))
= f(1) = 0« (v:u(t)) — g(t, u(r)) =: £(1) in V*

for a.e. t € [0,7] as n — oo. Accordingly, by the demi-closedness of maximal
monotone mappings, we have £(1) € eFu'(¢) + .Y (' (¢)) for a.e. t € [0,T]. As
a consequence, u satisfies (39), namely u = .%v. By the uniqueness of solution
to (39) we conclude that v, = u, — u = .%v in C([0, T|; H) without extracting
any subsequence from {u,}. Thus . is continuous in X(uy) with respect to the
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topology of C([0, T]; H). Therefore, by the Schauder fixed point theorem, .& has at
least one fixed point # in X (o). This is a solution of (39) with v = u.
We showed above that for every small ¢ > 0 the Cauchy problem

eFul(t) + 05 Y (uy (1)) + 05" (ue: ue (1)) 4 g(t, ue(t)) 3 f(t) in V*
forae.t € (0,7),
us(0) = up inV

admits at least one solution u, € W'?(0, T; V) enjoying estimate
T T
e/ |u;(t)|%,dt+/ Y (. (t)dt + sup @' (ue; u:()) <Ny, Ve € (0,1].
0 0 ]

u
telo,

Therefore, we can choose a sequence {¢,} with ¢, | 0 (as n — oc0) and a function
u € Dy so that

Uy = u,, — uin C([0, T]; H), weakly in W'2(0, T; V) as n — oo,
u,(t) — u(t) weakly in V for all ¢ € [0, T] as n — oo,

eatt, — 01in L2(0,T; V) as n — oo,

T
sup/0 V' (), (1)dt < No.

neN

Now, in the same way just as in the convergence proof of Theorem 1 again, we
can infer from (B2’) and (C1) that the limit u satisfies

0 (U (1)) + 059" (u; u(t)) + g(t, u(®)) > f(t) in V* forae.t € (0,7),
u(0) =up inV.

Thus u is a required solution to (QP;f, up). ]

6 Applications

In this section, we consider two applications of the general results (Theorems 1
and 3).

Let §2 be a bounded domain in RY (1 < N < oo) with a smooth boundary
I' := 42, and let us set

V:i=H)(2), H:=IL*Q);

note that condition (3) is satisfied with Cr = 1.



New Doubly Nonlinear Evolution Equations Governed by Time-Dependent. . . 299

(Application 1)
Let T > 0 be a fixed real number, and let Q := (0,7) x £2. Also, let p be a
prescribed obstacle function in C(Q) such that

(0 <)px < p(t,x) < p*, V(t,x) €0, (43)

where ps and p* are positive constants.
Now, for each r € [0, T] define a closed convex set K(7) in V by

K@) :={z€eV; |Vz(x)| < p(t,x) fora.e.x € 2}.
Then, our variational inequality with constraint is of the form:

u,(t) € K(t) forae.t e (0,7),
/ a(t,x)Vu(t,x) - V(u(t, x) — v(x))dx + / gt u(t, x)) (u,(t, x) — v(x))dx
2 2
< / F(O)(us(t,x) —v(x))dx forallv € K(¢) and a.e. t € (0,7),
2

u(0,x) = up(x), xe€ 82,
(44)

where g(+,-) is a Lipschitz continuous function on [0, 7] x R, f is a function given
in L*(0, T; H), uo is an initial datum in V, and a(-,-) is a prescribed function on Q
such that

(0 <)ax < a(t,x) <a*, ¥Y(t,x) €0, a=a() e WH(0,T; C(R2)),

where a, and a* are positive constants.

Now we show the existence of a solution to (44) on [0, T| by applying the abstract
result Theorem 1. To this end, for each ¢t € [0, 7] define proper L.s.c. and convex
functions ¥’, ¢’ on V and a () by

, 0, if z € K(v),
Y(2) = Ign(2) = ] , VzeV,Vtel0,T], (45)
+00, otherwise,
1
¢'(z) == 2/ a(t,x)|Vz(x)|?dx, VzeV, Vtel0,T] (46)
Q
and
1 t
a(t) == / a(t,x)|dt, Vte|0,T]. @7
ax Jo |0t
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We see easily that
FedY() = eV zecK(@)and (*,v—2z) <0, Yv e K(®) (48)

and
(0+0"(2),v) = / a(t,x)Vz(x) - Vo(x)dx, Yz, veV (49)
17,

forall t € [0, T]. In our present case it is easy to check Assumptions (A)—(C), except
for (A1). We prove (A1) in the following lemma.

Lemma 2 (cf. [11, Lemma 10.1]) For any sequence {t,} C [0, T] with t, — t (as
n — o0), Y’ converges to W' on V in the sense of Mosco as n — oc.

Proof Assume that

{z,} C V,z, — z weakly in V and lin_1>infw’” (z4) < o0. (50)
n—oo

We may assume that z,, € K(t,) for all n. By definition
IVz,(x)| < p(ty,, x), ae.x€ $2. 51
Also, by p € C(Q), given ¢ > 0, there exists a positive integer n, such that
p(ty,x) < p(t,x) + ¢ forall x € 2 and all n > n,. (52)
Therefore, it follows from (51) and (52) that
IVz,(x)| < p(t,x) + ¢, ae.x € 2 andall n > ng,
which implies that
w €K ():={zeV; |Vzx)| < p(t.x) + ¢, ae.x e 2} foralln>n,. (53)

Note that K.(7) is weakly compact in V, since the set K, (f) is bounded, closed
and convex in V. Therefore, it follows from (50) and (53) that

7 € K.(1).
Since ¢ is arbitrary, we have z € K (7). Hence, we observe that

liminfy " (z,) = 0= Y'(2).
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Next, we verify another condition of the Mosco convergence. To this end, assume
z € K(f). Note from p € C(Q) that for each k, choose a positive integer N so that
Ni > k and

p(t,) < pltn, ) + ‘:‘ forall x € £2 and all n > Nj. (54)

Then, we observe from z € K(t), (43) and (54) that
Px 1
IVz(x)| = p(t,x) < p(ty, x) + P R ot X),
for a.e. x € £2 and all n > Ny, which implies that

1
(11 0)

< p(ty,x), ae.x € 2 andall n > N;. (55)

Putting

1% if n > Ny for some k € N,

1+,

Zn =
0, if 1 <n <N,

we observe from (55) and z € K(¢) thatt, — tas n — o0,

K(t,) 2z, —>zinV asn — oo

and
lim ¥ (z,) = 0 = ¥'(2).
n—>oQ
Thus, ¥ converges to ¥ on V in the sense of Mosco. O

Taking account of (45)—(49), problem (44) can be reformulated in the abstract
form (P;f, up). Therefore, by Theorem 1, problem (44) admits a solution u €
W20, T; V).
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(Application 2)

Let us consider problem (44) with the diffusion coefficient a(z, x) replaced by
a(t, x, u), namely

u;(t) € K(t) forae.t € (0,7),

a(t, x,u(t, x))Vu(t,x) - V(u,(t, x) — v(x))dx

4 / 2t u(t, ) (0 %) — V() dx < / FOt.3) — v ()
2 2

forallv € K(¢f) and a.e. t € (0, 7T),
u(0,x) = up(x), xe 82,

(56)

where K(f), f and u are the same as in Application 1; the obstacle function p
satisfies (43) as well. As to the function a(z, x, r) we suppose that

(0 <)ax <a(t,x,r) <a*, V(,x)€Q, VreR,
la(t, x, 1) —a(t2, x, r2)| < Lo(|t; — 2] + [r1 — 12]), 57

Vt; €[0,T], neR, i=1,2, Vx € £2,

where as, a* and L, are positive constants. Also, condition (43) is assumed and ¥’
is defined by (45) as well. Furthermore the (¢, v)-dependent functional ¢’(v;z) is
given by

1
¢'(v;z7) = 2/ a(t, x, v(t,x))|Vz(x)|>dx, Yt e [0,T], Yv € Dy, Yz €V,
2

(58)
where
Dy = {v e W'2(0,T:V) | v'(t) € K(?) for ae.te[0,T]}.
The subdifferential d.¢'(v;-) of ¢'(v;-) is given by
(049" (v;2), W) = / a(t,x, v(t, x)) Vz(x) - Vw(x)dx (59)
2
forall t € [0,T], v € Dy and z, w € V. Note from (43) that
[VV/(t,x)| < p* forae. (t,x) € O,
which implies that
sup |v'(1)|reo() < p*, Yv € Dy, for some constant p* > 0. (60)

t€[0,7]
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Therefore, it is easy to check by (57) that Assumption (B’) holds with

1 1
Cy:=a*, Cy:= _ax, a(f) == . Lo(1 4 p™)t.
*

2

In fact, (B1’) and (B3’) are immediately seen from the definition of ¢'(v, z). Also,
if v, € Dy, sup,cyn fOT Y (v} (1))dt < oo and v, — v in C([0, T]; H), then we have

(00" (V43 2) — 0xg" (v:2), W)

< / lat,x. V(6. )) — a(t,x, v(t, )| | V(|| V() dx
2

< ( / lalt. x, va (. ) — alt,x. o(r, x>)|2|Vz<x>|2dx)2 iy
2

and the last integral converges to 0 by the Lebesgue dominated convergence
theorem, so that 0x¢'(v,;z7) — 9x¢'(v;z) (strongly) in V*. Thus (B2’) holds.
Condition (B4’) is verified by using (43), (57) and (60) as follows:

lo'(v;2) — ¢ (V5 2)]

;/Q|a(t,x,v(t,x)) —a(s,x,v(s,x))||Vz(x)|2dx

IA

IA

; /Q/: laz (T, x, v(z, %)) + ay (T, x, v(t, x))ve (7, ) || Vz(x) |*drdx

IA

1 1
(La + Lap™)|t — 5] - / a(s, x, v(s, )| Vz(x)Pdx
Ax 2 0

1 _
Lo(1 + p%) |t —sle*(v:z),
Ax

where a, := Eﬁa(r,x, v) and a, = ;:)a(t,x, v).

By (58)—(59) problem (56) can be described as

{ O (' (1)) + 00" (s (1)) + g(t, u(1)) 3 (1) in V*,
u(0) =up inV.

By virtue of Theorem 3, this Cauchy problem admits a solution u € Dy, so does
problem (56).

Remark 4 (44) is the variational formulation of (P;f,up). It seems similar to
hyperbolic variational problems and our abstract result might be evolved to the
hyperbolic case. However, in this paper, we do not touch it, since the mathematical
structure is essentially of parabolic or pseudo-parabolic type.
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Remark 5 Problems (P;f,up) and (QP;f,up) have a wide class of real world
applications, for instance, reaction-diffusion systems for multi-species bacteria
and solid-liquid phase transition systems with partial irreversibility (cf. [3, 4]).
Moreover, when such phenomena are considered in fluid flows, they are coupled
with various variational inequalities of the Navier-Stokes type which can be
described by our doubly nonlinear evolution equations, too.
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