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Preface

This special volume is dedicated to Gianni Gilardi on the occasion of his 70th birth-
day, in tribute to his important achievements in respect of several theoretical and
applied problems, especially in the fields of partial differential equations, variational
inequalities, optimal control, free boundary problems and phase transition models.

Gianni Gilardi was born in Milan in February 1947. He studied mathematics at
the University of Pavia, where he graduated with full marks in October 1970. During
that period, he was alumnus of the Collegio Ghislieri, a prestigious historical college
in Pavia founded by Pope St. Pius V in 1567. After being a teaching assistant at the
University of Pavia, Gianni became a full professor of mathematical analysis at the
Polytechnic University of Milan in November 1980. He moved back to Pavia in
1985, where he has been appreciated as a teacher and university professor for more
than 30 years. He has taught an impressive number of courses in the Schools of
Engineering, Physics and Mathematics at both undergraduate and graduate levels,
as well as for PhD students. He has been the advisor to a number of master and
PhD students, including some of us editors of the present volume. He has never
spared himself from helping colleagues, working for the community, or accepting
academic responsibilities. Thus he did not hesitate in accepting the invitation to
serve as chairman of the Department of Mathematics of the University of Pavia,
a position he held for 6 years, or, more recently, as coordinator of the teaching
programs in mathematics at the University of Pavia. In both these roles, he has been
appreciated not only by colleagues but also by the administrative staff.

Gianni has been an associate fellow in the academy Istituto Lombardo Accademia
di Scienze e Lettere since 2002. He is the author or coauthor of eight books and
of around 100 research papers published in prestigious international journals. He
has given numerous talks in Italy and abroad (Canada, Czech Republic, France,
Germany, Japan, Portugal, Romania, Spain, Switzerland, USA) and contributed to
the organization of a large number of conferences and courses.

Gianni’s research activity has been intense and varied, being mainly devoted
to the analysis of nonlinear PDEs, but with particular attention to the related
applications. He has primarily been interested in the study of free boundary
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problems and phase transition models. In more detail, we may mention among his
scientific interests:

— Well-posedness and regularity theory for second-order abstract evolution equa-
tions.

— Monotonicity, speed of propagation and regularity properties of the free boundary
for the dam problem, the time-dependent dam problem in a general unbounded
domain, and a regularity result for the time derivative of the solution.

— Error estimates for space-time discretizations of parabolic variational inequalities
and a class of noncoercive stationary variational inequalities.

— Phase field models with memory and more general nonlinear Volterraintegrodif-
ferential equations.

— Magnetostatic and electrostatic problems in inhomogeneous anisotropic media
with irregular boundary and mixed boundary conditions (this includes the most
cited paper coauthored by Gianni).

— Phase separation and phase segregation models including also mechanical
effects.

— General phase field systems: Caginalp and Penrose—Fife models, evolutions
based on the entropy balance, shape memory alloys, Cahn—Hilliard systems (also
nonlocal), and dynamic boundary conditions.

— Diffuse interface models describing tumor growth dynamics.

— Control problems for phase field systems: distributed and boundary optimal
control, sliding mode control, and feedback stabilization.

It is a great pleasure for us five editors of this volume to celebrate the 70th
birthday of our friend Gianni. In addition to being a teacher to some of us, he has
been a pleasant colleague who could always be approached with questions about
mathematics or the proof of a technical lemma, knowing that he would be prepared
to discuss and willing to solve problems. Gianni is very generous in providing
help to young mathematicians and less young colleagues requiring his advice when
checking whether “that solution” could be as regular as necessary.

His webpage contains a number of short notes, lecture notes of courses,
and exercises, with examples and counterexamples that he has generously made
available to students and colleagues. People who have had the chance to write papers
with him experienced his generosity when, during discussions at the blackboard,
they somehow began to see how the mathematical results were deduced, with Gianni
already declaring his personal willingness to write down the paper.

The appreciation that Gianni always received within the scientific community is
reflected in the enthusiasm with which many applied scientists and mathematicians
agreed to contribute to this special volume dedicated to him, as announced in the
beautiful Palazzone di Cortona during the INdAM conference “Optimal Control for
Evolutionary PDEs and Related Topics” in June 2016. We editors of the present
volume are warmly grateful to all the authors for their precious contributions,which
will surely be appreciated also by Gianni.

The volume gathers original and peer-reviewed research papers in the field of
partial differential equations, with special emphasis on mathematical models in
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phase transitions, complex fluids, and thermomechanics. In particular, the following
thematic areas are developed: nonlinear dynamic and stationary equations, well-
posedness of initial and boundary value problems for systems of PDEs, regularity
properties for the solutions, optimal control problems and optimality conditions,
and feedback stabilization and stability results. Most of the papers are presented
in a self-contained manner; as a general strategy, the articles describe some new
achievements and/or the state of the art in their line of research, providing interested
readers with an overview of recent progress and future research items in PDEs.

In conclusion, we would like to join the large family of Gianni, including his
wife Ce, his two daughters Carla and Laura and their husbands, his five wonderful
grandchildren, his friends and the contributors to the present volume, in celebrating
his accomplishments and expressing the wish that he may continue his research
activity for many years to come. Let us conclude with a motto that Gianni will surely
appreciate: “Sapientia cum probitate morum coniuncta humanc mentis perfectio”.

Pavia, Italy Pierluigi Colli
Bologna, Italy Angelo Favini
Pavia, Italy Elisabetta Rocca
Pavia, Italy Giulio Schimperna
Berlin, Germany Jiirgen Sprekels

July 2017
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Rate of Convergence for Eigenfunctions
of Aharonov-Bohm Operators
with a Moving Pole

Laura Abatangelo and Veronica Felli

Abstract We study the behavior of eigenfunctions for magnetic Aharonov-Bohm
operators with half-integer circulation and Dirichlet boundary conditions in a planar
domain. We prove a sharp estimate for the rate of convergence of eigenfunctions as
the pole moves in the interior of the domain.

Keywords Aharonov-Bohm potential ¢ Convergence of eigenfunctions ¢ Mag-
netic Schrodinger operators

2010 AMS Classification 35J10, 35Q40, 35J75

1 Introduction

For every a = (aj,a;) € R?, we consider the Aharonov-Bohm vector potential with
pole a and circulation 1/2 defined as

Aa(xl,xz) = Ao(xl —day, Xy — 612), (xl,xz) € Rz \ {a},
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2 L. Abatangelo and V. Felli

where

—X2 X1

2, 202, 2
X+ X XX

Ao(rrox) = ;( ) (x1.x) € B2\ {(0.0)}.

The Aharonov-Bohm vector potential A, generates a §-type magnetic field, which
is called Aharonov—Bohm field: this field is produced by an infinitely long thin
solenoid intersecting perpendicularly the plane (x;,x;) at the point a, as the radius
of the solenoid tends to zero while the flux through the solenoid section remains
constantly equal to 1/2. Neglecting the irrelevant coordinate along the solenoid axis,
the problem becomes 2-dimensional.

Let 2 C R? be a bounded, open and simply connected domain. For every a € £2,
we consider the eigenvalue problem

iV +A)%u = Au, in £,

(Eq)
u=0, on 052,

in a weak sense, where the magnetic Schrodinger operator with Aharonov-Bohm
potential (iV + A,)? acts on functions u : R?> — C as

(V + A)u = —Au+ 2iA, - Vu + |Ay | u.
A suitable functional setting for stating a weak formulation of (E,) can be introduced
as follows: for every a € £2, the functional space H'“(£2,C) is defined as the
completion of

{u € H'(22,C) N C°°(£2,C) : u vanishes in a neighborhood of a}

with respect to the norm

1/
. 2
oy = (1GY + Aull g co + o)) -

In view of the following Hardy type inequality proved in [12]

1 2
/ GV + Agul? dx > / @ 4
R2 R

4 Jpe |x—al?
which holds for all @ € R? and u € C®°(R? \ {a}, C), it is easy to verify that

H"“(2,0) = {ue H'(2,C): “ €I*2,0).

|x—al

1,a

We also denote as H,“(£2, C) the space obtained as the completion of

C(£2\{a}. C)
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with respect to the norm || - || 1. ), SO that

Hy“(2,C) = {u € H}(2,C) : e LX(22,0)}.

lx—al

For every a € §2, we say that A € R is an eigenvalue of problem (E,) in a weak
sense if there exists u € Hé’”([?, C) \ {0} (called an eigenfunction) such that

/ (iVu + Aqu) - (iVv + Av) dx = A/ uvdx forall v € Hy“(£2,C).
2 2

From classical spectral theory, the eigenvalue problem (E,) admits a sequence of
real diverging eigenvalues (repeated according to their finite multiplicity)

I < )l <...< )<
A <A< <A<

The mathematical interest in Aharonov-Bohm operators with half-integer circu-
lation can be motivated by a strong relation between spectral minimal partitions
of the Dirichlet Laplacian with points of odd multiplicity and nodal domains of
eigenfunctions of these operators. Indeed, a magnetic characterization of minimal
partitions was given in [10] (see also [5-7, 14]): partitions with points of odd
multiplicity can be obtained as nodal domains by minimizing a certain eigenvalue
of an Aharonov-Bohm Hamiltonian with respect to the number and the position of
poles. From this, a natural interest in the study of the properties of the map a — A}
(associating eigenvalues of magnetic operators to the position of poles) arises. In
[1, 2, 4, 8, 13, 15] the behaviour of the function a )Lj‘? in a neighborhood of a

fixed point b € §2 has been investigated, both in the cases b € £ and b € 952.
In particular, the analysis carried out in [1, 2, 4, 8, 15] shows that, as the pole
moves towards a fixed limit pole b € 2, the rate of convergence of A;‘ to Alb is
related to the number of nodal lines of the limit eigenfunction meeting at b. In the
present paper we aim at deepening this analysis describing also the behaviour of the
corresponding eigenfunctions; in particular, we will derive a sharp estimate for the
rate of convergence of eigenfunctions associated to moving poles, in terms of the
number of nodal lines of the limit eigenfunction.
Without loss of generality, we can assume that

b=0¢ .
Let us assume that there exists ny > 1 such that

A0 s simple, (1)

no

and denote Ay = /\20 and, for any a € 2, A, = Aj . From [13, Theorem 1.3] it
follows that the map a + A, is analytic in a neighborhood of 0; in particular we

have that

Ao — Ay, asa— 0. 2
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Let ¢ € H(l)’o(.Q, C)\ {0} be a L?(£2, C)-normalized eigenfunction of problem (Eo)

. . _ 0 . . .
associated to the eigenvalue Ao = A, , i.e. satisfying

(iV + Ao)’p0 = Aowo, in L2,
@ =0, on 452, (3)
Jo leo(@)?dx = 1.

From [9, Theorem 1.3] (see also [14, Theorem 1.5]) it is known that ¢y has at 0 a
zero of order ’2‘ for some odd k € N, i.e. there exist k € N odd and 81, 8, € C such

that (81, B2) # (0,0) and

r 20 (r(cos t, sin 1)) — e’ (,31 cos (I;t) + B2 sin (I;t)) in C'*([0,27],C)
“)

as r — 0T for any t € (0,1). The asymptotics (4) (together with the fact that
the right hand side of (4) is a complex multiple of a real-valued function, see [11])
implies that ¢y has exactly k nodal lines meeting at 0 and dividing the whole angle
into k equal parts; such nodal lines are tangent to the k half-lines

2 .
{(t,tan(ao—i-] k)t) : t>0}, j=0,1,...,k—1,

for some angle « € [0, 2,1’ .
In [1, 2] it has been proved that, under assumption (1) and being k as in (4),

AO_Aa

alt — Co cos (k(a — ap)) as a — 0 with a = |a|(cosa, sina), )
a

where Cy > 0 is a positive constant depending only on &, B, and B,. More precisely,
in [1, 2] it has been proved that

Co=—4(B1> + |B2I*) my

_ 1
my = min /
wer?@3) [ 2 Jr

In (6), s denotes the half-line s := {(x;,x;) € R> : x, = Oandx; > 1} and
Z!2(R?%) is the completion of C2°(R?. \ s5) under the norm ( fRi [Vu|? dx)'/?.

1
|Vu(x)|2dx—§/ 27, O)dt:| <0. (6)
0

2
+
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Let us now consider a suitable family of eigenfunctions relative to the approxi-
mating eigenvalue A,. In order to choose eigenfunctions with a suitably normalized
phase, let us introduce the following notations.

For every o € [0,27) and b = (b1, by) = |b|(cosa, sina) € R? \ {0}, we define

Oy : R\ {b} — [a, +27) and 67 :R*\ {0} — [@,a + 27)

such that

Oy(b + r(cost,sint)) =t and 62(r(cost,sint)) =1,

forall r > Oandt € o, + 27).
We also define
By : R?\ {0} — [0,2m)
such that
Oo(rcost,rsint) =t forall r > 0and? € [0, 27).

Forall a € £2, let 9, € Hy*(£22,C) \ {0} be an eigenfunction of problem (E,)
associated to the eigenvalue A, i.e. solving

iV 4+ A0y = Ao@a, in 2,

(7)
@, =0, on 052,

such that its modulus and phase are normalized in such a way that

/ lpa(¥)]?dx =1 and / PG ©a(x)@o(x) dx is a positive real number,
Q2 Q
(®)

where ¢y is as in (3). From (1), (2), (3), (7), (8), and standard elliptic estimates, it
follows that ¢, — ¢ in H'(£2, C) and in C}, (82 \ {0}, C) and

(iV + Al)ga — (iV + Ag)go  in L*(£2,C). ©)

The main result of the present paper establishes the sharp rate of the convergence (9).

Theorem 1 Fora € R, p = (cosa,sina) and a = |alp € £2, let 9, € Hy“(£2,C)
solve Egs. (7)—(8) and ¢y € H(l)’o([?, C) be a solution to (3) satisfying (1) and (4).
Then there exists £, > 0 such that

0™ |GV + A, = e =BGV + A

2 2 2
o~ BIP+IBPE,  (0)
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as a = |alp — 0. Moreover the function o = L(cosasina) iS continuous, even, and
periodic with period 21?'
The constant £, in Theorem 1 can be characterized as the energy of the solution of
an elliptic problem with cracks (see (22)), where jumping conditions are prescribed
on the segment connecting 0 and p and on the tangent to a nodal line of ¢, see
Sect. 3.

For every « € R, let us denote as s, = {t(cosc, sina) : t > 0} the half-line with
slope . We notice that, if a = |a|(cosa, sin ), then V(OZ“) = A, V(ig) = Ay, and
e~ 2% and e~2% are smooth in §2 \ s,. Thus

iV, (€7 2%g,) = e 3%V + A)ga, iV, (6728 p0) = e 3% (iV + Ag)go,

where Vg, is the distributional gradient in £2 \ s,. Hence (10) can be rewritten as

2

a7 H Vo, (€ 2%, — e 2% pp) = (181> + 18218,

[2(22.C)
as a = |a|p — 0; thus it can be interpreted as a sharp asymptotics of the rate of
convergence of the approximating eigenfunction to the limit eigenfunction in the
space {u € H'(£2 \ s,) : u = 0 on 982}.

The paper is organized as follows. In Sect. 2 we fix some notation and recall some
known facts. In Sect. 3 we give a variational characterization of the limit profile of
scaled eigenfunctions, which is used to study the properties (positivity, evenness,
periodicity) of the function p +— £,. Finally, in Sect.4 we prove Theorem 1,
providing estimates of the energy variation first inside disks with radius R|a|
and then outside such disks; this latter outer estimate is performed exploiting the
invertibility of an operator associated to the limit eigenvalue problem. We mention
that this strategy was first developed in [3] in the context of spectral stability for
varying domains, obtained by adding thin handles to a fixed limit domain.

2 Preliminaries and Some Known Facts

Through a rotation, we can easily choose a coordinate system in such a way that one
nodal line of ¢ is tangent to the xj-axis, i.e. ¢y = 0. In this coordinate system, we
have that, letting 81, B> be as in (4),

pr =0. (1)

The asymptotics of eigenvalues established in [1, 2], as well as the estimates for
eigenfunctions we are going to achieve in the present paper, are based on a blow-up
analysis for scaled eigenfunctions performed in [1, 2], whose main results are briefly
recalled below for the sake of completeness.
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For every p € R? and r > 0, we denote as D, (p) the disk of center p and radius r
and as D, = D,(0) the disk of center 0 and radius r. Moreover we denote, for every
r>0, D;" = {(x1,x2) € D, : x, > 0} and D] = {(x1,x2) € D, 1 x» < 0}.

First of all, we observe that (4) completely describes the behaviour of ¢, after
scaling; indeed, letting

¢o(lalx)
Ialk/Z ’

W(l (‘x) =
from [9, Theorem 1.3 and Lemma 6.1] we have that, under condition (11),

W, — Bre2®™y  as|a| — 0 (12)

in H'*(Dg, C) for every R > 1, where ¥ : R> — R is the 4-homogeneous function
(which is harmonic on R? \ {(r,0) : r > 0})

k
Y(rcost,rsint) = */2 sin (2 t), r>0, tel0,2n]. (13)

For every p € R?, we denote by Z,*(R?, C) the completion of C°(RY \ {p}, C)
with respect to the magnetic Dirichlet norm

1/2
. 2
leell 2o ) = (/2 |GV + Ap)u(x)| dx) . (14)
' R

Proposition 1 ([2, Proposition 4]) Let o € [0,27) and p = (cosa, sinw). There
exists a unique function ¥, € Hl’p(Rz, C) such that

loc
@V + A,,)zllfp =0 inR?inaweak H'P-sense, (15)

and
/ ’(iV +A,) (¥, — eé(91’_95)e2"9"w)’2 dx < 400, foranyr>1, (16)
R2\D,

where  is defined in (13). Furthermore (see [9, Theorem 1.5])

¥, — 85(9,,—0{{)65'001// = 0(x|7"?), as|x| > +oo.
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Theorem 2 ([2, Theorem 11 and Remark 12]) For « € [0, 27),
p = (cosa, sinw)

and a = lalp € 2, let 9, € HY*(2,C) solve (7)~(8) and ¢y € H} (2, C) be a
solution to (3) satisfying (1), (4), and (11). Let W), be as in Proposition 1. Then

@a(lalx)

al¥? — Bo¥, asa=lalp—0,
in H'"?(Dg, C) for every R > 1 and in C . (R*\ {p},C).
In the sequel, we will denote

~ Pa(lalx)
(pﬂ(x) = |Cl|k/2 .

Sharp estimates of the energy variation under moving of poles will be derived by
approximating the eigenfunction ¢, by H'-functions in the less expensive way
from the energetic point of view. For every R > 2 and |a| sufficiently small, we
define these approximating functions vg , as follows:

int :
Vplys 1N Drglq|,

.
VR, in £2 \DR|a|7
URa = ’
where
TR (] ) .
vt = e2® g, in 2\ Dgyy

solves

(ZV + AO)Z‘U]%Z = Aavleé;v in £2 \DR\a\7

€X]

vt = e2li~fg, on 3(2 \ Dgja)),

whereas vj", is the unique solution to the problem

(ZV + A())ZU;?L =0, in Dthlls

. i(pa__
vt = e2@~% g, on dDgyy.

We notice that vg, € Hé’o([?, C) for all R > 2 and a sufficiently small. For all
R > 2and a = |a|p € §2 with |a| small, we define

ZR(x) = via(lak)

al? an
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For all R > 2 and p = (cosa, sin), we also define z,, r as the unique solution to

(iV 4+ Ao)’zpr = 0, in D,

i (18)
ZpR = ez((’g_eﬂ)wp, on 9Dk,

with ¥, as in Proposition 1.

Lemma 1 ([2, Remark 12]; [1, Lemma 8.3]) ForR > 2, o € [0,27),
p = (cosa, sinw)

and a = |alp € 2 small, let ¢, € H*(£2,C) solve (7)~(8), go € Hy*(2,C) be a
solution to (3) satisfying (1), (4), and (11), and Z(If be as in (17). Then

Zf — Bazpr asa=lalp—0 inHl’O(DR,(C)for everyR > 2,

with z, g being as in (18).

3 Variational Characterization of the Limit Profile ¥,

In [1], the limit profile ¥, was constructed by solving a minimization problem
in the case p = (1,0) (i.e. for poles moving tangentially to a nodal line of the
limit eigenfunction); in that case the limit profile was null on a half-line. In the
spirit of [4] (where poles moving towards the boundary were considered), we
extend this variational construction for poles moving along a generic direction
p = (cos, sin ) and construct the limit profile by solving an elliptic crack problem
prescribing the jump of the solution along the segment joining O and p.

Letus fix @ € (0,27) and p = (cosa, sine) € S'. We denote by I}, the segment
joining O to p, that is to say

I, ={(rcosa,rsina) : r € (0,1)}.
Let so = {(x1.0) : x; > 0}. We introduce the trace operators

1/2
yE(VH' (DEN\ ) — H (s0).
R>0

We also define .77 as the completion of

2 ={ueH R \s50):yT(u)+y (u) =00nspandu =0

in neighborhoods of 0 and oo}
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with respect to the Dirichlet norm ( fRz\m |Vu|2)l/ ? In the following lemma we
prove that a Hardy-type inequality can be recovered even in dimension 2, under the
jump condition y* (u) + y~ (1) = 0 forced for .7#-functions.

Lemma 2 The functions in 9 satisfy the following Hardy-type inequality:

1 2
/ Ve ()2 dx > / O 4 foraliue 2.
R2\sp 4 Jre ||

Proof This is a consequence of a suitable change of gauge combined with the
Hardy-type inequality for magnetic Sobolev spaces proved in [12]. For any ¢ € 2,

the function u := e2%¢ € QS’Z(RZ, C) according to the definition of the spaces
2,*(R?,C) given in Sect.2 (see (14)). From the Hardy-type inequality proved in
[12], it follows that

1 2
/ GV + Ag)u(x)|? dx > / ol
R? 4 Jro |xf?

Since V(OZ") = Ap and (iV + Ap)u = ieéGOVgo in R? \ so, we have that

2 2
/RZKN +A0)u(x)|2dx:/Rz\mwga(x)ﬂdx and / (o)l dx:/Rz @ 4

R X2 x|
thus the proof is complete.

As a direct consequence of Lemma 2, J# can be characterized as

x

A = {u € Ll (R?) 1 Vgoy, u € L2(R?), | € LAR?), and yT (u) + y () = Oon so},

where VRi \so # denotes the distributional gradient of u in R2 \ so.
For p # e with e = (1, 0), we also define the space .7, as the completion of
D, = {u e H'(R*\ (so U I},)): yT () +y () =0onspandu =0

in neighborhoods of 0 and co}

with respect to the Dirichlet norm

lull oz, = [ Vull2@2\oury))- (19)

In order to prove that the space .7, defined above is a concrete functional space,
the argument performed in Lemma 2 is no more suitable, since .7,-functions do
not satisfy a Hardy inequality in the whole R?. We need the following two lemmas,
which establish a Hardy inequality in external domains and a Poincaré inequality in
D, for #,-functions.
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Lemma 3 The functions in 7€, satisfy the following Hardy inequality in R%\ D;:

1 |(p(x)|2
) 2> dx Iy e 5,
I ”‘%77 — 4 /]RZ\Dl |x[2  Jora ’

Proof The proof follows via a change of gauge as in the proof of Lemma 2. More
precisely, we notice that, for any ¢ € &, the function u defined as u = eée‘kp in
R?\ D; and as u(x) = u(x/|x|?) in D; belongs to .@é 2(R2, C). From the invariance
of Dirichlet magnetic norms and Hardy norms by Kelvin transform and the Hardy-
type inequality of [12], it follows that

1 .
ol = [ VeeP =) [ 169+ Agueol ax
R2\(D1Uso) R?

1 2 1 2
. / |“(xz| dr — / |<P(xg| .
8 Jre ¥ 4 Jrvp, ¥

The conclusion follows by density of Z, in /7.

Lemma 4 The functions in J¢, satisfy the following Poincaré inequality in D :

1
ol = o [ loPds. foraity < 5.
1

Proof From the Divergence Theorem, the Schwarz inequality and the diamagnetic
inequality, it follows that, for every u € H'0(D; \ I},),

2 |u|2dx:/ (div(|u|2x)—2|u|V|u|-x)dx
Dl\r})

D
f/ |u? ds+/ |u|2dx+/ |V |u||? dx
Dy Di\T} DI\I,

1\{p

5/ |u? ds+/ |u|2dx+/ |(iV + Ag)u|* dx
D D, DI\I,

where, when applying the Divergence Theorem, we have use the fact thatx - v = 0
on both sides of I',. If ¢ € Z,,, then u := ex%p e HYO(D; \ I,) and

iV + Ag)u = ie3% Vg in D \ (s U I}).

hence the previous inequality yields

oPars [ P+ Vol d.
Dy oD D]\(S()Urp)
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On the other hand, via the Divergence Theorem,

X X
/ |¢|2=/ o 2~v=—/ div(¢2 2)
aD aD |X| Rz\(DlUSO) |x|

+o00 (S,O)
+,2 0 —
+/O Y™ (¢7) 2 0,—1)ds

52

. 2 X X
=— divie® ) =-2 eVe-
R2\(D; Uso) |x| R2\(D; Uso) |x|

< Vol +/ < Sllol.
/]RZ\(DIUXO) R2\D; |x|? s

where the last inequality is obtained by Lemma 3. The proof is thus complete.
As a straightforward consequence of Lemmas 3 and 4, we can characterize the space
J, as

+o00
+ / )Y 0.1y ds
0

(R?) : Veo\(uryu € L*(R?), ' € L*(R*\ Dy), u € L*(Dy), and

loc Ty

{MEL1
7 W+ = onsl.

The functions in 4%, may clearly be discontinuous on I,. For this reason, we
introduce two trace operators. Let us consider the sets

U: ={(x1,x2) € R?: cosaxy > sinax;} N (D \ o)
and
U, ={(x1,x) € R?: cosax, < sinax;} N (Dy \ so).

First, for any function u defined in a neighborhood of U;’,
define the restriction

respectively U, we
+ . —
X, (u) = u|Up+, respectively %, (u) = ul Uy
We observe that, since %f maps .7, into H' (U;E) continuously, the trace operators

vEL oy — HYAL), ur— yEw) = Z2EWr,

are well defined and continuous from %, to H'/?(I},). Furthermore, by Sobolev
trace inequalities and the Poincaré inequality of Lemma 4, it is easy to verify that
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the operator norm of y;t is bounded uniformly with respect to p € S', in the sense
that there exists a constant L > 0 independent of p such that, recalling (19),

1y," @l < Lllullg,  forallu € 7. (20)

Clearly, for a continuous function u, yp+ (u) =y, (u).

Furthermore, let vt = (0, —1) and v~ = (0, 1) be the normal unit vectors to so,
whereas
+ : - +
v, = (sina, —cosa) and v, =-V,

be the normal unit vectors to I,.
For every u € C'(D; \ (I, U s9)) with

A () € C'(UF \ s0) and Z, (u) € C' (U5 \ s0),
oty
vt

we define the normal derivatives on I', respectively as
P

0tu 0 u
=V%Z w)-v| , and =VZ (u)-v,
av;t P P n vy P P n

Analogous definitions hold for normal derivatives on sy (which will be denoted just
as g;’; ).

For p # e, where e = (1,0), we consider the minimization problem for the
functional J, : 77, — R defined as

| s [ TV [ by
Dol Vul"dx + u)ds + u) ds
) Rz\(s‘()urp)l | vt ¥, (W) Ty,

2 ['p 1‘}) 81},,
1 ot

— Lo vupare [ 6V -y ads @)
2 Jr2\(soury) r, v,

on the set
Sy =Aue Ay (u+y)+y, (w+y) =0}

The set %), is nonempty, convex and closed, the functional J, is coercive (see (34)),
so that the problem admits a unique minimum w, € .%, which is a weak solution to
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the problem

—Aw, =0, inR? \ {50 U I},
)/+(Wp) + )’_(Wp) =0, on sp,

v Owp + ) + v, (wp +¥) =0, on T,

atw, 07w, (22)

got v on so.
BT Onp ) _ 8wy )

BUI;L BUP—

on I,

Remark 1 'We note that the trivial function is not a solution to the problem (22),
since the two jump conditions for the solution and its normal derivative on I, cannot
be satisfied simultaneously by the trivial function if p # e, hence w, # 0 for all
pFe , _

One can easily see that the function e2 @020 (wp + V) satisfies (15) and (16),
hence by the uniqueness stated in Proposition 1 we conclude that necessarily

W, = 22 % (w, 4 ). (23)

On the other hand, for p = e, we consider the function wy € @;’2(]1%3_) defined as
the unique minimizer in (6). The function w, defined as

,X2), if xp > 0,
Wl ag) = § ROL) e = (24)
wi(x1, —x2), ifx; <0,
satisfies
we € 6
and
—Aw. + ) =0, in R?\ s,
YT (we) +y~(we) =0, ons, (25)
atw, 0~ w, on
= . s’
vt ov—

where s = {(x,0) : x; > 1} and 7, is defined as the completion of

De={ueH'R*\s):yT(u)+y (u)=0onsandu =0

in neighborhoods of 0 and co}
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with respect to the Dirichlet norm || V(|2 g2\ ;). One can easily see that the function

2t (we + V) satisfies (15) and (16) wit p = e (notice that 65 = 6), hence by the
uniqueness stated in Proposition 1 we conclude that necessarily

¥, = e2%(w, + V). (26)
In [2, Proposition 14] it was proved that

Mo—ha

a=lalp—0 Ialk

) 2 ) ) k
|B2|7k wp(cost, sint) sin Zt dt,
0

which, combined with (5), yields

2w k
— 4my, cos(ka) = k/ wp(cos ¢, sin £) sin (Zt) dt. 27)
0

The right hand side of (27) can be related to J,(w,) as follows.
Lemma 5 Foreveryp # e

2 ) ) k 2
wp(cost,sint)sin| _t)dt =— J,(wp).
0 2 k

Proof Throughout this proof, let us denote

2
k
wp(r) = / wp(rcost, rsint) sin (21‘) dr.
0

Then we have to prove that kw, (1) = —2J,(w,). Since —Aw, = 0in R?\ {soU I},},

- at 3~ . .
yT(wp) + y~(w,) = 0 on s, and avi” = av‘f” on sy, by direct calculations w,

satisfies
_(r1+k(r—k/2a)p(r))/)/ =0, in (1, +OO)

Hence there exists a constant C € R such that
C 1
r—k/Za)p(r) = w,(1) + r (1 — k) , forallr > 1.
r

From (23) and Proposition 1, it follows that w,(r) = O(r~"/?) as r - +o0. Hence,
letting r — o0 in the previous relation, we find C = —kw) (1), so that

wy(r) = a)p(l)r_"/2
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for all » > 1. By taking the derivative in this relation and in the definition of w,, we
obtain

k ow
— w,(1) = Py ds.
2601() /E)Dl 3\) I// s

Multiplying Eq. (22) by ¥ and integrating by parts over D; \ {so U I},}, we obtain

0 ot a~
/ VWP'dex:/ WplﬁdS—f-/ vj_p—f- Vip ¥ ds
Dl\{‘VOU[‘p} oD BU T, BV 3vp

P
Kk 0w, 07w,
= ta+ /F | ( s+ ) yds. @8

Testing the equation —Ayr = 0 by w,, and integrating by parts in Dy \ {so U I}, we
arrive at

oy oty
Vi Vpdx= [V pase 07
/Dl\{soUFp} ! ap, OV ’ I, 31)1;" p

k ot _
= o)+ /F , au:f (v, wp) =y, Wp))ds.  (29)

Wp) - Vp_ (Wp)) ds

where in the last step we used the fact that %”V/ = 151// on dD;. Combining (28) and
(29), we obtain

w, 9 o+
k(1) = /F ( g wP)I//ds— / ’”(y;(w,,)—y;(w,,))ds. (30)

+ — +
8vp 8vp L, 8vp

On the other hand, multiplying (22) by w, and integrating by parts over R*\{soUT}},
we obtain

tw aw, _
/ |Vw,|? dx = / ; L ¥, (wp) ds—}-/ Py, (wp) ds.
R2\{soUT,} rn, 9V Iy BUP

At the same time, recalling the definition of J, (21) and taking into account the latter
equation we have

2 ity I’y _
2Jp(wp) = |Vwp|”dx +2 Ju+ Yp (wp) ds + 2 Ju— Yp (wp) ds
R2\{s0U T} r, 9, L, %Vp

atw, | 0"wp
= y (w)ds+/ vy (wy,) ds
RO
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Ity Y
+ 2/ )/+(w,,) ds + 2/ v, (wp)ds
I, av + I, a\)p_ r

T (wp + ) 3" (wp +¥)
:/F v;i +( p)ds+/1" v;ip_ ¥, (wp)ds

P

+
+ /F f )/p+ (wp) ds + / v )/p (wp) ds

P

P

0~(wp +v¥) _

:/ I (w, + V) yF vy (wy + ) ds
Iy

81) (wp+10)ds+/

» Iy v,

Ity Y _
+ /F 4 +)/p+(w,,)ds+ . ¥, (wp) ds

3+(W + ) a"(w, +9¥) _
—/P ’ y;(w)ds—/r PV gy ds

- v, . v,
from which the thesis follows by comparison with (30) recalling that in the last

equivalence the first term is zero by (22) and ¥ is regular on I7,.
From the fact that wy attains the minimum in (6) and (24) it follows easily that

171 9t ER)
= Vw,|* d. T (we) d “(we)d 31
mo= |y [ 1w [ 5V eoas [ § Vs mwoa] ey

Combining (27), Lemma 5, and (31) we conclude that, for

1/ ) oty n Yy _
[Vw,| dx—}—/ yT(wy,)ds + vy (w,)ds
2 Rz\(voUrp P I, BU; p P 3 p P

1 at 0~
= cos(ka)[2 /RZ\ [Vw,|? dx+/r avfy*’(we) ds+/r avl_ﬂ Y~ (we) dsi|.
S0 e e

(32)
every p = (cosa,sina) € S'\ {e}.
Lemma 6
(i) There exists C > 0 (independent of p € S') such that, forallp € S',
/ |GV + AW, — 2 @B e3%ivy | dx < C. (33)
Rz\r})

(i) Ifpu,p € St and p, — pin S', then ¥,, — W, weakly in H'(Dg, C) for every
R> 1, ae., andin CIOC(IR2 \ {p})-
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Proof Let us fix ¢ > 2. From the continuity of the embedding H'/?(I},) < LI(I},)
and (20), we have that there exists some const > 0 independent of p € S! such that,

for all u € 77,
k k
, c0s (2a) /Fp |x|§—1)/;t(u)ds

k k1 + +
< 2|||x|2 I vy @ o) < constlly,= @)l

Iy .
/F avpi Yy (u)ds

P

< constL|[u|

and then, from the elementary inequality ab < jé + &b?, we deduce that, for every
e > 0, there exists a constant C; > 0 (depending on ¢ but independent of p) such
that, for every u € 72,

a:l:
/ avf )/;t (u) ds

Iy p

< ellul’y + Ce. (34)

From (34) and the fact that the right hand side of (32) is bounded uniformly with
respect to p € S!, we deduce that for any p = (cosa, sina) € S!

/ [Vw,|> <M (35)
R2\(soUT})

for a constant M > 0 independent of p. Replacing (23) ((26) for p = e) into (35) we
obtain (33).

We have that (33) together with the Hardy-type inequality of [12] implies that
{W},est is bounded in H'(Dg) and {A,¥,},eqi is bounded in L*(Dy) for every
R > 1. Hence, by a diagonal process, for every sequence p, — p in S!, there exist
a subsequence (still denoted as p,,) and some ¥ € H! (IR?) such that ¥, converges
to ¥ weakly in H'(Dg) and a.e. and A,, ¥, converges to A,¥ weakly in L?(Dg) for

every R > 1. In particular this implies that ¥ € Hllo’f (R2, C). Passing to the limit in
the equation (iV + A,,)*¥,, = 0, we obtain that (iV 4+ A,)?¥ = 0. Furthermore,
by weak convergences V¥, — V¥, A, ¥, — A,¥ in L*(Dg) and (33), we have

that, for every R > 1,
/ |GV + AW — 2 @307y | dx
Dr\D)

< hmlnf/ ‘(ZV +Apn)lll . — eé(9pn—9g”)e£9()in|2dx <cC
Dr\D;

n—>oo
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and, since C is independent of R, fRZ\Dl |V +A,)¥ — e;(ﬁp—e{;)eéeoivwz dx < C.
By the uniqueness stated in Proposition 1 we conclude that necessarily ¥ = ¥,,.
Since the limit ¥ depends neither on the sequence p, nor on the subsequence, we
obtain statement (ii). The convergence in Cﬁ)’g‘ (R?\ { p}) follows by classical elliptic
regularity theory.

Lemma 7 Foreveryp € S!, letf, : [0,1] — C, f,(r) = ¥,(rp). If pp,p € S' and
Dn — D, then f,,, — f, weakly in L1(0, 1) for all g > 2.

Proof If p, — p in S!, then the C**(R2 \ { p})-convergence stated in Lemma 6

loc
implies that f,, — f, ae. in (0,1). Furthermore, from the continuity of the

embedding H'/?(I,) < L%(I,) and boundedness of {¥,},cqi in H'(Dy,C), we
have that

1/q
Wonllza.1) = (/ @, |7 dS) < const ||y, g2,y < const [ ¥, [l p,) < const

pn

for positive const > 0 independent of n. Then, along a subsequence, f,, conver-
gences weakly in L7(0, 1) to some limit which necessarily coincides with f, by a.e.
convergence (then the convergence holds not only along the subsequence).

Proposition2 Fora € R, let p = (cosa, sina). Let w, be the unigue solution to
problem (22) ((25) if p = e). Then the function

1
o= |VW(cos a,sina) (x) |2 dx (36)
2 R2\(soUT})

is continuous, even and periodic with period 2]?.

Proof In view of (32), to prove the continuity of the map in (36) it is enough to
show that the function

+

1 '/'Fp [;U‘:’b yp+ (WP) ds + pr ?):lk )/p_(wﬁ) ds’ lfp # e,
G:S" >R, Gp)= +ﬂ _P
Ir, g\,f yTwe)ds + [, 0 Yy ~(weds, ifp=e,

is continuous. In view of (23) and (26), G can be written also as

kie™ 2 %) cos(560(p)) fol ré_lf,,(r) dr, ifp#e,
G(p) = L
ki [y r2=fo(r) dr, ifp=e,

so that, to prove the continuity of G it is enough to show that the function

1
p»—)/ ré_lf,,(r)dr
0
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is continuous on S! and this follows from Lemma 7 and the fact that 72! is in
L'(0,1)forall 1 <t < 2.

To the last part of the proof, following closely [2, Lemma 15], we introduce the
two transformations %, %, acting on a general point

x = (x1,x) = (rcost,rsint), r >0, te]0,2n),

as

x| cos 2,? —sin 2,?
%1(x)=@1(xlvx2)=Mk( )’ My = ( - on 2 )

X sin 57 cos

i.e.

Z\(rcost, rsint) = (’COS(H— ZIZZ)’rSin(t + z’f))’
and
Tr(x) = Far(x1,%2) = (x1, —x2),
ie.

Ho(rcost, rsint) = (rcos(Qm —t), rsin(2w —1)).

The transformation %, is a rotation of 2}11 and %, is a reflexion through the x;-axis.
We note that

/ |V, |? = / |GV + A, — 2 @D e3%ivy | dx, (37)
R2\(soUT}) R2\I,

From the change of variable x = %(y) and [2, Lemma 15, (58) and (66)] we have
that

Az\r GV + A, — e2 @D e3%ivy | dx
P

which, in view of (37), yields

/1\32\(‘Your%

27 )

i 2
ifg _, —p o
(% +A‘%1_1(P))w«%1_l(p) _ ez( 271y % + ")ivw dy

)

|Vw%71@)|2 = / [Vw,|?

2
i) R2\(s0UT})
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and hence 2,1’ -periodicity of the map (36). On the other hand, from the change of
variable x = Z%5(y) and [2, Lemma 15, (72)] we have that

/ |V + AW, — 2 @B 307y | dx
Rz\rp

/RZ\F.@Z »

which, in view of (37), yields

g} 2
i 27 (p)
(l'V +A%2(p))q/%2(p) —e2 (Q@z(p)—ﬁo 2 +90) ivw dy

|VW%@M::/ Vo,

/Rz\(é‘onyzz(p)) R2\(s0UT})

and hence evenness of the map (36).

4 Rate of Convergence for Eigenfunctions

In this section we prove a sharp estimate for the rate of convergence of eigenfunc-
tions. The estimate of the energy variation will be derived first inside disks with
radius of order |a| and later outside such disks.

4.1 Energy Variation Inside Disks with Radius of Order |a|

As a straightforward corollary of the blow-up results described in Sect. 2, we obtain
the following result.

Lemma 8 Under the same assumptions as in Theorem 2, we have that

icpa 2
lim B} ‘(N +Ad)pa(x) — e 2 G 0W y +A0)<P0(x)’ dx = |B2|>.F»(R)
a=lalp—0 |a| Dgq|

forallp = (cosa,sina) € S! and R > 2, where

i i 2
(Y + A () — ¢ EDDGY + Ag) (@50

Zow = [

Dg
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Proof By a change of variable we obtain that

/Dma

) 2
(V + A)@a(x) — e 2 BWOGY + Ag)po(x)| dx

=W/
Dgr

so that the conclusion follows from convergence (12) and Theorem 2.

; 2
WV + Apa(x) — e =PIV + AW, (v)| dx

Lemma 9 Let .%,(R) be as in Lemma 8. Then
3 a7 —
RETOO Fp(R)=L£,>0

where

o = / IV, 2
B2\ (1} Uso)

and wy, is the weak solution to the problem (22).

Proof Via a change of gauge, we can write

%®=/
Dr\(I},Uso)

_ / Vi, - Vo, |
Dr\(I,Uso) R2\(I'},Uso)

as R — +oo. Thanks to Remark 1, we stress that the limit is non zero. This
concludes the proof.

i Py 2
2600 g2 (iVw, + ¥) — ivw))

4.2 Energy Variation Outside Disks with Radius of Order |a|

In order to estimate the energy variation outside disks with radius R|a|, we consider
the following operator:

F:CxHy’(2,.C) — R xR x (Hyp(2.C)*

(o) = (1110, ) = 20 I( [ wp0). (Y +40%0 ~ ).

In the above definition, (Hé:u% (£2,C))* is the real dual space of

Hyp(£2.C) = Hy’(2,0),
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which is here meant as a vector space over R endowed with the norm

1/2
. 2
”“”Hé"’(g,((:) = (/ |(1V +A0)u| dx) ,
' o)

and (iV + Ag)’¢p — g € (Hé:n%(ﬂ, C))* acts as

20.0p |0V + 40?0 = Ag.u)
w2V + A0 —deuu)

= Re (fg(iV +Ap)¢ - (V +Ag)udx—A [, (pudx)

forall ¢ € Hé:]l%([?, O©).

Lemma 10 Fora € [0,27), p = (cosa,sinw) and a = |alp € 2, let
¢a € Hy“(£2,C)

solve (7)—(8) and ¢y € Hé’o(.Q, C) be a solution to (3) satisfying (1), (4), and (11).
Then, for all R > 2,

le2 B0V + Adga = (Y + A)@oll7 o\ 0 = lal*g(@ R)

where, for all R > 2,

Hn Og(a, R) = g(R) (38)
a=|a|p—
and

ngr_loo g(R) = 0. (39)

Proof From [1, Lemma 7.1] we know that the function F is Fréchet-differentiable
at (Ao, ¢o) and its Fréchet-differential dF (L¢, @) is invertible. From the invertibility
of dF (Ao, o) it follows that

|e2C=0 iV + Aa)ga — (Y + Ao)go HLZ(Q\DRIM’(C)

= [V + 40 (€ F ™ 0, = 90) ]| 2\

IA

e = dol + loma = oll o ey

—1
=< [[(@F(Ro. ¢0)) ”f(]Rx]Rx(Hé_‘]%(Q,C))*,(CxH(l)‘O(.Q,(C))

X ”F(Aa’ vRva)”RxRx(Hé_’]%(Q))"(l + 0(1))
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as |a| — 0F. We have that

F(A’av UR,tl) = (Oéav ,Bav Wa)

where
Qg = ”vR'“”iIé'O(Q,(C) - A0 €R,
,Ba =Jm (IQ UR.a%0 dx) S R,
wa = (iV + A0)*Vra — AaVra € (Hyp(82))".
We mention that in [1, 2], the norm of ||F(A,, vRv“)”]RxRX(HI’O (2 Was estimated
0.R

before proving the blow-up results recalled in Theorem 2 and Lemma 1 (actually
some preliminary estimates of F(A,, vg,) were carried out to obtain an energy
control in terms of an implicit normalization needed to prove the blow-up results).
Here we are going to exploit the sharp blow-up results Theorem 2 and Lemma 1 to
improve the preliminary estimates in [1, 2]. From (5), Theorem 2 and Lemma 1 we
have that

oo = ([ GV + Aoyl P dx —/ T +Aa><pa|2dx) + Ga— o)
Dgq| Dgjq|

= |at ( / GV + AQ)ZRP dx / v +Ap>¢a|zdx) + (ko= A0) = O(alb),
DR DR
as la| - 0.

The normalization condition for the phase in (8) together with the blow-up
results (12), Theorem 2 and Lemma 1 yield

Ba=5 / vt o dx — / 2000 9, 00 dx + / 2 =00 0, 00 dx
DRlal DRl 2

=3 (|a|k+2/ ZRW, dx — |a|k+2/ e2 =g W, dx) = 0(|a[**?)
DR DR
as |a| — 07

Let @01’2 (R?, C) be the functional space defined in (14). For every a € §2, we define
the map

Ty D2 (R%,C) — Zy2(RA,C),  Tap(x) = ¢(lalx).

It is easy to verify that .7, is an isometry of @3’2 (R?,C).
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Since Hé’o(.Q, C) can be thought as continuously embedded into @(}’2(R2, C)
by trivial extension outside £2 and ||u|| @0 = ||| HY2.0) for every function

ue Hé’o(.Q, C), we have that

”Wa ”(H(I)J%(Q,(C))*

= sup N (/ (iV 4+ Ap)vgy - iV + Ap)p dx — Aa/ VR.a® dx) ‘
veH)’(2,0) 2 2
||W||H(1),0(Q>C)=1
< sup N (/ iV 4+ Ap)vra - iV + Ag)p dx — )La/ VR.a® dx) .
0€PH(R,0) 2 Q
ol 12z ) =1
(40)
For every ¢ € Hé’o([?, C) we have that
/ iV + Ag)vra - (iV + Ag)p dx — la/ VR a@ dX
Q Q
= / 20 (iV + A)a - IV + Ag)g dx — A, 280 g, dx
£2\Dgjq| £2\Dgjq|
+ / iV 4+ Ao)vra - (iV + Ag)p dx — A, / VR q® dX. 41
Dgja| Dgjal
From scaling and integration by parts
/ 2 W= iV + Ag)ga - (iV + Ag)p dx — Aq e2 =0 g, dx
£2\Dpjql £2\Dplql

Gk ( / e @D @V + A,)G, - (V + Ao)(Tup) dx
ol \Dr

icpP_ ~
_/\a|a|2 62(90 ep)@a%(p dx
‘2| \DR

= |a|? (/9 (V 4 A)@a - (iV + Ap) (e~ 2@~ T.0) dx
\Dg
al

~ _icpP_
_/\a|a|2/ Pal 2(00 81’)'%(;0 dx
2 \Dpg

al
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=lali |  Fuper @0V + A)G, - vdo

3DR
=lal>i [ Zup(V + Ag) (2 ~G,) - v do “2)
3DR
being v = |§‘ the outer unit vector. In a similar way we have that

/ IV + Ap)vgy - iV 4+ Ag)p dx — A, VR.a dx
DRg|al

Dgq|

— |} ( (¥ + 4078 -GV + A0 Ty ds = hll” [ 759 dx)
DR DR
= |a|? (—i iV 4+ A))ZE v T do — Aa|a|2/ ZR e dx) . (43)
aDg Dr

with Zf being as in (17). Combining (40)—(43), and recalling that .7, is an isometry
of @01’2 (R?, C), we obtain that

_k
|a| 2”""(1”([{(‘):&(9’@))«

< sup i
0Dy (R2,0)
IIWI\@[l).z(RZ.C)=

iV + Ap) (eé(eg_e")gza — Zf) ‘v Z,pdo — A,,|a|2/ Zf%q) dx
Dg

dDg
1

i

sup
€Dy (R2,C)
IIWI\@[l).z(RZ.C)=

iV + A) (eé(%”—ev’@ - Z,’f) vedo — Aalalzf ZRpdx
Dg

dDg
1

IA

sup iV + Ap) (eé(eg_el’)(f)a — Zf) ‘vedo
PEDIAR2.0)

||¢’”@[1).2(R2_C)=

dDg
1

2
+ Aqlal sup

e D (R2,C)

||¢’”@[1).2(R2_C)=

/ ZRp dx
Dg

1

= sup iV + Ap) (eé(eg_el’)@ - Zf) ‘vedo
PEDYAR2,C)

ol 1220, =

dDg
1

+ 1al’0 (128 r20.0)) -
From Theorem 2 and Lemma 1 it follows that

iV + Ag) (e£<95—9ﬂ>¢a - sz) v = BaiV + A) (e5<95—9n) W, — z,,,R) v
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in H='/2(0Dg) as a = |alp — 0 and
2 R
la|~O (||Za ”LZ(DR,C)) —0 asa=lalp—0.

Hence we conclude that

_k
|Cl| 2 ”Wa”(Hé_’]%(.Q,C))* < ]’l(a,R)
with
lim  h(a,R) = |B2|h(R)
a=lalp—0
being
h(R) = sup ‘ iV + Ap) (64(95_91’)41,, — z,,,R) “vedo|.
pez, 22,0y | /DR
||¢||@(1),2(R2>C)=1

We observe that, for every ¢ € 901 2(R2,C),

@@V + Ao) (eé(eg_el’)lllp — ZP,R) -vodo

dDp

— ‘ / eé(%’—@;ﬂ@v + Ap) (ll/p — e£(91)—95)e£9()w) BRY) QD do—
dDp

+ | GV +A) (eé"’ow —zp,R) vedo
dDp

= ‘ - i/ (iV +A,) (qf,, - e£<9n—%’>e£001/f) iV + Ag)pe2 ) gy
R2\Dg

+i GV +A0) (409 — 2p0) - (Y + A dx

Dg

(L
i

i i 2
iV + A) (w,, - 62(91"_95)82001//)‘ dx

; 2

27
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and hence

i i 2
iV + Ap) (lI/p — ez(ep—(’g)ez@()w)) dx

hR) < \/ / .
o,

From Proposition 1 it follows that

iV + Ao) (eéeow _ ZP’R) )2 dx.

li VAW, —e2 @00 20y) * dx = 0.
rom RZ\DR|(l +A4,)(¥, —e ex"y) | dx

Since (iV + Ag)? (e£901// — Zp.,R) = 0in Dg and
(eé9()w _ZPvR)|3DR — eé%w _ eﬁ(@{{— p)[pp,
if ng is a smooth cut-off function satisfying
. .2 4
nR =0inDgjpp, n=1inR\Dg, 0=<nrg=<1, [Vig|= R in Dg \ Dgy2,

from the Dirichlet Principle we can estimate

),
<1,

<2 [ |VngPlerfoy —e3 @, dx
Dg

+2 /
R2\Dg/>

& \Dg/2

+2 /
R2\Dg/>

which, in view of Proposition 1, implies that

i 2
(iV + Ao) <e20°1ﬂ - zp,R)‘ dx

i i 2
(Y +Ao) (n(et®y — e @=0w) )| ax

i i 2
@iV + Ap) <e29"w — eZ(GS_GP)Wp)‘ dx

i i 2
iV +A,) (wp - ez”ﬂ—@g)ez@w)‘ dx

lim | |GV +Ag)(e2®y — z,) [ dx = 0.

R—+00 Dr
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Therefore we can conclude that #(R) — 0 as R — +o00. The proof is thereby
complete.

4.3 Proof of Theorem 1

As observed in Sect.?2, it is not restrictive to assume 8; = 0. Let ¢ > 0. From
Lemma 9 and (39) there exists Ry > O sufficiently large such that

|- Z,(Ro) — £p| <& and |g(Ro)| < e.

From (38) and Lemma 8 there exists § > 0 (depending on ¢ and Ry) such that, if
la| < 8, then

lg(a, Ro) — g(Ro)| < ¢
and

1

|a|k <é.

- I (60—6,) (%) ¢+ 2 2
’(lV + Ad)Pa(x) — e 207GV + Ag)po ()| dx — [B2]|7Fp(Ro)
Drylal

Therefore, taking into account also Lemma 10, we have that, for all @ = |a|p with
la| < 8,

icpa_ . 2
™ [ 69 + A= HEG + || dx o,

=

2 _ 2 g
dx — |Ba2|” Fp(Ro)

o™ fD |GV + A0)pa — e BTG + Ao
Rolal

i(pa__ . 2
el [0 A =BG | e 181, - Fy (ko)
Dy lal

<&+ g(a.Ry) + |Bal’e = £ + |g(a. Ro) — g(Ro)| + [s(Ro)| + |B2|’e = (B + |Bal)e.
thus concluding the proof of Theorem 1. O
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Equations

Goro Akagi and Ulisse Stefanelli

Abstract Nondecreasing evolution is described via the coupling of an abstract
doubly nonlinear differential inclusion and a constraint on the rate. The latter is
formulated by imposing the monotonicity in time of the solution with respect to a
given preorder in a Hilbert space. We discuss a solution notion for this problem and
prove existence and long-time behavior.
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1 Introduction

Doubly nonlinear evolution problems arise in connection with the modelization of
a variety of physical systems, from heat conduction and phase change, to viscous
dynamics. Indeed, at low-frequency regimes inertial effects can be often neglected
and systems are driven by the balance of conservative, dissipative, and external
actions. This can be modeled in abstract terms by describing the state of the system
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as a point in a Hilbert space J{ and by letting its evolution follow a trajectory
t € [0,7T] = u(t) € H up to some final reference time 7 > 0. In particular,
such a trajectory can be asked to solve the differential-inclusion problem

Aw) 4+ dpw) 3 f, u(0) = u°, (1.1)

starting from the given initial state u® € . The convex potential ¢ : H — [0, 00]
models conservative effects, d denotes the subdifferential (see below), and ¢ +—
f(t) € H is a given external forcing. The maximal monotone operator A : 3 — 27¢
describes dissipation. Indeed, the term A (u)’ (the prime denotes time differentiation)
corresponds to a system of dissipative effects, so that relation (1.1) ensures as a
balance law.

Problem (1.1) classically arises in connection with nonlinear diffusion phenom-
ena. In relation with different choices of the operators A and d¢, Eq. (1.1) may arise
in a variety of different dissipative situations. Letting A be linear and symmetric,
relation (1.1) is a classical gradient flow. Nonlinear operators A arise in connection
with the Stefan problem, the porous media equation, or the Hele-Shaw model, just
to mention a few, see [35]. Classical references for the analysis of (1.1) are Grange
and Mignot [20], Barbu [11], Di Benedetto and Showalter [17], Alt and Luckhaus
[7], and Bernis [12]. For a collection of further developments, the Reader can check
[1,2,4,6, 18,19, 22-24, 27, 31-33], among many others.

The evolution of the dissipative system (1.1) is irreversible with respect to time,
for the complementary energy u +— ¢@(u) — (f,u) is nonincreasing along time-
evolution of solutions (here (-, -) stands for the scalar product in ). In addition to
this, some physical systems show unidirectional evolution, in the sense that trajec-
tories are monotone in time with respect to some suitable order. Glue hardening,
food cooking, and material damage are examples of such unidirectionality in real
applications. Once the glue has hardened, the food is cooked, or the specimen is
cracked, no external forcing can drive the system back to its original condition. With
the aim of dealing with different unidirectional situations in a unified fashion, we
address here unidirectional evolution in abstract terms, by additionally constraining
the system (1.1) to

W €P. (1.2)

Here, P C H models the cone of nonnegative directions in the Hilbert space 3. In
particular, P is assumed to be a closed convex cone with vertex at 0, thus entailing
a preorder on JH via the position u < v iff v — u € P. The constraint (1.2) forces
the trajectory to be nondecreasing with respect to the preorder, namely s < t =
u(s) < u(r).

Problem (1.1)—(1.2) admits no strong solutions in general, namely trajectories
fulfilling the inclusions for almost every time. A counterexample to strong existence
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is givenby H = R, P = [0,00), A = id, ¢ = 0, and f < 0. This forces us to look
for weaker solution notions. A first possibility is that of replacing (1.1)—(1.2) with

A@) + () + dp(w) 3 f,  u(0) = u°. (1.3)

Here Iy stands for the indicator function of the set P, namely Ip(u’) = 0 if
u' € P and Ip(u') = oo otherwise. Equation (1.3) explicitly includes the Lagrange
multiplier 01 (') of the constraint (1.2). Nonetheless, an existence theory for strong
solutions to (1.3) is still not available. The presence of three nonlinear operators, two
of which are unbounded, does not allow the application of classical monotonicity
and compactness techniques, see [5] where some triply nonlinear problem subject
to a nonnegative-cone constraint is treated. In case A = id, f € H'(0, T; H), and
some restrictions in the choice of P and u° (see (3.10) later on), the existence of a
strong solution has been obtained by Barbu [11] and Arai [8]. Moreover, again for
A = id and P = 3 the equation falls within the class studied by Colli and Visintin
[16] and is strongly solvable.

In order to introduce our weak notion of solution to (1.1)—(1.2) let us start by
equivalently rewriting (1.3) in the form of an almost-everywhere-in-time variational
inequality as

ueD(p), WeP, and V' —fou—w)+ G u—w)+ o) <ow) YweH,
(1.4)

where y € dlp(u’) and v € A(u) almost everywhere in time.

We now check that the term (y, u — w) is nonnegative if w — u € P, namely for
u < w. As P is a convex cone with vertex in 0 and both w — u and «’ belong to P
we have that w — u + u’ € P as well. Then, y € dlp (') implies that (y,w — u) =
(y, w—u+u")—u') < 0. Hence, by dropping the nonnegative term (y, u—w) in (1.4)
we obtain the weaker

ueD(p), W €P, veA),
and (V' —f,u—w) + @) < p(w) Yw € H withu < w. (1.5)

A trajectory u solving (1.5) almost everywhere is called a nondecreasing solution of
the doubly nonlinear problem (1.1)—(1.2). Clearly, all strong solutions of (1.4) are
nondecreasing solutions.

This note deals with the existence and long-time behavior of nondecreasing
solutions. We start by setting some preliminary material on orders in Hilbert spaces
and convex differentiation in Sect. 2. We believe some of these to be of independent
interest. The main results are stated in Sect. 3 where we also discuss the relation
between nondecreasing solutions and strong solutions of (1.3) and supersolutions
of (1.1)—(1.2). By means of an approximation and passage to the limit procedure,
we prove in Sect.4 that nondecreasing solutions exist. Section 5 addresses the
characterization of the long-time behavior of nondecreasing solutions: due to their
monotonicity with respect to time, a nondecreasing solution converges to a single
equilibrium point. We conclude by mentioning some directions of possible future
research in Sect. 6.
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2 Mathematical Preliminaries

We collect in this section some definitions and properties of our abstract framework.
In all of the following J is a Hilbert space with scalar product (-, ) and norm |- | =
\/ (-,-). We use the symbols u, — u and u,, — u for strong and weak convergence,
respectively.

2.1 Orders in Hilbert Spaces

Let P C H be a nonempty, convex, and closed cone and let u < v iff v —u € P.
Relation < defines a preorder [29, Prop. 3.38, p. 95]. We will also use the equivalent
notations v > u and u < v. Indeed, for all p, ¢ € P, one readily checks that p+¢q € P
as well, whence the transitivity of < follows. If P is strict (i.e. P N —P = {0}) then
relation < is actually an order. In all cases, the (pre)order < is partial as two
elements in J{ are not necessarily comparable.

Given the nonempty set Q C H we define its polar cone as Q* = {u € H
(u,v) < 0 Vv € Q}. This is a closed convex cone with vertex at 0. All u € H
can be decomposed as u = u; + up where u; € P, up € P*, and (uj,up) = 0
[28]. Indeed, u; and u, are the projections of u on P and P*, respectively. We will
use the notation u; = u™ = wp(u) and uy = —u~ = mp«(u) (here m stands
for the projection). The choice of the symbol (-)* is suggested by the fact that we
shall regard P as the cone of nonnegative elements of J. In particular, in case of a
self-polar cone P* = —P one indeed has that u™ = 7 (—u).

For all u, v € H, we introduce the notations

umaxv =u+ v—u)", uminv=u—wu—v)".

The symbols min and max are chosen just for the sake of notational simplicity. In
particular, if P is self-polar one can check that uminv = inf{u, v}, umaxv =
sup{u, v}, ymaxv = vmaxu, and uminv = vminu. The pair (H, P) is called
Hilbert pseudolattice if P is self-polar. Moreover, (I, P) is called Hilbert lattice if
it is a lattice with respect to the preorder <, namely if inf{u, v} and sup{u, v} exist
for all u, v € J{ [10]. Here are some examples.

Example 1 (Orthant) Our first example is the finite-dimensional non-negative
orthant P = {x = (x1,...,x,) € R" : x; >0 for i = 1,...,n}. The cone P is
self-polar and (R”, PP) is actually a lattice.

Example 2 (Nonnegative Functions) Let §2 be a measure space, i1 be a positive
measure on £2 and denote by L?(£2, ;1) the Hilbert space of all square ji-integrable
functions on £2 endowed with the standard inner product. Letting

P={uel*(R2,u) : u>0 p—ae.in 2}

relation u < v reads u < v pu-a.e. in §2, which defines a lattice.
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Example 3 (Projections) Let H be given and define P = Q* for some non-empty
set O C H. Hence the order relation reads u > v iff (v,q) > (u,q) forall ¢ € Q. In
case Q = {g} is a singleton with ¢ # 0 we readily check that u™ = u+(u.q)"q/|q|?
for all u € H where of course (-)~ stands for the standard negative part in R. This
is a pseudolattice iff Q** = —Q*,

Example 4 (Positive Semidefinite Matrices) Let J{ be the space of symmetric n X n
real matrices endowed with the standard contraction product (A, B) = > /.| A;B;
for all A,B € H. We define P = {A € H : A > 0} and check that P is self-
polar [25, Cor. 7.5.4, p. 459]. Relation A < B corresponds to B — A being positive
semidefinite and (H,P) is a lattice. In particular, for all A € H, U orthogonal
matrix, and D = diag{d,,...,d,} diagonal matrix such that A = UTDU, the
projection operator turns out to be

AT =U'DTU where DT =diag{d],...,d}},

where di+ = Omaxd; is the positive part in R.

Example 5 (Second-Order Cone) Given the Hilbert space JH{, we consider the
convex cone in R x H defined by P = {(t,u) € Rx H : t > |u|}. It is a standard
matter to verify that P is self-polar in R x . This example in particular shows that
there exist self-polar cones in R” that are not isometric to the nonnegative orthant
of Example 1. Relation (s,v) =< (¢, u) reads in this case t —s > |u — v|, and the
projection operator is defined as follows

+ +

(1) = (r 4 (=07 u (IuI _ (ul=1) )) V(t,u) € R x K\ {0}
2 |u| 2

where the positive part in the above right-hand side stands for that of R. Note that
(R x X, P) is in general not a lattice.

Example 6 (Infinite-Dimensional Orthant) Let (3;, P;) be Hilbert (pseudo)lattices
fori=1,...,n. Then (H; x---x H,,P; x---x P,) is a Hilbert (pseudo)lattice.

Example 7 (Conic Combination) Let {u,} denote a countable orthonormal basis
of the separable Hilbert space J{. We denote by P the range of the mapping
u >y enlu, u,) Y u,. Namely, P is the set of linear combinations of {u,} with
non-negative coefficients (conic combination). Then P is self-polar and (H, P) is a
lattice.

Example 8 (Vector-Valued Nonnegative Functions) Let (H, P) be a Hilbert (pse-
udo)lattice, §2 be a measure space, 4 be a positive measure on §2 and denote by
H = L*(£2, u; H) the Hilbert space of all square j-integrable functions on £2 with
values in H. By letting P = {u € L>(2,u;H) : u € P u—ae.in £2} relation
u < vreads v —u € P, pu-a.e. in §2, which defines a (pseudo)lattice. Example 2
corresponds to the choice (H, P) = (R, [0, 00)).

We record here a characterization of Hilbert lattices. As we could not find a
precise reference in the literature, we include its proof.
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Proposition 1 (Characterization) Let (J, P) be a Hilbert pseudolattice. Then, the
following properties are equivalent:

i) (H,P) is a Hilbert lattice,
ii) x XyA(xVz) foreveryx,y,z € Hwithx <y,
iii) the map x — x% is nondecreasing, i.e. for all x,y € 3 such that x <y then
xt =< y+.

Proof Let us first of all prove the implication i) = ii). Indeed, it suffices to note
that since x < x Vv z and x <y, the lattice structure entails that x < inf{y,x Vv z} =
YA (xV2).

As for the implication ii) = iii), let us first point out that

XZYyA(VY) & 0—x—(=0) T =0-@vT =y-x 2.0
On the other hand, iii) is implied by the following
g=p.pe® =4 =p

which ensues from (2.1) by choosingy = p,x =0andz =p —gq.

To conclude the equivalence, it remains to prove iii) = i). Indeed, we have
to show that, given any pair of elements w, v € X, the set {w, v} has a supremum,
which is in fact wvv. Clearly, wVvv is an upper bound for {w, v}, as w < w4 (v—w)T
and v < v+ (w—v) ™. On the other hand, let u be any upper bound for {w, v}. Then
u = v+ p, withp € P, and the fact w < u = v + p, as well as assumption iii), yield
that (w—v)T <ptT =p. Thenvvw=v+ (w—v)T <v+p=uhencew vy
is the minimum of the set of the upper bounds of {w, v}.

2.2 Subdifferentials

Recall that, given ¢ : H — (—o0, oo] convex, proper, and lower semicontinuous,
the subdifferential d¢ : H — 27 is defined as

v € dp(u) iff u € D(p) and (v,w—u) + p(u) < p(w) Yw e K,

where D(¢) = {u € H : p(u) < oo} stands for the effective domain of ¢. The latter
operator with domain D(dp) = {u € D(¢p) : dp(u) # @} turns out to be maximal
monotone and strongly-weakly closed. Namely, its graph is closed with respect to
the strong-weak topology of J{ x J{ [13].

We define the nonnegative subdifferential g : H — 27 as the set-valued
operator

v E 8+<p(u) iff u e D(¢) and (v,w—u) 4+ ou) < p(w) Yw>u
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with domain D(0%9) = {u € D(p) : 3Tp(u) # @}. This definition corresponds to
the same variational inequality from the definition of d¢(u) but restricted to tests w
such that u < w. It is of course straightforward to check that d¢(u) C %¢(u) for all
u € K and, in particular, D(d¢) C D(0%p) C D(p).

Let now ¢ fulfill

@(uminv) + p(vmaxu) < ¢(u) + ¢(v) Yu,v € H. 2.2)

In this case it is a standard matter to deduce that, for all v; € dp(u;) and v, €
d¢(uy), one has that

(V1 —v2, (w1 —ux)T) = 0. (2.3)

The latter is nothing but the well-known notion of T-monotonicity, originally
introduced in [14]. In the case of a Hilbert pseudolattice the two relations (2.2)
and (2.3) are actually equivalent. Moreover, the same properties are preserved by
Moreau-Yosida approximations of ¢. Furthermore, one readily checks from (2.3)
that

(Ul — Uy, —(I/ll — uz)_) = (Uz -1, (M2 — M1)+) > 0. 2.4)

The reader is referred to [26] and [34, Lemma 4.1] for some detail in this direction.
The T-monotonicity condition (2.2) implies the weaker conditional upper-semi-
continuity

Yue H, Ywe D(p), w> u, Yu, = u: 33w, € D(p) such that
Wy, = w, u, <w,, and lin_1>inf (e(wy) — (1)) < e(w) — @(u). 2.5)
n—>0oo

Indeed, in order to check (2.5) starting from (2.2) one simply chooses w, =
wmaxu,, so that u, < w,, w, = w+ (U, —w)T™ = w+ (u—w)™ = w, and
one computes

e(wn) — o(un) = p(wmaxu,) — @(un) (2'52) (W) — @(wmin u,).

The inequality in (2.5) follows then by passing to the liminf as n — oo and using
the fact that wminu, = w — (w — u,)T — w — (w — u)™ = u and the lower
semicontinuity of ¢.

Condition (2.5) implies that the graph of ¢ is strongly-weakly closed. We have
the following.

Lemma 1 (Strong-Weak Closure) Let (H,P) be a pseudolattice and ¢ : H —
(—00, 00] be convex, proper, and lower semicontinuous and fulfill (2.5). Then, 0%
is strongly-weakly closed.
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Proof Letz, € 0%p(u,) be such that u, — u and z, — z. In particular, one has that
Znsw — ) + @) < p(w) Yw > u,. (2.6)

Fix any w € 3{ with u < w and find w, according to (2.5). Then, one passes to the
liminf in (2.6) with w = w,, getting

2.5)
(z, w — u) = liminf(z,, w, — u,) < liminf (@(w,) —@(u,)) < ew)— ()
n—>oo n—>oo

which entails z € 3o (u).

Note that 3Tp(u) — P C 3 p(u) for all u € D(d%p). On the other hand we
have already observed that dg(u) C 9%g(u) for all u € D(d¢). This implies that
dp(u) — P C dtp(u) for all u € D(dp). We present some sufficient condition in
order to prove the converse inequality (see also [30, Thm. 2.1]).

Proposition 2 (Decomposition) Let ¢ : H — (—o0, 00| be convex, proper, and
lower semicontinuous. Then, d¢(u) — P = 3T (u) for all u € D(dp).

Proof Let u € D(d¢) C D(3%p). We have to prove that d%p(u) C dp(u) — P. To
this aim let z € 9%p(u) and define, for all A > 0, the element u; as a solution to the
problem

u,+z+yr=u+z 2.7
73 € dp(uy), (2.8)
ya = (n—w) = (wx —w) ) /A = —(uz =)™ /A = lp (up — w), (2.9)

where 015, is the Yosida approximation of dI5. The latter is uniquely solvable since
the operator

1
Wi dp() + ) (00— = (w =)
is maximal monotone (see, e.g., [13, Lemme 2.4, p. 34]).
Let now ¢ € d¢(u). By adding —¢ to both sides of (2.7) and testing it by y, we
get that
(ur —u,y2) + (2 — &ya) + > = @=L
As for the first term in the above left-hand side one has that

1 _
(up —u, ) = Ay + A((m — )t —(ur —u)7) = Ayl

On the other hand, owing to (2.4), one obtains that (z — {,yx) > 0. Thus y, is
bounded in J{. Moreover, testing (2.7) by u; — u, one can derive the boundedness
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in 3 of u, in a standard way. Finally, by comparison in (2.7), we obtain the
boundedness of z; in J{ as well. Moreover, we readily check that ) minimizes

1
Wi Ba(w) = @09) + Toa (=) + W = (- 2,w),

where Ip 3 (w) = infueac{|w—h|?/(21) + Ip(h)} stands for the well known Moreau-
Yosida approximation of Iy and d(Ip ) = dlp (see [9]). In particular, we have the
bound

1 1
plur) + = (u+ 2 12) < o) + 2IMI2 — (u+2z.u),

so that ¢(uy) + |uy| is uniformly bounded as well. We next claim that u;, is a Cauchy
sequence in . Indeed, subtract Eq. (2.7) with A and p and test it by uy — u,,. Then
it follows that

|uy — “u|2 + (O —Yus (up —u) — ("‘;L —u)) <0.
Here the second term of the left-hand side can be handled by Komura’s trick,

Or = Ypes (ur = ) = (e — 1)) = Alyal® + plyul® = 4+ )G, v)

N
as A, — 0, since y, and y, are bounded in J. Thus, u; is a Cauchy sequence
in H.

Hence one can extract not relabeled subsequences and find three functions #, z,
and y such that u; — u, 75 — z, and y, — y. One can hence pass to the limit in
(2.7) as A goes to 0 and get that

u+z+y=u+z z€de), and y € dlp(u — u).
As for the last inclusion above we have exploited the convergence of the Moreau-

Yosida approximation [9].
It is now a standard matter to check that the functional @, converges to

wi> @(w) = p(w) + Ip(w —u) + ;|w|2 —(u+z,w

in the Mosco sense [9], namely it I'-converges with respect to both the weak and
the strong topology. In particular, since u; minimizes @, and is precompact, one has
that the limit « is a minimizer for @. On the other hand, we readily observe that u
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minimizes @ as well. Indeed, by z € 3¢ (1), one has that, for all w € P + u,
Lo
QW) = ¢(u) + [uf = (u+ 2.1
Lo Lo
= (p(u) — (z,u)) — 2IMI < (pw) — (z.w) — 2IMI
Lo L, 1 5
= p) + P = Gt zw) + () = Jul = ) < o0,

Since @ is strictly convex, one has that u = u, hence y € dl»(0) = P* = —P, and
Z=2z+y.

3 Main Results

This section is devoted to the statement of our main results on existence and long-
time behavior, Theorems 1 and 2 respectively. We start by listing assumptions:

(A1) (H,P) is a Hilbert pseudolattice.
(A2) A : H — I is maximal strongly monotone and Lipschitz continuous (hence
single-valued). In particular, there exists a constant & > 0 such that

a(ju—vl+ 1AW —A@)P) < (A@W) —A@),u—v) VYuveH. (3.0

(A3) ¢ : H — [0,0¢] is a convex, proper, and lower semicontinuous function
with compact sublevels and fulfills the following time-dependent version of
condition (2.5)

Yu € L*(0, T; H) with ¢ ou € L' (0, T) and
Vw e L*(0, T; H) with w > u a.e., Yu, — u strongly in L>(0, T; H) :
3w, € L*(0, T; K) with ¢ o w, € L'(0, T) such that

w, — w strongly in L2(O, T:H), u, <w, ae., and
T T
timint [ (o) — ) = [ (@) = o). (32)

(A4) u® € D(p), v° = A®WP), f € L*(0,T; H).

Before moving on, let us mention that the conditional upper semicontinuity
assumption (3.2) follows whenever d¢ is T-monotone, namely when (2.2) or (2.3)
holds. On the other hand, by arguing as in Lemma 1 one can prove that condition
(3.2) yields that 3Ty is strongly-weakly closed as operator from L*(0, T;H) to
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2120330 Note that the above hypotheses on ¢ may be somewhat weakened. The
nonnegativity assumption ¢ > 0 can be replaced by 0 € D(¢) and it suffices to ask
u > |u|> + ¢(u) to have compact sublevels. We prefer to stick to (A3) for the sake
of notational simplicity. Our existence result reads as follows.

Theorem 1 (Existence) Assume (A1)—(A4). Then there exist u, v € H' (0, T; H)
such that v(0) = v°, u(0) = u° and the following relations

W eP, ueD@ ), (3.3)
v+ 0to(u) > f, (3.4)
v € Au), (3.5)

hold almost everywhere in (0, T). Moreover, u and v fulfill the bound

/ W il) + () < p(u) + / (fou) Viel0.T]. (3.6)
0 0

The proof of Theorem 1 is based on a classical approximation—a priori
estimates—passage to the limit argument and is detailed in Sect. 4.

Recall that each trajectory u solving (3.3)—(3.5) in the sense of Theorem 1 is
called a nondecreasing solution of the doubly nonlinear problem. This class includes
all strong solutions to (1.3) and, a fortiori, of (1.1)—(1.2) (whenever existing).

Let us shed more light on the concept of nondecreasing solution by remaking
that, in case the nondecreasing solution u belongs to D(d¢) almost everywhere
(a property which however seems not to follow directly from our analysis) and
the stronger (2.2) (equivalently, (2.3) or (2.4)) holds, problem (3.3)—(3.5) can be
equivalently recasted by means of Proposition 2 as that of finding u € H'(0, T; )
and v € H'(0, T; 7(), such that 1(0) = u° one has that

i e, 3.7)
v+ dp(u) —f € P, (3.8)
v € Au), (3.9)

almost everywhere in time. Nondecreasing solutions solve hence problem (1.1)—
(1.2), where however the equation in (1.1) is replaced by an inequality in (3.8).
Let us now turn to the special case already addressed in [11], namely

A = id, ¢ is T-monotone, u’ € D(dp), f € H'(0,T; ¥), and f(0) — dp(u’) C P.

(3.10)
In this case, relation (1.4) is strongly solvable. As a by-product of our existence
proof we will observe that, whenever (3.10) holds, the approximation method indeed
leads us to obtain a solution of the stronger (1.4). In this case, relation (3.8) turns to
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be an equality, namely u’ + z — f = 0 for some z € L?(0, T; 3{) such that z € d¢(u)
almost everywhere.

In the case of a nonlinear operator A, by still assuming the T-monotonicity of ¢, if
(H, P) is a Hilbert lattice and A is such that ' € P and v € A(u) = v’ € P (this is
for instance the case of nondecreasing operators, namely u < w = A(u) < A(w)),
we can conclude by means of the characterization Proposition 1 that

v = (f —dpu)t e P (3.11)

almost everywhere in time. Indeed, (3.8) entails, that f — dp(u) < v’. By taking
the positive part on both sides (recall Proposition 1.iii) we have (f — dp(u))* <
(v')T = v’ so that (3.11) follows. In particular, in the special case of (3.10) we get
that

W —(f —dp)* e?

almost everywhere as well.

As far as uniqueness is concerned, we just remark that the problem (3.3)-(3.5)
admits, in general, multiple solutions. Indeed, this is also the case of the stronger
(1.3). First of all, note that the operators A and d¢ may be multivalued and it is
straightforward to find examples of nonuniqueness for the respective selections.
Furthermore u is nonunique as well [17, Sec. 5].

In addition to existence we provide an asymptotic result for the long-time
behavior of nondecreasing solutions. In fact, the reader should notice that the above
stated existence result is actually independent of the choice of the reference time 7.
In particular, by assuming

(A5) f —fs € L*(0,00;H) for some foo € H, and u — @(u) — (fso,u) has
compact sublevels

one can find u € Hlloc([O, o0);H) and v € leoc([O, 00); H) solving (3.3)—(3.5) on
(0,T) for all T < oo. Indeed, since u turns out to be continuous with valued in
the closed set D(¢), one simply exploits a continuation argument. For any such

solutions, let now the w-limit set be defined as
o) = {ueo € H : I, €[0,T], t, = 0o, and u(t,) = o}

We prove the following statement.

Theorem 2 (Long-Time Behavior) Assume (A1)~(A5) and let u € H]. (0, oo; H)
be a nondecreasing solution on (0,T) for all T < oo. Then, the w-limit set w(u) is
nonempty, compact, and connected. Moreover, all uso € (1) fulfill 0 (tioo) 3 fro
and w(u) reduces to a single point so that the whole trajectory converges.
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The proof of Theorem 2 is detailed in Sect. 5. We just remark here that, despite
the set 3" being quite large, the monotonicity in time of the nondecreasing solution
implies that the w-limit reduces to a point, a property that is often not available even
in the context of classical gradient flows.

4 Existence

This section is focused on the proof of Theorem 1, which is based on a combined
regularization and time-discretization procedure. Let n € N and

1
lyp,(w) = /\(W_W+) VYwe H

be the Moreau-Yosida approximation of dlp at level A = 1/n. The operator ol
is everywhere defined, monotone, and Lipschitz continuous. Let the time step 7 be
defined as T = T'/n. For all vectors {x;}"_, € H"*! we define the piecewise constant
in time and the piecewise affine interpolants x,, X, : [0, T] — K as

%:(0) =%,(0) =0, x,(0) =x:, X(0) = o (D)x; + (1—0(£))xi—
with o;(¢t) = (t—(i—1)7)/7 forall ¢t € ((i—1)7,it]andi = 1,...,n.

Moreover, indicate with M, : L'(0,T;7() — L>®(0,T;J) the mean operator
defined by

it

1
M,(x) = x, where x;= / x(t)dt fori=1,...,n,
T Ji-Dr

for all x € L' (0, T; H).

We will also use the shorthand notation 8x; for the discrete time derivative §x; =
(xi—xi_l)/‘r.

By letting ug = u°, vy = v°, we consider the regularized and time-discretized
problem consisting in finding {(u;, v;, z;)}/_, € H*" such that

v; € A(wy), 1z € 0p(w;), vy + dlp,(Su;)) +z=f; fori=1,...,n 4.1)

—1 it

wheref; =t (i—1)r

f(r) dt. At each level i, the latter can be rewritten as
Ui — Uj—1
A(u;) + Tolp, ( . ) + o) 3 o, + Aluiy). 4.2)
Given u;_, relation (4.2) has a unique solution u; as the operator

ue D) > Aw) + ot (U 7) + i)
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is maximal monotone and coercive, hence onto [13, Cor. 2.3, p. 31]. The maximal
monotonicity follows from the fact that D(A) = D(@lp ((- — ui—1)/7)) = H
(the regularization of dly is here needed) by the classical [13, Cor. 2.7, p. 36]. The
coercivity is a direct consequence of (A2).

By testing the last equation in (4.1) by 7é; and summing for i = 1,...,m,
m < n one gets

mt

mt mt
@, 1,) + Oy @), ) + @(un(m)) < @(u) + (fp. ). (43)
0 0
The second term in the above left-hand side reads
mt 1 mt
(019 @), ) = / @, — @)+ P
0 ' AJo

so that relation (4.3) and assumption (A2) entail that

mt mt 1 mt
o [P e [CEE ) [T - @)+ pon)
0 0 0

<o)+ [ (f,.70).
0

The nonnegativity of ¢ from (A3) allows us to estimate

[Fars [(mps) [ oL@ e s pwmmze @
t€[0,7]

where ¢ depends on a, ¢(u°), and |If|| 12(0,1;5¢)- BY convexity, it also follows that

sup ¢(u,) <c.
t€[0,7]

As the sublevels of ¢ are precompact, see (A3), we can extract not relabeled
subsequences such that

U, — u weakly in H'(0,T; %) and strongly in C([0, T]; K), 4.5)

u, — u strongly in L>®(0, T; H), (4.6)
U, — v weakly in H'(0, T; ) @7

as n — oo. Here we also note that %, — u, — 0 strongly in L*(0, T; (). It further
implies that g ou € L°°(0, T') by lower-semicontinuity of ¢. Taking bound (4.4) into
account, convergence (4.5) implies that

@)t —u'  weakly in L*(0, T; ).
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Hence, the closedness of P ensures that ' € P almost everywhere in time and (3.3)
follows. On the other hand, since A is Lipschitz continuous and v, = A(u,),

v, —> v =A(u) strongly in L0, T; H).

Moreover, v turns out to coincide with v, since v, — v, — 0 in L2(0, T;H). This
ensures v = A(u) almost everywhere in time, namely (3.5).

We now rewrite (4.1) as

u, € D(p) and (f, —’l')\;, Wn — Uy) — (BIT,A(/’;;)v Wn — Un) + @(n) < @(wy)

Yw, € L*(0,T; H), a.e.in (0, T). (4.8)
Fix w € L?(0,T;J) such that ¥ < w almost everywhere and let w, be defined

according to condition (3.2) with u#, = u,,. One can check that the piecewise constant
sequence M, (w,) can be used in (3.2) instead of w,,. In fact,

Uy Wy, = Up = Mn(un) = Mn(wn)

almost everywhere, as u, is piecewise constant on the partition and P is convex.
Moreover, M,,(w,) — w strongly in L*(0, T; H) as we have that
[w— Mn(Wn)”LZ(O,T;i}C) < w- Mn(W)”LZ(O,T;iH) + M, (w) — Mn(Wn)”LZ(O,T;i}C)

< lw =M, W)l 200.1:90) + W = wall 20,7590 = 0

where we have used that M,(w) — w strongly in L?(0, T; H) and that M, is a
contraction in L*(0, T; H). Finally, the convexity of ¢ entails that o(M,(w,)) <
M, (¢(w,)) almost everywhere (recall that ¢ o w, € L'(0, T)), hence

T

T
/ (0(M,(0)) — (1) < / (Malp(n)) — (1)
0 0

T

T
_ / (Moo ) — My (9(1,))) = / (00m) — ().
0 0

Note that the first equality above holds as ¢(u,) is piecewise constant on the partition
and the last equality follows from a direct computation.
Choose now w, = M, (w,) in (4.8). By dropping the nonnegative term

_(BITP,A (/’2:1)’ Wy — “n)

relation (4.8) can be integrated on (0, T') giving

T T
/ (Fo— o — ) < / (00m) — p(un)).
0 0
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It suffices to take the lim inf as n — oo and use (A3) in order to obtain that

T T
/v—vcw—u)s/ (6(0) — ()
0 0

so that relation (3.4) holds. This concludes the proof of Theorem (1).

Before closing this section let us show that, in the case A = id and ¢ is T-
monotone (2.2), the nondecreasing solution u is a supersolution to the original
unconstrained problem (1.1) in the sense that it bounds almost everywhere from
above any strong solution to (1.1) with the same initial datum. Indeed, let & solve
(1.1), namely

iieD(p) and (i —f,ii—w) + (@) < () Vwe L*0,T;H), ae.in (0,7).

By choosing w = &z minu above and w = umaxu in (1.5) (note that this choice is
admissible since of course u maxu — u € P), taking the sum of the corresponding
relations, and using (2.2) we readily get that

(Gi—u),@—uyt) <0 ae.in (0,T).

Hence, also taking the initial conditions into account and using the Gronwall
Lemma, it follows from and integration in time that # < u a.e. Note nonetheless
that nondecreasing-in-time functions bounding # from above are not necessarily
nondecreasing solutions.

If the stronger conditions (3.10) hold, one could pass to the limit as 7 — 0
first, for A > 0 fixed. This is doable as one can identify the limit of d/p (i) by
a classical semicontinuity argument, see, e.g., [16]. For all A > 0 we hence find
uy, vy € HY(0, T; ) such that

Wy + 0lp,(uy) + 22 of, za € 9¢(up) ae.in (0,7). 4.9)

By formally taking the time derivative above and testing on y, = 0l ; (i} ) one gets

/Or(uﬁ/sm) + /Or()ﬁvyl) + /Ot(zi,yl) = /Ot(f’,yl). (4.10)

By evaluating (4.9) at the initial time one finds

1, (0) + y1(0) = £(0) — 21(0) € £(0) — dp(u) ‘P

so that u} (0) € P follows by adding —y;(0) € P to both sides. Note however that
this argument is presently just formal, as (4.9) is valid almost everywhere and cannot
be evaluated at the initial time. The argument could however be made rigorous by
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resorting to an additional approximation, namely by replacing ¢ by its Moreau-
Yosida regularization, see [8] for a similar approach. The first term in the right-hand
side of (4.10) is nonnegative as

! 1
/0 U}, y2) = Ip 2, () (1)) — Ip 5 (U3 (0)) = —I5 2 (1 (0)) = ~2i |, (0) 7> = 0.

The second term in the left-hand side of (4.10) yields

! 1 1 1
[ Ghem = S0P = b = o

since 5 (0) = dlpx(u}(0)) = —(u}(0))~/A = 0. The third term in the left-hand
side of (4.10) is nonnegative due to T-monotonicity and the right-hand side can be
controlled via the Gronwall Lemma. An additional comparison in (4.9) yields the
estimates

T
sup i 2+ [l =
[0.7] 0
where now ¢ depends on ||f’{| ;20 73¢)» |(d¢(u°))°], and T. These estimates suffice in
order to pass to the limit in each term in (4.9) and obtain a strong solution to (1.3).
5 Long-Time Behavior

We now turn to the proof of Theorem 2. Let u € H|. (0, oo; H) be a nondecreasing
solution on (0, T), for all T < co. Rewrite bound (3.6) as

/0 Wil + () — (oo (1)) < 9(®) — (foort’) + /0 (f —foortl) Vi 20,

Then, assumptions (A2) and (A3) allow us to deduce that
o0 o
| [P sup (o) ~ o) < ¢ 5.1)
0 0 =0

where ¢ > 0 depends on &, ¢(u°), | fol, ||f — foollz2(0.139¢)> and inf(p(u) — (foo, 1))
and the latter infimum is not —oo as u +— @(u) — (fso, 1) has compact sublevels
due to (AS5). Hence, the trajectory ¢t — u(f) for t > 0 is relatively compact in H.
Therefore w(#) is a nonempty and compact subset of JH. In addition, since u €
C%([0, 00), H), a classical argument from the theory of dynamical systems ensures
that w(u) is connected in H (see e.g. [21, p. 12]).
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Let now us € w(u). Namely, there exists a sequence #, > 0 of strictly increasing
time such that f, — oo and u(t,) — ueo. Forn € N and ¢t € [0,T), we define
u, (1) = u(t, + 1) and f,(t) = f(¢t + t,). It is straightforward to check that u,, v, €
H' (0, T; ) solve

up(0) = u(tn), un € D(p), “,/1 € P,
(fo— vl w—uy) + o) < pw) YweL*0,T;H)
such that u, <w, v, € A()), ae.in (0,7). (5.2)

We readily identify the limits of u,, v,, and f,, as n — oo. Namely, we have that

Uy = oo, U, — 0 strongly in L*(0,T; H),
Up —> Voo, U, — 0 stronglyin L*(0,T; %),
fu = foo strongly in L*(0, T; ).

Indeed, taking (5.1) into account we easily check that

T T T T
/ | |* = / lu'|* — 0, / [v/|? = / [V'|> =0 as n— +o0.
0 ty 0 tn

This computation entails in particular that

[t (1) — Uoo| < |un(t) — ua(0)| + |u(ty) — tioo|
12

T
sT“Z(/ |u;|2) + |u(ty) — o] = 0,
0

an v, — Voo = A(Uso) by Lipschitz continuity of A (see (A2)).
Let now w € I be given such that u, < w and use w, given by condition (3.2)
in relation (5.2). One has that

T T
/ (foo,w—uoo)zliminf/ (fo — v Wi — uy)
0 n—>oo 0

T

T
< lim inf /0 (W) — p(un)) < /0 (W) = p(uco))

which proves that 0T¢(t100) 3 fro-

The monotonicity of the trajectory with respect to the order entails that w(u)
reduces to a single point. Indeed, for all # > 0 by letting #, be such thatz, <1 < t,4,
one has

|too — “(t)|2 = (oo — u(t), oo — u(1)) = (Uoo — u(ty), Uoo — MO) — 0.
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Here we used that
t
u(t) — u(s) :/ WePfor0<s<t<oo and (w,z) >0 forall w,z € P.

Hence, u(f) — u and the proof is completed.

6 Concluding Remarks

We conclude this note by highlighting some possible ideas for further investigations.

6.1 Ordering of Nondecreasing Solutions

As already mentioned, nondecreasing solutions are likely to be nonunique. It would
be interesting to identify setting where the set of nondecreasing solutions has itself
some order structure, possibly including a minimal element. This seems to be the
case in some concrete situations and would offer a variational selection procedure
towards uniqueness.

More generally, it would be worth investigating the relation between nondecreas-
ing solutions and supersolutions of (1.3), namely trajectories ¢ + () such that
u =< u almost everywhere, for all solutions u of (1.3). It is clear that supersolutions
of (1.3) are not nondecreasing solutions in general. On the other hand, in some
cases (see the end of Sect. 4) nondecreasing solutions are supersolutions of (1.3). It
would be interesting to understand if nondecreasing solutions are minimal within
the class of supersolutions of (1.3). This would again provide a selection criterion
for uniqueness.

6.2 Other Approximations

An alternative strategy to prove Theorem 1 is that of regularizing the problem
by letting ¢ be replaced by its Moreau-Yosida approximation ¢,. In case A is
nondecreasing one has ' € P and v € A(u) implies v/ € P. This is for instance
the case if H = L*(2) and A(u)(x) = a(u(x)) fora : R — R strongly
monotone and Lipschitz continuous with «(0) = 0. By assuming additionally that
dlp(u') C dIp(v") one can find a solution to

Aup) + 3lp(uh) + dpr(up) 3 f
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by looking to relation
A(up) + 0lp(A(u)") + dga(up) > f,

instead. The latter can be rewritten as

vy =+ 3p) 7 (f = 39a(A™ (1)) -

Due to (A2), A7 is Lipschitz continuous in H, and therefore, one can prove the
existence of solutions vy € C'([0, T]; H), which also implies u; € C'([0, T]; H).
Approximating in space, for instance by a Galerkin method, namely by reducing
to finite-dimensional subspaces J, invading I, may also be amenable. This would
correspond to a conformal finite element method. The corresponding discretization
consists of a system of ODEs. It would probably turn out sensible to coordinate the
discretization with the order structure. In particular, one could assume the finite-
dimensional subspaces J;, to be preordered via the cones P, = P N FH,.

6.3 Stability

Assume to be given a sequence of data (A,, ¢,, u,f,) fulfilling assumptions (A1)—
(A4) uniformly with respect to n. Correspondingly, for all n the problem (3.3)—(3.5)
with initial datum u° admits a nondecreasing solution u, by extending the results in
[3]. One could try to identify a suitable convergence frame for data (A,, ¢, u°,f,) —
(A, @, u’,f) ensuring that u, — u where u is a decreasing solution of the limiting
problem (3.3)—(3.5).

A relevant assumption in this direction seems to be the conditional Mosco-
convergence

Yu e H, Yw e D(p) withu <= w, Yu, € D(¢,) withu, — u :

3w, € D(¢,) with u,, <w,, w, — w, and

l}fgggf (@n(wn) - (pn(“n)) = (p(w) - 90(“)7 (6.1)
o(u) < inf{lin_l)gfw(u,,) DUy — uj. (6.2)

Note that the two conditions (6.1)—(6.2) are weaker than (2.2) and ¢, — ¢ in the
sense of Mosco (choose w, = wmax u,).
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6.4 Dynamic Problems

It would be interesting to investigate the existence and approximation of nonde-
creasing solutions for classes of hyperbolic problems of the form

W+ AW +dpw)>f, u eP.

This could arise as a variational version of balance equations, with potential
applications to Mechanics.

The basic estimate for the problem is again a test on «’, which directly entails the
possibility of considering nondecreasing solutions by using 9 instead of d¢.

6.5 Refined Assumptions

We have developed the analysis in the case of a Hilbert pseudolattice, namely by
assuming the cone P of positive elements to be self-polar. Some arguments seem
however to be valid even for not self-polar cones P, i.e. without assuming the
pseudolattice structure.

The existence theory relies on convexity and compactness, as all doubly non-
linear theories do. T-monotonicity plays however a role, even if limited to the
conditional upper semicontinuity assumptions (2.5) and (3.2). It would be probably
possible, likely at expense of a lesser generality, to present cases in which the com-
pactness assumptions can be weakened in favor of a stronger ordering framework,
see [15].
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1 Introduction

In previous years many researchers studied inverse problems for differential equa-
tions in Banach spaces, cfr. [15], which consists of recovering the unknowns

(.f1, - .. .f,) such that

dy

Vvt [Ka-9an@ ds+ Y0z R0, 0i<,

i=1
y(0) = yo0 € D(A),
Sy =gi(t), i=1,...,n, te]0,1],

where A generates a cp-semigroup in a complex Banach space X, A; is a closed
linear operator on X with D(A) € D(A;), k € C([0,7];C), z; € X, h € C(]0, t]; X),
® € X*, g € C([0.7];C), Bilyo] = £:(0). f; € C([0.7]:C), y € C([0. 7]; D(A)).

This type of problems has been discussed using different methods. The first
approach, devoted to a simpler case where the linear operators are assumed to
be bounded, was described in [28]. Of course, Alfredo Lorenzi, in collaboration
with many co-authors, studied the inverse problem where the involved operators
are unbounded using the fixed point theorem approach, see [20, 21]. Similar results
on nonsingular systems are obtained in [30] under different additional conditions.
Recently, both degenerate and non-degenerate inverse differential problems were
discussed by some authors using perturbation method, see [2, 3] and [5, 6].

More recently, see [22] and [23], some results appeared on the degenerate case,
ie.,

00 = 10 + [ K= 9Ly + LA+ 0. 0=1<r,

(My)(0) = Myo, yo € D(L),
QiMy(t)] = gi(t), i=1,....n, t€][0,7], D:i[Myo] = gi(0).

Here L, M, L, are closed linear operators on X, L is invertible, D(L) € D(M) N
D(Ly). In particular, we point out the paper of Favini and Tanabe [17], where it is
shown that under suitable assumptions, the inverse problem is reduced to a related
direct problem to which the previous arguments in [22] and [23] apply. Let us
illustrate this, for sake of brevity, in the case n = 1.

Lemmal Leta+>1,2—a—p <6 <1, D(L) € D(M) N D(Ly),

I+ L)l zx) < Re& > —c(1+|ImEN™, 0<pB<a; <1.

(1+[EDP
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If A is the multivalued operator LM™" and T = ML is its inverse, z € D(A) ﬂXSI,
§>1—=p1, heC0.7]:X), g € C*F1([0.7]:C), k € C?([0.7]: C), h(0) — Lyo €
R(T) = D(A), @[z] # O, then problem

000 = 0 + [ k= L6 ds + 70z + ().
0

My(0) = My,

DIy (0] = g0). BlMye] = (0

admits a unique strict solution
(v.f) € C72TR(0, 7] (L)) x ([0, 7 ©).

Indeed, the above inverse problem is reduced to a direct problem by noting that the
additional information @ [My(¢)] = g(¢) leads to

¢ = DlLy()] + /0 Kt — 5)B[Liy(s)] ds + D] + P[],

so that, using the assumption @[z] # 0, y(-) necessarily satisfies

P /210) I @LL1y(s)
00 =10 = L et [h-g e - P

@lh()] | &®
— o[ Z+¢>[Z]Z+h(t)

(My)(0) = My .

Hence, one can use the results of existence, uniqueness and regularity of solutions
which are applied to such direct problem, see Lemma 5. This method is new at all
and improves the usual fixed point theorem approach. For this purpose, we recall
the monographs [7, 13] and [30]. In order to improve Theorem 6.1 in [17], a basic
help comes from a new step in [15], see also [16, Lemma 1], precisely

Lemma 2 Suppose k > 0 sufficiently large so that 0 € p(kM + L), 0 € p(kM +
L+ L)), where Ly € & (D(L),XO), §>1-BA=LM ", A = (L+L)M .
Then, for all § € (0, 1),

5 vb b
Xy = X3, = X141 )m1 -

In Sect. 2, we shall consider a more complicated inverse problem concerning

‘Z = Ly(r) + /0 k(t—s)Liy(s)ds + Y fiDz +h(). 0<r<t,

M

i=1
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with initial condition
¥(0) = o
and the additional information
DMy =gi(t), i=1,....,n, te]0,1].

It is clear that more regularity for the inputs must be required, because the solution
y of the problem considered above is not necessarily differentiable, together with
compatibility relations. The main step is noting that if £ satisfies

j (ME(1) = LE(1) + / k(t — $)L1&(s) ds + k(r)Liyo + K (1),
t 0

(ME)(0) = My, = Lyo + h(0),

t
then y(7) = / £(s)ds + yo is such that
0

My'(1) = Ly(t) + /tk(f —$)Liy(s)ds +h(t), 0<t=rt,
0
y(0) =yo0.

Thus, the second problem can be solved by means of a suitable reduction to the
first problem. We want to recall that some related inverse problems for possibly
degenerate equations are discussed in [7] using a fixed point theorem argument.
Section 3 is devoted to a special case of Sect. 2, where z = 0 is a simple pole for
(z—T)7', T = ML™". In Sect. 4, we shall consider an inverse problem of the type

t

:ilt(A + Dy(r) = Ay(¢) + / k(t — s)Ay(s)ds + f(H)z + h(t), teR,

A+ Dy(0) = @A+ Dy(),
P[A+1y(n]=g@®. rel0.1],

where —1 is a simple pole for the resolvent (A — A)~'. If instead of (A + 1), we
consider the identity operator, then a problem like

Z); = Ay(t) + /too k(t — s)Ay(s) ds + F(1)

was considered (even in more general form) by Da Prato and Lunardi, see [12].
Notice that the argument in [12] can not be applied directly, since the operator
(A + 1) has no bounded inverse by assumption.
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2 An Inverse Problem for an Integro-Differential Equation

As a first step, we begin this section by considering the simplest case, i.e., only one
term f has to be recovered. Let L, M be two closed linear operators on the complex
Banach space X, such that for all A € X, where

Yo :={A€C: Red > —c(l +|ImA|)*}. 2.1
AM — L has a bounded inverse (AM — L)™' and

IMOM — L)~ 2 <

¢ Viex 2.2)
~ (A + D ¢ '

with, ¢ >0, 0 < B <« <1 (degenerate parabolic case).
Of concern is to find a unique strict solution

(.)€ €([0. 7]: D)) x C([0, ]; C)

(i.e., there exists y'(z) € C([0,7];X), My'(r) being continuous on [0, 7]) to the
inverse problem

MY (t) = Ly(t) + /0 k(t—s)Liy(s)ds +f()z+ h(r), 0<t<7t, (2.3)

y(0) = yo € D(L), (2.4)
OMy()] =g, 0=<t=<rt, (2.5)

where L, is a closed linear operator on X with D(L) € D(L,), k € C([0,7];C), z
is a fixed element in X, yo € D(L), h € C([0,7];X), ® € X*, g € C'([0,7];C),
@ [Myo] = g(0) . Recall that we always suppose D(L) € D(M). Applying @ to both
sides of (2.3) and taking into account (2.5), we get

¢0) = PLO) + [ Ki=90lLiy6)ds + 70D + 0.
Assuming that @[z] # 0, we necessarily obtain

_ 80— [Ly(®] = [yk(t = )PILiy(s)]ds — @[h(1)]

f@ o[

so that our inverse problem is reduced to the direct problem

My () = Ly(r) — Q)Ez;(]t)]z + /0 ki —s) [Lly(s) _ @[;‘[ﬁ ](S)]z:| s
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PIh(O] | £0) .
- o[ Z—i-qj[z]z—i-h(t), 0<t<rt, (2.6)

y(0) =yo0.

Let L, be the operator defined by

D@ﬁsz,Lﬁ=—§z2
Eq. (2.6) reads
MY (1) = (L+ Lo)y(1) + /0 (= $)La(s) ds + i([ZZ - d)q[)h[g)] R, 27)
where Ly denotes the linear operator
B[L1A]

D(L}) = D(Ll), L3x = le— @[z] Z.

Of course, such an operator may not be closed. To this end, it is important to
introduce the multivalued operator A = LM~ and the Banach spaces

X7 = {x €X, Wyw = [E"A°EI = A) " 'xllpxy <00, ¥ €(0,1), pel,o0) }
”x”XX'p = ||'x||X + [‘x]XX'pv V € (07 1)7 p € [17 OO) E}
where

AYEI—A) " =T+ EEI-A)",
Lh(X) = { f:(0,00) - X strongly measurable, such that
0= [ W01 <o),
if 1 <p < oo,
LX) = { f:(0,00) — X strongly measurable on R
and [flig= 0 = ess5up /O < oof

It is well known that the embedding, see [15]; see also [14] and [25]

(X, D(A))y,py = (X, D(A))yr
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holds for any 0 < y, < y; < 1 and py, p» € [1, o0]. Finally, in view of formula
(3.4)in [19, p. 49],

[T = A) 7 fllx < AP0 fllgoes A€ Zar S € X3

Therefore, if 7 € Xj’oo, where 6 > 1 — B,
L'A°(h + A)7'Ly € Z(D(L))
and

|L7'A%(h + A)7'L,y <c|Ah+A)7"

”&f(D(L)) 26> x) L1 ”D%(D(L)’Xj.oo)

/7 1—B—0 _
< ML e -

Since § > 1 — B, the result follows from [22, Theorem 1]. In order to ensure that L;
is a closed operator, suppose for all A € X, with sufficiently large |A|, there exists
(A & L1)~! such that

I £ L) Lz < T+ 2D (2.8)

and
ZeX;®, §>1-py. (2.9)
Write
AMtLix—ex=QAxL)x—ex=A=xL) (1 e == Ll)_ls)x
with
D[Lix
6 D(L) — X2, _ d[)[;] I,

We know that

O R i & VIS

It follows that (A & Ly)"'e € Z(D(Ly)).
In order to obtain the resolvent estimates, we add —hMy to both sides of Eq. (2.7),
obtaining

(t) _ @]

45[] O[] 7+ h(t).

MO —hy) = —hMy + (L—}-Lz)y—i-/ k(t—s)L3y(s) ds +
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Take z € X§’°° N Xz’loo, §>1—p1,60>1—p.Thenitis proved in [4]
IMOAM +hM — L= L) |20 < c(+ [ADF. L e %,
and A large enough. Indeed, the main step consists in observing that
A+mM—L—L, = (A +h)M—L)(1 - (X +h)M—L)""L)
=((A+hM—L)(1-L"A%(( +h) —A)'Ly) .

We know by assumption that L, € ¥ (D(L),Xf’oo) and by [19, p. 49] (see above)

IIAO(M—A)_IIID%,( <c' =

Xf“"’;x)
Therefore, repeating the same argument, also,
AtLi—e=@QA£L)[I-AE£L) ]

is invertible, so that 4=L; — ¢ is closed. Therefore, we write (2.6) as
t
MO —hy) = —hMy + (L + Ly)y(t) + / k(t — s)L3y(s) ds + F(t)
0

where

_Phw) z+ g/(t)z + h(1).

FO=="41 * oy

In order to solve such a problem, we prove the following lemma

Lemma 3 Ifk, € C([0,t]; C) and &(¢) is a strict solution to

thg(t) = LE() + /O ki(t — s)LsE(s) ds + ki () Layo + F' (1)  (2.10)
ME(0) = My, = Ly, + F(0), (2.11)

(recall that £ is a strict solution of (2.10)—(2.11) means that §¢ € C([0, t]; D(L)),
ME € C'([0, 7]; X) and (2.10)—(2.11) holds) then

¥ = /0 £(s)ds + vo
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satisfies

My () = Ly(t) + /0 ki(t — s)L3y(s)ds + F(1), (2.12)
y(0) = yo. (2.13)

Proof First of all, observe that

/ it — 5)Lay(s) ds = / i (5)Lay(t — 5) ds
0 0

so that

t

d (' d
‘ / ki (1 — $)Lay(s) ds = ki (D Lsyo + / k(L O y(t —s) ds
tJo 0 ot

t
= kl(l)L3y() + / kl(l — s)L3y/(s) ds.
0

Integrating (2.10) on (0, f) we get

ME(6)—ME(0) = /O LE(s) ds+ /0 ki (t—s)Ls [ /O sé(t)dr—i— yo:| ds+F(t)—F(0) .

Using M£(0) = Ly + F(0), we obtain

Mé(t):L[/O E(r)dr +yoi|+/0 ki(t —s)Ls [/Oxé(t)dr +yoi| ds + F(1).

Hence
My (t) = Ly(t) + /(; ki(t —s)L3y(s)ds + F(1) .

Therefore, all is reduced to study existence, uniqueness, and regularity of the
problem (2.10)—(2.11). To this end, we can use both results from [21] and [15];
see [18] and [20], too. Remember that the additional information

P[My(1)] = g(7)
transforms the inverse problem (2.3)—(2.4) into

P[Ly(1)]

My'(t) = Ly(r) — o[l

7+ /tk(t —5) [Lly(s) — PILIY)] Zi| ds
0

P[]
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Q@] | &
- o[ z—i-qj[z]z—i-h(t)

g'( n__ )]

(p[] o[ 7+ h(r),

=@+MMﬂﬁfW—mw®ﬁ+

ie.,

M ( d_ h) y=(—hM + L + Ly)y(t) + /Ork(t — $)L3y(s) ds

dt
g0 @h)

q)[z]z o[ z+ h(),
h > 0 large, where it can be supposed
IMOAM + hM — L — L) .20 < Ikclﬁ . AeX,.
In view of Lemma 3, if £(¢) solves
d ME(H) =(L+L tk L d
GMEO = L+ 160 + [ Ka—9LagG)ds
”(t) RALA0) )
+ k(t)Lsyo + CD[z] O[] Z+H (1), (2.14)
_ (0) 2[h(0)]
(M§)(0) = My, = (L + L2)yo + oS o C +h(0), (2.15)
then
= d
v = [ € ds+30
satisfies indeed
dy g @h)
P (L+ Ly)y(r) + / k(t — s)L3y(s) ds + oz ] T o[ Z+h(1),
(2.16)
y(0) = yo. (2.17)

Therefore, all is reduced to solve (2.14)—(2.15). Then we shall use two basic
theorems due to [21] and [15] respectively. We report them as lemmas (cfr.
Lemma 5).
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Lemma 4 (Theorem 2.1, [21, p. 469]) Consider the problem

d t

500 = 0 + [ k= 9Ly ds +70). @.18)
t 0

My(0) = My . (2.19)

with D(L) € D(M) N D(L,), 0 € p(L)

IMOM — D)7 0 < AeZ,. 0<Bpzas<l, a+f>1,

Cc
AL

yo € D(L), f € C%([0,7];X), k € C%([0, t]; C). Moreover, assume f(0) + Ly, €
R(T) = RML™"), w =2 —a — B < 0 < 1. Then problem (2.18)—(2.19) admits a
unique global strict solutiony € C*=*([0, t]; D(L)) = C?~2T**8((0, t]; D(L)) and
My € C'0=((0, 1]; X).

Theorem 1 Suppose 7 € X§'°°, 6>1—p ke C0,7];C), g € C?t¥([0, 7]; C),
he C'H9([0,7];X),0<B<a<l,a+B>1,2—a—B <0 <1,y €DL),

g'(0) @[ (0)]
k(0)Lzyo + o[ Z— ®[4]

(0 D[h(0
(where My, = (L+ Ly)yo + é;)([z]) z— Q[D[(z])] zZ+ h(O)) .

2+ H(0) + (L + Ly)y; € R(MML™)

Suppose (A + Ly) has a bounded inverse such that (2.8)—(2.9) hold. Then (2.14)—
(2.15) admits a unique strict global solution &(t) such that

£ e Ccl2eth(0,1];D(L)) and Mg € C'T([0, 1] X).

Therefore, problem (2.16)—(2.17) admits a unique solution y satisfying the property
y € CO71+e ([0, 7]; D(L)).

A more detailed result is given by Favaron and Favini, see [15, Theorem 5.9],
that we recall as a lemma.

Lemma 5 Suppose that L, M are closed linear operators in the complex Banach
space X, 0 € p(L), D(L) € D(M), such that

MOM — L)~ < ¢
MG =0 =

forany A € X, := {zE(C: Rez > —c(1 + |Imz|)*, ¢ >0, 0<,3§0{§1}.
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Consider the initial value problem

d SYE
00 = Godt + 30 + 3 [ =939 ds

i1=1

ny
+ Y iy (2, +£(0), el =[0.1], (2.20)
=1
(My)(0) = Myo , (221
where yo € D(L), ki, is a continuous function from I, inC, L;,, iy = 1,2, ..., ny,

are closed linear operators on X, such that D(L) < D(L;,) for each i\, h;, are
complex valued continuous functions on I, z;, are fixed elements in X, f € C(I; X).
Suppose 5o + 2B > 6, ki € C"(I.;C), by, € C%(I;;C), z;, € Y, €
{(X. D@y, XS, € [Loc) v = (oM + Lo, y1 + £(0) € ¥, where

N, 8, € (B=2a — B/, 1), v, 9 € (5-3a—=2B,1), i = 1,2,....m
j = L2 Let y = min {y,,¢} and © = ‘nllin {niy. iy, Xa gy}, where
= 7j

ih=1,...,n ij

=12
Xoupy = (@ + B+ y —2)/a. Then for every § € Iy g, problem (2.20)—(2.21)

d
admits a unique strict solution y € C*(I.; D(L)), such that dtMy, Ly € C%(I;; X),
provided that f € C*(I; X), u € [5 + 3_25_ﬂ, 1) where

() itve(Pur2),
lopy =
(z‘g‘ﬂ, 1/2) if yell/2,1).

In our case, n;, =1, ni; = 0,j # 1, and the problem reads

(i — k) ME(t) = (—kM + L + Ly)E(1) + /0 k(t — s)Ls&(s) ds + k(f)Lsyo
g . @[H' (1]

D[7] D[7]
g'0)  @[h(0)]

(ME)(0) = My, = (—kM + L + Ly)yo + oL — o[-l

2+ H (1), (2.22)
Z+h(0), (2.23)

k > 0large, (—kM + L + L)y, + W' (0) € Y, € {(X, D(A))W,XX’V}, r € [1,00],
pe(5-30—2p.1).5¢+26 > 6,k e CNI:C).ne (3—2a— 1),z € X,
0>1—B,A=LM", Lyyo € Y} € {(X.D(A))yr. X3'"}, v0 € (5 =3 =28, 1),
z €Y, € {(X,DA),.» X"}, 1 € (5-3a—2B,1),¢g € C*(;C), § €
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(3 =20 — B,1). Let y = min{yo, y1, ¢}, T = min{n, §, (¢ +  + 6 —2)/a}.
Then, for all fixed o € I, g, problem (2.22)—(2.23) admits a unique strict solution
£ € C°(I;,D(L)) such that (—kM + L + Ly)§, (¢ — k) M§ € C°(I..X), provided
1 . 3=2a—p

thath € CY*A(1; X), 1 € [a 437 ,1).

Theorem 2 Let L, M be two closed linear operators on the complex Banach space
X satisfying (2.2) with D(L) € D(M). Suppose (A & L) has a bounded inverse
such that (2.8)—(2.9) hold with D(L) € D(Ly). If yi € D(L), where y; is described
in(2.23), Ly = Liy— ‘4z Ly = =0z (kM + L + L)y, + H(0) €
Y, € {(X.D(A),..X;"}, r € [l.oc], ¢ € (5—3a —28,1), 50 + 28 > 6,

ke C(:ChneB-20—P1),2eX0® 0 >1-BA=LM", Ly €
) € {(X,D(A))yyr, X3}, v0 € (5—3a—2B.1), z € ¥}, € {(X,D(A))y,.. X}""},

y1 € (5— 3 — 28, 1), g'() e C°(I;;C), 8§ € B3—2a— B.1), y = min{yo, y1, ¢},
T =min{n, 8, (« + B + 8 — 2)/a}, then, for all fixed o € I, g ., problem (2.22)-
(2.23) admits a unique strict solution & € C°(I;, D(L)) such that (—kM + L + L)§,

(4 — k) ME € C° (I, X), provided that (1) € C*(I;; X), i € [0 4 32 1).
Proof It is an easy consequence of Lemma 5.

Corollary 1 Under the assumptions described in Theorem 2, the identification
problem

My (1) = (L + L)y(1) + /Ork(f— s)Liy(s)ds +f()z+ h(r), O=<t=<t,

y(0) = yo,
OMyt)] =g(r), 0=<t=t

admits a unique strict solution (y,f) such thaty € C'T°(I;;X), f € C'To(1,; C).

Proof It follows by observing that problem (2.16)—(2.17) is solved by reduction to
a problem like (2.14)—(2.15), whose solution is described in Theorem 2.

3 Simple Pole Case

Suppose T = ML™' = A~! has a closed range, then all previous assumptions can
be weakened.
Consider

My (t) = Ly(t) + / k(t—s)Liy(s)ds +h(t), 0<t<rt, (3.1)
0

y(0) =yo. (3.2)
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Call Ly = £. Then (3.1)—(3.2) can be written as

mﬂ@
dt

§(0) = Lyo. (3.4

=t +/ k(t—)LIL'E(s)ds + h(f), O0<t<t, (3.3)
0

If A = 0is a simple pole of (A —T)™!, T = ML™', then X = N(T) ® R(T) and
Eq. (3.3) is written by

d§

Tdt = +/ k(t —s)LiL™"E(s)ds + h(r), 0<t<rt. (3.5)
0

If P is a projection onto N(T) along R(T), then one can split (3.5) into
Tjt(z —P)t = (I-PE+ /Ot k(t — s)(I — P)LiL™'E(s) ds + (I — P)h(1) , (3.6)
0=%®+[upﬂnw%@m+mm. (3.7
If we write (3.7) in the form
0= PE() + /0 tk(t—s)PLlL_lPS(s) ds+ /0 tk(t—s)PLlL_l(I—P)E(s) ds+ Ph(7) ,

then we can find P§(?) in terms of (I — P)&(7) where (I — P)§(2) is known from
(3.6), since T has a bounded inverse in R(T) for which we obtain a solvable integro-
differential equation.

Example 1 Consider
10 y /_ y 21 hl
[00} I:x:| _[x} +f(t)|:12:|+|:h2:|’ Vielo, 1],

Y () =y + (021 + (), (3.8)
0=x(t) +f(Oza + ha(t) . (3.9)

ie.,

Let ® = [10], then y(r) = g(). If z; # 0,

g1 =g+ Oz + ()
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is solvable and

1) = '@ —gz(t) — hi () ’

and this is determined by Eq. (3.8). However, if we want the same regularity for x(z),
we need to assume more regularity on g and A, precisely, what we required in our
last theorem (Theorem 2).

4 Applications to Integro-Differential Equations

In the paper [12], the authors considered the problem

t

' () = Au(t) + / K(t—s)u(s)ds +f(), 0<rt<2m, 4.1)

—00

u(0) = u(2mw), 4.2)

where A and K(7) are linear operators in a real Banach space and f is a periodic
X-valued function. Using Fourier transform, it is easy to see that if X is a Hilbert
space, f € L>(0,2m; X), then

[e.]

2
u(t) = Z F(ik)fie™,  fi = ;N /O e ®f (s) ds

k=—00

where F(A) = (A — A — K (1))~! is the resolvent for the initial value problem.
Thus, if F(A) is defined for all A = ik, k € Z, the problem admits a unique strict
solution. Moreover, 1/, Au € LZ(O, 27; X). Moreover, for applications to nonlinear
problems, it is not convenient to deal with general Banach spaces. The treatment
in [12] starts with real Banach space X, A, K(t) : D — X. X and D denote the
usual complexification of X and D, respectively. One sets A : D — X, A(x + iy) =
Ax + iAy, Yx,y e D.
The main assumptions are as follows

(A) p(A) contains a sector S = {z € C; z # 0, arg(z — w) < 6y} with w € R,
0y € (;r/2, ) and there exists u > 0, such that

|z — @)z —A)™ | g <m forzes
(B) Fors > 0, K(s) € Z(D;X), VY x € D, the function K(-)x is absolutely Laplace
transformable. The Laplace transform K(-)x is extendable to S and there exist

6, N > 0 such that

|z — )| K@) 2wx) <N, z€S.
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Under (A) and (B) it is shown, see [12], that the resolvent operator R(¢) is given
by

R(r) = Z:Ii / e'F(z) dz
v

where y is a suitable path in C joining coe™™ with coe™, 6; € (5, 6y), and

F(2)=(z-A-K@) . (4.3)
It is easily seen

sup ||ZF(Z)||3()”() <00,
Z€S, |z|>k

sup  [AF(2)|| ) < 0.
Z€ES, |z|>k

In order to handle the problem

t
u' () = Au(t) + / K(t—s)u(s)ds + f(1),
—00
one assumes, besides (A) and (B)
(C) izepr= {z € C such that (z—A —Iﬂ((z))_1 e Z(X, ﬁ)}
so that
IkF (i)l 5y + IAF )| i < 12 k€.

An existence and regularity result for problem (4.1)—(4.2) is as follows (see [12,

Theorem 2.3, p. 54]).

Theorem 3 Let (A), (B), and (C) be satisfied. Assume moreover, that there exists
0 € (0, 1) such that for any v € Cy(D), the function @ given by

0

D) = / Kt —s)v(s)ds, t>0,
—00

belongs to C"9([0,T] : X) for any T > 0. Then, for any f € Cé’e (X) there exists a

unique 27 -periodic solution u of (4.1)—(4.2) such that u', Au € Cé’oo(X).
Here, C4(X) represents the Banach space of all continuous and 2m-periodic
functions R — X, Cg (X) denotes the space of all 6-Holder continuous and 27-
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periodic functions f : R — X endowed with the norm

Vg = sup o+ s 7700

0<s<t<27 |t —s|?

C’n‘(X), C§’0 (X) are analogously defined.
Let k() = be™, K(t) = k(t)A, b € R, ¢ > 0, A satisfies (A) and the spectrum
of A consists of the sequence (—u,)neny € R with p,, # co. Then

~ b -
KQ) = A, Rel > —c.
W=, e ¢
One easily recognizes that all assumptions in Theorem 3 are satisfied.
Let z = —1 be a simple pole for the resolvent (z — A)™!, where A is a closed
linear operator on X, 0 € p(A). Of concern is the equation

t

jt(l + A)y(r) = Ay(1) + / be "9 Ay(s) ds + f (1) . (4.4)

Introducing the change of variable Ay = x, we get

t

jt(l + A)Ax(t) = x(r) + / be™ U x(s) ds + (7). (4.5)

—00

Since (1+A)A~'=A"1+1, N((1+AA)=N1+A), R(A+AA™ =
R(1 + A), thus, if T =1+ A"!, then X = N(T) & R(T), R(T) is closed and the
restriction 7 of T to R(T) has an inverse 7~' bounded from R(T) to itself. Denote
by P the projection onto N(T') along R(T’). Our system reduces to

jti“(l — P)x(t) = (I — P)x(1) + / r be ") (I — P)x(s) ds + (I — P)f (1), (4.6)

0 = Px(t) + / be= "9 Px(s) ds + Pf(r). .7

—00
Concerning (4.6), the change of variable T(I—P)x(t) = &(¢) furnishes the equivalent
equation

:;té(t) =T7'@0) + / t be UIT e (s) ds + (I — P)f(r) . (4.8)

Iff e Cé’e (X), see [12], (4.8) admits a unique solution ¢ such that £ is a 2x-
periodic solution to (4.8) such that £, T~'¢ € Cé’e ((1 = P)X), i.e., (T(I — P)x),
(I — P)x belong to Cé’G(R(T)). Equation (4.7) is an integral equation and no
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periodicity property of its solution can be prescribed of the equation

Px(t) = — /t k(t — s)Px(s)ds — Pf(t) . 4.9)

—0o0

o0
Notice that if/ lk(®)| dt = co < 1,
0

‘ / t k(t — s)Px(s) ds

= ‘/00 k(t)Px(t —1)dt
0

< co lIPxllespx) -

Analogously, since

jt /t k(t — s)Px(s)ds = jt /000 k(s)Px(t —s)ds

—00

o d
/0 k(s) dth(t —s)ds

o d
= /0 k(s) d(t—s) Px(t—s)ds

:/t k(t—s);st(s)ds,

3:2 /_;O k(t — s)Px(s) ds = /t k(t—s) Z;Px(s) ds.

—0o0

We conclude that

H/t k(t — s)Px(s) ds

1 < collPxllc rspx) »
Cl(R;PX)

H/t k(t — s)Px(s) ds

< collPx[lc2r;px) -
C2(R:PX)

By interpolation, see [29],

H / t k(t — s)Px(s) ds

< cl|Pxl ¢+ mspx) -
C!t0(R;PX)

Hence, Eq. (4.9) admits a unique solution for any f € cl+? (R; PX). Therefore,

o0
Theorem 4 Suppose the kernel k € C(RT;C) N L'(RT; C) and/ |k(£)| dt < 1.
0
Then forall f € Cé’e (X), problem
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t

d ~ ~ ~
G0 =h0+ [ Ki-9he 1.

—00

(1+A)y(0) = (1 + A)y(27)
admits a unique solution y such that
(1+A)y e ¢t ([0,27];X) and Ay € C'*([0,27]; X).

We want to recall that integral equations over unbounded intervals are con-
sidered, for example, in the monographs [1, 10] and [11]. Periodic problems for
degenerate differential equations are considered in [8, 9], [24] and [26, 27].

Consider

jt(My(t)) = Ly(t) + / l k(t — s)Lyy(s) ds + f(£)z + (D), 0 <t<2m, (4.10)

(My)(0) = (My)(27) , (4.11)
P[My(1)] = g(1) . (4.12)

Applying @ to both sides of Eq. (4.10). Then, taking account of (4.12), we get

t

¢ = BlLy(0)] + / k(i — ) BIL1y(5)] ds + F()PL] + P

If @[z] # 0, then we obtain

_ -2y - JL oo k(1 = $)@[L1y(s)] ds — ®[h(1)] '

£y oL

(4.13)

Substitute (4.13) in (4.10), we deduce

4 i — o~ PO [ @LL1y(s)
15 = 1300 = T [ = [y - 0 as
D[], ¢
- o[ z+q)[z]z+h(t).

In particular, if L = L;, we get

om0 =00~ "2 [ g [ - P00 o

Q] | &0
~ e °T q)[z]z—f-h(t). (4.14)
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Let Ly = Ly(s) — PlLy] z. Then we can write (4.14) as
P[]
d ~ , O[], £(1)
" (My(1)) = ZLy(@) + /_OO k(t —5)ZLy(s)ds — O[] z+ o[ z+ h(1).

Here we have the same situation with . instead of L. That is, a direct problem

that we discussed previously. Therefore, we can easily handle the inverse problem,
too.
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Abstract In this paper we introduce a new model describing the behavior of auxetic
materials in terms of a phase-field PDE system. More precisely, the evolution equa-
tions are recovered by a generalization of the principle of virtual power in which
microscopic motions and forces, responsible for the phase transitions, are included.
The momentum balance is written in the setting of a second gradient theory, and
it presents nonlinear contributions depending on the phases. The evolution of the
phases is governed by variational inclusions with non-linear coupling terms. By use
of a fixed point theorem and monotonicity arguments, we are able to show that the
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1 Introduction

Auxetic materials are smart materials showing shape memory effects combined with
negative Poisson’s coefficient. As it is introduced in [8] and [20] they have the
property of expanding in all directions when pulled in one and vice versa. These
phenomena can be observed, for example in sandwich components, in compliant
structures, in structural integrity, and in passive smart devices [21] and [10].

From experimental results it has been proved that these materials show important
mechanical features compared with classical materials, as indentation resistance,
enhanced bending stiffness in structural systems, shear resistance, high dissipation
energy per unit volume under compressive cyclic loading, and optimal passive
tuning of structural vibration [3].

Transverse isotropy and rhombic materials also have been the object of an
intensive study with respect to the hypothesis of strong ellipticity of the elasticity
tensor, closely related to the auxetic behavior of materials: at this regard, a detailed
review (also concerning Mindlin-type plates) can be found in [17] and [18].

We underline that the Poisson’s ratio is not constant during the deformation
processes, then it is not obvious how to obtain the thermodynamic coherence of a
model with a Poisson’s ratio depending on the process. To address this problem, we
need to represent the mesoscopic process of the internal structure of the material,
which is actually characterized by a phase transition (in the sequel called auxetic
transition). Finally, in a recent work by Li et al. [14], a bi-material structure is
studied for which through control of temperature it is possible to observe mechanical
deformations implying a transition from positive to negative Poisson’s ratio or vice
versa. Concerning the shape memory behavior, i.e. the possibility of recovering by
heating the original shape (after permanent deformations), we recall that it is related
to a solid-solid phase transition (see, e.g., to [9] which is one of the first paper
introducing a modeling approach via phase-transitions for shape memory alloys).

In this paper, we address the model for auxetic materials introducing two phase
parameters (¢, @) representing the different configurations of the microscopic
lattice. The reaction of the material to external loads (applied in different direc-
tions, as tension and compression loads) is related to the presence of these two
configurations. In Sect.2 we introduce the model which is recovered as a balance
laws PDE system by virtue of a generalization of the principle of virtual power (see
[12, 13]). More precisely, we include the power of forces acting at a microscopic
level and responsible for the phase transition, i.e. the change of the microscopic
configuration of lattice. In Sect. 3 we state the main existence result (for a suitable
variational formulation of the resulting initial and boundary value problem), which
is proved mainly applying a fixed point argument. Finally, in Appendix, we suggest
an extension of the model presented in [8], which is related to the model we are
investigating, in order to describe a lower limit of the auxetic phase.
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2 The Model

The microscopic structure of the material is described at the macroscopic level, by
the two phase parameters ¢; and @, together with the volume variation tre (where
€ is the symmetric linearized strain tensor in a small deformation regime). The
evolution of the mixture of the two phases is governed by volume variation tre.
More precisely the phases evolution depends on the sign of the volume variation.

Assuming that the evolution at a point depends on its spatial neighborhood we
introduce the gradients of the phase parameters and the gradient of the volume
variation as state variables

Vo1,V Vire.

The physical meaning is that phase quantities and volume variation evolve smoothly
with respect to space. Such a point of view has been used, e.g., to describe the
evolution of shape memory alloys and smart materials (see, e.g., [1, 4, 5,7, 9, 19]).
As already said, the variation of the phases is mainly governed by the volume spatial
variation. Because the spatial variations of the phases are assumed to be smooth,
introducing their gradients, the spatial variations of their governing quantities should
also be assumed to be smooth, thus introducing the gradient of tre.
Then the state quantities are

((plv 9027 V(pla V(pZ, e, Vl‘ré‘, 9),

where 6 is the absolute temperature. Actually, we assume that the temperature 6 is
a known function.

2.1 The Equations of Motion

The PDE system we are going to investigate results from the principle of virtual
power, where the power of the internal forces is

P (y1,y2, Vy1, Vya, &(V), Vire(V))

= —/ Biyi+ By +Vy1 Hy +Vy,-Hy +0 : e(V)+ Vire(V) - FdS2.
2

Here, yi, y» are the virtual phase velocities and V the virtual macroscopic velocity.
Indeed, we are following [13] generalizing the principle of virtual power including
the effects of microscopic forces and motions related to the phase transition process.
More precisely, the internal forces are works B; and work flux vectors H;, which
are responsible for the evolution of the phase transition and they account at the
macroscopic level of the power of the motions occurring at the microscopic level
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during the evolution. The other internal forces are the classical stress o and the
force F working with the spatial variation of the volume of the material.

The principle of virtual power is the weak formulation of the equations of
motion. Formal integration by parts in the principle gives the equations of motion.
Concerning the second gradient contribution, we have

—/Qa :e(V) 4 gradtre(V) - FdS2 = /Q(diva — VdivF) - Vd$2
—/moN-V+F-NdiVV—V-NdiVF)dF
with
/aQ(F-NdivV— V - NdivF)dI"

:/ div((F -N)V) = V(F-N) -V — V- NdivFdI"
a2

I(F - N)

Y%
V.-N+F-NN-° —V.NdivFdr
N FENN-GY IV

:/ 2C(F-N)N-V +
a2

:/ 2C(F-N)+8(F'N)—divF N'V—V(F-N)-V—l—(F-N)N-anF
902 oN ON
:/ LF)-V+BF)- Y ar
00 IN

where C is the mean curvature of the boundary 92 (which is assumed to be smooth).
The linear functions .Z; (F) and .25 (F) are

d(F-N)
oN

5 (F) = (F-N)N.

L(F) = {2C(F-N)+ — divF{ N—V(F -N),

Assuming that no body external power acts at a microscopic level, we recover the
equation written in £2

dive — VdivF + f = 0, (2.1)
B; —divH, = 0, B, —divH, =0, in 2, (2.2)
where f is the macroscopic body force. On part I of boundary 052, we assume

neither external forces nor surface external work producing phase transition without
macroscopic motion, so that the surface equations of motion or the boundary
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conditions are defined in I} by

H -N=0,H, -N=0, 2.3)
oN + % (F) =0, 4(F) = 0. 2.4)

2.2 The Free Energy and the Pseudo-Potential of Dissipation

We choose the Lamé parameter A; of each phase as the phase parameters ¢;. They
are clearly related to the Poisson’s coefficients which are the interesting quantities.
We assume the other Lamé’s parameter 1 > 0, is the same for the two phases. The
phase parameters satisfy the usual property

(p1,92) €K,

where convex set K is defined by
K={A1,A2);341 + 20 > &,342 + 2 > o}, witho > 0. (2.5)

Note that the definition of K forces the Poisson coefficients to stay between 1/2
and —1. It may be modified to take into account interactions between ¢; and ¢,
(including a possible constraint like ¢; > ¢5).

The free energy depends on the state quantities (¢1, @2, Vo1, Vs, &, Vire, 0)

Y(p1. 92, Vo1, Vo, e, Vire, 6) (2.6)

1 _ ) l
=, 19 () ) g2 ((re) ) + 2pe e = (661 — ) (6~ 0y

k k k
+ ) (Vo + 7 (Veo)* +  (Vire)? = COIn6 + Ix(p1.42). @.7)

for C, 11, b, k1, ks, k positive physical constants and I is the indicator function of
convex set K and it forces the phase variables (g1, ¢;) to take only admissible
physical values (in K).

Quantities /; are latent heats of the two phases, k; and k quantify the interaction
of the neighborhood of a point on this point: if it is large the interaction domain is
large, if it is small the interaction domain is small, i.e., only the very neighborhood
intervenes. The heat capacity is C.

We assume the phase evolutions are viscous (so that we have a rate dependent
evolution) and have the pseudo-potential of

Cl ., €.y

b = 2(p1 + 2(p2, (2.8)
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where the ¢; are the phase viscosities. Let us recall that a pseudo-potential of
dissipation is a non-negative convex l.s.c. function vanishing for null velocities (cf.

[16D).

2.3 Constitutive Laws

To recover the equation we specify the physical quantities in the balance laws
(2.1)~(2.2) in terms of the functionals (2.6) and (2.8), by virtue of the following
constitutive equations

v
o=, =0 (tre)™ 1— ¢, (tre)” 1+ 2pue,
e
o
F = = kVt
Vire e
o 0P 1 2
B = =ci¢ re)N) = (0 —6) +Ry.
1 901 + 3 c191 + ) (( re) ) 91( 1)+ R
oy P 1 _ [
Bo= . 4+ .. =cpr+  ((tre) )= (6 —6)+Rs,
0y 0¢n 2 0,
(R1,Ry) € Ik (91, ¢2),
v o
H = = k V . H = = k V .
1 Vo, V@1 2 Vo, 2V @2

Remark 2.1 1Tt is natural to write the free energy (2.6) for & components in L2(£2).
Hence, we observe that the trace of the stress depends on positive volume variation
(rre)™ and negative volume variation — (tre) " through the relation

tro = (1 + 2u) (tre) ™ — (g2 + 2) (tre) ™.

On the other hand it is known that there exists sequences &, such that their traces
converge weakly in L2(£2) to 0

lim (tre,) =0,
n—>oo
but their positive and negative part satisfy
lim (tre,)™ = lim (tre,)” =15 > 0.
n—>oo n—>oQo
Thus, we could introduce as constitutive equation (1 is the identity matrix)

o =g ((re)T + )1 — @y (tre)” + )1+ 2ue, withn > 0.
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It results that when the phase quantities are known the stress is not a function of the
strain €. In order to avoid this difficulty, it is wise to control the spatial variation of
tre. This is achieved by choosing Vtre as a state quantity, which is related to the
local interactions between the phases.

2.4 The Resulting PDE System

We are now in the position of introducing the resulting initial and boundary value
problem we are dealing with (here u stand for small displacement)

div(g; (tre@))t 1 — o (tre@)) ™ 1 + 2ue(u) — kAtre@)l) +f =0,  (2.9)

. ! 1

agi—kidg +Ri= o (0= 6) —, ((re)"), (2.10)
. ! 1 _

22 —ky Ay + Ry = 922 (0 —6) — ) ((tre)™)?, (2.11)

with suitably associated boundary and initial conditions. More precisely, let Iy, I
be a partition of the boundary 952. Finally, for Eq. (2.9) we assume sthenic boundary
conditions (2.4) on I} and kinematic boundary conditions on I for u. We have, in
particular,

(@1 (tre @)™ 1 — @, (tre(u))™ 1 + 2ue(u) — kAtre(u)l) -N =0 on [}
and
u =20, divu = 0on Iy.

For Eqs. (2.10) and (2.11), we assume sthenic boundary conditions (2.3) and initial
conditions
91(x,0) = ¢ (x), @2(x,0) = 3 (x),
(#).93) € K.

3 Variational Formulation and Main Existence Result

In this section, we state the abstract setting of the problem and the existence theorem
for corresponding weak solutions. We consider the evolution of a body located in a
smooth bounded domain 2 C R3 during a finite time interval [0, T]. The boundary
of £2 is splitted into two parts 952 = Iy U I}, where the measure of I is strictly
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positive. Hence, we consider the Hilbert triplet (V, H, V'), with V := H'(£2) and
H := L*(£2). As usual H is identified with its dual space; we denote by (-, -) the
duality pairing between V’ and V. We also introduce the functional space

W= {v e V3 : divw(= tre(v)) € H'(2), v = 0 and divv = O on Fo} .
Note that on the boundary, even if we do not specify it by using a proper notation, we

mean the trace of a function as it is defined for Sobolev spaces. Due to the Poincaré
inequality, we can endow W with the following norm, which is equivalent to the

natural one,
3 1/2
Ivllw := (/ |Vdiv v|2+2/ |Vvi|2) (3.1)
fos P o)

where v = (vy, v, v3). Hence, ({-,)) stands for the duality pairing between W’ and
W. To simplify notation we will use the same symbol || - ||x for the norm in a Banach
space X and in any power of it. In addition, in the sequel we will possibly denote
by the same symbol ¢ different positive constants depending only on the data of the
problem.

In order to write the variational formulation of (2.9), we consider test functions
v € W, so that for a.e. ¢ the equation is written as follows

/ (@1 (div )t = @5 (divu) ")div v + 2ue(u) : e(v)
2
+ /Q vV(divu) - V(divv) = /Qf v, VveW, (3.2)

For any fixed (¢1, ¢2), we introduce the abstract operator %y, ¢,) : W — W’
defined by

(A @). v)) = / (¢ @vw)* — g @dive))dive, wveW. (33)
Q
Note that considering the free energy (2.6) for (¢, ¢;) € K fixed the term
1 . .
Vi@ = [ on(@ivay®y? +ga((aiv i’

is a convex function, so that its subdifferential (in the sense of convex analysis)
results

3¢(¢1,¢2) = "Z{(W,wz)
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and it is a monotone operator, see [2] and [15, Prop. 1.1 p. 158]. Then, we introduce
the following linear abstract operator &8 : W — W’

((Bu),v)) = / 2ue(u) : e(v) +/ vV(div u) - V(div v). (3.4)
2 2
In particular, it results (by Poincaré inequality and (3.1))
(B@),u) = clluly, <> 0. 3.5

Note that, by definition of K (see (2.5)), (3.3)—(3.4), and by monotonicity and (3.5),
we have also that for any u € W

(g1, @) + B(u),u)) = clluliy. (3.6)

Analogously, we introduce the operator A : V — V' defined by
(Au, v) :/ Vu-Vv, u,veV,
2

which corresponds to the realization of the Laplace operator, with homogeneous
boundary conditions, in the duality of V, V'.

Thus the problem can be eventually rewritten in the abstract setting of W’ and V’
as follows.

Problem Find (u, ¢, ¢,) such that for a.e. f € [0, T], there holds

gy gy W) + Bu) =f inW, (3.7)
c1g1 + Apy + & = hi(0) — ;((div wh? inV (3.8)
20 + Ay + & = hy(0) — ;((div uwo)? inV (3.9)
for some
(£1.&) € Ak (@1, ¢) ae. in £2. (3.10)

Here, the subdifferential 0k is defined for (@1, @) € K: it is null if (¢, ¢;) belong
to the interior of K, while it corresponds to the normal cone to K if (¢, ¢;) belong
to the boundary 0K . Hence, we have set /;(6) = ;l_ (0—16,),i=1,2.Indeed, we are
assuming that the temperature 6 it is a known datum of the problem and it given in
such a way that

hi(0) € L*(0,T;H), i=1,2.
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Here, we recall that 0y, 6, stand for phase transition temperatures. The equations are
combined with the initial conditions

(©1(0), 92(0)) = (¢, 03). (3.11)

Now, we are in the position of stating the main existence result of the paper.

Theorem 1 Let f € L>®(0,T; W'), hi(0) € L*(0,T; H) fori = 1,2, and (¢!, ¢3) in
V2 N K (in the sense that (p? in (3.11) are V-functions such that the couple belongs
to K a.e.). Then, there exist (u, 1, ;) fulfilling (3.7), (3.8)-(3.9), and (3.11), for
some (&1, &) satisfying (3.10). In addition (u, @1, ¢2) and (&1, &) have the following
regularity

ueL>®0,T;W), (3.12)
@i € HY(0,T; H) N L*(0, T; H*(2)), i = 1,2, (3.13)
£ e€L*(0,T:H),i=1,2. (3.14)

Remark 3.1 Note that (3.8)—(3.9) can be actually solved a.e., due to the regularity
of the solutions (3.12)—(3.14). In particular, (3.12) implies (we are in dimension
3) that divu € L>(0, T; L*(£2)) and the quadratic terms on the right hand side of
(3.8)-(3.9) are in L*°(0, T; H).

4 Proof of the Existence Result

In this Section we prove Theorem | mainly exploiting the Schauder fixed point
theorem. To this aim, let us consider the space

2 ={(n.n) € *O.T;V)*, (1.2) € K ae. (1. v2)lzo.rve < R},

where R will be chosen later. We fix (¢, ¢,) € 2 and consider Eq. (3.7) written
with (¢, @,) in place of (¢, ¢2). Let us point out that, by construction and owing
to (3.5) (cf. (3.3) and (3.4)), due to the convexity of the free energy, we can apply
fairly classical monotonicity arguments to show that the resulting equation admits
a solution (e.g. the reader can refer to the arguments exploited [15] in the proof
of Theorem 1.1 p. 156). More precisely, there exists a solution u = J1(¢,, ¢,) €
L®°(0, T; W) (see also [6] and references therein for a proof of the existence of a
solution for a similar equation related to the helium supercooling phenomenon).
Hence, we can show that the solution is unique by contracting arguments. Indeed,
let us write the difference of the equations solved by two solutions, say u;and u;.
We point out that, by monotonicity we have

(A p,.0,) (1) — Hg,.0,) (U2), u1 —u2)) >0
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Thus, after testing the difference of the resulting equations by v = u; — u,, and
exploiting (3.5) we deduce

(B —uz), w1 —w2)) > clluy —usy,
so that at the end we have
ey — u|3, < 0.

and it follows u; = u, a.e. Now, we aim to prove some estimates on the solution u,
which eventually do not depend on the choice of (¢, ¢,) in Z". To this aim, we test
(3.7) (with fixed (¢, ¢,)) by u. Due to (3.6) and exploiting the Young inequality to
estimate the right hand side, it is a standard matter to deduce for a.e. ¢

C
clu@ly < IFOIw llu@|w < 5 w15 + cllfll7oo 07w .1
so that

lla|| oo 0.75w) < c. (4.2)

Note that in particular the constant ¢ here does not depend on the choice of
(¢, 9,) € Z,but only on the data of the problem.

Secondly, we fix u = J1(¢,, ¢,) in (3.8)—(3.9) and look for a corresponding
(unique) solution (¢1,¢;) = Z5(u). Note that the right hand sides of the two
equations are, at least, functions in L?(0, T; H). This regularity follows by the
definition of W and Sobolev embedding. Thus, well known results on parabolic
equations combined with maximal monotone operators (see [2]) ensure that there
exists a unique couple (¢1, ) € (H'(0,T; H) N L*®(0,T;V)?, with (¢1,¢) € K
a.e. solving the inclusion

(@1, 92) + (Ap1, Apa) + Ak (91, 92) (4.3)

S ((6) —  (@iva) ™) ha(6) — ) (@iv ) ).

Here, we have exploited the regularity on the initial data and the functions h;.
Hence, we aim to find some estimates on the solutions. Let us test (4.3) by (¢1, ¢2)
and integrate over (0, 7). This estimate is formal at the moment, but the following
argument shows that it can be made rigorous (through an approximating procedure).
Exploiting (4.2), the assumptions on #;, the definition of the sub-differential and the
chain rule, after integrating by parts in time and by virtue of the Young inequality,
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we get

2

! 1
> ( /0 il + 2||V<oi(r)||%,) + /Q Ic(g1 (1), 92() (44)

i=1
1 [ 2 ,
=, Z/O lgillz + ¢ (1 + Y 1O 72070 +/0 ||u||5v) ,
=1 i=1
so that (cf. (4.2))

2
Z @i ll 1 (0,731 Lo (0,73v) = €, 4.5)

i=1

where the constant ¢ in (4.5) depends on the data of the problem and (4.2), and thus
it does not depend on the choice of (¢, ¢,). By continuous embedding theorems
and choosing R sufficiently large, we can infer that the operator 7 (¢, 9,) =
T(Z1(@,, @,)), turns out to be well-defined 2~ — 2.

The next step consists in showing that .7 is a compact operator and for this we
need to prove a further estimate. We test Eq.(4.3) by (&1, &) and integrate over
(0, 7). Using the chain rule and exploiting monotonicity properties to infer that

2 '
;/0 (Agi, &) > 0,

we can deduce, once more using the Young inequality and (4.2)

2 t

[ 0.0+ 3 [ 16 (4.6)

i=1
1 2 t 2 t
=, % [ el +c (Z 1)y + 3 [ ||u||%,),
i=1 i=1 i=1
so that

2
Z 1&ill 20.mm) < € 4.7

i=1

and by a further comparison in (4.3)

2
> 1Agillzorm < c (4.8)
i=1
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Combining (4.5) and (4.8) leads to

2
Z @il 207022 = c. (4.9)

i=1

Also in this case the constant ¢ depends just on the data of the problem (through the
norm ||| e 0.7;w))-

Now, (4.5) and (4.9) ensure in particular that .7 is actually a compact operator
in 2. In order to show that it admits a fixed point, it remains to prove that it
is continuous w.r.t. the topology of 2. With this aim, we consider a sequence
(@ 1> ©2,) strongly converging in 2~

(@1n:020) = (@1.9,) inL*(0,T; V) (4.10)

Then, we consider the corresponding sequences u, = 73 (91, @,,) and (@1,, ¢2,) =
T (uy,) (and the corresponding (§1, £21,) € 0l (@11, ¥2n)). We can deduce from
(4.2), (4.5), (4.9) the following bounds independently of n

|| oo 0.3w) < € 4.11)
@inll et 0. 75y n 2200, 1312002)) <€ i=1,2 (4.12)
W&inll20.smy) <, i=1,2. (4.13)

By weak and weak star compactness results, we deduce that the following conver-
gence results hold, at least for some suitable subsequences (we still denote by n to
simplify notation)

u, — u weakly starin L*(0, T; W) (4.14)
@in — @; weakly in H'(0, T; H) N L*(0, T; H*(2)), i=1,2 (4.15)
Ein — & weakly in L2(0, T: H), i=1,2. (4.16)

In addition, by the strong compactness Aubin-Lions theorem (cf. [15]), fori = 1,2,
there holds

@in — @; strongly in C°([0, T]; V) N L*(0, T; H). (4.17)

First, let us point out that (4.14) and (4.17), through semicontinuity arguments, allow
us to identify (see [2])

(61, &) € Ak (@1, ¢2). (4.18)
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Now, we aim to prove also a strong convergence for u,. We proceed directly,
showing that it is a Cauchy sequence in L*°(0,7; W). We write (3.7), where
(@1, 92,) 1s fixed, for two indices n, m and take the difference. Testing the resulting
equation by the difference u, — u,,, we get

(("Z{(fﬂln’(ﬂzn)(u") - 'Q{(fﬂlmqfﬂzm)(um) + Bwy —up), uy — ) (4.19)
= “JZ{(WWV’Z”)(u") - JZ{(fl’lm(azn) (um) + ‘%(un - um)v Un — um))
+ ((M((ﬂlmvwlm)_(wln*(aZn))(um)’ U, —uy)) =0.

By monotonicity and (3.5), we can deduce that
(1,020 Un) = Fig1,.05,) ) + BUn—th). =) = Clluty—unfy.  (4.20)

Then, by definition of 27, exploiting the strong convergence (4.10), (4.14), and
(4.11) (and Sobolev embedding) we have that

hm (((‘jy((alm*‘pZm) - tgy((alm‘ph))(um)? uVl - qu)) = 0 (421)

n,m——+00

Combining (4.19)-(4.21), it follows that u, is a Cauchy sequence in L*°(0, T; W)
and thus it strongly converges to u. As a consequence, we can extract a subsequence
such that div u,, converges a.e. and thus, we can identify the weak (star) limits of
;((div u,)")? and ;((div u,)”)? (in L*(0, T; H)) on the right hand sides.

Thus, we are now in the position of passing to the limit in Egs. (3.7) and (4.3).
In particular, it follows that actually (¢, ¢2) is a solution to (4.3) whence u is fixed,
while u is a solution of (3.7) written for (¢;, ¢,). As a consequence, (4.17) means
that 7 : & — 2 is a continuous operator. Now, the Schauder Theorem ensures
that .7 admits a fix point (¢;, ¢2) and (letting u = J1(¢1, ¢2)) the corresponding
(u, @1, @) is a solution to our original problem, which concludes the proof of the
Theorem.

Appendix
The Lamé Parameters

The state quantities ¢; are the Lamé parameters related to the constitutive law

tro = 3¢, (tre)t — 3¢, (tre)” 1 + 2uire

= (3g1 +2u) (tre) ™ — (Bgs + 2p) (tre) ™,
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giving

(ro)* = Bg1 + 2) (tre) ™",

(tro)” = Bea +2u) (tre)” .
Consequently, the Poisson coefficients are

v = 7 vy = &
1= , Uy = )
2(p1 + ) 2(p2 + 1)

They are negative when the ¢/s are negative. They are different when pulling,
tra > 0, and pushing, tro < 0, as required.
The modulus is

3p +2
g MGe+2u)

=2u(l 4+ v).
Y+ pu

Note that, it is not constant but it is positive.
Hence, one could rewrite the model in terms of v; instead of the ¢; (i = 1,2) as
state quantities.

The Evolution of the Parameter ¢,

The evolution of ¢; is governed by

6—6)— ; ((tre)*)’

which defines two domains separated by a parabola in the plane (tre) , 0). Following
the line introduced by [8], the free energy may be upgraded by a linear term

ki (re)t + kaga (tre) ™,

with 121 > 0 and IAQ > 0. In this case the equation of motion for ¢

. 1 2
01— Api +R = (6 —06)) — 5 ((tre)™)" — ki (tre) ™,
is governed by the right hand side

6 —6,) — ; ((tre)T)’ —ky (tre)*

which is almost a line (a line in the small perturbation assumption).
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The stress becomes

v
o= % = o1 (tre) T 1 — @, (tre) ™ 1 + 2ue + kjp H (tre) 1 — kypo H (—tre) 1,
€
where Heaviside graph H(x) is the subdifferential set of the positive part function
()™ and graph —H (—x) is the subdifferential set of the negative part function (x)~.
Note that

H (tre) = H (tro) ,
H (—tre) = H (—tro),

because (rra)™ = (B + 2u) (re)™, Boy + 21) > 0 and (rro)” = (3¢ +
2u) (tre)~, (B3yy + 21) > 0. Moreover, we have

sgn(x) = H(x) — H(—x),
where sgn is the sign graph, we have

sgn(tra) = sgn(tre(u)).

Thus, the constitutive law depends on the sign of the trace of the stress which is
the sign of the trace of the deformation

ov -
o= 9 = o1 (tre) Y 1—g, (tre) ™ 1+kopysgn(tre)1+2pe + (ki1 —kypo)H (1re) 1,

A Related Model of Austenite-Martensite Phase Transition

In this section of Appendix, we propose another possible extension of the model
presented in [8], where the austenite-martensite transition was studied by a phase
field model and from which this paper has moved. Indeed, in the paper [§], the
austenitic phase ends, when the dilatation reaches a default threshold, while the
auxetic phase does not cease, when it is subjected to a progressive compression.

It seems appropriate to amend this last feature, considering a lower limit to the
auxetic phase: when the compression reaches a threshold value, the body recovers
an elastic behavior.

To describe a such new phase, one can combine the motion equation (here we
include accelerations)

2
%; (x,1) = dive (x, 1) + £(x, 1) (5.1)
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(where the density is taken p = 1) with the evolution law for phase field ¢(x, ). The
internal variable describes the internal structural state and its evolution is controlled
by the Ginzburg-Landau equation (see [11])

0
y@), 900 = 2@ Apx.1) = Flp.1) + aliro (x, WV (p(x,0)  (5.2)

where y(x), A(x) and «(x) are positive and

2

Flo)=" (0> = 1. (5.3)

Finally, Poisson ratio v(¢p) is defined by

1
_ o el >1 54
2 { Geost(l—g)—1). o] <1 G4

Then, we suggest the following constitutive equation for auxetic materials

dtezE dta_(

d 1[d
d

d d 9
t ;) (tro I—0)—v" (1o I - 0):|+0{ o @irel (5.5)

Note that the phase ¢ can be supposed a constant function, then Eq. (5.5) is reduced
to the classical law for a linear isotropic elastic material

&= llg[o—v(tral—o)]

As we consider only isothermal processes, the Second Law of Thermodynamics
assumes the Dissipation Principle law by the inequality

V< P+ P, (5.6)

where ¥ denotes the free energy and the symbol * the time derivative. Moreover, Z!
is the internal mechanical power and 9&; the internal structural power, defined by

P.=0-€=0"

1[. V(@)
o —(
E 2

Y(tra I —a) —v(p)(tré I — d)} + av(p)(tro)?
(5.7)

Py =y9* + Ve - (Vo) + F(p) —a(tra (x,1)*0(¢) (5.8)
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So, we have from (5.6)—(5.8)

V<o- ]15 [d - (i)(zgo)) (tro I — o) —v(p)(tro I—(r):| +
y9> + AVo - (Vo) + F(p)

and consequently

a i
(al(/; —F(p) - ”2(1‘5”) [o o (tra)z]) o+ (5.9)

0 ad 1
+ (aqu) -~ xw) Vg + (af - g [+ v(p)o - v(tra)z]) 6 —yp> <0
The state S of this system is defined by the triplet

S=(0,90,Vp)

(5.9) and the arbitrariness of &, ¢ chb we obtain the constitutive relations

0 /
= r+ 0 [o0 - o]
by
Vo AVe
oy 1
9 — E [(1 +v(p))o — v(p)(tro)]

and y > 0.
In our approach we have used the following form for the free energy

1 1
Y@ 0.Y9) = MV +Flp) +  [(1+v(@)a -0 —v(p) (r0)’].
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Global Well-Posedness for a Phase Transition
Model with Irreversible Evolution
and Acceleration Forces

Giovanna Bonfanti and Fabio Luterotti

Abstract In this paper we investigate a nonlinear PDE system describing irre-
versible phase transition phenomena where inertial effects are also included. Its
derivation comes from the modelling approach proposed by M. Frémond. We obtain
a global in time existence and uniqueness result for the related initial and boundary
value problem.

Keywords Existence ¢ Irreversibility ¢ Microscopic accelerations ¢ Phase
changes ¢ Uniqueness

AMS (MOS) Subject Classification 80A22, 35K55, 35Q79

1 Introduction

This paper is concerned for the analytical investigation of a nonlinear PDE system
describing irreversible phase transition phenomena where inertial effects are also
included. The underlying model comes from Frémond’s theory on phase transitions
[17, 18] and it is based on the consideration that microscopic movements and forces
give rise to phase changes at the macroscopic level. In particular, in this approach,
it is considered a generalized version of the principle of virtual power including
the power of the microscopic forces which create and break the microscopic links
responsible for the phase transition. Such a model was originally derived in [11]
and further refined in [12] where acceleration forces were also encompassed. The
main difficulties related to the analytical investigation of Frémond’s model on
phase transitions are due to the nonlinear character of the resulting PDE system.
Actually, the presence of high-order nonlinearities can preclude global in time
existence results. The aim of the present contribution is to obtain a global in time
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well-posedness result for a phase transition problem where acceleration effects and
irreversible evolution are considered.

Let us now briefly recall the derivation of the model and of the corresponding
initial and boundary value problem we are dealing with.

On a time interval (0,7), T > 0 we investigate the thermal evolution of a two-
phase substance located in a smooth bounded domain £2 C R? undergoing to an
irreversible process of phase transition. As state variables of the model, we introduce
the absolute temperature ¢, an order parameter X and its gradient VX. We assume
the free energy ¥ in £2 x (0,7) as

L 1
WX, VX, 9) = —c,0log®d — s ® —9)X + 4()(2 —1)* + ;|VX|2, (1.1)

where ¢, > 0 stands for the specific heat, L > 0 for the latent heat at the critical
transition temperature ¥, > 0, and v > 0 is related to the intensity of the local
interactions. We note that the double-well potential in (1.1) is one of the standard
choices for phase field models (see, e.g., the Caginalp model [14]).

Next, we introduce Vi@ and 9,X as dissipative variables of the system. We
consider a fairly general expression for the purely thermal contribution in the
pseudo-potential of dissipation @ (cf. with [4-6]) defined in £2 x (0, T) as

K@)

59 Vo2, (1.2)

(0,1, VI) = *2‘(8,)()2 + Tio o0l (3:1) +
where © > 0 is a viscosity parameter, /|p +oo[ denotes the indicator function on
the interval [0, +-oo[ and the (smooth) and positive function K represents the heat
conductivity of the process. We remark that the indicator function jp 4 oo[ in (1.2)
compels the time derivative d; X to be non-negative and hence renders the irreversible
character of the evolution process we are describing. Concerning the function K, we
recall that several choices (thermodynamically consistent) are widely adopted in the
literature: we quote the case K(©%) = k > 0 corresponding to the standard Fourier
law for the heat flux (see our assumption (2.1) below) and the case where K(}) ~
¥?, for large values of ¥ and suitable positive values of p (see, e.g., [6, 10, 16]).

Now, the equation for the temperature variable is recovered from the internal
energy balance where the power of the microscopic movements is also taken into
account. It reads

die+divq=BoX+H-VoX+f in2x(0,7T), q-n=00nd2 x(0,7),
(1.3)

where e = ¥ 4 st (s stands for the entropy) denotes the internal energy, q the
heat flux, B and H internal microscopic forces, f an external heat source, and n the
outward normal unit vector to 952.
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The equation governing the evolution of the phase variable comes from the
application of a generalized version of the principle of the virtual power where
inertial effects are also included. We have

podxX +B—divH=g in2x(0,7T), H-n=00nd2 x(0,7), (1.4

where pp > 0 is proportional to the mass of the microscopic links and g is an
external microscopic source.

Next, we have to combine (1.3)—(1.4) with suitable constitutive relations for the
involved physical quantities in terms of ¥ and @. To this aim, we prescribe for (the
dissipative and non-dissipative contributions of) B and H

w9
B — Bnd Bd — s 15
=0 Yoo (1.5)

oW 9o
H= Hnd Hd — 1.6
+ avr T av@n) (1.6)
and moreover
_ w0 .
ST T 9T v ‘

With these choices, combining (1.3)—(1.4) with (1.5)—(1.7) and (1.1)—(1.2), we
derive the following PDE system

L
c, 0,0 + 5 B0, X — div (K()VD) = f 4+ w(@,X)* +£3,X in 2 x(0,7T),

(1.8)
L

000uX + X —vAX +E+ X —X =g+ 9 ®—19.) in 2x(0,7),
(1.9
§ € 0o 4+oo[(0:X) in £2x(0,7T), (1.10)
K@)VH -n=0 X =0 on 92 x(0,7) (1.11)

which will be supplemented by the following initial conditions

U(-,0) = X(-,0) = Xo 0 X(-,0) =X, in £2. (1.12)

We recall that the multivalued operator 01}y o[ is the subdifferential (in the sense
of convex analysis) of the indicator function /jo oo (i.€. 0ljp +oo[(#) =] — 00, 0] if
u =0, and dljp yoo[(#) = 0 if u > 0) and hence the term £0,X actually vanishes in
(1.8) due to definition /[ 4 co[(0:X).
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We remark that the thermodynamical consistency of the model can be proved
in the form of the Clausius-Duhem inequality. Combining (1.3) with (1.7), we can
equivalently write the internal energy balance as follows

9 (s, + div l‘; - l’;) — BY9,X — g VO = dB(,X, VD) - (0,1, V) > 0,

where the latter inequality is due to the properties of @ (@ is convex in all of its
variables and @(0, 0) = 0). Then the Clausius-Duhem inequality follows, owing to
the strict positivity of ¥.

Finally, we have to remark that a refined version of the (reversible) Caginalp
model [14] is derived in the paper [3] where a second-order quadratic term (like
AX9,X) in the energy balance equation is the main feature: the local well-posedness
for smooth data is obtained and a formal asymptotic analysis towards a sharp
interface limit is performed.

Concerning the analytical investigation of system (1.8)—(1.12), we point out that
the main difficulty is due to the presence of the quadratic terms in (1.8) which can
prevent to deduce global in time existence (and uniqueness) results in the three
dimensional setting. As far as we know, no global in time well-posedness results
have been established for Frémond’s original model derived in [11]. Actually, many
papers addressed modified/reduced versions of the original model, in the case with
or without acceleration forces. For the sake of completeness, we briefly recall the
features of such versions. First, in [11] neglecting the inertial term (pp = 0 in (1.9))
and considering a doubly nonlinear differential inclusion for the phase dynamics, a
global existence result was proved under a small perturbations assumption (i.e., ¢
close to the critical temperature 9., so gca,x is replaced by 9;X, and (9,X)> ~ 0).
In [22] a further step is done in the direction of dealing with the full equation (1.8),
assuming only (9;X)? ~ 0 and allowing the temperature 1 to be far from the critical
value 6. The paper [23] proves the existence of a solution in the special case where
a finite maximum speed is imposed to the phase transition process. The result of
[23] is used in [24] as an approximation tool to prove the local in time existence for
the original model. Finally, we mention [16] where an existence result is proved for
the original model in the reversible case: here the weak solution satisfies a property
of energy conservation together with an entropy inequality (instead of the standard
energy balance equation).

Coming back to the models where inertial effects are included, as far as we know,
again local in time well-posedness results have been proved. In this concern, we
mention [12] where a more general relation of (1.10) was considered in system
(1.8)—(1.12). Next, in [7] and [8] a straightforward connection between the models
with and without acceleration forces was investigated: starting from the results of
[12], an asymptotic analysis was performed as py — 0, obtaining a—still—local in
time result to Frémond’s original model for phase transitions.

Clearly, global existence results to the above problems can be obtained (see [9,
19, 21]) in the one dimensional setting, by exploiting the more regular framework.
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Finally, we quote [10] where a global well-posedness result has been obtained
for a generalized version of the system (1.8)—(1.12) (with py > 0) assuming that the
function K in (1.8) satisfies suitable growth conditions. Now, the aim of the present
contribution is to address the system (1.8)—(1.12) in the case where the heat flux
is ruled by the classical Fourier law (see our assumption (2.1) below) and the uni-
directionality of the process is prescribed by the inclusion (1.10). We note that the
presence of the irreversibility entails, on one hand, a further nonlinear feature to deal
with, on the other hand it is crucial in the proofs, since some sign and monotonicity
properties can be suitably exploited to handle the quadratic terms in (1.8).

The outline of the paper is as follows. The next section is devoted to the
assumptions, the notation, and the statements of the results. In Sect. 3, we address
to the uniqueness proof. In Sect. 4, we set up a family of approximating problems
introducing a suitable regularization of the phase equation, involving two distinct
parameters, and we prove a related well-posedness result. Finally, in Sect. 5 we
perform the passage to the limit with respect to the approximating parameters and
we recover a solution (actually, unique) to the original problem.

2 Statement of the Results

We start by fixing some notation. Let £2 C R? be a bounded domain with smooth
boundary 0£2. We set Q, := §2 x (0,7) fort € (0,7) and Q := £2 x (0, T). Letting
n stand for the outward normal unit vector to 02, we set

H:=L1*R), V:=H' (), W:={ue H* ). suchthat d,u =0 on 082},

and identify H with its dual space H', so that W < V < H < V' < W/,
with dense and compact embeddings. We use the same symbol for the norm of a
space of scalar functions and the norm of the space of corresponding vector-valued
functions. For instance, || - |y means the norm of both V and V3. Let the symbol
| - || indicate the norm of H (or H?). Henceforth, we denote by (-,-) the duality
pairing between V' and V, by (-, -) the scalar product in H and by ((-,-)) the scalar
product in V. Then, the associated Riesz isomorphism J : V — V’ and the scalar
product in V’, denoted by ((-, -))«, can be specified by

(Jvl, Uz) = ((Ul, Uz)), ((ul,uz))* = (ul,J_luz) for V; € V, u; € V/, = 1,2

In the sequel, we make the following assumptions.
Concerning the thermal coefficient K in (1.8), we choose

K®)=k>0 @2.1)

corresponding to the classical Fourier law for the heat flux q which reads q =
—kV9.
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Moreover, as for the Cauchy conditions, we prescribe that

%9 € V and 3¢* > O such that ¥ > ¢* ae.in 2, (2.2)
XoeW, X eV, (2.3)
X1 >0a.e.in £2. 2.4)

Finally, without loss of generality, we set the physical constants occurring in
(1.8)—(1.9) and (2.1) equal to 1 and we get rid of the known terms on the right-hand
side of (1.8)—(1.9) since they not affect our analysis.

We may now specify the variational problem we are dealing with.

Problem (P) Given a triple of initial data (¢, X, A1) fulfilling (2.2)—(2.4), find a
triple (9, X, &) such that

e H'(0,T;H)n C°([0,T]; V) N L*(0, T; W), (2.5)
X € H*(0,T; H) N W'*°(0,T; V) N L®(0, T; W), (2.6)
£eL*0,T:H), 2.7
fulfilling

0,0 + 09X — AV = (3,X)* ae.in Q, (2.8)
WX +0X+E—AX+ X=X =0 ae.inQ, (2.9)
§ € 00 4oo[(0;X) ae.in Q, (2.10)
v(,0) =19 ae.in 2, (2.11)
X(-,0) =Xy ae.in £2, (2.12)
0:X(-,0) = X; ae.in £2. (2.13)

Let us observe that the no-flux boundary conditions for ¢ and X (cf. with (1.11)) are
incorporated in (2.5)—(2.6), by the definition of the space W.
With the following result, we state the global well-posedness of Problem (P).

Theorem 1 Assume (2.2)—(2.4). Then, there exists a unique triple (9, X, £) solving
Problem (P). Moreover, there exists a constant c« > 0 such that ¥ > ¢4 a.e. in Q.
We outline here the strategy of the proof of Theorem 1 which will be shown
in the next sections. The uniqueness of the solution is easily proved by suitable
contraction estimates. As for the existence, we shall consider a family of auxiliary
problems (P’;) introducing in (2.9) both a viscosity term (parameter & > 0) and the
Yosida approximation (parameter ¢ > 0) of the multivalued operator 91}y +oo[ and
we shall prove a related well-posedness result. Next, based on a series of a priori
estimates independent of &, we first perform the passage to the limit as ¢ N\ 0 (and
h is fixed) obtaining a triple (%, X, &) fulfilling an intermediate Problem (P").
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Finally, after having derived some other a priori estimates independent of &, we pass
to the limit as 2\ 0 and we recover a (unique) solution to the original Problem (P).

Remark 1 'We warn that, in the proofs, we employ the same symbol ¢ for different
constants, even in the same formula, for the sake of simplicity.
Finally, we recall the Young inequality which will be useful in the sequel:

1
ab<8a’ + (8p)~ 7P b7, (2.14)
q

foralla,b € RT,§ > 0andp > 1, q<oosuchthat;+ (11 =1.

3 Proof of Uniqueness

We proceed by contradiction. We denote by ¥ = P — 1, X = Xr— X4 ,E =§&—§,
being (¥1, X1, &) and (¥, X2, &) two solutions to Problem (P).

We consider the difference between the corresponding equations (2.9), we
multiply it by 3, X and we integrate over Q,, with 0 < ¢t < T. Using the Holder
inequality and recalling the continuous embedding W — L*°(S2), we get

1 .~ ~ 1~ ~ o~
JBTOI + 0T, + 5 IVIOP + [[ FaT <
O

< X210 X 2010 + 1D 200, 19 X Ml 2200, 150) » 3.1

with ¢ > 0 depending on || X ||zec(g) and || X2||zoc(g). Taking the monotonicity of
010, + oo into account and applying (2.14), we deduce

1, .~ ~ -
OO + 18,120 100+ IVEOI <
1~ ~ P~
= 4”79“22(01;H) + C”a’X”iZ(O,t;H) + C/O ”a’X”iZ(O,s;H) ds. 3.2)

Let us take the difference between the corresponding equations (2.8) and we add
(on both sides) . Recalling the definition of J, we have

(09, v) + (/. v) = (3.3)
(’l?’/—‘r H0: X1 — 920, X2 + (8&(2)2 — (8,)(1)2, v) VveVae.in (0,7).
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We choose v = J~1¥ as test function in (3.3) and we integrate fromOto £, 0 < t <
T. We get

T + 110 < ; ol (3.4)
where

L(t) = /0 T(E,J—l'ﬁ), (3.5)

L(t) := /O r(z‘}la,xl — 020,25, J7D), (3.6)

L) = /O r((atx2)2 — (,X1)2.77'9). (3.7)

We estimate the latter summands as follows. Using the Holder inequality, the
continuous embedding V < L*(£2), (2.14), and recalling the definition of J, we
get

L) =372, - (3.8)
t
101 ¢ [ (IFON0LO @ + 196 18T61) 1761 ds <
< T + € (PP + 107 ) (39)
= 4 Wilo.sm 12(0,5V") 120,5H) )

150)] = ¢ (T2 0ry + 1071 ) (3.10)

for some positive constant ¢ depending on the norms || || oo (0,7:v), |0: X1 || o0 0.7:v)
and ||0;X5]|zoe 0,7;v). Now we add (3.2) and (3.4), taking into account (3.8)—(3.10).
We apply the Gronwall lemma and we deduce ¥ =7 =0ae.in Q. A comparison
in (2.9) gives £ = 0 a.e. in Q too.

4 Approximating Problems

We shall approximate Problem (P) by suitably regularizing the phase equation.
More precisely, we shall add in (2.9) a viscosity term, and replace the operator
00, +oo[ by its Yosida regularization. This approach will enable us to perform
enhanced regularity estimates on the (approximate) phase equation and ultimately to
deal with the quadratic nonlinearities in the energy equation. For technical reasons
(cf. with Remark 2 later on), we shall keep the viscosity parameter (denoted by
h > 0) distinct from the Yosida regularization parameter (denoted by ¢ > 0).



Phase transition model 105

Hence, we shall call (P") the initial and boundary value problem for the resulting
approximate system and prove that it is well-posed following this outline: first we
are going to prove the existence of a local solution by a fixed point argument; next,
we are going to extend such a solution to the whole interval (0, T') and finally we
shall obtain a related uniqueness result.

In what follows, for the sake of brevity, we denote by « the operator 0/ +oo[ in
(2.10) and by &, : R — R its Yosida regularization (cf. [13, Chap. II]). We recall
that (cf. [13, Prop. I1.2.6]) «, is monotone and Lipschitz continuous on R, with
Lipschitz constant 1/s. We also denote by @, the Moreau-Yosida approximation of
@ := Iy +oo[ and we recall that @, € C'(R), with derivative (@) = a.

Let us consider

Problem (P!) Given a triple of initial data (%, Xo, X;) fulfilling (2.2)~(2.3), find
(Oen, Xen) such that

Oen € H'(0,T; H) N C°([0, T]; V) N L*(0, T; W), “.1)
Xen € H*(0,T; H) N WH(0,T; V) N H' (0, T; W), 4.2)
0 Den + Dendy Xen — Ae = (9, Xen)>  ae.in Q, (4.3)
QuXen — hAD X gy + 0 Xep — AX gy 4+ e (3 Xep) + X3, — Aoy = Do, ae.in Q,
(4.4)
P (-,0) =¥ ae.in £2, 4.5)
Xen(-.0) = Xo ae.in 2, (4.6)
3 Xen(-0) =X, ae.in 2. (4.7)

The following theorem holds.

Theorem 2 (Global Well-Posedness for Problem (P")) Let the assump-
tions (2.2)-(2.3) hold. Then, for any e, h > 0 there exists a unique solution
(Oen, Xen) to Problem (P"). Moreover, there exists a constant cx > 0 (independent
of € and h) such that U, > cx a.e. in Q.

As already mentioned, we shall first of all prove the existence of a local solution
to Problem (P") by applying the Schauder theorem to a suitable operator T which
we construct below. Then we shall show that the local solution extends to a (unique)
global one.

4.1 Local Existence for Problem (P")

For R > || Xol|4(s)- let us define the set Y(z, R) by

Y(r.R) = {v e W0, 7:L*(2)) : |vlwiao.cuzscay < R} (4.8)
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where t € (0, T] will be determined later in such a way that T : Y(z,R) — Y(z,R)
is a compact and continuous operator.

Let X € Y(z,R) be fixed and let & := T;(X) be the unique solution to problem
(4.1), (4.3), (4.5), with 9,X;, replaced by 9, X in (4.3).

Now, given such ¥, let X := T,(¢}) be the unique solution to problem (4.2),
(4.4), (4.6), (4.7), with ¥, substituted by ©}. We note that the well-posedness of the
intermediate problems (4.1), (4.3), (4.5), (with d,X., replaced by 9,X) and (4.2),
(4.4), (4.6), (4.7) (with ¥, substituted by @) is ensured by standard results for
parabolic equations. Finally, we define the operator J as the composition T, o TJ7.
In what follows we show that, at least for small times, the map T complies with
the conditions of the Schauder theorem. To do this, we shall derive suitable a priori
bounds on ¥ and X.

We multiply (4.3) (with d,X ., replaced by 9,X) by ¥ and integrate over Q,, with ¢
arbitrary in (0, v). After some integrations by parts, applying the Holder inequality,
we have

1 1
SOOI + 1991220y =, 19017+
t
+ [ (19Ol 106 i) + 10X PO . (49)

Next, in order to recover the full V-norm of ¢+ on the left-hand side, we add

|0 ||i2 o) © both sides of (4.9). Then, owing to the continuous embedding V <

L*(£2) and using (2.14), we get
1912+ 19122000, <

t t
<1008 ¢ [ (2O, + )12 P ds+ ¢ [ 10AOE2qg) 190 ds.
(4.10)
Recalling the definition of Y(z, R) we apply to (4.10) a generalized version of the

Gronwall lemma introduced in [ 1] and we deduce that there exists a positive constant
c¢1 depending on ¥y, T, £2 , and R, such that

9| 220 0,231 120.2:v) = €1 (4.11)

Next, in order to obtain a priori bounds on X = T,(¥}), we multiply (4.4) (with
U, replaced by ) by 0,X and we integrate over Q;, with 0 < ¢ < 7. Applying the
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Holder inequality and (2.14), we obtain

1 1 1
OO + IV g+ 1020y + o IVEOIP +

1
+// e (3,03, + 4/(X2(t)—1)2dx§
z 2
< N+ NI + cxolt g, + D+ 181 @.12)
-2 2 L4 (R2) 2 L2(0,5;H)

We note that the integral term on the left-hand side of (4.12) is non-negative, thanks
to the monotonicity of o, and to the fact that ,(0) = 0. Then, on account of (4.11),
we deduce

1 Xl w.00 0,23 nH (0.0:v) =< €25 (4.13)

for some positive constant ¢, depending on c¢; and moreover on Xy, X1, and A.

Moreover, we multiply (4.4) (with 9, replaced by ©#) by —Ad; X and we integrate
over Q;, with 0 < ¢ < 7. Using the Holder inequality, some standard continuous
embeddings, and (2.14), we have

1 1
2 ||Vat)((f)||2 + h”AatX”iZ(OJ;H) + |IvatX|I§2(0,t;H) + 2 ”AX(I)HZ"_
1 1 3
+ // oz(’,3(<'),)()|V8,)(|2 = 2||V)(1||2 + 2||A)(0||2 + // (X —X— ﬁ)Aa,X <
1 2 1 2 h 2
= IV + TAKl™ + S 1ABXI 2 )+
+ U191 0ty + X0 72080y + 121100 0,051)) - (4.14)

Thanks to the monotonicity of «,, the integral term on the left-hand side of (4.14)
is non-negative. On account of (4.11) and (4.13), we infer

”X”WI-OO(O,‘[;V) <c and ||A8,X||Lz(0,T;H) <c (415)
and hence, by elliptic regularity results,

[ X{lw.000.23v)nH 0.05w) = €35 (4.16)

for some positive constant c3 having the same dependence of c;.
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Finally, we multiply (4.4) (with 9, replaced by ¥) by d,X and we integrate over
0O, with 0 < ¢t < 7. We have

1 ~
102 s + 5 IVAXOI + 10O + [ G(@x @) <

h
2
h 1 ~
<M+ e+ / 3. (1) det
2 2 5

3 1
+ C(HAX”§2(0J;H) + ”X - X”é(o,t;m + ”79"%2(0,;;[.1)) + 2 ”attX'EZ(OJ;H) .
(4.17)

Then, on account of (4.11) and (4.16), we derive moreover
112 0,250y < €4 (4.18)

for some positive constant ¢4 depending on ¢y, c3, and €.
By the Holder inequality and the continuous embedding V < L*(£2), we have

1/4 1/4
1Xllwis .82y < co T/ X wreo.ev) < o ezt (4.19)

where cg denotes the embedding constant of V into L*(£2). Thus, choosing 0 <
T < (R/cg c3)*, we have that X € Y(,R). Eventually, we can choose a smaller
T > 0 such that [|Xo[[;4(2) < ¢ R, where ¢, stands for the embedding constant of
W40, 7: L*(£2)) into C°([0, 7]; L*(£2)) (since we have fixed R > [[Xo|l14(q), We
can take, e.g., T > 0 such that ¢, > 1). All in all, there exists t € (0, 7] small
enough such that the operator 7 : Y(z, R) — Y(z, R) turns out to be well defined.

Now, we observe that the same argument leading to (4.16) and (4.18) ensures
that T is a compact operator.

To achieve the proof of the Schauder theorem, it remains to show that T is conti-
nuous with respect to the natural topology induced in Y(z, R) by W'#(0, 7; L*(£2)).
To this aim, we consider a sequence X,, in Y(z, R) such that

Xn — X strongly in Y(z,R) asn — +o0. (4.20)
Now, we set ¢, := T1(X,), ¥ := T1(X) and ’5,[ := ¥,—0. Let us take the difference
between the corresponding equations (4.3), we add (on both sides) ©#, and we test

by J _15‘/,1. Arguing as in the derivation of the estimates (3.4) and (3.8)—(3.10), we
end up with

—_ —_ t
1T+ 1l 0 < € /0 13,2 (5) = X ()2 ) s+

t
o [ (14 A O + 19O + 10O ) 1T ds. @20
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Then, on account of (4.20), we apply the Gronwall lemma to (4.21), and we
conclude

190 ll o0 0,25vy 20,230 = 0 (4.22)

asn — +00.
Now, we set X,, 1= T5(3,) = T(X,), X := To(®) = T(X), and X,, := X, — X.
Next, we consider the difference between the corresponding equations (4.4),
we multiply it by 8,,7,1 and we integrate over Q,. Owing also to the continuous
embedding W < L*°(£2) (cf. (4.16)), we find

19 s + 5 19T + / (@ O0) — e (01)) 0,7, +

||3X(t)||2<c// X 19,07 |+/ S 0y +// AX, 047,
Ql t

We estimate the integral terms in (4.23) taking the Lipschitz continuity of o, (of
Lipschitz constant 1/¢) into account, performing some integrations by parts in space
and time, and applying (2.14). In particular, we deal with the last term on the right-
hand side of (4.23) as follows.

/ / AXy 3 Xy = — / / A Xy 3K + / AX, () 0,X,(£) dx =
i ' 2

~ ~ ~ ~ h ~
- | [ wa.p - [ VT 0 Va0 ds = cAVOT, B+ IVAT O

(4.23)

Then, we obtain
I .~ h ~ S T )
2||3an||Lz(0,,;H)+4||V3tXn(t)|| +2II3zXn(t)|| =

=c (|IBIXH||22(0J;H) + ”Vatxn“il(oqr;[_]) + ”ﬁn“iZ(OJ;H)) ’ (424)

where c is a positive constant depending on ¢ and & (but independent of n) due to
(2.14). Finally, we apply the Gronwall lemma to (4.24): the convergence specified
by (4.22) allows us to deduce

14, — X||H2(0,I;H)nwl»°°(o,z;\/) -0, (4.25)

as n — +o00. Hence, in particular

”Xn — X||W1»4(0,1:;L4(Q)) — 0 . (426)
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which concludes the proof of the continuity of the operator J. Thus we have shown
that T admits a fixed point in Y(z, R) and, hence, that there exists a local-in-time
solution (%, X¢1) to Problem (PF).

Remark 2 A few comments on the approximate Problem (P”) are in order, con-
cerning the technical reasons of the double approximation procedure involving two
distinct parameters ¢ > 0 and 4 > 0.

We recall that in the fixed point scheme, we have performed the estimate (4.23)
where the term |[f, 0,(@e(3:Xy) — ae(9,X)) 94X, cannot be dealt by monotonicity
arguments but by exploiting the Lipschitz continuity of .. On the other hand,
by introducing the Yosida regularization o, we remove the sign constraint on d,X
which will turn out to be crucial in dealing with the quadratic term ¥9,X (cf. with
(5.17) below). Thus, we have to perform a first passage to the limit as ¢ N\, 0
(and & > 0 is fixed): here the enhanced regularity of d,X ensured by the presence
of the viscosity term (parameter 4 > 0) enables us to control the nonlinearities
in the energy equation. Next, taking advantage on the sign constraint on 9,X, we
can deduce some other a priori estimates independent of & and ultimately perform
the further passage to the limit procedure leading to a solution to the original
Problem (P).

4.2 Global Existence (and Uniqueness) for Problem (P")

In order to show that the local solution to Problem (Pé’) actually extends to the whole
time interval (0, T'), we shall prove a series of global in time estimates on (¥, X¢).
Then a standard prolongation argument guarantees that, for every ¢ > 0 and & > 0,
the local solution extends to the (unique) global solution of Problem (P”). In fact,
such global estimates shall be derived independently of ¢ > 0 so that they will
provide the starting point for the passage to the limit as € N\ 0 in Sect. 5.1.

To this aim, in what follows, we assume also condition (2.4) and we let ¢ and h
vary, say, in (0, 1). Moreover, in order to simplify notation, we will directly work on
the interval (0, T) instead of (0, 7).

Positivity of the Temperature We show that ., is bounded from below by a
positive constant ¢4 (independent of ¢, & and 7) exploiting the comparison argument
developed in [16, Section 4.2.1]. From (4.3) we have

1
atl?sh - Al?sh = (atxah)z - ﬂshat)(ah > _2(19811)2 .
Moreover, we observe that the spatially homogeneous function r := r(f) solving

1
or = —2r2 r(0) = c¢*
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(where ¢* > 0 is given in (2.2)) is a sub-solution to (4.3) and hence
ek > 0: 0y (-, 1) = r(t) > ¢y forallt € [0, T]. 4.27)

We note that such a constant ¢, > 0 is independent of ¢, &2 and 7 (e.g. cx = r(T)).

Global A Priori Estimates We first multiply (4.4) by 9;X.;; we add the resulting
equation to (4.3) and we integrate over Q,, with 0 < ¢t < T. Noting that some terms
cancel, taking into account the monotonicity of o, and the fact that . (0) = 0, we
have

1 1
/ Don(0) dx + 10, 2en DI + BIVO Ll oy + o IV Ken (0] +
i |

1 1 1 1
b, [0 -1acs [ s 0P+ IV, [ - n2ar
4 2 Q 2 2 4 Ie)

(4.28)
We deduce the following upper bounds
[ Denllzoo 07501 (2)) < € (4.29)
1 Xenllwr.oo 0. 1:mmnL200.13v) < € (4.30)
hl/ZHBthh”LZ(O,T;V) =c, (4.31)

where the positive constant ¢ depends on the problem data but neither on ¢ nor A.
Next, we multiply (4.3) by ¥, and we integrate over Q;, with 0 < ¢ < T. Arguing
as in the derivation of (4.11), on account of (4.31), we get

1 Fenll oo (0.7:m) 2 0.13v) = € » (4.32)

where the positive constant ¢, (here and in the forthcoming estimates (4.33)—(4.35),
(4.38), and (4.39)) depends on the problem data and 4 but it is independent of &.

Moreover, we multiply (4.4) by —Ad, X, and we integrate over Q;, with 0 < t <
T. Developing the very same calculations as for (4.15) and (4.16), thanks to (4.30)
and (4.32), we end up with

I Xenllwr.co 0,730y nmt 0.13w) =< € - (4.33)

Now we multiply (4.4) by 9, X, we integrate over Q,, with 0 < ¢ < T, and we
proceed as in the derivation of (4.18). Noting that the term f o @:(X1) dx = 0 thanks
to (2.4), in view of (4.32) and (4.33), we obtain

I Xenll 20,7500 < - (4.34)
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A comparison in (4.4), thanks to (4.32)—(4.34), gives moreover

llove (O X en) || 20.731) = - (4.35)

Finally, we multiply (4.3) by 9,0, and we integrate over Q;, with 0 < ¢t < T.
Applying the Holder inequality, we have

1 1
|Iatl9£h“il(0'r;[_1) + 2 ||Vl9£h(t)”2 = 2 |Ivl?0||2+

t
+ / (

0
Next, in order to recover the full V-norm of 9, on the left-hand side, we add

% (2)||* to both sides of (4.36). Then, owing to the continuous embedding V <
L*(£2) and using (2.14), we get

|0 Xen ()72 ) + 10en(9)lLs (2) ||3rXsh(S)||L4<g))||3ﬂ9£h(S)|| ds.  (4.30)

1 1 1
0+ 1901 < 19907+
t t
e [ 100a O 1060 ds - [ 1L gy ds +c <

1 2 2 2 4
=< ’ IVIoll” + cll0:Xenllzoo 0.1:v) ||19£h||L2(0,T;V) + cll0:Xenll o0 0.;v) + -

(4.37)
Taking (4.32) and (4.33) into account, we infer
1O erll 1 0,750 L00 0.73v) =< € - (4.38)
By comparison in (4.3), in view of (4.33) and (4.38), we infer moreover
1Denll20.75m) < cn- (4.39)

The previous estimates, by a standard prolongation argument, ensure that, for
every ¢ > 0 and h > 0, the local solution of Problem (P”) extends to a global one
defined on the whole interval (0, T). Actually, such a solution is unique: this can
be proved following the very same lines of the uniqueness proof of Problem (P)
(Sect. 3).

5 Proof of Theorem 1

As already mentioned, we shall obtain a solution of Problem (P) by two consecutive
limit procedures. In next subsections, we shall pass to the limit in Problem (P”) first
as ¢ \( 0 (and i > 0 is fixed) and then as & N\ 0.
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5.1 Passage to the Limit as ¢ \| 0

First of all, we recall that all the previous estimates are derived independently of
e. Then, letting # > 0 be fixed, we collect here the convergences in & which
can be derived from (4.33)—(4.35), (4.38)—(4.39). Well-known weak and weak*
compactness results allow us to deduce the following convergences, at least for
subsequences

Don— ¥, in H'(0, T; H) N L®(0,T; V) N L>(0, T; W) (5.1)

Xeow— Xy in H2(0,T; H) N W (0, T; V) 0 L®(0, T; W) (5.2)

Xep — 3,X), in L2(0,T; W) (5.3)

0 (0, Xep) — & in L*(0,T;H), (5.4)
as e\ 0.

Moreover, using a classical compactness argument (see [20]) and the generalized
Ascoli theorem (see [25, Cor. 4]), we also obtain the following strong convergences

Ben — 05, in C°([0, T); H'3(2)) N L0, T; H*%(2)) forall§ >0  (5.5)
Xen — Xy in C°([0,T); H*7%(£2)) forall§ >0 (5.6)

3 Xep — 0, X, in C°[0, T); H' ™3 (2)) N L2(0, T; H*75(2)) forall§ > 0.
(5.7)

Thanks to (5.4) and (5.7), it holds

lim / / e (0, X) ey = / / e (5.8)
e—>0 0 0

and then
&€ a(d; X)) ae.in Q 5.9

(i.e. & € 0ljp,+oo[(0:X3) a.e. in Q), in view of [2, prop.1.1, p.42].
The previous convergences ensure that the triple (9, Xp, &) fulfil

3, 0h + 0 Xy — Ay = (3,X,)*  ae.in Q, (5.10)
QuXn —hAI Xy + 0 Xy — AXyy + &+ X3 =Xy =, ae.in Q, (5.11)
as well as relation (5.9) and the initial conditions (4.5)—(4.7). Finally, we note that

the strong convergence (5.5) guarantees the strict positivity of %, since it holds for
e, independently of € and & (cf. with (4.27)).
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Hereafter, we shall call (P") the initial boundary value problem associated
with (5.10)—(5.11), supplemented by relation (5.9).

5.2 Passage to the Limit as h \| 0 and Conclusion of the Proof
of Theorem 1

We are now going to show that the sequence {(J;, Xj, &)}, of solutions to
Problem (P") obtained in the previous subsection admits a subsequence converging
as i N\ 0 to a solution of Problem (P). To this aim, we derive here a series of a
priori estimates independent of 4.

Following the same arguments for (4.29) and (4.30), we infer

[ Pnllzoe0.1501(2)) = € (5.12)

I Xk llwr.00 0,731y A L0 0,75v) < € (5.13)

for a positive constant ¢ independent of 4. Moreover, we are going to prove that

%4l o0 0.7:m) 2 0.13v) < € (5.14)
1 Xnllw.oo 0. 7:v)Lo0 0.1:w) < € (5.15)
B2 A Xl 207y < (5.16)

for some positive constant ¢ independent of 4. We combine here two estimates: we
multiply (5.10) by @, (5.11) by —Ad, X}, we add the resulting equations, and we
integrate over Q;, with 0 < r < T. We have

1 1
IO + V9 + [[ 93000+ JIVOLOI+
O
1

BIA0I oy + IO+ [ 82000 + 1A% 0P =

O

1

= (Dol + IV XIP + 1 AX0l) + [Fal + 1151 (5.17)

where the latter summands are estimated as follows by using the Holder inequality,
standard continuous embeddings, (2.14), and (5.13).

t
Iy = / 8324 < /0 194 Lt 10 5 10 X5 s <
(o}

1 t
< IOl + ¢ /0 18I 18, 20(5) > ds <
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< 9000y + €l
Is=// (Xi—Xh—ﬁh)(Aath)S// ((3x,3+1)|vxh|+|v19h|)|va,xh| <
< 1||f},,||iz(0rv)+
4 5
+ A0+ < [ (1 gy + 1) IV sy V0I5 s <

1
= 4 ”ﬂh“%}(()’t;v) + C||Xh||i2(0’t;w) + C”Vatxh“iZ(O,t;H) . (518)

Now, we remark that the third integral term on the left-hand side of (5.17) is non-
negative due to the sign constraint on d,X; ensured by inclusion (5.9). Moreover,
thanks to the monotonicity of /| 4 [, the seventh integral term is non-negative too
[23, Lemma 4.1]. Then, we apply the Gronwall lemma to (5.17) and we deduce
(5.14)-(5.16).

Next, arguing as for (4.17), we multiply (5.11) by d,,X;, and we integrate over Q;,
with 0 <t < T. We have

h 1 .
18001 0+ 5 IV I + 0210 + / Q(3,14(0) dx <
2
h 2 1 2 ~
< DIVIIP + 160 + | @0 det
2 2 o

1
+ C(”AXhHiZ(OJ;H) + ”Xfl - Xh”iZ(()J;H) + ”ﬂh”iZ(o,r;H)) + 2 ”attX”iZ(OJ;H) s
(5.19)
where we have used the chain rule [15, Lemma 4.1] for the functional @. We only

remark that @(X;) = 0 a.e. in £2 because X; > O a.e. in §2 (cf. with (2.4)). In view
of (5.14) and (5.15), we deduce

1 X0l 20,750 < € (5.20)

and, by comparison in (5.11), we also have

1€l 20,750 < €. (5.21)

for some positive constant ¢ independent of 4.
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Finally, following the same calculations for (4.38) and (4.39), we deduce

14l 0.7300) Lo (0.1:v) A2 013w) = € (5.22)

for some positive constant ¢ independent of 4.

All of the above estimates, the Ascoli-Arzela theorem, [25, Cor. 4], and standard
weak and weak* compactness results yield that there exist a subsequence of
{(On, X1, E1)}n (wWhich we do not relabel) and functions (&, X, §) for which (5.1),
(5.2), (5.5), (5.6) and

& — & in L*(0,T:H) (5.23)
3, X, — 8,X in C°([0,T); H'™*(£2)) forall§ >0 (5.24)
hAd X, — 0 in L*(0,T; H), (5.25)

hold, as 4 N\ 0. All the previous convergences ensure the passage to the limit
in (5.10)—(5.11). Then, the triple (3, X, &) fulfils (2.5)—(2.9) as well as the initial
conditions (2.11)—(2.13). Moreover, the identification (2.10) can be proved by the
very same argument leading to (5.9). Thus, we conclude that the triple (¢, X, §)
is a solution to Problem (P). Again, we observe that the strict positivity of ¥ is
preserved because the lower bound ¢, > 0 is independent of 4 too (cf. with (4.27)).
Thus, Theorem 1 is completely proved.
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Perimeter Symmetrization of Some Dynamic
and Stationary Equations Involving
the Monge-Ampere Operator

Barbara Brandolini and Jesus Ildefonso Diaz

Abstract We apply the perimeter symmetrization to a two-dimensional pseudo-
parabolic dynamic problem associated to the Monge-Ampere operator as well as to
the second order elliptic problem which arises after an implicit time discretization
of the dynamical equation. Curiously, the dynamical problem corresponds to a third
order operator but becomes a singular second order parabolic equation (involving
the 3-Laplacian operator) in the class of radially symmetric convex functions. Using
symmetrization techniques some quantitative comparison estimates and several
qualitative properties of solutions are given.

Keywords Perimeter symmetrization ¢ Pseudoparabolic dynamic Monge-Ampere
equation * Two-dimensional domain
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1 Introduction

Starting with the pioneering paper by Giorgio Talenti [37] in 1981, many results
were obtained concerning the comparison of solutions to some stationary equations,
which can be written in terms of suitable perturbations of the Monge-Ampere
operator in a general domain, with the radially symmetric solutions to some
auxiliary stationary boundary value problems on an associated ball. In contrast with
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the case of many stationary problems given by operators in divergence form, the
main tool is not the Schwarz (neither the Steiner) radially symmetric rearrangement
of the solution but now the perimeter rearrangement of that function (see, e.g.,
[9, 12,13, 19, 41, 42]).

The main difficulty to extend the previous papers concerning several stationary
problems to the case of parabolic problems comes from the fact that it seems very
complicated to relate the terms

d d
it /u<9 u(x,f)dx and it /M*<9 u*(x, 1) dx

when u* (-, 1) is the rearrangement of u(-, t) with respect to the perimeter of its level
sets. This contrasts with what happens in the case of the Schwarz radially symmetric
rearrangement (since there, by construction, both level sets {u < 0} and {u* < 6}
keep the same measure): see, e.g. the results relating both time differential terms by
Bandle [4, 5], Mossino-Rakotoson [32] and Nagai [33], among many other authors.

Due to that, and following a previous work by Brandolini [10], we shall consider
the following dynamic problem associated to the Monge-Ampere operator:

(ku(x, Hu); — detD*u = f(x,1) in £2 x (0, +00)
u=20 on 482 x (0, +00) (1.1)
u(x,0) = up(x) in £2.

Here the subscript t means the derivative with respect to the time variable ¢, Du
means the gradient of u with respect to the space variables x = (x|, x;) € R?, D’u

[Du(-,1)]
the curvature of the level line of u(-, ) passing through the point (-, ). As we shall
justify later, our main interest will focus on negative convex solutions to problem
(1.1).

Notice that problem (1.1) is a pseudoparabolic dynamic problem and that, as
we shall see, curiously enough, this third order operator becomes a singular second
order parabolic equation (involving the 3-Laplacian operator) in the class of radially
symmetric convex functions. For some recent results for other pseudoparabolic
problems see e.g. [34]. The main reason for the consideration of the penalization
factor k,(-, ) in the inertia term comes from the fact that, in the class of radially
symmetric functions, det D?u  behaves, formally, in a similar manner to the
expression

denotes the Hessian matrix of u with respect to x and k,(-,1) = div( Dut-1) ) is

1
div(|Du| Du)
||

and, as we shall show, this is exactly the behavior that brings, in the class of convex
radially symmetric functions, the product k,, u.
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The first goal of this work (a preliminary version of an extended paper
Brandolini-Diaz [11]) is to obtain some quantitative comparison estimates for
the solution « to (1.1) and the solution z to the symmetrized problem, sharpening in
this way the results in [10]. Moreover, we shall extend the mentioned comparison
result to the case of negative convex solutions to the stationary Dirichlet problem

—detD*u + ku = f in 2 (12)

u=20 on 042.
We shall give also many indications on the existence and uniqueness of solutions to
problem (1.2); nevertheless, for the limited extension of this work, we shall delay
to [11] the presentation of the corresponding indications for the dynamic problem
(1.1). Finally, we shall apply the rearrangement comparison results in order to get
some qualitative properties of solutions to (1.2) and (1.1).

2 Preliminary Results

2.1 Rearrangements and Main Properties

First of all we recall the definition of decreasing rearrangement of a measurable
function ¢ : £2 — R, where £2 is a bounded open subset of R? with measure A. The
distribution function of ¢ is defined by

He(0) = [{ix € 2 :p)| > 0},  6=0,

while the decreasing rearrangement of ¢ is defined as the generalized left-
continuous inverse of iy, i. €.

@*(s) =inf{6 > 0: uy(0) < s}, s € [0, +o0l.

Note that ¢*(s) = 0if s > A. By definition, ¢ and ¢* are equidistributed functions,
that is they share the same distribution function. In particular, ¢* is the unique
decreasing left-continuous function in [0, 4o0[ equidistributed with ¢.

By using the previous notions we can also introduce the decreasing spherically
symmetric rearrangement of ¢, also known as Schwarz symmetrand of ¢, as follows

O 0 = ¢ (), xe2h,
where £2" denotes the disc, centred at the origin, having the same measure A as £2.

By definition, ¢* is the unique spherically symmetric function, which is decreasing
along the radii and equidistributed with ¢.
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Being ¢, ¢* and ¢* equidistributed, if ¢ € L7(£2) for some p € [, +o0], clearly
it holds true that

llllr@ = le*llLroa = 10°|Lr 2t

The theory of rearrangements is well-known and exhaustive treatments can be
found, for example, in [31] or [38]. Here we just recall the following celebrated
inequality that will be useful in the sequel.

Proposition 1 (Hardy-Littlewood Inequality) Let ¢,y be measurable functions
in §2. Then

+o00
X)W (x)] dx < *(S)U*(s)ds = o) vt (x) d.
/Qlw()l/f()ld_/o o (5™ (5) d /mw)vf()d

The above definitions will be useful in the following sections, but the crucial
notion we are dealing with concerns the perimeter A,(6) of the level sets of ¢.
From now on we consider a bounded, convex, open set §2 in R? and we denote by L
its perimeter. Let ¢ be a smooth convex function in £2, vanishing on the boundary;
the sublevel sets of such a function ¢ are convex subsets of §2 and their perimeter
Ay (0) coincides with

length{x € 2 : ¢(x) = 6}, 0 <0.
We define
@(s) =sup{d <0:4,(0) < s}, s €0, (2.3)
and the rearrangement of ¢ with respect to the perimeter of its level sets as
¢*(x) = ¢Q2mlx),  xe 7,
where §2* is the disc, centred at the origin, with the same perimeter L as 2

(we explicitly observe that 2 < £*). Differently from ¢*, @ is in general not
equidistributed with ¢. But, the classical isoperimetric inequality states that

1
[y (—0) < 4ﬂx¢(9)2, 0 <0, (2.4)

and then min ¢ = min@ = min¢*, while forevery 1 < p <
ling = ming = min¢", whi very 1 <p < +o00

1 ~ *
lellr) < 5o 1s@($)|Lro.ry = @™ ||Lr@w).
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The perimeter function A,(0) and the rearrangement ¢(s) defined by (2.3) satisfy
some properties analogous to those ones of the distribution function p,(0) and the
decreasing rearrangement ¢* (s). For the seek of simplicity and completeness we list
some of these properties below (see [37, 41, 42]).

Proposition 2 (Regularity Properties) Let §2 be a bounded, convex, open set in
R? and let ¢,y € C(2) N C*(82) be convex functions, vanishing on the boundary
of £2.

i) A,(0) € C(lming ¢,0]) N C*([ming ¢,0)); moreover it is an increasing,
concave function on the interval [ming ¢, 0] and A,(ming ¢) =0, A,(0) = L;
i) for every 6 € (ming ¢, 0)

k
A (0) = ¢ 2.5
) L=0|D¢| 2.5)

where, denoted x = (x1,x;) € R2,

D _
k, = div( ¢ ) = |Dg|3 (( $roxs (p"‘xz)qu,Dgo) >0
|D(p| —@xixs Pxix

is the curvature of the level line {¢ = 0};

iii) @(A,(0)) = 0 for every 0 € [ming ¢, 0];

iv) @ € C([0,L]) N C*([0, L)); it is an increasing, convex function on the interval
[0, L] and ¢(0) = ming ¢, ¢(L) = 0; moreover

1
0<¢'(s) < sup | Do, s € [min @, 0);
2n o 2

V) @* € C(£2%) N C*(2*); moreover it is a convex function on 2* and it vanishes
on the boundary of £2*.

Proposition 3 (General Properties of Rearrangements) Under the same
assumptions of Proposition 2, it holds that:
vi) ifo < ¥ in 2, then ¢ < ¥ in [0, L];
vii) for everyc > 0, (/c\g;) = cQ;
viii) for every c € R, m =¢+c
ix) if ¥ @ (—00,0] — (—00,0] is a strictly increasing, continuous, convex
function, then

Wop) =¥ (@)

X) foreverys € [0,A], (2m/s) < (—¢*(s));
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xi) the rearrangement operator is continuous from L*(§2) to L?(0,L) and for
every s € [0, L]

6(5) = F®) =< Il = Vll=e).
Proposition 4 Let 2 be a bounded, convex, open set in R?> and let ¢ € C(£2) N

C%(£2) be a convex function, vanishing on the boundary of 2. For every convex
subset E of §2 with perimeter P(E) it holds

1 P(E)
/(p(x) dx > ot /0 s@(s)ds.
E

Proposition 5 (Hardy-Littlewood Type Inequality) Let §2 be a bounded, convex,
open set in R? and let ¢, € C(2) N C%(§2) be convex functions, vanishing on the
boundary of §2. Then

| I
[owvwas | [sowiwd=[ vorme o

Remark 1 Actually, inequality (2.6) can be improved as follows

/ @)Y ()dx < / 0* (%) (—y*(x)) dx.
2 2

Proposition 6 (Pélya-Szegd Type Inequality) Ler 2 be a bounded, convex, open
setinR? and let ¢ € C(£2)NC?(R2) be a convex function, vanishing on the boundary
of $2. Then

L
/ (—¢)detD*pdx > 2 / (@(s))ds = / (—¢*) det D*¢*dx,
2 0 22*

equality holding if $2 is a disc.

Proof By a direct computation it is easy to verify that the Hessian determinant of ¢
can be written in divergence form as follows

1 _
det D*¢ = div{( Prorr ‘/’W)Dq;} . Q2.7)
2 —@xixs Pxixy

Then, by using divergence theorem and co-area formula, we obtain

1 1 [°
/(—(p)detquodxz /k¢|qu|3dx: / d@/ ky| D).
2 2Ja 2 ) =0
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By Holder inequality and (2.5) we get

3
/ k,|Dg|* > (f¢=9 k)z :
o=t (2,®)

Gauss-Bonnet theorem ensures that

/ k=2m.
=0

Thus

3

2 = 8”3(¢(S)/|s=l¢(9))2 - / kw*|D‘/’*|2’
(%)

/ k¢|D§0|2 =
=0 @*=0

and the thesis immediately follows. O

Proposition 7 Let 2 be a bounded, convex, open set in R* and let ¢,y € C(£2) N
C?(82) be convex functions, vanishing on the boundary of 2. Then, the following
statements are equivalent:

1) / rg(r)dr < / ry (r)dr, fors € [0,L);
0 0
2) for every increasing, negative function ¢ € C'([0, L]) such that ¢ (L) = 0,

L Lo
/ s@($)p(s) ds > / 57 ()b (s) ds.
0 0

Proof 1) = 2) is a consequence of the following identity

L L K L
/0 () (s) ds = — /0 (/0 r@(r)dr)d¢(s)+¢>(L) /0 5§(s) ds.

2) = 1) is deduced from Proposition 4 above, after observing that if ¥ = Xg
and P(E) = s, then y = —X[o 4. O
2.1.1 Accretive Operators in Banach Spaces
We start this subsection recalling some definitions contained in [18].

Let F : RV x R xRN x .7 (N) — R, where . (N) is the set of symmetric N x N

matrices. We recall that F is said to be proper if

Fx,r,p,X) < F(x,s,p,X) whenever r<s,



126 B. Brandolini and J.I. Diaz

and F is said degenerate elliptic if
F(,r,p,X) <F(x,r,p,Y) whenever Y <X.
Lemma 1 The formal operator
F(u, Du, D*u) = —det D*u + k,u

is degenerate elliptic and proper in the class of C2, convex and negative functions u.
8 p prop ) 8

Proof This property was already shown for the Monge-Ampere part
F1(u, Du, D*u) := — det D?u in [18]. So it remains to prove it for the part

D
Fz(u,Du,Dzu) =k, u = udiv u ,
[Du|

that can be written in the class of negative functions as follows:

D
Fz(u,Du,Dzu) = —|u| div " .
[Du|

It is well-known that the Laplacian acts as an ordinary differential operator along
the lines of steepest descent; more precisely, the value of Au at a point only involves
derivatives of u along the line of steepest descent passing through that point and the
mean curvature of the level line through the point:

)

. Du D?*uDu - Du
Au = |Duldiv

|Du| |Du|?

that is

D 1 D D
div “) = trace | |/ — u® Du D%u|.
|Du| |Du| |Dul|?

Then, if » < 0, we get that the operator

F(r,p,X) = — ||1:|| trace |:(I — plfl)zp) Xi|

is decreasing in X (for r and p prescribed), that is F, is degenerate elliptic.
Analogously, in the class of convex functions we can assume that div (@Z‘) >0

and then F,(r, p, X) is increasing in r (for p and X prescribed) so it is proper. O
Now we recall some definitions and properties about accretive and T-accretive
operators first abstractly, then in C° and L*. For all the proofs and applications of
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the theory of accretive operators to both elliptic and parabolic equations we remind
the interested reader for instance to [6, 7, 16, 17, 29].

Let X be a real Banach space with norm || - || andlet A : D(A) C X — X. A is
said to be accretive in X if

[lx—=X|| < ||x =%+ A(A(X) —A®)]], for all x,x € D(A), A > 0.

If, in addition, R(I + AA) = X for some A > 0, A is m-accretive, in which case
R(I + AA) = Xforall A > 0.

For x,y € X we define the pairing

ol g 1= I
Yr X+ A>0 A '

Clearly, [+, -]+ : X x X — R is upper semicontinuous and A is accretive if and only
if

[A(x) —A(X),x — X]+ >0, xxeX.

Moreover, the accretiveness of A in X can be determined by the normalized duality
map. Indeed, if X’ is the dual space of X, then it can be proved that

[y,x]+ = max <f,y >yxx, (2.8)
feH(x)

where Hx) = {f € X' : ||fllx = 1, <f,x >x x= ||x]|}. So, A is accretive if and
only if there exists f € X/, || f||xv = 1, and

<f,x—5€ >x/X= ||x—5c||, <f,A(x) —A()AC) >x x> 0, x,x e X
Finally, A is said to be T-accretive (T stands for truncation) in X if
[[(x =) 4] < [[(x =% + AAEX) —AG))+]], forall x,x € D(A), A > 0.

Here ay = max{a, 0}. Equivalently, A is T-accretive in X if there exists f € X/,
f=0,0lfllx =1,and

<fix—=i>wx=|lx=%+|. <f.AX) —AR) >x x>0, x,xeX.

If 2 C RY is a bounded domain and X = C(£2), equipped with the supremum
norm, the following representation holds

[v, u]+ = max{v(xo)sign(u(xo)) : xo € £2, [u(xo)| = [ull},
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while, when X = L°°(£2), we have
[v,ul+ = !E,% €ss SUPg (. V(¥)sign(u(x)), u # 0,
where £2(u, €) is defined (up to a set of measure zero) by
QMu.e) = tre 2: Ju()] > llulloe) — €}

(see [29]). Thus, A is accretive in L>°(§2) if and only if

lim ess sup,eo (.o (A(x) — A@()))sign(ux) —i(x)) = 0
where

Qw—i,e) ={xe R |ulx) —ax)| > ||u—il||row) — €}
Finally, thanks to (2.8), A is T-accretive in L*°(£2) if and only if there is a finitely

additive, absolutely continuous positive set function @ with total variation 1, such
that, for any u, i € L*°(£2),

/ (=) ()P (dx) = [|(u— i) +[|ro (). /Q(A(M)—A(ﬁ))(X)q?(dX) > 0.

3 The Stationary Case

In this section we concentrate on the following Dirichlet problem

—detD*u + ku = f in 2
P($2) : u=20 on 982
u convex in 2,

where 2 is a planar, bounded, convex, open set. We look for convex, and then
negative, solutions; then we need f < 0 in £2 as compatibility condition. As in
Sect. 2, we denote by §2* the disc, centered at the origin, with the same perimeter
L as £2. If g(x) is a smooth, radially symmetric, negative function defined in £2*,
which is increasing with respect to the radii, our main goal will be proving a suitable
comparison result between u and the solution z to the following symmetrized
problem

—detD?z + |x|7'z = g in 2*
P(£2) : z=0 on 02*
zconvex in £2*.
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First of all let us discuss the notion of solutions we shall use in this paper. We

immediately note that, as we shall see in the case of the radially symmetric problem,

Du

| Dul) make quite difficult to get classical solutions

(for instance in the radially symmetric case the term Z‘(;? will never be a bounded

function since z(x) will be a bounded function). Then it is natural to start our study
by considering the truncated problems

the presence of the term u div (

— detDZMN + TN(kuN)MN Zf in 2
Pyn(£2) : uy =0 on 052
uy convex in 2,

and
—detD?*zy + Ty(Jx|™H)zy = g in 2*
Py(27) : w=20 on 082*
Zy convex in £2*,
where

Ty(s) = min{s, N} for s > 0.

Proposition 8 Given f € C(2), f < 0 in §2, there exists a unique C-viscosity
solution uy to Py(82). Moreover

u<uy<uy <0 in £2,
where u is the unique C-viscosity solution to the unperturbed problem

—detD*u=fin 2
Py—a(£2) : u=0 on 082

u convex in §2

and uy is the C-viscosity solution to Py (§2) for N' > N.

Proof 1t is not difficult to verify that the comparison principle holds for problem

Py($2). Thus we can apply the Perron method (see Theorem 4.1 in [18]) starting

with the supersolution # = 0 and the subsolution u. Moreover since Ty(s) < Ty’ (s)

if N/ > N, we immediately get that uy < uy in £2. O
Now we introduce the notion of limit solution.

Definition 1 A functionu € C(£2)N Wi)cl (£2) such that u is convex and — det D>u+
kyu € L*°(82) is called a limit solution to P(£2) if

u@x) = Lm uy(x),

with uy solution to Py(£2).
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Proposition 9 Givenf € C(£2),f < 0in $2, there exists a unique limit solution uy
to P(£2).

Proof 1t suffices to use the Beppo-Levi monotone convergence theorem and the
comparison principle. O

Now we can prove that the following operator (jointly with the Dirichlet
boundary condition)

D
iy = —detD?u—Ty [div [ ")) jul
|Du|

is T-accretive in C(£2) once we define suitably its domain D(%y). Since the formal
operator

D
F(u,Du,Dzu) = —detD%u — Tw | div " |ue]
[Dul

is not uniformly elliptic but merely degenerate elliptic we must use the notion of C-
viscosity solution for the associated problem (see details and references for instance
in [26]).

Definition 2 We say that u € D(ofy) if u € C(£2) is a convex function, with u = 0
on 052, and there exists a nonpositive continuous function v in §2 such that u is a
C-viscosity solution to

{ —det D2 — Ty (div (21)) lul = v in &2
u=20 in 052.

We denote by @yu the set of all such v € C(£2).

Corollary 1 The operator oy is T-accretive in the Banach space X = C(£2)
equipped with the supremum norm.

Proof 1t is essentially a consequence of the maximum principle (see Theorem 3.3
and Section 5B in [18]). O
Remark 2 The extension to the accretiveness in L% (§2) is standard since the norm
is given in a similar way. Notice that without the truncation function Ty (div ( \gZ\ ))
the corresponding operator is not well defined as an operator from X to X since, as
we already pointed out, the expression div (|gﬁ|) is in general not an element of X.

We continue this section with some considerations on the existence of solutions
to the radially symmetric problem P(£2*). The convexity condition is not always
satisfied. So we shall need some extra conditions on the right hand side. Without
any interest in getting the more general result at all, we shall proceed under some
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additional conditions. We denote by R* the radius of £2* and we assume
2,1 * M
gx)=g(x]), ge W= (£2%), 0=>g(x|) > —I | for some M > 0 (3.9
X

and, with r = |x|,
g'(Nr+2¢(r) >0 forae. re (0,R*). (3.10)

We get the following result.

Lemma 2 Under the assumptions (3.9) and (3.10), there exists a unique convex
solution z € Wé’B(.Q*) to P(£2*) with det D?z, ‘Z € L3(2%).

x|

Proof If we set w = z + M, we can equivalently prove the existence of a unique
convex solution w to

M
—det D’w + e g(x]) + , in £2*
|x] |x]

w=M on 082*.

From the assumption (3.9) and the maximum principle we know that necessarily
0 <w<Min £2*. Now we define

Fa) =gl +
N

and we construct w as the unique solution to the following radially symmetric
problem

1
—2A3w +w = |x|I"(|x]) in £2*
w=M on d§2*.

@3.11)

Since |x|I"(]x|) € L*°(£2*), by well-known results there is a unique (radially
symmetric) solution w € W'3(2*) to problem (3.11). Then z € W,”(£2*) and
by the Hardy inequality Ii\ € L3(22*). In order to show that z is convex, since it
is radially symmetric, it is enough to show that z’(r) > 0, being r = |x|. But the
nonnegative function y(x) = |x| I'(|x|) = |x| g(|x|) + M is a subsolution to problem
(3.11),ie.

1 .
—,Asy +y = I(x) in&2
y<M on 0§2*.
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Indeed, by (3.10) we have for a.e. r € (0, R*)

d
Asy = div(Dy|Dy) = [|g'(r)r +g()] (&' (r+ g(r))]
= 2|g'(rr + g(n)|(g"(r)r +2¢'(r)) > 0,

while (3.9) implies that y < M on d£2*. Then, by the maximum principle w > y in
£2* and then, since Asw = 2(w—y), we get Azw > 0, which shows that 0 < w” (r)
and thus 0 < 77(r). O

Note that in fact our study of the radially symmetric case did not need to use the
truncation argument mentioned at the beginning of this section. Nevertheless, we
can easily state a result similar to Proposition 8.

Proposition 10 Given g € C(§2*), g < 0in 2%, there exists a unique C-viscosity
solution zy to Py(§2*). Moreover

7<zy<zw <0 in 2%,
where z is the unique C-viscosity solution to the unperturbed problem

—detD’z =g in2*
Py—a(£2%): z=0 on 982*

z convex in §2*

and zp is the C-viscosity solution to Py (2*) for N' > N.

Corollary 2 Assume g satisfies (3.9) and (3.10). Then the limit solution to problem
P(§2*) (constructed as in Proposition 9) coincides with the unique solution to
P(§2™) given in Lemma 2.

By using the notion of rearrangement that we recalled in Sect. 2, we can prove
the following result which links the asymmetry of a solution u to problem P(£2) to
the asymmetry of the datum f. This kind of results is very famous in literature and
goes back to authors as celebrated as Polya, Szeg6 and Weinberger. It appeared clear
that symmetrization techniques are very useful to write explicit and easy to compute
estimates of solutions to many variational problems (see for example [39, 40] and
the references therein). The first who proved a pointwise comparison result between
the Schwarz symmetrands of solutions to Poisson equations was Talenti in 1976
(see [36]). After him, many mathematicians have been interested in symmetrization
techniques and have applied them to linear and quasilinear elliptic equations with
lower order terms (see for example [1, 2, 40] and the references therein). The case
of fully nonlinear equations is different, since preserving the measure of the level
sets does not give information on the geometry of a solution. In [37] Talenti faced
the Monge-Ampere equation in dimension two and recognized the opportunity of
symmetrize preserving the perimeter of the level sets. Then Tso ([42], see also [41])
treated the case of Monge-Ampere equations in dimension 7. For related results we
refer the reader to [9, 12-14, 19].
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Theorem 1 Let f € C(§2) be a negative function and let u be the limit solution
to problem P(§2). Denote by §2* the disc, centered at the origin, with the same
perimeter L as §2. Assume that g(x) is a smooth, radially symmetric, negative
function defined in §2*, which is increasing along the radii. Let z be the solution
to the symmetrized problem P($2*). For s € (0, L) denote

U(s) = /Os u(o)do, Z(s) = /OJZ(o)da,

§2 /4w

§2 /4w
F(s) = /0 *(0)do, G(s) = /0 g*(0)do.

Then we have

1(Z = U)4|lee.r) = NI(F = G)+llreeqo,r)- (3.12)
Proof Since u = lim uy = supuy, it will be enough to get the conclusion
N—+o00 N

by replacing u# with uy in the statement. Notice that, nevertheless, we shall not
truncate the radially symmetric problem P(£2*). Our first argument is that, if 0
is a noncritical value for uy (i.e. |[Duy| # O on {x € £ : uy(x) = 0}), then uy
satisfies

—/ wﬁww+/ mmgwﬁ:/ fdx. (3.13)
uy <6 uy <6 uy <6

By using (2.7), divergence theorem, Holder inequality and (2.5), we obtain

1 473
2 2
/ detD“uy dx = / kuN IDMN| > 2 (3.14)
uN<0 2 MN=9 (A;V(Q))

where Ay(f) = A,,(0). Moreover, by Hardy-Littlewood inequality (2.6) and
classical isoperimetric inequality (2.4) we obtain

A (6)*/4n
/ @ﬁm§/ f*(0) do. (3.15)
MN<9 0

It remains to estimate from above the second integral in the left-hand side of (3.13).
To do this, we consider ¢ = &(N) > 0 such that, denoted by x}; the minimum point
of uy, itholds that B, := {x € 2 : |x —x}}| > ¢} C {uy < 0, k,y < N}. Then, by
co-area formula, we get

9
/ Ty (kyy) uy dx < / Ky uy dx < / Ay (7) dr, (3.16)
uy <6 un <80, kyy <N .

€
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where M, = maxg, uy. From (3.14) to (3.16) with s = Ay(f) we deduce the
following inequality involving the rearrangement iy (s) of the function uy:

N

s2 /4
473 (5)? — / iy(o)do < / f*(0)do.
0

AN (M)

Setting

Una(s) = A X(M o)do, e GyM).D)

we get
47Uy (5)* — Un.o(s) < F(s), s e (Av(M,),L). (3.17)

Reasoning in an analogous way on the solution z to the symmetrized problem
P(£2%), since all the inequalities become equalities, we get

4737"(5)? — Z(s) = G(s), se (0,L). (3.18)
Subtracting (3.18) from (3.17) we get
47 (U (5)* = Z"(5)?) = (Uno(s) = Z(9)) < F(5) = G(s). s € (0.L).
where we extended Uy . to zero in (0, Ay(M,)). Now we observe that the operator
V(s) — —4m*V"(s5)?

is T-accretive in L*°(0,L). Then, by definition, there exists a finitely additive
absolutely continuous positive set function @ with total variation 1, such that

/ (Z — Uy (9)9(ds) = [|(Z — Ux.o) 4l
Z>UN>5
and

L
/0 (Uy.(s)* = Z"(s)%) ®(ds) = 0.
Then we easily get

I(Z = Ung)tllcor < (F—=G)4lleo@.r)-

Passing to the limit as ¢ goes to 0 and N goes to +-co we obtain (3.12). O
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Remark 3 In the particular case when g(x) = —f*(x), estimate (3.12) immediately
gives

/‘ (o) do > / (o) do, se(0,L), (3.19)
0 0
that can be written as

/ u* (x) dx > / z(x)dx, r € [0,R"],
B(0,r)

B(0,r)

where R* is the radius of £2*. In the case of linear equations (and Schwarz
symmetrization) the above inequality is known as “symmetrized mass comparison
principle” and it is widely applied to extend estimates on the symmetric function z
to the non symmetric function u. The first immediate consequence of (3.19) is the
following estimate:

lluller2) < llzllLr@s, 1=<p =< +oc.

Remark 4 We explicitly observe that an analogous comparison result between
concentrations holds true if ¥ and z are convex, vanishing on the boundary, solutions
to the equations

—detD%u + ky,(—u)* =fin 2, —detD*z+ |x|7'(=2)% = —f* in 2*,

for some o > 0, respectively. More precisely it holds that

/s(—ﬁ(o))“ do < /S(—Z(o))“ do, se(0,L).
0 0

We end this section with a qualitative property of solutions to P(£2) derived
trough Theorem 1 and the consideration of this property for the symmetrized
problem P(£2*).

Proposition 11 Let f be as in Theorem 1. Assume that f* (o) is strictly monotone.
Then no free boundaries (given as the boundary of the subsets where Du = 0, with
u limit solution to P(§2)) can be formed.

Proof Arguing as in [20] it is enough to prove the nonexistence of free boundaries
for the radially symmetric solution z to P(£2*) with g = —f*. In this case, even if
the operator A3 is degenerated, it is enough to observe that the right-hand side term
in the equation never vanishes (see [20]). ]
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Remark 5 1t is a curious fact that, if g(|x|]) = IZ;)I on a suitable subset of £2* with
positive measure, for some zp < 0 corresponding to the minimum value of the
solution z to P(§2*), then the set of points where z(|x|) = zo could also have positive
measure and then it could give rise to a free boundary. Anyway, we are talking about
unbounded data, something which goes out of the assumptions of this paper.

4 The Evolution Problem

In this section we want to apply symmetrization techniques to the following
evolution problem

(k,u), — det D*u = f(x, ) in 2 x (0, +00)
u=20 on 982 x (0, +00)
u(x,0) = up(x) in £2

u(-, t) convex in §2

(4.20)

where f(x, ) is a smooth, negative function defined in £2 x (0, +00) and uy(x)
is a smooth, convex function, vanishing on the boundary of §2. Concerning the
rearrangements theory and the parabolic equations we refer the interested reader
to [2, 4,5, 21, 22, 32, 40, 43] and the references therein.

We remark that, if we proceed as in the stationary case and we integrate the
equation in problem (4.20) on the subset of £2 given by {x € £ : u(x,7) < 6} for
6 < 0, we obtain

/ (kyu), dx— / det D*udx = / fdx. (4.21)
{xeQ:u(x,<6} {xeR:u(x,<6} {xeR:u(x,<6}

By easy calculation we may show that the second integral in the left-hand side of
(4.21) can be written in terms of U(s,t) = / u(o,t) do, where s is the perimeter

0
of {x € £2 : u(x,r) < 6}. We would like to relate the first one with the derivative of
U (s, t) with respect to ¢. To this aim we recall a derivation formula for a function of
the type

H(s, 1) = / h(x,t) dx
{xe:u(x,f)<ui(s.t)}

where u and & are smooth functions defined in £2 x [0, +o0[ (see [30, 35], see also
[3, 10]).

Proposition 12 Let u(x, t) be a smooth function in §2x[0, +00[, convex with respect
to x in 2 and vanishing on 382 x [0, +o00[. If h € C'(£2 x [0, +00|), then for any
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t € (0, 400) it holds true

( / h dx)
{xeQ:u(x,n)<u(s,0)} '

ky
h aten=iceny 10U
_ f h,dx— < {xeQ:ulx,n)=u(s,0} f —u
{xeQ:u(x,t)<u(s,t)} {xeQ:iu(x,0)=u(s,t)} |DM| / u
reuxn=is.n} |1Dul

Remark 6 If h(x,t) = k,(x, Hu(x, ), then

(/ k, udx) = / (ky u), dx. (4.22)
{xeQ:u(x,p)<u(s,)} + {xeQ:u(x,p)<u(s,1)}

The following results dealing with comparison between rearrangements will be
stated, for simplicity, for classical solutions. Nevertheless, by following the same
methods used in the stationary case, the conclusions can be extended to weaker
notions of solutions (see [11]).

Theorem 2 Let u be a classical solution to problem (4.20). Denote by §2* the disc,
centered at the origin, with the same perimeter L as §2. Assume that g(x,t) is a
smooth, negative function defined in §2* x (0, +00), radially symmetric with respect
to the space variables, i. e. g(x,t) = g(|x|, 1), and zo(x) is a smooth, convex function,
defined in §2*, vanishing on 0§2*. Let 7 be the solution to the following parabolic
problem

|x|7'z; — det D?z = g(x,1) in 2* x (0, +00)

z=0 on 02* x (0, +00)
4.23
2(x,0) = zo(x) in 2* ( )
z(-, ) convex in 2*.
Fors € (0,L) and t > 0 denote
Uls, 1) = / (o, Hdo, Z(s,1) = / %(0. 1)do,
0 0
5% /4 §%/4m
F(s, 1) = / f*(o,0)do, G(s, 1) = / g* (0, do.
0 0
Then, for every t > 0, we have
(Z(C, 1) = UG D)+llzeeor) < [I(Z(,0) = U, 0))+]|ze00.1) (4.24)

+ / 1FC.7) = G 1))t ooy
0
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Proof We reason here as in the stationary case. Let ¢+ > 0 and let us consider a
noncritical value 8 < 0 (i.e. |[Dyu| # O on {x € £2 : u(x,r) = 6}). We integrate the
equation in (4.20) on the sublevel set {x € £2 : u(x,r) < 8} obtaining

/ (u(x, 1) ky(x, 1)), dx — / det D*u dx (4.25)
{xeR:u(x,<6} {xeQ:u(x,n)<6}

= / f(x, 1) dx.
{xeQ:u(x,n)<06}

As in the stationary case, by using divergence theorem, Holder inequality and (2.5),
we get

1
/ det D*u(x, ) dx = / ku(x, 1)|Du(x, f)>  (4.26)
{x€Q:u(x,1)<0} 2 {x€Q:u(x,n)=0}

473
2 9
e\
36

where A(0,1) = length{x € £ : u(x,t) = 6}. Moreover, by using (4.22) we get
that the first integral in (4.25) coincides with

(% b
N (/_wr N dt). 4.27)

On the other hand, by Hardy-Littlewood inequality (2.6) and the classical isoperi-
metric inequality (2.4) we obtain

A(0.0)2/4x
/ (=f(x, 1) dx < / (0,0 do. (4.28)
{xeR:u(x,<6} 0

From (4.26), (4.27) and (4.28) with s = A(6, 1) we deduce the following inequality
involving the rearrangement u(s, t) of the function u(-, ):

3 ([ s (0N _ U
~a (/0 u(o,t)d0)+47r ( 95 ) 5/0 f*(o,1) do,

—Uy(s,0) + 4 U2 (s, 1) < F(s,1), se(0,L), t>0. (4.29)

that is

Reasoning in an analogous way on the solution z to the symmetrized problem (4.23),
since all the inequalities become equalities, we get

—Zi(s,0) + 41 Z% (5, 1) = G(s, 1), s€(0,L), t> 0. (4.30)

s
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Subtracting (4.30) from (4.29) we get
(Z(s,)=U(s, ) +47> (UL(s, 1) — ZL(5, 1)) < F(s,0)—G(s, 1), s€(0,L),t>0.
Now we observe that the operator

U(s,t) —> —453 Ui(s, t)

is T-accretive in L°°(0,L). Then, by definition, there exists a finitely additive
absolutely continuous positive set function @ with total variation 1, such that

/Z (2= D6 = 1~ )+l

and

L
0

Then we easily get

L L
[ @-v,0w < [ #-coa
0 0

and finally

d
dt”(Z_ U)+lleeo.n) < NI(F = G)+llre(0.0)-

Integrating between 0 and 7 we get the thesis. O

Remark 7 Estimates (4.24) can be read as a continuous dependence on the data
symmetry with respect to the spatial variables. Indeed, if 2 = £2*, the maximal
asymmetry of a solution at the time ¢ does not exceed the sum of the asymmetry at
the time 0 and the asymmetry of the datum f.

In the particular case when g(x, ) = —f*(x, 1) and zo(x) = ug (x), estimate (4.24)
immediately implies the comparison result contained in [10, Theorem 3.1], that we
state below for completeness.

Theorem 3 Let u be a classical solution to problem (4.20) and let v be the solution
to

|x|~'v; — det D?v = —f*(x, 1) in 2* x (0, +00)
v=20 on 0£2* x (0, +00)
v(x,0) = uj(x) in 2*

v(-, 1) convex in 2.



140 B. Brandolini and J.I. Diaz

Then, for every t > 0 it holds

/512(0, t)do > /J v(o,t)do, s€(0,L). 4.31)
0 0

As an immediate consequence of (4.31) we have the following

Proposition 13 Under the assumptions of Theorem 3, the following estimates hold
true for every t > 0:

[lu G DM@ = v C DI I <p=<+oo; (4.32)

/ u(k, u), dx + / (—u) det D*udx < / v(k, v) dx 4+ [ (—v)detD*v dx.
2 2 * 2*
(4.33)

Proof Estimate (4.32) can be easily deduced from (4.31) and properties of rear-
rangements.

Multiplying the equation in problem (4.20) by —u, integrating over 2 and using
(4.31) yield

/u(kuu),dx-l—/(—u)detDzudx
o’ Q

- /Q f(—u)d

< 2; /0 ’ IS (:;z) (—ii(s, 1))s ds

1 L K . d . S2

o fo ([ citonaz ) (=i (1)) )
1 L s _ d . S2

oo [, ([ otomas) (<4 (7 (1))

/fﬁ(x,t)(—v)dxzf v(k, v),dx+/ (—v) det D*v dx,
o o o

IA

that is (4.33). O

A qualitative property typical of some nonlinear models concerns the finite speed
of propagation of disturbances: if the initial datum u, vanishes on a set of positive
measure (i.e. suptuy C §2), then suptu(-,#) C §2 for any ¢ > 0. In our case the
following estimate of the perimeter of the zero sublevel set of u can be proved. It
will imply that, if supt v(-,7) = £2* for some 7 > 0, then supt u(-,7) = §2, which
means that the equation does not satisfy the finite speed of propagation property.
Finally, the following perimeter estimate shows how important is having symmetry
conditions on partial differential equations in order to have solutions with small
supports.



Perimeter Symmetrization 141

Proposition 14 Under the assumptions of Theorem 3, if for every t > 0 it holds

/ (kyu)dx = | (]x|"'v)dx, (4.34)
2 2+
then

P({xe 27 : v(x,1) <0}) < P({x e 2: u(x,1) <0}), t> 0.

Proof By using co-area formula, assumption (4.34) can be written as
0 0
/ Au(0,1)dO = / Ay(0,1)do (4.35)
ming u ming* v

that is in terms of rearrangements

L L
/ u(o,t)do = / v(o,t) do. (4.36)
0 0

Thus, estimate (4.31) implies

/SL u(o, do < /SL v(o, t)do.

Let [0, R, ()] and [0, R, ()] denote the support of (-, ) and U (-, f), respectively, with
0 < R,(f),Ry(t) < L. From (4.36) it immediately follows that R, () < R,(?),
otherwise

L Ry (1)
0= / u(o, )do < / v(o,Ndo <0
R

u([) RL,(T)

which is a contradiction. ]

Remark 8 When does (4.35) hold? When ¢ = 0 it is clearly true since

/0 A1,(0,0)d0 = /0 Ay (0)dO = /0 Ay (8)dO = /0 A,(0,0)do,

ming u ming uo ming* ug) ming* v

that is #(-, 0) and (-, 0) have the same L' norm. Thus (4.35) is satisfied whenever
it(-, 1) and ¥ (-, f) preserve the same L' norm for every ¢ > 0. We stress that this does
not mean that u(-, £) and v(-, f) have the same L! norm.

Now we want to study the asymptotic behavior of u by proving that the
stabilization to a stationary solution requires an infinite time. To this aim we need
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to introduce the following auxiliary eigenvalue problem

—w =tw s€(0,L)

s

w(0) = 0,w'(L) = 0.

By well-known results (see, e.g. [8]) there exists a first eigenvalue A; > 0 such
that the corresponding normalized eigenfunction wy satisfies wi(s) > 0 for any
s € (0,L) and ||wi]lo, = 1. We also point out that, when g*(s, 1) = ¢? (¢ > 0) for
any s € (0, L) in (4.23), then the problem

Z(0,1) = Zy(L, 1) S: 0 t>0
Z(s,0) = Zy(s) s€(0,L)

~Zi(s,0) + 41372 (s,0) = 5 s€(0,1), 1> 0

has the unique stationary solution
Zoo(s) = s (s2 - 3L2)
N 24n?

and, in particular, if Zy(s) = Zso(s) then Z(s,f) = Zoo(s) for any s € [0, L] and
t>0.

Theorem 4 Assume g*(s) = c? in (4.23) and F(s,t) = G(s, 1) for any s € (0,L),
t > 0. If there exists m > 0 such that

U(s,0) > Zoo(s) + mwi(s) forany s € (0,L),

then there exists a constant ¢ > 0 (independent of t) such that for any t > 0 and
s € [0, L] we have

U(s. 1) = Zoo(s) + mwi (s)e” 1.
Proof Arguing as in the proof of Theorem 2, it suffices to show that the function
U(s, 1) := Zoo(s) + mw (s)e M1#

is a subsolution to the parabolic problem associated to U(s, f). More precisely, we
must check that we can take a constant ¢ > 0 (independent of #) such that

—U,(s,0) + 43U (s,0) = 0 s€(0,1), 1> 0
U©.1) = U(L.1) =0 t>0 4.37)
U(s,0) < U(s,0) s € (0,L).
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The above result leads to interesting consequences concerning the free bound-
aries raised by the solution « in the line of papers [25] and [26] (see also [24]).

Another very natural question concerning problem (4.20) is the stabilization of
solutions: assumed that

fG D = foo) as t— +oo

in suitable functional spaces, is it true that u(-,f) tends to the solution to the
associated stationary problem? In the next proposition, reasoning in an analogous
way as in the proof of Theorem 4, we obtain the following asymptotic behavior of a
solution u to problem (4.20) in a ball.

Proposition 15 Let Bg be a ball with radius R and let f, be a radially symmetric,
negative function defined in Bg. Suppose that f(x,1) /" feo(x) as t — +oo for
X € Bg. Let uy be a convex function in Bg, vanishing on 0Bg. Let u be a solution to
problem (4.20) with §2 replaced by Bg and let  be the solution to

—detD*y = foo in Bg
1// =0 on BBR

Denote

A

Us, 1) = /0 o, 0)do. W(s) = /0 (0o, Un(s) = /0 o (0)do.

IfU(s,0) > W(s) for s € (0, L), then U(s, t) > W(s) for every s € (0,L) and t > 0.

Proof 1t is enough to observe that

~U, +47n°U%L < F
U(s,0) = Uy(s) for s € (0,L)
U@©,1) =Uy(L,t) =0 for t>0

and
47392 = Foo, U (0) = ¥, (L) = 0,

where

24

§% /4
F(s,1) 2/0 ff(o.do, Fools) =/0 fx (o) do.
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Since by definition of rearrangement F (s, f) < Foo(s) for any ¢ > 0, then
—(U = W), + 4 (U5, = ¥) < 0.

The thesis follows from the maximum principle. O

We end this paper with some considerations on the existence of solutions for the
radially symmetric problem (4.23). As in the stationary case, the convexity condition
is not always satisfied. So we shall need some extra conditions on the datum g.
Without any interest in getting the more general result at all, we shall proceed under
some additional assumptions. Let 2* = Bg«(0). Suppose that zo € W>!(2*) N
Wé’3 (£2*) is a nonpositive, convex, radially symmetric function such that

Aszp € LX(2%). (4.38)
Suppose also that
gx.0) =g(lx].1), g€ C(0.T]: L*(£2%)), (4.39)
and, for some M > 0,
— M(coshT)? < |x| g(|x|,£) <0 forany ¢ € [0, 7], (4.40)

Aszo(x) + |x| g(Jx|,£) = 0 forae. x € £2* and forany ¢ € [0, T]. 4.41)

The following result holds.

Lemma 3 Under the assumptions (4.38), (4.39), (4.40) and (4.41), there exists a
unique convex solution z € C([0, T] : L>(£2*)) N L2([0, T] : Wé’?’([?*)) to problem
(4.23) with “*) — det D*z(-, 1) € L®(2*) for a.e. t € (0,T).

||
Proof Since the solution must be radially symmetric we know that z is given as the
unique solution to the problem

27— 1 Asz = Ixl g(x] 1) in 2* % (0,7)
z=0 on d2* x (0, 7)
2(x,0) = zo(x) in 2*.

From the assumptions (4.39) and (4.40), by the T-accretiveness of the operator
—Asz, we know that

[0 ey = Nl + [ el 905 =0
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so that z(x,7) < 0on £2* x (0, T). Moreover, in an analogous way, taking

Z(-x7 t) = - ||ZO||LOO(Q':) — Mtanht

we get that

z,— Asz = p(1) in 2* x (0,7)

z=0 on d2* x (0, 7)

7(x,0) < zo(x) in £27,
with

M
1) =
P (coshr)?

By (4.40)

p(0) < Ixlg(xl . 1) forae. (x.1) € 2% x (0,7),

then, by the maximum principle, z(x, f) < z(x,7) < 0in £2*x(0, T). Now, in order to
prove the convexity of z(:, f) we argue as in Diaz-Kawohl [27] (see the proof of their
Theorem 1). We start by pointing out that 0 < z”(r, ?) if and only if A3z(r,f) > 0
so, since |x| g(|x|) < 0 we only need to prove that z; > 0. But this holds once we
have condition (4.41) as in [27].

Since zo € D(%), where ¥ is the operator on H = L*(£2*), given by €z =
—Asz and since € is the subdifferential in L?(£2*) of a convex function, we get that
z(-, 1) € L2(2*%), Azz(r.t) € L*(22*) fora.e. t € (0, T) and the equation takes place
fora.e. x € £2* and a.e. t € (0,T). Then by dividing by |x|, since we have (4.39),
we get that Z’I(;It) —detD?z(-, 1) € L®(2*) fora.e.t € (0,T). O

Remark 9 We argue as in [15] (Lemma 3.3, p. 73) to get some extra regularity. For
instance, by multiplying the equation in (4.23) by z; we get

1d

2 3

+ Vz|” = x| g(|x]).
*(Zr) 67t/'| 4 /*Z;||g(| D

This shows that z € C([0, 7] : W5’3(.Q*)) and, by the Hardy inequality, Z(Mt) €
L3(22*) forany t € [0, T).

In the special case when §£2 = £2* and the data f(x, ) and uy(x) are radially
symmetric, but not necessarily decreasing along the radii, it is possible to get some
information about how the corresponding solution u is becoming each time more
similar to its rearrangement #*. Some results on the asymptotic stabilization to a
stationary solution can be obtained trough similar results for the case of the Aj
operator (see, e.g. [23] or [28]).
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Proposition 16 Assume that zp € W>'(£2*) N Wy (22*) with z0(x) = zo(|x]),
20(x) < 0in 2%, and Aszg € L*(2*). Suppose also that g(x,t) € L®(2* x
(0, +00)) N WL (0. +00) : L'(2%)) satisfies

g, 1) = g(|x| 1)

with

ds<C forany t>0
LY(2*)

0
80 9)

t+1
/ i
t

for some C > 0 independent of t and

—M < |x| g(|x| , 1) < 0fora.e. t € (0, +00).

Suppose also that there exists goo € L¥?(2*), With goo(X) = goo(|X]), goo(x) < 0
in §2*, such that

t+1
/ x| g1l 1) = goo () l32¢0m) — O as 1 — +oc.
t

Then, if 7 is the unique strong solution to the problem

o= L dsz =[xl g(lal 1) in 2* % (0, +00)
z=0 on 32* x (0, +00)
z(x,0) = zo(x) in 2%,

z is also solution to the problem

|x|7'z; — det D’z = g(x, 1) in £2* x (0, +00)
z=0 on 082* x (0, +00) (4.42)
72(x,0) = zo(x) in 2*.

Moreover, z(.,1) = zxo in Wé’B(.Q*), ast — 400, where 7 is the unique solution
to

—det D?z00 = Zool) in £2*
Zoo =0 on d82*.

Proof 1t suffices to apply Lemma 1 and Theorem 1 in [28] to the p-Laplacian
operator with p = 3. O
Finally, as a simple application of Proposition 16, if we assume for instance that

8(x, 1) = goo(x) = 0. (4.43)
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we can give an estimate about the progressive perimeter symmetrization in time of
z(., 7) (in a similar manner to the one in Proposition 1 of [21]).

Proposition 17 Let zo(x) be as in Proposition 16, with zo # z{; and suppose that
(4.43) holds true. If 7 is the solution to (4.42) given in Proposition 16 and ¢ is the
solution to the same problem with zjj as initial datum (always with g(x,t) = 0),
givenr > 1, for any q > r we have

—3 *
l2o1) = £ D nimy = € 20 = 25 W,
with

_ 2q-n _r(Bq+2)
q(3r+2) Y g(3r+2)°

Proof Obviously ¢(-,f) = ¢(-,1)*. Then, it suffices to apply the characterization of
radially symmetric solutions of the lemma and the regularizing estimate (Théore¢me
[I1.4) of [44] for the p-Laplacian operator with p = 3. O

Remark 10 Note that, according to Proposition 16, z(-,f) and ¢(-,f) — 0 as t —
400 in Wé’3(9*).
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Optimal Boundary Control of a Nonstandard
Cahn—-Hilliard System with Dynamic Boundary
Condition and Double Obstacle Inclusions

Pierluigi Colli and Jiirgen Sprekels

Abstract In this paper, we study an optimal boundary control problem for a
model for phase separation taking place in a spatial domain that was introduced
by P. Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105-118. The model consists of
a strongly coupled system of nonlinear parabolic differential inclusions, in which
products between the unknown functions and their time derivatives occur that are
difficult to handle analytically; the system is complemented by initial and boundary
conditions. For the order parameter of the phase separation process, a dynamic
boundary condition involving the Laplace—Beltrami operator is assumed, which
models an additional nonconserving phase transition occurring on the surface of
the domain. We complement in this paper results that were established in the recent
contribution appeared in Evol. Equ. Control Theory 6 (2017), pp. 35-58, by the
two authors and Gianni Gilardi. In contrast to that paper, in which differentiable
potentials of logarithmic type were considered, we investigate here the (more
difficult) case of nondifferentiable potentials of double obstacle type. For such
nonlinearities, the standard techniques of optimal control theory to establish the
existence of Lagrange multipliers for the state constraints are known to fail. To
overcome these difficulties, we employ the following line of approach: we use the
results contained in the preprint arXiv:1609.07046 [math.AP] (2016), pp. 1-30, for
the case of (differentiable) logarithmic potentials and perform a so-called “deep
quench limit”. Using compactness and monotonicity arguments, it is shown that
this strategy leads to the desired first-order necessary optimality conditions for the
case of (nondifferentiable) double obstacle potentials.
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1 Introduction

Let 2 C R? denote some open, connected and bounded domain with smooth

boundary I" (we should at least have I" € C?), and let T > 0 be a fixed final time and

Q:=02x(0,7), %Y :=1T x(0,T). We denote by 9, Vi, Ar, the outward normal

derivative, the tangential gradient, and the Laplace—Beltrami operator on I, in this

order. We study in this paper the following optimal boundary control problem:
(%) Minimize the cost functional

Bi . B2 R
F (. p,pr).ur): = 5 e — MQ||§2(Q) + lo— PQ||§2(Q)

B3 . Ba .
+ 2 ||,0F _,02”%2(2) + 2 ||,O(T) _/0!2“;(9)
Bs . B
+ ) Mor (@) = by + 5 lur s, (1.1)

over a suitable set %q C (H'(0,T:L*(I")) N L (X)) of admissible controls u
(to be specified later), subject to the state system

(1+28(p) e+ g (p) o — A =0 a.e. in Q, (1.2)
g =0 aeon X, pu0) =p aein 2, (1.3)
pr—Ap+E+7m(p) =pg(p) aeinQ, (1.4)
£edl_1y(p) ae.in O, (1.5)

Op + dor —Arpr +ér +mr(pr) =ur, pr=pyz, aeonX,  (16)
EI" (S 81[_1’1](/01“) a.e.on X, (1.7)

p(0) =pp a.e.in 2, pr(0) =po. a.e.on I. (1.8)

Here, B;, 1 < i < 6, are nonnegative weights, and [ig, o € L*(Q), psx € [*(X),
pe € L*(R2),and pr € L>(I") are prescribed target functions.

The physical background behind the control problem (%) is the following: the
state system (1.2)—(1.8) constitutes a model for phase separation taking place in the
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container §2 and originally introduced in [32]. In this connection, the unknowns u
and p denote the associated chemical potential, which in this particular model has
to be nonnegative, and the order parameter of the phase separation process, which
is usually the volumetric density of one of the involved phases. We assume that
p is normalized in such a way as to attain its values in the interval [—1, 1]. The
nonlinearities 7, 7, g are assumed to be smooth in [-1, 1], and 9/[—;,1) denotes the
subdifferential of the indicator function of the interval [—1, 1]. As is well known, we
have that

—00,0] if p = —1
0 ifpel-1,1] (—o0. O} if

I—1.1)(p) = ) . 0l 1(p) = | {0} if —l<p<l.
400 otherwise )
[0,400) if p =1

(1.9

The state system (1.2)—(1.8) is singular, with highly nonlinear and nonstandard
couplings. It has been the subject of intensive study over the past years for the case
that (1.6) is replaced by a zero Neumann condition. In this connection, we refer the
reader to [6, 8,9, 11-15]. In [7], an associated control problem with a distributed
control in (1.2) was investigated for the special case g(p) = p, and in [10], the
corresponding case of a boundary control for & was studied. A nonlocal version,
in which the Laplacian —Ap in (1.4) was replaced by a nonlocal operator, was
discussed in the contributions [22, 23, 26].

In all of the works cited above a zero Neumann condition was assumed for the
order parameter p. In contrast to this, we study in this paper the case of the dynamic
boundary condition (1.6). It models a nonconserving phase transition taking place
on the boundary, which could be induced by, e. g., an interaction between bulk and
wall. The associated total free energy of the phase separation process is the sum of
a bulk and a surface contribution and has the form

Fraln(t), p(t), pr(t)]

1
= [ (o) + Ap5.0) = a0 o) + Vo)

# [ (1ern(or ) + 2 (or(e.0) =) pr(en) + ) [Vrpr(roP ) dr
r
(1.10)

fort € [0, T], where #(r) = [, w(£)d§ and #p(r) = [ 7r(§)dE.  In the recent
contribution [24], the state system (1.2)—(1.8) was studied systematically concerning
existence, uniqueness, and regularity. A boundary control problem resembling (%)
was solved in [25] for the case of potentials of logarithmic type.

The mathematical literature on control problems for phase field systems involv-
ing equations of viscous or nonviscous Cahn—Hilliard type is still scarce and quite
recent. We refer in this connection to the works [16, 17, 19, 21, 28, 35]. Control
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problems for convective Cahn—Hilliard systems were studied in [33, 36, 37], and a
few analytical contributions were made to the coupled Cahn—Hilliard/Navier—Stokes
system (cf. [27, 29-31]). The contribution [20] dealt with the optimal control of
a Cahn—Hilliard type system arising in the modeling of solid tumor growth. For
the optimal control of Allen—Cahn equations with dynamic boundary condition, we
refer to [5, 18] (see also [4]).

In this paper, we aim to employ the results established in [25] to treat the
nondifferentiable double obstacle case when &, £ satisfy the inclusions (1.5), (1.7).
Our approach is guided by a strategy that was introduced in [18] by the present
authors and M.H. Farshbaf-Shaker: in fact, we aim to derive first-order necessary
optimality conditions for the double obstacle case by performing a so-called
“deep quench limit” in a family of optimal control problems with differentiable
logarithmic nonlinearities that was treated in [25], and for which the corresponding
state systems were analyzed in [24]. The general idea is briefly explained as follows:
we replace the inclusions (1.5) and (1.7) by the identities

E=g@h(p)., & =e(@)h(pr). (1.11)

where & is defined by

I=pIn(l-p)+A+p)In(1+p)if pe(-1,1)
h(p) := ] , (1.12)
2 In(2) if pe{-1,1}
and where ¢ is continuous and positive on (0, 1] and satisfies
li =0. 1.13
a{r}) o) (1.13)

We remark that we can simply choose ¢(«) = o for some p > 0. Now, observe
that #/(y) = In (ifz) and 1’(y) = 1_2},2 > 0 fory € (—1, 1). Hence, in particular,
we have

lim (@) (y) =0 for —1<y<1,
a\0

li lim A = —o0, i lim A = . 1.14
Jim (¢@) Jlim () = —o0 Jim (o) Jlim. (v) = +oo.  (L14)

We thus may regard the graph ¢(a) ' as an approximation to the graph of the
subdifferential 0/ 1.

Now, for any o > 0 the optimal control problem (later to be denoted by (#,)),
which results if in () the relations (1.5), (1.7) are replaced by (1.11), is of the
type for which in [25] the existence of optimal controls u}. € %q as well as first-
order necessary optimality conditions have been derived. Proving a priori estimates
(uniform in « > 0), and employing compactness and monotonicity arguments, we
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will be able to show the following existence and approximation result: whenever
{uf"} C a is a sequence of optimal controls for (2, ), where o, \ 0 as n — o0,
then there exist a subsequence of {w,}, which is again indexed by n, and an optimal
control iy € g of (Z) such that

u — ur weakly-starin 2" as n — 0o, (1.15)

where, here and in the following,
Z :=H"0,T;Hr) NL>®(X) (1.16)

will always denote the control space. In other words, optimal controls for (Z7,) are
for small o > 0 likely to be ‘close’ to optimal controls for (). It is natural to ask if
the reverse holds, i. e., whether every optimal control for (%) can be approximated
by a sequence {u}"} of optimal controls for (2,,), for some sequence &, \ 0.

Unfortunately, we will not be able to prove such a ‘global’ result that applies to
all optimal controls for (). However, a ‘local’ result can be established. To this
end, let uj € %,q be any optimal control for (). We introduce the ‘adapted’ cost
functional

—_ 1
f((u“s P> Pr)sur) = /((H’s P> PF)»MF) + 2 ”MF _’21“”22(2) (117)

and consider for every o € (0, 1] the adapted control problem of minimizing ;5
subject to uy € %,q and to the constraint that (i, p, pr) solves the approximating
system (1.2)—(1.4), (1.6), (1.8), (1.11). It will then turn out that the following is
true:

(i) There are some sequence o, \, 0 and minimizers u}" € %, of the adapted
control problem associated with «,, n € IN, such that

iy — ir  strongly in L*(X) as n — oo. (1.18)

(ii) Itis possible to pass to the limit as & “\{ O in the first-order necessary optimality
conditions corresponding to the adapted control problems associated with o €
(0, 1] in order to derive first-order necessary optimality conditions for problem
(£%).

The paper is organized as follows: in Sect. 2, we give a precise statement of the
problem under investigation, and we derive some results concerning the state system
(1.2)—(1.8) and its & -approximation which is obtained if in (&) the relations (1.5)
and (1.7) are replaced by the relations (1.11). In Sect. 3, we then prove the existence
of optimal controls and the approximation result formulated above in (i). The final
Sect. 4 is devoted to the derivation of the first-order necessary optimality conditions,
where the strategy outlined in (ii) is employed.
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During the course of this analysis, we will make repeated use of Holder’s
inequality, of the elementary Young’s inequality

1
ab < yla)® + A |b> Ya,beR Vy>D0, (1.19)
Y

and of the continuity of the embeddings H'(£2) C L/(£2) for 1 < p < 6. We will
also use the denotations

0;,:=82x(0,1, X, :=Ix(0,r, for0<t<T. (1.20)

Throughout the paper, for a Banach space X we denote by || - ||x its norm and
by X* its dual space. The only exemption from this rule are the norms of the [”
spaces and of their powers, which we often denote by || - ||,, for I < p < 4o0.
By (v,w)x we will denote the dual pairing between elements v € X* and w € X.
About the time derivative of a time-dependent function v, we warn the reader that
we may use both the notation d,v and the shorter one v;.

2 General Assumptions and State Equations

In this section, we formulate the general assumptions of the paper, and we state
some preparatory results for the state system (1.2)—(1.8) and its a-approximations.
To begin with, we introduce some denotations. We set

H:=1*(2), V:=H'(Q), W:={weH*(2):9,w=0onTI}
Hr :=LXI'), Vp:=HYI), 7 :={@,or)eVxVr:vr=ur}

and endow these spaces with their standard norms. Notice that we have V.C H C V'
and Vi C Hr C V}, with dense, continuous and compact embeddings.
We make the following general assumptions:

(Al) po €W, o >0in 82, py € H*(2), po; := po, € H(I'), and
—1 < ming, po(x), max,cqg po(x) < +1. 2.1

(A2) m, 7 € C?[—1,1]; g € C*[—1, 1] is nonnegative and concave on [—1, 1].
(A3) g = {ure€ Z : ux <ur <u* a.e.on Yand|ur| 2 <Ry}, where
us,u* € L*°(X) and Ry > 0 are such that %,q # 0.

Now, observe that the set %,q is a bounded subset of 2". Hence, there exists a
bounded open ball in 2" that contains %,q4. For later use it is convenient to fix such
a ball once and for all, noting that any other such ball could be used instead. In this
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sense, the following assumption is rather a denotation:
(A4) Let R > 0 besuchthat %y C % :={ur € Z : |lurll2 < R}.
For the quantities entering the cost functional _# (see (1.1)), we assume:

(AS) The constants f8;, 1 < i < 6, are nonnegative but not all equal to zero, and we
have 1o, po € L*(Q), ps € L*(X), pa € LX(2), pr € L*(I").

We observe at this point that if (A1), (A2) and up € % hold true, then all of the

general assumptions made in [24] are satisfied provided we put, in the notation used

there, B = Br = I—1,1). We thus may conclude from [24, Thm. 2.1 and Rem. 3.1]
the following well-posedness result:

Theorem 2.1 Suppose that the assumptions (Al)—(A4) are fulfilled. Then the state
system (1.2)—(1.8) has for every ur € % a unique solution (i, p, pr) with >0
a. e. in Q, which satisfies

we 0, T: V)N LP0,T; W) N L0, T; W*(2)) N L®°(Q) Vp € [l,+00),

(2.2)
we € LP(0,T; H)y N L*(0,T; L(2)) Vp e [l,+00), (2.3)
p€ Wh®(0,T;H) N H'(0,T; V) N L>®(0, T; H*(2)), (2.4)
or € W0, T; Hr) N HY(0, T; Vi) N L%°(0, T; H*(I")), (2.5)
pel-1,1] a.e inQ, prel[-1,1 aeonX, (2.6)
£€L>®(0.T;H), & €L°(0.T:Hr). (2.7)

Moreover, there is a constant K{ > 0, which depends only on the data of the state
system and on R, such that

||H||H1(o,T;H)OCO([o,T];V)mLZ(o,T;W)mLOO(Q) + ||P||W1~°°(0,T;H)0H1(o,T;V)mLOO(o,T;HZ(Q))

+ llor llwreo©.rsmmne ©or:veneee oy + 1€l + lérlies) < K7,
2.8)

whenever (i, p, pr) is a solution to (1.2)—(1.8) which corresponds to some ur €
Ug and satisfies (2.2)—(2.7).

Remark 2.2 Thanks to Theorem 2.1, the control-to-state operator .y : uy +>
(i, p, pr) is well defined as a mapping from %} into the space specified by the regu-
larity properties (2.2)—(2.5). Moreover, in view of (2.4), it follows from well-known
embedding results (see, e. g., [34, Sect. 8, Cor. 4]) that p € C°([0, T]; H*(£2)) for
0 < s < 2. In particular, we have p € C°(Q), so that pr = pjr € C°(X).

We now turn our interest to the o —approximating system that results if we
replace (1.5) and (1.7) by (1.11), with & given by (1.12) and ¢ satisfying (1.13).
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We then obtain the following system of equations:

(1 +28(0")) i + 1 &' (p") pf — Ap* =0 a.e.in Q, (2.9
ohu®* =0 aeon X, u*0)=po ae.in 2, (2.10)
oy — Ap” + @) B (p*) + w(p%) = p*g'(p*) a.e.in Q, (2.11)
I + 007 — Arpt + @(@) W (oF) + 7r(pf) = uf, pf =pjy ae.on X,

(2.12)
p“(0) =po a.e.in 2, p%(0)=po, a.e.onI. (2.13)

By virtue of [25, Thm. 2.4], the system (2.9)—(2.13) has for every u{. € %z a unique
solution (u%, p*, p%) satisfying u® > 0 in Q and (2.2)—(2.5). Moreover, there are
constants 7« («), r*(a) € (-1, 1), which depend only on R, &, and the data of the
system, such that, for all (x,7) € Q,

=1 <re(e) <p%(x,0) <rf(@) <1, —1<re(e) <pf(x,t) <r*(a) <.
(2.14)

Again it follows (recall Remark 2.2) that p* € C°(Q) and p% € C°(X). Therefore,
we may infer from (A2) that there is a constant K3 > 0, which depends only on R
and the data of the system, such that

max ¢ (0%) | cogy + max, (Hn<f>(pa>||co@ + Hnﬁ)(p%) CO(E)) < K*,
(2.15)

for every solution triple (u®, o%, pf.) corresponding to some u; € %z and any o €
(0, 1]. Observe that a corresponding estimate cannot be concluded for the derivatives
of ¢(a)h, since it may well happen that r«(e) \, —1 and/or r*(o) /' +1, as
a N\ 0.

According to the above considerations, for every o € (0, 1] the solution operator
Fo Ut € U — (U, p%, pf.) is well defined as a mapping into the space that
is specified by the regularity properties (2.2)—(2.5). We now aim to derive some a
priori estimates for (u*, p%, pf-) that are independent of o € (0, 1]. We have the
following result.

Proposition 2.3 Suppose that (Al)-(A4) are satisfied. Then there is some constant
K3 > 0, which depends only on R and on the data of the system, such that we have:
whenever (U, p*, p}.) = S (u$) for some u§. € U and some o € (0, 1], then it
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holds that

||,U~a ||H1 (0.7;H)NCO([0,T];V)NL2(0,T; W)NL® (Q)
+ ||Pa||WI»OO(O,T;H)mHl([o,T];V)mLOO(o,T;HZ(r))
+ ”p?’”W1-°°(O,T;Hr)ﬂHl([O,T];Vr)ﬂLOO(O,T;HZ(F))

+ o) K (0)lzeo 075 + () ' (07 2o 0750 < K5 - (2.16)
Proof Let uf. € % and a € (0, 1] be arbitrary and (u®, p%, p%) = 4 (uF.). The
result will be established in a series of a priori estimates. To this end, we will in the
following denote by C > 0 constants that may depend on the quantities mentioned
in the statement, but not on & € (0, 1]. For the sake of a better readability, we will
omit the superscript @ of (u*, p%, pf-) during the estimations, writing it only at the
end of each estimate. We will also make repeated use of the general bounds (2.15)

without further reference.
FIRST ESTIMATE:

First, note that 9,((5 + g(p)) *) = (1 + 2g(p)) pept + g'(p) pr pu*. Thus,
multiplying (2.9) by i and integrating over Q;, where ¢ € (0, T], we find the estimate

/(é"‘g(P(f))) [ dx + //szdxds = / (5 + &(po)) |tol* dx.
2 0Je 2 1)
(2.

Hence, as g(p) > 0 by (A2), it follows that

114 | oo 0. smynr2 0y < € Y € (0,1]. (2.18)

SECOND ESTIMATE:
Next, we multiply (2.11) by ¢(a) /' (p%) and integrate over Q, and by parts,
where ¢ € (0, T]. We obtain the identity

o@ [ 1) + o [ 1oro)ar + [ [ i) asas
+ [ [e@u@rraras + o [ | 1) 19 aras
+ @(O‘)/O/Fh”(PFHVrszdF ds
= (@ [ hon)dx + p(@) [ hioo,)ar
+ [ ] o= o) ot 1 axas

+ [ [ 6t = e@ioryar as. (2.19)
oJrIr
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Obviously, all of the terms on the left-hand side are nonnegative, while the first two
summands on the right-hand side are bounded independently of « € (0, 1]. Thus,
applying Holder’s and Young’s inequalities to the last two integrals in (2.19), and
invoking (2.15) and (2.18), we readily find that

lo@ W' (6] o) + €@ H (6P| o5y = € Ve €(0.1]. (2:20)
THIRD ESTIMATE:
We now add p on both sides of (2.11) and py on both sides of (2.12). Then we

multiply the first resulting equation by p, and integrate over Q,, where t € (0, T.
Employing (2.15), we then obtain an inequality of the form

t t
1
[ [ inPasas + [ [ orPasas + ) (1o + lorlR,)
0J8 0oJr
1 t
< 5 Uooll + ourl,) + [ [ 101 ol + lo@n @ + €+ ) axas

+ /0 /P 3pr| (o] + lo(@) K (pr)| + lu)dr ds. 2.21)

Using (Al), (2.18), and (2.20), and employing Young’s inequality and Gronwall’s
lemma, we thus conclude that

10N 0.1 0.v) + 1Tl o s ynreo o vy = € Yo € (0. 1].
(2.22)

FOURTH ESTIMATE:
We now take advantage of the estimates (2.15), (2.18), (2.20) and (2.22). Indeed,
comparison in (2.11) yields that

[4Apll2) = C. (2.23)

Now, observe that, owing to [3, Thm. 3.2, p. 1.79], we have the estimate

T T
| 10O = € [ (a0 + 1or 01, ) 0,
so that

ol 20,7022 = C- (2.24)
Hence, by the trace theorem (cf. [3, Thm. 2.27, p. 1.64]), we infer that

l9npllz2 0750 < C, (2.25)
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whence, by comparison in (2.12),
I1Arorllzorzar) < C. (2.26)
Thus, by the boundary version of elliptic estimates, we deduce that
lerlzorma)y < C. (2.27)
whence, by virtue of standard elliptic theory, it turns out that
loll20.rm2 ) < C. (2.28)
Since the embeddings
(H'(0,T; H) N L*(0, T; H*(£2))) c C°([0, T]; V)
and
(H'(0.T:Hr) N L*(0.T: H*(I'))) € C*((0.T]: Vr)
are continuous, we have thus shown the estimate

”Pa”CO([O,T];V)mLZ(O,T;HZ(.Q)) + ”p(lx“”CO([(),T];VF)mLZ(o,T;HZ(r)) <C VYae(0,1].
(2.29)

FIFTH ESTIMATE:
In this step of the proof, we adopt a formal argument that can be made rigorous
by using finite differences in time. Namely, we differentiate (2.11) formally with

respect to time, multiply the resulting identity by p;, and integrate over Q,, where
0 <t < T, and (formally) by parts. We then arrive at an inequality of the form

1 t t
5 (IO + No.0r 0)17,) + /0 /Q Vdipl® drds + /0 /F Vrdipr*dI ds
t t
+ 0@ [ [ W@loP acas + o [ [ #rprar as
0/ 0oJI
1 4
<, (o)l + 18ipr O)llz,) + 31 (2.30)
j=1

where the expressions [;, 1 < j < 4, will be specified and estimated below. Notice
that all of the terms on the left-hand side are nonnegative. At first, using (A1), (A2),
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the trace theorem, and the fact that u}. € %,q4, we find that

lp: )l = 1 Apo — @(e) B (po) — (o) + pog'(po)llr < C.

10:0r )z < llonpollz + 1Arpo, — @) B (o) — 7r (o) + uf-(0) ||z < C.

(2.31)
Next, recalling (2.15) and (2.22), we have that
t
I = —//ﬂ/(P) lo? dxds < C, (2.32)
0Je
as well as, by also using Young’s inequality,
t
i= [ [ @at =0 8o bipr aras < . (2.33)
oJr
In addition, since p g”(p) < 0, it turns out that
t
bi= [ [ ng@lpPacas <o, (2.34)
0Jg

The estimation of the remaining term

t
I :=//urg’(p)prdxds
0J02

is more delicate. To this end, we use the identity (cf. (2.9))

me = (1+28(0) (A — g’ (p) po).

where, obviously, 1/(1 4+ 2g(p)) < 1. Substitution of this identity and integration
by parts yield that

! 1 ’ /
b= [ (8= 1800150 pdas

__[ g'(p) pi TEE?
= —/O/QVH(S)-V(l_i_zg(p))dxds —/0 91+2g(p)u|p,| dxds,
(2.35)

where the second summand on the right is obviously nonpositive. We thus obtain
the inequality

t t
I < c//wmwmdxds + c//wmwm ol dxds = Jy +Jy
0J02 0J8R2
(2.36)
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Obviously, owing to Young’s inequality and (2.18), we infer that

1 t
Ji < / / Vo> dxds + C. (2.37)
4 JoJo

On the other hand, thanks to Holder’s and Young’s inequalities, we also have that

t
Jr < C/O IV 2 Vo) lla [lo(s)]l4 dxds

A

1 t t
< o[ e + ¢ [ 1961 19001 o

IA

1! '
C + 4//Q|Vpr|2dxds + C/ IV () IV o()[15 ds. (2.38)
0 0

The last integral cannot be controlled in this form. We thus try to estimate
the expression ||Vp(s)|[5, in terms of the expressions [|3;0(s) ||, and [|3;0r (5)[|7,.
which can be handled using the first summand on the left-hand side of (2.30). To this
end, we use the regularity theory for linear elliptic equations and (2.29) to deduce
that

VeI < C(lp@I5 + 114pM)7) < C(1 + 14p()IIF) - (2.39)

We now multiply, just as in the second estimate above, (2.11) by ¢(a) 2’ (p(s)), but
this time we only integrate over §2. We then obtain, for almost every s € (0, 1),

lo@) K (oD + lo@ K (or)IE, + (@) /Q W' (p(s)) [V p(s) P dx
+ @) / W (or (s)) [V pr(s)P I
r
- /9 (@) K (p(s)) (—p(s) — 7(p(s)) + () &' (o(s)) dx
4 /F 0@ K (pr(5)) (=0upr(s) — wr(pr () + dui(s) AT (2.40)

whence, thanks to the already proven estimates and to Young’s inequality,

lloe) B (p)7 + llpe) B (pr ), = C (1 + 13:p(5) I3 + 1805 ()17, )

fora.e.s € (0,1). (2.41)
Comparison in (2.11) then yields that

IApI7 < C(1+ 1007 + [10pr (97.) forae.se (0,0).  (2.42)
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Combining the estimates (2.36)—(2.42), we have thus shown that

1 t t
ho= ot [ [ pdasas + ¢ [ 19RO (0O + 100 1) drds.
(2.43)

where the mapping s — ||V4(s)||% is known to be bounded in L' (0, T), uniformly
with respect to @ € (0, 1]. We thus may combine (2.30)—(2.34) with (2.43) to infer
from Gronwall’s lemma that

”pa||W1-°°(O,T;H)0H1(O,T;V) + ||P‘11"||Wl-w(o,T;Hr)mHl(o,T;vr) <C Vae(0,1].
(2.44)

Therefore, we can conclude from (2.41) and (2.42) that also, for all « € (0, 1],

lo(@) B (0 ooz + llo(@) B (05 oo 0.z + 140" oo .10 < C.
(2.45)

Since we already know from (2.29) the bound for ||p% || co(j0,71;v,-)» we can follow the
same chain of estimates as in the fourth a priori estimate above, eventually obtaining
that

16" oo 070202y + 10F oo 2y < € Ve € (0,1]. (2.46)

SIXTH ESTIMATE:

Next, we multiply (2.9) by u, and integrate over Q;, where ¢ € (0, T]. Recalling
that g(p) is nonnegative, and using Holder’s and Young’s inequalities, we obtain
from (A1) that

t 1 1 t
[ [ asas + 09 < 5 19m0l + ¢ [ [l bl lpd avas
0J82 0J82

o=

IA

c+cAmmmmmmmmwmws

IA

1 t t
C o [ [ axas + [ 1R ne o @.47)

where, owing to (2.44), the mapping s +— |p/(s)||? is bounded in L'(0,7),
uniformly in & € (0, 1]. We thus can infer from Gronwall’s lemma that

Il 0,731y AL 0.73v) < C. (2.48)
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Comparison in (2.9) then shows that also
IAwll20.mm < C, (2.49)
whence, by virtue of standard elliptic estimates,

lll20.mm) < C. (2.50)

Since the embedding (H'(0, T; H) N L*(0, T; H*($2))) C C°([0, T]; V) is continu-
ous, we have thus shown the estimate

I 1 072 n o 0.1y M2 0.mwy = € Ve € (0.1]. (2.51)
Next, we use the continuity of the embedding
(L®(0,T; H) N L*(0,T; V)) C L/3(0, T; L'**(2)),
which, in view of (2.44), implies that

| ||L7/3(0’T;L14/3(m) < C VYae(01]. (2.52)

With this estimate shown, we may argue as in the proof of [6, Thm. 2.3] to conclude
that

||,Ma||Lo<>(Q) < C VYace (O, 1] (253)

Hence, the assertion is completely proved. O

3 Existence and Approximation of Optimal Controls

In this section, we aim to approximate optimal pairs of (4%). To this end, we
consider for « € (0, 1] the optimal control problem

(Zy) Minimize the cost functional _# ((u*, p%, p%-), u}.) for uf. € %sq, subject to
the state system (2.9)—(2.13).

According to [25, Thm. 4.1], this optimal control problem has an optimal pair
((u*, p%, p}.), u$), for every a € (0, 1]. Our first aim in this section is to prove the
following approximation result:

Theorem 3.1 Suppose that the assumptions (Al)—(AS5) are satisfied, and let the

n Un

sequences {a,} C (0, 1] and {u}'} C U be given such that at, \ 0 and u" — ur
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weakly-star in X for some ur € %q. Then it holds, for (u*, p*, p7*) = Sa, (),
nel,

w — w weakly-star in H'(0, T; H) N L*°(0,T; V) N L*(0, T; W) N L*°(Q).

3.1)
0% — p  weakly-starin W (0, T; H)y N H'(0, T; V) N L>®(0, T; H*(2)),

(3.2)

o — pr weakly-starin W"*°(0,T; Hr) N H'(0,T; V) N L0, T; H*(I)),
(3.3)

as well as

() I (™) — &  weakly-star in L°(0,T; H), (3.4)
@(an) B (p7") — &r  weakly-star in L*°(0,T; Hr), (3.5)

where (u,p,pr,& Er) is the unique solution to the state system (1.2)—(1.8)
associated with ur. Moreover, with %y(ur) = (i, p, pr) it holds that

 (Four).ur) < liminf 7 (Lo, @), ), (3.6)
I (Fr),vr) = nlggo I (Fo,(or),vr) Yur € Y. (3.7

Proof Let {o,} C (0,1] be any sequence such that o, Ny 0 as n — o0, and
suppose that uf" — up weakly-star in 2" for some ur € %q. By virtue of
Proposition 2.3, there are a subsequence of {«,}, which is again indexed by n, and
some quintuple (i, p, pr. &, &r) such that the convergence results (3.1)—(3.5) hold
true. In particular, we have w(0) = po and p(0) = po. Moreover, from standard
compact embedding results (cf. [34, Sect. 8, Cor. 4]) we can infer that

u — u strongly in C°(0,T; H) N L*(0,T; V), (3.8)
p% — p strongly in C°(Q), (3.9)

also including
P — pr strongly in C°(X), (3.10)

whence we infer that pr = p|s. Therefore, we obviously have that
W (p®) — W(p) stronglyin C°(Q),for ¥ € {g.g’ 7}, (3.11)

mr(pf") — mr(pr) strongly in C°(X), (3.12)
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and (3.2) implies that d,0% — d,p weakly in L?(X). Further, we easily verify
that, at least weakly in L' (Q),

g(o™) g — g(p) pr, " &' (™) i — g’ (p) pr. 1 &' (™) — pg'(p).
(3.13)

Combining the above convergence results, we may pass to the limit as n — o0
in Egs. (2.9)—(2.13) (written for ¢ = «,) to find that the quintuple (u, p, pr, &, ér)
satisfies Eqgs. (1.2)—(1.4), (1.6), and (1.8). In addition, we have © > 0 in Q, and the
properties in (2.6) are fulfilled. We also notice that the regularities in (2.2)—(2.3)
follow from py € W (cf. (Al)) and the regularity theory for solutions to linear
uniformly parabolic equations with continuous coefficients and right-hand side in
L>®(0,T;H) N L*(0, T; L°(£2)) (comments are given in [24, Section 3, Step 4 and
Remark 3.1]). Then, in order to show that the quintuple (u, p, pr, &, &r) is in fact
the unique solution to problem (1.2)—(1.8) corresponding to u, it remains to show
that £ € d/[—1,17(p) a.e.in Q and &r € d—; (pr) a.e.in X.

Now, recall that & is convex in [—1, 1] and both & and ¢ are nonnegative. We
thus have, for every n € IN,

0< /0 T/gw(an)h(p%)dx e

T T
< [ [oerr@ara+ [ [ p@rem o - axar
0JR2 0JR
forall z € # :={veL*Q):|v] <lae.inQ}. (3.14)

Thanks to (1.13), the first integral on the central line of (3.14) tends to zero as
n — oo. Hence, invoking (3.4) and (3.9), the passage to the limit as n — oo yields

T
//E(p—z)dxdtzo Vze . (3.15)
0J%2

Inequality (3.15) entails that £ is an element of the subdifferential of the extension .%
of Ij—1 1) to L*(Q), which means that £ € 3.7 (p) or, equivalently (cf. [2, Ex. 2.3.3.,
p. 251), & € 0I;—1 11(p) a.e. in Q. Similarly, we can prove that & € 9Ij—1,1)(pr) a.e.
in .

We have thus shown that, for a suitable subsequence of {«,}, we have the
convergence properties (3.1)-(3.5), where (u, p, pr, &, &) is a solution to the state
system (1.2)—(1.8). But this solution is known to be unique, which entails that the
above convergence properties are valid for the entire sequence. This finishes the
proof of the first claim of the theorem.

It remains to show the validity of (3.6) and (3.7). In view of (3.1)—(3.3), the
inequality (3.6) is an immediate consequence of the weak sequential semicontinuity
properties of the cost functional ¢ . To establish the identity (3.7), let v € %4 be
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arbitrary and put (u®", p%, pr') = F4,(vr), for n € IN. Taking Proposition 2.3 into
account, and arguing as in the first part of this proof, we can conclude that .7, (vr)
converges to (i, p, pr) = #(vr) in the sense of (3.1)—(3.3) and (3.8)-(3.10). In
particular, we have

S (r) = Fo(vr)  strongly in C°([0, T]; H) x C°([0, T]; H) x C°([0, T); H).

As the cost functional _# is obviously continuous in the variables (u, p, pr) with
respect to the strong topology of C°([0, T]; H) x C°([0, T); H) x C°([0, T); Hr), we
may thus infer that (3.7) is valid. O

Corollary 3.2 The optimal control problem (22) has a least one solution.

Proof Pick an arbitrary sequence {¢,} such that o, N\ 0 as n — oo. Then, by
virtue of [25, Thm. 4.1], the optimal control problem (Py,) has for every n € IN
an optimal pair ((u%, p*, p7'), us"), where up € Za and (u%, p™, pf) =

S, (U). Since %, is a bounded subset of 2, we may without loss of generality
assume that ”r — up weakly-star in 2" for some up € %q. Then, for the
unique solution (u, p, pr, &, &r) to (1.2)—(1.8) associated with up, we conclude
from Theorem 3.1 the convergence properties (3.1)—(3.7). Invoking the optimality

of ((u*, p, p7*), uf") for (Py,), we then find, for every vy € %q, that
A (. p.pr)ur) = F(Fo(ur),ur) < liminf 7 (S, (uy), uy!

< liminf I (S, (vr),vr) = Jlim I (S, (vr),vr) = _Z(H(vr),vr),
(3.16)

which yields that ur is an optimal control for (&%) with the associate state
(., p, pr, &, &r). The assertion is thus proved. O

Corollary 3.2 does not yield any information on whether every solution to the
optimal control problem () can be approximated by a sequence of solutions to
the problems (Z,). As already announced in the Introduction, we are not able to
prove such a general ‘global’ result. Instead, we can only give a ‘local’ answer
for every individual optimizer of (). For this purpose, we employ a trick due to
Barbu [1]. To this end, let uf € %4 be an arbitrary optimal control for (%), and let
(@, p, pr, E E ) be the associated solution quintuple to the state system (1.2)—(1.8)
in the sense of Theorem 2.1. In particular, (i, p, pr) = Fo(ur). We associate with
this optimal control the adapted cost functional

F((.p.pr).ur) == _Z((w.p.pr).ur) + ”“F Ijlr“il(z) (3.17)

and a corresponding adapted optimal control problem,

(:9\7701) Minimize y((,u,p,pp),up) for ur € %,q, subject to the condition that
(2.9)—(2.13) be satisfied.
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With a standard direct argument that needs no repetition here, we can show the
following result.

Lemma 3.3 Suppose that the assumptions (Al)~(A5), (1.12)~(1.13) are satisfied,
and let a € (0, 1]. Then the optimal control problem (£?,) admits a solution.

We are now in the position to give a partial answer to the question raised above.
We have the following result.

Theorem 3.4 Let the assumptions (Al)—(A5), (1.12)—(1.13) be fulfilled, suppose
that ur € % is an arbitrary optimal control of () with associated state
quintuple (i, p, pr,&,&r), and let {a,} C (0,1] be any sequence such that
an \y 0 as n — oo. Then there exist a subsequence {ay} of {o,}, and, for
every k € IN, an optimal control uoli”" € Uy of the adapted problem (Eja,,k) with

associated state triple (%, p“ pji"k) such that, as k — oo,

u';”k — ur stronglyin L*(X),

(3.18)
the properties (3.1)—(3.5) are satisfied, where(u, p, pr, &, Er)
is replaced by (fi. p. pr. €, €r) and the indexn is replaced by ny, (3.19)
T ((u o pf) uy™) = 7 (o popr).ur). (3.20)

Proof Leta, \( 0 asn — oo. For any n € IN, we pick an optimal control ufl €
yq for the adapted problem (3%,1) and denote by (u%, p*, pf') = S, (uf") the
associated solution triple of problem (2.9)—(2.13) for ¢« = «,. By the boundedness
of %,q, there is some subsequence {o,, } of {&,} such that

uoli”“ — up weakly-starin 2~ as k — oo, (3.21)

with some uy € %,q4. Thanks to Theorem 3.1, the convergence properties (3.1)—
(3.5) hold true, where (u, p, pr, &, &) is the unique solution to the state system
(1.2)—(1.8). In particular, the pair (S (ur),ur) = (K, p, pr),ur) is admissible
for (£).

We now aim to prove that ur = ur. Once this is shown, then the uniqueness
result of Theorem 2.1 yields that also (i, p, pr, €, &) = (@, p. pr. &, &r), which
implies that (3.19) holds true. .

Now, observe that, owing to the weak sequential lower semicontinuity of ¢, and
in view of the optimality property of ((i, p, pr), ur) for problem (%),

oy oy 1 _
timinf 7 (4, o o)) = 7 (o prauer) + ) e = ir s,

o 1 ]
= S p.pr)iir) +  lur —iirl s, (3.22)
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On the other hand, the optimality property of ((u**, p%*, p rk) u rk) for problem
(32% ) yields that for any k € IN we have

T e ) ) = 7 (S )y < F (S (p).iar)
(3.23)

whence, taking the limit superior as k — oo on both sides and invoking (3.7) in
Theorem 3.1,

hm Sup / ((“ank pa”k IOOénk) uank)

k—o00
< F(Solar).ar) = F(.p.pr).ir) = F((@.p.pr)ir).  (3.24)

Combining (3.22) with (3.24), we have thus shown that ! 5 lur — =0,so

’21"”22(2)
that ur = up and thus also (u, p, pr,&,&r) = (i, p, pr, g Ep) Moreover, (3.22)
and (3.24) also imply that

I (@ p,pr)sir) = F (L, p, pr).ar) = liminf 7 ((u%%, p%%, p™), up)
k—>00

= limsup 7 (., p™, o) ™) = Tim 7 (e, o, i) u)

k—o00

(3.25)

which proves (3.20) and, at the same time, also (3.18). This concludes the proof of
the assertion. O

4 The Optimality System

In this section, we aim to establish first-order necessary optimality conditions for
the optimal control problem (4%). This will be achieved by a passage to the
limit as o« ™\ O in the first-order necessary optimality conditions for the adapted
optimal control problems (%) that can by derived as in [25] with only minor and
obvious changes. This procedure will yield certain generalized first-order necessary
optimality conditions in the limit. In this entire section, we assume that /4 is given
by (1.12) and that (1.13) and the general assumptions (A1)—(AS5) are satisfied. We
also assume that a fixed optimal control uf € %4 for (&) is given, along with
the corresponding solution quintuple (i, p, pr, § ép) of the state system (1.2)—
(1.8) established in Theorem 2.1. That is, we have (i, p, or) = “(ur) as well
as £ € 0l 1(p) a.e. inQand & € oI—11j(pr) a.e.on X.
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In order to be able to take advantage of the analysis performed in [25, Sect. 4],
we impose the following additional compatibility condition:

(A6) Itholds that (B4(p(T) — pe) . Bs(pr(T) —pr)) € V.

Obviously, (A6) is fulfilled if B4 = Bs (especially if B4 = fBs = 0) and
(bs2, pr) € V. In view of the fact that always (p(T), pr(T)) € ¥, these conditions
for the target functions pp and pr seem to be quite reasonable.

We begin our analysis by formulating the adjoint state system for the adapted
control problem (f@a) To this end, let us assume that uf. € %, is an arbitrary
optimal control for (f@a) and that (u*, p*, p r) is the solution triple to the associated
state system (2.9)—(2.13). In particular, (u®, p, pf-) = #(u.), the solution has the
regularity properties (2.2)—(2.5), and it satisfies the global bounds (2.15), (2.16), as
well as the separation property (2.14). Moreover, it follows from [25, Thm. 4.2] that
the associated adjoint system

— (14 2g(0") pi — &' (0%) pf p* — Ap* = &' (p*) ¢" + B1(n* — fip)
a.e.in Q, “4.1)

opp® =0 a.e.on X, p“(T)=0 a.e.in £2, 4.2)
—q; — Ag" + (p(@) ' (p%) + 7' (p*) — n* 8" (p")) ¢"

= &' (") pf — pi p*) + Bap” — po) a.e.in Q, (4.3)
Ing” — 04" — Arqr + (p(@) K" (p7) + 7 (b)) 41 = B3(pF — fx),

and ¢7 = q“)‘z, a.e.on X, (4.4)

q*(T) = Pa(p*(T) — p) a.e.in 2. 47(T) = Bs(pr(T) — fr)

a.e.on I’ 4.5)
has a unique solution (p“, g%, g%.) such that
p* € H'(0,T; H) N C°([0,T); V) N L*(0, T: W), (4.6)
q* € H'(0,T; H) N C°([0, T); V) N L*(0, T; H*(2)), .7
q% € H'(0,T; Hr) N C°([0,T); Vi) N L*(0, T; H*(I")). (4.8)

In addition, as in the proof of [25, Cor. 4.3], it follows the validity of the
variational inequality

T
/ /(q(}i + Bou§ + W —ur))(vr —u§) dr dt = 0 Vur € Zq.  (4.9)
oJr
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We now prove an a priori estimate that will be fundamental for the derivation of
the optimality conditions for (£%). To this end, we introduce some further function
spaces. At first, we put

Y:=H'0,T: V)N L*0,T;V), Yr:=HY0,T:V:NL*0,T:Vr),
r

(4.10)
W = (H'(0.T:V*) x H'(0,T; V})) N L*(0,T; ¥), .11
o 2= {0, nr) € ¥ = (1(0), nr(0)) = (0,0)}, (4.12)

which are Banach spaces when equipped with the natural norm of Y x Y. Moreover,
we have the dense and continuous injections ¥ C L?(0,T;V) C L*(Q) C
L*(0,T;V*) C Y* and Yr C L*(0,T;Vr) C L*(X) C L*(0,T; V}) C Y}, where
it is understood that

T
(z,v)y = /0 (z(0), v(1))y dt

forallz € L2(0,T; V*) and v € L*(0,T; V), (4.13)

T
Groorly, = [ Gro.oro)y, a
0
forallzr € L*(0,T; V) and vr € L*(0,T; Vr). (4.14)

We also note that the embeddings ¥ C C°([0,T];: H) and Y C C°([0,T]; Hr)
are continuous. Likewise, we have the dense and continuous embeddings % C
L*(0,T; %) C L*(0,T;H x Hr) C L*(0,T; 7*) C #*, as well as the continuous
injection # C C°([0,T); H x Hr), which gives the initial condition encoded in
(4.12) a proper meaning. Furthermore, since % is a closed subspace of Y x Y, we
deduce that the elements F = (z,zr) € #;* are exactly those that are of the form

(F.(n.nr))w, = @)y + (zr.nr)y,. forall (n.nr) € %, (4.15)
where z € Y* and z;- € Y}.. In particular, for z € L?(0, T; V*) and zr € L*(0, T; V)
the formulas (4.13) and (4.14) apply. Observe that these representation formulas
allow us to give a proper meaning to statements like

(z%,2%) = (z.zr)  weakly in #;*.
In addition to the spaces introduced in (4.10)—(4.12), we also define

P = (L®(0, T; H) x L™(0, T; Hr)) N L*(0, T; ¥), (4.16)

which is a Banach spaced when endowed with its natural norm.
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We have the following result.

Proposition 4.1 Let the general assumptions (Al)—(A6), (1.12)—(1.13) be satisfied,
and let

A" A7) = (p(@) h"(p") g% . p(@) K" (p}) qF) Vo € (0,1]. (4.17)

Then there exists a constant K5 > 0, which depends only on the data of the system
and on R, such that for all a € (0, 1] it holds

”pa”H‘(O,T;H)ﬂC"([O,T];V)ﬁLz(O,T;W) + OIEfLXT (”qa(t)”H + ||f]7"(f)||Hr)

+ 16" gD o riry + 1A% AP Ly + [P 0g7) | = K5 (418)

Proof In the following, C > 0 denote positive constants that may depend on the data
of the system but not on o € (0, 1]. We make repeated use of the global estimates
(2.15) and (2.16) without further reference.

First, we add p* on both sides of (4.1), multiply the result by —p¥, and integrate
over £2 x (t,T), where t € [0, T). Using the fact that p*(T) = 0, we obtain the
inequality

T
1
[ [ prreases + S0 < n+ b, @.19)
tJQ

where the quantities [;, 1 < j < 3, are specified and estimated below. At first,
Young’s inequality yields that

T
I = —/t/g(p“ + Bi(p* — f1p)) pf dxds

1 T T
5// |p*>dxds + C + C// |p*|? dxds. (4.20)
t J2 t J2

Likewise, we have that

T 1 T T
- —//g/(p”)q“p?dxds < 5//|pf‘|2dxds + c//|q”|2dxds.
t JR2 t JR2 t JR2

421

IA

Moreover, by also invoking Holder’s inequality and the continuity of the embedding
V C L*(R2), we deduce that

fo= = [ [ @y prasas = ¢ [ IEOI IO O

I/\

[ / pe P duds + C / o)1 1) 12 ds. 4.22)
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where the mapping s > [p%(s)[|? is bounded in L'(0, T) uniformly with respect
toa € (0, 1].

Next, we multiply (4.3) by ¢“ and integrate over §2 x (¢, 7], where ¢ € [0, T).
Taking (4.4) into account, we obtain the identity

1 T T
O + Ik 0lF,) + [ [ 19 avas + [ [ 19rgPar as
t t
T T
+/memwm%mw+/[WMMWM#mrw
t t I
1
= (14Dl + 165T1,)
T T
4 / /Q (1 " (0 — 7' (o) |g* [ deds + / /Q Ba(o™ — po) ¢* dds
t t
T T
~ [ [ iarraras + [ [ ot - ps) i avas
t JI t JI
T T
+//g’(p°‘)uo‘pf‘ q* dxds — //g’(p“)u‘;‘p“ q” dxds. (4.23)
t JR2 t JR2

Since @(a)h” > 0, all summands on the left-hand side are nonnegative.
Moreover, invoking (4.5) and Young’s inequality, it is readily seen that the first five
summands on the right-hand side are bounded by an expression of the form

T T
C(l + //Iq"lzdxds + //|q§i|2drds). (4.24)
t JR2 t JI

It thus remains to estimate the last two summands on the right-hand side,
which we denote by J; and J;, respectively. By virtue of Holder’s and Young’s
inequality, we first have that

T
Ji < C/ 2% (oo llpF ()12 llg* ()12 ds
t

1 T T
< //|p‘;‘|2dxds + C//|q“|2dxds, (4.25)
5 Je  Je

while, also using the continuity of the embedding V C L*(£2),
T
52 = [ I O 16 O I ) s
t

1 T T
<, / la* @I} ds + € / i (I 1P (17 ds (4.26)
t t
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where the mapping s > [|u%(s)||% is known to be bounded in L! (0, T), uniformly
in ¢ € (0, 1]. Therefore, combining the estimates (4.19)—(4.26), we obtain from
Gronwall’s lemma, taken backward in time, the estimate

16 0y + max (I Ollv + g* @l + Ig-©)lnr)
+ 16" 4P 20709 = C. (4.27)
Now, observe that

t
2
€017y = €[ [ 1657 1P v

T
<c /0 o) 12 Ip(s) 2 ds < C.

Thus, by comparison in (4.1), we find out that [|Ap®|[;2() < C, whence, by virtue
of (4.2) and standard elliptic estimates,

lIp* 20w = C- (4.28)

Next, we derive the bound for the time derivatives. To this end, let (n,nr) €
#, be arbitrary. Using the continuity of the embeddings ¥ C C°([0, T]; H) and
Yr C C°([0, T]; Hr), and invoking the estimate (4.27), we obtain from integration
by parts that

T T
((0:9%, 3:qT), . 1r)) oy = /O/Qq?‘ndxdﬂr /O/F?)rq‘}‘« nrdl” dt
= [¢@um e+ [ rmar
2 r

T T
- / (0. ©)y df — / O (). ¢(0))y,. dr
0 0

= Ng*Dlle In(Mlle + g7 D llay lnr (Dl

+ [0 @l g ©llv e + /0 T||amr<r)||v; g )lv d.
whence
(9%, 0:qT). (0. 01))
< € max (1Nl + Inr @) )

+ Cl@”. a2 0.9 (Inellz20.r:v) + 19 Iz zsvr*y) < C UL 1)l -
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We thus have shown that
1@:g%, 3:gT )l =< C. (4.29)

Now, let (1, nr) € #; be arbitrary. We define the functions

vf = (ug (") — 7' (p%)) ¢ + (I Inpy.  v§ = —g (0" p”,
w = = (p})qT - (4.30)

Multiplying (4.3) by 1, and invoking (4.4), we then easily infer the identity

T T
(A% A7), (1.0r)) = //A“ndxdt+ //A;i nrdl dt
0J82 0JrI

T T
=//nf1§'dxdt+//nr8tq‘}‘~
0J2 0JI
T T
—//an-vndxdt—//qu(}—--V['ﬂdedt
0J2 0JI

T T T
—i—//v‘l’r)dxdt—i—//vgndxdt—i-//wo‘npd]"dt
0Je 0Je oJr
T T
[ [ o~ poravar + [ [ g - psrarar (431
0Je oJr

Now, observe that v¥ and w® are known to be bounded in L*(Q) and in L*(X),
respectively, uniformly in o € (0, 1]. Also, using the continuity of the embedding
H?(£2) C L>(£2), we have that

T T
[0 /Q W ndrdt < C /0 1 Ol 170 2 10 oo d

= € max IOl 1147 1220 1P N2 031220 = Climlly - (4.32)

Therefore, taking (4.27) and (4.29) into account, we have shown that
I A8 e < C (4.33)

This concludes the proof of the assertion. O

After these preliminaries, we are now in a position to establish first-order
necessary optimality conditions for (£)) by performing a limit as a ~\ 0 in the
approximating problems. To this end, recall that a fixed optimal control iy € %
for (Z), along with a solution quintuple (i1, p, pr, &, &) of the associated state
system (1.2)—(1.8) is given.
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Now, we choose an arbitrary sequence {o,} such that o, \( 0 as n — oc0. By
virtue of Theorem 3.4, we can find a subsequence, which is again indexed l,)l n,
such that, for any n € IN, we can find an optimal control u‘}i” € YUaa for (Zy,)
with associated state triple (u®, p®, pi*) that satisfies the convergence properties
(3.18)—(3.20). From [34, Sect. 8, Cor. 4], without loss of generality we may assume
that

pu — i strongly in C°([0, T); L7 (£2)) for 1 <p <6, (4.34)

p% — p strongly in C°(Q), Py — pr strongly in c’(2), (4.35)
which entail that

W(p™) — W(p) stronglyin C°(Q) for ¥ e {g.g.g" m 7'} (4.36)

Wr(pfr) — Wr(p) stronglyin C°(X) for ¥r € {np, 7} }. (4.37)

Moreover, thanks to Proposition 4.1 and to [34, Sect. 8, Cor. 4], we may assume
that the associated adjoint variables (p®, g, q7") satisfy

p* — p  weakly-starin H'(0,T; H) N L®(0,T; V) N L*(0, T; W)

and strongly in C°([0, T]; L7 (2)) for 1 <p < 6, (4.38)
(q*",q7) — (g.qr) weakly-starin %, (4.39)
(g™, 0iq7") — (3,q,diqr) weakly in #* (4.40)
(A%, ATy — (A, Ar) weakly in 7", (4.41)

for suitable limits (p, ¢,qr) and (A, Ar), where A € Y* and A € Y7, as explained
around (4.15). Obviously, (4.38) implies that d,p = 0 almost everywhere on X' and
p(T) = 0 almost everywhere in §2. Therefore, passing to the limit as n — oo in the
variational inequality (4.9), written for o, n € IN, we obtain that ( p, g, gr) satisfies

T
//(CIF + ,36’11’) (Up —ﬁp)dr dt >0 VYvr € Za. (4.42)
0JIr

Next, we aim to show that in the limit as n — oo a limiting adjoint system for
(P) is satisfied. At first, it easily follows from the convergence properties stated
above that

n n

Ypir = g(P)pi & (™) P p* — &'(p) pip. & (p*) ¢* — &'(P) g,
(4.43)

g(p
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all weakly in L' (Q). It thus follows, by taking the limit as n — oo in (4.1) and (4.2),
that the limits p, g satisfy

—(14+2g(@)pi— &P prp—Ap = g(P) g+ Bi(Li—f1p) a.e.in Q,
(4.44)

dpp=0 aeonX pT)=0 aein £2.
(4.45)

The limiting equation corresponding to (4.3)—(4.5) has to be formulated in a weak
form. To this end, we multiply (4.3), written for «,, n € IN, by an arbitrary (n, nr) €
#, and integrate the resulting equation over Q. Integrating by parts with respect to
time and space, and invoking the endpoint conditions for ¢ and g, as well as the
zero initial conditions for (7, nr), we arrive at the identity

T r T
[ [ navar + [ [ agenrar a+ [, q o
0Jo oJr 0

T T T
+/ (0nr @), 47 @) v, dt+//Vq°‘” -Vndxdt+//qu°1T-Vpnp dr dr
0 0Je oJr

// " pdxdr — //va”ndxdt //wo‘”dfdt

= ﬁz//(ﬁa”—PQ)ﬂdxdt+,33//(,op — px)nrdl de

By / (0 (T) — pe) n(T) dx + B / (P (T) — pr)ynr(D)dl . (446)

Now, owing to (4.13)—(4.15), the sum of the first two integrals on the left-hand
side of (4.46) is equal to ((A%, A7), (n.nr))w,, which, by (4.41), converges to
(A, Ar), (n,nr))w. Moreover, it is straightforward to verify (and this may be left
to the reader) that also the remaining integrals in (4.46) converge. We therefore
obtain, for every (n,nr) € %,

T T
(G )1 1)y + [0 B g0}y di + /0 e (). ar )y, di

T T T
+//Vandxdt + //Vrgr'VpﬂrdFdl +//7l’;~(p_1“)qF nrdl dr
0JR2 oJr 0Jr

T
+ / / (') — 8" (3N g + &) (p— fip)] ndrds
0J8R2
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T T
— b2 [ G- bornaxar + pa [ [ Gr ~psyarara
0J82 0Jr

+ By /Q (A(T) — pe) n(T) dx + B /F (Br(T) — pr) nr(T)dT". 4.47)

Next, we show that the limit pair ((A,Ar),(q,qr)) satisfies some sort of a
complementarity slackness condition. To this end, observe that (cf. (4.17)) for all
n € IN we obviously have

T T
//Aa” qan dxdr = //(P(Ofn) h//(pa,,) |qan|2 dxdr > 0.
0J2 0J2

An analogous inequality holds for the corresponding boundary terms. Hence, it is
found that

T T
liminf/0 /Q/\“” g™ dxdr > 0, liminf/O/F)U;i” gpdrdr > 0. (4.48)

n—>oo n—>o0o

Finally, we derive a relation which gives some indication that the limit (A, A1)
should somehow be concentrated on the set where |p| = 1 and |pr| = 1 (which,
however, we cannot prove rigorously). To this end, we test the pair (A%, A") by
the function ((1 —(p*)2) ¢, (1 — (o7)%) ¢p) that belongs to ¥, since (¢, ¢r) is
any smooth test function satisfying

(¢(0).9r(0)) = (0.0), /9(1 — (P (1) dx=0 Vre[0,7]. (4.49)

As h'(r) =2/ (1 —r?) for every r € (—1,1), we obtain that

i ([ T/QW (=) pdsar, [ T/FA‘;" (1 2Py g ar o)

T T
= lim (2//¢(an)q°‘”¢>dxdt, 2//<p(an)q‘;l’¢r dth) = (0,0).
n—00 0/ oJr
(4.50)

We now collect the results established above. We have the following statement.

Theorem 4.2 Let the assumptions (Al)—(A6) and (1.12)—(1.13) be satisfied. More-
over, let ur € %q be an optimal control for (%) with the associated quintuple
(i, p, pr,&,&r) solving the corresponding state system (1.2)—(1.8) in the sense
of Theorem 2.1. Moreover, let {a,} C (0,1] be a sequence with o, \y 0
as n — 00 such that there are optimal pairs (o, pr, p7r), uy") for the
adapted control problem (%, ) satisfying (3.18)—(3.20) (such sequences exist by
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Theorem 3.4) and having the associated adjoint variables (p® ., g, q5"). Then,
for any subsequence {nijrex of IN, there are a subsequence {ny,}¢ew and some
quintuple (p,q,qr, A, Ar) such that

p € H'(0,T; H) N C°([0, T); V) N L0, T; H*(2)),
(q.qr) € Z, (0,9.0qr) € ¥y, (A, Ar) € #(", (4.51)

and such that the relations (4.38)—(4.41) are valid (where the sequences are indexed

by ny, and the limits are taken as { — o00). Moreover, the variational inequality
(4.42) and the adjoint state equations (4.44), (4.45), and (4.47) are satisfied.

Remark 4.3 Unfortunately, we cannot show that the limit quintuple

(p7quF7A17A'F)

solving the adjoint problem associated with the optimal pair
((/*_Ls ﬁv /31“7 és E})s ﬁr)

is unique. Therefore, it may well happen that the limits differ for different
subsequences. However, it turns out that for any such limit (p,q,qr,A,Ar) the
component g should satisfy the variational inequality (4.42).
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Abstract We prove the existence of multiple solutions for a quasilinear elliptic
equation containing a term with natural growth, under assumptions that are invariant
by diffeomorphism. To this purpose we develop an adaptation of degree theory.
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are Carathéodory functions such that:

(hy) for every R > O there exist fg > 0 and vg > 0 satisfying
VR fA(xas)fﬁRa IB(X,S)| SIBRv |g(x,s)| SﬂR ISI’

fora.e. x € Q and every s € R with |s| < R.

The existence of a weak solution u € Wé’z(Q) N L*®(2) of (1.1), namely a
solution of

/ [A(x, u)Vu - Vv + B(x, u)|Vul? v] dx = / gx, u)vdx
Q Q
forany v € Wé’z(Q) NL*®(Q), (1.2)

follows from the results of [6, 7], provided that a suitable a priori L°°-estimate
holds, possibly related to the existence of a pair of sub-/super-solutions (see
e.g. [6, Théoreme 2.1] and [7, Theorems 1 and 2]). Moreover, each weak solution
u € Wé’z(Q) N L°*°(L2) is locally Holder continuous in €2 (see e.g. [10, Theorem
VIL.1.1]).

The existence of multiple solutions, in the semilinear case and under suitable
regularity assumptions, has also been proved for instance in [2]. Here we are
interested in the existence of multiple nontrivial solutions, as (4;) implies that
g(x,0) = 0, under assumptions that do not imply an a priori W!*-estimate. Let
us state our main result.

Theorem 1.1 Assume (hy) and also that:

(hy) there exist M < O < M such that
gx,M) > 0> g(x,M) fora.e.x € Q;

(h3) the function g(x, ) is differentiable at s = 0 for a.e. x € Q2.

Consider the eigenvalue problem

—div[A(x,0)Vu] — Dyg(x,0)u = Au in 2,

u=20 on oY, (1.3)

and denote by (A), k > 1, the sequence of the eigenvalues repeated according to
multiplicity.

If there exists k > 2 with Ay, < 0 < Ayy1 and k even, then problem (1.2) admits
at least three nontrivial solutions uy, uy, uz in Wé’z(Q) N L*°(2) N C(2) with

up <0in2, up>0in2, us3sign-changing.
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If A is constant and B = 0, the result is essentially contained in [3, 15], which in turn
developed previous results of [4]. Actually, in those papers it is enough to assume
that A, < 0, because in that case (1.2) is the Euler-Lagrange equation of a suitable
functional and variational methods, e.g. Morse theory, can be applied.

In our case there is no functional and also degree theory arguments cannot be
applied in a standard way, because of the presence of the term B(x, u)|Vu|?. Let us
point out that our assumptions do not imply that the solutions u of (1.2) belong to
W12 (Q), so that the natural growth term B(x, u)|Vu|? plays a true role.

Let us also mention that our statement has an invariance property.

Remark 1.2 Let ¢ : R — R be an increasing C?-diffeomorphism with ¢(0) = 0.
Then the following facts hold:

(a) the functions A, B and g satisfy the assumptions of Theorem 1.1 if and only A?,
B? and g?, defined as

AP (x,5) = (¢"(9)* Ax, 0(9)) .
B?(x,5) = ¢'(5)¢" (5)A(x, 9(5)) + (¢"()*B(x, 9(5)) ,
87 (x.5) = ¢ ()g(x. ¢(5)) .

do the same; in particular, we have

A?(x,0) = (¢'(0)*A(x,0),  Dyg*(x,0) = (¢'(0))’ Dyg(x,0):

(b) afunction u € WS’Z(Q) N L*®(R) is a solution of (1.2) if and only if ¢! (u) is
a solution of (1.2) with A, B and g replaced by A?, B and g¥, respectively.

From the definition of BY we see that the term B(x, u)|Vu|? cannot be omitted in the
equation, if we want to ensure this kind of invariance.

When (1.2) is the Euler-Lagrange equation associated to a functional, the
question of invariance under suitable classes of diffeomorphisms has been already
treated in [14], where it is shown that problems with degenerate coercivity can be
reduced, in some cases, to coercive problems.

In the next sections we develop an adaptation of degree theory suited for our
setting and then we prove Theorem 1.1 by a degree argument. Under assumptions
that are not diffeomorphism-invariant, a degree theory for quasilinear elliptic
equations with natural growth conditions has been already developed in [1]. Here
we find it more convenient to reduce Eq. (1.2) to a variational inequality possessing
as obstacles a pair of sub-/super-solutions, according to an approach already
considered for instance in [12].
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2 Topological Degree in Reflexive Banach Spaces

Let X be a reflexive real Banach space.
Definition 2.1 A map F : D — X', with D C X, is said to be of class (S) + if, for

every sequence (uy) in D weakly convergent to some u in X with

limsup (F(uy), uy —u) <0,
k

it holds ||uy — ul| — 0.

More generally, if T is a metrizable topological space, a map H : D — X', with
D C X x T, is said to be of class (S)+ if, for every sequence (i, #;) in D with (uy)
weakly convergent to u in X, (#;) convergent to ¢ in T and

lim sup (Hy, (ug), ux —u) <0,
k

it holds |juy — u|| — 0 (we write H,(u) instead of H(u, t)).

Assume now that U is a bounded and open subset of X, F : U — X’ a bounded and
continuous map of class (S)4+, K a closed and convex subset of X and ¢ € X’'. We
aim to consider the variational inequality

uek,

2.1
(F(u),v—u) > (¢, v — u) Vv eKk.

Remark 2.2 Tt is easily seen that the set
{u € U: wisasolution of (2.1)}
is compact (possibly empty).
According to [8, 11, 13], if the variational inequality (2.1) has no solution u € U,
one can define the topological degree

deg((F,K),U,¢) € Z.

Let us recall some basic properties.

Proposition 2.3 If (2.1) has no solution u € U, then

deg((Fv K)v U, (p) = deg((F - ¢, K)v U, 0)
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Proposition 2.4 If (2.1) has no solution u € dU, uy € X and we set

U ={u—uy: ueU},

K ={u—u: uek},
F(u) = F(uo + u)
then
deg((F.K).U. p) = deg((F.K). U.9).

Theorem 2.5 If (2.1) has no solution u € U, then deg((F,K), U, ¢) = 0.

Theorem 2.6 If (2.1) has no solution u € dU and there exists uy € KN U such that
(F(v),v —uo) = (¢, v —up) foranyv € KN U,

then deg((F,K), U, ¢) = 1.

Theorem 2.7 If Uy and U; are two disjoint open subsets of U and (2.1) has no
solutionu € U \ (Uy U Uy), then

deg((Fv K)v U, (p) = deg((Fv K)v UOv 90) + deg((F7 K)v Ulv QD) .

Definition 2.8 Let K}, K be closed and convex subsets of X. The sequence (Ky) is
said to be Mosco-convergent to K if the following facts hold:

(a) if ki — oo, uy; € Ky, for any j € N and (uy;) is weakly convergent to u in X,
thenu € K;

(b) for every u € K there exist k € N and a sequence (u;) strongly convergent to u
in X with u; € K; for any k > k.

Theorem 2.9 Let W be a bounded and open subset of X x [0,1], H : W — X' be
a bounded and continuous map of class (S)+ and (K;), 0 < t < 1, be a family of
closed and convex subsets of X such that, for every sequence (t;) convergent to t in
[0, 1], the sequence (K, ) is Mosco-convergent to K,.

Then the following facts hold:

(a) the set of pairs (u,t) € W, satisfying

MEKt,
(Hf(u)sv_u> = (‘va_u) Vo GK[,

2.2)

is compact (possibly empty);
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(b) if the problem (2.2) has no solution (u,t) € dxxp,1) W and we set
Wy={ueX: (ut) e W},

then deg((H;, K;), W;, @) is independent of t € [0, 1].

Proof If (ug, t;) is a sequence in W constituted by solutions of (2.2), then up to a
subsequence (uy) is weakly convergent to some u in X and () is convergent to some
tin [0, 1]. Then u € K, and there exists a sequence (i) strongly convergent to « in
X with iy, € K,,. It follows

(Hy (ur), up — u) = (Hy, (ur), e — u) + (Hy, (), ug — i)
=< (ka(uk)’ itk - M) + (@s Up — itk) )
whence

lim sup (Hy, (ug), ux —u) < 0.
k

Then ||ux — u|| — 0 and (u,f) € W. For every v € K; there exists a sequence (vy)
strongly convergent to v in X with v; € K. From

(Hy (i), v — u) > (@, vp — ug)
it follows
(Hi(w), v —u) = (@, v —u)

so that the set introduced in assertion (a) is compact.

Assume now that the problem (2.2) has no solution (u,f) € dxxp,1y W. It is
enough to prove that {¢ — deg((H;, K;), W;, ¢)} is locally constant.

Suppose first that K; # @ for any ¢ € [0, 1]. By Michael selection theorem (see
e.g. [5, Theorem 1.11.1]) there exists a continuous map y : [0, 1] — X such that
y(t) € K; for any ¢ € [0, 1].

If we set

~

W ={u-—y®.0): Ww.neWwy,
K =lu-y@: uek},
Hy(uw) = Hi(y () + u)

then W, K, and H satisfy the same assumptions and

deg((H,.K,), W,,9) = deg((H,, K,), Wy, )



Nontrivial Solutions of Quasilinear Elliptic Equations 189

by Proposition 2.4. Moreover 0 € K, for any ¢ € [0, 1]. Therefore we may assume,
without loss of generality, that O € K, for any ¢ € [0, 1].
Given r € [0, 1], there exist a bounded and open subset U of X and § > 0 such that

Ux(t=8t+8Nn[0,1) W
and such that (2.2) has no solution (u, t) in
WA\ (U x[t—6,t+8])
with7 —§ < 7 <t + §. From Theorem 2.7 we infer that
deg((H..K,;), W,, ) = deg((H,.K.),U,p)  foranyrt e [t—8,t+§].

From [11, Theorem 4.53 and Proposition 4.61] we deduce that {t +— deg((H:, K-),
U, )} is constanton [t — §,1 + §].

In general, given ¢ € [0, 1], let us distinguish the cases K; # @ and K, = @.

If K, # 0, by the Mosco-convergence there exists § > 0 such that K, # @ for
any t € [t—4, 1+ §]. By the previous step we infer that {t — deg((H., K:), W, ¢)}
is constant on [r — &, + §].

If K, = @, from Theorem 2.5 we infer that deg((H;, K;), W;,¢) = 0.
Assume, for a contradiction, that there exists a sequence (#;) convergent to ¢ with
deg((Hy, Ky ), Wy, 9) # 0 for any k € N. Again from Theorem 2.5 we infer that
the problem (2.2) has a solution (u, ty) € W, in particular u; € K,,, for any k € N.
Up to a subsequence, () is weakly convergent to some u, whence u € K, by the
Mosco-convergence, and a contradiction follows. O

Now let 2 be a bounded and open subset of R”, let T be a metrizable topological
space and let

a:QxRxR"'xT)—>R",
b:QAxRxR'"xT) >R

be two Carathéodory functions. We will denote by || ||, the usual norm in ¥ and
write a,(x, s, £), b,(x, s, §) instead of a(x, (s, €, 1)), b(x, (s,&,1)).

In this section, we assume that a, and b, satisfy the controllable growth conditions
in the sense of [10], uniformly with respect to 7. In a simplified form enough for our
purposes, this means that:

(UC) there exist p €]l,00[, @ € LY(Q), «® € I/(Q), B > 0and v > 0
such that

|a(x,5.8)] <aV@) +BIsP + BIEPT,
|b(x,5.8)] <aV@) +BsP + BIEPT,
ar(x,s,€) - £ > v|EP —a @) — BlsP,

fora.e x € Q and everys € R, § € R", t € T; such a p is clearly unique.
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It follows

a,(x,u, Vu) € IV’ (Q)
bi(x,u, Vu) € I’ () € W7 (Q)

forany 7 € T and u € W," ()
and the map H : Wé’p(Q) x T — W' (Q) defined by

H,(u) = —div [a,(x, u, Vu)] + b;(x, u, Vu)
is continuous and bounded on B x T, whenever B is bounded in Wé 7(Q).

Theorem 2.10 Assume (UC) and also that:
(UM) we have

a5 —atxs.§)] - €= >0
fora.e. x € Q and every s € R, §,§ eR", teT, withé # é

Then H : Wé’p(Q) x T — W' (Q) is of class (S) +.
Proof See e.g. [13, Theorem 1.2.1]. O

3 Quasilinear Elliptic Variational Inequalities with Natural
Growth Conditions

Again, let Q2 be a bounded and open subset of R"” and let now
a:2x(RxR") - R",
b:2x(RxR") >R

be two Carathéodory functions. In this paper we are interested in the case in which
a and b satisfy the natural growth conditions in the sense of [10]. More precisely,
we assume that:

(N) there exist p €]1,00[ and, for every R > 0, ozl(eo) e LY(Q), 0‘1(el) e I/'(Q),
Br > 0 and vg > 0 such that

la(x, s, £)] < oy’ (x) + Br 6",
b(x, s, )| < ol (0) + Br &),

a(x,s,£)-£ > v |EF — o (x),

for a.e. x € Q and every s € R, § € R" with |s| < R; such a p is clearly
unique;
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(M) we have
[ate.5.6) = atr5.H)] - € =6 >0

fora.e. x € Q and every s € R, §,§ e R" with § # é
Then we can define a map
F: W (Q) NL®(Q) - W7 (Q) + LY(Q)
by

F(u) = —div [a(x,u, Vu)] + b(x,u, Vu) .

Remark 3.1 Assume that & and b also satisfy (N) and (M). An easy density
argument shows that, if
/ [a(x, u, Vu)-Vu+b(x,u, Vu) v] dx = / [&(x, u,Vu)-Vu —H;(x, u, Vu) v] dx
Q Q

forany u € Wé’p(Q) N L*®(22) and any v € C°(R),

then

/ [a(x, u, Vu)-Vu+b(x,u, Vu) v] dx = / [&(x, u,Vu)-Vu —H;(x, u, Vu) v] dx
Q Q

for any u € Wy ¥ () N L®(2) and any v € W (R2) N L®(R).

Consider also a p-quasi upper semicontinuous function u# : 2 — R and a p-quasi
lower semicontinuous function 1 : 2 — R, and set

K= {u e WP Q) NL®(Q): u<it <up-qe.in Q} :

where u is any p-quasi continuous representative of u (see e.g. [9]).
We aim to consider the solutions of the variational inequality

uek,
/ [a(x, u,Vu) - V(v —u) + b(x,u, Vu) (v — u)] dx >0 Vi)
Q
foreveryv € K.

We denote by Z(F, K) the set of solutions u of (VI). We will simply write Z", if
no confusion can arise.



192 M. Degiovanni and A. Pluda

For every u € K, we also set

T.K = {v € Wé’”(Q) NL®(Q): © >0 p-q.e.in {it = u} and
v <0 p-qe.in{u=u};.
Proposition 3.2 A function u € K satisfies (VI) if and only if
/Q [a(x, u, Vu) - Vo + b(x, u, Vu) v] dx >0 foreveryv € T,K .

Proof Assume that u is a solution of (VI) and let v € T,K with v < 0 a.e. in 2.
Since max{k(ux — i), v} is a nonincreasing sequence of nonpositive p-quasi upper
semicontinuous functions converging to v p-q.e. in £2, by Dal Maso [9, Lemma 1.6]
there exists a sequence (v;) in Wo”(S2) converging to v in W,” () with 7 >
max{k(u—1u), v} p-q.e. in . Without loss of generality, we may assume that 0 < 0
p-q.e.in .

Then it follows that u + ,i v, € K, whence

/ [a(x, u, Vu) - Vo + b(x, u, Vu) vk] dx > 0.
Q
Going to the limit as k — oo, we get
/ [a(x, u,Vu) - Vv + b(x, u, Vu) v] dx>0.
Q

Ifv e T,K with v > 0 a.e. in €2, the argument is similar. Since every v € T,K can
be written as v = v — v~ with v+, —v™ e T, K, it follows

/ [a(x, u,Vu) - Vv + b(x, u, Vu) v] dx>0 foreveryv € T,K .
Q

Since K C u + T,K, the converse is obvious. O
We are also interested in the invariance of the problem with respect to suitable
transformations.

Let us denote by ® the set of increasing C?-diffeomorphisms ¢ : R — R such
that ¢(0) = 0 and by ® the set of C'-functions ¢ : R —]0, +o0].

For any ¢ € ® and ¥ € ®, we define

F*, Fy: W,"(Q) N LP(Q) — W '7'(Q) + L' (Q)
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by
Fo(u) = Flo)) . Fo(u) =0 (u) F(u).
If we define the Carathéodory functions
a?,ay : 2 x (RxR") - R", b, by : QA x (RxR") - R

by

a’(x,s5.§) = ¢'(s) a(x, ¢(s). ¢’ ()§) ,

bo(x,5.8) = ¢"(s) alx. ¢(5), ¢"(5)) - £ + ¢'(5) b(x, ¢(5). ¢ (5)§) ,

Cl&(X, S, %‘) = 19(S) a(xs S, %‘) s
by(x,5.8) = V' (s)alx,s,.€) - & + P (s) b(x,s.§).
it easily follows that
F?(u) = —div [a® (x, u, Vu)] + b?(x, u, Vu),
Fy(u) = —div[ay(x,u, Vu)] + by (x,u, Vu) .
We also set u¥ = ¢ '(u) and, given a set E of real valued functions, E¥ =

{u?: uekE}.
It is easily seen that

@)V = a*", (as)o = ape W)V = uv,

forevery ¢,y € ® and 9,0 € ©.
We also say that (a, b) is of Euler-Lagrange type, if there exists a function

L:QxRxR'"—=R

such that

(a) {x+— L(x,s, &)} is measurable for every (s, §) € R x R";
(b) {(s,£) — L(x,s,£)}is of class C' fora.e. x € Q;
(c) we have

a(x,s,§) = VeL(x,s,§), b(x,s, &) = DgL(x,s,§),

fora.e. x € Q and every (s,§) € R x R™.
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Taking into account Proposition 3.2, the next two results are easy to prove.
Proposition 3.3 For every ¢ € ®, the following facts hold:

(a) the functions a?, b? satisfy (N) and (M) with the same p;
(b) we have

K¢ = {u € Wé’p(Q) NL®(Q): u’ <iu<u’ p-gq.e.in Q}

and u? : Q — R is p-quasi upper semicontinuous, while u¥ : Q@ — R is p-
quasi lower semicontinuous (here we agree that ¢(—o0) = —oo and p(+00) =
+00);
(c) u is a solution of (VI) if and only if u® is a solution of the corresponding
variational inequality with a, b and K replaced by a?, b¥ and K¢, respectively;
(d) the pair (a, b) is of Euler-Lagrange type if and only if the pair (a?, b¥) does the
same; moreover, if L is associated with (a, b), then

L?(x,s,&) = L(x, ¢(s), ¢'(5)€)

is associated with (a?, b?).
Proposition 3.4 For every § € O, the following facts hold:

(a) the functions ay, by satisfy (N) and (M) with the same p;
(b) uis a solution of (VI) if and only if the same u is a solution of the corresponding
variational inequality with a and b replaced by ay and by, respectively.

Remark 3.5 Let ¢ € ® with ¢’ nonconstant, let w € L*(Q) and let a(x, s, §) =

¢' (), b(x,5.8) = —w(x).
Then (a, b) is not of Euler-Lagrange type. However, if we take 9(s) = ¢’(s),
then (ay, by ), which is given by

ap (0,5,6) = [ G)E, by (x.5.8) = @' ($)@" ()EP = w0’ (5),
is of Euler-Lagrange type with
L(x,s,§) = ; [ OPIEP —w0e(s) .

Therefore the property of being of Euler-Lagrange type is not invariant under the
transformation induced by ¢, which plays in fact the role of “integrating factor”. By
the way, if then we take ¥ = ¢~ !, we get

(d&)w(.x, s, E) = %‘ s (bﬂ)w(-xv s, E) = _W(-x) )
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which are simply related to
L.
Lix.s5.8) =, §" = w(0)s.

Proposition 3.6 For every R > 0 there exist 1,1, € © and ¢ > 0, depending only
on R, Bg and vg, such that

by, (x.5.€) < cal (x),
by, (x,s,€) > —c Oél(eo)(x),

fora.e. x € Q and every s € R, £ € R" with |s| <R.

Proof 1f we set ¥ (s) = exp(ys) with y vg > Bg, we have
by(x,s.§) = [y a(x,s.§) - § + b(x, s, §)] exp(ys)
= [y vrlel =y ") — o () — Br lgl” | exp(ys)

> —(y + exp(yR) oy (x),

whence the existence of ¥,. The existence of #; can be proved in a similar way. O

4 Quasilinear Elliptic Variational Inequalities with Natural
Growth Conditions Depending on a Parameter

Again, let 2 be a bounded and open subset of R"” and let now T be a metrizable
topological space and
a:Qx(RxR"'xT) —>R",
b:QxRxR'"xT) >R

be two Carathéodory functions satisfying (N) and (M) uniformly with respect to
teT.
More precisely, we assume that a, and b, satisfy (UM) and:

UN) there exist p €]1,00[ and, for every R > 0, o e LU(Q s oV e /(@ s
ry R R
Br > 0 and vg > 0 such that

lai(x, s, £)] < ol (x) + Br |EIP",
1b:(x.5.8)| < o’ () + Br €I,

ax,5,£) & = v |EP —af (v),
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fora.e. x € Q and everys € R, & € R" and t € T with |s| < R; again, such
a p is clearly unique.

Then we can define a map
H: [Wé’”(Q) n L°°(sz)] X T — [W‘l”’/ @) + Ll(sz)]
by
H,(u) = —div [a,(x, u, Vu)] + b,(x,u, Vu) .

Consider also, for each ¢ € T, a p-quasi upper semicontinuous function i, : & — R
and a p-quasi lower semicontinuous function u, : 2 — R, set

K, = {u e W P(Q)NL®(Q) : u, < i < u, p-qe.in sz}

and assume the following form of continuity related to the Mosco-convergence:
(MC) for every sequence (t;) convergent to t in T, the following facts hold:

e if (u) is a sequence weakly convergent to u in WS"’(Q), with u € K;, for
any k € N and (ui) bounded in L*°(R2), then u € K;;

e for every u € K; there exist k € N and a sequence (u;) in Wé’p(Q) N
L*°(2) which is bounded in L°°(2) and strongly convergent to u in
Wé’p(Q), with uy € K, for any k > k.

Then consider the parametric variational inequality

(1) € [WeP(R) NL=®(Q)] x T,
u€ek;,

/ [ar(x, u,Vu) - V(v —u) + b,(x,u, Vu) (v — u)] dx >0 PV
Q

foreveryv € K; .

Theorem 4.1 Let (uy, ty) be a sequence of solutions of (PVI) with (u;) bounded in
L>®(R2) and (t;) convergent to some t in T with K, # .

Then (uy) admits a subsequence strongly convergent in Wé’p(Q) to some u and
(u, 1) is a solution of (PVI).
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Proof Letw € K, and let (wy) be a sequence strongly convergent to w in Wé’p (),
with wy € K, for any k € N and (wy) bounded in L>(2). If we set

T=NU/{oo},
ar(x,s,§) = ay (x, wi(x) + 5, Vwe(x) +§) ,
Qoo (x,5,E) = a;(x, w(x) + 5, Vw(x) + &),
bi(x,5,8) = by (x, w (%) + 5, Vg (x) + £) ,
boo(x, 5, &) = by(x, w(x) + 5, Vw(x) + £),
= u, —we, oo = U, —W,
ﬁk:u,k—wk, Uoo = Uy — W,
ity = ux — W,
and define I?k, I?oo accordingly, it is easily seen that all the assumptions are still
satisfied and now 0 € K. Therefore, we may assume without loss of generality that

0 € K, forany k € N.
Let R > 0 be such that ||ux||cc < R for any k € N. We claim that (u,':) is bounded

in Wé’p (£2). Actually, by Propositions 3.4 and 3.6, we may assume, without loss of
generality, that

bi(x,s,&) > —c ocl(eo)(x) whenever |s| < R.

Then the choice v = —u; in (PVI) yields

0> / [a,,((x, u,j', Vu,j') . Vu,j' + by, (x, u,j', Vu,j') u,j'] dx
Q

> UR/ |Vu,j'|”dx—/ ozl(eo)dx—c/ otl(eo) u,j'dx,
Q Q Q

which implies that (u,j') is bounded in Wé ().
In a similar way one finds that (i) is bounded in Wé 7 (), so that (i) is weakly
convergent, up to a subsequence, to some u in Wé’p(Q) and u € K. Let (z) be a

sequence strongly convergent to u in Wé 7 (Q), with z; € K,, for any k € N and (z;)
bounded in L*°(£2).

Let ¥ : R — [0, 1] be a continuous function such that y(s) = 1 for |s| < R and
¥(s) = 0 for |s| > R + 1. Then, let

a(x,5.8) = Y(s) ar(x,5,8) + (1 — Y (s)) [E]P ¢,
bi(x,5,8) = Y(5) by(x,5.£) .
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It is easily seen that each (uy, ;) is also a solution of (PVI) with a, and b, replaced
by a, and lva,. Moreover, ¢, and l;, satisfy both the assumptions (UN), (UM) and the
assumptions of [1, Theorem 4.2]. In particular, there exist ¢ € L'(Q), 8 > 0 and
v > 0 such that

a(x,5.8) - E=vIEP —a® ), |bi(xs O] < @)+ BIEP

forae.x e Qandeverys e R, § e R"andr e T.

Now, if p < n, the proof of [1, Theorem 4.2] can be repeated in a simplified form,
as (ux) is bounded in L°°(£2). We have only to observe that, if ¢ : R — R is the
solution of

/=14 1.
¢(0) =0,

then there exists T > 0 such that

0 < tsp(s) < s whenever |s| < R + sup ||zkco »
k

so that
uy —to(ur—z) € Ky, forany k € N,

It follows
/ [y, e, ue, Vi) = V(@i — 21)) + by (x, e, Vi) @ — z¢) | dx < 0
Q

and now the proof of [1, Theorem 4.2] can be repeated with minor modifications,
showing that (u;) is strongly convergent to u in Wé’p (). If p > n, the argument is
similar and simpler.

It is easily seen that (u, 7) is a solution of (PVI). O

Remark 4.2 1In the previous theorem the assumption K; # @ is crucial to ensure that
() is bounded in W, ().

Consider Q@ =]0, 1], a;(x,5,§) = &, bi(x,5.§) =0, u, =z—tandu; = z + 1,
where z € C.(]0, 1]) \ Wy (10, 1.

If 4 — 0 with 7 > 0 and (i, ;) are the solutions of (PVI), then the sequence
(uy) is unbounded in Wé’z(Q).
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5 Topological Degree for Quasilinear Elliptic Variational
Inequalities with Natural Growth Conditions

Consider again the setting of Sect.3. Throughout this section, we also assume
that:

(B) the functions u and u are bounded.
It follows that Z™' is automatically bounded in L>°(2).
Theorem 5.1 The set Z'' is (strongly) compact in Wé’p (2) (possibly empty).

Proof If K = @, we have Z'" = {. Otherwise the assertion follows from
Theorem 4.1. O

Definition 5.2 We denote by Z(F, K) the family of the subsets Z of Z*' which are
both open and closed in Z™" with respect to the Wé 7 (§2)-topology. We will simply
write Z, if no confusion can arise.

Fix a continuous function ¢ : R — [0, 1] such that

Yv(s) =1 fors<1, Y(s) =0 fors>2,
then set, for any ¢ € [0, 1] and s € R,
Wi(s) = y(s)) s.
If we consider T = [0, 1] and define
a (x.5.6) = Y(tls)) ale,s.6) + [L = Y tlsD] 517725 .
bl (x.5.6) = W (b(x.5.8))
it is easily seen that a;ﬁ, b}” satisfy (UN) and (UM). Moreover, for every t €]0, 1],

they satisfy (UC), if ¢ is restricted to [z, 1]. In particular, we can define a continuous
map H' : Wy”(2)x]0, 1] - W7/ (Q) by

H,w(u) = —div [a;ﬁ(x, u, Vu)] + b;”(x, u, Vu)

and, by Theorem 2.10, this map is of class (S)4+. We will simply write H, if no
confusion can arise.

Proposition 5.3 For every Z € Z, the following facts hold:
(a) there exist a bounded and open subset U of Wé’p(Q) and t €]0, 1] such that

Z=7"NnU=272"NnU
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and such that the variational inequality (PVI) has no solution (u, t) € dUX|0, 1],
in particular, the degree deg((H,w, K), U, 0) is defined whenever t €]0, ],

(b) if Yo, V1 : R — [0, 1] have the same properties of ¥ and Uy, ty and Uy, t, are
as in (a), then

deg((H. K). Up, 0) = deg((H!".K). Uy.0)
for every t €]0, to] and © €]0, t1];

(c) if a and b also satisfy (N), (M) and

/ [a(x, u, Vu) - Vv + b(x, u, Vu) v] dx
Q

= /Q [&(x, u,Vu) - Vv + lA)(x, u, Vu) v] dx
foranyu € Wé'p(Q) N L%®(Q) and any v € C(Q),
then we have
deg((H! . K),U.0) = deg((H".K).U.0)

foreveryt €]0,1] and T €]0, 7], provided that U, t, U, iareasin (a) with respect
to a,b and a, b, respectively.

Proof By definition of Z, there exists a bounded and open subset U of Wé"” ()
such that

Z=7Z"NU=2Z"NU.

If (u, 1) is a sequence of solutions of (PVI) with u; € dU and 7, — 0, then (1) is
bounded in L*°(2) by (B). By Theorem 4.1, up to a subsequence (i) is convergent
to some u in WS"’(Q) and u is a solution of (VI). Then u € 0U and a contradiction
follows. Therefore, there exists ¢ €]0, 1] such that (PVI) has no solution (u,f) €
adU x [0, t] and assertion (a) is proved.

To prove (b), define

V= (1= w)vo + pyn
and consider H,w . Arguing as before, we find r > 0 with ¢ < tj,j = 0,1, such that

uek,
(H" (), v —u) > 0 Vv ek,
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has no solution with u € (Uy \ Uy) U (U; \ Up), t € [0,f] and p € [0, 1].
From Theorem 2.7 we infer that

deg((H!", K), Uy, 0) = deg((H!, K), Uy N U}, 0),
deg((H,".K). U1.0) = deg((H}" . K). Uo N Uy, 0).

On the other hand, we have

deg((H,K), Uy N Uy, 0) = deg((H',K), Uy N Uy, 0),
deg((H", K), Uy, 0) = deg((H/",K), U, 0) V1 €]0, 1],

deg((H'', K), U,,0) = deg((H"'.K). U;.0) VT €]0, 1],

by Theorem 2.9. Then assertion (b) also follows.
The proof of (¢) is quite similar. O

Definition 5.4 For every Z € Z(F, K), we set
ind((F, K),Z) = deg((H,,K), U,0),

where ¥, U, t are as in (a) and 0 < ¢ < t. We will simply write ind(Z), if no
confusion can arise.

Proposition 5.5 Assume that a and b satisfy, instead of (N), the more specific
controllable growth condition:

(C) there exist p €]1,00], @ € LY(Q), «V € I (Q), B > 0 and v > 0 such that
lax, s, 6) <« x) + Blsl™ + BIEFT",
|b(x,s,6)| <« x) + Blsl™ + BIEFT",
a(x,s,€) - & = v|g) —aP ) — B’

fora.e.x € Q and everys € R, £ € R".

Then the map F : Wé’p (Q) — W (Q) is continuous, bounded on bounded

subsets and of class (S)+. Moreover, if U is a bounded and open subset of Wé’p(Q)
such that (VI) has no solution u € oU and

Z ={ueU: uisasolution of (VI)} ,
then Z € Z and

ind(Z) = deg((F,K), U,0).
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Proof Itis easily seen that this time g, and b, satisfy (UC) and (UM), for t belonging
to all [0, 1].
Then the assertions follow from Theorems 2.10 and 2.9. O

Theorem 5.6 Let Z € Z withind(Z) # 0. Then Z # 0.

Proof Let U and ¢ be as in (a) of Proposition 5.3. If Z = @, from Theorem 4.1 we
infer that there exists ¢ €]0, f] such that (PVI) has no solution (u,?) with u € U.
From Theorem 2.5 we deduce that

ind(Z) = deg((H,,K),U,0) =0

and a contradiction follows. O
Along the same line, the additivity property can be proved taking advantage
of Theorems 2.7 and 4.1.

Theorem 5.7 LetZy,Z, € ZwithZyNZ, = 0. Then Zy U Z, € Z and
ind(Zo U Z)) = ind(Zy) + ind(Z;) .

Theorem 5.8 Let
a:Q2x(RxR"x[0,1]) > R",
b:2x(RxR"x[0,1]) > R

be two Carathéodory functions satisfying (UN) and (UM) with respectto T = [0, 1]
and set

H,(u) = —div [a,(x, u, Vu)] + b,(x,u, Vu) .

Let also, for each t € [0, 1], u, : Q@ — R be a p-quasi upper semicontinuous function
and u; : Q — R a p-quasi lower semicontinuous function, define K, as in Sect. 4
and assume that:

* the functions u,,u; are bounded uniformly with respect to t € [0, 1], we have
K, # 0 for any t € [0, 1] and assumption (MC) is satisfied.

Then the following facts hold:

(a) the set

7 = {(u, 1) € [Wé’p(Q) NL*®(Q)] x [0,1] : (u,1) is a solution of (PVI)}

is (strongly) compact in Wé’p () x [0, 1] (possibly empty),
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(b) lf/Z\ is open and closed in 7" with respect to the topology of WS’I’(Q) x [0, 1]
and

Z = {u e W) NL®(Q) : (u.1) € 2} :
then Z, € Z(H,, K;) for any t € [0,1] and ind((H,,Kt),/Z\,) is independent of
te[0,1].

Proof First of all, the set 7" is compact by Theorem 4.1. To prove assertion (), let
W be a bounded and open subset of W,” (€2) x [0, 1] such that

Z=7"NW=2"NW.

In particular, we have Z e Z(H;, K;) forany t € [0, 1].
Let T = [0, 1] x [0, 1], let
are(x,5, ) = Y(els]) arx,5,8) + [L = ¥ (z|sD] €€,
b (x,5,§) = W (bi(x,5.8))

for (t,7) € T and define
H; . (u) = —div]a, . (x,u, Vu)] + b, (x,u, Vu),
Kt,t == Kt .

It is easily seen that a,, and b, ; satisfy (UN) and (UM) with respect to T, so that
we can consider the problem

(u, (1. 7)) € Wy (Q) NL2(Q)] x T,
uek .,

/ [am(x, u,Vu) - V(v — u) + by (x,u, Vu) (v — u)] dx >0
Q

foreveryv € K; ; .
(5.1

Since [0, 1] is compact, by Theorem 4.1 there exists 7 €]0, 1] such that (5.1) has no
solution (u, (¢, 7)) with (u,¢) € oW and 0 <7 < 1.
By Definition 5.4 we infer that
ind((H,. K,).Z,) = deg((H,..K,),W;,0)  forany‘ € [0, 1]

and the assertion follows from Theorem 2.9. ]
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Remark 5.9 By Theorem 5.8 and Proposition 5.5, ind((F, K), Z) can be calculated
also by other approximation techniques, with respect to the one used in Defini-
tion 5.4.

Theorem 5.10 If K # @, then ind(Z"") = 1.
Proof Define, for0 <t <1,

ai(x,s,§) = ta(x,s.§) + (1 — 1) [E]¢,
bi(x,5,8) =tb(x,s,£).

It is easily seen that g, and b, satisfy assumptions (UN) and (UM), so that
Theorem 5.8 can be applied. If we take Z = Z™, we get

ind(Z"") = ind((H,,K), Z1) = ind((Ho, K), Zo) .
Let up € K and let
U= {u e W(Q): |Vul, < r} ,
with r large enough to guarantee that uy € U, Zo € Uand
/Q |VolP2Vv - V(v —ug) dx > 0 for every v € dU .

From Proposition 5.5 and Theorem 2.6 we infer that
ind((Ho. K). Zo) = deg((Ho. K). U.0) = 1

and the assertion follows. O

Proposition 5.11 Let Z € Z(F,K) and let ¢ € ® and V € O. Then Z¢ €
Z(F?,K?), Z € Z(Fy,K) and

ind((F, K),Z) = ind((F?,K%),Z%) = ind((Fy,K),Z) .
Proof 1f we set
@) =1 —0s+19(s),  Di(s) = (1 —1)+10(s),

the assertion follows from Theorem 5.8. O
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6 Proof of Theorem 1.1

We aim to apply the results of the previous sections to

a(xv S, g) = A(X, S)S s b(x7 S, g) = B(X, S)|S|2 - g(xv S) .
By hypothesis (), assumptions (N) and (M) are satisfied with p = 2. Moreover, if
M and M are as in hypothesis (4,), then u = M and u = M satisfy assumption (B).
Denote by (Ar), k > 1, the sequence of the eigenvalues of (1.3), repeated
according to multiplicity, and set, for a matter of convenience, 1o = —oo.

Finally, define F, K, Z"', Z and ind(Z) as before, observe that K # @ and set
Zy ={ueZ"\{0}: u>0ae inQ},
Z_={ueZ"\{0}: u<0ae inQ} .

It is easily seen that
a¢(x’ S, S) = A(p(xv S)S ’ b(p(x’ S, g) = B(p(x7 S)|g|2 - g(p(xv S) .

Let us also set

Ap(x,s) = 0(s)A(x, s), By (x,s) = ¥ (s)A(x, s) + 3(s) B(x, ),
8o (x,5) = V(s) g(x.5) ,

so that
ay(x,s,§) = Ap(x, )&, by(x,5.£) = By(x,s)|E]* — gu (x,5).

Proposition 6.1 For every R > 0 there exist U, U, € ©, depending only on Bg and
Vg, such that

By, (x,5) <0 < By,(x,5) fora.e. x € Q and every s € R with |s| <R.

Proof 1t is a simple variant of Proposition 3.6. O

Proposition 6.2 Let
g:QAxR—->R
be a Carathéodory function such that for every R > 0 there exists Bgr > 0 satisfying

|g(x,8)| < Br fora.e. x € Q and every s € R with |s| <R
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and such that
gx,M)>0>g(x,M) foraexeQ.
If u is a solution of the variational inequality (VI) with

a(x,s,§) = A9, b(x.s,§) = B, 9)[E] —g(x.9),

then u satisfies the equation
/ [A(x, u)Vu - Vv + B(x, u) |Vul|? v] dx
Q

z/g(x,u)vdx forany v € Wj(Q) N L®(Q).
Q

Proof Letv € Wy() N L™(R) with v > 0 a.e.in ©, let 7 > 0 and let
u, = min{u + tv, M} .

Since u; € K, it follows

1

, / A(x,u)Vu - V(u; — u) dx

Q
> —/ B(x, u) |[Vul? ut_udx—}—/ g(x,u) g
Q t Q t
- _/ BCx,u) Va2 " dx+/ aonw T dx.
{u<M} t {u<M} t

On the other hand, we have

1

, / A(x,u)Vu - V(u; — u) dx

Q
1
= / A(x,u)Vu-Vvdx — / A(x, u)|Vu|2dx
{u+rv<M} {u+rv>M}
< / A(x,u)Vu - Vodx,
{u+rv<M}

whence

/ A(x, u)Vu - Vo dx

{u+rv<M}

> —/ B(x, u) |Vu]? ”’_”dx+/ aonw T dx.,
{u<M} ! {u<M} !
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Since 0 < u, —u < tv, we can go to the limit as t — ot, obtaining

/ A(x,u)Vu-Vvdx = / A(x,u)Vu - Vvdx
Q {u<M}

> —/ B(x,u) |Vu|2vdx+/ glx,u)vdx
{u<M} {u<M}
= —/ B(x,u) |Vul?vdx + / glx,u)vdx
Q Q
— / g(x,M)vdx
{u=M}
=

—/ B(x, u) |Vul* vdx + / gx,u)vdx.
Q Q
Arguing on u, = max{u — tv, M}, one can prove in a similar way that
/ A(x,u)Vu-Vodx < —/ B(x, u) |Vul?vdx + / gx,u)vdx,
Q Q Q

whence

/ [A(x, u)Vu - Vv + B(x, u) |Vul|? v] dx = / glx,u)vdx
Q Q
for any v € W, () N L®(Q) with v > 0 a.e. in

and the assertion follows. ]

Proposition 6.3 Let Q2 be connected and assume that u € WS’Z(Q) N L*®(R)
satisfies u > 0 a.e. in Q, u > 0 on a set of positive measure and

/ [A(x, u)Vu - Vv + B(x, u) |Vul? v] dx
Q
> / gx,u)vdx  foranyv € Wé’z(Q) NL*®(Q)withv>0a.e inQ.
Q

Then we have

esscinf u > 0 for every compact subset C of Q2 .

Proof By Propositions 3.4 and 6.1, we may assume without loss of generality that

B(x,s) <0 fora.e. x € Q and every s € R with |s| < ||u|cc -
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Then for every v € Wé’z(Q) N L*°(2) with v > 0 a.e. in 2, we have

/A(x,u)Vu-Vvdxz/g(x,u)vdx:/ y(x, u) uvdx
Q Q Q

with y(x, u) € L*(2).
From [11, Theorem 8.15 and Remark 8.16] the assertion follows. O

Lemma 6.4 Assume that Q is connected and that A; < 0. Moreover, according
to (hy), let B > 0 be such that

lg(x, )| < Bls| fora.e.x € Qandeverys € RwithM <s <M.

Let also ¥ : R — [0, 1] be a continuous function, with y(0) > 0 and ¥(s) = 0
outside |M, M|, and consider the problem

(u,t) € K x[0,1],
/ [A(x, u)Vu - V(v —u) + B(x,u) |Vul* (v — u)] dx > / g:(x,u)(v —u)
Q Q

foreveryv € K,
(6.1)

where

8i(x,5) = g(x.8) +1(Y(s) + Bs7).

Denote by Z" the set of solutions (u, 1) of (6.1) and let
7= {(u, 1) € 7% u>0ae inQandu > 0onaset of positive measure} .

Then there exist 0 < r; < rp such that

Z= %(u,t) eZ" . /Q(u_)2 dx<rl<r< /Q(lf')2 dx}
= %(u,t) eZ" . /(u_)2 de<ri <r < /(u+)2 dx} )
Q Q
Proof 1If we set

ax,s.§) = A9, b(x,s.£) = B, s)[E —gi(x.s).

it is easily seen that assumptions (UN) and (UM) are satisfied. From Theorem 5.8
we infer that Z* is compact in Wé’p () x [0,1].
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First of all, we claim that there exists r, > 0 such that
Z< ez : < / (uh)? dx} .
Q
By Propositions 3.4 and 6.1, we may assume without loss of generality that

B(x,s) >0 forae.x e Qandeverys € RwithM <s <M.

Assume, for a contradiction, that (u, ;) is a sequence in Z with |l || — 0. Then

we may suppose, without loss of generality, that (i) is convergent to 0 in WS"’(Q)

and a.e. in  and that (#;) is convergent to some ¢ € [0, 1]. Let uy = 73z; with 7, =

|| Vug |2 and, up to a subsequence, (zx) weakly convergent to some z in Wé’z(Q).
Ifv e K\ {0} withv > 0 a.e. in 2, we have

/ [ACGe ) Ve - V(v — we) + T Bx,we) [Vl (v — ) ] dx
Q

Tk

> /Q 85 zs) (v — uy) dx + Z /Q ¥ () (v — ) dx,

which implies that (;/7;) is bounded hence convergent, up to a subsequence, to
some o > 0.
Then we also get

/ A(x,0)Vz-Vvdx > / Dsg(x,0)zvdx + o W(O)/ vdx foranyv € K,
Q Q Q

whence

/ [A(x,0)Vz- Vv — Dsg(x,0)zv] dx = o 1#(0)/ vdx
Q Q
forany v € Wé'z(Q) NL®(RQ).

If we choose v = ¢, where ¢, is a positive eigenfunction of (1.3) associated with
A1 <0, we get

A /wldxzow(m/qol d,
Q Q

whence z = 0.



210 M. Degiovanni and A. Pluda

Finally, the choice v = 0in (6.1) yields

/A(x, w) |Vl dxf/ [ACGe, u) | Vol + T B(x, we) [Vl 2] dx
Q Q

, T 1
S/ 8(x. Tz zedx + k / W(ug)zx dx .
Q Tk Jo

Tk

We infer that ||Vz;]l, — 0 and a contradiction follows.
With this choice of r,, we also have

Zc {(u,t) eZ" . /Q(u_)2 de<rl<r< /Q(lﬁ')2 dx}
- {(u,t) eZ" . /(u_)2 de<ri <r < /(u‘k)2 dx}
Q Q
for every r| €]0, r;[. Now we claim that there exists r; €]0, r;[ such that

{(u,t) Vi /(u_)zdxf ?<i?< / (u+)2dx} cZ.
Q Q
By Propositions 3.4 and 6.1, now we may assume without loss of generality that

B(x,s) <0 forae.x e Qandeverys e RwithM <s <M.

Assume, for a contradiction, that (i, ;) is a sequence in the set at the left hand side
with (ug, t) € Z and ||u; ||» — 0. Then, up to a subsequence, (i) is convergent to

some u € Z in Wé’P(Q) and a.e. in 2, while (#;) is convergent to some ¢ € [0, 1].
By Propositions 6.2 and 6.3 we have u > 0 a.e. in Q. If we write ;. = 7;zx with
7 = || Vuy ||2, we have that (z;) is weakly convergent, up to a subsequence, to some
zin WS’Z(Q) and, on the other hand, (z;) is convergent to 0 a.e. in €2, as u > 0. The
choice v = u;" in (6.1) yields

/ [A(x, up)Vuy - Vu, + B(x, uy) |V | uk_] dx
Q
> [ stuu arn [ [ + pug]ug v
Q Q

whence

—/A(x, Mk)|VZk|2dX2/ gx. —nz) i dx.
Q Q Tk

We infer that ||Vz;]l, — 0 and a contradiction follows. O
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Proposition 6.5 If Q2 is connected and Ay < 0, then we have Z,Z_ € Z and
ind(Zy) =ind (Z-) = 1.

Proof Let g, 2, Z, r; and r, be as in Lemma 6.4. We aim to apply again
Theorem 5.8 with

a(x5.8) = A 9E,  bilx.5.§) = B, 9)[E]* —gi(x,s).
By Lemma 6.4 the set Zis open and closed in Z"'. From Theorem 5.8 we infer that
Zy =20€ Z(Hy,K) = Z
and that

ind (Z,) = ind ((HO,K),Z)) = ind ((HI,K),Z) .

Now we claim that Z; = Z*! (Hi1, K). By Propositions 3.4 and 6.1 we may assume
without loss of generality that

B(x,s) <0 forae.x e Qandeverys e RwithM <s <M.
If we take v € K \ {0} with v > 0 a.e. in  in (6.1), we see that 0 ¢ Z""(H{, K).

Moreover, if u € Z"'(H;, K), the choice v = u™ yields (v — u) = u~, hence

— / A(x,u)|Vu > dx > / [A(x, u)Vu-Vu~ + B(x, u) |Vu|2u_] dx
Q Q
> / gilx,u)u"dx>0.
Q

Therefore u— = 0, whence u € /Z\l and the claim is proved.
From Theorem 5.10 we infer that

ind ((Hl,K),Z) = ind ((H,. K). Z°'(H,. K)) = 1

and the assertion concerning Z follows.
The assertion concerning Z_ can be proved in a similar way. O

Proposition 6.6 If there exists k > 0 with A, < 0 < Apy1, then {0} € Z and

ind ({0}) = (—=).
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Proof 1If we set

Ai(x,5) = A(x, ts) B:(x,s) = tB(x,ts),
N .

g(xt ) ifo<r<1,

Dyg(x,0)s ift=0,

at(xs s, %‘) = At(-xv S)E s bt(-xv s, E) = Br(xs S)'%‘lz - gl‘(xs S) s

gi(x.s) =

it is easily seen that assumptions (UN) and (UM) are satisfied. We aim to apply
Theorem 5.8.
We claim that there exists » > 0 such that, if (u,7) € 7" and [Vul, < r, then
u = 0. Assume, for a contradiction, that (u, ;) is a sequence in 7' with u # 0
and | Vugllz — 0. Let ux = 13z with 7 = ||Vug|l2 and, up to a subsequence, (zx)
weakly convergent to some z in Wé’z (€2) and (#) convergent to some ¢ in [0, 1].
Given v € K, if t; > 0 we have

/ [A(x, ti )V - V(v — uy) + 1y B(x, teug) |Vuk|2 (v— uk)] dx
Q

> / 80x, f) (v — uy) dx, (6.2)
Q Ik

whence

/ [AGe 1) Vi - V(0 — 1) + 7 BGes tng) |V (v — )] e
Q

X, Tl
Z/ 8 (x, Ttkzk) (v — ) dx.
Q Tilk

Going to the limit as k — oo, we get

/ A(x,0)Vz-Vvdx > / D;g(x,0)zv dx foranyv € K.
Q Q

If 4, = 0, we have

/ A(x,0)Vz - V(v — uy) dx > / Dig(x,0)zi(v — uy) dx
Q Q

and the same conclusion easily follows.
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Then we infer that
/ A(x,0)Vz-Vvdx = / Dyg(x,0)zvdx  forany v € Wo?(Q) N L®(Q),
Q Q

whence z = 0, as 0 is not in the sequence (A;).
By Propositions 3.4 and 6.1, we may assume without loss of generality that

B(x,s) >0 forae.x e Qandeverys € RwithM <s <M.

If # > 0, the choice v = —u; in (6.2) yields

/ A(x, tkuk)|Vz,j'|2 dx < / [A(x, tkuk)|Vz,'("|2 + Tty B(x, teuy) |VZk|ZZ]_:] dx
Q Q

X, TlkZk
f/ 8( )Z,j_ dx.
Q Tilk

which implies that ||Vz,j’ |l = 0.1If ty = O the argument is analogous and simpler.
In a similar way one can show that |[Vz; ||, — 0 and a contradiction follows.
Therefore, there exists > 0 with the required property.

In particular, we can apply Theorem 5.8 with

Z =1{0}x[0,1],
obtaining
0y=Z,€ ZH.K)=Z
and
ind ({0}) = ind ((Hl, K),Z) — ind ((Ho, K),?o) — ind ((Ho, K), {0}) .
On the other hand, if we set
U= {u e WAQ): [Vul, < r} ,
from Proposition 5.5 we infer that
ind((Ho, K), {0}) = deg((Ho.K). U.0).
Now, if we set

'K ifo<r<1,

K =
W) ifr=0,
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from [11, Theorem 4.53 and Proposition 4.61] we deduce that
deg((Ho, K), U, 0) = deg((Ho, Wy*(R)), U, 0).
Finally, from [13, Theorem 2.5.2] it follows that

deg((Ho, W32 (2)), U, 0) = (=1)*.

Proof of Theorem 1.1 From Proposition 6.5 we know that
ind(Zy) =ind(Z-) = 1.

By Theorem 5.6 and Propositions 6.2 and 6.3 we infer that there exist at least two
solutions u; € Z_ and u, € Z4 of (1.2) with

esssup u; < 0 <essinf u, for every compact subset C of 2.
c c

Assume, for a contradiction, that
7" =27Z_U{0}UZy
with ind ({0}) = 1 by Proposition 6.6. From Theorems 5.10 and 5.7 we infer that
1 =ind (Z’”’) =3
and a contradiction follows. Therefore there exists
uz €Z\ (Z-U{0}UZy) .

By Proposition 6.2 u3 is a sign-changing solution of (1.2). According to [10,
Theorem VII.1.1], each u; is locally Holder continuous in £2. O
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On a Diffuse Interface Model for Tumour
Growth with Non-local Interactions
and Degenerate Mobilities

Sergio Frigeri, Kei Fong Lam, and Elisabetta Rocca

Abstract We study a non-local variant of a diffuse interface model proposed by
Hawkins—Daarud et al. (Int. J. Numer. Methods Biomed. Eng. 28:3-24, 2012) for
tumour growth in the presence of a chemical species acting as nutrient. The system
consists of a Cahn—Hilliard equation coupled to a reaction-diffusion equation. For
non-degenerate mobilities and smooth potentials, we derive well-posedness results,
which are the non-local analogue of those obtained in Frigeri et al. (European J.
Appl. Math. 2015). Furthermore, we establish existence of weak solutions for the
case of degenerate mobilities and singular potentials, which serves to confine the
order parameter to its physically relevant interval. Due to the non-local nature of the
equations, under additional assumptions continuous dependence on initial data can
also be shown.
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1 Introduction

The tumour model of Hawkins—Daarud et al. [37] is a four-species model consisting
of tumour cells, healthy cells, nutrient rich and nutrient poor water. The model is
further simplified with the constraint that the total concentration of the cells and
of the water remain constant throughout the domain, which then leads to a two-
phase model, composed of a Cahn—Hilliard equation coupled to a reaction-diffusion
equation. Denoting by ¢ the difference in volume fractions between the tumour cells
and the healthy cells, and by o the concentration of the nutrient rich water (which we
will simply denote as the nutrient), the model equations are (see also [33, §2.5.2])

@ = div(m(p)Vu) + P(p)(o + X(1 — ¢) — p), (1.1a)
uw = A¥Y'(p) — BAp — Xo, (1.1b)
o, = div(n(@)V(o + X(1 —¢))) = P(p)(0 + X(1 — @) — ), (1.1c)

where m(¢), n(p) are mobilities for ¢ and o, respectively, ¥’ is the derivative of a
potential ¥ with equal minima at £1, A and B are positive constants related to the
surface tension and interfacial thickness, P(¢) is a non-negative function with the
source terms P(¢) (o + X(1 —¢) — p) motivated from linear phenomenological laws
for chemical reactions, and X > 0 is a parameter such that the for X # 0, the terms
div (n(¢)V(X@)) in (1.1c) and div (m(¢)V(X0)) in (1.1a) (after substituting (1.1b)
into (1.1a)) mimic transport mechanisms akin to that of active transport and
chemotaxis, respectively, see [33] for more details.
Associated to (1.1) is the free energy

B 1
&(p,0) :=/9Al1/(<p)+ 5 IVo|* + 2|O|2+XU(1—<p)dx, (1.2)

where in a bounded domain 2 C R? with smooth boundary 952, the first two
terms form the well-known Ginzburg—Landau energy, leading to phase separation
and surface tension effects. In contrast, it is not expected that the nutrient-rich and
nutrient-poor water experience separation akin to that of the cells, and thus the
nutrient free energy, modelled by the third and fourth terms, only consists of terms
modelling diffusion and interactions with the cells. From now on the model (1.1)
with the energy (1.2) will be called local model to distinguish it from the non-local
one associated to energy (1.3).

In terms of the analysis for (1.1), the well-posedness of weak and strong solutions
with constant mobilities m(¢) = n(p) = 1 and X = 0, and the existence of a global
attractor have been established in [24] for a large class of nonlinearities ¥ and P. A
viscosity regularized version of (1.1) (with constant mobilities and X = 0) has been
the subject of study in [10], where existence and uniqueness of weak solutions and
long-time behavior are shown for singular potentials ¥. Furthermore, for regular
quartic potentials, the weak solutions to the viscosity regularized model converge to
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the model studied in [24] as the viscosity parameter tends to zero. Further analytical
results including asymptotic analyses as some small coefficients tend to zero and
error estimates have been obtained in the recent works [11, 12] under different
assumptions on the bulk potential ¥ including in some cases the singular one (cf.,
e.g., (1.6)). For the case X # 0, we refer the reader to [29-32, 40] for existence
results to similar Cahn—Hilliard systems.

In this work, we study a non-local variant of (1.1), where we replace the
Ginzburg-Landau component in & by a non-local free energy

/Qfgljf(x—y)(rp(x)—w(y))zdx dy +/9Al]/((p)dx’ (1.3)

where J is a symmetric kernel defined on £2 x §2. Then, letting Q7 := £2 x (0, 7),
the non-local variant of (1.1) reads as

¢ = div(m(@)V) + P(p)(o + X(1 —¢) — pu) in Qr, (1.4a)
w =AY () + Bap —BJ x ¢ — Xo in Or., (1.4b)

0, = div(n(p)V(o + X(1 = ¢))) — P(¢)(0 + X(1 —¢) — ) in O, (1.4¢)

with
a() = /Q Ja—y)dy. (U x@)n) = /Q (=)o (1) dy.

We complement (1.4) with the initial and boundary conditions

¢(0) =¢y, 0(0)=o0pin 2, 0d,¢ =0d,u= 0,06 =00n0d2x(0,7T),
(1.5)

where d,f := Vf - v with outer unit normal v on 952.

In biological models, non-local interactions have been used to describe competi-
tion for space and degradation [47], spatial redistribution [4,41], and also cell-to-cell
adhesion [1, 6, 35]. The model (1.4) which we study belongs to the category of non-
local cell-to-cell adhesion, as it is well-known that the Ginzburg—Landau energy
leads to separation and surface tension effects, and heuristically this corresponds to
the preference of tumour cells to adhere to each other rather than to the healthy cells.

The non-local Cahn—Hilliard equation has been studied intensively by many
authors, see for example [2, 3, 26-28]. There has also been some focus towards
coupling with fluid equations, such as Brinkman and Hele—Shaw flows [17] or
Navier—Stokes flow [9, 20-23, 25]. For the non-local Cahn—Hilliard equation with
source terms, analytic results related to well-posedness and long-time behavior have
been obtained in [16, 42] for prescribed source terms or Lipschitz source terms
depending on the order parameter. Our present contribution aims to extend the study
of the non-local Cahn—Hilliard equation to the case where source terms are coupled
with other variables.



220 S. Frigeri et al.

Our first result concerns the well-posedness of (1.4) with non-degenerate mobil-
ities and regular potentials, which is summarized in Theorems 2.1 and 2.2 below.
Due to the non-local nature of the equations, the regularities we obtain here for
weak solutions are lower than those satisfied by solutions to the local model studied
in [24]. Often in the modelling and in numerical simulations, it is advantageous to
consider a singular potential ¥, which enforces the range of the order parameter
@ to lie in the physically relevant interval [—1, 1] or (—1, 1). One example is the
classical logarithmic potential:

0 0,
Viog(p) = , (1 + @) log(1 +¢) + (1 = g) log(1 —¢)) — 97, (1.6)

for constants 0 < 6 < 6. Furthermore, depending on the applications one has in
mind, a mobility m(¢p) that is degenerate at ¢ = =1 is often considered alongside
singular potentials, for example m(p) = (1 — ¢?) [18, 44, 45]. The degeneracy of
the mobility at £1 effectively restricts the diffusive mechanisms from the Cahn—
Hilliard system to the interfacial region.

In the models of [7, 13, 14, 19, 48] a one-side mobility m;(¢) = (1 + ¢)4+ =
max(1 + ¢,0) is employed so that the Cahn-Hilliard diffusive mechanisms are
switched off in the region of healthy cells {¢ = -1}, and the tumour cells
are allowed to diffuse. However, in those papers the models are formulated with
smooth potentials, and it is not known if the models with a one-sided mobility
can be analytically investigated. To the authors’ best knowledge, the analytical
results concerning local Cahn-Hilliard systems with source terms derived in
[8, 10, 15, 24, 29-32, 39, 40, 43] consider positive or constant mobilities. Here,
due to the degeneracy of the mobility m, the gradient V i is no longer controlled in
some Lebesgue space, and thus the Eq. (1.1a) has to be reformulated into a weaker
form. In the local setting the main effort lies in deriving high order estimates for ¢,
which may not be controlled uniformly in a suitable approximation scheme when
source terms involving ¢ and other variables are present.

For our present non-local setting, substituting (1.4b) into (1.4a) and (1.4c) leads
to a formulation of (1.4) in which p does not appear:

@ = div (Am(@)¥"(9)Ve + m(p)V (Bap — B] » ¢ — X0))
+ P(p)(o + X(1 — @) — P(p) (AlI/’(<p) +Bagp —BJ * ¢ — Xcr) in Or,
o, = div (n(@)V(o + X(1 - ¢)))
—P(p)(o+ X(1 —¢)) + P(p) (AlI/’(q)) + Bap —BJ x ¢ — Xcr) in QOr.
Using the method introduced by Elliott and Garcke in [18] for the Cahn—Hilliard
equation with degenerate mobilities, our second main result concerns the existence
of weak solutions to (1.4) where the mobility m(¢) is degenerate at ¢ = =1 and the

potential ¥ : (—1,1) — R is singular. This is given in Theorem 2.3. Let us point
out that we encounter new difficulties in the analysis of the source terms, namely the
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product P(¢)¥’(¢). Actually, for singular potentials, ¥’ (s) becomes unbounded as
s — =£1. Hence, to suitably control the product P¥’, we consider functions P(s) that
decay to zero as s — =1 in such a way that the product P¥’ remains bounded. In the
original model of [37], P takes the form P(s) = (1 4+ s)+ = max(1 + s, 0) (see [33,
§2.5.2] for more details) so that the source terms are active only in the tumour region
{¢ = 1} and are not active in the healthy cell region {¢ = —1}. On the other hand,
in the work of [38] the function P is chosen to be a multiple of the potential ¥ (see
also [33, §3.3.2]), which is degenerate at 1. The effect of the latter choice acts in a
similar manner to a two-sided degenerate mobility and restricts the influence of the
source terms to the interfacial layer. This effect of localizing the source terms in the
interfacial layers is supported by formally matched asymptotic analysis performed
in [33, 38]. We also refer the reader to [34] for numerical simulations with a two-
sided degenerate P in the multi-component setting.

In contrast to the local version, where uniqueness of solutions to the Cahn—
Hilliard equation with degenerate mobilities is still an open question, in the non-
local case with degenerate mobilities we can derive a result concerning continuous
dependence on initial data when X = 0. This is given in Theorem 2.4, and can be
attributed to the fact that the non-local model is akin to a coupled system of second-
order equations. We point out that we have to restrict our analysis to the case X = 0
as the regularity of the variable o seems not to be sufficient to control the difference
of certain terms.

The remainder of this paper is organized as follows: The assumptions and
main results are summarized in Sect. 2. In Sect. 3 we establish existence, regularity
and continuous dependence on initial data for weak solutions of (1.4) with non-
degenerate mobilities and regular potentials. Then, by an approximation procedure,
the existence of weak solutions to the system with degenerate mobilities and
singular potentials is treated in Sect.4, and the continuous dependence on initial
data is shown when X = 0.

For the remainder of this paper, we will use the following notation. The spaces
L?(£2) and H'(£2) are denoted by H and V, respectively. For a (real) Banach space
X its dual is denoted as X’ and (-, -)x denotes the duality pairing between X and X’.
The L2-inner product will be denoted by (-,-). For any p € [1,00] and k > 0, we
denote I := I[7(£2) and W*? := W*P(£2) as the standard Lebesgue spaces and
Sobolev spaces equipped with the norms || - ||z» and || - ||t». In the case p = 2 we
use notation || - [ := [-l,2 and [-fly := [l

We also recall the following useful inequalities:

e Young’s inequality for convolutions: For p,q,r > 1 real numbers with 1 + i =

1 1
p+q’

If * gl < [ fller llgllee-

* The Gagliardo—Nirenberg interpolation inequality in dimension d: Let §2 be a
Lipschitz bounded domain and f € W™ (£2) N L4(§2),m € N, 1 < g,r < oo.
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For any integer j, 0 <j < m, suppose there is @ € R such that

1 Jj 1 m l -« Jj
="+ - a+ ) <a =<l
p d r o d q m

If r € (0,00) and m— ]— is a non-negative integer, then we additionally assume
a # 1. Under these assumptlons there exists a positive constant C depending
only on £2, m, j, g, r, and o such that

IDfllr@2) < ClLFISimr ) | f L ol)- (1.7)

For the Hilbert triplet (V, H, V') we introduce the Riesz isomorphism .4 : V — V'
associated to the standard scalar product of V,

(JVU,W)VZ/ Vv -Vw+ovwdx Vov,weV. (1.8)
2

Foru € D(A) :={f € H*(2) : 3,f = 0 on 02}, we have #'u = —Au + u, and
the restriction of .4 to D(./4") is an isomorphism from D(.#") to H. By the classical
spectral theorem, there exists a sequence of eigenvalues A; with 0 < 1) < A, <

and A; — oo, and a family of eigenfunctions w; € D(JV ) such that A 'w; = )k W)
Wthh forms an orthonormal basis in H and an orthogonal basis in V. Note that the
first eigenfunction wy is a constant, and hence A; = 1. Furthermore, the inverse
operator .4 ! : V! — V satisfies

(Nu, Ny = Fauyve A flly <D flv YueV. feV,

d 2 —1 1 ’ (1.9)
dlllgllw=2(gt,e/1/ glv VgeH (0,T;V).

If f € H, by elliptic regularity .4 ~!f € D(.#") and additionally it holds for some
positive constant C depending only on §2,

|4 Flpery < Cllflla Vf € H. (1.10)

We will denote the dual space of D(./4") by D(.#~1).

2 General Assumptions and Main Results

In this section we state the main results on existence, regularity, uniqueness, and
continuous dependence of solutions to (1.4)—(1.5) first for the case with non-
degenerate mobilities and regular potentials and then for the case of degenerate
mobilities and singular potentials. The results are stated for dimension d = 3, but
similar results also hold ford = 1, 2.
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2.1 Non-degenerate Mobilities and Regular Potentials

(Al) me CO(R) and there exist constants m;, m, > 0 such that
mp <m(s) <mp VseR

(A2) n e C°(R) and there exist constants 1, n, > 0 such that
np <n(s)<ny VsekR

(A3) J € WhI(RY) satisfies

loc

JQ) = J(=2). alx) = /Q Je—y)dy > 0ae.in 2.

a* = sup/ [(Jx—=y)|dy <oo, b:= sup/ [IVI(x —y)| dy < oo.
XENR J 2 XENR J 2

(A4) ¥ e C*(R) and there exists ¢y > X > 0 such that
AW (s) + Ba(x) > ¢g Vs €Randforae. x e 2.

(AS5) There exist ¢; € R and

¢ > B(a* —ax) + 17), (2.11)

ZA(

such that
U(s) > co |s|2 —c; Vs e Rwhereay = inrf2/ J(x—y)dy.
X€ Q

(A6) There exist z € (1, 2], ¢3 > 0 and ¢4 > 0 such that
(W' (s)]" < c3W(s) +es VseR.
(A7) P € C°(R) and there exists ¢5 > 0 such that
0<P(s)<cs(l+]s|)) VseR, ge|l, 130).

(A8) ¢y € H satisfies ¥(¢p) € L' and 0y € H.

The assumption (A4) imposes the condition that the potential ¥ has to have at least
quadratic polynomial growth, and will be essential in the identification of certain
limit solutions. We also mention that (A7) is in strong contrast with the growth
assumption for P(-) made in [24], where the authors are able to consider polynomial
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growth up to but not including ninth order. The reason for an upper bound of 130
in the current setting can be seen from the regularity for ¢, where in the non-local
case one obtains ¢ € L®(0,T; H) N L*(0,T; V), and in the local case one obtains
@ € L®(0,T;V) N L*(0, T; H?). The lower regularity for ¢ in the non-local case
means that we only obtain compactness for the Galerkin approximations of ¢ in
L*(0,T; L") for r < 6, which in turn limits the growth assumptions on P.

Definition 2.1 We call a pair (¢, o) a weak solution to (1.4)—(1.5) on [0, 7] if

@ € L®(0,T:H)NL*(0,T; V) N W0, T; D(AVY),

0 € L®(0,T;H)NL*0,T;V) N W0, T; D(A YY),

W= Bap — BJ » ¢ + AW (¢) — Xo € L*(0,T; V),
for some r > 1, and the following variational formulation is satisfied for a.e. ¢t €
(0,7) and for all € D(.1"),

0 = (¢, $)py) + (m(@)Vi, V) — (P(p)(o + X(1 — @) — 1), ), (2.12a)
0=

(01, E)pay + (n(@) V(o — Xp), V) + (P(p) (o + X(1 — ) — ), {),
(2.12b)

together with

9(0) = ¢o, 0(0) = 00.

Notice that the regularity properties of a weak solution entail that we have
.0 € C,([0,T);:H) N C°([0,T]; V"), where C,([0,T]; H) denotes the space of
weakly continuous functions on [0, 7] with values in the space H. Therefore, the
initial conditions make sense.

Theorem 2.1 (Existence and Energy Inequality) Under Assumptions (Al)—(AS),
there exists a weak solution pair (¢, ) to (1.4) in the sense of Definition 2.1 which
satisfies, for all t > 0, the following energy inequality

E(@(®),00) + IVm@) Vil 720, + 1V1@) VO = X0) 720 0 o
+IVP@)©@ + (1= @) = )220,z < Elg0.00). '

where

B B 1
E(p,0) = /QAlP(soH AW 6l = S xg)+  lof* + X0 (1= ¢)dx.
(2.14)
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Furthermore, if (A7) is satisfied with q < § then it holds that
@0, € LX0,T; V"), ¢,0eC0,T]:H), ¢(0) =gy, 0(0)=0pa.e.in 2,

and the energy inequality (2.13) becomes an equality for all t > 0.
To show continuous dependence on initial data, we make the following assump-
tions.

Bl) m=n=1.
(B2) P e COl(R) N L®(R).
(B3) In addition to (A4), ¥ also satisfies

|l1//(s1) - lI/’(sz)| <ce(1+ [s1|]" +|52]") |s1 — 2| Vs, €R

for some ¢ > 0 and r € [0, g .
Under (B2) we see that ¢;, 0; € L*>(0,T; V).

Theorem 2.2 (Continuous Dependence for Constant Mobilities) Let (¢;, 0:)i=12
denote two weak solution pairs to (1.4) with J satisfying (A3), ¥ satisfying (B3),
mobilities m, n equal to 1, and nonlinearity P satisfying (B3), corresponding to
initial data (¢o;, 00:)i=12 satisfying (A8). Then there exists a positive constant C,
depending on A, B, a*, |[J|lwi1, [Pllzeew), co. X, co Noillzo.rvy Ikillzo.mv),
l@ill oo 0,7:8), ||(Pi||L2(0,T;V) and §2 such that for all t € (0,T],

lor (1) = 213 + llor (1) = o2 (D115
+ ”(pl - ¢2||22(0’,;H) + ||01 - 0—2”22(0'1;[.1) (215)

< C(l¢1o— 20l + lloro — o20ll3) -

Furthermore, if r < % in (B3) then it holds that for all t € (0, T),

a1 — M2||§z(0,,;v/) < C(lero — @20l + lloro —o20ll3) - (2.16)

2.2 Degenerate Mobilities and Singular Potentials

We now consider the case where the mobility m : [—1,1] — [0,00) can be
degenerate at 1, the potential ¥ is singular and defined in (—1, 1). The entropy
function M : (—1, 1) — R associated to the mobility m is given by

mM'(s) =1, M(0) =0, M (0)=0.

We now make the following assumptions.
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(C1) The potential ¥ can be decomposed into ¥ = ¥; + ¥, with a regular part
¥, € C?([-1,1]) and a singular part ¥; € C*(—1,1).

(C2) There exists &5 > 0 such that ¥{’ is non-decreasing in [1 — &9, 1) and non-
increasing in (—1, —1 + &g].

(C3) There exists ¢y > X*> > 0 such that

AY"(s) + Ba(x) > co Vse€ (—1,1)andforae.x € £2.
(C4) m e C(—1, 1]) with
m(s) >0 Vse[-1,1], m(s) =0iffs = +1, m¥” e C°(-1,1)]),

and there exists &9 € (0, 1] such that m is non-increasing in [1 — &g, 1] and
non-decreasing in [—1, —1 + &o].

(C5) Pe CO([—I, 1]), P > 0, and there exist a positive constant ¢; and gy > 0 such
that

VP(s) <crm(s) Vse[-1,—1+¢g]U[l—eg.1], P¥ e C(-1,1)).

(C6) @ € H satisfies ||gol|zoo(2) < 1, M(go) € L' and 0y € H.
Remark 1

(1) By (C4), there exists a positive constant C such that |m(s)¥”(s)| < C for all
s € [—1,1], which in turn implies that |[¥”'(s)| < CM"(s) for all s € (—1,1).
Upon integrating from 0 to s € (0, 1), and also from s € (—1,0) to 0, applying
the fundamental theorem of calculus and the conditions M(0) = M'(0) = 0
yields

()] < [#(O)] + |[¥'(0)] Is]| + CM(s) Vs e (~1.1),

and as a consequence of M(¢y) € L' we have ¥(gy) € L.
(2) The assumption (C5) yields the following observations: P is bounded in [—1, 1]
and thus (A7) is automatically satisfied, and P(s) = 0 if and only if s = +1.

The degenerate mobility implies that the gradient of the chemical potential i can
no longer be controlled in some L space. Thus, we reformulate the definition of the
weak solution so that u does not appear (cf. [18, Theorem 1]).

Definition 2.2 We call a pair (¢, 0) a weak solution to (1.4)—(1.5) on [0, 7] if
@,0 € L0, T; H)NL*0,T;V) NH'(0,T; V"),
with ¢ € L*°(Qr), |e(x,1)| < 1a.e.inQr,
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such that fora.e. 7 € (0,7) and forall { € V,

0= (¢ §)v + (m(9)(A¥"(¢) + Ba)Ve, V)
+ (m(p)(BeVa—BV(J x ¢) — XVa), V) (2.17a)
— (P(@)((1 + X)o + X(1 — @) — A¥'(¢) — Bagp + BJ x ¢).{),

0= (01, {)v + (n(@)V(o + X(1 — ¢)), VE)

(2.17b)
+ (P(p)((1 + X)o + X(1 — @) — AW/ (p) — Bap + BJ % ¢). ),

together with ¢(0) = ¢ and o (0) = op.

Theorem 2.3 (Existence) Under Assumptions (A2), (A3), (C1)—(C6), there exists a
weak solution pair (¢, o) to (1.4) in the sense of Definition 2.2 such that ¢(0) = ¢,
0(0) =0y in H.

The initial conditions are attained as equalities in H due to the continuous
embedding

L2(0,T;V) N HY0,T; V") c ([0, T); H).

We now state the result regarding the continuous dependence of solutions on initial
data. For this we require the following additional assumptions.

D1) n=1,me C*([-1,1]),and X = 0.
(D2) There exist some constants c¢g > 0 and p € [0, 1) such that

ApW/'(s) + A¥)/(s) + Ba(x) >0 Vs e (—1,1) and fora.e. xin £2,
m(s)¥(s) > cs Vse[-1,1].

(D3) The nonlinearity P satisfies P, P¥’ € C*'([—1, 1]).

We point out that we have to exclude the effects of chemotaxis for the continuous
dependence result, as the regularity for o stated in Theorem 2.3 seems not to be
sufficient at handling the differences involving the term m(¢)XVo in (2.17).

Theorem 2.4 (Continuous Dependence on Initial Data) Let (¢;, 0;)i=12 denote
two solution pairs to (1.4) in the sense of Definition 2.2 with J satisfying (A3), the
potential ¥, the mobilities m, n and nonlinearity P satisfying Assumptions (CI)—
(CS5), (D1)—(D3), corresponding to initial data (¢ ;, 00.:)i=12 satisfying (C6). Then
there exists a positive constant C, depending on A, B, a*, b, ||J||y11, cs, p, the
Lipschitz constants of m and PY’, ||0ill 201y, and |@illi20.1;v) such that for all
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te (0,7),

le1() — 205 + lloa(t) — o2 (1) 13
+ ”(pl - (/’2”%2(0,,;1.1) + ||01 - UZ”%Z(OJ;H) (218)

< C(llgro — p20ll3r + lloo — 02,0||%//) .

3 Non-degenerate Mobility and Regular Potential

3.1 Existence

The proof is carried out by means of a Faedo-Galerkin approximation scheme,
assuming at first that ¢y € D(.#"). The general case ¢y € H with ¥(¢y) € L' ()
can be handled by means of a density argument and by relying on the fact that ¥ is
a quadratic perturbation of a convex function (see [9]). Let {w;};en denote the set of
eigenfunctions of the operator .4 introduced in (1.8), which forms an orthonormal
basis in H and an orthogonal basis in V. The finite dimensional subspace spanned
by the first n eigenfunctions is denoted by W,,, and the projection operator to W, is
denoted by I1,. For n € N fixed, we look for functions of the form

ou(t) =Y @i Owe, () =Y B Owi,  0u(1) = D (D)
k=1 k=1 k=1

that solve the following approximating problem (with prime denoting derivatives
with respect to time)

0 = (¢, &) + (@) Vin, V) = (S, 0), (3.19a)
0= (0,.0) + (n(@)V(on + X(1 — 1)), V) + (5. 0). (3.19b)

ftn = IT, (AW (¢,) + Bag, — BJ % ¢, — X0, , (3.19)
Sn = P(pn) (00 + X(1 — @) — fin), (3.19d)
@n(0) = I(po),  0,(0) = I,(00), (3.19)

for every { € W,. Substituting (3.19¢) into (3.19a) and (3.19b) leads to a Cauchy
problem for a system of ordinary differential equations in the 2n unknowns aj
and ¢}. Continuity of ¥’, m, n and P ensures via the Cauchy—Peano theorem that

there exists £, € (0,+4o0] such that (3.19) has a solution a" = (af,....da}),
¢" = (c},...,c") on [0,7,) with a”, ¢! € C'([0,1,); R"). This in turn yields that

@n, 0, € C'([0,1,); W,)), and defining p,, via (3.19¢) yields that 11, € C'([0,1,); W,,).
We will now derive a number of a priori estimates, with the symbol C denoting
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positive constants that may vary line to line, but do not depend on n and 7. Positive
constants that are independent on n but depend on T will be denoted by Cr.

3.1.1 A Priori Estimates

Substituting { = p, in (3.19a), { = 0, + X(1 — ¢,) in (3.19b), and testing (3.19¢)
with ¢/, adding the resulting identities together leads to

d

) _ 2
go B IWmen) Vil + 1Vn(e) V(0w + 20 = )l (3.20)

+ VP O + X(1 =) = )7 = 0
where
B » B 1
E,:= / AW (p) +  |Vapa| = oalU x @) +  oul” + Xou(1 — @) dx.
I 2 2 2
In the above, by the symmetry of J, we have used (suppressing the -dependence

of ¢,)

d 1

o | [ =000 = e v ay

/Q (@@@n(x) — (T * 9) (1)) @ (1)

1

d
=2 ar /Qa(x) |02 () > = @u(x)(J % @) (x) dx .

Then, by Young’s inequality, Young’s inequality for convolutions and (AS5) we
obtain

E,

v

1 B
ol + (ac2 +a.5 ) oy~ 4cr 2]

1 B
= Zoulla (121 + leull) = Igallall + alln

1
nllonlly = X121 loulls — Acy |82 (3.2

A%

B X2
A —a% = 12
+( o+ (ax —a )2 2(1—2n)) l@nll7

> molloully; + volleallyy — C.

where n = no € (0,1/2) is fixed such that the coefficient of ||¢,||z is positive
(this can be done thanks to (2.11)), and y, is a positive constant depending on 7.
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Furthermore, by (A3) and (A8), the initial energy is bounded:
|Eol < A9 (¢0)lr + Ba* + X3)llgollz + loollz; + 1% |21 .

Notice that, since g9 € D(A4"), we have ¢,(0) — ¢ in D(4#") C L*°(£2), and hence
the sequence of | ¥ (¢,(0))] ;1 is controlled by ||¥ (¢o)||z1. Thus, integrating (3.20)
from O to ¢, and using the lower bound (3.21) leads to

low®IZ + a1 + 1V Vil o ey
+ 11V V(00 + X1 = ) 1720 1)
+ IVP@) 00 + X(1 =) = )220,

< C(1+ llgolly + 19 (@0)ll + llooll7) -

(3.22)

This estimate yields that #, = 400 for every n € N and thus we can extend the
Galerkin functions ¢,, (., 0, to the interval [0, +00). From the definition of E,, it
holds that

1 1
[ A < Bt ol + Ba” ol + Lol (121° + lonl)

1 i
< 1ol + , loully + Ba™llgally + Xllowla (19212 + lallr) -

Thus, using the boundedness of ¢, and 0, in L*°(0, T; H) for 0 < T < oo, we obtain
that

”ll/((pn)”Loo(O,T;Ll < C VO<T<o0. (323)
Furthermore, from (A6) we see that

”w/(@n”lzoo(oj;y) = CSHW((;OV!)”LOO(O,T;LI) +c|2]<C VO<T<oo.
(3.24)

Using Fubini’s theorem and the symmetry of J, we have the relation

U xgn 1) = /Q /Q IO = Deuy) dx dy = (agn. 1),

and so, upon integrating (3.19c) over §2 and applying (A6), (3.22) and (3.23), we

have
/ fn dX
2

= '/ AV (¢,) — X0, dx
o

< / AW ()] + 2 [0 d
2

< Ac3|¥ (@)l + Aca|$2] + Cllow|ln = C.
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The spatial mean of y,, is bounded uniformly in L>°(0, 7). Hence, using the uniform
boundedness of V, in L?(0, T; H) and the Poincaré inequality, we infer that

||I"Lﬂ||i2(0’T;L2) f C“V:u“n“iZ(O’T;LZ) + CT
and so
ltnll20,) < Cr YO < T < o0. (3.25)

Multiplying (3.19c) with —Ag,, integrating over §2 and applying integration by
parts gives

(Vitn, Vn)
= (Vou, BaVe, + Bp,Va + AV (¢,)Vg, — BVJ x ¢, — XV0o,)

= (Vo (A¥"(¢,) + Ba — X*)V¢, + Bp,Va — BVJ x ¢, — XNV (0, — X¢,))
> (co — X)) IV@ullZ = IV@ullullBeaVa — BV * ¢, — XV (0, — Xp,) |,

where we have used (A4), and in particular, the fact that co > X*. By Young’s
inequality for convolutions, we have that

1

2
IV * @ull < Bllgall. lgnValln = ( /Q el IVU + DP dx) < blluln.
and so we obtain for some positive constant C depending on B, X and b,

”Vﬂn”H”V@n”H = (Vﬂns V%)
> (co = )IVeullzy — CIVeulla Uenlle + 1V (00 — X@) 1) -

which in turn leads to
IVeulla = CUVinlla + lenlls + 1V (00 + X(1 = @) lla) -
and by (3.22) we obtain
loullzo.r;v) + @l < C VO <T < oo. (3.26)
Next, multiplying (3.19¢) with IT,(¥’(¢,)) and integrating over £2 leads to

A||17n(‘1’/(</)n))||%1 = (tn + X0, — Bag, + BJ x ¢,, Hn(lp/(wn)))
= (”ﬂn + Xou|lg + Za*B”(Pn”H) ”Hn(lp/((pn))”Hv
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and by (3.25), (3.26) we see that
L (@) 2.1y < Cr, VO <T < 00 (3.27)

Similarly, multiplying (3.19¢) with —A(IT,(¥'(¢,))) € W, integrating over §2 and
applying integration by parts leads to

A|VIT, (¥ (@) 7 = (View + XV0,, VIT, (W' (¢1)))
— B(p,Va+ aVe, — (VJ *x ¢,), Vnn(q//((pn)))

Using the assumption a € W' from (A3), applying Young’s inequality for
convolution and the boundedness of {V i, }nen, {V0Ou}nen, {V@utnen and {@,}nen
in L2(0, T; H) leads to

IVIT,(¥ (o) 20 < C. HL.(P (@) l207:v) < Cr YO < T < o0.
(3.28)

We now deduce the estimates for the sequences of time derivatives {¢/ },en and
{0 }nen. From the boundedness of {V,lnen and {V(o, + X(1 — @,))}nen in
[? (0, T; H), the estimates for the time derivatives come from the estimates for the
source term S, = P(¢,) (0, + X(1 — @,) — py). Let

On = \/P((pn)(on +X(1 - (pn) - /‘Ln)

Then, from (3.22), we have boundedness of {Q,}.en in L2(0, T; H) for all 0 <
T < oco. Now, take a test function { € D(.4") and write it as { = | + {,, where
{6, € Wyand &, € W,f-. We recall that j, {, are orthogonal in H, V, and D(.4").
Then, from (3.19a) we have

(@n O pery = (@n 81)pry = —(m(@n) Vi, V) 4+ (S, 81),

and a similar identity follows from (3.19b). Observe now that we have

(S &0l = VPl Qulllzilse = € (14 Igal2) I1Qullali o,

where (A7) has been used. From this last estimate, on account also of the bound of
Q, in L?(0, T; H) and of (3.20), there follows that we need to control the sequence
of ¢, in LY4(0, T; L?), with some y > 1, in order to get the control of the sequences
of ¢!, in L"(0, T; D(.#"~')), with some r > 1. On the other hand, we know that
@, is bounded in L>®(0,T;H) N L*(0,T;V), and thanks to Gagliardo-Nirenberg
inequality (1.7), we have

4,
L0, T;H) N L2(0,T; V) C L (0,T;LY)  for g > 2. (3.29)
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Therefore, we can see that, thanks to the growth condition ¢ < 10

3
tion (A7), there exists y > 1 such that 3(;ﬁ2) > yq. This provides the bound for ¢,
in LY4(0, T; L?), with some y > 1, and hence the desired bound for the sequences

of time derivatives ¢/, o,, namely

in assump-

lenllzr .01y + ol orper—1y < C  forsome r > 1. (3.30)

3.1.2 Passing to the Limit
From the a priori estimates (3.22), (3.25), (3.26), (3.30) and using compactness
results (for example [46, §8, Corollary 4]), we obtain for a non-relabelled subse-

quence and any s < 6,

@0 — @ weakly* in L®(0,T; H) N L*(0,T: V) N WY (0, T; D(A YY),

(3.31a)
o, — o weakly* in L®(0,T; H) N L*(0,T; V) N W' (0, T; D(NV 1)),
(3.31b)
Un — p weakly in L2(0, T; V), (3.31c)
as well as
@ — @ strongly in L*(0, T:L*) N C°([0, T]; V') and a.e. in O, (3.32a)
0, — o strongly in L*(0, T; L*) N C°([0, T]; V') and a.e. in Q7. (3.32b)

To show that the limit functions (¢, i, o) satisfy Definition 2.1, we can now proceed
by means of a standard argument, which involves multiplying (3.19a) and (3.19b)
by § € C*(0,7), taking { € Wy, with fixed k < n, and then passing to the limit
as n — oo, taking the weak/strong convergences above, as well as the density of
U2, Wy in D(#) into account. We omit the easy details, and we just sketch the
less obvious points.

First, assumption (A1), the a.e. convergence (3.32a), the application of Lebesgue
dominated convergence theorem, the weak convergence (3.31c), and estimate (3.20)
imply that

m(n)V o, — m(@) Ve weakly in L2(0, T; H).

The term involving n(-) can be handled in a similar fashion. Meanwhile, we
obtain from (3.28), that

IT,(¥'(¢,)) — & weakly in L*(0, T; V),
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for some £ € L*(0,T;V). To identify £ with ¥'(p), we first note that by the
continuity of ¥’ and the a.e. convergence of ¢, to ¢ in Qr, it holds that ¥'(g,)
converges a.e. to ¥’(¢) in Qr. Then, thanks to (3.24) we have that

V(@) — ¥'(p) weakly* in L*°(0, T; L*) for z € (1,2],

where we used the fact that the weak limit and the pointwise limit must coincide.
Using ¢ € Wy and hence ¢ = I1,,(¢), for all n > k, we obtain

T T T
/ (W'(¢).80) di = lim / (W (¢2).50)di = lim / (W (¢2). $1T,(0)) dr
0 n—o0 Jo n—>00 Jq

= tim [ enana = [ @
=0 Jo 0
As far as the source terms are concerned, we first see that
@n — @ strongly in LY(Qr). (3.33)
This immediately follows from (3.31a), (3.32a) and the embedding
L0, T;H) N L*(0,T: V) C L5 (Qr),

which follows from Gagliardo-Nirenberg inequality (recall also that ¢ < 130 ).
Then, (3.33), assumption (A7) and the generalized Lebesgue dominated conver-
gence theorem entail the strong convergence

VP(¢,) — /P(e) strongly in L*(Q7). (3.34)

Next, we see also that

VP@) (0, + X(1 = 2) — jt2) = VP@) (0 + X(1 = ¢) — ) (3.35)
weakly in L2(Qr).

Indeed, the weak convergence of o, + X (1 —@,) — b, to 0 + X (1 — @) — i in L*(Q7),
together with the strong convergence (3.34) imply that the weak convergence (3.35)
holds in L'(Qr) and, by (3.20), also in L?(Q7). Moreover, from the last two
convergences we obtain P(¢,) (0, + X(1 — ¢,) — nn) = P(@)(oc + X(1 — @) — )
weakly in L' (Qr), which is enough to pass to the limit in the source terms. Finally,
we can also prove that the initial conditions ¢(0) = ¢y and 0 (0) = oy are satisfied.
Since the argument is standard, we omit the details.
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3.1.3 Energy Inequality

In order to prove (2.13) we can argue as follows. We integrate (3.20) between 0 and
t, then multiply the resulting identity by an arbitrary @ € 2(0,¢), with @ > 0. By
integrating this second identity again in time between 0 and ¢, we get

/tEn(s)a)(s) ds
0
+ / o(s) ( / ) Vitally + () V(0 — x%)nfqdr) ds
0 0
+ / o(s) / IVP@) 0w + X(1 = 0) — o) de ds
0 0

= E,(0) /tw(s) ds.
’ (3.36)

We now pass to the limit as n — oo in this identity. On the left-hand side we use the
weak convergencesin L?(Qr) of \/ m(,)V i, to \/ m(p)Vu, and of \/ n(e,)V (o, +
X(1—¢y,)) to \/n((p)V(U + X(1 —¢)), (3.35), the weak/strong convergences above
for ¢,, 0,, the lower semicontinuity of the norm and Fatou’s lemma. On the right-
hand side we use the fact that, since ¢y € D(.4"), then ¢,(0) — ¢, in L* and hence
we have E,(0) = E(¢,(0),0,(0)) — E(0) = E(g, 0¢). After passing to the limit,
from (3.36) we therefore obtain the corresponding inequality for the solution pair
(¢, 0), which holds forevery w € 2(0, 1), with @ > 0, and which then yields (2.13).

3.2 Improved Temporal Regularity and Energy Identity

Suppose (A7) is satisfied with g < f‘, then we have
(S O < [1P(@) | 3 low + X(1 = @u) = allzsll]lze
< ClIP(a)l, 3 llon + X (1 = @n) = pallzs [ ]lv-
Furthermore,

1Pl 3 < C(1+ llgally) - (3.37)

which in turn implies that {P(¢,)},en is bounded uniformly in L°*°(0,T; L%)
by (3.22). This yields that {S, },en = {P(¢n)(0, + X(1 — @) — [4n) }nen is bounded
uniformly in L?(0, T; V') and consequently

lonllzzor:vy + llopllizoryy < C VO <T < oo, (3.38)
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Passing to the limit » — oo involves the same argument as in Sect. 3.1.2, but we now
have ¢;, 0, € L*(0, T; V'). Furthermore, as p, o, ¥'(p) € L*(0, T; V), we obtain, by
a similar argument to [18, Proof of Lemma 2(a)],

(@i, )y =

d B B
/ aw() + Za@ 1ol = B « ) dx — 2gr o)y,
dt Q 2 2

d

1
i /  lol? + Xo(1~ g)ds = {010+ 21~ @)}y + (g ~Xo)v.
2

Then, upon adding with the equalities resulting from substituting { = w in (2.12a)
and ¢ = 04+ X(1—¢) in (2.12b), we obtain an identity analogous to (3.20) for (¢, o).
By integrating in time between 0 and ¢ we deduce the energy identity, namely (2.13)
holds as an equality for all 7 > 0.

3.3 Continuous Dependence with Constant Mobilities

For two weak solutions (¢;,0;)i=12 to (1.4) corresponding to initial data
(¢0.i» 00.1)i=12 satisfying the hypotheses of Theorem 2.2, we define
Q=91 —¢2, O0:=01]—02,

W= — po = AV (1) — AV’ (92) + Bap — BJ x ¢ — Xo,
which by Theorem 2.1 satisfy
0,0 € L2(0,T;V)NHY (0, T;V)NL®(0,T;H), pel*0,T;V),
and

(0. 5)v + (Vi, VO + (1, §) (3.3%)
= ((P(g1) — P(g2)) (02 + X(1 — ¢2) — p2), §)
+ (Plp) (0 — Xp — ). &) + (1. ),
(ond)v + (V(o —X9), Vo) + (0 — Xp. ¢) (3.39)
= —((P(¢1) = P(92))(02 + X(1 — ¢2) — [12), )
—(P(p)(0 —Xp — ), 0) + (0 — X, 9),
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for all £,¢ € V. Since ¢, 0, € L*>(0,T; V'), weinsert { = A4 "'pand ¢p = N !0
and employ the relations (1.9), which upon adding leads to

1d
5 g el +llol) + Gu.0) + llolly — (1e, 0)
@ N = N 0) + (N ) + (0 — X, N ) (3.40)
=h+ Db+,
where

Z:= (P(¢1) — P(p2))(02 + X(1 — ¢2) — p2) + P(p1)(0 — X — ).

Using the definition of ;t = w1 — 2, the Mean value theorem applied to ¥/, (A4),
Young’s inequality for convolutions, and Holder’s inequality, we see that

(n—2Xo,9) = (AW (¢1) — ¥ (¢2)) + Bap — BJ » ¢ — 2X0, ¢)
> collelly; — BN (T x @), A o)y —2X||o|lull¢lln
> collelly; — BlA (T @) v el —2X|ollullelm

> collellz; — Bb* |¢llullelly — 2X|lollallelm
2 7.%2 2

2 2
;7 — o s
R

> nllelz -

where b* := a* +b and n € (0, cp/2) is to be fixed. We now insert this last estimate
into (3.40) and, owing to the condition ¢y > X2, we can fix n = no small enough
such that 8o := 1 — X?/(co — 210) > 0. Therefore, we obtain

1 d

5 dr (lellyr + llolly) + nollell + ollollz

B b2 (3.41)
<h+bL+5I+ ||<P||%//-
4no

The right-hand sides I;, I, and /3 can be estimated as follows: Using (1.9), it holds
that

5] < lollv + Xlelv) 14 ally < llolly + Xlellv oy (3.42)

The estimates for /; and I, will require an estimate for ||i||y/. Recalling b* :=
a* + b, we first note that for every { € V we have

[(ap. ) = [(p.ad)| = llellvllatlly < b*llellv IIE]v. (3.43)
I *@. 0 =1(@.* O] < llellvIl] *¢llv < b llpllvIgllv. (3.44)
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which yield ||ap|v < b*|l¢]|lv and ||J * ¢|lvy < b*||¢||yv’. From (B3), it holds that
1" (1) =¥ (@) ¢ < C(1+ il + el el

and so, with the continuous embedding LS C V' we have that

(¥ (@) = ' (92), /TN = 1 (@) = ' (@) v 4 fllv

45)
< C(1+ lleilps + leallzs) lellel fllv-

Using (A3), we find that
Il < AC (14 ll@illys + loallys) lella + 26*Bllolly + Xliollv.  (3.46)
Immediately, we have

L] < AC (14 lleill7s + @217 ) lellulillv: + 20 Blell, + Xlollv o]y

r r no
<C(1+ el + llel25) el + A el + C (el + lolls) -
(3.47)
For I, let us first note that

[1P(@Of v < cllPllzeellfIl s -
Then, a short computation shows that
IP(p1)(0 — Xp — Bap + BJ x ¢ + Xo) |y < C(|ollu + ll@llu) -
Furthermore, by (B3) and the embedding LS cV,

AlP(@) (¥ (1) = ¥ (@2)llv = ClIP(@) (¥ (01) = ¥ (92))]], 6
< ClIPllzsery (1 + il + l2ll7s) gl
Combining we now obtain
|(P(p1)(0 = Xp — ), N o — N o)

< C(L+ @il + lle2lizsr) Al + lolz) el + llolv) -
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Then, thanks to the Lipschitz continuity of P, for I} we have

L] < [|P(¢1) — P(@2) lulloz + X(1 — @2) — palla |4 " o — A 0|l 16
+ C(1+ lleillya + le2lls) el + lola) Uellv + llollv)
< C(1+ lloa+ X(1 = @2) — pally + llen 175 + o2l 75) (el + loll3)
Mo 8o
+ ol + 5 ol
(3.48)

By Young’s inequality, upon substituting (3.42), (3.47), (3.48) into (3.41) we obtain

d
& (Il + llolly) + nollell + Sollollz-

< C(L+lleil7s + 2l + lloz + (1 = 2) = pall) (el + lloll3)
= 2 (llelly + o) -
Now, the prefactor 2~ for (||q0||%,, + ||0||%,,) on the right-hand side belongs to
L'(0,7), provided r < 4/3. Indeed, employing (3.29) (take ¢ = 3r) we have
1,92 € L (0,T;L*) and ;:2 > 2r for r < 4/3. The continuous dependence

estimate (2.18) then follows from Gronwall’s lemma. If r < g, then from (3.46) we
have

t
/w%m
0

= c |:<1 + Z ”(pi“iroo(O,T;H)) ”(p”iz(OJ;H) + ”90”22(0’,;\//) + ”0-”22(0'1;‘//):|
i=1.2

< C(le©]3 + o)) -

4 Degenerate Mobility and Singular Potential

4.1 Existence

For ¢ > 0, we consider the approximate problem (P;) given by

Qe = div (me(@e)Vine) + Pe(@e)(0e + X (1 — @) — fie) in O,
Ue = AW/ (¢.) + Bag: — BJ * ¢, — X0, in Or,

0es = div (n(@e) V(0e + X(1 — ¢.))) — Pe(@e)(0: + X(1 — ¢¢) — ) in O,
(Pe)
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with Neumann boundary conditions on 9§2 x (0, T') and initial conditions ¢.(0) =
@o, 0.(0) = oy, which is obtained by replacing the singular potential ¥ with
a regular potential ¥, = ¥, + ¥, and the degenerate mobility m by a non-
degenerate mobility m, given by

m(l —¢) fors>1—¢,
me(s) = § m(s) for |s] <1—¢, (4.49a)
m(—1+¢) fors<-—1+eg,

Ui(1—e)+¥(1—e)(s—(1—¢)

(1 —e)(s— (1 —¢))?

+is—(1—9)? fors > 1 —e,
Uie(s) = Wi (s) for |s| <1 —e,
Ui(—1+e) + ¥ (=1 +e)(s—(e—1))

I (=1 + &) (s — (e — 1))?

—f-éls—(e—l)|3 fors < —1 + ¢,
(4.49D)
Uh(l—e)+ W1 —e)(s—(1—¢))
(1 —e)(s— (1 —¢))? fors > 1—e,
U e(s) = { Wa(s) for |s| <1 —e,
Uh(—1+e)+P(—1+e)(s—(e—1))
+1 (1 + &) (s — (e — 1))? fors < —1 +e¢.

(4.49¢)

Note that ¥ is a slightly different variant to the approximation employed in
[18]. By (C4) and (4.49a), it holds that m, satisfies (A1) for positive . We introduce
the approximate entropy function M, € C*(R) by

m(IM(s) = 1. M.(0) = M(0) =0, (4.50)

and the approximate nonlinearity P, € C°(R) by

P(l1—¢) fors > 1—g¢,
Pe(s) = { P(s) for |s] < 1—¢, 4.51)
P(—1+¢) fors<-—1+e.
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4.1.1 Properties of the Approximate Functions

In the following, we will derive some properties for the approximating functions ¥,
M., and P, and also some a priori estimates for {¢;, [L¢, 0} that are uniform in &.
For the rest of this section, the symbol C denotes positive constants that may vary
line by line but are independent of .

(1) The approximate potential. We now show that the approximation ¥, = ¥, .+
v, . satisfies (A4), (AS), (A6). From (C3), (4.49b) and (4.49c) we observe that

AP’ (s) + Ba(x) for |s| < 1—e,
AV!(s) + Ba(x) = AV"(1 —¢) + Ba(x) + (s— 1 +¢)  fors>1—g¢,
AV (-1 +¢e)+Ba(x)+|s—e+ 1] fors<—1-+¢
>¢y VseR, ae.xe 2,

(4.52)

which implies that ¥, satisfies (A4) for all ¢ > 0. Furthermore, (C3)
immediately gives a lower bound for ¥”':

1
WU(S) > A (C() —B”LIHLOO(_Q)) =:k Vse (—1, 1)

Then, we deduce from (4.49b) and (4.49c), and applying Young’s inequality, that
there exist two constants k; > 0, k, € R, independent of &, such that

W (s) >k s —k, VseR.
By Young’s inequality with Holder exponents, we observe that
W (s) > ki |s|® —ka = e2 |s]* — Clca, ki ky) Vs € R,

where we can take the constant ¢, such that (2.11) is satisfied. Therefore, (AS5) is
also satisfied for all ¢ > 0. Meanwhile, by the definitions (4.49b), (4.49¢), ¥, has
cubic growth for fixed ¢ > 0 and thus (A6) is satisfied with z = ;

(2) Uniform bounds on the initial energy. We now establish that ¥,(gg) is
bounded in L! (£2) independent of ¢, see also [23, Proof of Theorem 2] and
[20, Proof of Lemma 4]. By Taylor’s theorem, for ¢ € (0, 9], where gy is the
constant in (C2), we have, for1 —e <s < 1

V() = (1 =) + W= )5 (1 =€) + W) — (1 - )
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where & € (1 — ¢,s). Then, condition (C2) implies that ¥” (&) > ¥"(1 — ¢)
and so ¥ .(s) — (s — (1 — €))3/6 < W;(s). We argue in a similar fashion for
—1 < s < —1+ ¢. Since ¥ (s) = ¥, .(s) for |s] <1 — ¢, we get the bound

3
WL (s) < i (s) + 86 Vse (=1,1), Ve e (0,s]. (4.53)

On the other hand, using ¥, € C*([—1, 1]) and a similar argument involving Taylor’s
theorem, there exist constants L;, L, > 0 such that

Who(s)| <Li|sP+Ly VseR, Vee(0,¢). (4.54)

Then, by (C6), (4.53) and (4.54) it holds that

/ W, (g0) dx < / Wigo)dx + Lillgoly + C < oo Vee (0.5 (455
2 2

(3) The approximate entropy function. From the definitions (4.49a) and (4.50),

we obtain
M —g)+M(1—g)(s—(1—¢))
+IM"(1—&)(s — (1 —¢))? fors > 1 —e,
M(s) = { M(s) for |s| <1—e¢,
M(—1)+M(—1)(s—(c— 1))
+IM" (e = 1)(s — (e — 1))? fors < —1 4.

Assumption (C4) yields that m is non-increasing in [1 — &g, 1] and non-decreasing in

[—1,—1 + &¢]. This implies that M" = yln is non-decreasing in [1 — &g, 1) and non-

increasing in (—1, —1 + &g]. We refer the reader to [5, §3.4], [18, Proof of Lemma
2 ¢)] and [23, Proof of Theorem 2] for the proof of the following bounds:

Mc(s) <M(s), |MU(s)| <|M'(s)] Vse(=1.1) Vee(0,s] (4.56)

/9 (@] = 172 dv < 2max(m(=1 + &).m(1 — )M, (457)

By (4.56), for any initial data ¢ satisfying (C6), we have

/ M, (¢o) dx < / M(go) dx < oo. (4.58)
2 2
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(4) The approximate nonlinearity. From (4.51) and the expression for M, above,

we obtain
(VPM')(1 =) + VP9 (s — (1 - ) fors > 1—e¢,
(\/PeMé)(S) = § (VPM')(s) for |s|] <1 —e¢,
(VPM')(—1 +¢) + “{11()(__1:_4;)’7) (s—(—1) fors<-—1+e.
(4.59)

We now use (C4) and (C5) to estimate the function \/ P(s)M’(s). For any s € [1 —
&9, 1), it holds that

/ B 1—gp 1 s 1
‘\/P(S)M )| = ‘\/P(S) (/0 m(r) dr + /1_50 m(r) dr)‘
< VPO g
m(s)
<cls|+C.

A similar estimate holds for any s € (—1, —1 4+ g¢], and for |s| < 1 — gy we have

1—¢9 1 0 1
< \/P(s)rnax (/0 m(r) dr,/_H_S0 m(r) dr) <C,

thanks to the fact that P € C°([—1, 1]) and m(s) > 0 for all |s| < 1 — &o. Hence, by
the explicit form in (4.59) and (C5) there exists a positive constant C such that

VPOM ()

‘\/PS(S)M;(S) <crls|+C VseR, Vee (0,e)]. (4.60)

4.1.2 Uniform Estimates
By Theorem 2.1, for fixed € € (0, g¢], there exists a pair (¢, 0,) such that
9,0, € L®(0,T; H) N L*(0, T; V) N H'(0,T; V'),
which satisfies (2.12) with m, and ¥/, and
te = AV (¢:) + Ba g — BJ x ¢, — Xo,. (4.61)

Furthermore, the pair (¢.,o.) satisfies the energy inequality (2.13) and we then
deduce that there exists a positive constant C, independent of ¢, such that, for all
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te[0,7T],

o117 + e IF + 1 Vme(@e) Vitel 720
+ 1) V(0 = X0 2 0 1
+ ||\/Ps(§06)(06 + X(l - (ps) - ME)”iZ(O,t;H)

< Ee(90,00) < C (1 + llwoll + 1¥(eo)ll + llool7) .

(4.62)

where E; is given by (2.14) with ¥ replaced with ¥, and (4.55) has been taken into
account. This immediately yields the following uniform estimates with respect to &:

lellzoo 0,731y + |0% |00 0. 1300) < C, (4.63a)

Iv/me(@e) Vel .2y < C (4.63b)

[V(oe + X(1 = @) 20,750 < C, (4.63c)
Iv/Pe(@e)(0: + X(1 = 9.) — )l 2o < C. (4.63d)

Recalling the approximate entropy function M, from (4.50), since M. € C'(R)
and M” is bounded on R, then we immediately see that ¢, € L*(0,T;V) implies
M.(¢:) € L*(0,T; V). Since ¢., € L*(0, T; V') we find from testing the equation for
@e with M (¢.) the following identity:

d
[ Mprax + [ mieom Vi, Vo.as
dr Jo Q
= [ PG+ 10 = 0 — ) .
7]
Using m:M! = 1 and applying the relation (4.61) to V1., we have
d 7 2
M (¢e)dx + [ (Ba+ AW (@) |Vee|” dx
dt Jo 2
= / MQ(%)PS(%)(% +X(1 — @) — We) dx
2

+ / (BYJ % g0 + XV (0 — 2g2) — Bp.Va) - Vo + X2 [Vpu|? dix
2

=: K| + K>.
(4.64)
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By Young’s inequality for convolutions, Holder’s inequality and Young’s inequality
we see that

t
/ K> dt
0

t
< 2bB /0 el Vel + X2 Ve | di

t
+ / XV (@, + X1 = @) ] Vel (4.65)
0

co— 12 2 2
S C + 2 + X ”VGDSHLZ(OJ;H)
and

< IVPe(pe) (0 + X(1 = @) — )l 20y

t
‘/ K dt
0

4.66
X ”Mé((pa) \/Ps(¢s)||L2(0,t;H) ( !

< CIML(p) VPl 200

Thus, upon integrating (4.64) over [0, f] for ¢ € (0, T], and applying (4.52), (4.65)
and (4.66), we obtain

—x2

R A

/mwww+“
« (4.67)

< /Q M. (go) dx + CIM.(¢)v/Po (@) l20.0) + C.

The first term on the right-hand side is bounded uniformly in ¢ by (4.58).
Moreover, (4.60) together with (4.63a) entail that also the second term on the right-
hand side of (4.67) is bounded uniformly in . From (C3) we have ¢y > X2, and
thus, together with (4.63c), we obtain the following uniform estimate

M (@) oo 0.0ty + IV@ellz0mmy + IVOell 200y < C. (4.68)

For estimates on the time derivative ¢, ,, we start with the variational formulation
for the equation of ¢,, and applying Holder’s inequality, definition (4.51), (C5) and
the fact that m, is bounded above uniformly in ¢, leads to

e Ol < VM (@) 00 |/ me (@) V e | IV L
+ [V Pe(@e) (0 + X(1 = 2) — w)llullv/Pe (@)l 1 1o

= C(Ivme@IVielln + 1VPeg) 0 + X1 = @) = )l ) 1€ v,
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for all { € V. Squaring, integrating in time and on account of (4.63a), (4.63b),
(4.63d), we obtain

lpell20.73v7) < C. (4.69)
A similar argument, using (4.63c) and the boundedness of the mobility n(-), yields

loesllzo.r:v) < C. (4.70)

4.1.3 Passing to the Limit

From the a priori estimates (4.63a), (4.63b), (4.63c), (4.63d), (4.68), (4.69), (4.70)
and using compactness results, we obtain for a non-relabelled subsequence and any
s <6,

@e — @ weakly* in L®(0,T; H) N L*(0,T; V) N H' (0, T; V'), (4.71a)
@. — @ strongly in L*(0, T; L*) N C°([0, T]; V') and a.e. in Qr, (4.71b)
0. — o weakly* in L>®(0, T; H) N L*(0,T; V) N H' (0, T; V'), 4.71c)
0, — o strongly in L*(0, T;L*) N C°([0,T); V') and a.e. in O, 4.714d)

By (4.57), (4.68), the generalized Lebesgue dominated convergence theorem, and
the fact that m(£1 F ¢) — 0 as ¢ — 0, it holds that

/ (—o(t) — l)i_ dx =0, / (1) — l)ﬁ_ dx =0 forae.t€(0,7),
Q2 Q

which yields that |p(x,#)| < 1 for a.e. (x,f) € Qr. We now multiply the weak
formulation of (P;) by § € C2°(0, T) and integrate over [0, 7], leading to

T
0= /o 8 ((o&,, Oy + /Qn(q)s)V(crs — Xg) - V¢ dx) dt
T
+ / / 8P () ((1 + X)oe + X(1 — @) dx dt 4.72)
0o Jeo

T
+ / / 8P (p:)(—AW.(9.) — Bag, + B  p)¢ dx di.
0 2
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and

T
0= / 8(<<pg,f,z>v+ / me(9) (AW (0,) + Ba) wg'vzdx) di
0 2

T
+ / / Smg(@e) (Bp:Va— B(VJ x ¢,) — XVo,) - V{dx dt
0 e (4.73)

T
- / / 8P, (02) (1 4+ 1) + X(1 — ) d di
0 2

T
- / / 8P:(¢e)(—AY.(¢:) — Bag, + BJ x ¢,)¢ dx dt
0o Je

for { € V and we aim to pass to the limit ¢ — 0. As the argument for the
terms involving the time derivatives, the gradient terms and terms involving J
in (4.72) and (4.73) are standard, we will focus on the non-trivial terms involving
me ()W, (¢e) and Pe(g) ¥ (¢e).

To pass to the limitin |, o, 0Am(0:) W (9e) Ve -V dx dt , it suffices to show that
Sme (@)W (9:) VE converges strongly to §m(¢)¥” (¢) V¢ in L*(0, T; H). To achieve
this we assume that the test function ¢ belongs to the space D(.#"), which is dense
in V (see [29, Lemma 3.1]), and then apply a density argument.

Due to the condition m¥” € C°([—1, 1]) and the a.e. convergence . — ¢ in Qr,
we observe that (see, e.g., [18])

me (o) ¥, (¢e) — m(p)¥"(¢) a.e.in Qr. (4.74)

Moreover,

[me ()W (5)| < [lm¥" || oo 1.1 + m(1 = &) (s — (1 = ) X[1—c.00) (5)

(4.75)
+m(=1+¢)[s— (=1 + &) X0 —14¢(5),
where Xg denotes the characteristic function of a set E C R. Then, from (4.71a)
and the embedding L>°(0, T; H) N L*(0, T; V) C L’ (Qr) for r = 4 if d = 2 and for
r= 130 if d = 3, we have boundedness of ¢, in L"(Qr). Using the fact that m(£1 F
g) — 0 as ¢ — 0, by the generalized Lebesgue dominated convergence theorem
from (4.75) we deduce that (m.¥)(¢.) — (m¥")(p) strongly in L'(Qr). Since
§V¢ € L%(Qr), we infer the required strong convergence §m. ()W (9.)VE —
Sm(@)¥"(9)VEin L2(0, T; H).
It remains to pass to the limitin |, or 8P (9o )W/ (pe)¢ dx dt , and it suffices to show
that P, (¢.)¥/(¢.) converges strongly to P(¢)¥’'(¢) in L*(Qr) for some s > 1. By
definition of P, and ¥/ from (4.49b), (4.49¢) and (4.51), and also recalling (C5), we
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have (fory =1 —¢)
|Pe(9)W/(5)| < 3IP¥' || oo =111

+ ‘P@)W(y)(s =3 PO =] Hioe )

+ ‘P(—y)W(—y)(s FD 4P Is ylz‘ K01 (6)
< 3P o1y + Cm)P O] 1) = )| Xiyoo) (5)
+ C [PG)s =3[ Lo (5)
+ C (=) ()] Im(=3)(s + )| X =00-1(5)
+C|P) s + 3| Xm0 ()
< 3[1P¥'|loo 1.1

+ Cmax (m(£1 F £), P(£1 F ¢)) (1 + |s|2) ,
(4.76)

where we used that |m(y)¥” (y)| < [|m¥"| oo ((—1,17) by (C4).

Moreover, due to the condition P¥’ € C°([—1, 1]) and the a.e. convergence of ¢,
to ¢ in Qr, we have analogously to (4.74)

Po(¢e)¥.(¢p:) — P(p)¥ () ae. in Or.

Then, arguing as in the treatment of the term m.¥/, and using again the fact that
m(£1l F ¢) — 0 as ¢ — 0, and the bound for ¢, in L"(Q7) (with r given as above),
from (4.76), by the generalized Lebesgue dominated convergence theorem, we get

Po(9)W.(¢:) — P(@)¥'(p) strongly in L2 (Qr).

Thus, passing to the limit ¢ — 0 in (4.72) and (4.73) leads to (2.17).

4.2 Continuous Dependence on Initial Data

We follow the ideas in the proof of [36, Theorem 4.1], see also [23, Proof of
Proposition 4] and [25, Proof of Theorem 4]. We define

I(s):= /OS m(r)dr, and A(x,s) := /05 m(r)AY" (r)dr + Ba(x)I"(s).
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Then, in the case X = 0, we can express the first equation of the weak
formulation (2.17) as follows:

0= (g, 0)v + (VA(.9). V) = (I'(9)BVa, V) + (Bm(p)(¢Va = VJ x ¢), V)
— ((P(p)(0 — A¥'(¢) — Bag + BJ * ¢).{).
For any two weak solution pairs (¢;,0;);=12 corresponding to initial data
(¢o.i» 00.1)i=12 satisfying the hypothesis of Theorem 2.4, let ¢ = ¢; — ¢, and
o0 := 01 — 07 denote their difference. Then, it holds that ¢ and o satisfy
0= (@n.8)v + (V(AC.¢1) — A( ¢2)). V)
—((I'(¢1) = I'(92))BVa, V) + (m(p2)B(9Va — VI x ¢), V)
+ ((m(g1) —m(@2))B(¢1Va = VJ * ¢1), V)
— ((P(¢1) — P(¢2))(01 — Bagi + BJ x ¢1).{)
— (P(¢2)(0 — Bag + BJ * ). )
+ AP (1) — P(2)¥'(¢2). 0),

4.77)

and

0= (o1, &)y + (Vo. V) = A(P(p)¥'(¢1) — P(p2) ¥ (92). 0)

+ ((P(¢1) — P(¢2)) (01 — Bag + BJ * ¢1).¢) (4.78)

+ (P(¢2)(0 = Bag + BJ * ¢), {).
for all { € V. To simplify the subsequent computations, we first analyze the
term involving P. By the fact that |¢;] < 1 ae. in Q7 and hence P(g,) is
uniformly bounded a.e. in Qr, and thanks also to the Lipschitz continuity of P and
to (3.43), (3.44), we obtain

|(P(¢2)(0 — Bag + BJ % 9).0)| < |lo — Bag + BJ * ¢|lv/[[P(¢2)¢]lv

. (4.79)
< C(llolly: +2b™ Bllollyv)(A + Ve l) 1 llpyy -

Next, using the Lipschitz continuity of P, Young’s inequality for convolutions, and
assumption (A3), we obtain

|(P(¢1) — P(¢2)) (01 — Bap) + BJ % ¢1)|lv

= sup

/ (P(¢1) — P(¢2))(01 — Bagy + BJ x 1) dx
nev.lnlv=1 /2 (4.80)

sup  Cllgllullor — Bapy + BJ * @113 1]l s
nev.nlly=1

< Cllella (1 + llotllzs + llell3) -

IA
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This in turn implies that

[((P(¢1) — P(¢2))(01 — Bagi + BJ x ¢1), )|

(4.81)
< Cllolla (1 + ol + llerllz) 1]y

Using the property P¥’ € C%!([—1,1]) and by a similar calculation to (4.80) we
obtain

[P(e)¥ (¢1) — P(92)¥' (92) lv < Cli@lla,

and thus,

|AP(p)¥' (91) — P(2)¥' (92).0)| < Cllellulillv- (4.82)

We now turn our attention to the other terms in (4.77). By the boundedness and
Lipschitz continuity of m, Holder’s inequality, Young’s inequality for convolutions,
Young’s inequality and the fact that |@;| < 1 fori = 1,2, we find that

[(I'(¢1) = I'(92))Va, V)| = CllellalIVE|a. (4.83)
[((m(@1) —m(@2))(@2Va — VI % ), VO)| < Cllella Ve a (4.84)
|(m(p2)(pVa —VJ * ¢). VO)| < Cllg[lulVE]la. (4.85)

where the constant C depends on ||m| zoe (1,1}, on the Lipschitz constant of m
in [-1,1] (cf. (D1)), and on b (cf. (A3)). Furthermore, by the property m¥” €
C%([—1, 1)), it holds that

I(A(v @l) - A(v @2)5 é‘)l

@1
< B(a(I(g1) - T(g2)).0)] + A ‘ / / (V" () dr ¢ dx
2 Jo, (4.86)
< Ba™|m|| oo =1, @ ||l + Allm¥" || oo = lle € e
< Cllellal¢lv.

Then, upon adding the identities obtained from substituting ¢ = .4 ¢ in (4.77)
and ¢ = A 1o in (4.78), using (1.9) and adding the term

(A(s (p) - A(v @2)7 '/V_l@) + (O—s '/V_IU)

to both sides of the equality, we obtain after applying (4.79), (4.81), (4.82), (4.83),
(4.84), (4.85), and the estimates |4 "'fllv < fly, |47 fllpesy = Cliflla
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from (1.9) and (1.10),

1d
5 g (1015 +10l) + (AC 1) = AC.@2).0) + llol;
< (AC,@) = AC.@2). N @) + (0.4 o) (4.87)

+ Clollv + llellv) A+ 1IVellm) Alella + llollu)
+ C( + loillzs + lleillzs) Uellv + llollv) llela.

From substituting ¢ = .# !¢ into (4.86) and also recalling (3.42), we have that
(A, @) = AC @2), A Tl 9) + (0, /7 0)| < Clolullellv + lloll5.

Moreover, on account of (D2) we find that
1
ACop) = Ags) = [ m)AW" () + Batom(r) dr

P2

1

- /0 AE") 601 + (1 — 8)¢2) + Baym(8o, + (1 — 6)py) B
1

> /0 AL = p)m¥])(Og1 + (1 — 0)g2) db

= [ a0 pmow 0 ar = a0 - prese,
%

2

and so it holds that

(AC,p1) — AC,@2).9) = Al — p)cslloll};. (4.88)

Altogether, from (4.87), (4.88) and by using Young’s inequality we are led to the
following differential inequality

d
o (0l +101%) +AC = pesllell + o s
= C(1+ Nl + ol + 1Ve2l3) (ol + 1)

As the prefactor (1401175 + [l@1 117, 41| Vo2 I7,) belongs to L' (0, T), the application
of Gronwall’s inequality yields (2.18).
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A Boundary Control Problem for the Equation
and Dynamic Boundary Condition
of Cahn—Hilliard Type

Takeshi Fukao and Noriaki Yamazaki

Abstract A dynamic boundary condition is a type of partial differential equation
that describes the dynamics of a system on the boundary. Combining with the heat
equation in a smooth-bounded domain, the characteristic structure of “total mass
conservation” appears, namely, the volume in the bulk plus the volume on the
boundary is conserved. Based on this interesting structure, an equation and dynamic
boundary condition of Cahn—Hilliard type was introduced by Goldstein—-Miranville—
Schimperna. In this paper, based on the previous work of Colli-Gilardi—Sprekels,
a boundary control problem for the equation and dynamic boundary condition of
Cahn—Hilliard type is considered. The optimal boundary control that realizes the
minimal cost under a control constraint is determined, and a necessary optimality
condition is obtained.

Keywords Boundary control ¢ Cahn—Hilliard system ¢ Dynamic boundary
condition
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1 Introduction

Let us consider the following problem of the equation and dynamic boundary
condition of Cahn—Hilliard type: 0 < T < +o0, and £2 C R? is a bounded domain
with smooth boundary I" := 0£2. Find a quadruplet of functions (u,ur, i, ir)
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satisfying the following equation and dynamic boundary condition of Cahn—Hilliard
type:

ou

at—Au:O inQ:=(0,T) x £2, @8
w=—-Au+%'®uw inQ, 2
our

ur =u)., Mr =l o 4+ 0 —Arur =0 onX :=(0,7)x T,
3)

pr = dyu— Arur + #{(ur) —fr onX, 4)

u(0) =up in £2, (5)

ur(0) =uor onT, (6)

where u|. and |, denote the traces of u and p, respectively, up and uor are given
initial data such that uor = ug|. on I, d, denotes the normal derivative on I"
outward from £2, and A denotes the Laplace—Beltrami operator on I (see, e.g.,
[15, Chap. 3]). In Eq. (4), the last term fr : ¥ — R is a control function on the
boundary. In (2) and (4), the functions % and -, which are called “double-well
potentials”, play an important role. Because of them, this system becomes the Cahn—
Hilliard equation. For example, if we employ # (r) := (1/4)(r>*—1)?,then #'(r) =
r —rand (1)-(2) gives the prototype Cahn—Hilliard equation (see, e.g., [3, 10]). As
another example, the function %/ (r) := (1 + r)In(1 +r) + (1 —r) In(1 — r) — cr?,
where ¢ > 0 is a large constant in order to make a double-well structure, is known as
the logarithmic double-well potential. Then, #”(r) = In((1 +r)/(1 —r)) —2cr. #r
is also analogously defined. We can see some symmetry between (1)—(2) in the bulk
and (3)-(4) on the boundary. Therefore, we can also interpret the system (1)—(4) as
a transmission problem of Cahn—Hilliard equations in the bulk and on the boundary.

The system (1)—(4) was introduced by Goldstein—-Miranville-Schimpernain [14]
as the prototype Cahn—Hilliard equation with a “non-permeable wall”. This gave
rise to various studies, leading to the well-posedness with singular potentials being
obtained in [6], where the characteristic structure of “total mass conservation”
was the key to the proof. Here, total mass conservation means the following
conservation law:

/u(t)dx+/ up(t)dF=/ uodx+/ uordl” forallt € [0, T].
2 r 2 r

Many studies have considered this interesting structure and treated various problems
with the dynamic boundary condition [1, 4, 5, 11-13].

Let us consider an optimal control problem. Find an optimal controlf : ¥ — R
in some admissible set %,q such that the associated state (u, ur) of (u,ur, &, i),
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which satisfies (1)-(6) with fr = f in (4), realizes the minimal cost of

I, ur). fr) = sz[Q|u(t,x)—u*(t,x)|2dxdt+ bz’“"[S|up(t,x)—u;(t,x)|2drdt

+ % [ lsroara
2 Js

in other words, the state (u, ur) is as close as possible to the target state (u™, u}.)
under the minimal control f -. This kind of boundary control problem for the Cahn—
Hilliard equation was treated in a series of papers by Colli-Gilardi—Sprekels [7-9].
Their results provide the essential idea for the proof of our equation and dynamic
boundary condition of Cahn—Hilliard type.

The results of the present paper are based on a previous study [8]. The outline
of the paper is as follows. In Sect.2, we present the target problem. We also
define the notation that is used in this paper. Moreover, we prove the existence of
an optimal control (optimal pair) for system (1)-(6). In Sect.3, we consider the
viscous Cahn-Hilliard system as the approximate problem and discuss the well-
posedness. Additionally, we prove the existence of an optimal control (optimal
pair) for the viscous Cahn-Hilliard system. Moreover, we state problems (P1)
and (P2) concerning the relationship between the original control problem and its
approximations. In Sect. 4, we prepare the auxiliary linearized problem and adjoint
problem. The differentiability of a control-to-state mapping is then obtained. In
Sect. 5, we derive a weak formula for the necessary condition of the original control
problem using the limiting observation of approximate situations.

2 Target Problem

In this section, we introduce the target problem.

2.1 Notation

In this paper, we use the spaces H := L*(2), V := H'(2), Hr := L*(I'), and
Vi := H'(I") with the standard norms | - |, | - |v, | * ;> | - |v,- and inner products
Gy Codvs Gy s Gy 9)vy, respectively. The symbol V* denotes the dual space of
V, with the duality pairing (-, -)y+ v between V* and V. Similarly, the symbol V}.
denotes the dual space of Vj with the duality pairing (-, '>V,’5,Vr between V7. and
Vr. Moreover, H := H x Hr, V := {(z,zr) € VxVr : zpr = z,ae.onl},
and W := H?(2) x H*(I'). Hereafter, we use a bold symbol z as the pair (z,zr)
corresponding to the letter. The inner product (-, -)g of H is defined by

(z.2)m := (z.2)u + (zr,Zr)u, forallz,z e H.
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Note that if z € V, then zr is exactly equal to the trace z|,. of z on I', whereas
ifz € H, then z € H and zr € Hp are independent. Moreover, m : H — R is
defined by

1
m(z) := {/ zdx+/zpd1"} forallz € H,
121+ (/e r

where |2] := [, ldxand |I'| := [ 1dI". We also define the bilinear form a(-, -) :
VxV —Rby

a(u,z) == / Vu- Vzdx+/ Vrur -Vezrdll forallu,z eV,

2 r
where V[ denotes the surface gradient on I (see, e.g., [15, Chap. 3]). Finally, we
define the subspace Hy := {z € H : m(z) = 0} of H and V, := V N H, with norms
|z|p, = |z|m forallz € Hy and |zly, := a(z,z)"/? forall z € Vj, respectively. Under
the Poincaré—Wirtinger inequality (see, e.g., [6, Lemma A]), there exists a constant
Cp > 0 such that Cplz|f;, < [z[}, for all z € V. Then, the function F : Vo — V{,
defined by

(FZj)V{;,Vo ‘= a(z,z) forallz,z € Vo,
is the duality mapping. The inner product in V7§ is also defined by

* _ % R * —1_x* * _%k *
@1.25)vy = (&1 F z3)yxy, forallzy,zy € V.

Then, the dense and compact embeddings Vg < — Hy < <— Vé hold.

2.2 Target Problem

Recall the known result for the equation and dynamic boundary condition of Cahn—
Hilliard type. Find a quadruplet of functions (u, ur, i, pi ) satisfying the following
equation and dynamic boundary condition of Cahn—Hilliard type:

ou_ Ap=0 ae.inQ, 7

at

w=—Au+#'(u) ae.inQ, (8)
3u1~

ur =up, Mr =y, o +dyu—Arpur =0 ae.on X, 9

nwr = oyu — Arur +W1f-(u[') —fr ae.onX, (10)

u(0) =up a.e.in £2, (11

ur(0) =uor ae.onl. (12)
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The well-posedness of the above problem has already been discussed [6]. To obtain
a suitable solution, we assume the following:

(Al) —o0o <r— <0 <ry <+4o0;
(A2) There exist B, Br € C*(r—,ry), m.mr € C?(R) such that the following
conditions hold:

* B and Br are maximal monotone and (0) = Br(0) = 0, B/, B are
bounded from below;
« there exist positive constants ¢, ¢; such that ‘ ,3(r)| < ¢ | B 1‘(7‘)‘ + ¢, for
allre (r—,ry);
o lim~,,_ B(r) = limx,,_ Br(r) = —oo, limr/'r+ B(r) = limr/'r+ Br(r) =
+00;
e g, are Lipschitz continuous.
Moreover, #' = B+m, W} = Br+nar; W, Wr € C3(r—,ry)and ¥, Wr
0; 7 (0) = #r(0) = 0; #", W} are bounded from below; lim,~_,_ #(r)
lim~,,_ #}[.(r) = —o0; lim, q., #'(r) = lim, . #}.(r) = +o0;
(A3) fr € H'(0,T:Hr);
(A4) u = (up,uor) € WNV, Buo) € LI(2), Br(uor) € L'(I") and my :
m(ug) € (r—,ry).

Here, ,:3\ and BI“ are the primitives of 8 and B, namely § = BB and Br = BBF,
respectively.

In this paper, for each fr € H'(0,T:Hr), the symbol (P;fr) denotes the
problem (7)—(12) corresponding to the boundary data fr in (10).

Under assumptions (A1)—(A4), as a result of [6, Theorem 2.1] (see also [5, 14,
16]), we can state the following for the solvability of (P;fr).

Proposition 1 (cf. [6, Theorem 2.1]) Assume (A1)—(A4). Then, for each fr €

HI(O, T;Hr), there exist a unique function u := (u,ur) € HI(O, T;V*) N
L>®(0,T;V) NL*0,T; W) and a function p. := (., jur) € L*(0, T: V) such that

v

(W (©0).2),. , +a(n().2) =0 foralizeV, (13)

(r(D).2)y = a(u(®).z) + (7' (u(®).2), + (P} (ur ©).zr),,

—(fr(t),zr)HF forallz €V, (14)

foraa.t € (0,T), and u(0) = ug in H. Moreover, there exists a positive constant
M, such that

W' |2 0,75v%) + [l 0.1y < Mi(wolv + 17l o.r5m1)) (15)

|u|L2(0,T;W) + |”’|L2(0,T;V) + |W/(u)|L2(O,T;H) + |W1—/‘(MF)|L2(0,T;H[“)

(16)
<M (1 + luolv + | frlmo1:m))-
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Remark 1 (cf. [11, Remark 3]) The variational form (13) means that Egs. (7) and (9)
are satisfied in the following variational sense:

(W (@®.2) , + (M/p(l‘),zr)vpvr + / Vu(t) - Vzdx + / Vrur(t)-Vrezrdl =0
' ' 2 r

forallz := (z,zr) € Vandfora.a.r € (0,7).

Definition 1 A mapping . : 2" — % is defined by the control-to-state mapping
that assigns the unique component u, from the solution (u, x) to (P;fr), to any
boundary control f, that is,

L(fr):=u forallfr € 2 :=H'(0,T;Hr).

In this paper, we consider the boundary control problem, that is, for some given
target states u* € L*(0, T; H) and u}. € L*(0, T; Hr), define a cost functional

b r b r
T, ur). fr) == 2Q/0 |u(t)—u*(t)|2dt+ 22/0 Iur(t)—uﬁ(f)|i,rdf

by [T 2
+ 0 [l a
a7
for all u € L*(0, T; H), ur € L*(0,T; Hr), and fr € 2, where bg, bx, and b, are
given nonnegative constants. Our optimal control problem (OP) is as follows:

(OP) Find a minimizer ((u,ur),f) of the cost functional (17) subject to the
constraint f - € %q and the corresponding state u = . (f ) of (P;f ).

Throughout this paper, %,q4 is an admissible set defined by

Ua = Cr € 2 1rlmorm < Mo}

for some positive constant M. Note that %4 is non-empty, closed, and convex in
Z.

We now state the first main theorem for the existence of the optimal control:
Theorem 1 Assume (A1)~(A4), u* € L*(0,T;H), and u}. € L*(0,T;Hr). Then,

there exists at least one f - € aa such that

HAfr)fr) <I(Lfr).fr) forall fr € .

To prove Theorem 1, we show the following result for the convergence of
solutions to (P;f ).
Proposition 2 Assume (A1)-(A4). Let fr € g, and let {frntnen C Yaa-
Furthermore, suppose that

frn — fr  weakly in LZ(O, T:Hr) asn— +oo. (18)
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Then, the unique component u, = . (fr.n) of (P; fra) convergesto oneu = . (fr)
to (P;fr) in the following sense:

U, —u in C([O, T];H) asn — +oo. (19)

Proof Let (u,, 1, be the unique solution to (P; fr,). From the definition of %4, we
infer from { fr,}tnen C %a that {fr,}.en is bounded in H'(0, T; Hr). Therefore,
we observe from (15)-(16) that {u,},en is bounded in H' (0, T; V*)NL>®(0,T; V)N
L*(0, T; W) and {p,,}nen is bounded in L (0, T; V). Namely, there are a subsequence
{mtren C {n}nen, afunctionu € H'(0, T; V*) N L>®(0,T; V) N L*(0,T; W), and a
function w € L*(0, T; V) such that n; — oo and

u, —u weaklyin H'(0,T; V*) N L*(0,T; W) 20)
weakly star in L*°(0, T; V),  strongly in C([O, T]; H) ’

f,, — p  weaklyin L*(0,T:V) ask — +oo, 1)

where the standard compactness theorem is used to obtain the strong convergence
in (20). Moreover, there exists a function & := (£, &) € L2(0, T; H) such that

W () — & BQuy) — & —mw(u) weakly in L*(0, T H), (22)
Wi(urn) — &r,  Br(urm) — &r —wr(ur) weaklyin L*(0,T;Hr)  (23)

as k — +o0o. From the demiclosedness of 8 and By with (20) and (22)—(23) we
infer that § = %/ (u) a.e. in Q, and & = #/.(ur) a.e. on X, respectively. Because
(#n> 1) is the unique solution to (P; fr,, ), we observe that (cf. (13)-(14)):

T

T
/ (7, (D), & (1)) eyt + / a(n (1), £ ())dt = 0, (24)
0 0

T T T
/ (o (0. £ (1) i = / i, (1), £ (1) dt + / (W (1 (). £ 1)),
0 0 T 0

T
+ /0 (WIi (“F,nk (t))v 51“ (t))Hrdt - /0 (fr,nk (t)7 ;1—' (t))Hrdt
(25)

for all { € LZ(O, T;V), and u,,(0) = wuo in H. Therefore, taking the limits

in (24)—(25) as k — o0, we observe from (18), (20), and (21) that (u, ) is

the unique solution to (P;fr). By the uniqueness of the solution to (P;fr), we

conclude that u = u = .#’(fr) and the convergence (19) holds without extracting

any subsequence from {n},en. O
Now, using Proposition 2, we prove Theorem 1.
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Proof (Proof of Theorem 1) Setu = .Z(fr) and J(fr) := J(ZL(fr).fr) for all
fr € %4q4. Moreover, let {fr,}nen C % be the minimizing sequence, namely,
J(frn) = o = infy.eqy, J(fr) as n — +oo. From the definition of %4, we see
that there exists a subsequence {ny}reny With ny — +ooask — +oo andf € X
such that

fro — fr weaklyin 2" = H'(0,T;Hr) (26)

as k — +oo. Therefore, setting u,, := .#(fr,,) and recalling Proposition 2, we
observe that there exists u := (u,ur) € H'(0,T; V*) N L*>®(0,T; V) N L*(0, T; W)
such thatu = .(f) and u,, — u in C([0, T]; H), namely,

Uy, > u in C([O, T];H), Ury, — ur in C([O, T];Hp) 27

as k — +oo, taking some subsequence if necessary. Thus, the convergence
of (26), (27) implies that

a=inf J(S(r).fr) (= Jim_I(ra))

fr €%aa

: bQ r * 2 . bE r * 2
_k_l)lgloo 2/0 |14 (1) — 1 (t)|Hdt+k—1>H-i1-loo 5 /0 |t (1) — uT-(1) |y, dt
limi fbo ' n[? dr
+klll>l—i}lgo 2 J, |fF,nk()|HF
> J(SL(fr)fr).

which implies that f - is an optimal control for (OP). This completes the proof of
Theorem 1. O

Note that, in general, the cost functional J is not convex. Therefore, we do not
know whether the optimal control f - is unique.

3 Viscous Cahn—Hilliard System

In this paper, we obtain some characterization of the optimal control of (OP). To this
end, we consider a boundary control problem for the viscous Cahn—Hilliard system.

Let us introduce our viscous Cahn—Hilliard system. For all ¢ € (0,1], find a
quadruplet of functions (e, ure, e, jire) satisfying the following equation and
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dynamic boundary condition of Cahn—Hilliard type:

du, .
o A, =0 ae.in Q, (28)
Outg , .
pe=e o = Aug + W' (u,) ae.in Q, (29)
8u11€
UTe Z(ME)IF’ /‘LF,EZ (/‘LS)‘F’ at +BUIJ,£—A['/¢L1"’£ :0 a.c. on E,
(30)
8u11€ /
Ure =€ 9 +3vu£—Aru[‘,€+Wr(ur’£) —fr ae.onX, 31D
u:(0) = up a.e.in £2, (32)
ure(0) =uor ae.onl. (33)

We have already discussed the well-posedness of this problem in terms of the result
in [6] as follows:

Proposition 3 (cf. [6]) For each ¢ € (0,1] and fr € Z, there exist a unique
function u, = (ug,ur.;) € WH°(0,T;H) N H'(0,T;V) N L®(0,T; W) and a
function p, = (Ue, bre) € L*®(0,T;V) N LZ(O, T; W) that satisfy (28)—(33).
Moreover, there exists a positive constant M, independent of ¢ € (0, 1] such that

1/2
e |u;|L2(0,T;H) + Iu;|L2(0,T;V*) + ug|roo0,1;v)
<M (luoly + | frlz).

el 201wy + el + NW/(ua)iLz(O,T;H) + iWIi(quE)iLZ(O,T;H,-)
<M (1 + luoly + | frl|2).

Proof Applying some previous results [6, Theorems 2.2, 4.2] and using (Al)-
(A4), we can apply [6, Proposition 4.1] to obtain functions u, € H 10, T;H) N
L%°(0,T; V) N L*(0, T; W) and a function g, € L*(0, T; V) satisfying (28)—(33) in
the following sense:

(w(0).2), +a(p(1).2) =0 forallzeV,

([,l,g(l‘),Z)H = s(ug(t),z)H + a(u:(1).2) + (7 (1)), 2)
+ (Wr/(ur,a(f)),zr)Hr - (fr(t),zr)Hr forallze V,

for a.a. t € (0,7), and u.(0) = uo in H. The uniform estimates follow from [0,
Lemmas 4.1-4.5]. The regularity result follows from [6, Theorem 4.2]. Indeed,
because of the viscous term in (31), we do not need to assume a certain boundedness
[6, Assumption (A9)] to obtain the key estimate [6, Estimate (4.35), p.429]; we
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only need the boundedness of u, in W, because % and #/. are single-valued and
sufficiently smooth. O

Hereafter, for each fr € 2 and ¢ € (0, 1], the symbol (P;e,fr) denotes
the viscous Cahn-Hilliard system (28)-(33) corresponding to the approximate
parameter ¢ and the control fi in (31). Moreover, for each ¢ € (0, 1], we introduce
the control-to-state mapping to (P; e, fr) as follows.

Definition 2 For each ¢ € (0, 1], a mapping ., : & — % is defined by the
control-to-state mapping that assigns the unique component u,, from the solution
(ue, ) to (P; &,fr), to any boundary control f, that is,

Se(fr) :=u, forall fr € 2,

where %5 := H' (0, T; H) N L>(0,T; V).
We now derive the following result for the continuous dependence between
(P:fr) and (P:&.fr) (¢ € (0. 1]).

Proposition 4 (cf. [6, Sect.4]) Assume (A1)—(A4), fr € YUaa, and {frs}ec0,1] C
Unq. Furthermore, suppose that

fre = fr weakly in L*(0,T;Hr) ase — 0.

Then, the unique component u, = .%,(fre) of (P;e,fre) converges to one u =
L (fr) to (P;fr) in the following sense:

u, —>u inC([0,T:H) ase— 0. (34)

Proof Using arguments similar to those in [6, Sect.4] and Proposition 2, we can
prove (34). Therefore, we omit the detailed proof. O

Now, for each ¢ € (0, 1], we prepare auxiliary optimal control problems (OP; ¢)
as follows:

(OP; &)  Find a minimizer ((ue, ur).f ) of the cost functional (17) subject to the
constraint f -, € %,q and the corresponding state u, := %, (fr,) of (P:&,fr,).

To prove the necessary optimality condition for the optimal control f to (OP)
obtained by Theorem 1, we apply the essential idea in [2] (see also [7-9, 18]),
namely, we introduce a modified cost functional defined by

- 1 T
T (o). i) = I (@) i) + /O @) —fr O, di (35)
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forall u € L*(0, T; H), ur € LZ(O, T;Hr), and fr € 2 . Because of the additional
term related to f -, we can characterize the exact optimal control f - by the sequence
of approximated controls. Then, (OP; ¢, f ) becomes the following:

(OP:¢,fr)  Find a minimizer (i, u re).fre) of the modified cost functional (35)
subject to the constraint fr. € %q and the corresponding state #, := 7. (fr.)
of (P:&.fre).

Using the same method as for the proof of Theorem 1, we have the following
second main result.

Theorem 2 For each & € (0, 1], there exists f ., € Yuq such that

J(‘%(.fﬂs)’fﬂs) = J(f%(ff)?fr) fO}’ allf[' € %d-

Moreover, let f - be the optimal control of (OP). For each & € (0, 1], there exists
frie € Y such that

jfr (Fe(fre).fre) < jfr (Fe(fr).fr) forallfr € Ua.

Proof The proof is the same as for Theorem 1. Indeed, by an argument similar to
that in Proposition 2, we can obtain a result for the convergence of solutions to
(P; &,fr). Therefore, for each ¢ € (0, 1], the proof of the existence of an optimal
control f, € Zq of (OP;¢) will be a slight modification of that in Theorem 2.
Similarly, for each ¢ € (0, 1], we can prove the existence of an optimal control
fps € g of (OP; ¢,f ). This completes the proof of Theorem 2. O

In Sect.5, we derive the following two statements concerning the relationship
between (OP) and the approximate control problems:

(P1) For each optimal control {f.}ce(0,1] of (OP;¢), there exists a subsequence

{erjren with g ™\ O such that f -, converges to some optimal control f; of
(OP); y

(P2) For each optimal control f - of (OP) and each optimal control {fr.¢}c(0,1] of
(OP; &,f ), there exists a subsequence {&;}reny With & N\ O such that fr,
converges to f .

4 Auxiliary Problems

In this section, we consider auxiliary problems related to (P;e, hy) for some
¢ € (0,1] and hr : ¥ — R. The first auxiliary problem is a linearized problem.
The differentiability of J (or jfr) can be proved using this linearized problem.
The second auxiliary problem is an adjoint problem. This gives us the necessary
optimality condition for the optimal control in a simple form.



266 T. Fukao and N. Yamazaki
4.1 Linearized Problem

Let fr € % and hy € % for some open set % C % with %q C % . For all
¢ € (0, 1], find a quadruplet of functions (&, &r, 1e, nre) satisfying the following
linearized problem:

08 —An, =0 ae.inQ, (36)
ot
as«s 1 .
Ne =& 9 A& + W (u:)é, ae.in Q, (37)
aéﬂs
Ere = E)ips NMre = (M) o +0yne —Arnre =0 ae.on X,
(38)
351“,8 "
Nre =¢€ o =+ 3,,56 - A[‘é}js =+ WF (M]jﬁé[:s —hr ae.onlk, (39)
£.(0) =0 ae. in 2, (40)
¢r:(0) =0 ae.onl. 41

Note that in Eqgs.(37) and (39), the function u, = (u.,ur.) appears. This is
constructed by fr € % as u, = .7,(fr). From the regularity u, € L*°(0,T; W)
obtained in Proposition 3, we see that u, € L*°(Q), up, € L*°(XY), that is,
W' (u;) € L®(Q) and #[/(ur,) € L*(X). Therefore, we have also discussed
the well-posedness according to [6].

Proposition 5 For each ¢ € (0,1], hy € 2, and fr € U, there exist unique
&, = (&,&re) € H'(0,T; Ho) N C([0, T); Vo) N L*(0, T; W) and 0, := (¢, 11re) €
L*(0,T; V) that satisfy (36)—(41). In particular, (36) and (38) are satisfied in the
following variational sense:

/Eé(t)zder/ élp,g(t)ZFdFJr/ Vns(t)~Vzdx+/ Vrnre(t) - Vrzrdl' =0
2 r 2 r

forallz € V and fora.a.t € (0,T). Moreover, there exists a positive constant M ()
such that

1€ | 0.0 + 1§ clioo0.mv) < Ma(e)|hr| 2. (42)
Proof The above linearized problem is equivalent to

(F~' + eDEL(t) + 09 (£.()) + P(#" (ue () E(0). W (ure (1)) 6re (1))
=P(0,hr(1)) inH,, foraa.te (0,7),
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and £,(0) = 0 in H,, where ¢ : Hy — [0, +o00] is lower semicontinuous and
convex, and is defined by

1 1
o(@) = 2/9|VZ|ZdX+2/FIVrZrI2dF ifz € Vo,

+o00 otherwise.

The subdifferential dgp on H fulfills d¢(z) = (—Az, dyz— Arzr) forz € D(dg) =
W N Vy; this is checked in [6, Lemma C]. Moreover, P : H — H, is defined by
Pz :=z—m(z)1 forallz € H. The proof of this proposition is essentially the same as
that of Proposition 3, because we have #” (u.) € L>(Q) and #} (ur,) € L*(X).
To prove the boundedness (42), we use the fact that, from u, € L*°(Q) and ur, €
L°° (X)), there exists a constant r, € R such that

r—<—-r.<u<r.<ryae.inQ, r-<-r.<ur,=<r,<ryae.onlt.

(43)

From (43), we have that the boundedness with the positive constant M, (&) depends
on [#"|c(i—r..re) and |7 | c(i=r..r))- d

Hereafter, for each ¢ € (0,1], hy € 2, and fr € %, the symbol (LP; &, hp,fr)
denotes the linearized problem (36)—(41) corresponding to the approximate param-
eter ¢, the heat source i in (39), and the coefficients #” (u,) in (37) and #}/ (ur)
in (39) withu, = .Z:(fr). The solution to (LP; &, i, fr) is useful for characterizing
the Fréchet derivative of .%; on some open set % C 2.

Proposition 6 The control-to-state mapping ./, : %4 C X — % is Fréchet
differentiable at each fr € %2 . Moreover, its Fréchet derivative D.%,(fr) €
L(Z, %) is characterized by [D.Z:(fr)|(hr) = &, for all hr € X', where &,
is the unique component of the solution (§,.,n,) of (LP; &, hr,fr), and L (X", %)
is the space of all linear bounded operators from Z to %.

Proof Consider a mapping that assigns the unique component &, := [§,](hr) of
the solution (§,,7,) to (LP;&, hr,fr) to each hy € Z . From (42), we see that
[£.]() € L(Z, %), that is, this is a linear and bounded mapping from 2 into %5.
Therefore, it is sufficient to prove that

Fe(fr +hr) = (fr) - &,

—0 in% =H'(0,T;H)NL®,T;V)
\hr|a

as |hr|a — 0. First, let (u, ) be the solution to (P;e,fr) and (u”, ") be the
solution to (P; &, /1 4+ hr). Moreover, set &t := u"—u,—&, and " == p"—p,—7..
Then, S (fr + hr) — o(fr) — &, = @". If we can prove

~h ~h
|t0e |11 07501 + |z oo 0.13v) < M(€)|hr % (44)
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for some constant M3(¢) > 0, then we have the desired conclusion. Denote
(tte, i) = ﬁ’; and ({., Are) := ﬁ,’; From Remark 1, we have

[ @yt [ @y oerar+ [ Vil - vaas
2

(45)
+ / Vp,uns(s) -Vrzrdll =0 forallze V andfora.a.se (0,7).
r

Moreover, from (29), (31), (37), and (39), we have
[ bt + [ plpozrar
2 r
_ /9 (s(a';)/(s) — A(s) + 7 ((5)) = W (ue(s)) = 7" (ue(s)) & (s))zdx
/ (s(u”) (5) + Dy (s) — Arilh.,(s)
W (5)) = 7o) =W (0re(9))6re(®) )zrd T (46)

for all z € H and for a.a. s € (0, T). We also have 12?(0) = ug — ug = 0. Then, the
variational formulation (45) is equivalent to

L@ (s) + Pil(s) =0 inV,, foraa.se (0,7), 47)

because m((ﬁi’)’ (s)) = 0. Therefore, multiplying (47) by (ﬁi’)’ (s) € Hp and
integrating the resultant over [0, 7] with respect to s, we get

t
J
On the other hand, testing (46) using (ﬁ?)/ (s) € Hy, integrating the resultants over
[0, ] with respect to s, and combining with (48), we obtain

/ @ (s)
0

=- / (7" (i () = #" (ue(9)) = #" (u:(5)) e (5). (@) (5)) ydls

0

@’ (s)

S ds + / (@Y (s), &l (5)) ydds = 0. (48)
0 0

t
2 NI L2
V(Tds +e 0 (us) (s)‘Hods + 2 uS(t)|V0

/O(W’(um(s)) Wi (ure(s)) = W7 (ure(6) Ere(s). @) ), ds (49)

for all t € [0, T]. To estimate the first term of the right-hand side, recall (43) and the
Taylor expansion of %' € C?([—r.,r.]). There exists o, : Q — R with —r, < 0, <
re a.e.in Q such that 7' (ul) = W' (ue) + 7" (ue) (ul—ue)+(1/2)#" (00) (u' —u, ).
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Therefore, from the fact that u’; —u, = 122’ + &,
- /0 (7 () = " (1:(5)) — 7" (1)) e (5). (@) (5)) s
Sy NACIAICAEI

1 ! 2
S ety [ ) =00

(@) ()] s
N AN PAUSINT: 1 2 PSPINT
=3 [ @O+ 71 | li6]ds
0 € ’ 0
+ ! |7 |2 ’ |uh(s) —u (s)i4 ds
4" 1O Crny | e oW pa ()@
Treating the second term similarly, we see that

- /0 (W (1l (9)) = W (ure(9)) = H7: (e (9)) Ere (5). @) (5)) s
e t
= /0

1 2 ' h 4
+ 4 oy /0 147 () = e (9) sy - (50)

. 2 1 " 2
ulhs)/(s)|Hrds + e |Wr|é3([—rs,rs])/0 M?S(S)|Hrds

As £2 C R3 is a bounded domain with a smooth boundary I" := 3£, we infer
from the Sobolev embedding theorem that V is continuously embedded in L* :=
L*(22) x LY(I'), and hence V/, is so too. Therefore, combining (49)—(50), we obtain

[l o+ [ 1@yehas+ il

0 c0 2 L2 ' (51)

< Ms(e) / @l (s)[7, ds + Ms(e) / Jul () — ue(s))y, ds
0 0

for all ¢ € [0, T], where M3(g) > 0 is some constant depending on I | c3(1=rere))»
[T |c3((=r..r.])» Cp» €, and the constant of the embedding of V.

Next, to estimate the second term of (51), we take the difference in Eqgs. (28)—(31)
between (u!, u") and (u., p,). This gives

&

F7H (@) (s) —uy(s)) + P(ri(s) —po(s)) =0 inVp, and

/ (1 (5) — pe(s))2dx + / (1) — pe(s))2rdl”
2 r



270 T. Fukao and N. Yamazaki

= /9 (Y (s) =t (5)) 2dx — /Q (Aul(s) — Aug(s))zdx
+ /Q (7 (W) =7 (1) Jadx +- ¢ /F (Wh)' () = () zrar
+/F(3vu?(s)—8vus(s))ZrdF—/r (Aruf,(s) = Arure(s))zrdl’
+ /F (77 Wy 9) = 7 (ure(9)) )zrdl + /F hr(s)zrdl’ forallz € H,

for a.a. s € (0,T). Therefore, testing these using (/) (s) — u.(s) € Hy and
combining the resultants, we reach
| @l (5) = ()3 + ] (22 (5) — wl(5)] y, + ;jsiué%s) —u, ()],
= —(7"(ul(9)) = V' (u:(5)), () () — u(s))
— (W7o (9) = W (re (), @) (5) = (9)) 5,
= (hr(s), () (9) = U (9)) 5,

- 1
< |y © —ul @), + ©) ) —uof, + o,

for a.a. s € (0, T); therefore, the Gronwall inequality implies that
(1) — ()], < ST t|h (5)[;, ds forall s e [0,T] (52)
e Wy, = ¢ A r\Yly, >4l

Finally, recalling (51)—(52) and using the Gronwall inequality of integral form and

the Poincaré—Wirtinger inequality, we conclude that there exists a positive M3(g)

depending on ¢ € (0, 1] such that (44) holds. O
The following result is related to the necessary optimality condition:

Proposition 7 For each ¢ € (0,1], let fr, be an optimal control of (OP;e).
Moreover, u, :== . (fr.). Then,

T

T
bo /0 (e (6) — (1), (1)t + b /0 (e 1) — w5 (0. £ 1),

T (53)
0 [ (0.0 = Fr0) = 0

for all fr € %q, where (§.,6r.) is the solution to (LP;e, fr — fr.. fre)
corresponding to fr € Uag.
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Proof Let ¢ € (0, 1]. Define a new state map ., : 2~ — % x Z by L. (fr) :=
(Z(fr).fr) for all fr € 2 . From Proposition 6, we have that .7, is Fréchet
differentiable at any fr € % and is characterized by

[Dys(fr)](hr) = ([Dy(fr)](h['),hr) = (gs,hr) for all ]’lr S 32//,
where &, is the unique component of the solution (&,,n,) to (LP;e hr,fr).

Moreover, recall the cost functional J.(fr) = J(Z(fr).fr) = (J o ZL)(fr).
From the Fréchet differentiability for J,

[DI:(fr)|(hr) = [DI(Z(fO)|([DZ e (fr)](hr)) = [DI e fr)](E,. hr)
T

T
= bQ/O (Mg(l) — u*(l‘), Eg(l))Hdl‘ +bx /0 (ur’g(l) — MT«([), S["g(l‘))Hrdl
T
+ b()/ (f[‘(l‘),h[‘(l‘))Hrdt forall hp € 2.
0

Because f -, € %4 is the optimal control of (OP; ¢), we observe that

Je(fr +fr =fr) =Je(fr) = Je(fr) forallfr € %ua.
Therefore, the optimal control f -, € %, satisfies

[DJs(fr,s)](fF —fre) =0 forallfr € %a.

Thus, we have the desired conclusion. O

4.2 Adjoint Evolution Equation

In this subsection, to improve the previous necessary optimality condition, we
consider an adjoint evolution equation. For all ¢ € (0,1], let ff, € “%q be
the optimal control of (OP;e) constructed by Proposition 4. Moreover, set u, :=
Z¢(fr.). Consider the following evolution equation (AD;e, f . ):

— (F™" + el)g,(1) + 3¢ (q. (1)) + P(#" (ue(0)) qe (1) #7 (ure (1)) qre (1))
=P(bo(u:(t) — u* (1)), by (ure(r) —uj-(r))) inHo, foraa.re(0,T), (54)

q.(T) =0 in H,. (55)

This is a backward Cauchy problem. Using a change of variable with respect to
time, we obtain the following result.
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Proposition 8 For each ¢ € (0,1], there exists a unique q, ‘= (qe,qre) €
H'(0,T; Hy) N C([0,T]; Vo) N L*(0, T; W) such that q, satisfies (54)—(55).

Proof For each t € [0,T], set s := T — t and prepare the new function ¢,(s) :=
q.(T — s). Then, the backward Cauchy problem (54)—(55) is equivalent to

(F~' +eD)d.(5)+ 09 (. () +P(#" (ue(T = 5))4e(s), #7 (ure(T — 5))qre(s))
= P(bo(us(T — s) —u*(T —5)), bz (ure(T —s5) —uj-(T —s))) inH
(56)

for a.a. s € (0,7) with ¢,(0) = 0 in H,. Therefore, the well-posedness can
be discussed by the abstract theory of doubly nonlinear evolution equations like
Propositions 3 or 5. Namely, there exists a unique §, := (§e. gr) € H'(0,T; Hp) N
C([0,T]; Vo) N L?(0,T; W) such that §, satisfies (56). Finally, setting q.(¢) :=
q.(T —1) forall 7 € [0, T gives the desired conclusion. O

Our third main theorem is related to the necessary optimality condition for the
optimal control (OP;¢).

Theorem 3 For each e € (0, 1], let f -, be an optimal control of (OP; g). Moreover,
u, .= S(fre)- Then,

T
| @0+ 0 08 O =1 0) 1= 0

for all fr € U, where qr is the component of the solution q, to (AD;e,fr,). If
by > 0, then f ., is the projection of —qr.. | by onto %q with respect to L*(0,T; Hr)-
norm.

Proof In the proof of Proposition 7, recall the left-hand side of (53). From (54)—(55)
and the linearity of F~!, we have

T T T
bQ/(; (us - u*’ E‘E)Hdt—‘r bs /0 (uns - M}k"’ EF,S)Hrdt'i' bO/O (f[’,a’ff _fF,a)Hrdt
T T
= /0 (= '+ eDg, + 00(q,). £.) i + /0 LA AW
T T
s [ O rar )yt + b [t =
T T
— / ((F_1 + el)q,, Eé)Hdt + / (Vqe, V&) yadt
0 0
T T
+ / (VFQF,&VFSF,E)H?dt"' / (qE’W//(Mg)gg)de
0 0

T T
b [ are Aty diot b [ (Frde =)
0 0
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Moreover, using the fact that &, is the solution to (LP:e, fr — fr.. fr.)
corresponding to fr € %4, we conclude

T T
0=< bQ/O (u, — u®, E)pdt + by /0 (ups — u;, Eﬂs)Hrdt
T
+ bo/ (fr,a’fl“ —freupdt
0
T
= [ e E @y e
T
b [ el 0060+ 07 H )
T
by /0 Froofr = F )i ds
T T
= /0 (EQ’F_I(‘IS))V;‘,Vodt + /o (qa, _F_l§;)v0*,Vodt
T T
+ / Gre.fr —fre)urdt + bo/ (fre-Jr —fre)updt
0 0

T
= /0 (qug + be[’,g?fr _fF,a)Hrdt

for all fr € Zq. If by > 0, then the above inequality implies that —gr./by €
fre+0lgy(fr,)in L?(0,T; Hr). Thus, we have the desired conclusion. O

This theorem is the point of emphasis for characterizing the optimal control f » of
(OP) obtained by Theorem 1. If we replace J by J, -and f -, by]ﬂ‘p"E in Propositions 7
and 8, we obtain the following similar results:

Corollary 1 For each ¢ € (0,1], let fp,g be an optimal control of (OP;e,fr).
Moreover, i, := S¢(fre). Then,

T
/0 (@re(t) + bofre(t) + fre(®) — fr (0. fr () —fr,a(f))Hrdt >0

forall fr € Uy, where §r, is the component of the solution §, to (AD; €, fr.).

5 Optimality of (OP)

In this section, we show the necessary optimality condition of (OP).
We begin by proving a result for the relationship between (OP) and (OP;e) for
e € (0,1].
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Theorem 4 For each optimal control {f,}ee(0,1] of (OP; &), there exist a subse-

quence {e}ren satisfying e \( 0 and a function f; € Yaa such that f; is an
optimal control of (OP) and

fre —>f; weakly in H'(0, T;Hr) ask — +oo.

Proof For the optimal controls {f,}ce0,1] C %ad, from the definition of %4, we

see that there exist a subsequence {&; }ren satisfying &, \( 0 and a function f}t €
H'(0,T; Hr) such that

fre, = fr weaklyin H'(0,T; Hr) ask — +oo. (57)

We show that f ; is some optimal control for (OP). From Proposition 4, the cor-
responding state u, := ., (f,) of (P;e,f,) converges to the unique component

u= Y(f;) of (P;f;) in the following sense:
Falfre) = L(fr) in C([0,T]:H) ask — +oo. (58)

We now check that f}t is an optimal control of (OP). From the fact that f -, is an
optimal control of (OP;¢),

J(Westre)fre) < (e ure).fr) forall fr € %a.

where u, := .7, (fr). Therefore, (57)—(58) imply that

IS U ST) = I ur).fr)

= }cigl_&gof‘,((”akv ”ITSk)sfF,ak)

< liminfJ (e, ure,). fr)

k——+00

= kl—i>noloj((u€k’ ur,é‘k)7fr)
= J((u,ur).fr) forall fr € %a.

because .7, (fr) — - (fr) in C([0,T]; H) as k — +oo (see, e.g., [6, Sect.4.3]).
Thus, f ; is an optimal control of (OP). O

The idea of the final main theorem concerning the optimality of (OP) is
essentially the same as [8, Theorem 2.7]. Let & := H'(0,T; V) N L*(0,T; V)
and 25 := {{ € Z : {(0) = 0}. Moreover, the symbol (-, -) denotes the duality
pairing between (H'(0, T; V*) N L*(0, T; V))* and H' (0, T; V*) N L?(0, T; V). The
symbol (-,-)s denotes the pairing between (H'(0,7;V}) N L*(0,T;Vr))* and
HY(0,T; V) N LX0,T; V).
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Theorem 5 For each optimal control f - of (OP) and optimal controls { fp,g}ge(oql]
of (OP; &,f ), there exists a subsequence {&x}xen satisfying &, \ 0 such that

freo = fr inL*0.T:Hr) ask — +oo. (59)
Moreover, there exist two elements
A e (H'(0,T;V)NLX0,T; V)", Ar e (H'(0,T;Vy) N L*0,T;Vr))"
and § € L®(0,T; Vy) N L0, T; Vy) satisfying
T

T
| 0. a0l i+ [ a@o.co)ar+ 4.0+ (Artr)s
0 0 T (60)

T
:bQ/O (u(t)_u*(t),g“(t))Hdterg/O (up(t)—u}(t),g“p(t))Hrdt

forall & € 2, such that

T
[ e+ 0050 = 0),0 = 0 61)

for all fr € Uq, where u = S (f), and qr is the component of the solution q
satisfying (60). If bo > 0, then f - is the projection of —qr /by onto s with respect
to the L*(0, T; Hr)-norm.

Proof From the fact that fp,g is an optimal control of (OP;e, f ),

Te (Gig,itre) fre) < J; ((we.ure).fr)  forall fr € %, (62)
where u, := .7( fp,g) and u, := .%,(fr). Moreover, from the definition of %,
we see that there exist a subsequence {er}ren satisfying &, N\ O and a function
f7 € H'(0,T; Hr) such that

fre. — fr weakly in H'(0, T; Hr) as k — +oo. (63)
Then, we infer from Proposition 4 that the corresponding state u#, = Z(fpﬁ) of

(P: &.fr¢) converges to the unique component it € .¥ (f;f) of (P; fjf) in the following
sense:

Fofre) = L(ff) inC([0,T];H) ask — +oo. (64)
Similarly, we observe from Proposition 4 that

Fafr) = S (fr) inC([0,T;H) ask— +oo. (65)
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Next, we check that fl’f = f . From (62)—(65) and the definition of f fr (cf. (35)),

we observe that

1T
limsup{Z/O | fre (1) —fr(f)iilrdt}

k——+00

= lim sup {jf,- (L%k (]?1",51()’]?1",8;() - ‘I(L%k (fnsk)’fnsk)}

k—+00

<timsup 7, (7o (Fr)f 7) =9 (FoUre) Jre) |

S
k——+00

. bo (T NN by [T £ a2
= lim |utey (1) — u* (1), dt + |ure, (1) — u-(1)|,, di
2 Jo 2 Jo r

k—+00

by T 2 . bo [T 2
+ 2/0 ‘fp(t)|Hrdt}—}c111>1+ngof{ 2/0 |ite, () — u* (1), dt

bs [T bo T~
+ 22 /0 e, (1) — uf(0) [, dt + 20 /O |fr,ak(t)|12_1rdt}
<I(Lfr)fr) =I(LFDTF)-

This means that

17 -
lim Sup{ 2 /0 ifl",sk U] _fl“(t)ﬁ.]rdt} =0,

k—>—+o00

because f - is an optimal control of (OP). Thus,
fre = fr =1 inl*0,T;Hr) ask — +o0.

Namely, &t = .7 (f}) = S (fr) = u.

Finally, we show the necessary optimality condition (61). Let us recall the
solution g, to (AD;e, fr), and obtain some uniform estimates. Recall (54)—(55) at
time s € (0, 7). Testing ¢, (s) and integrating the resultant over [, T| with respect to

time, we have
I, .2 €. .12 T 2 T e - 2
a0 + a0l + [ a0+ [ 700 o Fass
t t

T
+[ﬁ%ﬂme%wﬁuw

by

T
. 2
5 /t ‘ups(s) — u;(s)|Hrds

bz T 2
< ;/f |L~t5(s)—u*(s)‘Hds+

+ 1/T|~ (s)\zderl/T\~ )|, ds
2 ; qe H ) ) qre Hr
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for all 7 € [0, T]. From (A2), there exists a positive constant ¢, such that
’ 2 r 2
/ / W/’(ﬂg(s)) |¢~18(s)| dxds > —62/ |¢~18(s)ins,
t JR2 t

T ) T 2
/ /F WY (itre (s))|Gre(s)| dlds = —c / |Gre ()|, ds.

Moreover, @i, = S¢(fr.) is the unique component of the solution to (Pse, fr).
Therefore,

lite(t) — u* D[, < 2], + 2|u* )],

< 2M3 (|Juoly + Mo)” + 2|u*(2) (66)

2
H’

Jiire(6) = ()], < 2M3 (juolv + Mo)” + 2[u}- ()], (67)

In addition, from the interpolation inequality, for each § > 0, there exists a positive

constant Cs such that |z|%{0 < 8|z|%,0 + Cs |z|%,* forall z € Vy (see, e.g., [17, p. 51,
0

Lemme 5.1]). Thus, we have

T
@0l +ela.oly, +2 [ a6,
t

< b}, <2M%(Iuo|v +Mo)’T + 2|”*‘22(0,T;H))

+ by (2M%(|”0|V + MO)ZT + 2|u;(t)|iz(0,T;Hr))
T T
48 [ g+ G+ 26 [ a0l
t t

forall t € [0, T]. Taking § := 1 and using the Gronwall inequality, we see that there
exists a positive constant M, independent of ¢ € (0, 1] such that

T
13.() 2vo +elg. ()]}, < M. / 3.(5)[},ds <M, forallz€[0.7].  (68)
t

Now, set A, : Z) — R as follows:

T T
(Ae.8) = | (P (4:())qe(D.50) pdt + | (HF (itre(®)qre(0). Sr (D), di
0 0 r
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for all { € Z;. Then, from (54)—(55),
T
(6] = [ 101 0.0 + e 0]
T T
+/'mmMMmmm+/|@@m—fmmM@bw
0 0

T
4—Jﬁ b3 (itre(t) =} )y [Er (D), di 69)

for all £ € 2. Here, from (68), we have

g —1~ ~ 2 T —1~ 2 T ~ 2
/0 |F 1q£(t)+8q£(t)|vodt§2/0 |F lqs(;)|V0dt+zgz/0 1. (0], dt

szﬁﬁmm

< 2My(T + 1). (70)

T
2 ~ 2
ngt+2/0 |q£(t)|V0dt

Thus, using (66)—(70), there exists a positive constant M5 independent of ¢ € (0, 1]
such that

|(Ae, )| < M5[¢|» forall § € 2, (71)

that is, A, € Z*. Collecting (68) and (71), we see that there exist a subsequence
{ex}ren satisfying &, \( 0, a function § € L>®(0,T; V) N L*(0,T; V), and an
element A € Z" such that

4., — § weakly starin L*(0, T; V) N L*(0, T; Vo). (72)
&g, — 0 in L>(0,T: Hy),

A, — A weakly star in 27" as k — +o00.

Now, recalling a useful property [6, Remark 2], we can extend £ (¢) € V to V* by
(80).2)y» y = (£(). P2y, forallzeV.

Moreover, because V C V x V and considering the Hahn—Banach theorem, we may
consider that 4 is a linear functional on L*(0, T3 Vo) N(H' (0, T; V*)xH' (0, T; V})).
Thus, there exist A and A satisfying
Ae (H' (O, T;V)NL*0,T; V)", Ar e (H'(0,T;VF) NL*0,T;Vr))"
(A, &) = (A, 0o+ (Ar.lr)s forall & € 2.
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Now, we see that éSk satisfies

T

T
| E0F 3,0 + 03,0l e+ [ ol 0.80)d+ (4,0,

T

T
= bo /0 (e, (1) — (D). £ (D)t + b /0 (7, (1) — W (0. Er (D),

for all { € 2. Moreover, from Corollary 1, we see that fnsk satisfies

T
/0 (@rec(®) + bofra (O + fre () —fr ). fr () = fre (D), dt = 0

for all fr € Zgq. Thus, letting k — 400, we conclude from (59) and (72) that (60)
and (61) hold. O
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New Class of Doubly Nonlinear Evolution
Equations Governed by Time-Dependent
Subdifferentials

Nobuyuki Kenmochi, Ken Shirakawa, and Noriaki Yamazaki

Abstract We discuss a new class of doubly nonlinear evolution equations gov-
erned by time-dependent subdifferentials in uniformly convex Banach spaces, and
establish an abstract existence result of solutions. Also, we show non-uniqueness
of solution, giving some examples. Moreover, we treat a quasi-variational doubly
nonlinear evolution equation by applying this result extensively, and give some
applications to nonlinear PDEs with gradient constraint for time-derivatives.

Keywords Doubly nonlinear ¢ Quasi-variational inequalities * Subdifferential *
Time-dependent

1 Introduction

This paper is concerned with a new class of doubly nonlinear evolution equations
governed by time-dependent subdifferentials. Let H be a real Hilbert space and V be
a uniformly convex Banach space such that V is dense in H and the injection from
V into H is compact. Also we suppose that the dual space V* of V is uniformly
convex. In this case, identifying H with its dual, we have

V < H <> V* with compact embeddings.
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The doubly nonlinear evolution equation, as in the title, is of the following form:

W' (U (1)) + 050" (u(?)) + g(t,u(t)) > f(r) in V* fora.e. t € (0,T),
u(0) =up inV.

(P;f, uo)

ey

Here 0 < T < oo, u’ =du/dtinV, vy : V—RU{oco}and ¢’ : V — R U {oo} are
time-dependent proper, l.s.c. (lower semi-continuous) and convex functions on V
foreach t € [0, T], 0+ and d.¢" are their subdifferentials from V into V*, g(¢, -) is
a single-valued operator from V into V*, f is a given V*-valued function and uy € V
is a given initial datum. Suppose that d.¢’ is single-valued, linear and continuous
from V into V*.

The main aim of this paper is to show the existence of a solution to (P; f, u() under
some additional assumptions. Also, we touch the uniqueness question of solutions
to (P;f, up), together with an example for non-uniqueness of solutions in the general
case. We shall show the uniqueness of solutions under the strong monotonicity of
05y,

Similar types of doubly nonlinear evolution equations have been discussed by
many mathematicians, for instance, Akagi [1], Arai [2], Aso et al. [3, 4], Colli [8],
Colli—Visintin [9] and Senba [14]. Most of them treated the case

0y (U (1) + dp(u(?)) > f(r) in H fora.e.r € (0,7T) (2)

and it should be noticed that the second term d¢ in (2) is independent of time and
there is no perturbation term g. There has been no theory on nonlinear evolution
equations governed by doubly time-dependent subdifferentials because of lack of
energy estimate up to date. In this paper we shall establish an abstract approach
to (1), specifying the time-dependence of ¥’ and ¢'. As to the application of (1),
we can treat nonlinear variational inequalities with gradient constraint for time-
derivatives (see Sect. 6), which is a new novelty of this paper.

Another aim of this paper is to treat a doubly nonlinear quasi-variational
evolution equation of the form:

Y (/' (1)) + 059" (u; u(?)) + g(t,u(r)) > f() in V* forae.re (0,7),
u(0) =up inV.

(QP:f uo)

The solvability will be discussed in the same framework with (P; f, ug) by means of
a standard fixed-point argument for compact operators. In this formulation, ¢’(v; z)
is proper, l.s.c. and convex in z € V, and (¢,v) € [0, T] x L*(0, T; V) is a parameter
which determines the convex function ¢’(v;-) on V. The dependence of function
v upon ¢'(v;-) is allowed to be non-local, in general. Therefore, the expression
of (QP;f, up) includes an extremely wide class of quasi-linear partial differential
equations or variational inequalities.
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1.1 Notations

Throughout this paper, let H be a real Hilbert space with inner product (-, -) and norm
| - |m. Let V be a uniformly convex (hence reflexive) Banach space with uniformly
convex dual space V*. We denote by | - |y, | - |y+ and (-,-) the norms in V, V*
and duality pairing between V* and V, respectively. Also, suppose that V is dense
and embedded compactly in H. Then, identifying H with the dual H*, we have
V — H < V*, where — stands for the compact embedding. Therefore, (V, H, V*)
is the standard triplet and

(u,v) = (u,v) foru e Handv € V.

Also, let F : V — V* be the duality mapping, which is single-valued and continuous
from V onto V*.

We here prepare some notations and definitions of subdifferential of convex
functions. Let ¢ : V — R U {00} be a proper (i.e., not identically equal to infinity),
Ls.c. and convex function. Then, the effective domain D(¢) is defined by

D(¢) :={z € V: ¢(z) < o0}

The subdifferential d«¢ : V — V* of ¢ is a possibly multi-valued operator and is
defined by:

7€) =" eV, zeD@). (Fy—2) =p() — (), VyeV;

and the domain of d.¢ is denoted by D(d«¢), and set as D(d«¢) = {z €
V; 0«¢(2) # @}. For basic properties and related notions of proper, 1.s.c., convex
functions and their subdifferentials, we refer to the monographs of Barbu [6, 7].

Next, we recall a notion of convergence for convex functions, developed by
Mosco [12]. Let ¢, ¢, (n € N) be proper, L.s.c. and convex functions on V. Then,
we say that ¢, converges to ¢ on V in the sense of Mosco [12] as n — oo, iff. the
following two conditions are satisfied:

1. for any subsequence {¢,,} C {¢n}, if zx — z weakly in V as k — oo, then
liminf ¢, (zx) = ¢ (2);
k—>00

2. for any z € D(¢), there is a sequence {z,} in V such that

Zy—>zinVasn—oo and lim ¢,(z,) = ¢(2).
n—>oQo
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2 Main Theorems

We begin with the precise formulation of our problem (P; f, uo).
We suppose that the duality mapping F' : V — V* is strongly monotone, more
precisely there is a positive constant Cr such that

(Fz1 — Fzo,21 — 22) > Crlzi — 2213, Yz1, m € V. 3)

(Assumption (A))

Let ¥'(-) be a proper ls.c. and convex function on V for all r € [0,T]. We
assume:

(Al) If {t,} C [0, T] and ¢ € [0, T] with #,, — ¢ as n — oo, then ¥ (-) — ¥’(:) in
the sense of Mosco [12] as n — oo.
(A2) There exist positive constants C; > 0 and C, > 0 such that

V'(z) > Cilz|3 — Gy, Yt e[0,T), Yz e D).

(A3) 3+¥7(0) 30 forall ¢ € [0,7] and ¥ (0) € L'(0, T).
(Assumption (B))

Let ¢'(-) : V — R U {oo} be a non-negative, finite, continuous and convex
function with D(¢") = V for all 1 € [0, T]. We assume:

(B1) For each ¢ € [0, T], the subdifferential d+¢' : D(0x¢") = V — V* is linear
and uniformly bounded, i.e., there exists a positive constant C3 > 0 such that

10+¢"(2)|v+ < C3lzlv, Vre[0,T], Vze V.

(B2) ¢'(0) = 0 forall ¢ € [0,T] and there exists a positive constant C4 > 0 such
that

9'(x) = Calzl?, Vie[0,T], Vze V.
(B3) There is a function @ € W"1(0, T) such that
l¢'(2) = 9" (@] < |a(t) — ()¢’ (), Vs, t€[0,T], ¥z V.
Remark I 'We derive from (B1) and (B2) that the subdifferential d. ¢’ satisfies that
Cslzl} = (0+¢'(2).2) = ¢'(2) = Culzl},, Yz eV, Vi e0,T] )

and from (B3) that the function t — 0.¢’(z) is weakly continuous from [0, 7] into
V*.
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Remark 2 The assumption (B3) is the standard time-dependence condition of
convex functions (cf. [10, 13, 15]).

(Assumption (C))

Let g be a single-valued operator from [0, T| x V into V* such that g(z,z) is
strongly measurable in ¢ € [0, T] for each z € V, and assume:

(C1) For each t € [0, T], the operator z — g(t, z) is continuous from V,, into V*,
ie., if z, — zweakly in V as n — oo, then g(t, z,) — g(t,z) in V* as n — oo.

(C2) g(t,-) is uniformly Lipschitz from V into V*, i.e., there is a positive constant
L, > 0 such that

lg(t.z1) — g(t, 22) v+ < Lglzi —z2lv, Vte€[0,T], Vz; eV (i=1,2).

Under the above assumptions we define the solution to (P;f, ug) as follows.

Definition 1 Givenf € L?(0, T; V*) and uy € V, a functionu : [0, T] — V is called
a solution to (P;f, up) on [0, 7], iff. the following conditions are fulfilled:

(i) ue Wh2(0,T;V).
(ii) There exists a function £ € L?(0, T; V*) such that

£(f) € 0¥ (' (1)) in V* forae.t € (0,7),
E(1) + 040" (u(?)) + g(t, u(®)) = f(t) in V* fora.e.r € (0, 7).

(iii) u(0) = uoin V.

Now, we mention the first main result of this paper, which is concerned with the
existence of a solution to problem (P; £, uo).

Theorem 1 Suppose that Assumptions (A), (B) and (C) hold. Then, for eachuy € V
and f € L*(0,T;V*), there exists at least one solution u to (P;f,ug) on [0, T].
Moreover; there exists a positive increasing function Ny : R‘:’_ — R4 with respect to
@ (o), | flr2.r:v*) and |’ |1 .1y such that

T
/0 V(' (1))dr + SE(J)pT] @' (1)) < No (¢°(o). | flrzorve). 1 1 0m)) - (5)

In Sect. 3, we shall prove Theorem 1, considering the approximate problems of
(P; f, up). It is known that the solution to (P; f, up) is not unique in general. In Sect. 4,
we give an example for non-uniqueness of solutions to (P;f, 1) in the general case,
but we can show the uniqueness under strong monotonicity of d. ¥, as stated below.

Theorem 2 Suppose that Assumptions (A), (B) and (C) are fulfilled. In addition,
assume that 0" is strongly monotone in V*, more precisely,
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(A4) There exists a positive constant Cs > 0 such that
(& —B.a—2)>Csla -2l VYledy (i=1,2), Vrel0,T]

Then, the solution to (P;f, up) is unique.
In Sect.4, we prove Theorem 2 using the additional assumption (A4) and
Gronwall’s inequality.

Remark 3 Colli [8, Theorem 5] and Colli—Visintin [9, Remark 2.5] showed several
criteria for the uniqueness of solutions to the following type of doubly nonlinear
evolution equations:

IV (' (1)) + dp(u(t)) > f(1) inH forae.t e (0,T). (6)

For instance, if dg is linear and positive in H and 9V is strictly monotone in H, then
the solution to (6) on [0, T] is unique.

3 Existence of Solutions to (P;f, ug)

In this section, we discuss the solvability of (P;f, ug) for f € L*(0,T; V*) and u, €
V.

Throughout this section, we suppose that all the assumptions of Theorem 1
are made. On this basis, we prove Theorem 1 by means of the approximation of
(P;f, up). Indeed, our approximate problem is of the following form with parameter
e € (0,1]:

eFu (t) + 05 Y (U, (1)) + 050" (ue (1)) + g(t, uc (1)) 3 f(2) in V*
(P;f, uo)e fora.e.r € (0,7), 7
u:(0) = ug in V.

We prove the existence-uniqueness of solution to (P;f, ug). for each ¢ € (0, 1].

Proposition 1 Assume (A), (B) and (C) are satisfied. Then, for each ¢ € (0, 1],
uy € Vandf € L*0,T;V*), there exists a unique solution u, € W'2(0,T;V)
to (P;f,up)e on [0, T] satisfying u,(0) = ug in V and there exists a function &, €
L(0, T; V*) such that

(1) € 0y (ul(t)) inV* forae.t€ (0,T),
sFu;(t) + E.(0) + 040" (e (1) + g(t,u.(t)) = f(t) inV* forae. t <€ (0,7T).
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Moreover; there exists a positive increasing function Ny with respect to ¢°(up),
[f122¢0.75v+) and || ;1o 1), independent of & € (0, 1], such that

T
/o v (u, (1))dr + SE(J)P] @' (ue(t) < No (¢°(o). | flizorsv). 1 i) - (3
ref0.T

To show (8), we need the following lemma.

Lemma 1 (cf. [10, Lemma 2.1.1]) Assume (B). Let v € W' (0, T; V). Then, we
have:

d
dtfﬂr(v(f)) —{0x0'(v(1)), V' (1) = |/ D)@' (W(®). a.e.t€(0,T). (€))

Proof We observe from (B3) that ¢’(v(¢)) is absolutely continuous on [0, 7] and
also observe from the definition of subdifferential that

¢'((1) — ¢* (v(9) — (0" (v (1), V(1) — v(s))
=¢'(v(s)) — ¢* (v(5))
<|a(t) — a(s)|p*(v(s)) foralls,te [0, T].

Then, we get (9) by dividing the above inequalities by # — s and letting s 1 ¢. O

Proof (Proof of Proposition 1) Note that the approximate problem (P; f, ). can be
reformulated in the following form:

(1) = (eF + 9:9") ™ (f()) — 39" (e (1)) — (1, ue (1)) inV
forae.t € (0,7), (10)
us(0) = up inV.
Here, we put
B(1)7* = (eF + 059"~ 'z* forallz* € V*, 1 € (0,T)
and
F(t,2) :=f(t) — 0:0'(2) — g(t,z) forallzeV, t€(0,T).
Now we show that the operator Z(¢)z* : [0, T] x V* — V is Lipschitz in z* € V*
and is continuous in z € [0, T]. We first fix any 7 € [0, T] to show that z* € V*

A(1)z* € V is Lipschitz continuous. To this end, put z; = #(1)z’ (i = 1,2). Then,

zf = eFz + zix forsome z;x € 05Y'(z).
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Hence, we infer from (3) and the monotonicity of d4v'(-) that

(Z} — 2,21 — ) =(eFz1 + 210 — €F22 — 220, 21 — 22)
>e(Fz1 — Fz,21 — 22)

>eCrlz — 2y
which implies that

*_

|B (1)} — B2y = 21 — 22]v < |2} — 25 v+

1
SCF
Thus, the operator Z(t)z* is Lipschitz in z* € V* for all ¢ € [0, T] with a uniform
constant 1 /eCp.

Next, we fix any z* € V* to show that r € [0, T] — Z(t)z* € V is continuous.
Let z* € V* be an arbitrary element and put 7 := Z(t)z*, hence ¢F7' 4+ 0.¥'(')
7*. Let {s,} C [0, T] with s, — t (as n — o0©). Note that

¥ = eF7" + 27 for some z7 € 0.y (7). (11)

Also, we observe from (A1) that d,.y*" converges to d«¥' in the sense of graph as
n — oo (cf. [5, 11]). Therefore, for [/, z* — eF7'] € 0+, there exists a sequence
{lzn. 2]} C V x V* such that [z,,2}] € 0x¢¥* in V x V* foralln € N,

Zn—>7Z inV and 7 > 7* —eF7 inV* asn — oo. (12)

Since the dual space V* is uniformly convex, the duality mapping F' is uniformly
continuous on every bounded subset of V. Therefore, we observe from (12) that

7 +eFz, —> 7 —eFZ + eFZ =2 inV* asn — oo. (13)
Hence, we infer from (11), (13) and the monotonicity of d.* that

0= lim (&~ P 2~

= 1_i)m (eFZ" 4+ 20 — 2 — eF2,, 2" — 2p)
n o0

> limsup e(F7™" — Fz,, 2" — z,)
n—>oo

>eCrlimsup |77 — Zn|%/s
n—>o0

which implies from (12) that

= Byt — 7 = B)T ass, — t.
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Thus, the operator Z(t)z* is continuous in ¢ € [0, T] for all z* € V*.

Furthermore, it follows from (B1), (B3), (C2) and f € L?(0,T;V*) that the
operator Z(t,z) : [0,T] x V. — V* is (strongly) measurable in z € [0,T] and
Lipschitzinz € V.

Now we show the existence-uniqueness of a solution to (10), i.e., (P;f, uo).
on [0,T]. To this end, for given u € C([0,T]; V), we define the operator S :
C([0,T]: V) — C([0,T]; V) by:

S(u)(®) := uop + /Ot%(s)[ﬁ(s, u(s))lds forall z € [0, T].

Note that the operator B(-)[# (-,-)] : [0,T] x V — V satisfies the Carathéodory
condition, B(-)[.# (-, z)] is Lipschitz in z € V and B(-)[.Z (-,u)] € L'(0,T;V) for
all u € C([0, T]; V). Therefore, by Cauchy-Lipschitz—Picard’s existence theorem,
we can prove that S has the fixed point u € C([0, Ty]; V) for some small T € (0, 7],
which is a unique solution to (P;f, up). on [0, Tp]. By repeating the above argument,
we can construct a unique solution u, to (P;f, ug). on the whole time interval [0, T].
Next we show a priori estimate (8). To this end, multiply (7) by u, to obtain:

(eFu (1), u, (1) + (5:(), u (1)) + (0" (e (1)), u (1))
+(g(t, ue (1), u (1)) (14)
= (f(),u,()) forae.te (0,7),

with & € L2(0, T; V*) satisfying &.(f) € 0xy'(u.(t)) in V* for ae. t € (0,7). It
follows from the definition of F and 9+, and Lemma 1 that:

(eFul (1), u,(1)) = elul(1)]3, (15)
(E:(1), ul (D)) = V' (ul(1)) — ¥'(0), (16)
(029" (us (1)), Ul (1)) > jtqo’(ug(t)) — |0/ (1)l (us (1)) (17)

fora.e.t € (0, 7). Also, from (A2), (B2), (C2) and Schwarz’s inequality, we observe
that

et 000, 10| = gt 1), Dl
<G OR + st

G

1 1
= P+ T+ (800l + Ll 0ly)’

0 L2
< w(u (r))+ 'g(’cl)' LR (18)
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and
O 0)] = OB+ FOR- < w @)+ + L Ok 19)

fora.e. t € (0,T). Thus, using (15)—(19), it follows from (14) that:

1 d
el O + V' (W) + ¢ (1)
< My (| O] + D' e () + Mo(|f D Pon + ¥1(0) + |21, 02 + 1) GO
forae.t € (0,7),

where M; > 0 and M, > 0 are constants independent of ¢ € (0, 1]; for instance,

2 t ’
My =2t +1and My = 2 + G + 1. Multiplying (20) by e~ /i M1/ 0+ e
get

t 7 1 T ’
ge—foMl(\a (r)\+l)df|u/£(t)|%/ + ze—foMl(\a (T)|+l)dr(¢t(u;(t)) +C)

d

— foMi(le/ ()| +Ddr ¢t
+ et o' ()] e

< Cze—f(iMl(\a'(r)Hl)df +Mze—f(;Ml(|d’(r)\+l)dr(|f(t)|%/* + ' (0) + |g(t, 0)|‘2/* +1)
-2

=: M5(1).
Integrating (21) in time, we obtain

T
/ VL) + sup ¢! (1(0)
0 t€l0,7]
. T
< 3ej;)1 M (| ()| +1)dr {(PO(MO) +/ M3(T)df} =: Np.
0

It is easy to see from the above construction of Ny that Ny is a positive increasing

function with respect to ¢°(ug), |f] 20.1;v+) and | |10 7, and is independent of

¢ € (0, 1]. Thus, the proof of Proposition 1 has been completed. O
Now, let us prove the main Theorem 1.

Proof (Proof of Theorem 1) Let u, be a solution to (P; f, up). with initial datum ),
which is obtained by Proposition 1, and let & be a function in L>(0, T; V*) such that

E:(1) € 05xY' (ul(r)) inV* forae.r€ (0,7) (22)

and

eFul (1) + £ (1) + 059" (ue(D) + g (1, us (1)) = f(t) in V* forae.te(0,T). (23)
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From (B2), (8) and the Ascoli—Arzela theorem, we see that there is a sequence {g,}
with &, | 0 (as n — 00) and a function u € W'2(0, T; V) such that

ue, — u weakly in W'2(0,T; V), in C([0, T); H)

(24
and weakly- * in L*°(0,7T;V) asn — oo,

ug, (1) — u(t) weakly in V for all t € [0, T] as n — oo, (25)

t t
/ Y (v))dr < lim inf/ V(. (tv))dt < N, forallt € [0, T).
0 n—>o00  [o n

Next, we show that u,, — u in L*(0,T; V). To this end, we multiply (23) by

/! / .
u,, — u to get:

(enFuy (1), uy (1) — ' (1)) + (&, (1), u;, (1) — u' (1))
+(0x 9" (e, (1)), 1y, (1) — ' () + (8(t, ug, (1)), uy, () — U/ (1)) (26)
= (f(0),u, () —u'()) forae.te(0,7).

Here, we have by the definition of 9.y’ (cf. (22)) that
(&, (1), up, (1) — /(1) = Y (ug, () — ' (W' (1))  forae.r€(0,7), (27)

and by Lemma 1 that

(00" (e, (1) i, (1) — u (1))
= (0x9" (ue,, (1) — u(0)), ug, (1) — ' (1)) + (00" (u(1)), g, (1) — /' (1))

d LAt (28)
2 0, () = ) = [/ (O] (e, () = u(0)
+ (00" (u(z)), ug (1) —u'(r)) forae.re (0,7).
Therefore, from (26)—(28) we obtain that:
d t t

< [0/ (D)]¢" (e, (1) — u(®)) + Le, (1) + ¥' (' (1) — ¥' (uf, (1)),
fora.e.t € (0,T), where le,, (+) is a function defined by:

Le, (1) == (f(1) = 0ug" (u(t)) — g(t. ue, (D). ], (1) — 1/ (1))
+ ea|Fu, (0)|y+|u, (1) —u'(n)ly  forae.t € (0,7).
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Now, just as (20)—(21) in the proof of Proposition 1, by multiplying (29) by
e~ hol'©ldT and integrating it in time, we get

e~ Rl @l gty (1) — (1))
t SE; ~ ! NI
< / e RO, (9)ds + / ¢ I OW g 1 (5)) — 9, ()Y ds.
0 0

By (24) and (25) the first integral of the right hand side goes to 0 as n — oo and by
the weak lower semicontinuity of the functional v — fot e~ Jo I/ @ldT s (4 (5))ds on
L%(0,t; V) the limit supremum of the second integral is bounded by 0 as n — oo.
Hence we conclude that

lim sup ¢’ (u, (f) — u(t)) <0, hence u,, (t) — u(t) in V, Vi€ [0,T], (30)

n—>o0o

so that by the Lebesgue dominated convergence theorem,
U, — u in L*(0,T;V) asn — oo. (31)

Now we show that u is a solution of (P; f, up) with initial datum u,. We first note
from (B1), (30) and the Lebesgue dominated convergence theorem that

350 (s, () = 350 (u(-)) in L*(0, T; V*) as n — oo (32)
and by (8) that
snFu;n — 0 in L2(0,T; V*) as n — oo. (33)
By (31)~(33) and (C2),
Ee, = [ — 09" (ue,) —8(t, ug,) —enFu, — f—0xq" (u)—g(t,u) =: £ in L*(0,T; V™).

Therefore, from the demi-closedness of 041" in I? 0,T;V)x I? (0, T; V*) it follows
that £(¢) € 05" (u/(¢)) in V* fora.e. t € (0, T) and

E(1) + 040" (u(®) + g(t,u(®)) = f(t) in V* forae.t € (0,7).
Therefore, we conclude that u is a solution of (P;f, uy) and from a priori estimate (8)

that (5) holds for the same function Ny as in Proposition 1.
Thus, the proof of Theorem 1 has been completed. O
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4 Uniqueness of Solutions to (P;f, u)

In this section, we discuss the uniqueness of solutions to (P; f, u).
We begin with showing a counterexample for uniqueness of solutions to (P; f, up).

Example 4.1 (cf. [8, Section 2]) Let 2 = (0,1). Also, let V. = H'(£2) and H =
L?(£2). Define a closed convex subset K of V by

K:={zeV;|zx)| <1, |zz(x)] <1, ae.x € £2}.
Then, we consider the following variational problem with constraint:

u(t) €K, ae.t€(0,7),
/ (2, x) (e (2, x) — v (x))dx <0, VveKk, ae.te(0,7T), (34)
Q
u(0,x) =0, xe82,

where 0 < T < +4-o0.
Here, for each t € [0, T] we consider the following convex functions:

1
V') =1Ik(2), ¢'() = ZIZI%,, Vze V.

Then we have:
1. z* € 0.«Y'(z) if and only if z7* € V*, z € Kand (z",v —z) <Oforall v € K,
2. (0+9'(2). v) = [oz(x)v(x)dx + [, ze(X)ve(x)dx forall v, z € V,

and problem (34) is reformulated as (P;0, 0) with g(z, z) = —z. Therefore, applying
Theorem 1, problem (34) has at least one solution u.
Moreover, for each constant ¢ € (0, 1) the function u. defined by

uc(t,x) := c(1 —exp(—t)) forall (r,x) € (0,T) x £2
is a solution to (34). Indeed, we observe that
(uo)(t,x) = cexp(—1t) € K, (u.)(t,x) =0, (u)u(t,x) =0

for all (t,x) € (0,T) x §2. Therefore, for each ¢ € (0, 1), (34) is satisfied. Hence
{uc}ee(o,1) provides with an infinite family of solutions to (34).

Now, we prove Theorem 2 concerning the uniqueness of solutions to (P;f, u)
under the additional condition (A4) of strict monotonicity of d.’.
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Proof (Proof of Theorem 2) Let u;, i = 1,2, be two solutions to (P; f, ug) on [0, T7.
Subtract (P; f, up) for i = 2 from the one for i = 1, and multiply it by u} —u},. Then:

(§1(1) — &2(0), uy (1) — U3y (1) + (99" (w1 () — x" (ua (1)), ) (1) — U5 (1)) (35)
+Hg(t.u1(1)) — g(t.ua (1), uy (1) —up(1)) = 0 forae.r€(0,7),

where (1) € 0+y'(u,(1)) fora.e.r € (0,T) (i = 1,2). From (A4) we observe that
(1) — £2(0), 1, (1) — ub(1) = Cs|uy (1) — up(1)[5, forae.r€ (0,7) (36)

and by Lemma 1 that

(020" (1 (1) — 00" (U2 (1)), U (1) — uy (1))
(059" (u1 (1) — uz (1)), ' (1) — w5 (1)) (37)

> Zgo’(ul(t) —uy(1)) — o/ ()| @' (u1 (f) — uz(t)) forae.t e (0,7).

v

Therefore, we observe from (35)—(37) and (C2) with the help of the Schwarz
inequality that

Coli (0~ 5O + § 9010~ :(0)

<1a ()19 ) = w2(0) + 0 0) = g0, 2D e 4 ) = oDy

<1 O1¢! @ (0 = 2(0) + (0.0 0) — gt + S () = 0
S Ol 0~ 00) + 2 )~ O+ § 0 0

fora.e. t € (0, T). From the above inequality we infer that

T = O + & o) )

<Ki(J&/®)| + D' (u1 (1) —uz(t)) forae.z€ (0,7),

(38)

for some constant K; > 0 being independent of u; (i = 1,2). Hence, applying the
Gronwall inequality to (38), we conclude that

ui(t) —ux(t) =0 in Vforall ¢t € [0, T].

Thus the proof of Theorem 2 has been completed. O
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5 Doubly Nonlinear Quasi-Variational Inequality

In this section we discuss a doubly nonlinear quasi-variational inequality of the
form:

D5V (W (1)) + 500" s u(t)) + g(t, u(r)) > £(£) in V* for ace. t € (0, T),

(QP:f uo) % u(0) =uy inV,

where ¥'(z) and g(t,z) are the same ones as before, and ¢'(v;z) is precisely
formulated below.

(Assumption (B’))

Putting
T
Doy :={v e W"0,T;V) ‘ / YW (@)dt < oo},
0

we define a functional ¢’ : [0, T] x Dy x V — R such that ¢'(v; z) is non-negative,
finite, continuous and convex in z € V for any ¢ € [0, 7] and any v € Dy, and

0 (v1;2) = ¢'(v2;2), Yz €V, if vy = vy 0n|0,1],

forv; € Dy, i = 1,2, and assume:

(B1’) The subdifferential d4¢'(v; z) of ¢'(v;z) with respect to z € V is linear and
bounded from D(d.¢'(v;-)) = Vinto V* foreach ¢ € [0, T] and v € Dy, and
there is a positive constant C such that

10x0"(v;2) v+ < Chlzlv, Yz €V, Yv e Dy, Vte[0,T].

(B2") If {v,} C Dy, sup,ey fyf ¥'(vh(1)dt < oo and v, — v € C([0,T];H) (as
n — 00), then

0+0"(Vn;2) — 049" (v;z) iIn V¥, VzeV, Ve [0,T] asn — oo.

(B3’) ¢'(v:0) = O forall v € Dy and ¢ € [0, T]. There is a positive constant C;
such that

¢'(v;2) > Cylz)3, Yz eV, Yv e Dy, Vtel[0,T].
(B4’) There is a function @ € W"!(0, T) such that

lo'(v:2) — @*(v:2)| < |a(®) — a(s)le*(v:2)
VzeV, YveDy, Vs, tel0,T].
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We now state the final main theorem of this paper.
Theorem 3 Suppose that Assumptions (A), (B’) and (C) are fulfilled. Let f be any
function in L*(0, T; V*) and uy be any element in V such that

uy € D(@°(;-)) for some ¥ € Dy with 7(0) = up.

Then (QP:f, uo) admits at least one solution u : [0, T] — V in the sense that:

(i) u € Dywithu(0) =uyinV,
(ii) there is & € L*(0,T;V) such that £(t) € 0y (U (t)) in V* for a.e. t € (0,T)
and

E(1) + 040" (u; u(t)) + g(t,u(t)) = f(t) in V* fora.e. t € (0, 7).

Proof Let ¢ be a fixed positive constant in (0, 1] and consider the Cauchy problem
for any given v € Dy:

eFu' (1) + 059" (W' (1) + 059" (v; u(®)) + g(t, u(®)) > f(¢) in V*
forae.t € (0,7), 39)
u(0) =up inV.

Then, by virtue of Theorems 1 and 2, problem (39) possesses one and only one
solution u in the same sense of Definition 1, enjoying the estimate

T
/ O + ' W)+ sup ¢ (v: ()
0 1€[0,T] (40)
<No:= NO(‘PO(U§ uo), |f|L2(0,T;V*)v Ia/lLl(O,T))'

Now, putting

T
X(up) = {v e W0, T:V) | v(0) = uy, / V' ()dt < Nyt s
0

we define a mapping .7 : X(uo) — X(up) which maps each v € X(up) C Dy to the
unique solution u of (39), namely .v = u; note from (40) that u € X(up). Clearly
X(uo) is non-empty, convex and compact in C([0, T]; H).

Next we show that .# is continuous in X(up) with respect to the topology of
C([0,T]; H). Let v € C([0,T]; H), and let {v,} be a sequence in X(uo) such that
v, — v in C([0,T); H) (as n — 00), and put u, = %v,. Then we see that v €
X(uo), v, — v weakly in W'2(0, T; V) and sup,cy fOT ¥ (v)(1))dt < Ny. From (40)
it follows that there is a subsequence of {u,} (not relabeled) and a function u €
W'2(0, T; V) such that

u, — uin C([0, T]; H), weakly in W'>(0,T; V) asn — oo
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and
u,(t) — u(f) weakly in V for all ¢ € [0, T] as n — oo.
Also, we have

eFu, (1) 4 0+ (u, (1)) + 05" (Vn3 un (1) + (1, un (1)) 3 f(2) in V*

41
fora.e. € (0,7). 1)

Just as (30) in the proof of Proposition 1, we obtain by multiplying (41) for t = s
by u! (s) — u/(s) and using (3) that

ECH ) i O+ § 0w () — uts)
< 1o’ (5)|@* (Vp; tn(s) — u(s)) + L,(s) forae.s e (0,7),

(42)

where

Lu(s) = (f(5) — g(s, un(s)) — Dx@* (va; u(s)), uy,(5) — ' (5))
—e(Fu'(s),ul,(s) —u'(s)) + ¥° (' (s)) — ¥°(u,(s)) forae.se (0,7).
Since g(-, u,) — g(-, u) and 30 (v,; 1) — 40 (v;u) (strongly) in L*(0, T; V*)

by conditions (C1), (B2’) and the functional w — fot ¥ (w(s))ds is lower semicon-
tinuous on L2(0, T; V), it follows that

n—>o0

t
lim sup / La.(s)ds <0, Vte[0,T],
0

so that applying the Gronwall inequality to (42) yields that

lim sup ¢ (vy; . () — u(®)) <0, i.e. u,(f) = u(®) inV, Vt € [0,T]

n—>o00

and ¥/, — ' in L*(0,T;V) as n — oo. This implies from (B1°) and (B2’) that
00" (Vs Uy (1)) — 04" (v; u(r)) in V* for all ¢ € [0, T], whence

eFu,, (1) + 029" (1) 3 (1) == f(1) — 0xg" (Vi un (1)) — (1, un (1))
= f(1) = 0« (v:u(t)) — g(t, u(r)) =: £(1) in V*

for a.e. t € [0,7] as n — oo. Accordingly, by the demi-closedness of maximal
monotone mappings, we have £(1) € eFu'(¢) + .Y (' (¢)) for a.e. t € [0,T]. As
a consequence, u satisfies (39), namely u = .%v. By the uniqueness of solution
to (39) we conclude that v, = u, — u = .%v in C([0, T|; H) without extracting
any subsequence from {u,}. Thus . is continuous in X(uy) with respect to the
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topology of C([0, T]; H). Therefore, by the Schauder fixed point theorem, .& has at
least one fixed point # in X (o). This is a solution of (39) with v = u.
We showed above that for every small ¢ > 0 the Cauchy problem

eFul(t) + 05 Y (uy (1)) + 05" (ue: ue (1)) 4 g(t, ue(t)) 3 f(t) in V*
forae.t € (0,7),
us(0) = up inV

admits at least one solution u, € W'?(0, T; V) enjoying estimate
T T
e/ |u;(t)|%,dt+/ Y (. (t)dt + sup @' (ue; u:()) <Ny, Ve € (0,1].
0 0 ]

u
telo,

Therefore, we can choose a sequence {¢,} with ¢, | 0 (as n — oc0) and a function
u € Dy so that

Uy = u,, — uin C([0, T]; H), weakly in W'2(0, T; V) as n — oo,
u,(t) — u(t) weakly in V for all ¢ € [0, T] as n — oo,

eatt, — 01in L2(0,T; V) as n — oo,

T
sup/0 V' (), (1)dt < No.

neN

Now, in the same way just as in the convergence proof of Theorem 1 again, we
can infer from (B2’) and (C1) that the limit u satisfies

0 (U (1)) + 059" (u; u(t)) + g(t, u(®)) > f(t) in V* forae.t € (0,7),
u(0) =up inV.

Thus u is a required solution to (QP;f, up). ]

6 Applications

In this section, we consider two applications of the general results (Theorems 1
and 3).

Let §2 be a bounded domain in RY (1 < N < oo) with a smooth boundary
I' := 42, and let us set

V:i=H)(2), H:=IL*Q);

note that condition (3) is satisfied with Cr = 1.
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(Application 1)
Let T > 0 be a fixed real number, and let Q := (0,7) x £2. Also, let p be a
prescribed obstacle function in C(Q) such that

(0 <)px < p(t,x) < p*, V(t,x) €0, (43)

where ps and p* are positive constants.
Now, for each r € [0, T] define a closed convex set K(7) in V by

K@) :={z€eV; |Vz(x)| < p(t,x) fora.e.x € 2}.
Then, our variational inequality with constraint is of the form:

u,(t) € K(t) forae.t e (0,7),
/ a(t,x)Vu(t,x) - V(u(t, x) — v(x))dx + / gt u(t, x)) (u,(t, x) — v(x))dx
2 2
< / F(O)(us(t,x) —v(x))dx forallv € K(¢) and a.e. t € (0,7),
2

u(0,x) = up(x), xe€ 82,
(44)

where g(+,-) is a Lipschitz continuous function on [0, 7] x R, f is a function given
in L*(0, T; H), uo is an initial datum in V, and a(-,-) is a prescribed function on Q
such that

(0 <)ax < a(t,x) <a*, ¥Y(t,x) €0, a=a() e WH(0,T; C(R2)),

where a, and a* are positive constants.

Now we show the existence of a solution to (44) on [0, T| by applying the abstract
result Theorem 1. To this end, for each ¢t € [0, 7] define proper L.s.c. and convex
functions ¥’, ¢’ on V and a () by

, 0, if z € K(v),
Y(2) = Ign(2) = ] , VzeV,Vtel0,T], (45)
+00, otherwise,
1
¢'(z) == 2/ a(t,x)|Vz(x)|?dx, VzeV, Vtel0,T] (46)
Q
and
1 t
a(t) == / a(t,x)|dt, Vte|0,T]. @7
ax Jo |0t
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We see easily that
FedY() = eV zecK(@)and (*,v—2z) <0, Yv e K(®) (48)

and
(0+0"(2),v) = / a(t,x)Vz(x) - Vo(x)dx, Yz, veV (49)
17,

forall t € [0, T]. In our present case it is easy to check Assumptions (A)—(C), except
for (A1). We prove (A1) in the following lemma.

Lemma 2 (cf. [11, Lemma 10.1]) For any sequence {t,} C [0, T] with t, — t (as
n — o0), Y’ converges to W' on V in the sense of Mosco as n — oc.

Proof Assume that

{z,} C V,z, — z weakly in V and lin_1>infw’” (z4) < o0. (50)
n—oo

We may assume that z,, € K(t,) for all n. By definition
IVz,(x)| < p(ty,, x), ae.x€ $2. 51
Also, by p € C(Q), given ¢ > 0, there exists a positive integer n, such that
p(ty,x) < p(t,x) + ¢ forall x € 2 and all n > n,. (52)
Therefore, it follows from (51) and (52) that
IVz,(x)| < p(t,x) + ¢, ae.x € 2 andall n > ng,
which implies that
w €K ():={zeV; |Vzx)| < p(t.x) + ¢, ae.x e 2} foralln>n,. (53)

Note that K.(7) is weakly compact in V, since the set K, (f) is bounded, closed
and convex in V. Therefore, it follows from (50) and (53) that

7 € K.(1).
Since ¢ is arbitrary, we have z € K (7). Hence, we observe that

liminfy " (z,) = 0= Y'(2).
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Next, we verify another condition of the Mosco convergence. To this end, assume
z € K(f). Note from p € C(Q) that for each k, choose a positive integer N so that
Ni > k and

p(t,) < pltn, ) + ‘:‘ forall x € £2 and all n > Nj. (54)

Then, we observe from z € K(t), (43) and (54) that
Px 1
IVz(x)| = p(t,x) < p(ty, x) + P R ot X),
for a.e. x € £2 and all n > Ny, which implies that

1
(11 0)

< p(ty,x), ae.x € 2 andall n > N;. (55)

Putting

1% if n > Ny for some k € N,

1+,

Zn =
0, if 1 <n <N,

we observe from (55) and z € K(¢) thatt, — tas n — o0,

K(t,) 2z, —>zinV asn — oo

and
lim ¥ (z,) = 0 = ¥'(2).
n—>oQ
Thus, ¥ converges to ¥ on V in the sense of Mosco. O

Taking account of (45)—(49), problem (44) can be reformulated in the abstract
form (P;f, up). Therefore, by Theorem 1, problem (44) admits a solution u €
W20, T; V).
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(Application 2)

Let us consider problem (44) with the diffusion coefficient a(z, x) replaced by
a(t, x, u), namely

u;(t) € K(t) forae.t € (0,7),

a(t, x,u(t, x))Vu(t,x) - V(u,(t, x) — v(x))dx

4 / 2t u(t, ) (0 %) — V() dx < / FOt.3) — v ()
2 2

forallv € K(¢f) and a.e. t € (0, 7T),
u(0,x) = up(x), xe 82,

(56)

where K(f), f and u are the same as in Application 1; the obstacle function p
satisfies (43) as well. As to the function a(z, x, r) we suppose that

(0 <)ax <a(t,x,r) <a*, V(,x)€Q, VreR,
la(t, x, 1) —a(t2, x, r2)| < Lo(|t; — 2] + [r1 — 12]), 57

Vt; €[0,T], neR, i=1,2, Vx € £2,

where as, a* and L, are positive constants. Also, condition (43) is assumed and ¥’
is defined by (45) as well. Furthermore the (¢, v)-dependent functional ¢’(v;z) is
given by

1
¢'(v;z7) = 2/ a(t, x, v(t,x))|Vz(x)|>dx, Yt e [0,T], Yv € Dy, Yz €V,
2

(58)
where
Dy = {v e W'2(0,T:V) | v'(t) € K(?) for ae.te[0,T]}.
The subdifferential d.¢'(v;-) of ¢'(v;-) is given by
(049" (v;2), W) = / a(t,x, v(t, x)) Vz(x) - Vw(x)dx (59)
2
forall t € [0,T], v € Dy and z, w € V. Note from (43) that
[VV/(t,x)| < p* forae. (t,x) € O,
which implies that
sup |v'(1)|reo() < p*, Yv € Dy, for some constant p* > 0. (60)

t€[0,7]
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Therefore, it is easy to check by (57) that Assumption (B’) holds with

1 1
Cy:=a*, Cy:= _ax, a(f) == . Lo(1 4 p™)t.
*

2

In fact, (B1’) and (B3’) are immediately seen from the definition of ¢'(v, z). Also,
if v, € Dy, sup,cyn fOT Y (v} (1))dt < oo and v, — v in C([0, T]; H), then we have

(00" (V43 2) — 0xg" (v:2), W)

< / lat,x. V(6. )) — a(t,x, v(t, )| | V(|| V() dx
2

< ( / lalt. x, va (. ) — alt,x. o(r, x>)|2|Vz<x>|2dx)2 iy
2

and the last integral converges to 0 by the Lebesgue dominated convergence
theorem, so that 0x¢'(v,;z7) — 9x¢'(v;z) (strongly) in V*. Thus (B2’) holds.
Condition (B4’) is verified by using (43), (57) and (60) as follows:

lo'(v;2) — ¢ (V5 2)]

;/Q|a(t,x,v(t,x)) —a(s,x,v(s,x))||Vz(x)|2dx

IA

IA

; /Q/: laz (T, x, v(z, %)) + ay (T, x, v(t, x))ve (7, ) || Vz(x) |*drdx

IA

1 1
(La + Lap™)|t — 5] - / a(s, x, v(s, )| Vz(x)Pdx
Ax 2 0

1 _
Lo(1 + p%) |t —sle*(v:z),
Ax

where a, := Eﬁa(r,x, v) and a, = ;:)a(t,x, v).

By (58)—(59) problem (56) can be described as

{ O (' (1)) + 00" (s (1)) + g(t, u(1)) 3 (1) in V*,
u(0) =up inV.

By virtue of Theorem 3, this Cauchy problem admits a solution u € Dy, so does
problem (56).

Remark 4 (44) is the variational formulation of (P;f,up). It seems similar to
hyperbolic variational problems and our abstract result might be evolved to the
hyperbolic case. However, in this paper, we do not touch it, since the mathematical
structure is essentially of parabolic or pseudo-parabolic type.
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Remark 5 Problems (P;f,up) and (QP;f,up) have a wide class of real world
applications, for instance, reaction-diffusion systems for multi-species bacteria
and solid-liquid phase transition systems with partial irreversibility (cf. [3, 4]).
Moreover, when such phenomena are considered in fluid flows, they are coupled
with various variational inequalities of the Navier-Stokes type which can be
described by our doubly nonlinear evolution equations, too.
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Boundedness of Solutions to a Degenerate
Diffusion Equation

Pavel Krejci

Abstract The diffusion equation with a bounded saturation range under the time
derivative and with Robin boundary conditions is shown to admit a regular bounded
solution provided that the saturation function and the permeability coefficient have
controlled decay at infinity. The result remains valid even if Preisach hysteresis is
present in the pressure-saturation relation. The method of proof is based on a Moser-
Alikakos iteration scheme which is compatible with a generalized Preisach energy
dissipation mechanism.

Keywords Degenerate parabolic equation ¢ Diffusion ¢ Hysteresis
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1 Introduction

This note is devoted to the problem

(f (x, v)+Gv]),—div (u(x, v)Vv) = h(x, 1) for (x,7) € 2 x (0,7),
wx,v)Vu-n = b(x)(v*—v) for (x,7) € 02 x (0,7),
v(x,0) = (%) for x € 2.
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where 2 C RN with N > 2 is a bounded Lipschitzian connected domain and (0, 7))
is a time interval, f, u : £2 x R — R are given functions, G is a Preisach hysteresis
operator which is briefly introduced in Sect. B, n is the unit outward normal vector
to 052, and h(x, 1), b(x), v* (x, ), v°(x) are given data.

Such problems arise in the study of porous media flow with mechanical
interaction, where v represents the capillary pressure, and s = f(x, v) + G[v] is the
degree of saturation. For natural reasons, s is bounded from below and from above
by, say, 0 and 1, and this explains the term “degenerate” in the title. The function
M(x,v) > 0 corresponds to the permeability of the porous body in the Darcy law,
b(x) > 0 is the permeability of the boundary, v*(x, f) is the outer pressure, and
h(x, t) describes for example volume changes of the void space due to deformations
of the solid matrix. For details about the derivation of the model see [2, 12], cf. also
[24]. In the engineering literature, there is enough evidence about the presence of
hysteresis in porous media flow, see [1, 14, 16], and this is the motivation why
hysteresis appears here.

From the physical point of view, it would be more adequate to consider the
permeability p as a function of the concentration s. A mathematical study of the
problem involving hysteresis under the divergence operator was carried out in [7, 8]
with the result that existence of a solution was proved only if the permeability
coefficient was further regularized in time or in space.

From the mathematical point of view, however, hysteresis is not a crucial issue
in Problem (1.1) and represents a lower order effect provided sufficient regularity of
solutions is available. Readers who are less enthusiastic about hysteresis operators
may assume that G = 0, which is an admissible choice in Hypothesis 2.1 (iii) below,
and skip Sect. B.

Problems of degenerate diffusion constitute a popular topic in the literature over
several decades, starting from the most classical publications [4-6, 15] to more
modern ones [11, 13], and this list is far from being complete. In particular, the
problem treated in [13] is to a large extent much more general than here, but for
example boundedness and higher regularity questions (which are essential for the
possibility of including hysteresis) are not addressed there.

The text is divided into six sections. In Sect.2 we specify the hypotheses and
state the main results. The first step of the existence proof consists in truncating
the nonlinearities and the right hand side in Sect.3 and proving that the resulting
cut off system admits a solution with the desired regularity. Section 4 is devoted to
a Moser-Alikakos iteration scheme inspired by [3] which gives uniform estimates
independent of the cut off parameters, and the proof of the main theorems on
existence, regularity, and uniqueness of solutions is completed in Sect. 5. Sections A
and B contain some auxiliary material about Sobolev embeddings and interpola-
tions, and about Preisach hysteresis.
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2 Statement of the Problem

We consider Problem (1.1) in variational form for every ¢ € W'?(£2):

/ ((F(x.v) + Gl + u(x. V)V - V) dx + / b — v*) ds()
2 92

:/thbdx,

v(x,0) =v°(x) a.e.
@2.1)

under the following hypotheses.
Hypothesis 2.1 The data of Problem (2.1) satisfy the following conditions.

i) u: 2 xR — (0,00) is Lipschitz continuous on bounded subsets of 2 X R,
V. u(x, ) is continuous for a. e. x € §2, where V, denotes the partial gradient
with respect to x, and there exist constants 1> > 0 and o € [0, 1), and a
nondecreasing function u* : R — (0, 00) such that

b

K f
L4 ol < p(x,v) < puf(v) ae., (2.2)
Ve (x, v)| < 1f(v) a.e; (2.3)

(i) f(x,-) is a locally Lipschitz continuous function for a.e. x € §2, f(-,v) is
measurable and bounded for every v € R, and there exists a constant ¢ > 0
such that

af c

9 (x,v) > |4 o] HH—m2) a.e.
with o from (2.2);

(iii) G is a Preisach operator with a given density € L= (§2; L' ((0, 00) x R)) as
in (B.5), y(x,r,v) >0a.e.;

@iv) h e L1(2 x (0,7)) for some g > 1+ (N/2);

(v) v* € L®(382 x (0, 7)), [v*(x,1)| < C a.e. for some C > 1;
(vi) v° € L®(2) N W'2(2), [v°(x)| < Ca.e.;
(vii) b € L*®(382), b(x) = O a.e., [,, b(x)ds(x) > 0.

If « = 0, that is, if p is bounded away from zero, we observe a remarkable
coincidence of the exponents 1 + (N/2) in Hypotheses 2.1 (ii) and 2.1 (iv). In
fact, condition (iv) is the same as in the isotropic special case of [22, Chapter III,
§7] for f(x,v) = v. It might be interesting to check whether the decay rates in
Hypotheses 2.1 (i), (ii) are optimal in general or not.
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The main results of the paper read as follows.

Theorem 2.2 (Existence) Let 2 C RN for N > 2 be a bounded connected
Lipschitzian domain, and let Hypothesis 2.1 hold. Then Problem (2.1) has a solution
v € L®(£2x(0, T)) with the regularity v, € L>(2x(0,T)), Vv € L®(0, T; L*(£2)).

Theorem 2.3 (Uniqueness) Let the hypotheses of Theorem 2.2 hold, and let 1 have
the form of a product j1(x,v) = 1 (x)u2(v). Then the solution v to Problem (2.1)
established in Theorem 2.2 is unique.

Indeed, the L> bound for v is the most technical part of the proof. In order to
justify the argument, we first truncate the system, prove the existence and regularity
of solutions to the cut-off system by means of an elementary Faedo-Galerkin
scheme. Finally, using a kind of Moser-Alikakos iteration technique as in [3], we
derive an L* bound for the solution independent of the truncation parameters, so
that the solution of the cut-off system satisfies the original system, too.

In [25, Section 4], another case is considered, namely that f(x,v) = v,
M(x,v) may decay polynomially with an arbitrary exponent, b(x) = 0, and
h € L*°(0,T;L1(£2)) with some ¢ sufficiently large. The degeneracy of f changes
substantially the situation and it seems that the result of [25], also based on Moser-
Alikakos iterations, cannot be directly applied here.

3 Cut Off

Let K > C be a constant, and let
Ok (1) = min{K, max{u, —K}} 3.1

for u € R be the projection of R onto the interval [—K, K]. We also introduce the
dual mapping (dead zone function)

Px(u) = u — Qg (u) = min{u + K, max{0,u — K}}. 3.2)

We choose another constant R > 0 and replace (2.1) with the system
| ex.v) + 6D + o) Vo Vgrar+ [ boe-u)p dsto
2 a2

:/ hre dx,
2

v(x,0) =v'(x) a.e.,
(3.3)



Boundedness of Solutions to a Degenerate Diffusion Equation 309

where we set

fK(—xv U) :f(-xv U) +PK(U)7 (34)
pk(x,v) = plx, Qx(v)), (3.5)
hR(xv t) = QR(h(xv t)) . (36)
We have indeed
af} i c
81[)( > cé := min { 1, - Kl+(l—oc)(N/2)} . 3.7

For Problem (3.3), the partial Kirchhoff transform

w = Mg(x,v) := /v Wi (x, u)du (3.8)
0

makes sense, since (g is bounded by positive constants from above and from below,
so that the function v — Mk(x,v) is Lipschitzian for all x € £2 and admits a
Lipschitzian partial inverse v = Mg ' (x, w). Put

JeGew) = fiele, Mg (x,w)) (3.9)
Gk[w] = Gl(My' (x,w)]. (3.10)

By virtue of Proposition B.2, Gk is still a Preisach operator, and we can rewrite (3.3)
in terms of w as

/Q (ic (e )+ G WD) + V-V ) drt /3 B0 ()= ) ds)

:/ VXMK(x,M,;l(x,w)).wder/ hg dx,
2 2

w(x,0) = wl(x) := Mg(x,0%(x)) a.e.

(3.11)
Note that we have by (3.5), (3.8), (3.9), and (2.3) that
2 ofk —1
afK ()C W) _ (X, MK (-xv W))
ow ek (x, Mg (x, w))
o (e, Mg +1
ao (6 M (x, w) for M= (ew)| = K.
p(x, K)
= (3.12)

i) —
ai (-xv MKl (-xv W))

= for [Mz'(x,w)| <K,
(e, Mt (x, w)) K
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MEl(x,w)
iVXMK(x, MEl(x, w))| = /0 Vet (x, Qg (v)) dv

< pf(K) Mg (x, w)). (3.13)
We see that there exist positive constants f < f,§ such that

o
< i (x.w) <fF ae. (3.14)
ow
For this cut off problem, we have the following result.

Proposition 3.1 Let the hypotheses of Theorem 2.2 be fulfilled. Then for every R >
K > C, Problem (3.11) has a solution w € L®(2 x (0,T)) with the regularity
w, € L2(2 x (0,7)), Vw € L*®(0, T; L*(£2)).

As an immediate consequence, we have

Corollary 3.2 Let the hypotheses of Theorem 2.2 be fulfilled. Then for every R >
K > C, Problem (3.3) has a solution v € L*®(82 x (0,T)) with the regularity
v, € L2(2 x (0,T)), Vv € L>(0, T; L*(£2)).

Proof of Proposition 3.1 The solution to (3.11) will be constructed by Faedo-
Galerkin approximations. We choose the orthonormal basis {e;;j = 0,1,2,...}
of eigenfunctions of the homogeneous Neumann problem

—AEjZAjEj in .Q, Vej-n=0 on BQ, (315)

and approximate the solution w to (3.11) by a finite series

w () =Y wit)e(x) . (3.16)

J=0

The functions w;(r) are defined to be solutions of the finite system

/ (Fi e w™) + G [w™])e; dx + Aw;
2

+ / b (M (x W™ —v*)e; ds )
02

(3.17)
= / VMg (x, M (x, w'™)) - Vej dx + / hge; dx,
2 o)
w;(0) = / w0 (x)e;(x) dx
2
forj = 0,1,...,m. Note that for every x € §2, the operator w > fx (x, w) + Gg[w]

is invertible in the space C[0, T of continuous functions and its inverse is Lipschitz,
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see [10]. Hence, (3.17) can be viewed as an ODE system with a locally Lipschitzian
right hand side, and we conclude that it admits a unique solution for every m € N.

We test (3.17) with w§(t) and sum up over j = O0,1,...,m. By (3.14),
Proposition B.2, and (B.8) we have

(Fic e, w™) 4 G W™D ™ > folw™|? a.e.

Furthermore, we have the identity

w0
VM (x, Mg (x, w™)) - V™ = ; (VM (x, Mg (x, ™)) - V™)

0

M
Vg (6, Mg (x, w™)) 815 Ce, WM™ 7w g e,

Using the inequality |V, g (x, Mg (x, w™))| < uP(K) which follows from (2.3),
we obtain the estimate

D
Ve My (x, Mg (x, w™)) - V™ < s (VMg (x, M (x, w™)) - V™)

+ Cx W™ | VW™ a.e.
Here and in what follows, Cx denotes any constant depending possibly on K and
independent of R and m. The norm of hg in L?>(£2 x (0,T)) is bounded above

independently of R due to Hypothesis 2.1 (iv). Integrating in time from 0 to  and
using (3.13) thus yields for all z € [0, T] that

T
/ /|w§m)|2dxdt+/ |Vw(m)|2(x,r)dx+/ b(x)|w™|? ds(x)
0 Jo 2 a0

< Cx (1+/ /|w§’">||vw<'">|dxdz+/ |w(m)||Vw(m)|(x,‘c)dx).
0 2 2

From the Gronwall argument we now obtain the estimate

T
/ /|w§’”’|2dxdz5CK, sup / |Vw®™|?dx < Cx
0o Jo 1€(0.7) J 2

We find a subsequence of {w™}, still indexed by m, and an element w € W'?(£2 x
(0, T)) such that Vw € L>®(0, T; L*(£2)), and
w™ —w,  weaklyin L*(2 x (0,T)),

(3.18)
Vw™ — Vw weakly star in L>(0, T; L*(£2))
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as m — oo. By the compact embedding formulas (A.5)—(A.6), selecting again a
subsequence, we may assume that

w™ — w strongly in L*(£2; C[0, T]),
(3.19)

w™ — w strongly in L*(32 x (0,7)).
Passing to the limit as m — oo in (3.17) we easily check, using also Proposition B.1

in Sect. B below, that w is a solution to (3.11) and, consequently, v = Mgl (x,w) is
a solution to (3.3) and the estimates

T
/ /|U,|2dxdt§CK, sup / |Vu|>dx < Cx (3.20)
0o Je 1€(0,T) J 22

hold with constants Cx independent of R.
We now show that the values of |v(x, )| are bounded above almost everywhere
by a constant. To this end, we put

R = Rmax

1
1, (3.21)
cg}

with c-,f< as in (3.7), and test equation (3.3) with ¢ = H.(v(x, ) — R(1 + 1)), where
H, is the function

0 for x <0,
H.(x) = { x/e for x € (0,¢), (3.22)
1 for x > ¢

with a given ¢ > 0. We have Vv - VH,(v(x, 1) —R(1+ 1)) = (V(v(x,1) —R(Q + 1)) -
VH,(v(x,t) — R(1 + f)) > 0 a.e. for every ¢ > 0, and letting ¢ tend to 0 we obtain
from (3.11) that

/9 (fx(x,v) + Glv])H(v(x, 1) — R(1 + 1)) dx
+ / b(x)(v — v )H(v(x, 1) — R(1 + 7)) ds(x) (3.23)
082
g/RH(v(x,t)—R(Ht))dx,
2

where H is the Heaviside function

0 for x <0,

3.24
1 for x> 0. ( )

H(x) = %
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By the choice of Ri in (3.21), by Hypothe51s 2.1(v), and by the fact that R > K > C,
we see that if v > R, then v > v*, so that (v — v*)H(v(x,7) — R(1 + 1)) > O a.e.
Furthermore, by the Hilpert inequahty (B.9), we have

(G H((x, 1) — R(1 4 1) > (GIR(1 + 0]);H(v(x, 1) — R(1 + 1))

s [T @erp ) vt ka oy ar

fora.e. (x,7) € £2 x (0, T). From (B.8) it follows that (G[R(1 + 7)]); > O a.e., and

from the choice of the initial state (B.1) of the play operators we infer that
W xoropoD) = ¥ p RO+ 0D =

for all » > 0. Indeed, by (3.11) and Hypothesis 2.1 (vi) we have |vo(x)] < C < R
a.e., so that for all T > 0 and a.e. x € §2 we have

/ t(GK[v]),H(v(x, N—R1+1)dr>0. (3.25)
0
We thus obtain from (3.23) for all T > 0 that
/0 ' /9 (fx(x, v))H(v(x, 1) — R(1 + 1)) dx dt
< /0 /Q RH(v(x,f) — R(1 + 1)) dxdt, (3.26)
hence,
/0 I /Q (fiCxv) — fic (e RQL 4 ) H(o(x. 1) — R(1 + 1)) deds
< // (R—ieafK (x, R(1 + 0))H(v(x,1) — R(1 + 1)) dxdr. (3.27)
0 Je dv

The right hand side of (3.27) is non-positive by virtue of (3.21), and we conclude
for all > 0, using also Hypothesis 2.1 (vi), that

/Q (fx (e, v(x, ©)—fx (6, R+ 1)) T dx < /Q (fie (e, v° ()~ (x, R) T dx
=0, (3.28)
which yields the inequality

v(x,f) <R(1+1) ae. (3.29)
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The inequality v(x, ) > —R(1 +1)is fully analogous, and the desired estimate
oG, 6)] <R +1) a.e. (3.30)

is thus proved. This completes the proof of Proposition 3.1. a

The next goal is to pass from the cut off system (3.3) to the original problem (2.1)
by letting R tend to infinity and showing that there exists an L® bound for the
solution v to (3.3) independent of R and K. This will be done in the next section by
a kind of the Moser-Alikakos technique, see [3].

4 Moser-Alikakos Iterations

Let 2 C R be as in Sect. 2. We denote here and in the sequel by | - |, the norm in
L1(82), and by || - ||4 the norm in L7(£2 x (0, T)). We first prove a technical lemma.

Lemmad4.1 Let qo = 1 + (N/2), gy = 1+ (2/N), and let s, r be real numbers
satisfying the inequalities

1 N+2
<s<r<"FE (4.1)
2 N+2

Assume that a function v € L*(0,T; W'2(82)) satisfies for a. e. t € (0,T) the
inequality

s 2r
O + / (0D y120, 47 < Amax {B. [Vl } 42

for some q' < qyyand A > 1, B > 1. Then there exists a constant C > 1 independent
of the choice of v, B, and A such that

[Vll2rgy < CAYC? max {B, [[v]|2ry} - (4.3)

Proof By virtue of (A.3), there exists a constant C > 0 independent of r, s, and of
v € L*(0, T; W'2(£2)) such that

|U(t)|2rq0 =< C|v(t)|2s plv(t)|Wl,2(_Q) fOI' re (O, T) (4’4)
with
1 _ 1 1 2 _
o= s rqq, D l—p= rq + N 1
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we easily check that

1 1 1 1 2
- > 1 — , = >0,
s g r 9 r(N + 2)
1 2 N N-2 N N-2 4
S+ -1= — > — = >0,
rq, N r(N +2) N N+2 N N(N +2)

hence p € (0, 1). Raising (4.4) to the power 2rqj, and integrating in 7 yields

2rgy, (1—p)2rg, 2prq)
Jvll < €% supess [v(0)]y, 0./‘| v(B) 1, d. @.5)
t€(0,T)

We claim that prg;, < 1. Indeed,

1 2 1 2 rq! 2 1 r(N +2)
— 1) (1—prg, —1—- " 41= 1—
(s+1v )( Prae) =ty + N+s( N

A%

1
N(N+2s—r(N+2))ZO

by virtue of (4.1). Hence, by Holder’s inequality,

/
”v”Zﬂjo < Tl prqOCZVCI() sup ess |U(t)|(l 0)27’51()” ”i/ZDZI)OTAWl,Z(Q))’ (46)
1€(0.T) 4
that is,
(1=p)r/ er
Il = 70 supess (v@B)" ™" (0120 rmacey) - @D

1€(0,7)
We have the straightforward inequality
-
w:=0-p) +pr=1, (4.8)
s
which follows from (4.1) and from the relations

T — w2 (1 _1)_ 2(N 4 25 — r(N +2))

r r
I—(l=p) —pr=1-"4¢ -
(1=p) —pr s T _w (N +2)(N(1 —5) +25) —

s N S

For all positive numbers a, b, c, d we have as a consequence of the Young inequality

that
. a b a+b
4”7 < d ,
¢ _(a+bc+a+b)
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so that (4.7) can be rewritten as

w
o)1, < T~ (supess VO3 + V220 w20 | - (4.9)
q 1€(0.7) (0,T; (£2))

which in turn implies, by Hypothesis (4.2), that

Ve (4.10)

)13, < T/~ C7A” max {B, [[v]l2sy

and (4.3) follows. O

We now derive a series of estimates for the solution of (3.3). By C we denote
any constant depending only on the data in Hypothesis 2.1 and independent of R
and K. The estimates consist in testing Eq. (3.3) successively by higher and higher
powers of v. This is indeed an admissible choice, since by Corollary 3.2 we have
v eEL®(R2x0,T)NL*0,T; W2 (£2)).

4.1 Estimate 1

Test (3.3) by ¢ = v max{l, |v|*}. Using the hysteresis energy inequality (B.10) with
A(v) = vmax{l, |v|*} as well as the assumption (2.2) we immediately obtain

T T
2 2 1+a
/0 /Q|Vv| d)cdt-i—/0 /ag b(x)|v|* ds(x) dr < C(l + ”U”q/(1+a)) , (411

and, by the Poincaré inequality (A.4) together with Hypothesis 2.1 (vi),
Il = € (1+ ol ) (4.12)

where g is as in Hypothesis 2.1 (iv), and ¢’ = g/ (g — 1) is the conjugate exponent.

4.2 Estimate 2
Test (3.3) by ¢ = v|v|¥** and set
Fi(x,v) = / of (x, u)u|u|N+a du.
0 v

By Hypothesis 2.1 (ii) we have for a.e. |v| > 1 that

af c

>
a0 = 2v|IHU—)®/2)?
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so that

Cc

(+@)(1+(N/2)) _
Fi(x,v) > 21+ o)1+ (N/2) (Jv] 1). (4.13)

This inequality is trivially fulfilled for |v| < 1, since F| is positive, so that (4.13)
holds for all v € R.

The dead zone term containing Pk (v) in (3.4) gives a positive contribution on the
left hand side and zero on the right hand side by virtue of Hypothesis 2.1 (vi). The
hysteresis term can be again treated using the inequality (B.10), and we obtain

b T
max / Fi(v)(x,t)dx + K N+1 +ot)/ / |Vo2|v[N dxdr
€0.7] Jo 2 0o Jo

T
N+2
+ /0 /89 bx)|v|" " ds(x) dr

T
§c+/ /|h||v|N+1+“dxdt
0 2

T ) 1/q
<C (1 + (/ / |v|q(N+1+°‘)dxdt) ) ) (4.14)
0 2

In the boundary term on the left hand side of (4.14), we have indeed replaced
|v|N+2+a > |v|N+2 -1

Put u := v|v|"/2. We then obtain from (4.14) and (4.13) that

T T
max/ |u(x,t)|l+“dx+/ / |Vu|2dxdt+/ / b(x)|ul* ds(x) dr
1€0.7] J o 0o Je o Jo

T ) 1/4
72(N+14a)
§c<1+(/ /|u|q N+ dxdt) ) (4.15)
0o Jo

By virtue of the Poincaré inequality (A.4), we are in the situation of Lemma 4.1
with2s =14+ aoandr = (N + 1 + «)/(N + 2). The assertion of Lemma 4.1 then
yields the estimate

100l v+ 14aygy < Cmax {1, [[vllv+1+ayg' - (4.16)
Putpy := (N + 1+ a)q, = (N+l+]‘\);)(N+2),p = (N + 1+ a)d < po. We either

have p < 2, or p > 2. In the latter case, we use the interpolation inequality (A.1)
with p; = 2 and obtain

1—
[0l < € (1+ ol 1vl5™) (417

po
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wit € (0, ven .2). In both cases we thus have . that
ith n € (0, 1) given by (A.2). In both hus have by (4.12) th
1-n)(14a)/2
lolly = € (1 ol (1 + [oleme ) (4.18)
with some 5 € [0, 1). We have indeed ¢'(1 + &) < py, so that (4.18) yields
V[py = + v .
< C(1 z;—(l—n)(l+a)/2 (4.19)
~ 1+
with n + (1 —n) 3% < 1, and we conclude that

o]l < C. (4.20)

4.3 Estimate 3

Test (3.3) by ¢ = v|v|**N T for some k > 0 and set
v'a
Fi(x,v) = / f(x, uu|uTNEE dy,
0 v

Here, C will denote any constant independent of K, R, and k.
Arguing similarly as in (4.13) we obtain for all v € R that

C
F X,V > v 2k+(14+a)(14+(N/2)) —-1). 421
K )_4k+(1+a)(N+2)(| | ) “.21)

The hysteresis term can be again handled by the inequality (B.10), and the
contribution due to the dead zone function Pg(v) has again the right sign as in
Estimate 4.2. The remaining terms yield

b T
max/ Fr(x,v)(x, 1) dx + ® (2k+N+1)/ / Voo +N dxdr
t€[0.7] J o 2 0 o

T
+ / / b(x)|v|*FN*2 ds(x) dt
0 82
T
< C(62k+N+2+a+/ / |h||U|2k+N+ldxdl)
0 2

T 1/q
<c (Czk+N+2+a n (/ / |p] ¢ GV +a) dxdt) ) 4.22)
0 Jo
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with C from Hypothesis 2.1. Put u = v|v[** /2 Then
[Vul* = (k+ 1+ (N/2))*|Vo*[o* 7,

and (4.22) can be rewritten as

T T
max/ |u|2fk(x,t)dx+/ /|Vu|2dxdt+/ / b(x)|ul? ds(x) dr
€[0.7] J 0o Jo 0o Jae

T 1/¢
<C(+k) (CZHN“”L“ + (/ / |+ dXdl) ) (4.23)
0o Jo

(note that C and N are constant), with

_ 2k+ (14 a)(1+ (N/2)
B k+1+(N/2)

_2k+N+1+a

2s . 2rg = .
¢ Tk 14+ (V)2)

(4.24)

We refer again to Lemma 4.1 with B = CKHNF1H0)/2n — CHHI+WN/2) A = 2C(k+
1), and s = sy, r = ry. Condition (4.1) is fulfilled thanks to the identity

N+2s  k+((N+1+a)/2)

N+2 = k4142
By Lemma 4.1 we have
max {CHH(N/Z), ||w||2,kq6} < C(1 + k) max {CHH(N/Z), ||w||2,kq/} . (4.25)

Passing back from u = v|v[**®™/? to v, we rewrite (4.25) as

max {C, ||U||qg} < (C(1 + k))/®FIFWN/2) max {C.llvllg} - (4.26)
where
@ =qyk+N+1+a), G=¢dQRk+N+1+a). 4.27)
Put
q/
vi=""—1>0, (4.28)
q
and forj = 0, 1, ... we define the sequences
N+1+a . _
ki = ) (A+vy=1), pii=q =qN+1+a)(1+vy. (429
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For all j € N we have

0
qr.
To= Dj—1- (4.30)

ij=1+v

For k = k;, we can rewrite (4.26) in the form
max {C, |[v],,} < (C(1+ kj)) !/ 1T/ max {C, ol } (4.31)

for every j € N. Put z; = log max {é‘ v ||1,_/.}. Then (4.31) has the form

Z — zj— log(C(1 + k;)) . 4.32)

1= !
ki+14+(N/2)

There exists @ > 0 such that forall j € Nwe have &(1 +vy~' <14k <a(l+v).
This enables us to put

+v) + log(@C)

1 < jd

J=1

; ki+ 1+ (N/2)
(4.33)

Then (4.32)~(4.33) yield that
7 <z0+ C", (4.34)

where 7y is bounded independently of K and R by virtue of (4.20). It follows that
vl are bounded by a constant independently of K, R, and j € N. Hence, there
exists a constant B > 0 independent of K and R such that

[v]looc < B. (4.35)

5 Proofs of the Main Results

Proof of Theorem 2.2 We fix the value of K = B + 1 with B from (4.35), and let
R tend to oo in Problem (3.3). Let vg denote the solutions to (3.3) corresponding to
different values of R. By the choice of K and by (4.35), we have that Px(vg) = 0,
hence Ok (vg) = vg and fx(x, vg) = f(x, vg), ux(x, vg) = u(x, vg). We have the
bounds (3.20), (4.35) independent of R and repeating the compactness argument
of (3.18)—(3.19) we conclude that the limit v of a subsequence of v is a solution
of (2.1) with the desired regularity. |

Proof of Theorem 2.3 Let u(x,v) = p1(x)u2(v). The uniqueness argument is also
based on the Hilpert inequality. Assume that vy, v, are two solutions of (2.1). We
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test the difference of (2.1) written for v; and v, by H,(M(v;) —M(v;)) with M(v) =
fOU Mo (u) du similarly as in (3.22)—(3.23). We have

1) (2(v)Vor — p2(v2)Vos) - VH (M(v1) — M(v2)) = 0
a.e., and letting ¢ — 04 we obtain
/Q(f(vl) —f(v2) + Glv1] = G[vi])H(M(v1) — M(v2)) dx
[ b0 = e HOM) ~ M(w2)) ) < 0. 5.1)
902

We have H(M(v;) — M(v2)) = H(vi — v2), so that the boundary integral term is
nonnegative. Since the initial conditions for v; and v, coincide, we have by Hilpert’s
inequality (B.9) that

/ t / (Glvn] = Gloal)H (w1 — v) dedr = 0,
0 2

Hence,
0> /OT /Q(f(x, v1) — fx (x, v2))H (v, — v2) dxdt
= /0 /Q(f(x, v1) —f(x,v2)) H(f(x,v1) —f(x, v2)) dxdt

- /Q (F0ev1) —f(x v2)) (e, ) i, (5.2)

which yields that v (x,7) < v,(x,1) a.e. Interchanging the indices 1 and 2 we get
the opposite inequality, which implies uniqueness. |

A Auxiliary Section A: Embeddings and Interpolations

We summarize here a few standard results from the theory of Lebesgue spaces L?
and Sobolev spaces WX than all can be found, e. g., in the monograph [9]. Recall
that we denote by | - |, the norm in L7 (£2), and by || - ||, the norm in L”(§2 x (0, T)).
We start with the interpolation inequality in Lebesgue spaces which we state in the
following form.

Lemma A.1 Let1 < p; < p < po < 00 be given. Then for every v € [F°(§2) we

have

1—
llp < vl vl (A.D
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with
11
n= ’1"_ T e.. (A2)

P1 Po
Indeed, the same formula holds if £2 is replaced with 2 x (0, T) and the norms

| - | are replaced with || - ||.
We also refer to the Gagliardo-Nirenberg inequality:

Lemma A.2 There exists a constant C > 0 such that for every w € W'?(82) the
inequality
wly = C (Iwls + wl; ™ [Vwl7) (A3)

with

11
s q

+1_le(0,1)
N p

p:

.

isvalidforall1 <s <gq,1/g > (1/p) — (1/N),
as well as to the Poincaré inequality:

Lemma A.3 Under Hypothesis 2.1 (vii), there exists a constant C > 0 such that the
inequality

|v|§ < C(/ |Vv|2dx+/ b(x)|v|2ds(x)) (A.4)
Q a0

holds for every v € L2(£2).
We define the space

X ={weW'?2(2x(0,T)) : Vw € L®(0, T;: L*(22))}.

and denote by the symbol << the compact embedding relation. The following
anisotropic compact embeddings are established in [9]:

X s [*(£2; C[0, T)), (A.5)
and

X s L2002 x (0,7)). (A.6)
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B Auxiliary Section B: The Preisach Operator

We use here the variational definition of the Preisach operator which was shown in
[19] to equivalent to the original construction in [23]. It is based on the variational
inequality for the unknown function &,

() — &0 =r Vi e[0,7],
EOW@® &) —y) =0 ae V]y|=<r, (B.1)
£-(0) = P.(v(0)),

where r > 0 is a fixed constraint, P, is the mapping defined by (3.2), v € W"1(0,T)
is a given input, and the dot denotes time derivative. The mapping p, : WH1(0, T) —
W'1(0, T) which with v associates the solution & € W'1(0, T) of (B.1) is called
the play operator according to [18]. It is proved in [18, §2] that for arbitrary two
inputs vy, v, € W"1(0, T), the inequality

pr[vi](@) = pr[v2] (@] = max, [v1(z) — v2(7)] (B.2)

holds for all + € [0, T], hence the play operator can be extended into a Lipschitz
continuous mapping p, : C[0,7] — C[0,T]. Furthermore, directly from the
definition (B.1) we can infer that the identity

5(00(1) = (5:(1))° (B.3)
holds a.e. for every v € W!1(0, T). For inputs v depending on x € £ and ¢ € (0, T)

we define the play operator p, : LP(£2; C[0,T]) — LP(£2;C[0,T]) for1 < p < o0
by the formula

pr[v](x, 1) = p,ulx,](1) (B.4)

and by virtue of (B.2), the play is Lipschitz continuous in L7 (§2; C[0, T]) for all
I <p=<oo.

Given a nonnegative function ¢ € L*(£2; L' ((0, oo) xR)), the Preisach operator
G :L[P(£2;C[0,T]) — LP(82; C[0,T)) is for (x, 1) € §2x]0, T] defined by the formula

oo ,prv](x)
Gv](x,1) = / / V(x,r,z)dzdr, (B.5)
o Jo
and v is called the Preisach density of G. If we denote for (x, r, v) € £2x(0,00) xR

Y(x,r,v) = /U vi(x,r,z)dz, (B.6)
0
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then (B.5) can be written in the form
o0
Gv](x, 1) = / Y(x,r,pv](x, 1) dr. (B.7)
0

The following statement is an easy consequence of (B.2).
Proposition B.1 G : [7(82; C[0,T]) — L”(£2; C[0, T)) is Lipschitz continuous for
every 1l <p < oco.
From (B.3) it follows that for each v € L2(£2; W"1(0, T)) we have
(G[v]) v, =0 a.e. (B.8)

The Preisach operator is monotone in the sense of Hilpert’s inequality

(G[v1]=Glv2])H (v1—v2) = ;/0 (W rp )= rp )" dr - (BY)

established in [17], which holds a. e. for all vy, v, € L*(£2; W"1(0, T)) and where H
is the Heaviside function (3.24) and (-)™ denotes the positive part. A different proof
can be found in [21, Proposition 11.2.12].

Let A : R — R be a nondecreasing function, A(0) = 0, and let v €
L*(£2; W1(0, 7)) be given. Put £, = p,[v]. By definition (B.1) of the play we have
&)w—-§&)=>0 a.e,

hence,

&)(A(v) —AE) =0 a.e.

It follows that
(GlvDiA(v) = / V(x,r, &) (E)A(v) dr > / Y ré)E)AE)dr ace.
0 0

and we conclude that
(GvDA(v) = (Uplv]), a.e., (B.10)

where

0o pr[v]
Ur[v] = / / V(x,r,2)A(z) dzdr. (B.11)
0 0
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This can be interpreted as a generalized hysteresis energy inequality with hysteresis
potential U,, see [21, Chapter II].
Let us cite also the following result of [20].

Proposition B.2 LetJ : 2 xR — R : (x,v) — J(x,v) be a function such that
gi € L*® (82 xR) is positive almost everywhere, J(x,0) = 0, J(x, £o0) = £ooa.e.,
and let G be a Preisach operator with Preisach density € L®(§2; L' ((0, oo) xR)),
Y(x,r,v) > 0 a.e. Then the operator G defined by the formula

Gyu)(x. 1) = G[J(x, u(x.))](®) (B.12)

is a Preisach operator of the form (B.5) with density

aJ z+r\ daJ 7—r
Valer.2) = av(x’ 2 )av(x’ 2 )

X (x,.l(x, Z;r) —J(x, Z;) ,J(x, Z;r) +J(x, Z;r)) . (B.13)

Note that we have ¥; > 0 and
o0 o0 o0 o0
/ / Yr(x,r,z)dzdr = / / Y(x,r,z)dzdr a.e. (B.14)
0 —00 0 —00
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Optimal A Priori Error Estimates of Parabolic
Optimal Control Problems with a Moving Point
Control

Dmitriy Leykekhman and Boris Vexler

Abstract In this paper we consider a parabolic optimal control problem with a
Dirac type control with moving point source in two space dimensions. We discretize
the problem with piecewise constant functions in time and continuous piecewise
linear finite elements in space. For this discretization we show optimal order of
convergence with respect to the time and the space discretization parameters modulo
some logarithmic terms. Error analysis for the same problem was carried out in the
recent paper (Gong and Yan, STAM J Numer Anal 54:1229-1262, 2016), however,
the analysis there contains a serious flaw. One of the main goals of this paper is to
provide the correct proof. The main ingredients of our analysis are the global and
local error estimates on a curve, that have an independent interest.

Keywords Discontinuous Galerkin ¢ Error estimates * Finite elements * Moving
point control ¢ Optimal control ¢ Parabolic problems * Pointwise error estimates

1 Introduction

In this paper we provide numerical analysis for the following optimal control
problem:
. 1T a2 a [T )
minJ(q, u) := lu(®) — (@72 ()dt + lg()["dt (1
q.u 2 Jo 2 Jo
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subject to the second order parabolic equation

u(t,x) — Au(t,x) = q(1)8, (), (t,x) eI x 82, (2a)
u(t,x) =0, (t,x) e I x 082, (2b)
u(0,x) =0, xe 2¢)

and subject to pointwise control constraints
ga < q(t) <qp a.e.inl. 3)

Here I = (0,7), 2 C R? is a convex polygonal domain and &, is the Dirac delta
function at point x, = y(f) at each t. We will assume:

Assumption 1 y € C!(I) and max,; |y’ ()| < Cy.

Assumption 2 y(r) C 29 CC £2, forany t € I, with 2, CC £2.

The parameter « is assumed to be positive and the desired state & fulfills & €
L?(I; L>°(£2)). The control bounds g, g, € R U {Zoc0} fulfill g, < g;. The precise
functional-analytic setting is discussed in the next section.

For the discretization, we consider the standard continuous piecewise linear finite
elements in space and piecewise constant discontinuous Galerkin method in time.
This is a special case (r = 0, s = 1) of so called dG(r)cG(s) discretization, see
e.g. [14] for the analysis of the method for parabolic problems and e.g. [25, 26]
for error estimates in the context of optimal control problems. Throughout, we will
denote by /4 the spatial mesh size and by k the size of time steps, see Sect. 3 for
details.

The main result of the paper is the following.

Theorem 1 Let g be optimal control for the problem (1)-(2) and g, be the optimal
dG(0)cG(1) solution. Then there exists a constant C independent of h and k such
that

1g — @ll2qy < C(ImAP(k + 1) + Cyl Inhlk) (1@l 20 + il 2ar=@y) -

We would also like to point out that in addition to the optimal order estimate,
modulo logarithmic terms, our analysis does not require any relationship between
the sizes of the space discretization & and the time steps k.

The problem with fixed location of the point source (i.e. with d,,(x) for some
fixed xo € £2) starting with the work of Lions [23], was investigated in a number of
publications, see [2, 3, 10, 12, 28] for the continuous problem and [17, 21, 22] for
the finite element approximation and error estimates. There is also a closely related
problem of measured valued controls, which received a lot of attention lately [5—
8, 20].
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The problem with moving Dirac was considered in [9, 27] on a continuous level.
The error analysis was carried out in the recent paper [16]. However, the analysis
there contains a serious flaw. The last inequality in the estimate (3.33) in [16] is
not correct. One of the main goals of this paper is to provide the correct proof. The
main ingredients of our analysis are the global and local error estimates on a curve,
Theorems 2 and 3, respectively. These results are new and have an independent
interest.

Throughout the paper we use the usual notation for Lebesgue and Sobolev
spaces. We denote by (-,-)¢ the inner product in L?(£2) and by (-, -)j, the inner
product in L2(I x £2) for any subinterval I C I.

The rest of the paper is organized as follows. In Sect. 2 we discuss the functional
analytic setting of the problem, state the optimality system and prove regularity
results for the state and for the adjoint state. In Sect. 3 we establish important global
and local best approximation results along the curve for the heat equation. Finally
in Sect. 4 we prove our main result.

2 Optimal Control Problem and Regularity

In order to state the functional analytic setting for the optimal control problem, we
first introduce the auxiliary problem

v(t,x) — Av(t,x) = f(t.x), (t.x) €l x 2,
v(t,x) =0, (t,x) € I x 382, 4)
U(O,X)ZO, XEQ,

with a right-hand side f € L*(I;L7(£2)) for some 1 < p < oo. This equation
possesses a unique solution

v e LX(I; HY () N HY(I; H ().

Due to the convexity of the polygonal domain §2 the solution v possesses an
additional regularity for p = 2:

v e LX(I; H*(2) N Hy(2)) N H'(I; L*(£2)),
with the corresponding estimate

lvll2@me@)y + Illzaze) < Clflleae @) (5)

see, e.g., [15]. From the Sobolev embedding H?(£2) < W!*(£2) for any s < oo in
two space dimensions and the previous lemma we can establish the following result
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fors > 2,

lvllzawis@)y < Csllvllzame)y < Cslifllearze))- (6)

The exact form of the constant can be traced, for example, from the proof of [1,
Thm. 10.8]. In addition, there holds the following regularity result (see [21]).

Lemma 1 Iff € L*(I; L (R2)) for an arbitrary p > 1, then v € L*(I; C(£2)) and

lvll2a:cy < Coll flizam )
where C,, ~ pil, asp — L.
We will also need the following local regularity result (see [21]).

Lemma 2 Let 290 CC 21 CC Q2 andf € L*(I; L*(2)) N L*(I; L7 (§2,)) for some
2 <p < oo. Thenv € L*(I, W*?(§20)) N H'(I; L?(£2y)) and there exists a constant
C independent of p such that

lVell2zer 20y + IV I2aw2e20)) < CPULfl2asr 20y + 1 f 22 2))-

To introduce a weak solution of the state equation (2) we use the method of
transposition, (cf. [24]). For a given control ¢ € Q = L*(I) we denote by u = u(q) €
L2(I; L7 (2)) with 2 < p < oo a weak solution of (2), if for all ¢ € L2(I; L7 (2))
with | + ) = 1 there holds

(“v(p>L2(I;U’(Q)),L2(I;LI”(.Q)) = /IW(Z‘,)/(t))q(t) dt,

where w € L2(I; W27 (22) N H}(2)) N H'(I; I’ (2)) is the weak solution of the
adjoint equation

—wy(t,x) — Aw(t,x) = @(t,x), (t,x) €lx £2,

w(t,x) =0, (t,x) e I x 082, 7
w(T,x) =0, x € £2.
The existence of this weak solution u = u(g) follows by duality using the

embedding L*(I; WZ’P/(.Q)) < L[*(I;C(£2)) for p’ > 1. Using Lemma | we can
prove additional regularity for the state variable u = u(g).

Proposition 2.1 Without lose of generality we assume 2 < p < co. Let g € Q =
L2(I) be given and u = u(q) be the solution of the state equation (2). Then u €

L2(I; L7 (2)) for any p < oo and the following estimate holds for p — oo with a
constant C independent of p,

lull 2,02 < Crllall2y-
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Proof To establish the result we use a duality argument. There holds

1 1
||u||Lz(,;U(_Q)) = sup (u,9)ixp, Wwhere + = 1.

|¢|L2(12U’/(Q))=1 p p

Let w be the solution to (7) for ¢ € L*(I; L' (£2)) with lell 24, (2)) = 1. From
Lemma 1, w € L>(I; C(£2)) and the following estimate holds

_c _ < .
Iwli2g:c) = v 1 el 200 2y = p—1 =P asp =00
Thus,

lull 200 (2)) = sup (u, ©)ixo
l‘p”LZ(l:Lﬁ'm))=l

= /CI(I)W(L y@®)dt < lqllzolwllzacw) < Crllalza-
i

Remark 1 'We would like to note that the above regularity requires only Assumption
2 on y. Higher regularity of y is needed for optimal order error estimates only.
A further regularity result for the state equation follows from [13].

Proposition 2.2 Let g € Q = L*(I) be given and u = u(q) be the solution of the
state equation (2). Then for each 1 < s < 2 there holds

uelX(LWy'(2)) and u, € L2(I; W5(2)).

Moreover, the state u fulfills the following weak formulation

(1. 0) + (Vi V) = /, dOt.y @) di forall ¢ € 2T W ().

where ‘1, + ' = 1 and (") is the duality product between L*(I; W~"5(2)) and

§ s

(1 W ().

Proof For s < 2 we have s’ > 2 and therefore Wé"« () is embedded into C(£2).
Therefore the right-hand side ¢(), ;) of the state equation can be identified with an
element in L2(I; W~="4(£2)). Using the result from [13, Theorem 5.1] on maximal
parabolic regularity and exploiting the fact that —A: WS’S(Q) — W¥(£) is an
isomorphism, see [19], we obtain

uelX(LWy () and  w, € LA(I; W (82)).
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Given the above regularity the corresponding weak formulation is fulfilled by a
standard density argument.

As the next step we introduce the reduced cost functional j: Q — R on the control
space Q = L*(I) by

i) = J(q.u(g)),
where J is the cost function in (1) and u(g) is the weak solution of the state

equation (2) as defined above. The optimal control problem can then be equivalently
reformulated as

min j(q). ¢ € Qud. ®)

where the set of admissible controls is defined according to (3) by
Qu=19€0Q|q.<q(t) <gpa.einl}. ©)
By standard arguments this optimization problem possesses a unique solution g €
Q = L*(I) with the corresponding state & = u(g) € L*(I; L7 (£2)) for all p < oo,
see Proposition 2.1 for the regularity of u#. Due to the fact, that this optimal control

problem is convex, the solution g is equivalently characterized by the optimality
condition

J(@©0q—g) =0 foralldg € Qu. (10)
The (directional) derivative j'(q)(dq) for given g, dg € Q can be expressed as

J (@)(0g) = /1 (aq(r) + (2. y (1)) 3q(1) dt,

where z = z(q) is the solution of the adjoint equation

—z,(t, x) — Az(t,x) = u(t, x) — u(t, x), (t,x) € I x £2, (11a)
z(t,x) =0, (t,x) e I x 082, (11b)
«(T,x) =0, xeQ, (11¢)

and u = u(q) on the right-hand side of (11a) is the solution of the state equation (2).
The adjoint solution, which corresponds to the optimal control g is denoted by z =

2(q)-
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The optimality condition (10) is a variational inequality, which can be equiva-
lently formulated using the projection

PQad: Q - Qad’ PQad (q)(t) = min (qbs max(qa, q(t)))

The resulting condition reads:

1
q(1) = Pg, (—ai(h V(t))) : 12)

In the next proposition we provide regularity results for the solution of the adjoint
equation.

Proposition 2.3 Let g € Q be given, let u = u(q) be the corresponding state
Sulfilling (2) and let 7 = z(q) be the corresponding adjoint state fulfilling (11).
Then,

(a) z € L*(I; H*(2) N H}(£2)) N H'(I; L*(£2)) and the following estimate holds
”VZZ”LZ(I;LZ(Q)) +llzllzaz2y < CUlalzgy + il @)

(b) If 20 CC $2, then z € L*(I; W*P(£20)) N H'(I; L7 (£2y)) for all 2 < p < oo and
the following estimate holds

2 2 N
IVZzll @20y + lzllzaw @y < Co7 Ul + il @i @)))-

Proof

(a) The right-hand side of the adjoint equation fulfills u — &t € L*(I; L (2)) for all
1 < p < oo, see Proposition 2.1. Due to the convexity of the domain §2 we
directly obtain z € L*(I; H*(£2) N H}(2)) N H'(I; L*(£2)) and the estimate

2 A
IV Z||L2(1;L2(9)) + ||Zt||L2(1;L2(9)) <Clu- M||L2(1;L2(9))-

The result from Proposition 2.1 leads directly to the first estimate.
(b) From Lemma 2 for p > 2 we have

||V22||L2(1;Lv(90)) + ||Zr||L2(I;U’(.Qo)) < Cpllu— ’2”L2(1;U’(9))'
Hence, by the triangle inequality and Proposition 2.1 we obtain
o — @il 21500 (2)) < C (P||f]||L2(1) + ||'3||L2(1;L°°(9))) .

That completes the proof.
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3 Discretization and the Best Approximation Type Results

3.1 Space-Time Discretization and Notation

For discretization of the problem under the consideration we introduce a partitions
of I = [0, 7] into subintervals I,, = (t,—1, ts] of length k,, = t,, — t,,—1, where
0=ty <t <. <ty— <ty =T. We assume that

kn+1 <«ky,, m=1,...,M—1, forsome « > 0. (13)

The maximal time step is denoted by k = max,, k,,. The semidiscrete space X,? of
piecewise constant functions in time is defined by

X ={w € P(ILHN(2)) : vy, € Pollw: Hy(R2)), m=1,2,... .M},

where Z(I; V) is the space of constant functions in time with values in Banach
space V. We will employ the following notation for functions in X

m*

(14)

v,jl' = lim v(tu+e) = Vput1, v, = lim v(t,—e) = v(ty) =V, [V]nw = v,jl'—v
e—0t e—0t

Let .7 denote a quasi-uniform triangulation of §2 with a mesh size 4, i.e., 7 =
{t} is a partition of £2 into triangles t of diameter 4, such that for & = max; A,

diam(r) < h < C|r|%, VteT
hold. Let V}, be the set of all functions in Hé (£2) that are linear on each t, i.e. V}, is
the usual space of continuous piecewise linear finite elements. We will require the
modified Clément interpolant i,: L' (£2) — V}, and the L?-projection P,: L*(2) —
V), defined by

Prv, N = (v, X))o, VXEV (15)

To obtain the fully discrete approximation we consider the space-time finite element
space

X/(C)’,i = {Ukh (S X]? : Ukhllm S 3”0(1,,,; Vh), m=1,2,... ,M}. (16)

We will also need the following semidiscrete projection m;: C(I; H\(2)) — X}
defined by

vl = v(ty), m=1,2,...,M, (17

and the fully discrete projection my;,: C (i (LY(R2)) - X,?”,i defined by my;, = ipmy.
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To introduce the dG(0)cG(1) discretization we define the following bilinear form

M M
B,¢) = Y (v @)x2 + (V0. V0)ixa + Y _(Wln-1.0, Do + (0 .0 e,
m=1 m=2

(18)

where (-,-);,xe 1is the duality product between L*(L,; W=4(2)) and

L2(I; Wé’s/ (£2)). We note, that the first sum vanishes for v € X). Rearranging
the terms, we obtain an equivalent (dual) expression for B:

M M—1
B(v,p) = — Z(’h@r)lmxﬁ + (Vu,Vo)ixe — Z(U,} [oclm) e + Uy a2
m=1 m=1

19)

In the two following theorems we establish global and local best approximation
type results along the curve for the error between the solution v of the auxiliary
equation (4) and its dG(0)cG(1) approximation vy, € X,?”,i defined as

B, on) = (f, orn)ixe  forall gp € X/?,’i- (20)

Since dG(0)cG(1) method is a consistent discretization we have the following
Galerkin orthogonality relation:

B(v — v, o) = 0 forall ¢ € X](()hl

3.2 Discretization of the Curve and the Weight Function

To define fully discrete optimization problem we will also require a discretization
of the curve y. We define y; = m;y by

)/k|1m = y(tm) = Yim € QOa m = la 25 ce 7Ma (21)

i.e., Y, 1S a piecewise constant approximation of y. Next we introduce a weight
function

o(t,x) = VIx—y@P +h? (22)

and a discrete piecewise constant in time approximation

ou(t,x) = V|x — v @) + h2. (23)
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Define

Okm -= O'k|1m = ok(tm,x) = o(tm,x). (24)

One can easily check that ¢ and oy satisfy the following properties for any (¢, x) €
Ix 2,

o™ (1. ) |2 o7 (1. ) L2y < Clnkl2, 1€l (252)
|Vao(t,x)|, [Vor(t,x)| < C, (25b)

V20 (1. )| < Clog ' (1.5)] (25¢)

lou(t.x)| < |Vo(1.x)| - |y’ (0] < CCy, (25d)

r)rclgfxcr(x, 1) < Crilei?cr(x, 1), Vteld. (25¢)

3.3 Global Error Estimate Along the Curve

In this section we prove the following global approximation result.

Theorem 2 (Global Best Approximation) Assume v and vy, satisfy (4) and (20)
respectively. Then there exists a constant C independent of k and h such that for any
l<p=oo

[mwwwwanmsamm&

4
inf (110 = 1 oo oy + 07 170 = X ) -
Xex®! L>(I;L%°(£2)) L2(I;17(£2))

k.h

Proof To establish the result we use a duality argument. First, we introduce a
smoothed Delta function, which we will denote by §,,. This function on each I,

is defined as gl/k.m and supported in one cell, which we denote by 70, i.e.
(800 = Xem) = X)), VX €P'E0), m=1,2,....M.
In addition we also have (see [31, Appendix])
1, llwsey < Ch 2070 1<p<oo, s=0.1. (26)

Thus in particular ||8~),k||L1(Q) <C, ||<§yk||Lz(Q) < Ch7!, and ”gyk”LOO(Q) < Ch™2.
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We define g to be a solution to the following backward parabolic problem

—g:(t,x) — Ag(t, x) = v(t, yk(t))g),k x), (t,x)elx$2,
g(t,x) =0, (t,x) € I x 082, 27
g(T,x) =0, x € L.

There holds

M
/1 . vin(t, Vi (0))8,, () grn (¢, X)drdx = mZZI /1 ,, v (2, v (0)) ( /9 8., () an (t,x)dx) dt

M
=3 [ vt n0)oute. oy
m=1 I

- / v (1 () (e, 7))t
1
Let gy, € X, be dG(0)cG(1) solution defined by

B(@in, gun) = (vin(t, Vk(t))gywﬁokh)lxﬂy You € X,?;i (28)

Then using that dG(0)cG(1) method is consistent, we have

T
/0 [va (8, v (D) 12dt = B(vin, gia) = B(v, gun)
M 29)
= (V0. Vemixg = Y (W [gulm)e

m=1

where we have used the dual expression (19) for the bilinear form B and the fact that
the last term in (19) can be included in the sum by setting g; 41 = 0 and defining
consequently [gwnlm = —gin.m. The first sum in (19) vanishes due to g, € X,?,i For
each ¢, integrating by parts elementwise and using that gy, is linear in the spacial
variable, by the Holder’s inequality we have

1
(V0. Vaule = ) 3 (v, [dgul)ar < Cllvllzoso) 3 I0nguidliny.  (30)

where [0,gkn] denotes the jumps of the normal derivatives across the element faces.
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From Lemma 2.4 in [29] we have

1
> Mgl ey < Clinhl2 (lowAngunllizie) + 1V el i2@)) -

where Ay: V;, — V), is the discrete Laplace operator, defined by
—(Apvp, D)o = (Vor, VX))@, YX €V,

To estimate the term involving the jumps in (29), we first use the Holder’s inequality
and the inverse estimate to obtain

M Mo 1,
> . (gl < C Y kinllvmllr@kn® 7 l[gealmlli ). 31)
m=1 m=1

Now we use the fact that Eq. (28) can be rewritten on the each time level as
(Vo Vg ixe — @ [gidm)2 = Wan(t, vi(0))Sy. ua)1x 2.
or equivalently as
— ki Angiim — [kl = Kk Vihm Vi) Py (32)

where Py, is the L?-projection, see (15). From (32) by the triangle inequality, we
obtain

Igrnlmllr 2y < kmll Angrnmllir 2y + kmllPubye, lLt (@) Ukt (Vin) |-
Using that the L?-projection is stable in L'-norm (cf. [11]), we have
1Piy i@ < Clidy,lluia) < C.

Inserting the above estimate into (31) and using (25a), we obtain

M M
_2 1 1
> . [gmalwe < Ch7 > kvl @k (| Anginmll @) + [V (Vem)])
m=1 m=1
1 1

) M 2 M 2

< Ch™» (Z km”vm”%}’(.@)) (Z kmllAhgkh,mHil(m + kmlvkh,m()/k,m)|2)
m=1 m=1

1
2 T 2
< Chr|lmll g @) (/ |lnh|||okAhgkh“iz(g) + v (t, )/k(f))|2df)
0
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Combining (29) and (30) with the above estimates we have

T
1 _2
/ lukn(t, vk (1)|dt < C|Inh|2 <||U||L2(1;L°°(.Q)) +hr ||7Tkv||L2(1;Lv(9))) X
0

1
2

T
(/0 ”akAhgkh“iZ(_Q) + ”ngh“il(g) + |vkh(ta Vk(f))|2df)
(33)

To complete the proof of the theorem it is sufficient to show

[

Then from (33) and (34) it would follow that

T
lakAhgkh||iz(m+IIngh||iz(Q))drsCI1nhl /O v (e, ye(0)Pdr. (34)

4
p

T
/0 |Ukh(tv ]/k(l))|2dl E Cl ln h|2 (”v”iZ(I;LOO(Q)) + h_l ”nkaiZ(I;U’(Q))) .

Then using that the dG(0)cG(1) method is invariant on X,?j,i, by replacing v an vy,
with v — X and vy, — X for any X € Xy, we obtain Theorem 2.

The estimate (34) will follow from the series of lemmas. The first lemma treats
the term ”O—kAhgkh”iZ(I;LZ(Q))'

Lemma 3 For any € > 0 there exists C, such that

T T
| 1o tigutisiadr = €. [ (luaen@F + Vgl g,)
0 0

M
+e Y k' lokmlgulnl g,

m=1

where oy and oy, are defined in (23) and (24), respectively.

Proof Equation (28) for each time interval ,, can be rewritten as (32). Multiply-
ing (32) with ¢ = —aszhgkh and integrating over I,, X £2, we have

. ”o-k,mAhgkh||§2(Q)dt
= —([gknlm: Ot m Aginm) 2 — (Win(t, Vem)Piby,, Ol mAngin) 1, x2

= —(Ph(%z,m[gkh]m), Apgkinm) e — (2, )’k,m)Phgyks U}imAhgkh)Ime
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= (V07 ,l8mlm). Veunm) 2 + (V(Ph — D)0 u8knlm). V&knm)2
— (v(t, )/k,m)Phgyk, U/imAhgkh)Ime

=Ji++ /s
We have
J1 = 2(0kmVormlginlm, Vnm)a + (Okm[V&unlms OkmV ginm)e = Ju + Ji2.
By the Cauchy-Schwarz inequality and using (25b) we get
Jit = Cllowmlginlmll 22 IV 8knmll 12 (02)-
On the other hand we have

Ji2 = ([0 Vgrnlms OkmV ginm) 2 + ((Okm — Okm+1)V €kham+1- Ok VY ihm) 2

=Ji21 +J122.

Using the identity

1 1 1
(winlms winm) 2 = 2||th,m+l||i2(9) - 2||th,m||iz(9) - 2||[th]m||iz(9), (35)

we have

1 1 1
Jia1 = 2||Gk,m+1ngh,m+l||i2(Q) - 2||ak,ngkh,m||i2(Q) - 2”[Gngkh]m“iZ(g)‘
By the Cauchy-Schwarz inequality, we obtain

J122 = 10k — Okm+ 1)V &inm+1l122) 10k V gknam |l 12 (2)

< CCykullV gnm+1llr2@) 1okmV ginmll 122+
where in the last step we used that from (25d)
IGk,m(x) - C’—k,m+1(x)| = |a(tm7x) - C’—(l‘m+lax)| 5 CkaGtGa x)l f Ccykm7

for some 7 € [, Using the Young’s inequality for Ji;, neglecting
—;||[angkh]m||i2(Q), and using the assumption on the time steps k, < Kkpy+1
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and that o, < C, we obtain

1 2 1 2 € 2
Ji < 2 ||Gk,m+1ngh,m+1“L2(Q) - 2 ”Gk,ngkh,m“LZ(Q) + Ky ”ak,m[gkh]m“LZ(Q)

+ Cakm”ngh,m”iZ(_Q) + Cknt1 |V gkhm+1 ||i2(9)~
(36)

To estimate J>, first by the Cauchy-Schwarz inequality and the approximation theory
we have

J2 = Z(V(Ph —1)(0;3_,,1[gkh]m), ngh.m)r = ChZ ”Vz(o-kz_m[gkh]m)”Lz(r)||ngh.m||L2(r)'

Using that gy, is piecewise linear we have

V(02 [ginln) = V2(0)gmaln + V(0?) - Viguln on .

There holds 9;;(0%) = 2(3;0)(d;0) + 200;0 and V(6?) = 20Vo. Thus by the
properties of o (25b) and (25¢), we have

IV2(c?)| <C and |V(6?)| < Co.

Same estimates hold for oy. Using these estimates, the fact that 4 < o} and the
inverse inequality (in view of (25e) the inverse inequality is valid with o inside the
norm), we obtain

Jr < CZ (hlllgknlmll 20y + Bllokm VIgknlmll2)) |V 8knamllr2 (o)

T

= CZ (||Uk,m[gkh]m||L2(r) + Cinv||0k,m[gkh]m||L2(r)) ||ngh,m||L2(z)

T

(37)
< CZ | okml&rn)ml 22y |V gkt | 12 (2)
T
e
= Celkm 8kh.m 12(2 C’—k,m 8khlm 12(2)"
< CinlI Vil gy + |, lotnlguslnls a)
m
To estimate J3 we first notice that
||U/<Ph5~yk 22 < C. (38)

The proof is identical to the proof of (3.21) in [21].
By the Cauchy-Schwarz inequality, (38), and the Young’s inequality, we obtain

1
h<cC / w8, yo) Pt + / 10k m Angrnm| 7o - (39)
I In
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Using the estimates (36), (37), and (39) we have
/I ||Uk,mAhgkh|IiZ(Q)dt = CE/I (|Ukh(t, Vk(t))lz + ”ngh”iZ(Q)) dr

&
+CC, [ T+ Ioialiuleli,

n

1 2 1 2
+ 2||0k,m+1vgkh,m+1||Lz(9) - 2||0k,mvgkh,m||Lz(Q)-

Summing over m and using that gz, ;7+1 = 0 we obtain the lemma.
The second lemma treats the term involving jumps.

Lemma 4 There exists a constant C such that
M T
>k Nowmlgilnl g, < € /0 (Nox AnguallZa o) + (e, ye) ) i
m=1

Proof We test (32) with ¢|;, = 0, [gxn]m and obtain

”O—k,m[gkh]m||§2(g) = — (Angun: Ot 8kl 1,2
(40)

— (n(t, vi(0)) Pu,,. Ot mlgnlm)xe-

The first term on the right hand side of (40) using the Young’s inequality can be
estimated as

(Gngon Bl line = Ch [ ot Susilaydi-+ | loualslols oy
The last term on the right hand side of (40) can easily be estimated using (38) as
(Vi (. Vi) Phby, . 07 [8inlm)t,ix2 < Chin /1 v (2, vi(0)[de + i 0w m[gxalmlIZ2 -
Combining the above two estimates we obtain

0tnletlo 2 gy < Chin /, (100 A1g18 gy + i 1))

Summing over m we obtain the lemma.

Lemma 5 There exists a constant C such that

T
V0l = Clntl [ oo o) P
0
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Proof Adding the primal (18) and the dual (19) representation of the bilinear form
B(-,-) one immediately arrives at

IVVllZ2 ) < B(v,v)  forall ve X,

see e.g., [25]. Applying this inequality together with the discrete Sobolev inequality,
see [4, Lemma 4.9.2], results in

||ngh||iz(lxg) < B(gin, &kn) = (Win(t, vi(D))8y,, gxn)ixe

T
_ /0 vin(t, ve(t)) g (¢, yie () dt

T 3 T 3
5( / |vkh(r,yk(r>)|2dr) ( / |gkh(r,yk(r>)|2dr)
0 0

1
T 2
< (/o [vin (2, yi()) [* df) lgxnll 22 1:100 (2))

1
T 2
1
< ¢ Inhf} ( [ 1ot yk(r>)|2dr) IV8ull2xe).
0

This gives the desired estimate.
We proceed with the proof of Theorem 2. From Lemmas 3 to 5. It follows that

T T
[ (loxbugulis oy + 19l di < Coltu] [ foate o) P
T
+ CS/ ok Anganl 72 g
0
Taking ¢ sufficiently small we have (34). From (33) we can conclude that

T
_4
/0 Ivkh(L Vk(t))|2df = CI 1nh|2 (”v”iz(l;Loo(Q)) +h ”ﬂkv”iZ(I,U)(_Q))) s

for some constant C independent of 4 and k. Using that dG(0)cG(1) method is
invariant on X,?,’;, by replacing v and vy, with v — X and vy, — X for any X € X,?,’;,
we obtain

r _4
/0 | (=) (2, v ()| ?dt < C|Inh|* (||u — X 72guzooy T H 7 v — X||22(1:U,(m)) :
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By the triangle inequality and the above estimate we deduce

T T T
/ 1 — o) 0 7 ()P < / [ — ). yie) Pl + / (0 — )ty (0) P
0 0 0
2 2 —4 2
< C|Inh| (||U = X 2oy T h 7 lmv — X”Lz([;U’(.Q))) .

Taking the infimum over X, we obtain Theorem 2.

3.4 Interior Error Estimate

To obtain optimal error estimates we will also require the following interior result.

Theorem 3 (Interior Approximation) Let By, := By(y(t,)) denote a ball of
radius d centered at y (t,,). Assume v and vy, satisfy (4) and (20) respectively and
let d > 4h. Then there exists a constant C independent of h, k and d such that for
anyl <p < o0

T
/0 | = v (. 72 0) e

2 2 —4 2
=clint mf { Z (”” Moo 7 T = X”LZ(I,n;U’(Bd,m)))

m=1
+ d_2 (”U - X”iZ(];LZ(Q» + ||7TkU - X”iZ([;LZ(Q» + ]’l2||V(U - X)”iZ([;LZ(_Q))) } .
(41)

Proof To obtain the interior estimate we introduce a smooth cut-off function @ in
space and piecewise constant in time, such that w,, := |;,,,

wu(x) =1, x€Byom (42a)
wn(x) =0, x€2\Byn (42b)
Vo, <Cd™, |V, <Cd?,. (42¢)

As in the proof of Theorem 2 we obtain by (29) that

T
/0 [vn (2, yi(t))[*dt = B(vin, gn) = B(v, gi) = B(wv, gi) + B((1 — 0)v, gu),
(43)
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where gy, is the solution of (28). Note that wv is discontinuous in time. The first term
can be estimated using the global result from Theorem 2. To this end we introduce
the solution ¥y, € X,?”,i defined by

BT, — ov, o) =0 forall gy, € Xl(c):hl'

There holds
T
B(wv, gin) = B(Vn, 8xn) = / Vi (t, v () O (2, yi (1)) dt
0

1 [T 1 T~
< / ot v @) dt + / B0, 72 (0 .
2 0 2 0

Applying Theorem 2 for the second term, we have

T o _4
/0 |vkh(ta Vk(t))|2df = C| 1nh|2 (”wv”iz(I;LOO(Q)) +ho ”]Tk(wv)”iZ(LUz(Q)))

M
_4
< ClinhP? Z (”U”iz(lmiOO(Bd.m)) th ||”k”||§2(1m;m(3d.m))) :

m=1

From (43), canceling ; f0T|vkh (¢, yx(1))|? dt and using the above estimate, we obtain

T
/ ot 72 (0) P < B(1 = 0)v. g10)
0

” (44)

2 2 -4 2
+Clnhf Y (”””Lz(lm;Lw(Bd.m» tho ||”kv||L2(1m;lﬁ<Bd.m))) ‘

m=1

It remains to estimate the term B((1 — w)v, giy). Using the dual expression (19) of
the bilinear form B we obtain

M

B((1 — v, gu) = ) ((V((l — 0m)v), V&), xe — (1 — @) vm, [gkh]m)(})
m=1
=Ji1+ /5
(45)
To estimate J; we define ¥ = (1 — w)v and proceed using the Ritz projection

Ry: Hé (£2) — V), defined by

(VRw. V) = (Vu,VX)a, VIEV,. (46)
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There holds

VY, Ve, xe = (VRyW, Ve, xe = —(RaW, Angin)i,x0
= —(RuVr, Angkn) 1,,xBajs — RRV, Angkh) 1, x2\By)s

A

< MR Ne21y5000 B ) | An8ii 221,50 (B4 )

-1
+ ||C7k,mRh‘/’||L2(1mx:2\3d/4_m) ”Gk,mAhgkh”Lz(I,nxQ)‘
Using the estimate
I Anginll 21,21 Baja) = ||01¢_,,L||L2(:2)||C7k.,mAhgkh||L2(1mx3d/4m)
1
< ClInh|2||oxmAnginll 21, x2)»

where in the last step we used (25a), we obtain

1 —
(VY Vgudxa < Cln AL (1R 20,505 ) + 100 RY 120,280, )

X lokmAnginll 21, x52)-
47)

By the interior pointwise error estimates from Theorem 5.1 in [30], we have for each
tel,,

1R @)l 50,0 < 0 ANIY O 5,0 + C IR Oll1205,5,
=Cd™! ||Rhw(t)”L2(Bd/2.m)’

since the support of ¥, = (1 —w,,)v is contained in £2 \ By/2 . On £2\ By/4 , there
holds oy ,, > d/4 and therefore for each 7 € I,

loe R (1) l22(2\Bajsm) = Cd ™ ||Ryy (1) l22(2\By/4m)-

Inserting the last two estimates into (47) we get

_ 1
(VY. Vem)ixe < Cd~ ' Inh|2 |[Ra |24, x2) |0k Anginll 21, x 2)-

Using a standard elliptic estimate and recalling ¥ = (1 — w)v we have

IR (Dl 22) < I D22y + 1V (@) — R (Dl 1202y
< WOl + chlIVY Ol
< vz + chll(1 — @) Vo) — Vo) v(0) |2
< cllv®ll2ie) + V() ll2(0)-
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where in the last step we used |V (f)| < cd™' < ch™!. This results in

. 1
(VY. Vgu)xe < Cd~'|Inh|2 (10l 2¢,x2) + 2V VI 20, x2)) 10k mAnginll 21, x 2) -

Therefore, we get

_ 1
Ji < cd ' Inhl2 (l2eza) + 2V lzaze)) lokdgmlzerzgy.  (48)
For J, we obtain

M
1 _1
T =Y oy (1 = wm)vnll 22y kikn 10km[gialmll 22)

m=1

1

M 2 /M )
= C (Z d_zkm”(l - wm)vm“iZ(Q)) (Z kZI ”ak,m[gkh]m“iZ(Q)) (49)

m=1 m=1

1

M 2
—1 _ 2
<dd ||7fkv||L2(1;L2(:2)) (Z kml ||Uk,m[gkh]m||L2(Q)) )

m=1

where we used that supp(1 —wy)vi, C 2\ Bgj2,m and oy, > d/2 on this set as well
as the definition of s (17). Inserting the estimate (48) for J; and the estimate (49)
for J, into (45) we obtain

M 2
— 1 _
B((1 —w)v,gi) < Cd l| In |2 (Z ”Uk.mAhgkh”iz(]ng) + &, ! ||Gk.m[gkh]m||1%2(g)>

m=1

X (||U||L2(1:L2(.Q)) + hl|Voll g2y + ||7Tkv||L2(1:L2(9)))~

Using the estimate (34) and Lemma 4

1
T 2
B((1— 0)v. gs) < Ca'Ini ( [ o yk(r))Pdr)
0
X (||U||L2(1;L2(9)) + h||VU||L2(1;L2(:2)) + ||7T/<U||L2(1;L2(:2))) .
Inserting this inequality into (44) we obtain

T M
_4
/0 |vra(t, yi () [Pdr < Clnh|? (Z 101220, 100 gy + ”Nkvlliz(lmiu’(Bd.m)))

m=1

+Cd™?|Inh? (Ilvlliz(,;Lz(m) + 121Vl 22y + ||7Tkvlliz(1;L2(Q))) :
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Using that the dG(0)cG(1) method is invariant on X,?”,i, by replacing v and vy, with
v— X and vy, — X forany X € X,?”,i, we obtain the estimate in Theorem 3.

4 Discretization of the Optimal Control Problem

In this section we describe the discretization of the optimal control problem (1)—
(2) and prove our main result, Theorem 1. We start with discretization of the state
equation. For a given control ¢ € Q we define the corresponding discrete state
uky = un(q) € Xy by

T
B(ugn, orn) = / qOu(t. ye(r) dt forall g, € X'y (50)
0

Using the weak formulation for u = u(g) from Proposition 2.2 we obtain the
perturbed Galerkin orthogonality,

T
B(u — g, i) = / a0 (@ (t. Y (1)) — @un(t, vi(0)) dt forall gu, € X,
0
(5D

Note, that the jump terms involving u vanish due to the fact that
ue H(I,W(R)) = CI: W (2))
and @, € WHe(£2).

Similarly to the continuous problem, we define the discrete reduced cost
functional jy,: O — R by

Jin(q) = J(q, wn(q)),

where J is the cost function in (1). The discretized optimal control problem is then
given as

min ju(q), q € Qud, (52)

where Q,q is the set of admissible controls (9). We note, that the control variable
q is not explicitly discretized, cf. [18]. With standard arguments one proves the
existence of a unique solution gz, € Qaq of (52). Due to convexity of the problem,
the following condition is necessary and sufficient for the optimality,

Jin @) (g — Gin) = 0 forall dg € Quq. (53)
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As on the continuous level, the directional derivative j,,,(¢)(dg) for given ¢, dg € O
can be expressed as

@00 = [ (@0 + 210 b4 d.
I
where 7, = 7, (q) is the solution of the discrete adjoint equation

B(@wns zin) = (win(q) — i, @rn)ixe  forall ¢y, € X;?;i (54)

The discrete adjoint state, which corresponds to the discrete optimal control g,
is denoted by zxy = z(gwn). The variational inequality (53) is equivalent to the
following pointwise projection formula, cf. (12),

qin(t) = Pg,, (_;Zkh(tv Vk(l))) ,

or
_ 1_
qkhm = PQad _azkh,m()/k,m) s

on each I,,. Due to the fact that 7, € X,?"hl , we have 7y (¢, yx(¢)) is piecewise constant
and therefore by the projection formula also gy, is piecewise constant. As a result
no explicit discretization of the control variable is required.

To prove Theorem 1 we first need estimates for the error in the state and in the
adjoint variables for a given (fixed) control g. Due to the structure of the optimality
conditions, we will have to estimate the error ||z(-, ¥ (*)) — zin (-, & (-)) |1, where z =
72(q) and zi, = zin(q). Note, that 7, is not the Galerkin projection of z due to the
fact that the right-hand side of the adjoint equation (11) involves u = u(q) and the
right-hand side of the discrete adjoint equation (54) involves uy, = uxy(g). To obtain
an estimate of optimal order, we will first estimate the error u — uy;, with respect to
the L2(I; L' (£2)) norm. Note, that an L? estimate would not lead to an optimal result.

Theorem 4 Let g € Q be given and let u = u(q) be the solution of the state
equation (2) and wy, = u(q) € X,?”,i be the solution of the discrete state
equation (50). Then there holds the following estimate

et — wnll 20 @2y < (CIInAP (K + 1) + Cy | Inhlk) gl

Proof We denote by e = u — uy, the error and consider the following auxiliary dual
problem

—w;(t,x) — Aw(t,x) = b(t,x), (t,x) € X $2,
w(t,x) =0, (t,x) e I x 082,
w(T,x) =0, x € 2,
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where

b(t, x) = sgn(e(t, x))lle(t, ) |1 @) € L2 L2($2))
and the corresponding discrete solution wy;, € X,?:; defined by

B(gin,w—ww) =0, Vo, € X,?jﬁ.

Using (51) for e = u — uyy, and the Galerkin orthogonality for w — wy;, we obtain,

T
[ 16 gt = Cesen@lett )l ayice
- (ev b)IX.Q
= B(e,w)
= B(es w— th) + B(es th)
= B(uv w— th) + B(es th)

T

T
- /0 (60w — wi) (1. (D) + /0 20wt Y (1)) — went, ye(0))dt

T
_ /0 A(O W (2 (1)) — wia (e, yi(0))dt

. :
< lall ( /0 (. 7(0)) = wane, yk(r>)|2dr)

1
2

T
=< llqllz (/0 (Iw(e, (@) = w(t, ye@) > + 1w = win) (2, ye()) %) dt)
(55)

Using the local estimate from Theorem 3 with B;,, C §2, foranym = 1,..., M,
where 29 CC £2; CC §2, we obtain

T
/ [0 — wen) (1, (o)) el
0
T
<C|Inh|? —x|? W —X|? d
<C|Inh| | flw lzoo (@) + | mew (2 ) dt

T
+ClInhf /0 (I = ZIs 0y + B IV O = D22 ) + w117

=L+ +J3+ s+ s
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We take X = i,mw, where i, is the modified Clément interpolant and 7 is the
projection defined in (17). Thus, by the triangle inequality, approximation theory,
inverse inequality and the stability of the Clément interpolant in L” norm, we have

T

0

T
<clmhP [ (h 0 |w]? W0 inw = 1) 2oy ) d
<l [ (5 ol + 1l = 100 By )

_4 T
< Ch™r|InhP(h* + K?) /0 (||w||§vz,p(91) + ||wt||§p<gl)) dr.
J> can be estimated similarly since for X = ijm;w by the triangle inequality we have

lmw — ivmwlle2) < lmew —wllp@) + 1w — il @) + lin(w — mow) |2 @)

As aresult
T
Ty 4 0o < Chr | InhP(h* + K2 2 2Vt
1+/2 = |Inh|"(h" + k%) | Wiz, + Wil 2, ) dt.

Using Lemma 2, we obtain

T
/0 (”WH%vz-ﬂ(ol) + ”Wf”%ﬂ(ol)) di = CP 112 ey = PNl oy
(56)

and hence

_4
Ji+J2 < Chr [InhP(h* + K)p?llell .y o7

(£2))

For the terms J3 and J4 we obtain using an [*-estimate from [25]

J3 4+ Jy < C|Inh]*(h* + k) (||V2W||EZ(I;L2(9)) + ”W’”iz“iz(‘?”)
< C|Inh*(h* + k2)||b||iz(1;L2(:2))
< ClnhP(* + ) lel 2 @)

J5 can be estimated similarly since by the triangle inequality

lmew — inmowlli2gxey < llmw —wlizaxg) + W — inmowl 2 gxe)-
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On the other hand using that w € L>(I; W??(£2,)) for p > 2 and that W??(£2;)) <
C'(820) for p > 2, and using Assumption 1, we have

T T
A w@wm—w@anmsA|w@ﬂ@mwwn—n®ﬁﬁ

T
= Clly = il [ 1000 o
0

212 2
S Ccyk ”W”LZ(I;WZ-P(.QO))

< CC)2,k2P2||b||iZ(1;U(9))

272 2 2
S Ccyk P ”e”LZ(I;Ll (Q))s

where in the last two steps we used (56). Combining the estimate for Ji, J», J3, J4,
J5 and the above estimate and inserting them into (55) we obtain:

_2
lellzgzr iy = (ClnAIGPR™ + D)8 + 8 + Cypk) llglzg).
Setting p = | In k| completes the proof.

In the following theorem we provide an estimate of the error in the adjoint state
for fixed control g.

Theorem 5 Let g € Q be given and let z = z(q) be the solution of the adjoint
equation (11) and zy, = z(q) € X,?!’hl be the solution of the discrete adjoint
equation (54). Then there holds the following estimate

T >
(/0 lz(z, y (1)) — zun(t, Vk(t))|2df)
< C(|InhPk+ 1) + Cy|Inhlk) (Iqll2g) + il 2aroey) -

Proof First by the triangle inequality
T T
/0 |2(t, y (1)) — zn(t, 7 (D) di < /0 |2(1, y (1)) — 2(t, ye (1)) |* dt

T
+/Krﬁwwanm.
0
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Using Proposition 2.3 and the assumptions on y, we have similarly to Theorem 4
! 2 2 ! 2
/0 |2z, y (1) — 2t ye@)|" dt < Clly = vellogg) /0 22, ) e gy dt

T
2 2
= CCR [ 2t o
2 2 ~112
< CCpR* (191 + Nl ) -

Setting p = | In h|, we obtain

1
T 2
(1000 e popPar)” < el (laliagy + s
(53)
Next, we introduce an intermediate adjoint state 7y, € X,?:; defined by

B((pkhyﬂzkh) = (M — ljt, (th) for all Orh € X/(C):,i,

where u = u(q) and therefore 7y, is the Galerkin projection of z. By the local best
approximation result of Theorem 3 for any X € X,?"hl we have

T - T 4
[ 1T i< cmn [ (1= 2, + 1 e 1, ) d
0 0

T
+ Ol [ (o= Al + HIVE= Dl gy + = L)
=h+Lh+J3+Js+Js.
The terms Jy, J, J3, J4 and J5 can be estimated the same way as in the proof of

Theorem 4 using the regularity result for the adjoint state z from Proposition 2.3.
This results in

T
~ _2 A
/ |2 @ di = Cln AP ph ™7 + 0202440 (Nl + 122100 ) -
0

Setting p = | In k| and taking square root, we obtain

1
T >
(/0 |(z —Zm) (1, J/k(l))|2dl) < ClnhPP(h* + k) (Igllzqy + il 2o @y) -
(59)
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It remains to estimate the corresponding error between Zg;, and zx;. We denote ey, =
Zin — zen € X1 Then we have

B(@wn, exn) = (U — ugn, pin)ix  forall ¢ € X;?,’;i-
As in the proof of Lemma 5 we use the fact that

IVl o < B.v)

(IxR2)

holds for all v € X,?”,i. Applying this inequality together with the discrete Sobolev
inequality, see [4], results in

2 2
||ekh||L2(1;LOO(Q)) = C| 1nh| ”Vekh“LZ(IX_Q)

IA

C|In h|B(exn, exn)

= C|Inh|(u — ugp, exn)ixe

IA

ClInhl|lu — winll 210 2y lexn | 2 ;00 2)) -

Therefore
llexnll2@zro0 @)y < ClInhl|lu — winll 200 (2))-
Using Theorem 4 we obtain
lewnll 2 zroo 2y < C (IInhP(k + 1) + Cy|Inhlk) l|qll 2

Combining this estimate with (59) we complete the proof.
Using the result of Theorem 5 we proceed with the proof of Theorem 1.

Proof Due to the quadratic structure of discrete reduced functional ji;, the second
derivative ji, (q)(p. p) is independent of ¢ and there holds

Ju@®.p) = allplf, forall peQ. (60)

Using optimality conditions (10) for g and (53) for gy, and the fact that g, giy € Qug
we obtain

@) (@ — @) <0 <~ (@)(G — qun)-
Using the coercivity (60) we get
allg — ékh“iz(l) < 7 @@ — Gn, @ — G
= J @@ — @) — 71 (Gr) (G — Grn)
< Jn@(@— @) — (@@ — Gin)
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= Uty () — 2 (@), (), § — qr)r

T >
< (/0 12@) (¢, y (1) — (@) (¢, v ()] df) g — qnll 2y

Applying Theorem 5 completes the proof.
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A Note on the Feedback Stabilization
of a Cahn—Hilliard Type System with a Singular
Logarithmic Potential

Gabriela Marinoschi

Abstract This article deals with the internal feedback stabilization of a phase field
system of Cahn—Hilliard type involving a logarithmic potential F, and extends the
recent results provided in Barbu et al. (J Differ Equ 262:2286-2334, 2017) for the
double-well potential. The stabilization is searched around a stationary solution,
by a feedback controller with support in a subset w of the domain. The controller
stabilizing the linearized system is constructed as a finite combination of the
unstable modes of the operator acting in the linear system and it is further provided
in a feedback form by solving a certain minimization problem. Finally, it is proved
that this feedback form stabilizes the nonlinear system too, if the stationary solution
has not large variations. All these results are provided in the three-dimensional case
for a regularization of the singular potential F, and allow the same conclusion for
the singular logarithmic potential in the one-dimensional case.

Keywords Cahn—Hilliard system ¢ Closed loop system * Feedback control e
Logarithmic potential ¢ Stabilization
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1 Problem Description

We address the local stabilization of the Cahn—Hilliard system (see [8]) consisting
in the equations for the phase field ¢ and chemical potential p, (1.2)-(1.3)
coupled according to the Caginalp approach (see [6, 7]) with the energy balance
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equation (1.1) for the temperature 6. The system reads

(0 + lop), — AB = 0, in (0, 00) x £2, (1.1)
¢, —Ap =0, in (0, 00) x £2, (1.2)
p=—vAp + F'(9) = yob, in (0, 00) x £, (1.3)

to which we add initial data and homogeneous Neumann boundary conditions

0(0) = 6o, ¢(0) = o, in £2, (1.4)
99 _ 90 _ 0 _ . on (0.00) x 02, (1.5)
Jv Jv Jv

Here, v is the outward normal vector to the boundary, ly, yp are positive constants
with some physical meaning, and F” is the derivative of the logarithmic potential

F)=0+nIn(d+7r) +0A—=rIn(l —r)—ar?, forre (—1,1), (1.6)

(seee.g., [9, 10]), where a is positive and large enough to prevent the convexity. The
space domain 2 is an open bounded connected subset of RY, d = 1,2, 3, enough
regular, and the time ¢ € (0, oo). For some auxiliary results we keep the dimension
d up to 3.

We shall investigate the stabilization of this system, around a stationary solution
to (1.1)—(1.5), by two controllers (u, v) with the support in an open subset w of 2,
and acting on the right-hand sides of Eqgs. (1.1)—(1.2). After the introduction of the
expression of p given by (1.3) into (1.2) the system under discussion is

o — A (—vAp + F'(¢) — yo8) = 13v, in (0,00) x £2, (L.7)
(O + lop): — AB = 1*u, in (0, 00) X £2, (1.8)
®(0) = ¢o, 6(0) = 6, in £2, (1.9)

dp _ d(Ap) 90

0 5 5, = 0- on (0,00) x 622, (1.10)

where the second boundary condition in (1.10) follows by (1.3) and (1.5).

Here, the function 1}, belongs to C5°(£2), has the support supp(1}) in @ and it is
positive on some subset wy of positive surface measure included in .

First of all we mention that we assume that the solutions to the stationary
uncontrolled system (1.1)—(1.5) exist. In particular, we observe that it may have
constant solutions (¢eo, fo). Anyway, we shall assume that ¢, is a regular
function, less than 1, but we do not deal here with the proof of the existence of
such solutions.
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The system will be stabilized exponentially around the stationary solution given
by (¢oo, Bc0), using the feedback control (v, ) computed as a function of ¢ and 6
and this turns out to prove that lim,— o (¢ (), 0(¢)) = (¢o0, fc0), With an exponential
rate of convergence, whether the initial datum (¢y, 8y) is in a certain neighborhood
of (¢oo, O0)-

The result we are going to prove extends the results provided by Barbu, Colli,
Gilardi and Marinoschi in a previous paper (see [5]) for the regular potential F(¢) =
(‘/’24_1) . The technique we shall approach is that introduced in [11] and used then in
[1-4] for Navier-Stokes equations and nonlinear parabolic systems and relies on
the construction of the feedback controller as a linear combination of the unstable
modes of the corresponding linearized system.

We shall follow [5] by making the function transformation ¢ = «o(6 + lye),

with g := /", chosen such that * = agly =: y > 0. This is done to enhance
Iy 2%}

the possibility to obtain later a self-adjoint operator acting in the linear part of the
system. Denoting [ := yyly, we get the equivalent system in the variables ¢ and o

@+ vA*p — AF () — lAp + yAc = 1¥v, in (0, 00) x 2, (1.11)
0, — Ao + yAp = 1 aou, in (0,00) X £2, (1.12)

®(0) = @0, 0(0) = 09 := (6 + lowo), in £2, (1.13)

g‘f - aaAV‘p - gj =0, in (0, 00) x 2. (1.14)

For simplicity we shall denote still by u the product oou. Next, considering the
stationary system in terms of ¢, and oo

VAZ@OO — AF (¢o0) — 1A@oo + YAGs = 0, in £2,

—AOoo + YAPoo = 0, in £2, (1.15)
= = = Q
v v v 0, on 342,

we compute the difference between system (1.11)—(1.14) and system (1.15) and
denoting y = ¢ — ¢o0, 2 = 0 — 000, Y0 = $0 — Poo> 20 = 00 — Oco, We get the new
nonlinear system

Vit v APy = A(F'(y+¢o0) —F' (900)) —1Ay+yAz = 1, in (0,00)x 2,  (1.16)

72— Az + yAy = 1 u, in (0,00) x £2, (1.17)
y(0) = yo, z2(0) = 2o, in £2, (1.18)

dy Ay 9

Y99 % 0, on (0, 00) x 992 (1.19)

adv adv adv
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As usually in the stabilization studies we shall discuss the zero stabilization
of (1.16)—(1.19) around (Yo, Zoo) = (0, 0). Of course, by applying the backward
transformations we can obtain without any difficulty the stabilization result for the
initial system in (@, ).

The proof involves many intermediate results related to the well-posedness
and properties of the solution to the linear system, its stabilization by a finite
dimensional control, the computation of the feedback control and the stabilization
of the nonlinear system by the feedback control. At this point, recalling that F' is a
singular function, for which we cannot directly apply the results provided in [5], we
have to modify system (1.16)—(1.19) and to work first with a regular potential which
will be obtained by applying a cut-off function to F.

Thus, for the subsequent part of the paper, let & be positive and fixed, g9 € (0, 1).
We define «,, € Cg°(R) such that

_ 1 for [r| <1—¢g
ol =00 for | = 1—

and 0 < kg, (r) < 1forre (—=1+7%,—1+&]U[l—gp, 1—2), and the regularized
potential

F(r), forr € [1 — &g, 1 + €]
Fey(r) = § F(r)key(r), forre (=1+ %, —1+g]U[l—g,1—79)
0, for |r] > 17,

which is of class Cj°(IR). The singular function F in system (1.16)—(1.19) will be
replaced by the regular function F,(r) and all results previously mentioned will be
shown first for this regularized system.

The assumptions we shall use for the problem with the logarithmic potential are:

Yoo € C(2). |goo| < 1— 0. (1.20)
We write the Taylor expansion of F} (y + ¢co) around ¢eo,

Fry (v + @o0) = Fy (Po0) + Fog (900)y + Frey (9),

where F, ., (v) is the nonlinear rest of second order and mention that, since |¢oo| <
1 — &y, all the derivatives of Fy,, computed at ¢, coincide with the derivatives of F
at o and so we can omit for them the subscript €y. Therefore, (1.16) becomes

Vi + vA%Y — A(F" (¢o0)y) — LAy + yAz = AF, ., (y) + 1}v. (1.21)

Proceeding as in [5], we define

1
= [ Pt (122
2 J$2
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(the integral exists since F”(¢oo) is bounded), where my; is the measure of §2, and
we have F” (¢o0(x)) = F/, + g(x), with

1
€= [ (Pl ~ F gl (123)

Replacing (1.22) in (1.21) we get the following equivalent form of the nonlinear
system (1.16)—(1.19):

Vi + A%y — F1Ay + yAz = A(Fre(v) + g(x)y) + 17v, in (0,00) x £2, (1.24)

72— Az + yAy = 1} u, in (0, 00) x £2, (1.25)
¥(0) = yo. z(0) = 2o, in £2, (1.26)

dy Ay 9

Y %% % 0, in (0, 00) x 992, (1.27)

dv dv dv

where F; = F{ + [ depends on/, 2 and Cr» = ||F"|| oo (_14¢0.1—¢,) - We recall that
&o is a fixed small value. The transformations of 6 into o and (1.22) allowed to get
a linear system with constant coefficients and with a symmetric operator.

The outline of the paper is: in Sect.2, the well-posedness, the stabilization of
the linear system and the construction of the feedback control will be provided
by resuming the results given in [5], because the linear system is the same. In
Sect. 3, the stabilization of the nonlinear system (1.24)—(1.27) corresponding to
the regularized function F,, will be studied in the three-dimensional case. This
will lead, on the basis of a compactness result working in one-dimension, to the
stabilization of the system with the singular function . We have also to remark that
the stabilization theorem we shall obtain for the system (1.16)—(1.19) corresponding
to Fg, can be seen as a stand-alone result which can be applied to other models
than Cahn—Hilliard, for instance when treating systems modeling reaction-diffusion
processes with nonlinear sources.

2 Stabilization of the Linear System

We observe that the linear system
yi +vA%y — FiAy + yAz = 150, in (0, 00) x £2, 2.1

7z — Az + yAy = 1} u, in (0, 00) x £2, 2.2)
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y(0) = yo, 2(0) = 2o, in £2, (2.3)
W0 i (0,00) x 02 2.4)
av av av

is identical with that obtained in [5], so that all results concerning its stabilization
by a feedback controller can be preserved. We shall resume them in this section,
without proofs (they are found in [5], Sect.2). Some slight modifications which
may occur will be specified.

Functional Framework Letusdenote H = L*(£2), V = H'(£2), with the standard
scalar products and set V' = (H'(£2))'. Let A : D(A) C H — H be the linear
operator

A=—-A+1, DA) ={weH(Q); gw =0onadfR} . (2.5)
vV

It is m-accretive on H and so we can define its fractional powers A%, for @ > 0,
which are linear continuous positive and self-adjoint operators on H, with the
domains D(A%) = {w € H;|A%W||; < oo} and the norms [|[wl|puey = [A*W]y .
Moreover, D(A%) C H?**(£2), with equality if and only if & > 1/4.

In the further calculations or formula, we shall denote by C, C;, ¢;, i = 1,2, ...
several positive constants possibly depending on the system structure (v,[,y),
domain, space dimension, and possibly on the norms of some derivatives of F at
¢oo- In the last case this dependence will be specified. The symbol (-, -) is a pair in
a product space and (-, -)x is the scalar product in a Hilbert space X.

The norms in L>°(£2) and W>*°(£2) are indicated by |-||o, and |||, o » respec-
tively. '

We introduce the self-adjoint operator «7 : D(«/) C Hx H — H x H,

A2 —FA yA
o =" ! 2.
[ ” —A] (2.6)

having the domain

D(o7) = {w = (v,2) € H¥(Q) x H\(Q): o/w € H x H,

dy 94y 9z
v v _Oona.Q}.

Since the domain £2 is regular enough it follows that D(«/) C H*(2) x H*(£2).
We also introduce 7 = H x H, ¥ = D(A) x D(A'/?), ¥’ = (D(A) x D(A'/?)Y,

with the standard scalar products and note that ¥ C 57 C ¥’ algebraically and
topologically, with compact injections.



Feedback Stabilization of a Cahn—Hilliard Type System 363

Then, we can write (2.1)—(2.4) as
jt(y(t), z2(t)) + A (y(1), 2(1)) = 15U (1), ae. t € (0,00), 2.7

(¥(0), 2(0)) = (o, 20), (2.8)

where U(t) = (v(1), u(t)).

Proposition 2.1 The operatore? is quasi m-accretive on ¢ and its resolvent is
compact. Let (yo,z0) € S and (v,u) € L*(0,T; 7). Then, problem (2.7)—(2.8)
has, for all T > 0, a unique solution

(v.z) € C([0,T); ) NL*(0, T; %) N W20, T; 7"y N C((0, T]; ¥).

We denote by A; and {(¢;, ¥:)}i>1 the eigenvalues and eigenvectors of <7,
respectively. Since .27 is self-adjoint and its resolvent (Al + /)~ is compact, the
eigenvalues are real and there is a finite number of nonpositive eigenvalues A; < 0,
each of them possibly having the order of multiplicity /;, i = 1,...,p. We order
the sequence A| < A, < ... < Ay < 0, where each eigenvalue is counted with its
corresponding order of multiplicity and N = [; + I, + ... + [,. The eigenvectors
corresponding to distinct eigenvalues are orthogonal and as a matter of fact the
system {(¢;, ¥;)}; can be assumed to be orthonormal.

N
The controller is searched in the form 1XU(r) = Y w;(t)1} (¢;, ¥;) and it is
j=1

replaced in (2.7), leading to the open loop linear system

d N
[ 00:20) + (50, 2(0) = > w15 (@, ). ae.t € (0,00), 2.9)

J=1

to which we attach an arbitrary initial condition in JZ,

((0).2(0) = (°.2). (2.10)
Proposition 2.2 There exist w; € L>(R*),j=1,...,N, such that the controller
N
15U =) w1l (@), (), 120, x € 2, @.11)

j=1
stabilizes exponentially system (2.9)—(2.10), that is, its solution (y, z) satisfies

YOl + lzO)l < Ce™ (|5°],, + | °],,) - forall = 0. (2.12)
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Moreover, we have

1/2

N 00
S [Tl ) =c@tl,+ 121, @13
j=1

In both formulas C and k depend on the problem parameters v, y, I, §2 and Cpr =

1
I1F7 1l oo (=1 4-20,1—20) -
In order to compute the expression of the feedback controller we introduce the

quadratic minimization problem
2(y°.2) (2.14)

=MD (sl + ol + wolk) o

WEL2(0,00;RN)

subject to (2.9)—(2.10). Here W is the function (wy,...,wy) € L*(0,00;R"Y)
occurring in (2.9). We note that D(®) = {(y°,z°) € H x H; ®(3°,7°) < oo}.

Proposition 2.3 For each pair (°,2°) € D(A'/?) x D(A'/*), problem (2.14) has a
unique optimal solution
Wiyl .y 2% € PRY:RY) x P(RT: D(A?) x L*(RT: D(AY),  (2.15)

and

er (A1, + 4700, ) < @0°.) < e (AL, + 4, )
(2.16)
If 0°,2°) € D(A) x D(A'?), we have

2 ! 2
(I @5, + |42 0];) + / (I3 @l + 14 )17 ds - @17)
0
=& (| + [422],) . foralt 1 = o,
where cy, ¢y, c3 are positive constants (depending on §2, problem parameters and

Cpr).
This last result implies that there exists a linear functional

R:D(AY?) x D(AY*) — (D(A"?) x (DA,

such that, for all (1, z°) € D(A'/?) x D(A'/*) we have

1
00 0 .0y (0 0
o(y,z) = 2 (RO 2. 0"z )>(D(A1/2)x(D(A1/4)y,D(A1/2)xD(A1/4)' (2.18)
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In fact, R(y", 2°) is the Gateaux derivative of the function @ at (°, z°),
@'(y°,2%) = R(’,2°), forall (°,2°) € D(AY?) x D(A'/*). (2.19)

Looking back to the open loop system (2.9) we can define the operator B : RV —
H x H, and its adjoint B* : H x H — RV by

N
> Lo wi
BW = | ! forall W= | ... |eR",
2 15 Yiwi Wy
i=1

and

Jo 12(@1q1 + V¥1g2)dx
B*q = forallq=|:m:|eHxH,
Jo 12 (enag1 + ¥ng2)dx 7
in order to write system (2.9)—(2.10) as
Z(y(t), z2(t)) + A (y(1), z(t)) = BW(t), ae.t > 0, (2.20)
¥(0),2(0)) = (°,2").

The next proposition provides the form of the feedback controller.

Proposition 2.4 Let W* = {wF}¥ | and (y*,z*) be optimal for problem (2.14),

i=1

corresponding to (y°,7°) € D(A'/?) x D(A'/*). Then, W* is expressed as
W*(1) = —B*R(y* (), 2" (¢)), forallt > 0. (2.21)
Moreover; R has the following properties
2¢1 |02 Hf)(Al/z)xD(Al/“) (2.22)
< (RO%.2). 0% et < 263 [0 20 | atrayepianrsy
forall (4°,7°) € D(A'/?) x D(A/*),

|RGO. 2% ”HXH < Cr[ 0% ”D(A)XD(AI/Z) g (2.23)
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forall (4°,7°) € D(A) x D(A'/?), and satisfies the Riccati algebraic equation

2 (R 2), (5. 2) s + |B*R.2) |17y (2.24)

= ||A3/ZY||12L1 + HASMZ”Z, , forall (y,2) € D(A3/2) x D(A3/4)_

Here, cy, ca, Cg are constants depending on the problem parameters, §2 and Cpr.
We mention that in the case with the double-well potential (see [5]) all these
constants depended on ||¢eoll;2(q) » instead of Crv = [[F” || oo (—14¢0.1-ep)-
In particular, the linear system is stabilized exponentially to (0,0) by the
feedback controller just constructed, 1 U(f) = —BB*R(y*(1),z*(¢)) (see Remark
2.6 in [5]).

3 Feedback Stabilization of the Nonlinear System

The main result refers to the stabilization of the nonlinear system (1.24)—(1.27) in
which the right-hand side 1% U(¢) is replaced by the feedback controller determined
in the previous section, that is,

1XU(1) = —BB*R(y(1). 2(1)). (3.1)

The nonlinear system in the abstract form reads

jt(y(l‘),z(t)) + A (@),z2(0)) = 4%,0@) — BB*R(y(1),z(1)), ae.t >0, (3.2)
(¥(0),2(0)) = (y0,20)s

where %, (y(1)) = (G, (¥(1)). 0) and G (y) = AF .5, (y) + A(g(x)y), by (1.24). We
recall that F, ¢, (v) is the rest of second order of the Taylor expansion of F; (y+¢eo),
considered here in the integral form

1
Fran®) = ¥ / (1= ) (9oo + sy)ds. (33)
0

and g is defined by (1.23). We specify that the derivatives of F up to the fifth order
which will be involved in the next computations are continuous on {r; |r|] < 1}.
The derivatives of Fy, i.e., F 20, F ;/0, F ;/0’ ,F ;3) , Fé(s,) are continuous on R, hence, in
particular, they are bounded on || < 1—7 and are zero outside this ball. Moreover,
these derivatives calculated at g € (1 — &9, 1 + &¢) coincide with the derivatives

of F at ¢oo.
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Also, taking into account the definition of Fy,, we see that all the derivatives of
Fq atr € (—1 4 &9/2,1 — g9/2) are bounded by constants times the supremum of
the same derivatives of F on (—1 + €9/2,1 —g¢/2).

/= " R () . _
Let Cp. |F ||Loo(_1+50/2,1—£0/2) ’ CF(’) ”Fl HLO"(—1+50/2,1—80/2) i=4.5,
— /"
CF;;)/ - HFE() HLOO(_1+€0/2,1—£0/2) < CCFW’
R0 |
Coor = [F oo rpegszmery = CCp0

and, recalling also the definition of Cr~, let
Cr = max {CF//, Cpmr, CF(4) , CF(s)} .

This is a constant too, but we mark it as such, in order to show the connection with
the L°°-norms of the derivatives of the function F on intervals strictly included in

(—1,1).

Theorems 3.1 and 3.2 and Corollary 3.3 are the main results of the paper. We set
g0 = [ Veolloo + V0o0llz0 + | A@ssloo - (34

Theorem 3.1 There exists go > 0 (depending on the problem parameters, §2 and
Cr) such that if goo < go, one can determine p such that for all pairs (yo,29) €
D(A'2) x D(AY*) with ||yoll pea1/2) + |20l parey < p. the closed loop system (3.2)
has a unique solution

(v,2) € C([0,00): H x H) N L*(0, 00; D(A%?) x D(AY*)) (3.3)
NW'2(0, 0o: (D(A?) x D(AV*)Y),

which is exponentially stable, that is

Iyl parrzy + 12O pavsy < Ce_kt(”)’O”D(Al/l) + llzoll parr))- (3.6)

The constants C and k depends on the problem parameters, Cr and goc.

Proof The proof of this theorem will address the well-posedness of problem (3.2)
and the stabilization relation. The proof will follow the steps from [5], but different
calculations will be done due to the new form, less explicit, of the nonlinear function
G¢,(y). Thus, we shall only sketch the proof and insist on the parts involving the
computations for the new function Fp,.

(i) Existence and uniqueness will be proved first on every interval [0, 7], by the
Schauder fixed point theorem and then will be extended to the whole [0, c0).
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Let (yo.20) € D(A'/?) x D(A'/*). Let r be positive and bounded by a constant
which will be specified later. For T > 0 arbitrary, fixed, we introduce the set

Sr=10.0 € PO.T;HxH): sup (IOl + 120 0) G

1€(0.7)

T
+ /0 (122501 + 40 ) i < r2} ,

which is a convex closed subset of L*(0, T D(A3/2_S/) x H), for0 < ¢ < 1/4. We
fix (y,z) € St and consider the Cauchy problem

d
5V ©:20) + (). 2(0) + BB'R((1).2(0) = %, (6(1)). ae. 1€ (0. 7).
(3.8)
(7(0).2(0)) = (vo. 20)-
We prove that (3.8) is well-posed and then we define

W 1 S¢ — L20, T; D(A*~') x H)

by ¥r(v,z) = (y,z2), the solution to (3.8). We shall check the conditions required
in order to apply the Schauder theorem, that is: ¥7(Sy) C St if r is well chosen;
Wr(Sy) is relatively compact in L2(0, T; D(A¥*~¢") x H); ¥y is continuous in the
L2(0, T; D(A¥*~¢") x H) norm.

We begin by showing that G, (y) € L*(0, T; H), by computing the norms of all
its terms. Thus, writing, for simplicity, y instead of y(¢) we have

1 1
VF,0(3) = 2Vy /0 (1= )F" (goo + sy)ds + 2V /0 (1= )FD (o + sy)sds

1
Voo / (1 —)FY (poo + 5y)ds.
0

Further, also for simplicity, we denote the argument s 1= ¢oo + sy at which all
derivatives of Fy are computed (e.g., we write F ({x) instead of F}, (oo + 5¥)).
We have

1
AF0) =24y [ (1= FE)ds
1 1
+2Vy- {vy / (1 —$)F!(Coo)ds + y / (1 = $)F (800) V(goo + sy)sds
0 0

1 1
1y Ay / (1= )FD Coo)sds + 2y | V2 / (1= )FO Coo)sds
0 0
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1 1
1Yy /0 (1= )FO Zo0)sV (900 + 5y)ds + > A /0 (1— F (Loo)ds
1
Vs - 257y / (1— F (Loo)ds
0

1
V00 - / (1= )FO (£00)V (90 + $1)ds.
0

We recall that all derivatives above are bounded for |(oo] = [@oo + sy| <
1 — % and are zero for |poo +sy| > 1 — 7. So, a nonzero contribution
is given by the terms calculated at |poo +sy| < 1 — %, that is for |sy] <
min{|1 -0 = Poo| . |1+ 9 —(pooi} < C. Then,

)

18Fea s = € {Cor (IyAl + [IV52] ) +Cro (vl + 1952 )
+ Cro [V + V9o lloo (Cren + Cro) I3Vl
+Crs Vo020 [ + Cro 1 A0colloe 321}

= CCr (vl + |19 + 8oVl + []))

where go was defined by (3.4). In the above calculations we used in some terms the
estimate |sy| < C.
Next, A(gy) = gAy + 2Vg- Vy + yAg, and we compute by (1.23)

1
le()| = mo /Q |F" (g (%)) = F"(9oo(§))|dE <2 sup  |[F" (1] | Vol de

[r|<1—¢o

IA

2Cpm IV ool oo 2
where d; is the supremum of the geodesic distance of §2,
Vg = F"(#00) Voo, Ag = F"(9o0) Apoc + FY (000) [Vl
so that
Al < CCrgeo AV 4 -

where g0 = ||V@o |l oo + ||V(,ooo||f>o + || A¢oo |l o0 - Thus, we finally get

1Ga s = CCr (IyAvll + [ 193] + oo Wyl + [ ] + Wxla) ) -
3.9
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Here, C is a constant. Next, we shall estimate the norms on the right hand side
of (3.9) and to this end we shall use the following interpolation inequalities and

relations involving the powers of A :

|A%W]|,; < C |AY W[ [A%w] 5t for e = Ay + (1 — Ve, A € [0, 1],

|Aw|y < C |APw],, . if e < B,
”AaW”Hﬁ(Q) <C ||Aa+ﬂ/2W||H,

and the Sobolev embedding inequalities

1 1
Wl < C IWloay @ = d (2 - ZV) ,

Wleo = Clwllp2(e) . d =3,
with C standing for several constants depending on the domain. We have

= lydylly < a2y, 472,
b= I <l 14,
I = yVyly < C A2, A2y,
I = ], = C a5, < a2y, |4 .
whence |G, () ||y < CCr(I + I + 8o (I3 + 14) + goo [AY||), implying
1Gey Ml < CCr ((1 + goo) A2y, [A"2Y]; + goo 1AV I 11) -
Finally, taking into account that y € Sy we deduce that

t
/0 1Gey BN ds < CC2 {141 + go0)? + 827}

and so G, (y) € L*(0,T; H).

(3.10)
@3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Further, asserting that </ + BB*R is m-accretive in H x H, as proved in [5],
Proposition 2.4, second part, we have for (yo,z0) € D(AY?) x D(AY*) € H x H

that the Cauchy problem (3.8) has a unique solution

(v,2) € C([0,T); ) N L*(0, T; ¥) N W"2(0, T; ).

(3.21)
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Then, (y(), z()) € D(A)xD(A'?) and so R(y(¢), z(1)) € HxH a.e.t € (0, T). Also,
(v,2) € L*(8,T;D(<7)), with § > 0 arbitrary, which implies that .7 (y(£), z(f)) €
HxHa.e.t>0.

Next, we have to prove that (y,z) € Sy for a certain r. We multiply (3.8) by
R(y(t),z(t)) € H x H scalarly in H x H and get

d
; 5 BOO-200). 6@ 20N rxn + ( (1), 2(0)). RO, 2(0)) e
= — IB*RG:(0). 20) [y + (G 0(0)). RO(1). 2(0))) s 2. 1> 0.

By using the Riccati equation (2.24), we obtain by a few computations involv-
ing (2.23), (3.11) and (3.19), that

d
) ROW, 20, 00), 20

£ (107205 + 145205 + 18°R00), 0 1)
< 1% GO IROD. 2L = CellGoy GOy 1060 20

1/2
< CCr G GOy (42D, + |42 [},)  ae.t € .7,

with Cg from (2.23). Integrating over (0, ) and using the Young’s inequality, (2.22)
and (3.20), we get for all r € (0, T)

t
OB a2y + 12O a0 + /0 (147256 5, + 14729, ) ds

< Cillyollparrzy + lzoll sy + CHI + goo)r* + g20r%),

with C; depending on the problem parameters, §2 and Cr (note that it can be taken
greater than 1). Recalling the assumption for the initial condition we have only to
impose that

Crllyolbanay + 0B + CH(1 + go)r* +8257)  (3.22)

< Ci(p* + Ci((1 + goo)*r* + g2o17)) < 7.

.. . . . 2 .
This is satisfied if we take for instance C; p2 = ’2 , that is

r

= e, (3.23)
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and impose
(4 g00)’P + 82— C1 <0, with Gy = | .
°° o - 2C,C
The inequality takes place if
0<goo < \/Cl (3.24)
and
\/Cl — 83
F<r = . (3.25)

1+ g0

We note that r; and p do not depend on T, but only on the L° norms of the

gradient and Laplacian of ¢, the problem parameters and Cr. Thus, if g is small
enough, there exists p and r such that ¥y maps Sr into St.
Let (yv,2) = Yr(y,2), with (y,z) € Sr. We observe that (y,z) and jt ,2)
remain bounded in L2(0, T; D(A*/?) x D(A**)) and W'2(0, T; (D(A) x D(A'/?))"),
respectively and since D(A3/2) x D(A¥*) is compactly embedded in D(A%*>¢) x H
it follows by Lions-Aubin lemma that the set ¥7(Sy) is relatively compact in
L*(0, T; D(A¥*~¢")x H). The last part is to show that ¥ is continuous and for that we
take (yu. 2n) € S, (Yns 20) — (v, 2) strongly in L2(0, T; D(A¥*~¢") x H), as n — 00
and have to show that W7 (y,, z,) — ¥r(y,z) strongly in L2(0, T; D(AY?~") x H).
This follows exactly as in [5], Theorem 3.1, Step 1, using estimates for the
solution (y,,z,) and the compactness D(A¥2~¢") C H3>2'(£2). Relying on all
these, the Schauder fixed point theorem, applied to the mapping ¥ on the space
L2(0,T; D(A¥*¢") x H), implies that problem (3.8) has at least a solution on the
interval [0, T], (v,z) € Sr.

The next step is to prove the solution uniqueness on [0, 7] and for that we follow
the idea from [5], with slight modifications in the calculations. We work directly
with (1.11)—(1.12), rewrite them in terms of the operator A and have in this new
case

¢+ VA% +A@Q’ + (1= 2v)¢ — yo) — ([ = A)(F, (91)) = F, (¢2))  (3.26)
—(—=v)p+yo =1,

o +A(0 —yp)—o+yp =1 u, (3.27)

with the boundary and initial conditions (1.13)—(1.14). We assume that there are

two solutions (¢, '), corresponding to U; = (v;,u;) with 1XU; = —BB*R(y:, z:),

i = 1,2. We take the difference of Eq. (3.26) and test it by A~ (¢! — ¢?). Then, test
the difference of Eq. (3.27) by A(6! —0?), where A > 0 is a coefficient to be chosen
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later. We use the notation ¢ = gol — goz, oc=0'-c%2v=v —vy, u=u —u.

Let us compute only one new term, the rest being exactly like in [5]. We have
-1
(I =AM (F, (p1) = Fl (02)).A7'0) oy
= (A7 = DF(01) = F (#2)).0)
< [@™ = DF, () = Fo(0) |y llolly < 2 |FL (e1) = FL (@) |, el

v
= 2Ck, ol = | llelly +Cligliy

where Cpv = sup |F”(r)| and ko is a suitable integer, such that
0 re(—1+e0/2.1—¢0/2)
1/ky << 1. By a straightforward computation we get

1d A
5 g (PO + 2o @15) + () —kar) eI+ lo @1

< Clely + Cla®lz + Cale@ 3 + Ca o]l . ae.t € (0,T),

where k| can be computed. The symbols C and C) denote several positive constants
possibly depending on Cpy . Thus, taking A < 221’ integrating from 0 to ¢ and
applying the Gronwall lemma, we get that ¢ = ¢ = 0. In the computations one
uses the fact that BB* is linear continuous from V' x V! — V' x V.

Since these results followed for T arbitrary and r and p do not depend on 7', we
can extend the solution on [0, 7] to [0, 00), and set Seo as Sy in which T = oo.

Hence, the solution (y, z) to (3.2) exists, it is unique and belongs to Seo.

(ii) For proving the stabilization result we multiply Eq.(3.2) by R(y(?), z(1))
scalarly in H x H. Since R is symmetric as an unbounded operator in H x H,
we have by the Riccati equation (2.24), and the relations (2.23) and (3.19) that

d
RO, 0), 060, 0 s (3.28)

£, (120 + 47201}, + 18 R0, o)1)
< 190 OOt 1RO, ZO) s = 1Gea OOy IROC), 20D e
= CCr (|47 1425 ] (1 + 8o0) + 80 4720 )

<Cr (1414 + |42 ,,) -

a.e. t > 0. It remains to compute the right-hand side in (3.28). We recall (3.10)
and (3.11) and use the Young inequality for the products with the second term
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in the last parenthesis. For example, we write

1/2 1/2
H H

[4725 1A A2z = A2 ] AT A 2], A 220,
< |45 1A 2], + 1A, Atz

We obtain
d
RO Z0). 60 20D + [0 [}, + |40}, 3.29)
= CoCr (|42 + 4722l ) (1725 (1 go0) + o).

with C, = CCg which depend on Cpr. We recall that |A'/%z],, < |A¥*z, .y €
Soo, i.€., HAI/Zy(t) HH <r < ry, and impose

CCr{r(l1 4 goo) + 8oy < 1.

This relation takes place if

1
0< < (= 3.30
= 8 2 C,Cr ( )
and
C —
r<ri= 2 goo.
1+ g0
Recalling (3.24) and (3.25) we set
8o = min{\/Cl,Cz} s (331)
and
r < ro:=min{ry, r} (3.32)

and recall that p is fixed by (3.23) where r < ry. We note that go depends on Cr,
and r and p depend on Cr and go.. Of course, all these depend on the problem
parameters and £2, too.

We get from (3.29) by using (3.11) and (2.22) that

d
dr (R(y(®),2(1), 0(0), 2(O)rixrr + Caco(R(y(D), 2(1)), (1), 2(D)))rixr (3.33)

d
< ROO.20). 00 20)axa + C (4750 [, + |47 *=0)];) < o.
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with C3 = 1 — C,Cr {r(1 4+ goo) + &oo} - It follows that

RY(®).20)). (0. 20N axr < € (R(y0. 20). (V0 20)) rixt (3.34)

where k := C32"° and again by (2.22) we deduce the desired result

2 —2ki 2
Cl ||(Y(t)s Z(t))||D(A1/2)xD(A1/4) < e ! ||(y0, Z0)|ID(A1/2)XD(A1/4) ,ae. t>0.

This leads to (3.6). In conclusion, there is gy given by (3.31) such that if goc < go
(by (3.24) and (3.30)), one can determine  (by (3.32)) and p by (3.23), where r < ry,
such that (3.6) takes place. This ends the proof. O

This is the stabilization conclusion valid in three-dimensions for the function F,,
which together with its derivatives up the the fifth order is continuous and vanish
outside a bounded interval of R.

In [5], in the case with the double-well potential, p, r, C and k depended on
|90l o0 - instead of Cr.

The consequence for the logarithmic function F is further provided.

Theorem 3.2 Let gy € (0, 1) be arbitrary but fixed. There exist go > 0 and p such
that if oo < go and if ||yollp1r2) + 20lparrsy < p. the closed loop system (3.2)
corresponding to the logarithmic potential F has, in the one-dimensional case, a
unique solution belonging to the spaces (3.5), which is exponentially stable and

satisfies (3.6).

Proof The assertion in this theorem is based on the compactness H'(£2) in C(£2)
true ford = 1.

We rely on Theorem 3.1. for the system (1.16)—(1.19) corresponding to the
function F,,, that is with F éo(y + ¢oo) in (1.16). As we have already mentioned,
in (1.16), F., (¢s0) = F'(¢c0).

On the one hand, we know by Theorem 3.1, that there exists p given by (3.23)
such that for any initial data in the ball of radius p, we have by (3.6) that

Iyl parrzy + 12O pavey < CE—’“(”)’O“D(AI/Z) + ll20llpearay) = Ce "p.

On the other hand, in the one-dimensional case, we have in addition,

YOI = YOl c) = Ca ly®Olpuizy < CaCe™p (3.35)

the last inequality being due to relation (3.6) and this implies that |y(r)] — 0, as
t — 0o. Here, Cy, is a constant depending on £2.

Moreover, one can set a new p such that the values of the solution remain less
that 1 — g for all # > 0. Recall that |pso| < 1 —&o. To be more precise, we can write
|¢oo| < 1—g¢— 350, Where §y be a positive value, §y € (0, 1 —¢&p). We have by (3.35)
that

ly(1)] < CoCe ™ pforall > 0,
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and set a new p by the inequality CoCe ™ p < 8, which provides

8 8
o< COC < COCekr’ for all > 0.
7, 7,

Thus, recalling (3.23) in Theorem 3.1, we can take

<min{ % 4 } (3.36)
b= CoC’ 2€, '

with r < ry (see (3.31)). Then,
[y(®) + ¢oo] <o+ 1—80—58=1—2¢

and we conclude that F{ (y + ¢o0) = F'(y + ¢oo) in Eq. (1.16). Thus, our solution
y(?) actually satisfies the system corresponding to the function F. In conclusion, one
can find a small enough p, such that for any initial data in the ball with this radius, the
system (1.16)—(1.19) corresponding to the logarithmic potential F is exponentially
stabilized. a

Finally, we give the stabilization result for the original system in 8 and ¢, which

follows immediately from Theorem 3.2.

Corollary 3.3 There exists go > 0 (depending on the problem parameters, the
domain and Cr) such that the following hold true. If goo < go there exists p such
that for all pairs (o, 6y) € D(A'?) x D(A'*) with

9o — Pooll par/zy + llato (B — Boo) + @olo (0o — Poo) | patey < Ps (3.37)
(AY/2) (A1)

the closed loop system (1.7)-(1.10) with (1} v, 1} u) replaced by (3.1) has a unique
solution

(¢, 0) € C([0,00); H x H) N L*(0, 00; D(AY?) x D(A¥*)) (3.38)
NW'2(0, 001 (D(A'?) x D(AY))"),
which is exponentially stable, that is
l9(1) = @oollpiarzy + [l (0(1) — Ooo) + ctolo(@(1) — oo) [ parey  (3.39)
< Ce ™ (|lgo — Poollpearrz) + Il (B — Boo) + olo(@0 — Poo) | piarrs))

for all t > 0 and for some positive constants k and C, depending on the problem
parameters, the domain, Cr and geo.
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Mathematical Analysis of a Parabolic-Elliptic
Model for Brain Lactate Kinetics

Alain Miranville

Abstract Our aim in this paper is to study properties of a parabolic-elliptic system
related with brain lactate kinetics. These equations are obtained from a reaction-
diffusion system, when a small parameter vanishes. In particular, we prove the
existence and uniqueness of nonnegative solutions and obtain error estimates on
the difference of the solutions to the initial reaction-diffusion system and those to
the limit one, on bounded time intervals. We also study the linear stability of the
unique spatially homogeneous equilibrium.

Keywords Brain lactate kinetics ¢ Error estimates ¢ Limit system ¢ Linear
stability ¢ Nonnegative solutions * Parabolic-elliptic system ¢ Reaction-diffusion
system * Well-posedness
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1 Introduction

The following system of ODE’s:

du u v
_ —J, Kk, k K, J>0, 1.1
a TG e T ) T ~ (1.1)
¢V L Fy iV YN FL e F,L>0 (1.2)
v - = 567 ) 3 .
di K+v k+u

where € is a small parameter, was proposed and studied as a model for brain lactate
kinetics (see [5, 9, 10] and [11]; see also [4]). In this context, u = u(f) and v = v(r)
correspond to the lactate concentrations in an interstitial (i.e., extra-cellular) domain
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and in a capillary domain, respectively. Furthermore, the nonlinear term «(,}, —
k,;’_y) stands for a co-transport through the brain-blood boundary (see [8]). Finally,
J and F are forcing and input terms, respectively, assumed frozen (more generally,
J depends on f and u and accounts for the interactions with a third intracellular
compartment (which includes both neurons and astrocytes), while F = F(¢) (an
applied electrical stimulus; see [7]) is piecewise linear and periodic). This model
has essential applications to the therapeutic management of glioma (also called glial
tumors); see [9] for thorough discussions on this issue.

Let us assume that u(0) and v(0) are nonnegative (recall that u and v are
concentrations and are thus expected to be nonnegative). Then, noting that, if
u(0) = 0, then %(0) > 0 and, if v(0) = 0, then %’ (0) > 0, it follows from Cauchy-
Lipschitz theorem that, for t > 0 small, # and v exist and are nonnegative. This also
yields that the solutions are defined and remain nonnegative on the whole interval
R*; indeed, it is not difficult to prove that they are bounded on finite time intervals.
Furthermore, in [5, 9, 10] and [11], questions related to the stability of the unique
equilibrium were addressed. This constitutes an essential point in the modeling,
since, as discussed in [9], a therapeutic perspective of such a result is to have the
steady state outside the viability domain, where cell necrosis occurs. Finally, in
[10], justifications for the dip and buffering which are observed in experiments (see
[7]) were given, based on geometrical arguments and averaging theory on a slow
manifold.

We can note that the above ODE’s model does not account for spatial diffusion.
Taking this into account would be relevant and desirable from a biological point
of view. The simplest possible corresponding PDE’s (reaction-diffusion) system,
accounting for spatial diffusion, reads (see also [12])

du u v

—aA - —J, a>0, 13
5 o M+K(k+u k’+v) o > (1.3)
¢ _Bav o k(" “N=FL >0 (1.4)
— BAv v — = FL, , .
o1 K+v k+u

where u = u(x,t) and v = v(x, ), which we consider in a bounded and regular
domain 2 of RV, N = 1,2 or 3, together with Neumann boundary conditions,

du av
= = I
v Gonl,

where I’ = 082 and v is the unit outer normal vector. Note that the terms —aAu
and —fAv correspond to random motions. Note however that more precise models
should account for the geometry, i.e., the different compartments (interstitial,
capillary), so that (1.3)—(1.4) should be viewed as a very first step towards PDE’s
models for brain lactate kinetics. We will consider more realistic models elsewhere.
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We studied in [6] the existence, uniqueness and regularity of nonnegative
solutions to (1.3)—(1.4) (note that the mathematical analysis of (1.3)—(1.4) (and,
in particular, the well-posedness) appears to be challenging, due to the coupling
terms, especially for negative initial data (though biologically irrelevant, this makes
sense from a mathematical point of view); this is also the case for the ODE’s
model (1.1)—(1.2)). We further established the linear (exponential) stability of the
unique spatially homogeneous equilibrium. We also mention [13] in which we
proved the existence, uniqueness and regularity of the solutions to the following
singular reaction-diffusion equation:

9
a”t’—Au+Fu+Kkiu=f(x,t),on, (1.5)

corresponding to the case where either u or v is known in (1.3) and (1.4); we can
also think of (1.5) as an equation in each compartment, assuming that the lactate
concentration is known in the other one.

Our aim in this paper is to study the limit system

du u v
—aA - =7, 1.6
at * M+K(k+u k/+v) (1.6)
BAv + Fo+x(, " “ = FL (1.7)
— v v K — = s .
K+v k+4u
corresponding to € = 0 in (1.4). We prove the existence and uniqueness of

nonnegative solutions to (1.6)—(1.7). We then prove that the solutions to the initial
reaction-diffusion system converge to those to the limit parabolic-elliptic one, on
finite time intervals, and provide an error estimate in terms of €. We finally study the
linear stability of the unique spatially homogeneous equilibrium. We can note that
a similar analysis would also be relevant in the context of the ODE’s model (1.1)—
(1.2). Though some of the results obtained here could apply (in a simpler way) to
this system, this will be considered in more details elsewhere.

Notation

We denote by ((-,-)) the usual L?-scalar product, with associated norm || - ||. More
generally, || - |x denotes the norm on the Banach space X and, if X is a Hilbert space,
((-,-))x denotes the associated scalar product.

Throughout the paper, the same letters ¢, ¢’ and ¢” denote positive constants
which may vary from line to line. Similarly, the same letter Q denotes continuous
and monotone increasing (with respect to each argument) functions which may vary
from line to line.
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2 The Casee >0

We consider the following initial and boundary value problem:

ou u v

—aA — =J,
ot * M+K(k+u k/+v)
% gav 4+ Fotr( " Y =FL e>0
€. —pBAv v+ K — =FL, € ,
ot K+v k+u
Jdu Jav
= =0on/[,
dv v on
;=0 = Uo, V|1=0 = vo.
Note that (2.8)—(2.9) are equivalent to
du K k
—aA — =J,
L N T
v k 4
— BA F — = FL.
éat pav+ U+K(k+u k’+v)

We assume that
(uo, vo) € HE(2)?, up >0, vp > O ace. x,
where
HA(2) = {w e HX(R). gv: =0 onl.

We proved in [6] the

A. Miranville

(2.8)

2.9

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

Theorem 1 We assume that (2.14) holds. Then, (2.8)—(2.11) possesses a unique

strong solution (u, v) such that
u>0,v>0ae. (x,1)

and, VT > 0,

(u,v) € L®(0, T; H3(2)*) N L*(0, T; H*(2)*),

du Jv

(at’at

) € L(0, T; L*(£2)*) N L*(0, T; H' (2)?).

(2.15)
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Furthermore,
lu(®) oo 2y < lluollzoe(2y + (J +«)t, t >0,
and
_F FL +«
lv(@)|lLee ) < e <" lvollLee (o) + Fo t>0.

Finally, if M > FL;"( and 0 <vg <M a.e. x, then 0 < v <M a.e. (x,1).

Remark 1 As far as the above regularity is concerned, the corresponding constants
in [6] depend on €, i.e., they are not bounded uniformly with respect to € as this
quantity goes to 0. However, it is not difficult, reading the details, to see that most
constants can be made independent of €, yielding regularity estimates on u, %L: and
v which are uniform with respect to € as ¢ — 0. Now, we have not been able to
derive, at least in a straightforward way, such uniform estimates on %’: which would
allow us to pass to the limit in (2.9) (say, in a weak (variational) form) to deduce the
existence of a solution to the limit problem corresponding to € = 0 (see however
Sect.4). We will thus give a direct proof of existence for the limit problem which

also has an interest on its own.
Remark 2

(i) It follows from the above that the capillary lactate concentration is uniformly
(with respect to time) bounded. However, we have not been able to derive a
similar upper bound on the interstitial lactate concentration u. We can note
that, in the biological model, outside a bounded viability domain, cell necrosis
occurs (see [9]), meaning that one expects viable trajectories to be uniformly
bounded.

(i) Multiplying (2.8) by u + k, integrating over §2 and by parts, we obtain

dE

KV
+ a||Vul? + =((J+
d o Vull K||’4||L1(.Q) (« ¥

Ju+k)),
+v )
where
1 2
E= 2IIMII + kllullr (@)

Noting that v is uniformly bounded (we assume that, say, 0 < vo < "), we
take, for k, F and L given, J small enough and k’ large enough such that

J+ v <
K.
k' +v
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‘We thus deduce that

E
P || Vull? + cllll o) < s ¢ >0,

which yields, noting that

ol Vull? + cllull i) = ¢ (IVull + llullg) — ¢

= (Jull + lull @) —
> ¢l + | llline)) -,
where we have used Young’s inequality, the differential inequality

dE
ot cVE<C, ¢c>0. (2.16)

Set E* = (Cc/)z, where ¢ and ¢’ are the same constants as in (2.16), so that

dE*

+oVEr =
dt Cc c

It then follows from comparison arguments that
E(1) < max(E(0),E"), t >0, (2.17)

and we finally deduce that the L2-norm of u is uniformly bounded.

3 TheCasee =0

We consider in this section the following initial and boundary value problem:

ou K k
—aA — =7, 3.18
ot * M+K(k’+v k—}—u) ( )
BAv 4+ Fv + «( g v ) =FL (3.19)
J— K —_— = .
v v k+u K+v ’
du )
= =0onT, 3.20
dv dv on ( )

I/t|,:() = Up. (321)
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We assume that
up € H3(2), up > 0 ace. x. (3.22)
Remark 3 1t follows from (3.19) that

4 k
—BAv(0) + Fv(0) — = FL— .
BAv(0) + Fv(0) K+ 0(0) k+ o
We will see below that this allows to define in a unique way v(0) such that v(0) > 0

a.c. X.

3.1 Existence and Uniqueness of Solutions
to an Auxiliary Problem

We consider the following modified initial and boundary value problem:

du u v

—aA - =J, 3.23
R T I (3.23)
BAv + Fo+x( ° “y=FL (3.24)

— BAv v - =FL, :

K+ vl k+|ul

o _ W _onr (3.25)

I R ’
uli=o0 = uo. (3.26)

We associate with (3.23)—(3.26) the following weak/variational formulation, for
T > 0 given:
Find (u,v) : [0, T] — H'(£2)? such that

d
49 + (V. Ve)) + ((pe(w). ) — ((pw (v). ¢)) (3.27)

=((J.¢)), Y¢ € H'(2),
B((Vv, Vi) + F((v, %)) + (g (v), ¥)) — (g (w), 1)) (3.28)

= ((FL,y)), V¢ € H'(%2),
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in the sense of distributions, and
u(0) = ug in L*(£2), (3.29)

where we have set, for ¢ > 0 given,

KS

, s eR.
¢+ sl

@c(s) =

We can note that ¢, is bounded (with |p.| < k) and of class ¢, with ¢/(s) =

© -’F(\i‘\)z , 50 that ¢, is also Lipschitz continuous, with Lipschitz constant .

Let then 0 = A; < A, < --.- be the eigenvalues of the minus Laplace
operator associated with Neumann boundary conditions and wy, w», --- be associated
eigenvectors such that the w;’s form an orthonormal in L?(£2) and orthogonal in
H'(£2) basis. Setting

Vi = Span(wy, - - -, wy,), m € N,

we consider the following approximated problem, for 7 > 0 given:
Find (u, v,,) : [0, T] — V,, X V,, such that

d
gy (m: @) + & (Vm. V) + (iltm). §)) = ((pw (Vm). 6)) (3.30)

=((J.9), Yo € Vp,
BV om, V) + F((m. ¥)) + (@ (V). ¥)) — ((@r (). V) (3.3D)
= ((FL,¥)), VY € Vi,
in the sense of distributions, and
u,(0) = uom, (3.32)
where ug,, = P,uo, P, being the orthogonal projector (for the L*-norm) from L2(£2)
onto V,,.

For w € V,, given, we consider the following elliptic problem:
Find z € V,, such that

a(z, @) + (e (2), ¢)) = (FL + ¢k (W), §)), Y € Vi, (3.33)

where

a-,-) = (V.. V) + F((-.-))
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is bilinear, symmetric, continuous and coercive on V,, (and also on H 1 (£2)). Let then
R = R, be the operator defined by

R:V,— V,, 2z R(2),

where

(RQ@): #mi(e) = az.¢) + (0w (2). ¢)) = (FL + (W), $)), YV € V.

It is clear that this operator is well defined and continuous (since gy is Lipschitz
continuous). Furthermore, there holds, for z € V,,,,

(RR), D) = a(z.2) + (9w (2),2) — (FL+ ¢x(w), 2))
> cllzlzp @) — ¢llzl, ¢ >0

(note indeed that w is given and recall that ¢; and ¢y are bounded). Therefore,

/

((R(Z), Z))HI(Q) = C”Z”in(g) —C,
so that

/

c
((R(2),2))m1(2) = 0 whenever [|z|| g1 (o) > \/C

There thus exists z € Vi, [|zllg1(2) < \/‘C/, such that
R(E) = 0in V,,

which is equivalent to (3.33). Indeed, otherwise, we can consider, following, e.g.,
[15], the continuous mapping

R
G : B(0,c") — B(0,c"), z— —" @ ,
IR |1 (52

where ¢ = \/ CC/ and B(0, ") is the closed ball in V,, with center 0 and radius

¢”. Tt thus follows from the Brouwer fixed point theorem that there exists zo € V,,
such that zo = G(zo). This yields that |[zo]lz1 o) = ¢” and ((R(20).20))m1 () =
—c"||R(z0) |12y < 0, whence a contradiction. Note that all constants here (and
also below) are independent of m. This thus defines a mapping .% = .%,,,

F o Vy >V, wi>z2=F(w).
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Let then (wi,w,) € V,, X V,, and set z; = F(w;), i = 1, 2. We have, setting
z=z1—2andw = wy —wy,

a(z. @) + (pw (1) — @u(22). ) = (@(W1) — @e(W2). $)). Yp € Vi (3.34)

Taking ¢ = z and noting that ¢ is monotone increasing and ¢y is Lipschitz
continuous, we obtain

IIlei,l(g) < cllwlllizll,
whence
[-F (w1) = F W) w2y < cllwi —wall, (3.35)

which yields that .7 is Lipschitz continuous on V,, (both for the L? and H'-norms);
this also yields that . is indeed a mapping, since w; = w, implies z; = 2.

It follows from the above that (3.30)—(3.32) is equivalent to

Find u,, : [0, T] — V,, such that

d
gy (m: @) + o (Vim. V) + (ic(tm). $)) — ((pw © F (um), P)) (3.36)

=((J.9), Yo € Vp,

in the sense of distributions,
U (0) = uon (3.37)

and then set v,, = F ().

Since ¢y and ¢y are Lipschitz continuous on R and .# is Lipschitz continuous
on V,, with respect to the L?-norm, it is easy to prove that (3.36)—(3.37) possesses a
(unique) solution u,, € L= (0, T; L*>($2))NL*(0, T; H'(£2)) (see, e.g., [14]), whence,
setting v,, = Z (up), the existence of a solution (i, v,) to (3.30)—(3.32) such
that v,, € L®(0,T; H'(£2)). We also note that ag;” € L*(0,T; H'(£2)), so that
un € €([0, T); L*(£2)).

Writing u,, () = Z:”: | dim(t)w;, taking ¢ = A,w; in (3.36), multiplying the
resulting equality by d; ,, and summing over i, we obtain

1d
5 dt IVumll® + ol Al” = (@r(ttm). Attm)) + (917 © F (), A)) = 0,
which yields, recalling that ¢; and ¢y are bounded,

d
Vil + o) Aug || < c,
dtll Un| | Aunll” < c
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whence estimates on u,, in L>°(0, T; H'(2)) and L*(0, T; H*(£2)). It thus follows
that %" € L°(0, T; H™'(2)) N L2(0, T: L3(2)).

Since the above regularity estimates are uniform with respect to m, we deduce
from classical Aubin-Lions compactness theorems that, at least for a subsequence
which we do not relabel,

Uy — uin L0, T; H' (2)) weak star, in L>(0, T; H*(2)) weak,
in €([0, T); L*(£2)) and a.e. (x,1) € 2 x (0,T),
U, — v in L®(0, T; H' (£2)) weak star,
for some functions u and v. Actually, since v,, = % (u,,) and % is Lipschitz
continuous with respect to the L?>-norm, we can see that (v,,) is a Cauchy sequence in
€([0,T): L*(£2)) (note indeed that, if m’ > m, then V,, C V, and that the constant
c in (3.35) is independent of m), so that
v — v in €([0, T]; L*(2)).

Recalling finally that ¢; and ¢ are Lipschitz continuous, this is sufficient to pass
to the limit in (3.30)—(3.32) and deduce the existence of a solution (u, v) to (3.27)—

(3.29) (note that the initial condition #y = u(0) makes sense; actually, v(0) also
makes sense). Indeed, we need to pass to the limit in relations of the form

T
/0 [— (. $))0" (1) + @ ((Vit, V$))O (1) + (1 (). $))0 (1)

—((pw (vm), $))O (1) — (. ¢))0()] dr = 0

and

T
/0 [B(VUm, V) + F((um. ¥)) + ((@r (Wm), ¥)) — ((@r(um). ¥))

—((FL,y))]6(1) dt = 0,

for (¢, ) € H'(£2)? and 6 € 2(0, T). More precisely, we have the

Theorem 2 We assume that ug € H'(2). Then, (3.27)—(3.29) possesses a unique
solution (u, v) such that, VT > 0,

ue L0, T;H (2)) N L*(0, T; H*(22)) N € ([0, T]; L*(£2)),

v e L®(0,T; H' (£2)) N €([0, T]; L*(2))



390 A. Miranville

and

?;; € L®(0, T; H™'(2)) N L2(0, T; [2(2)).

Proof There remains to prove the uniqueness.
Let thus (u;, v;) and (uy, v2) be two such solutions, with initial data g ; and u»,
respectively. We have, setting (1, v) = (u; — u2, v1 — v2) and up = up — Up 2,

:;t((u, ?)) + a((Vu, Vo)) + ((p(ur) — @i (u2), ) — (g (v1) — ¢w (v2). $))

(3.38)
=0, V¢ € H(2),
B((Vv. V) + F((v, %)) + (g (v1) — pu (v2). V) — (@r1) — @i(u2). ¥))
=0, V¢ € H(R), R
u(0) = uo. (3.40)

Taking ¢ = u and ¥ = v, we obtain, recalling that ¢; and ¢y are monotone
increasing and Lipschitz continuous,

1d

5 dtllullz + || Vul* < cllullllv]| (3.41)
and

BIVVI® + Fllv)* < cllull vl (3.42)

respectively. In particular, it follows from (3.42) that
ol < cllul., (3.43)

which, injected into (3.41), yields

d
dtllullz < cflul?, (3.44)

whence, owing to Gronwall’s lemma,
u@®)| < e“lluoll, = 0. (3.45)

We deduce from (3.43) and (3.45) the uniqueness, as well as the continuous
dependence with respect to the initial data in the L?>-norm.
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3.2 Existence and Uniqueness of Nonnegative Solutions

We first prove additional regularity results on the solutions to (3.27)—(3.28),
assuming that (3.22) holds. This can be fully justified within the Galerkin scheme
considered above.

Taking v = —Av in (3.28), we have

BlAV|? + FIIVo|* = (¢ (v), Av)) = ((px(w), Av)),
which yields, recalling that ¢; and ¢, are bounded,

B

I14v? + FI Vo <.

whence estimates on v in L>°(0, T; H*(£2)), VT > 0.
Taking then ¢ = A%uin (3.27) and = A%v in (3.28), we obtain

18l @V Aul” = (a0, A0) + (g (0), A7)
and
BIV V| + FILAVIE = ~((0u (v). A%0)) + (@u(0). A7),
respectively. Noting that
(). A%))| = (9} Ve, VA)] < e[ Vu][V Au],

we find, proceeding in a similar way for the other terms,
d 2 2 2 2
g 1Aul” +ellVAull™ < c(|Vull” + VoI

and

B

5 IVAV]? + FllAv]? < c(|Vul® + Vo).

This yields estimates on u and v in L®(0, T; H>(2)) N L*(0, T; H*(£2)) and in
L>®(0, T; H*(£2)), respectively, VT > 0.

Remark 4 This yields that 9 € L*(0,T:L*(£2)) N L*(0,T; H'(2)), YT > 0.
We further note that the solution to (3.27)—(3.29) is strong, i.e., (3.23)—(3.26) are
satisfied almost everywhere.
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We can now prove the

Theorem 3 We assume that (3.22) holds. Then, (3.18)—(3.21) possesses a unique
strong solution (u, v) such thatu > 0, v > 0 a.e. (x,t) and, VT > 0,

u € L=(0,T; H3(2)) N L*(0, T; H*(2)),
v e L®(0,T; H*(2) N H%(2)) N € ([0, T); L*(2))

and

g’: € L®(0, T; L*(2)) N L2(0, T: H'(2)).

Proof Let (u, v) be the unique strong solution to (3.23)—(3.26). Multiplying (3.23)
by —u~ and (3.24) by —v~, where x~ = max (0, —x), we have

d, _., _ |u=|? / vu~
Vu~|? d dx <0 3.46
Zdt”M I+ el V] JFK/Qk+|u| ttK o kK + |v] t= ( )
and
vT|? uv~
Vu_2+Fu_2+K/ | dx+/</ dx <0, 3.47
Bl | fla |l K+ ol ket &S (3.47)

respectively. Writing v = v — v™, where x™ = max(0, x), we deduce from (3.46)
that
1d v
I
2 dt o kK + |U|
whence
® 1P < el (3.49
u cllullv™]l- .
dt -

Proceeding in a similar way for (3.47), we find
Fllo™II? < ellu v~
whence
™Il < cllu™]. (3.49)
Injecting this into (3.48), we deduce that

d, _ 2 12
P = el .
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which yields, owing to Gronwall’s lemma,
lu” @) < e“lu(0)]]. >0, (3.50)
whence, since u~(0) = 0, u > 0 a.e. (x, ). This, together with (3.49), yields that

v > 0 a.e. (x,1). Consequently, (u, v) is a strong solution to (3.18)—(3.21), which
finishes the proof.

Remark 5 Proceeding exactly as in [6], we can prove that
lu(®)llzoo2) < lluollzoo@y + (J + 1), t = 0.
Furthermore, it follows from (3.19) that
—BAv + Fv < FL +«. (3.51)

Multiplying (3.51) by v"!, m € N, we have

IB(m+ 1)/ UW’IVU|2dx+F”v|m+2 < (FL-l—K)/ Um+ldx,
$ 2

L+2(@)
which yields
Fllvl22 o) < (FL+ 0)Vol(2) w2 o2k, o
whence
olirrg < Vol@) . (3.5

Passing to the limit m — +o00 in (3.52), we finally obtain (see, e.g., [3])

FL + «
F

lv(®]lree @) < ,1=0,
meaning that the capillary lactate concentration is again uniformly (with respect to
time) bounded. Also note that (2.17) still holds.

Remark 6

(i) As mentioned in the introduction (for the case € > 0, but the situation is the
same here), the existence of solutions for negative initial data is a challenging
issue. However, we can prove the following partial result (see also [6] for the
case € > 0). Let §; and 8, be two positive constants such that k — §; > 0 and
k' — 8, > 0 and assume that uyp > —§; a.e. x. We then consider the following
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modified initial and boundary value problem:

ou u v

— oA _ =J, 3.53
o AT i T K=t v+ 6 (:53)

v u

- =FL, 3.54
— 8 + v + 8] k—81+|u+51|) 559

— BAv + Fv +K(k’

du  dv
9 9 Oonlr, (3.55)
u|,=0 = Uyp. (3.56)

The existence and uniqueness of the solution to (3.53)—(3.56) can be proved by
arguing as above. Next, we set # = u + §; and ¥ = v + §,. These functions are
solutions to

M e+ V=7 (3.57)
— oAU K - =J, .
ot k—3& +lul K —68 + |7
- o )
— BAT 4+ F¥ +« I _)=F, 3.58
p (k’—52+|v| k—81+|u|) ( )
on 9D
= =0onT, 3.59
av av on ( )
=0 = up + 61, (3.60)
where
81 8
J=J+ . -
(k—81+|u| k’—52+|v|)
and

81 iy

F=F(L+8)— . = -
LA8) =k s ial ™ k=6 + |3

).

Choosing §; and §, such that J > 0 and F > 0 (in particular, these hold when
81 and §; are small enough) and noting that iz(0) > 0 a.e. x, we can prove, as in
the proof of Theorem 3, that u(x, r) > 0 and v(x, ) > 0 a.e. (x, t), so that (u, v)
is solution to (3.18)—(3.21), with

u(x,t) > —6; and v(x, 1) > —6; a.e. (x,1).
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(ii) Similarly, we can prove that, if §; and §, are positive and small enough, with
uy > 61 a.e. x, then

u(x,t) > 6y and v(x, t) > 8, a.e. (x,1).

It follows from the above that we can actually define the Lipschitz continuous
(for the L? and H'-norms) mapping

Z H' (Q) > H'(2), wiz=F(w),
where z is the unique solution to the following elliptic problem:

a(z, ¢) + (g (), ) = (FL + g(w), $)), V¢ € H'(£2). (3.61)

We then have the

Proposition 1 The mapping .% is differentiable with respect to the L> and H'-
norms.

Proof Let wy and w belong to H!(§2) and set zo = .% (wo) and z = .% (w). We then
have

a(z— 20, 9) + (o () — o (20), $)) = (W) — @(w0). ), V¢ € H'(£2).

(3.62)
Taking ¢ = z — 79 and reacalling that ¢,/ is monotone increasing, this yields
1z — 20l (2) = cllox(w) — @r(wo)ll,
whence
Iz = 20llm (@) = cllw —woll. (3.63)

Let then Z € H'(£2) be the solution to the linear elliptic problem (recall that ¢
is nonnegative)

a(Z,$) + (91 (0)Z, $)) = (@ (wo)(w — wo), $)), Y € H'(£2). (3.64)
Setting h = w — wp, we can see that
az—20—Z,¢) + ((pv (2) — o (20) — 91 (20)Z, ¢)) (3.65)

= (o) — @(wo) — @ (wo)h, $)). Vo € H'(R2).
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Writing
o (2) — o (20) — P (20)Z = ¢y (20)(z — 20 — Z) + o(llz = o))
and
Pe(w) — @(wo) — ¢ (wo)h = o(||Al]).
we obtain, taking ¢ = z — zo — Z and employing (3.63) (also recall that ¢;, > 0),
a(z—z0—Z.z—z20 — Z) = |((o(||hl}). 2 — 20 — 2))I,
whence
Iz =20 = Zll 1) = o(llAl)).
This yields that .% is differentiable at wy, with %' (wo) - h = Z, %' denoting the

differential of ..
We deduce from Proposition 1 the

Corollary 1 Let (u, v) be the solution to (3.18)—(3.21) given in Theorem 3. Then,
VT > 0,

W 120, T H(Q)
ot
and
v Ju
15 ey < ell e 12 0 (3.66)

Proof 1t suffices to note that v = .% (u), whence, owing to Proposition 1,

v, du
= F'(u) o (3.67)

Indeed, we can note that u € H' (0, T;H 1 (£2)), VT > 0. Furthermore, we have

0 0 0
a5 ®) + (@) 8) = (W) ). Yo '), (68)

and (3.66) follows, taking ¢ = aalt’ (also recall that %’: € L®(0,T; L*(£2)), YT > 0).

Remark 7 1t follows from standard elliptic regularity results applied to (3.68) (see,
e.g., [1]and [2]) that, YT > 0, 3 € L®(0, T; H*(2)) N L*(0, T; H3(£2)), with

||3v||H Q) = ”8 |ae =0
c a.c.
g M@ =l g, -
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and

Jv Ju
[ 9 I 20.7:m3(2)) < QT luoll g 2) |l 9 220,711 (2))-

4 Convergence to the Limit Problem

All constants ¢ and ¢’ and functions Q in this section are independent of €.
Let (uf,v¢) and (u°,v°) be the unique strong solutions to the initial and limit
problems, respectively, as given in Theorems 1 and 3, where vy = vO(O), i.e.,

oue K k
— AU _ =J, 4.69
o ARG e T ) (4.69)
e k K
— BAVE + Fof - = FL, 4.70
€ o BAVE + v+/<(k+u€ k,+v€) (4.70)
Jus Jv¢
= =0onT, 4.71
v v on ( )
U= = ug, v¢|i=o = v°(0), 4.72)
and
ou’ kK k
—aAu’ - = 4.7
ot wau +K(k’+v0 k+u0) I, (4.73)
— BAV® + Fv° + i ( ke K ) =FL (4.74)
k+ud K +00" T '
Wl _ 0 onr (4.75)
= = on . .
Jv Jv
u’)=0 = uo. (4.76)
We have the

Theorem 4 The following error estimates hold, YT > 0:
[u€ (£) — Ol 2) < QT luollg (2))e.

[0 () — V() |1y < O(T. o |l (2)) Ve,
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t€[0,7T), and
0
||I/l6 —u ||L2(0’T;H2(Q)) =< QO(T, ||“0||H1(Q))€v

0
V¢ = v |l 20.15m202)) < QT lluoll g (2) )€

Proof We have, setting u = u¢ — u® and v = v¢ — 1,

d
Y aAu+ () — () — o (v°) + o (v°) = 0,

ot
31} € 0 € 0 aUO
€ o —BAV+Fv+op (v)—pp(v°) —or(u) + o (1”) = —€ o €>0,
Jdu Jav
v v Oon I3

ulrz() == 0, Ulr:() == O.

4.77)

(4.78)

(4.79)

(4.80)

Multiplying (4.77) by u, we obtain, recalling that ¢, is monotone increasing,

2 2
g 1l el Vul™ < cflull o]

Multiplying then (4.78) by v, we find, similarly,

€ a Iol* + cllvliz g < ¢ (ullivl + € o 1), ¢>0
dt HY(2) = a7 '

Combining (4.81) and (4.82), we have, owing to (3.66),
d 2 2 2 2
dt(llull + €llvll”) + clllullzn ) + vl o)

out
< (Jull* + €|vlI* + €l o 1), ¢ >0,

from which it follows, owing to Gronwall’s lemma,

T
lu@1? + ellv@)|* + C/O u() 71 ) + 1017 ) ds

ME

d
S Q(T)GZH a[ ”%,Z(O.T;LZ(Q))’ c > O, te [O, T]

(4.81)

(4.82)

(4.83)

(4.84)
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Multiplying now (4.69) by 35‘: , we obtain

d ous
VP el P e e>o.
whence
s,
” ot ”LZ(O,T;LZ(.Q)) = Q(T, “uO”Hl(.Q))' (4‘85)

We finally deduce from (4.84)—(4.85) that

T
lu@)|* + ellv@)|* + C/o (”“(S)||12ql(g) + IIU(S)IIZI(Q))dS
< O(T. ||luollgr(2))€>, ¢ >0, t € [0, T]. (4.86)

Multiplying next (4.77) by —Au and (4.78) by —Av, we find, recalling that ¢y
and @y are Lipschitz continuous,

d
dtIIVMIIZ + cll Aul® < ¢ (Jull* + v]*). ¢ >0,
and

d v’
GdtIIVvll2 + el Av|* < ¢ (Jull® + [lv])* + €l o 1), ¢ >0,

respectively.
Summing these two inequalities, integrating over [0, 7] and proceeding as above,
we have, adding the resulting inequality to (4.86),

T
”u(t)”i]l(g) + GHU(t)”%.]l(_Q) + C/ (”“(S)”?.]Z(_Q) + ”v(s)”iﬂ(g)) dS
0

T
< O + 106 ) ds + T ol @)€?). ¢ > 0.
0
This yields, employing (4.86) to estimate the right-hand side,
T
”u(t)”?.]l(g) + 6||U(l)||?_11(9) + C/ (”M(S)”?.]Z(_Q) + ”v(s)”?.ﬂ(g)) dS
0

< O(T, |luollg(o))€®, ¢ >0, 1 €[0,T],

which finishes the proof.
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Remark 8 We have similar error estimates if we assume that ||u€(0) —u°(0)|| ;1 @ =
ce and [[ve(0) — v°(0) | ;o) < cv/e.

5 A Stability Result

As in [6], (3.18)—(3.19) possesses a unique spatially homogeneous equilibrium
(u, v) given by

J
=L+ >0
v F

and

U= k(i + k’:—v)
1_(Z + k’v+v)'

Note that u is not necessarily positive. We thus assume in what follows that
u>0.

The linearized (around (u, v)) system reads

U k ¥
—aAU U— vy =o, 5.87
o O T2 YT Y (5.87)
k
— BAV 4 FV V- U) =0, 5.88
PAVAEY 6 eV ™ (ke ? ©.88)
U v
9 9 Oon T, (5.89)
Uli=o = Up. (5.90)

It is not difficult here to prove the existence, uniqueness and regularity of the solu-
tion to (5.87)—(5.90), assuming that Uy is regular enough. Furthermore, proceeding
as above, we can prove that, if Uy > 0 a.e. x, then U(x,f) > 0 and V(x,7) > 0 a.e.

(x,1).
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Multiplying now (5.87) by * _fu)z U and (5.88) by W i/v)Z V, we obtain, summing
the two resulting equalities,

U+ v SE v e
, (5.91)
+ Q((kfu)zU— « i U)ZV)de =0.
It follows from (5.91) that
d
o =0,
whence
U@ < [IUs], t = 0. (5.92)
Multiplying next (5.88) by V, we easily find
VI < cllUll,
so that
VI < cllUoll, t= 0. (5.93)

We deduce from (5.92)—(5.93) that (u, v) is linearly stable with respect to the L*-
norm. We can also prove the linear stability with respect to the H'-norm, proceeding
in a similar way.

Now, an important question is whether we also have a linear exponential stability
as in [6] for the case € > 0 (see also [5, 9, 10] and [11] for the ODE’s model (1.1)-
(1.2)). Indeed, as mentioned in the introduction, a therapeutic perspective of such
a result is to have the (spatially homogeneous) steady state outside the viability
domain, where cell necrosis occurs (see [9]).

We have, in this direction, the

Theorem 5 The stationary solution (u,v) is linearly exponentially stable, in the
sense that all eigenvalues s € C associated with the linear system (5.87)—(5.88)
satisfy Ze(s) < —§, for a given &€ > 0, Ze denoting the real part.

Proof We first note that it follows from (5.88) that

V=ki(—=BA+ (F+k))™'U, (5.94)
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where k| = (ki’; ) and ky = . Injecting this into (5.87), we obtain

Kk’
(K +v)2

au

— a0 AU + kU — kikoy(—BA + (F + ko)) ™'U = 0. (5.95)

We then look for solutions of the form
Ulx, 1) = Ux)e",
fors € C, s = ¢ + in. Injecting this into (5.95), we find
—aAU + (s + k)U — kiko(—=BA + (F + ko)) ™'U = 0, (5.96)

where

=0on/[. 5.97)
v

This yields
afA?U — (Bs + oF + Bk + ak)) AU + ((F + ka)s + ki F)U = 0, (5.98)
where, owing to (5.96) and (5.97),

i
U _9AU _ o (5.99)
v av

Multiplying (5.98) by the conjugate of U, integrating over £2 and by parts and
taking the real part, we have

@Bl AD||? + (BE + aF + Bki + ak)|||VU||? (5.100)
+((F + k)¢ + kF)[|0]]> = 0.

A

Therefore, when ¢ > 0, then, necessarily, U = 0. Furthermore, (5.100) can have
nontrivial solutions only when

BC + oF + Bk + aky <0
or

(F+ k)l +kF=<0.
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Therefore, necessarily,

oF + ,Bkl + Oékz le

< max(— ,—
&= ( B F+k

) <0, (5.101)

which finishes the proof.
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Weak Formulation for Singular Diffusion
Equation with Dynamic Boundary Condition

Ryota Nakayashiki and Ken Shirakawa

Abstract In this paper, we propose a weak formulation of the singular diffusion
equation subject to the dynamic boundary condition. The weak formulation is based
on a reformulation method by an evolution equation including the subdifferential
of a governing convex energy. Under suitable assumptions, the principal results of
this study are stated in forms of Main Theorems A and B, which are respectively
to verify: the adequacy of the weak formulation; the common property between the
weak solutions and those in regular problems of standard PDEs.

Keywords Comparison principle ¢ Dynamic boundary condition ¢ Evolution
equation * Governing convex energy * Mosco-convergence * Singular diffusion
equation

AMS Subject Classification 35K20, 35K67, 49J45

1 Introduction

Lete > 0,0 < T < ocoand 1 < N € N be fixed constants. Let 2 C R be a
bounded domain with a smooth boundary I" := 952, and let n; be the unit outer
normal to I". Besides, let us denote by Q := (0, T) x £2 the product space of the
time interval (0, T') and the spatial domain §2, and let us set ¥ := (0,7) x I'.
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In this paper, we consider the following initial-boundary value problem of
parabolic type:

8,u—div(|gzl) = 0(1.%), (1.x) € O, 1)

dur — & Arur + Cpu)ir - nr = O (t.xr), (t,xr) € X, 2
w, = ur(t.xr), (t.xr) € X, 3)

1(0,%) = uo(x), x € 2, and ur (0, xr) = uro(er),xr € T, @)

including the singular diffusion —div( \gZ\) with the normal derivative (\gZ\ N A
Here, § € L*(0,T;L*(2)) and O € L*(0,T;L*(I")) are given source terms, and
uy € L*(2) and ury € L*(I") are given initial data. Ar denotes the Laplace—
Beltrami operator on the surface I', and “|.” denotes the trace of a function on
£2. In particular, the boundary conditions (2)—(3) are collectively called dynamic
boundary condition, and it consists of the part of PDE (2) on the surface I", and the
part of transmission condition (3) between the PDEs (1)—(2).

The representative characteristics of (1)—(4) is in the point that this problem
can be regarded as a type of transmission system, containing the Dirichlet type
boundary-value problem of singular diffusion equation (1), (3). So, referring to the
previous works [2, 22], one can remark that:

(*) the expressions of the singular terms in (1)—(2) and the transmission condi-
tion (3) are practically meaningless, and for the treatments in rigorous mathe-
matics, these must be prescribed in a weak variational sense, based on the spatial
regularity in the space BV(£2) of functions of bounded variations.

To answer the remark (%), we here adopt an idea to put:

Up := [uo, uro) in 2 1= L*(2) x L*(I"),
U:=[u.ur]and © := [6,0,] in L*(0, T; ),

and to reformulate the transmission system {(1)-(4)} to the Cauchy problem of an

evolution equation:

U'(t) + 00(U(1)) > O(t) in 5,1 € (0,7), )
U(0) = Uy in 7,
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which is governed by the subdifferential 0@, of the following convex function @,

on J¢:

W = [w,wr] € > O (W) = (W, wr)

&2
|Dw|+/ W), —wp|dl + /IprrlzdF,
/.Q r r 2 Jr (6)

= if w e BV(22) N LX), wr € H(I),

00, otherwise;

where | o |Dw| denotes the total variation of w € BV(£2) N L*(2),and V and dI”
denote the surface gradient and the area element on I”, respectively. Besides, we
simply denote by % the effective domain of @, i.e.

W = (BV(2) N LX(2)) x H'(I'),
and we propose to define a weak solution, i.e. the solution to a weak formulation to

the system (1)—(4), as follows.

Definition 1 A pair of functions [u, ur] € L*(0, T; ) is called a weak solution to
(1)—(4), iff. u € W'2(0, T; L*(£2)), |Du|(£2) € L>(0,T), ur € W"2(0,T; L*(I")) N
L>®(0,T; H'(I")) and

/8ru(t)(u(t)—z)dx+/ |Du(t)|+/ lu). (1) —ur@)|dlr
7] Q r
+ [ dur@r® ~zryar +& [ Vrur@)-rr© -zrar
r r
5/ |Dz] +/ lzj, —zr|dIl’, forany [z,zr] € #'. @)
17, r

As a natural consequence, the above Definition 1 will raise some issues con-
cerned with:

(ql) the adequacy of Definition 1 as the variational characterization for the singular
transmission system (1)—(4);

(q2) the exemplification of fine properties which sustain common properties
between our weak solutions and the solutions to regular transmission systems
via the standard dynamic boundary conditions.
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In the issue (q1), it will be essential to ensure that:

(*x%) the Cauchy problem (5) can be said as an invariant formulation to define the
weak solution, i.e. the finding formulation is well-established, if various approx-
imation approaches are applied by using many kinds of relaxation methods, with
any convergent orders of the relaxation arguments.

Then, it will be recommended that some of such relaxation methods are involved in
the numerical approaches to our singular system.

In view of this, we consider the following regular transmission system via the
standard dynamic boundary condition:

du — div (Vfs(Vu) + k2Vu) = 0(1,x), (1, %) € O, (8)

dur — e* Arur + (Vfs(Vu) + &*Vu) . -nr = 0r(t,xr), (t,xr) € X, )
u, =ur(t,xr), (t,xr) € X, (10)

(0, x) = up(x),x € 2, and up (0, xr) = upo(xr).xr € I'; (11)

as relaxed versions of (1)—(4). Here, x > 0 and § > 0 are given constants, and
Vfs € L®(RY)V is the differential (gradient) of a convex function f; € W' (RY).
Besides, the sequence {fs}s-o is supposed to converge to the Euclidean norm | - |,
appropriately on RV, as § — 0.

Now, by changing the setting of {f5}s~0 in many ways, we can make various
approximating problems that approach to (1)-(4) as «, § — 0. Also, we note that the
variety of {f}s-o can cover typical numerical regularizations for singular diffusions,
such as regularization by hyperbola:

w € RY > fi(w) := y/|w|? + 82, for § > 0,

and the Yosida-regularization of Euclidean norm | - |, etc., even if the convergence
of {fs}s>0 is restricted to the uniform sense. Incidentally, we can take form any
convergent order of the coupling (x,8) — (0,0), up to the choices of sequences
{Kkn}od, C {k} and {8,},2, C {8}. Such wide flexibility will be reasonable to
authorize our weak formulation, and this is the principal reason why we settle the
relaxation system as stated in (8)—(11).

In addition, referring to the previous relevant works, e.g. [8—11, 14], we can see
that each approximating problem (8)—(11) is equivalent to the Cauchy problem of
an evolution equation:

U'(t) + 085 (U(D) 3 O(1) in A, 1€ (0,T),

U) =Uy in 7; (12)
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which is governed by the subdifferential d&§ of a convex function @§ : 7 —
[0, oo] defined as:

V = [v,vor] € H + &5(V) = & (v,vr)

K* & )
Vv) + Vv dx + / V5rvr|©dr,
[ (e + 5 rvo) ax+ S [ 19ror] .
ifveH (2),vr € H(I') and V|, =vr in L2(I),

00, otherwise.

Hence, for the verification of (q1), it would be effective to observe the continuous
dependence between the Cauchy problems (5) and (12), as «,8 — 0, for every
regularizations {fs}s-o. Furthermore, on account of the general theories of nonlinear
evolution equations and their variational convergence [4, 6, 7, 18], the essence of
(ql) can be reduced as follows.

(A) Anissue to verify that the convex function @, on 7, given in (6), is a limit of
various sequences of relaxed convex functions {&@s }, s>0 on .77, in the sense
of Mosco [24], as k,§ — 0.

In the meantime, for the issue (q2), we focus on the comparison principle for the
weak solutions to (1)—(4), stated as follows.

(B) If [ub, ul},o] € W and [0%, 0%] € L*(0,T; ), fork = 1,2, and

up <ud ae.in 2,0' <% ae.in Q,
1 2 1 2
Upo < up, a.e.on I 6, <6; ae.on X,

then, it holds that:

1

u§u2

a.e.in Q, and u} < u% a.e.on X,

where for every k = 1,2, [uf, uk.] € L*(0, T; ) is a solution to (1)—(4) in the
case when [uo, uro] = [u§, ufo] and [0, 1] = [6*, O}].

Indeed, in regular systems like (8)—(11), the property kindred to (B) can be verified,
immediately, by applying usual methods as in [2, 6, 7, 18, 22]. But in our study, the
issue of comparison principle (B) will be delicate, because the boundary integral
[r Wi, —wr|dI as in (6) will bring non-trivial interaction between the unknowns
u and ur in the transmission system (1)—(4).

In view of these, the discussions for the above (A) and (B) are developed in
accordance with the following contents. In Sect.2, we prepare preliminaries of
this study, and in Sect. 3, we state the results of this paper. The principal part of
our results are stated as Main Theorems A and B, and these correspond to the
issues (A) and (B), respectively. Then, the continuous dependence between Cauchy
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problems (5) and (12) will be mentioned as a Corollary of Main Theorem A. The
results are proved through the following Sects. 4 and 5, which are assigned to the
preparation of Key-Lemmas, and to the body of the proofs of Main Theorems and
the corollary, respectively. Furthermore, in the final Sect. 6, we mention about an
advanced issue as the future prospective of this study.

2 Preliminaries

In this section, we outline some basic matters, as preliminaries of our study.

Notation 1 (Notations in Real Analysis) For arbitrary a, b € [—00, oo], we define:
aV b := max{a,b} and a A b := min{a, b};

and in particular, we write [a]T := a Vv 0 and [b]” := —(0 A b).

Let d € N be any fixed dimension. Then, we simply denote by |x| and x - y the
Euclidean norm of x € R¢ and the standard scalar product of x, y € R, respectively.
Also, we denote by B? and S¢~! the d-dimensional unit open ball centered at the
origin, and its boundary, respectively, i.e.:

B := {xERd |x| < 1} and S = {xERd x| = 1}.

In particular, when d > 1, we let:

XVy:.= [xl Vyl,...,deyd],xAy:: [xl /\yl,...,diyd],

for all x,y € RY.
Wt =[]t ] and B =[] Dl s

Besides, we often describe a d-dimensional vector x = [x1,...,x4] € R? as x =
[X,x4] by putting X = [x;,...,xs—1] € R¥!. As well as, we describe the gradient
V =1[0;,...,04]asV = W, d4] by putting@ = [0y, ..., d4—1], and additionally, we
describe Vy, d;, 0y, = 1,...,d, and so on, when we need to specify the variables
of differentials.

Notation 2 (Notations of Functional Analysis) For an abstract Banach space X,
we denote by |- |y the norm of X, and denote by y= (-, - ) x the duality pairing between
X and the dual space X* of X. In particular, when X is a Hilbert space, we denote by
(-, - )x the inner product in X.

Notation 3 (Notations in Convex Analysis) Let X be an abstract real Hilbert
space.

For any closed and convex set € C X, we denote by 7w : X — % the orthogonal
projection onto €.
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For any proper lower semi-continuous (l.s.c. from now on) and convex function
¥ defined on X, we denote by D(¥) its effective domain, and denote by 0¥ its
subdifferential. The subdifferential 0¥ is a set-valued map corresponding to a weak
differential of ¥, and it has a maximal monotone graph in the product space X x X.
More precisely, for each zy € X, the value 0¥ (z9) is defined as a set of all elements
zg € X which satisfy the following variational inequality:

(z5.2—20)x < W¥(2) — ¥(z0), forany z € D(¥).

The set DY) := {z € X|0¥(z) # @} is called the domain of 0¥, and the
notation “[z9,z3] € 0¥ in X x X” is often rephrased as “z; € 0¥ (z) in X with
20 € D(0¥)”, by identifying the operator 0¥ with its graph in X x X.

On this basis, we here recall the notion of Mosco-convergence for sequences of
convex functions.

Definition 2 (Mosco-Convergence: cf. [24]) Let X be an abstract Hilbert space.
Let ¥ : X — (—o0, 00] be a proper 1.s.c. and convex function, and let {¥,}°2 | be a
sequence of proper L.s.c. and convex functions ¥, : X — (—o00, 00], n € N. Then, it
is said that ¥, — ¥ on X, in the sense of Mosco [24], as n — oo, iff. the following
two conditions are fulfilled.

(M1) Lower-bound condition: lim ¥,(z,) > ¥(2), if Z € X, {Z,}52, C X, and

n—>oo
Zn — z weakly in X as n — oo.

(M2) Optimality condition: for any z € D(¥), there exists a sequence
{2,322, C X such that z, — zin X and ¥, (2,) — ¥(2), as n — oo.

Notation 4 (Notations in Basic Measure Theory: cf. [1,5]) Foranyd € N, the d-
dimensional Lebesgue measure is denoted by .2, and unless otherwise specified,
the measure theoretical phrases, such as “a.e.”, “dt”, “dx”, and so on, are with
respect to the Lebesgue measure in each corresponding dimension. Also, in the
observations on a C'-surface S, the phrase “a.e.” is with respect to the Hausdorff
measure in each corresponding Hausdorff dimension, and the area element on S is
denoted by dS.

Let d € N be any dimension, and let A C R be any open set. We denote by
A (A) (resp. #oc(A)) the space of all finite Radon measures (resp. the space of all
Radon measures) on A. In general, the space .# (A) (resp. .#oc.(A)) is known as the
dual of the Banach space Cy(A) (resp. dual of the locally convex space C(A)).

Notation 5 (Notations in BV-Theory: cf. [1,5,12,15]) Letd € N be a dimension
of the Euclidean space R?, and let A C R“ be an open set. A function u € L!'(A)
(resp. u € L} _(A)) is called a function of bounded variation, or a BV-function
(resp. a function of locally bounded variation, or a BVj,.-function) on A, iff. its
distributional differential Du is a finite Radon measure on A (resp. a Radon measure
on A), namely Du € .#(A) (resp. Du € #,.(A)). We denote by BV(A) (resp.
BVioc(A)) the space of all BV-functions (resp. all BVj,.-functions) on A. For any

u € BV(A), the Radon measure Du is called the variation measure of u, and its
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total variation |Du| is called the total variation measure of u. Additionally, the value
|Du|(A), for any u € BV(A), can be calculated as follows:

|Du|(A) = sup% /udivqody @ e ClA)! and |p| <1onA; .
A

The space BV(A) is a Banach space, endowed with the following norm:
lu|pva) = |u|L1(A) + |Du|(A), foranyu € BV(A).

Also, BV(A) is a metric space, endowed with the following distance:

[u,v] € BV(A)? > |u— Vi) + ‘/ | Du| —/ |Dv|
A A

The topology provided by this distance is called the strict topology of BV(A) and
the convergence of sequence in the strict topology is often phrased as “strictly in
BV(A)”.

In particular, if d > 1, if the open set A is bounded, and if the boundary 0A
is Lipschitz, then the space BV(A) is continuously embedded into L@~V (A) and
compactly embedded into LY(A) forany 1 < g < d/(d — 1) (cf. [1, Corollary 3.49]
or [5, Theorem 10.1.3-10.1.4]). Besides, there exists a (unique) bounded linear
operator Zy, : BV(A) — L'(dA), called trace, such that T3, = @|4 on A for any
@ € C'(A). Hence, in this paper, we shortly denote the value of trace Fy4u € L' (0A)
by u,,. Additionally, if 1 < r < oo, then the space C*°(A) is dense in BV(A)NL"(A)
for the intermediate convergence (cf. [5, Definition 10.1.3. and Theorem 10.1.2]),
i.e. for any u € BV(A) N L"(A), there exists a sequence {u, ;52 C C*°(A) such that
uy — win L'(A) and [, |Vu,|dx — |Du|(A) as n — oo.

Remark 1 (cf. [1, Theorem 3.88]) Let 1 < d € N, and let A C R? be a bounded
open set with a Lipschitz boundary dA. Then, it holds that:

/ U, (Y - nga) d#~" = /udiv1/xdx+ / ¥ - Du, forany ¥ € CH(R%)?,
0A A A

where nys denotes the unit outer normal on dA. Moreover, the trace 34 : BV(A) —
L'(dA) is continuous with respect to the strict topology of BV(A). Namely, the
convergence of continuous dependence holds:

Toasty — Tpau as n — oo, foru € BV(A) and {u,}o2; C BV(A), (14)

in the topology of L' (dA), if u, — u strictly in BV(A). However, in contrast with
the traces on Sobolev spaces, it must be noted that the convergence (14) is not
guaranteed, if u,, — u weakly-* in BV(A), and even if we adopt any weak topology
for (14) (including the distributional one).
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Notation 6 (Extensions of Functions: cf. [1,5]) Letd € N, and let B C R? be a
Borel set. For any y € .#,.(R?%) and any j-measurable function u : B — R, we
denote by [u]** an extension of u over RY. More precisely, [u]™ : RY — Ris a
Lebesgue measurable function such that [#]** has an expression as a p-measurable
function on B, and [u]** = u u-a.e. in B. In general, the extension of [u]™* : RY — R
is not unique, for each u : B — R.

Remark2 Let1 < d € N, and let A C R be a bounded open set with a C'-

boundary dA. Then, for the extensions of functions in BV(A) and H 2 (0A), we can
check the following facts.

(Fact1) (cf. [1, Proposition 3.21]) There exists a bounded linear operator & :
BV(A) — BV(RY), such that:

— & maps any function u € BV(A) to an extension [u]*™* € BV(RY);

— forany 1 < g < oo, &4(WH(A)) € WH4(RY), and the restriction
Exlwraay : Whi4(A) — W'4(R") forms a bounded and linear operator
with respect to the (strong-)topologies of the restricted Sobolev spaces.

(Fact2) (cf.[5, Theorem 5.4.1 and Proposition 5.6.3]) There exists a bounded linear
operator &y, : H 2 (0A) — H'(RY), which maps any function o € H 2 (0A)
to an extension [o]* € H'(RV).

Next, we prepare the notations for the spatial domain §2 and functions and
measures on this domain.

Notation 7 (Notations for the Spatial Domain) Throughout this paper, let 1 <
N € N, let 2 C R" be a bounded domain with a C*®-boundary I" := 92 and
the unit outer normal n € C*°(I")V. Besides, we suppose that 2 and I" fulfill the
following two conditions.

(£20) There exists a small constant 7 > 0, and the mapping

dr :x € 2+ inf |x—y| € [0, 00),
yer

forms a smooth function on the neighborhoods of I":
) .= {x € R dr(x) < r}, for every r € (0, rr].

(£21) There exists a small constant r« € (0, rr], and for any x € I" and arbitrary
o, € (0, r«], the neighborhood:

vt € (-r,r),yel —xr, and

GX[‘(pv r) = y +XF + nr |y _ (y . nr(_xl—v))nr(xl")i <p s

is transformed to a cylinder:

Mo(p.r) == {& = [£,6n] e RY £ € pB" " and &y € (—r,7) },
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by using a uniform C®°-diffeomorphism Ey. : Gy (r«, %) — Io(r«,r+).
Additionally, for any x € I, there exists a function y,. € C®(r,BV71),
a congruence transform A, : RY — RY and a C*®-diffeomorphism H,, :
Ay Gy (15, 1) = ITo(rs, r+) such that:

(w0) &, = H, o Ay, as amapping from G, (r«, rx) onto ITo(r«, rx);
(@1) y,-(0) = 0, and Vy,,.(0) = 0in RV"1;
(w2) forevery p,r e (0, r«],

A G (p.1) = Yo (o, 1) 1= {y =[.on] €RY [Fov — v 3] € Holp, 1) }

and in particular,

A (TG (p.7) = |y = v DI € RY 5 BV |
(w3) forevery p,r € (0, r«],

H,\:r Ly = B@yN] € Yxr(p’r) = S = ery = [§7yN - er@)] € HO(/Ov r)‘

Remark 3 From (£20), we may further suppose the following condition.

(£22) For any o > 0, there exists a constant pJ € (0, 7] such that:

3 ,Og ~§ 07 Iyxrlcl(p]BN—l) f o and
{E oy @)+ ] EepBY | N T(a/2) =0,
for any xp € I" and any p € (0, p2].
Notation 8 (Notations of Surface-Differentials) Under the assumption (£20) in
Notation 7, we can define the Laplacian A on the surface I, i.e. the so-called

Laplace—Beltrami operator, as the composition Ay := divp o Vp : C®°(I") —
C*(I") of the surface gradient:

Vrg := V[p]®™ — (Vdr ® Vdr)V[p]®*, forany ¢ € C®°(I"),
and the surface-divergence:
divrow := divjw]™ — V([w]®* - Vdr) - Vdr, foranyw = [0, ..., woy] € C2()V.
As is well-known (cf. [25]), the values Vi¢ and divrw are determined inde-
pendently with respect to the choices of the extensions [p]™* € C*°(RM) and

[ = [[]*,....[ox]*] € C®(R)", and moreover, the operator —Ap can
be extended to a duality map between H'(I') and H~!'(I"), via the following
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variational identity:

w1 (—Are. ¥)ma = (Vro, VI’W)LZ(F)Ns forall [p, y] € HI(F)Z-

Finally, we prescribe some specific notations.

Notation 9 Let R, > 0 be a sufficiently large constant, such that Bg := RoBY D
£2. Besides, for any u € BV(£2) and any g € Hé(F), we denote by [u]g* €
BV(Bg) N H'(Bg \ £2) an extension of u, provided as:

v u(x), if x € 2,
x € RY > [ulg*(x) := (15)
[g]™(x), if x € Be \ £2,
with the use of an extension [g]** € H!(R") of g.

Remark 4 As consequences of BV-theory (cf. [1, Corollary 3.89], [5, Exam-
ple 10.2.1] and [12, Theorem 5.8]) and Remark 2, we can verify the following
facts.

(Fact3) Forany u € BV(§2) and any g € H> (I"), it holds that:

D[] (B) = [ 1Dul + / luy —gldl" + / VIl d.
BNQ BOI B\2

for any Borel set B C By, and any extension [g]** € H'(RY) of g.

(Fact4) Forany g € H : (I'), the functional:

we LN(Q) > || (2)
/ D] + [ luy, — gldI” = D] (Be) — D[] (Be \ 2).
2 r

" if u € BV(£2),
0o, otherwise,

forms a single-valued proper L.s.c. and convex function on L!(£2).

(Fact5) (cf. [2, 3, 28]) [D[uy]g*|($2) — |Dulg*|(£2) as n — oo, whenever {u,};2,
C BV(R2) N L*(2), u € BV(2) N L*(£2) and u,, — u in L>(£2) and strictly in
BV(§2) asn — oo.

Remark 5 From the definition (6), we easily see that @, is proper and convex. Also,
the above Remark 4 (Fact4)—(Fact5) lead to the lower semi-continuity of this @,.
In fact, taking arbitrary W = [w,wr] € S and {W,, = [w,, wr,]}o2, C #, such
that:

W, = [wWu, wru] = W = [w,wr]in 5, as n — oo,
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we immediately see from Remark 4 (Fact5) that:

lim @ (W,) > lim |[D[w,]7.[(£2) — lim / \wri, —wrldl’
n—>oo r

n—>oQo n—>oo

82
+ 7 lim [ |Vrwr,|?dD

n—>o0 JI"

82
= DU, (@) + ) [ 19w Par = 0,0,
r

3 The Results of This Paper

First, we prescribe, anew, the product Hilbert space .7# := L*(£2) x L*>(I"), with the
inner product:

(2. 2r) [, 27)) o= (@ Do) + @r 20
for all [zk,z’}],k =1,2.

As is mentioned in Introduction, the Hilbert space 57 is to be the base-space of the
convex functions as in (6) and (13), and the Cauchy problems (5) and (12). Also, let
W = (BV(2) N L*(£2)) x H'(I") be the effective domain of the convex function
P, given in (6), and let ¥ be a closed linear subspace in the product Hilbert space
H'(2) x H'(I'"), defined as:

veH (2),vr €e H(I)

Y o= , e H
[v.vr] and v, =vrae.onl’

Next, we prescribe the assumptions in our study.

(A0) & > 0is a fixed constant, and § > 0 and k¥ > 0 are given constants. Besides,
1 < N e Nis a fixed constant, and 2 C R is a bounded domain with a
smooth boundary I := 942 and the unit outer normal n, that fulfills the
conditions (§£20)—(£21) in Notation 7.

(AD) {fs}o<s<1 C W!(RN) is a sequence of convex functions such that

£5(0) = 0 and fs(w) > 0, forany 0 < § < 1 and any w € R",
andf; — |- |(= |- |g~), uniformly on RV, as § — 0.

Remark 6 The assumptions (A0)—(A1) cover the setting of {f5}s~0 = {| - |}, and this
setting is just the case that was mainly dealt with in the previous work [11].
Now, the results of this paper are stated as follows.
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Main Theorem A (Mosco-Convergence) Under (Al)—(A0), let @ : H —
[0, 00] be the functional given in (6), and for every § > 0 and k > 0, let
&f : A — [0,00] be the proper Ls.c. and convex function given in (13). Then,
for every sequences {8,}72, C (0, 1] and {k,}32, C (0, 1], such that:

8, — 0andk, — 0, asn — 00, (16)

the sequence {@,}%2, of convex functions @, = &5 : A — [0,00], n € N,
converges to the convex function @, on F, in the sense of Mosco, as n — oo.

Corollary 1 (Continuous Dependence of Cauchy Problems) Ler 0 < T < o0,
and for every Uy = [ug,uro]l € # and @ = [0,0r] € L[*0,T;%), let
U = [u,ur] € L*(0,T;#) be the solution to (5). Also, for every n € N,
Up = [ug,uo] € ¥, and ©" := [0",01] € L*(0,T; ), let U" := [u",u}] €
W20, T; ) N L®(0,T; V) be the solution to (12) in the case when § = §, and
K =Ky, Le.:

(U™ (1) + 3D, (U"(1)) > O™(1) in H#, a.e.t e (0,T),
U0) = Ul in .

On this basis, let us assume that:
Uy — Uy in # and O" — O in L*(0, T; ), with (16).
Then, the sequence {U" = [u", u}.]}°2, converges to U = [u, ur] in the sense that:

U" — U inC([0,T]; ),
weakly in W'2(0, T; ), as n — oo,

and

T T
/ @, (U" (1)) dt — / @, (U(1)) dt, as n — oo.
0 0

Main Theorem B (Comparison Principle) For every k = 1,2, let [uf, ut. (] € #
be given initial data, let [0%,0%] € L*(0,T; ) be a given source term, and
let [u*,uk.] € L*(0,T; ) be a weak solution to {(8)~(11)} in the case when
[uo, uro] = [ul, ub-o] and [0, 0r] = [6%, OK]. Then, it holds that:

1 =1 gy + [l =317 O

<e' (“”(1) —ug]* iiz(ﬂ) + “”}10 - ”%“,0]4— |i2(r))
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t
. 2 2
+ [ =0 gy + 16— G @) i ()
forallt €[0,T].

Remark 7 In Main Theorem B, we can suppose the well-posedness for the weak
formulation (7), because the Definition 1 lets the well-posedness be just a straight-
forward consequence of the general theory of nonlinear evolution equations [6, 7,
18]. Also, we note that the comparison principle (B), mentioned in Introduction, is
immediately deduced from the inequality (17).

4 Key-Lemmas

In Main Theorem A, the keypoint is in the construction method of approximating
sequences for BV-functions, which is stated in the following Key-Lemma A.

Key-Lemma A For any [ii,iir] € W, there exists a sequence {ii;}?>, C H'(£2),
such that:

e = urin H;(F),foranyﬁ €N, (18)

ﬁg—)ﬁian(.Q)and/ |Viug|dx—>/ |D12|+/ it —ar|drl,
2 2 r

as — oo.

19)

Meanwhile, the keypoint of Main Theorem B is in the so-called T-monotonicity of
the subdifferential d®,, which is stated in the following Key-Lemma B.

Key-Lemma B Let @, be the convex function given in (6). Then, the subdifferential
0Dy fulfills the following inequality of T-monotonicity:

(U*,l _ U*,2’ [Ul _ U2]+)32” — (u*’l _ u*,z’ [ul _ “2]+)L2(9)
iyt = fuf = )Py = 0, 20)
for all [U*, U**¥] = [[uk, uk], [u**, u™X]] € 0Py in H# x .k = 1,2.
r r

Now, before the proofs of these Key-Lemmas, we prepare some auxiliary lemmas
and remarks.
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Lemma 1 Let R’f_ be the upper half-space of RV, i.e

RY == {[E,&] e RN E e RV and &y > 0} .
Then, for any w € H'(R¥™1) N BV(RN™Y), there exists a sequence {[w]%},~0 C
Hl(R )N BV(R ), and for any t > 0, there exists a small constant ry, € (0, ],

such that:

ri <t and I[z?]]?‘(g, En) =0, foranyr e (0,r,]

i anda.e. [E,EN] € RI_\L, satisfying €y > r, @D
[@] )y = @ in H? @®R Y forany r e (0,17 ], (22)
and
[l ILZ(RN) <t and D[w]*| RY) < | |1 @v—1y + T,
(23)
foranyr e (0,rL].
Proof Let us define:
[=17©) = [@] ¢ &v) = [1 =~ 'aa] T ). o4

fora.e. £ € RV, ae. &y > 0 and any r > 0.

Then, from the assumption w € H'(RV™!) N BV(RV™!), we immediately check
that {[@ ]*},~0 C Hl(]R )N BV(R ).
On this basis, for any t > 0, let us take a small constant 7 € (0, 7], such that:

T

rr. € (0, 1], \/rm |@|2@v-1) < T and @ / Vo |dé < 1. (25)
3 2 RN—I

Then, we can see the conditions (21)—(22) by means of (24)—(25) and a standard
argument of the trace. Additionally, with (24)—(25) in mind, we can verify the
remaining (23) as follows.

o1 e, = [ Ju- el @)| d

- (/ (1—r lsN)zdsN) (/R |w(§)|2d§)

|lU|Lz(RN < 2, forany r € (0,7 ],
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and

PI=IE) = [ VIl de

RY

< [, CmE©IdE+ [ indorels
I :
K}
;/;w] Ve |dE + | | @)

|@ |1 (rv—1) + T, forany r € (0,r].

- X0 (&)@ (§)| dE

1= e I @) de + [

N
RY

|

Lemma 2 Forany by € H'(I") and any £ € N, there exists a function b, € H' (£2)
such that

Do, =0 in H>(I), for€ =1,2,3,.... (26)
be(x) =0, foraexe 2\I'Q Yandt =1,2,3,..., (27)

and
Delp@) < 27" and |Dd| (2) < |Orlpry +27¢ for& =1,2,3,....  (28)

Proof Let ¢ > 0 be arbitrary, and let p be the constant as in (§22). Since
I' € RM! is compact, we can take a large number m$, € N and a finite sequence
{x‘}l, .. ,x‘;m??} C I, such that:

mg
I'(re/2) C GS = U G7, with the neighborhoods (29
i=1

G? = Gx?i(p‘;,r*), i=1,...,mg, asin(21);

and then, we can take the partition of unity {n? }:’f"l C CX(RY) for the covering G,
such that:

g
0<nf € CO(G)) fori=1.....m5, and » nf =1onI(r./2). (30)

i=1
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Next, let us take any v > 0, and with (£21) and Lemma 1 in mind, let us set:

., with AY := Ay and H :=Hg ,i=1,...,mg, (€2))

xr.i’

) (e or)((E9)7'E), )
w?(£) = if€ € pIB¥'andi=1,...,m%, forae & € RV, (32)
0, otherwise,
and

?g::min{rfvfizl,---,m}rg}. (33)

Based on these, we define a class of functions {07 | o, T > 0}, as follows:

(o}
me
onex ( mo
Zl[wi b (‘-‘i x)’

UL (x) 1= { i=1
if x € G7, forsomei e {1,...,mg}, (34)
0, otherwise,
fora.e.xe 2 andallo, v > 0.
Then, as direct consequences of (29)-(34) and Lemma 1, it is inferred that:
”r Ar A 1
UJGHI(Q)’ va|l'_vrlnH2(F)7 (35)

and 0Z = 0a.e.on §2\ I'(z), forall o, v > 0.

Also, in the light of (23), (§£22) and Lemma 1, we compute that:

o 1 o 1
me 2 2 mg 5 2
102122y = [/Q\Z[[w;’ (50| dx] = [/R =715 ®)] ds}
i=1 i=1 +
<mgt, forallo, 7 > 0, (36)

and
my
[ viizlax < ) [ [
mg
=3 / o | PIPIECE |

N(A7$2)

mo
<D+ Tl [ V@) d
i=1 +
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m, ~ ~
<a+a ([, mr@id)
i=1 \JRV
mg
5(1+U)Z / n?|\orldl +t
= \Jaeinr

< (L4 0)|or|pry +mye(l +0), forallo, r > 0. (37)

Now, for any £ € N, let us take two constants oy, t¢ € (0, 1], such that:

(A +o)|0or |y < orlpg +2750

for{ =1,2,3,.... 38

7+ mgr(l +0p) <2771, . %)

Then, on account of (35)—(38), we will conclude that the function 0, := f)f,‘l €
H'(£2), for each £ € N, will fulfill the required condition (26)—(28). O

Proof of Key-Lemma A The proof is a modified version of [22, Theorem 6]. Let u €
BV(§2)NL?(£2) be arbitrary. Then, by the smoothness of I" as in (£2 1)—(£22), we can
apply the standard regularization method of BV-functions (cf. [5, Theorem 10.1.2]),
and can find a sequence {¢,};2, C C*°(£2), such that:

@¢ — fin L*(£2) and strictly in BV(£2), as £ — oo. (39)
Besides, from Remark 1, it follows that:

G — iy in LN(T), as £ — oo. (40)

Next, for any £ € N, we apply Lemma 2 as the case when 0y = fip — @, in
H: (I'), and then, we can take a function @ € H'(£), such that:

~ ~ ~ . 1
Yo, = ir — @q- in H2(I7),

o _ N . . _ 41
Vel i2ie) <27 and / |Vre| dx S/ lar — | ar + 275
fos r
Based on these, let us define:
fg = Q¢ + Yy in L(2), forl =1,2,3,.... (42)

Then, in the light of (39)—(41), it is computed that:

N N ~ N N N A . 1
U = Qo + V| = Qo) + (ar —(p(h.) =urinH2(I), ford =1,2,3,...,
(43)
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lite — it| 202y = [(Pe — W) + Vel 20
= |¢( - 12|L2(Q) + 2_£ —0asl — oo, (44)

and

hm / |Vitg| dx < hm / V| dx + hm / |VW|dx

5/ |Dit| + lim (/ |ap—¢3g|r|dr+2—f)

k9] {—00 r

:/ |Da|+/ |ty — ir|drT. (45)
2 r

Additionally, having in mind Remark 4 (Fact4) and (43)—(44), one can also see that:

lim |Vit4|dx— lim (/ |Vug|dx+/ |u4|r—u1~|d1")

{—>00 {—00

/ \Dil| + / iy, — | dT (46)

On account of (43)-(46), we conclude that the sequence {ii¢}72 | C H 1(R2), given
by (42), is the required sequence, fulfilling (18)—(19). O

Proof of Key-Lemma B Let us set:
K = {Wz [w,wrle # w<0, ae.in £2 and wr <0, a.e.on F}.

Then, by using the orthogonal projection 7 %, : J€ — %, we can reformulate the
conclusion (20) to the following equivalent form:

(U = U2, (U = 1) =y (U' = UP)) ,

>
- 47
for all [U*, U**] € 0@ in 2 x 5,k = 1,2. “7)

Here, according to the general theory of T-monotonicity [19], the above (47) is
equivalent to:

P (W' — (W' = W2)) + Bu(W? + 7 (W' — W?))
< O (WY 4+ @, (W?), forall W e # k= 1,2.
Additionally, from the definition of %, one can easily check that:

W — 7m0 (W = W2) = W v W2,

forall W8 e #,k = 1,2.
W2 4 7 (W — W2) = WE AW, O °
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Based on these, our goal can be reduced to the verification of:

B (W' V W2) + Dy (W' A W2) < B (W) + Dy (W2),

48
for all W* € D(Dy), k=1,2. (48)

Now, to verify (48), we apply Key-Lemma A, and we can prepare two sequences
(Vi = [vf, UI;“,Z]}?.;I C ¥,k = 1,2, such that:

v = vh, = whin Hé(F), forevery{ € Nand k = 1,2, (49)

vf — whin L2(2) and/ |Vvéf|dx—>/ |Dwk|+/ |wk | —wh|dr,
o) 2 r

as { — oo, forevery k = 1,2.

(50)

Subsequently, we compute that:
D (Vi vV VY + (V] AVD)
&? &?
=/ |V, | dx + / |Vv?| dx + / \Vrwp 2 dl + / \Vrwh|?dr,
2 k9] 2 r 2 r
forany £ € N.
Now, taking into account (49)—(50) and the convergences:
VivVvi—s Wiy Wrand V) AV — W' AW?in J# as £ — oo,
the inequality (48) is deduced as follows:
Dy (W' vV W) + Dy (W' A W?)
&2 &2
< lim / |V | dx + / |Vo?|dx | + / |Vrwp 2 dl + / |Vrwh |2 dl
t—oo \ /o Q 2 Jr 2 Jr
= O (W) + @ (W?).

|

5 Proofs of the Results

In this section, we prove the results by means of the lemmas and remarks prepared
in previous sections.
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Proof of Main Theorem A We begin with the verification of the part of lower-bound
condition of Mosco-convergence.

Let us take any W = [, wr] € # and any sequence (W, = [, Wral}s2, C ¥
such that

W, = Dop, W] — W = [, 0] weakly in 7, as n — oo.
Then, for the verification of the inequality of lower-bound condition:

lim &,(W,) > &.(W), (51)

n—>oo

the situation can be restricted to the case that:

Zlim @nl(\v/g) = lim cD,,(Wn) < 00, for some subsequences {n¢};>, C {n},
—00 n—00

and {V; = [V¢, e} i= {Wa, = Donp Wrn [}82, C {Wa),

(52)
because the other ones can be said as trivial. Also, from (A1), we can see that:
2 2
- y Ky . 2 € .2
Dy (Vo) < | |Vl dx + |V|* dx + |Vrvre|”dl
2 2 Q 2 r
< &, (Vo) + £V(R2) sup |fs,, (@) —|ol|. for£ =1.2,3,....  (53)
w€RN

The conditions (52)—(53) imply the boundedness of the sequence {\v/g}g’;’l (C¥)in
# , and in addition, the assumption (A1) and the lower semi-continuity of @, leads
to the inequality (51) of lower-bound condition, via the following calculation:

lim ®,(W,) = lim &, (V)

n—00 £—o0

> lim @4 (V) — £V(2) lim sup |fs, (@) — |w|| = ®x(W).
£=00 RN ¢

{—00

Next, we show the part of optimality condition. This part can be obtained by
applying (A1), Key-Lemma A and the diagonal argument.

Let us fix any function W = [, W] € # . Then, Key-Lemma A enables us to
take a sequence {\A/g = [¢, Dre]}32, C 7, such that:

Be, = Dy = W in H>(I), for € =1,2,3,..., (54)

Vi = [00. D] — W = [, or] in 2,

/|Vﬁg|dx—>/ |D$V|+/ (i — ol dr, 2SE T (59)
2 2 r
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Here, for any £ € N, let us take a large number 71; € N such that:
Ky A 12 —t A
2" / |Vi|“dx <27°, forany n > ng. (56)
Q

Besides, we define a sequence {W, = [, Wral}2, C ¥, by letting

Ve = [0, O] in 7,

if ng < n < gy, for some £ € N,
Vi=[01,0r1]in 7Y,

if1 <n<ny,

WnZ[VAVn,VAVI",n] = forn=1,2,3,....

(57)
Then, on account of the (54)-(57), it is inferred that
D, (W,) — Do (W)

R K2 . . R
< / (ﬁgn(an) + 7 |an|2) dx — (/ |Dw| +/ Wi —wﬂd[‘)'
I?) , 2 2 r

8 A A
+ ‘/ (IVrWr,nlz — |Ver|2) dl’
r

2
/|w,,|dx—(/ |D¢V|+/ |w|r—wp|dr)'
2 2 r

+2N(82) sup |fs, (@) — ||| +27°,

w€RN
foranyng <n <ngy1, € =1,2,3,...,

IA

and it implies the convergence lim, @n(Wn) = P, (W), required in optimality
condition.
Thus, we conclude Main Theorem A. |

Remark 8 Let us simply denote by @y := ®y|y the restriction of @, onto ¥, more
precisely:

2
V=[v,or] € ¥ > &(V) = Bo(v,vr) := / |Vo|dx + 82 / \Vyop2dr
2 r

Then, as a consequence of Main Theorem A, one can observe that @, coincides
with the lower semi-continuous envelope @, of the restriction @y, i.e.:

. . Va2, C ¥ and
D, (W) = @g(W) :=inf{ lim Py(V, n= ,
(W) o(W) m{,lggo o )Vn—>Win%asn—>oo
forany W € 7.

(58)
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In fact, from (58) of &, we see that the lower semi-continuous envelope @y is a
maximal Ls.c. function supporting @y on ¥". So, we immediately have:

@, < ®yon F, and D(Py) C D(Dy) =W (59)

Meanwhile, for any W = [Wwr] € D(®), taking the sequence Ve =
[D¢, Dre]}f2, C 7, as in (54)—(55), enables us to deduce that:

(W) < Jim (Vi) = Di(W). (60)

(59) and (60) imply the coincidence @, = @, on J7.

Proof of Corollary 1 This corollary will be obtained as straightforward conse-
quences of Main Theorem A and the general theories of abstract evolution equations
and their variational convergences, e.g. [4, 6, 7, 18], and so on. O

Proof of Main Theorem B By the assumption, we find two functions U** €
L*(0,T; ), k = 1,2, such that:

U* (1) € 3@, (UX(1)) and (U¥Y (1) + U (1) = Ok (1) in A,

61
forae.t € (0,7),k=1,2. 61

Here, taking the difference between the equations in (61) and multiplying the both
sides by [U' — U?]™ (), one can see that:

d
S Sl = U0, + (@ = U010 - 0T ),

= (@' -0 [U' - U 1T (1) ,,. ae.1€(0.T). (62)
Also, from Key-Lemma B, it immediately follows that:
(™' =Uu* ), [U' - U1 0) , = 0. (63)

Thus, Main Theorem B will be concluded by using the standard method, i.e. by
applying (63), Young’s inequality and Gronwall’s lemma to (62). O

Remark 9 In the proofs of Main Theorems A and B, the essentials will be in
the fixed-situations of boundary data for approximating functions, as in (18), (49)
and (54). Then, the auxiliary Lemmas 1-2 are to support the presence of such
approximations, and proofs of these can be said as some simplified version of
the regularization method developed by Gagliardo [13]. But, the original method
by Gagliardo [13] would be available just for the regularizations of BV-functions
by W'l functions, and it would not support the regularizations by other kinds of
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functions, so immediately. Hence, for the H'-regularizations required in this study,
the simplified construction (21)—(23) would be essential, and then, the H 1 -regularity
of the boundary data would be needed to be the assumptions, as in Key-Lemma A
and Lemmas 1-2.

6 Future Prospective

One of the possible prospectives is to apply our theory to the phase-field system of
grain boundary motion, known as “Kobayashi—Warren—Carter model”, cf. [20, 21].
Indeed, the Kobayashi—Warren—Carter model is derived as a gradient system of a
governing energy, including a generalized (unknown-dependent) total variation. In
this light, the objective of this issue will be in the enhancement of the mathematical
method for grain boundary phenomena, if we can combine our results and the line
of relevant works to the Kobayashi—Warren—Carter model, e.g. [16, 17, 20, 21, 23,
26, 27].
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Smooth and Broken Minimizers of Some Free
Discontinuity Problems

Danilo Percivale and Franco Tomarelli

Abstract We show that minimizers of free discontinuity problems with energy
dependent on jump integrals and Dirichlet boundary conditions are smooth provided
a smallness condition is imposed on data. We examine in detail two examples:
the elastic-plastic beam and the elastic-plastic plate with free yield lines. In both
examples there is a gap between the condition for solvability (safe load condition)
and this smallness condition (load regularity condition) which imply regularity
and uniqueness of minimizers. Such gap allows the existence of damaged/creased
minimizers. Eventually we produce explicit examples of irregular solutions when
the load is in the gap.

Keywords Bounded Hessian functions ¢ Free discontinuity problem ¢ Safe load
condition ¢ Regular minimizers ¢ Broken minimizers ¢ Plastic hinges in a beam

AMS (MOS) Subject Classification (2010) 49J10, 74K20, 74K30, 74R99, 74C99

1 Introduction

Free discontinuity problems related to image segmentation and inpainting achieve
minimum regardless to the size of the data, due to the structural growth of the forcing
term [13, 17, 20, 26, 27]. Free discontinuity problems in continuum mechanics have
minimizers only if the loads are small, that is a suitable safe load condition is
satisfied [11, 34, 39-41]. Strong solutions of free discontinuity problems without
jump integrals over the singular set were proven to exist by showing partial
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regularity of weak solutions under higher integrability assumptions on data [4,
Chaps. 7-8], [10, 12, 14, 15, 21, 28].

In this paper we show that some functionals, which allow free discontinuity and
pay jump integrals over the singular set, do have minimizers provided the forcing
term is sufficiently small say it fulfils an explicit safe load condition; this condition is
also a necessary condition when load does not change sign. Moreover we prove that
the minimizers have empty discontinuity set when the load is smaller than required
by safe load: e.g. admissible small load deform an elastic-plastic plate or beam in
the elastic range without occurrence of plastic yield (see Sects.4 and 5). We call
load regularity condition this more stringent inequality.

In many cases there is a gap between the safe load condition and the load
regularity condition: in this situation strong inequality in the safe load (sufficient
condition for existence) allows existence of non regular solutions for suitable load
in between: we show explicit examples of broken/creased solutions, when the load
stays in this gap. The main results (Theorems 2, 5, 9, 10, Remark 6) show a detailed
analysis of the solutions structure.

We focus our analysis on the problems listed below: they are all related to
deformations of an elastic body which undergoes free damage and is subject
to Dirichlet boundary conditions. Boundary conditions are imposed by allowing
variations defined in the whole Euclidean space which can be different from
Dirichlet datum only in the reference bounded set.

The main focus of paper is a variational approach for detecting elastic-plastic
yielding of beams and plates: Problems II, III below. The tools for the analysis are
suggested by simpler first order Problem I, which is a toy problem, inspired by
Barenblatt approach [6] and aiming to describe some effects of mesoscopic damage
by using only macroscopic variables, without ambition to grasp whole complexity
of real phenomenon (see [5, 6, 9, 22-25, 29, 30, 32, 33, 37, 48]).

L. First order model problem (elastic rod with free damage under traction):

Minimize the following functional over scalar functions w € SBV(R) s.t.
spt(w —wp) C[0, L] :

A = [ (18] a0 + 7 3 Il (.
Sw

Here f € L'(R) with sptf C [0, L] is the traction load, wy € SBV(R) represents
the boundary traction and fulfils wy € dom.%#;, § denotes the counting measure,
a > 0, y > 0, wrepresents the axial displacement of the rod and S,, is the singular
set of w. From now on w denotes the absolutely continuous part of the distributional
derivative w’ , [w] denotes the jump w —w_ of the function w, where wy = w(x4),
while its positive part is denoted by w = w v 0.
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I1. Second order problem (elastic plastic beam under transverse load):
Minimize the following functional over scalar functions w € SBH(R)s.t.
spt(w —wp) C[0, L] :

Fa0) = [ (1 w) ax + i) + v 3 1 12
Sy

Here f € . (R) with sptf* C (0, L) is the transverse load, wy € SBH(R) N dom .%,
provides the boundary condition, § > 0, y > 0, w represents the transverse
displacement of the plate and S;; is the singular set of w (see [39, 41]).

III. Clamped elastic plastic plate (Kirchhoff-Love plate with plastic yield
along free lines):

Minimize the functional

A
Zan = [ (10, [ 16 =) ax

+2
+ B A (Spw) + y/ [[Dw]| d.#"

Spw
(1.3)
over scalar functions w € SBH(R?) such that sptw C X.

In (1.3): ¥ CC R? is either a connected C* open set or an open convex polygon,
f € LP(R?) with sptf C X is the transverse load, V denotes the absolutely
continuous part of the distributional gradient D, A?w is the trace of VDw, Sp,, is the
singularsetof Dw,a >0,y >0, u >0, A+ u>0,p>1 and 7" is the length
(1 dimensional Hausdorff measure).

Here X is the reference configuration of an elastic thin plate, w the transverse
displacement of the plate. The functional &, represents the mechanical energy
of the deformed plate, subject to transverse dead load f, with free plastic yield
lines whose pattern (the set Sp,,) is “a priori” unknown [11, 40, 46]. Constants
A, u denote Lamé coefficients; S and y are respectively, per unit length, the energy
released by formations of plastic yield lines and the energy released by folding the
corresponding plastic hinge.

Plastic yield (or damage) may be located also at the boundary (say {0, L} in
Problems I, I and in 0 X' in Problem III). Actually in some particular 1-dimensional
case we show in [43] that damage may take place only at the boundary.

For each one of the above problems we give an explicit safe load condition and
prove that it entails the existence of a finite minimum (Lemmas 1, 5, 10); then we
prove an excess estimate (Lemmas 7, 14) say a comparison with the energy of
the solutions of the related elastic problems (e.g. minimizers of exactly the same
functionals over the smaller domain of competing functions which are regular);
hence we deduce regularity conditions which have an implicit form since they refer
to the solution of the associated purely elastic problem (condition on stress for
Problem I: Remark 2; condition on bending moment for beam and plate in Problems
II, IIT: Lemmas 8, 15); eventually we prove load regularity conditions explicitly
dependent only on data for each Problem: respectively (3.17), (4.4), (5.19).
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The method of calibrations, successfully applied to first order problems with free
discontinuity [2], looks difficult to implement on Problems II and III, which involve
second derivatives: this difficulty is circumvented by introducing a calibration
by comparison for testing minimizers based on comparison with purely elastic
solutions, through a suitable compliance identity and an energy excess estimate:
the method works whenever a DuBois-Raymond equation holds true at least for
variations which are as regular as the purely elastic solution is (see Lemma 11).

Euler equations are derived explicitly in 1-dimensional Problems I and II together
with several qualitative properties of free discontinuity set of minimizers: some of
them reminds of Weierstrass-Erdman corner condition for these functionals with
free discontinuity, say w is continuous in (0, L) for minimizers of .%, and w, W are
continuous in (0, L) for minimizers of .%, (see Lemmas 2, 6).

An interesting issue about consistency of these models with experiments in the
safe load range [48] is achieved in the 1d frame by the analysis of minimizers
structure: we prove that minimizers of .%; may break at one single point at most
and that minimizers of .%, may exhibit no more than two crease points.

Explicit examples of load producing damaged minimizer of .%; and creased
minimizers of .%, are shown when the load belongs to the narrow gap between safe
load condition and regularity load condition: Examples 3,4, Theorem 6. In order
to achieve these examples, a careful estimate of this gap is obtained by showing:
first, sharp Poincaré inequalities (see (3.4), Lemma 4), then stress estimate (3.16)
for rod and bending estimates (4.24), (5.28) for beam and plate by mean of Green
function (Lemma 9) and elliptic regularity (Lemma 13). Conditions for development
of plastic yield lines in a plate (functional &) follow by Lemma 14.

Some of the results which are proven here about plate and beam were announced
in [42, 44]. We refer to [43] for a deeper analysis of the elastic-plastic beam and
asymptotic analysis of Problem II as the parameter § — 0O, in the framework of
L load.

We emphasize that the analysis of Problem I in the framework of L*° load
would provide the same qualitative picture of rod deformation proven here for L! or
measure load, since the constants in related safe load regularity conditions are the
same (except for the different homogeneity in L) so that they coincide on constant
load.

On the contrary the behavior of the beam (Problem II) does change a lot in the
framework of L* load since optimal constant (besides different homogeneity in L)
in the L' — BH Poincaré inequality (Lemma 2.1 in [43]) is quite different (L/8 here
vs L?/16 there) with respect to the one appearing in L> —BH Poincaré inequality
(Lemma 4.1 in present paper): hence (see [43]) we can show that there are choices
of constant load fulfilling the appropriate L*° safe load condition but not the L*°
regularity load condition (respectively (2.5), (3.13) in [43]) which produce plastic
hinges at both endpoints of the beam. While, in the present context, we show that
increasing the intensity of a concentrated load with support contained in (0, L) does
not produce symmetric plastic hinges at endpoints before collapse (Theorem 7).
Moreover Theorem 8 entails that symmetric loads of constant sign and fulfilling
the total mass safe load condition (4.3) do not produce plastic hinges at all. About
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skew-symmetric load analysis for the elastic plastic beam we refer to [42] and to a
forthcoming paper. Asymptotic analysis as 8 — 04 for Problem II was studied in
[43]. The issue of uniqueness, which is quite delicate in free discontinuity problems
[3, 8], here finds a positive answer for Problems I, II, III provided the load regularity
condition is fulfilled: respectively (3.17), (4.4), (5.19).

2 Notation

We denote the total variation of u in E by || |7, for any measure € .# (§2) and
Borel set E C §2; we write shortly |||z = || pt]lrr) when E = £2 = R". We write
fOLf(x)v(x)dx in place of fR v(x)df (x) for any f € .# (R) with spt f* CC (0, L) and
any v € L} R).

Any u € .# (R) can be split into three parts, say u = u + pu* = u® + w +
1 where u® is the absolutely continuous part, u* is the singular part, i/ is the
purely atomic part and u¢ is the diffuse singular one (the Cantor part of u): the
decomposition is unique.

Analogously, if  is an interval, then any w € BV/(I) can be represented by w =
wa+w;+w, where w, has an absolutely continuous distributional derivative (wy) =
(w)* e L'(I), wj is a piece-wise constant function and (w;)’ = (W'} is purely
atomic, w, is a Cantor-type function (i.e. (w.)’ = (W)°): for any w € BV () these
three functions are uniquely defined up to additive constants ([4], Corollary 3.33),
the constants are 0 when the support of w is a compact subset of /. We label w =
(w,)’ the absolutely continuous part of distributional derivative w’, hence we write as
follows the unique decomposition of the derivative for a BV function with compact
support: w' = w+ (w;)’ + (w.)'. Approximate discontinuity sets of w and w (see [4])
are labeled by S,,, S;, and are shortly referred to as singular set of w, w. Symbols
ff and ff E respectively denote the counting measure and its restriction to £ C
R. Symbols [ ], ® and © denote respectively jumps, the tensor product and its
symmetric part.

About the case of several variables we denote respectively by Dv and Vv the
distributional gradient and the approximate gradient of v. For any open set £2 C R”
we denote:

M (§2) = {u : real valued Radon measures in £2},
BV(2) ={v e L'(R) : Dv € ./},

SBV(£2) = {v € BV(£2) : Dv has no Cantor part },
BH(Q) = {v e W'(Q): D*v e .},

SBH(£2) = {v € BH(£2) : D?v has no Cantor part } .

S, denotes the singular set of v (set of points in £2 where v is not approximately
continuous). AC(I) denotes the space of real-valued absolutely continuous functions
in the interval I C R. For definition and properties of the above function spaces we
refer to [4, 17, 23, 47].
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3 (PbI) Elastic Rod with Free Damage Under Traction

In this Section we study the minimization of the functional
L.
A = [ (1 =) ax + as) + 7 Y ) G.1)
R\2 S

over scalar functions w in SBV(R) such that spt(w — wy) C [0, L].

Here «,y are given constants, wy is a given function and ff is the counting
measure.
All along this Section we assume

a>0,y>0, X =(0,L), f e L'(R), sptf C X, (3.2)

wo € SBV(R), ]:L(SWO) < 400, Swe C X, F1(wp) € R. '
Functional (3.1) describes the total energy of an elastic rod which may undergo dam-
age at free locations and is subject to given traction body force f and given boundary
traction expressed by wy(0—) and wo(L+). The damage is a priori unknown and its
location is given by the singular set of optimal axial displacement w.

Functional (3.1) is a crude simplification of more realistic models involving a
concave interface energy contribution in place of y Zs;, [W]| (see [7, 25, 30, 35,
36]). Nevertheless (3.1) provides a simple framework in which we are able to
describe completely the structure of minimizers, moreover (3.1) proved very helpful
in suggesting the techniques to tackle the harder and more significant models of
elastic plastic beams and plates faced in Sects. 4 and 5.

We introduce a localization of the functional: for any Borel set A C R we set

Fin) = [ (15 ) dx + axsona) + 7 3 10l
SywNA

At first we prove that a smallness condition (safe load condition) on f entails the
existence of minimizers, while a violation of the safe load may lead to collapse.

Lemma 1 Assume (3.2) and
1z < 2y (#, safe load condition) . (3.3)

Then %\ achieves a finite minimum among w € SBV(R) s.t. spt(w — wy) C [0, L].
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Proof If || fll.1(sy < 2y, then we can apply the direct method since .7 is coercive
in BV: in fact by the fundamental Theorem of calculus

;(wo(o_) +w([0.))) + ;(WO(L+) —w/ (. 1]))

w(x-)

wees) = 0 (w000 +w(10.)) + 5 (wol) — (e 1))

Iwllieon < 3 (19 lrce) + Wo(O-)] + Iwo(L4)1)

Vw € BV(R) : spt(w —wy) C [0,L].
(3.4)
Hence for any admissible w

1
- /2 = =l i) = = 1l (9l + wol0-) +wo(L+)).
Moreover
ﬂl(w) = ﬂl(w, R) = <g\l(W(),]R \ 2) =+ agzl(w, 2)

Then by integrating over X the Young inequality |w|?/2 > y|w| — y2/2, we have
T T 1 /
Fiwo) = Fi1(w) = alf(Sw)+ v — 2||f||L1(2) IWllzs)

M (0 @l + 7100 R ).
Due to the inequality 2y — || f||1 > 0, the functional is bounded from below and, the
elements of any minimizing sequence eventually fulfil the estimate (3.4). By w*BV
compactness and l.s.c properties [4] the existence of minimizers follows. O
The following Remark shows that the constant 2y in the safe load (3.3) cannot be
improved for generic L' load.

Remark 1 If || fll 1 (x) > 2y . f does not change sign and wy = 0, then inf.%; =
—00.
Infact:if f > 0, || fll 1 (x) = 2y +eand e > 0,set v, (x) =t > Oifx € X, v,(x) =0

ifx¢g X;thenJ,, ={0,L}, 0 = 0,/fv,dxz 2y + e)tand .7 (v,) = 200 — et —
—ooast — oo. *

Lemma 2 (Euler Equations for %) Assume (3.2) and w is a minimizer of %,
among v s.t. v =wy on R\ X.
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Then w = w € AC(I) for any interval I contained in X \ S,, and, by setting
wx(x) = w(xs), wi(x) = w(xy), the following equalities hold true

(l) _W// = f in (Os L) \Sw s
(i) w— = ysign(w]) inS, N(O,L],
(iii) wy = ysign([w]) in S, N[0,L),

L
(iv) /0 WwiEz—w) —f(z—w)) dx—yZ|[z—w]| =0, Yz € SBUR): spt(z—w) C X, S, C S, .

Sw

Hence —(w)' = fin 9'(0,L) and w € AC(0,L) even if S,, N (0, L) is not empty;
nevertheless the continuity of w may fail at 0 and L.

Proof By choosing ¢ € C*°(R\ S,,) N SBV(R) with spte C X, and with C* limit
from both sides at any point in S,,, we get Z#1(w) < Z(w + €¢). By convexity
and taking into account that w € SBV entails w = w' in (0,L) \ S,, and ¢ =

¢ = [plt S, we get,
S

¢
for0 <& <min|[w]|/ll¢flze>

0= [ (= Fod + 0(5(5ures) = 16) + 7 3 e+ o]l = [l + ofe) =
Sw

-° (L(_W// —gdx + (P(L-)W(L-) = (¢(04+)(0+))+

$,,N(0.L) Sy

+ Y (o) = () + v ) [o] sign([w])) +o(e) =

=¢ (/2(—W// —dx + (@(LO)W(L_) — (¢(04)w(04))+

+ ) (i) = (pv) + v Y (94 — o) sign([w]) | + o(e)

SwN(0,L) Sy
= e ([ = ppas
)
+9(0+) ( sign(w](0)) = #(0+)) — ¢(L-) (¥ sign(Bwl(L) — (L)) +

+ Y (e rsign(wh) — i) — oy signiw] =) ) | +o(e).
5,,N(0,L)

By choosing all ¢ with compact support in an interval contained in (0, L) \ S,, we
get the differential identity —w” = f in (0, L) \ S,,. Then for any fixed x; € S,, we
can choose at first (if x; < L) all ¢ with compact support in [xg, x;+1) where x4 is
the closest singular point bigger than x;, if any or L else, and then (if 0 < x;) all ¢
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with compact support in [x; — 1, x;) where x;_; is the closest singular point smaller
than x; if any or O else: this provides the values of w in S,,. The derivation of (ii),
(iii) at 0, L is analogous.

The statement about continuity of w is straightforward, since w = w’ in open
interval where w is continuous, then in such intervals w is AC w' € L! and w
minimizes the Dirichlet integral (hence w is C 1), w4 exist in these intervals and
wx = w'; while wy —w_ = (y —y) sign[w] = 0in §,, N (0, L). Du Bois-Raymond
equation (iv) follows in the same way by minimality of w with respect to variations
w+e(z—w). O

Lemma 3 (Compliance Identity for Functional .%,) Assume that w fulfils Euler
equations (i), (if) and (iii) in Lemma 2 and spt(w — wy) C [0, L]. Then

L
Fi(w) = —1/2/0 W12 4 o (Sy) = w(O04) wo(0-) +W(L-)wo(Ly).  (3.5)

Proof By Euler equations (W)’ = —f in 2/(0, L), then by taking into account the
identity w' = w + ) ¢ [w]dff S, in Z'(0,L), we get

L L L
/R fiv = /0 fir=— /0 ()w = /O (W + W(0)w(04) — WLow(L) =

L
= / o Pdx + (O )w(01) = w(L)w(Lo) + Y ww].
0

SwN(0,L)

By recalling w = ysign[w] in S,, N (0,L), w(04+) = ysign([w](0)), w(L-) =
y sign([w](L)) , w(0+) = [w](0) + wo(0-), w(L-) = —[w](L) + wo(L+) and (by
Sw C Swy C [0, L]) we get

L L
[ o= [y X+ 0 0(0-) = (L)

Sw

and thesis follows by the definition of .%;. O

Theorem 1 Assume (3.2) and w is a minimizer of %, with Dirichlet datum wy.
Then there is at most one crack, say §(S,,) < 1.

Proof By contradiction assume {(S,,) > 2. The we can choose x;,x; € §,, with
X1 # Xz and set

w(x) if x & [x1,x2],

PO =0 @) + () ifx € [, 0]

Then S; = S, \ {x2} so that, by compliance identity (3.5) (and Euler equation (i)
when x, = L), we deduce the contradiction .| (W) = .#(w) —a < ZF(w). O
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Theorem 2 (Structure of .%; Minimizers) Assume (3.2), (3.3) and u is the
solution of

ueHY(Y), "' =fin X, 1(04) = wo(0-), u(L-) = wo(Ly),
(3.6)

hence ' = it € C°(X) and u has an extension, still denoted by u, s.t. u € SBV(R) N
C°(R) and u = wy in R\ X (boundary values of u are always understood as interior
traces). Then

L
min F1(v) = Z1(u) + min (0, o«— ((lle[[ oo — y)+)2) ., (37D

Spt(v—wo)C[0,L]

{u} if | le <y++/20/L

argmin - F1={u+z: W (1)] = |[u]| o} if 1[0 >y+/2a/L
SpHC—wo)Clo.L] {uyUlu+z: (W@ =} if 0|00 = y+/20/L
(3.8)

where the function z; € SBV (R) is defined as follows

—sign(/ (7)) (Ju' ()| — y) " x xel0,1,
z(x) = 3 —=sign(@ (1) (|W'()| —y)T (x=L) x € (1. 1], (3.9)
0 xe€10,L].

Proof Let S be the set of all v € SBV (R) having no more than one jump point and
fulfilling the Euler conditions (i), (ii), (iii) of Lemma 2.

Then all minimizers belong to S, due to Lemma 2, Theorem 1. Moreover we
claim that

S= {u+z:te0,L]} (3.10)

Indeed it is obvious that u + z; € S, Vr € [0, L]. Conversely let v € S, then either
v =uorS, = {t} for some ¢ € [0, L]. In the second case by Euler equations we get

v—u' € AC(0,L), (0—u') = 0 in(O,L), hence:
v—u' = const = U(t+) —u'(t) = ysign([v]()) — /() in (0, L) (3.11)
So—u = Sy = {1}

and taking into account that v = u = wy in R\ [0, L] we get

(ysign([v](1)) — (1)) x x€[0,9),
() = v —ulx) = | (ysign(](1) —u'(1)) (x—L) x € (1, 1], (3.12)
0 x¢[0,L].
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Since [v](?) = [v — u](t) = —L (ysign([v])(r) — /(r)) we have

W) >0 & (@) >y >0

]t <0 & (@) <-y <0 (3-13)
hence, in both cases, |u'(¢)| > y and sign(«/(¢)) = sign([v](?)).
By summarizing, if v is a minimizer, then
— ('@ =y)*sign@' () x  x€[0,1)
v(x) —u@x) = 3 —((lu' @] —y)tsign(/ () (x—L) x € (1. L] (3.14)
0 x¢[0.L]
say v(x) = u(x) + z,(x) and
min Z = min.%; = min % (u + z,). (3.15)

Spt(v—wo)C[0.L] S t€[0,]
By taking into account that # and u + z, fulfil the Euler equations in [0, L], we
deduce z(x) = —(|u/(t)] — y)Tsign(u/(¢) in (0, L); hence, by compliance identity
(Lemma 3),
1 L
Filw+z) = aH WOy [ W+ iPars
0
+@ + ) (Lwo(Ly) — (' + 2)(04)wo(0-) = H(Iu’(t)IL— y)+
1 1 .
= | W @@= O0m0 - ) [P
0 0
L 2
=71 +aH(W' O] =y) — ('O =»7)
where the Heaviside function is point-wise defined in this way: H(0) = 0. Then
nginﬁzl(v) =min{F (u+z):t€[0,L]} =
. L 2
= F1(w) + minfa H(ju' ()] = y) — 5 ((d' DI =*)S =
) L
= Z1(u) + minje H(E —y) = (€ — M 0<E < Wlloo) =
) L
= Z1() + min{0, 0 — [l [lz0e = )1}

and (3.7), (3.8) follow. [
A straightforward consequence of (3.7) and (3.8) is the subsequent remark.

Remark 2 (Stress Regularity Condition for Functional %) Assume (3.2), (3.3).
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If the solution u of (3.6) fulfils
2000y < ¥ + v2e/L (3.16)

then u € argmin.% and u is the unique minimizer when the inequality is strict.

Corollary 1 (Load Regularity Conditions for Functional %) Assume (3.2),
(3.3).
If

1
1£ s+, wole) =wo@)] < y + v2a/L (3.17)

then the regular solution u of (3.6) is the unique minimizer of .

If
L 1
5 1 llon + ) wo(Ly) —wo(0)] <y + v2a/L (3.18)

then the solution u of (3.6) is a regular minimizer of .%\, moreover if the inequality
in condition (3.18) is strict then the minimizer is unique.

Proof By using the Green representation formula for the solution of (3.6) we get

L
W (x) = /0 T ) dy + 1 (w0(Le) () (3.19)
where
1= y/L ify € [x, L]
) = { —y/L  ifye[0.x). (3:20)

If f € L', taking into account that |J(x,y)| < 1 and x € [0, 1] entails |J(x,y)| < 1
for all y € [0, 1] but at most one value, from (3.17) we get

1
Il < 1o + | Wolle) =wo(0) < v+ V20/L,

hence the regularity stress condition is fulfilled by # and we can apply Remark 2 to
achieve the claim about f in L'.
When f € L*(0, L), we have

' Ly) —wo(0-
lu'(x)| < ”f”LOO(O’L)/O V(x, )| dy + [wo(L4) — wo(0-)]

L
22 + L2 —2Lx  |wo(Ly) — wo(0-)]
= o < (3.21)
[ fllzoe 0.0 s + L <
L Iwo(L4) — wo(0-)]
=, [ fllzee 0.0y + L ,



Smooth and Broken Minimizers of Some Free Discontinuity Problems 443

so, by taking into account (3.18), we obtain

1 1
I lzeon) = Ifleon + | woLe) =wo(0-)] =< v+ v2a/L,

hence the regularity stress condition is fulfilled by u and we can apply Remark 2
and the claim about f € L* follows. [

Remark 3 By summarizing: the safe load condition (3.3) entails existence of a
minimizer, while the load regularity condition (3.17) entails existence, regularity
and uniqueness.

Assumptions (3.2), (3.3), (3.6), ||u/||zc >y + \/Z(X/L imply that all the minimiz-
ers have exactly one crack: both uniqueness and non uniqueness of minimizers are
possible, depending on the cardinality of the set {# € [0, L] : |u/(¢)| = ||t/||zo > V}.

Assumptions (3.2), (3.3), (3.6), ||t/ ||r> = y + \/Za/L entail that both u and

every v, = u + z, with |[/(t)] = ||u||pcc = y are minimizers and min % =
F1(v) = F1(u) .
The point break of a broken minimizer may be placed anywhere in [0, L] and
uniqueness of minimizer is not expected in general (see Example 4). Though no
crack is allowed if || f]|1 <y+ \/Z(X/L and wy = 0, we emphasize that a load in the
gap, e.g. the condition

v+ v2e/L < |flloon <2y with wo =0, (3.22)

does not force the minimizers to be discontinuous in all cases.

Statements analogous to Theorem 2 are difficult to achieve in Problems II and
IIT which are studied in the next sections; nevertheless a suitable “calibration by
comparison” can be proven also in those cases and this is enough to achieve explicit
conditions for regularity of solutions, similar to (3.17). We end this section by
showing explicit examples of minimizers with exactly one crack when the load
regularity condition (3.17) fails.

Example 3 A broken minimizer of %, with non trivial f verifying safe load (3.3)
and homogeneous Dirichlet datum: uniqueness and crack at the boundary.
Assume f(x) = 2cx, ¢ > 0, s.t. 3y/2 < cL? < 2y, and wy = 0.

Then safe load condition (3.3), cL?> < 2y, holds true while regularity load
condition (3.17), cL? < y, fails to be true. The purely elastic solution is u(x) =
ex(I* —x?)/3if x € (0, L), u(x) = Oelse, hence ||t/ ||oo = |/ (L)| = 2¢L*/3 >y and
L is the only point ¢ where |u/(f)| = ||t/ oo . By Theorem 2 the function v below is
the unique candidate broken minimizer:

v(x) = (cL* —y)x—cx’ /3 = u(x) + (26L2/3 —y)x if x € (0, L), v(x) = 0 elsewhere;
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then S, = {L}, ](L) = —v(L-) = (y — 2cL?/3)L < 0, (L) = —y and, by
summarizing:
L 2 YL 2 L 2 L\
. f0 L — L = — el?
G 1 <Ol<9C + ) 3cy 2)/ 3c
then % (v) < Z;(u) and, by Theorem 2, v is the unique minimizer .
2

(i) if L 2 12
e (i) if ¢ = - _c
2773
then both v and u are minimizers and, by Theorem 2, there are no more.

L 2 5\
(i) if o ) (y 3 c )
then u is the unique minimizer by Lemma 2, Theorem 2.

Figure below shows the broken minimizer v of %) in cases (i), (ii) above:
[ ][zoe > .

Example 4 Existence of infinitely many broken minimizers of .%| under null
load and non-homogeneous Dirichlet datum.
Assume f =0, wo(x) =0if x <Owo(x) =h>0if x> L.

Then the safe load condition (3.3) is always (for any /) fulfilled, while the load
condition (3.17) reads & < yL+ /2aL. The purely elastic solution is u(x) = hx /L
and ||/ ||z = h/L. Theorem 2 provides a full description of minimizers as traction
h at point L increases:

if 1 < y L, then the only solution is the continuous one, u(x) = (L/h)x;

if yL <h <2yL and 0 < (h—yL)*/2L < « , again there is the unique solution
u;

if yL < h <2yLand 0 < o < (h— yL)*/2L, then there are infinitely
many solutions vy, all of them with a single break-point: v,(x) = 0if x < 0, v,(x) =
yx+ (h—yL) Xy if 0 <x <L, v(x) =hif L <x;

if yL < h <2yLand 0 < o = (h—yL)?/2L, then the continuous solution
u and all functions v; above with a crack at ¢ are minimizers.

Eventually, when i > 2yL: it h < yL + V2aL then u is the unique solution;
if h > yL 4+ +/2aL then there are infinitely many broken solutions and no regular
solution; if h = yL + +/2aL then both u and the broken solutions are present.
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4 (Pb II) Elastic Plastic Beam Under Transverse Load

In this Section we study the minimization of the functional
1 . .
720 = [ (SR =) dv -+ o) + v 9] (@)
R 2 Sy

over scalar functions w such that w € SBH(R) and sptw C Y.
All along this Section «, y are given constants, {f is the counting measure and we
assume

B>0,vy>0, X=(0,L), fe#Z[R), sptfC X, sptffCcC X.
4.2)

Functional (4.1) describes the total energy associated to deformations of an elastic-
plastic beam which is clamped at both endpoints; w is the vertical displacement
of the beam under the action of the transverse load f. The crease points set Sy,
of a minimizer w may be interpreted as location of plastic hinges in the beam
at equilibrium: functional (4.1) takes into account that the energy released in the
deformation of an elastic plastic beam is the sum of elastic bending energy and of
energy concentrated at plastic hinges. Jump points are not allowed (say S,, = 9) for
admissible displacements w which must be continuous since SBH(R) C C°(R).

The main result of this Section is Theorem 5 below, for the homogeneous
Dirichlet problem, which provides an explicit condition on the load for existence
of minimizers and a stronger condition which entails their regularity: creased
minimizers do appear in the gap, as shown by subsequent Theorem 6.

Theorem 5 Assume (4.1), (4.2) and

8
17 < L)/ (F#, safe load condition) . (4.3)

Then %, achieves a finite minimum among w € SBH(R) s.t. sptw C X.
If the inequality (4.3) is substituted by the following stronger one

27
1fllrs) < 4 Z (load regularity condition for functional .%,) , 4.4)

then F, has unique minimizer among w € SBH(R) s.t. sptw C X, this minimizer
belongs to H*(R) and coincides in [0, L] with the unique solution u of

{ueH;O.L) : " =f in(0,L)} . 4.5)
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The proof of Theorem 5 is postponed until several preliminary Lemmas are
achieved.

Lemma 4 (L°° — BH Poincare Inequality) Ler v € BH(R) with sptv C [0,L].
Then

L
[vllzee 0.y < g v" l7qo.zg) - (4.6)

The equality in (4.6) holds true iff v = r, (roof-function), for some s € R:

= L LI\" 4.7
rs(x—s(z—x—z). 4.7

Proof Fix v € Z* = {v e BHR) s.t. sptv C [0, L]}. Without loss of generality
we assume v # 0. Then define

convex envelope of — |v| evaluated at x if x € [0, L]

’w = { 0 ifx [0,L].

We claim that v fulfils

{f)eBH(R), spto C [0,L], v <0, ©convexin]0,1],

"

. N (4.8)
[0llzee = Nvllzee 15"l < v"llr .

The only non trivial point in (4.8) is the estimate of total variation (||3”|y <
[v”|lr) which can be proven by exploiting chain-rule for superposition of BH
functions (Theorems 1, 4 in [45]) as in Lemma 2.1 of [42]. By (4.8) we get

" "
inf% 1"l ‘v E Ji/*} = inf{ IVl tv €4, veonvexin [0,L] ¢ .
[vllzee [vllzee
4.9
If we take v € #*, v convex in [0, L] and v # 0, then
—00 < v/ (0) <0, 0<v. (L) < +o0
and we can define
v(x) = (v (0)x) v ((v_(L)(x—L)) ifxe[0,L] and v(x) = 0 otherwise.
Then ¥ < v, [[Vllre = [llzee and [[0"]lr®) = 2(v-(L) — v} (0)) =

v 70,21 by convexity.

inf {|[v”||7/ |lv|lzee : v € SBH, sptv C [0,L], v convexin [0,L]} >
=inf {[["]l7/ lvllee : v(x) = (-ax) V (b(x— L)), a>0,b> 0} =

2 b)?
= min (@+b) = 8/L.
a>0,b>0 ablL
(4.10)
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Actually the infimum in (4.10) is a minimum since it is achieved at a = b say when
v is a roof function. By summarizing (4.9), (4.10) prove (4.6). About the fact that
only roof functions (4.7) achieve the equality in (4.6) we emphasize that: the map
v — ¥ strictly reduces the relevant quotient ||v”||7/ ||v|lzcc Whenever |v| # |7],
since in such case ||(:)”|r strictly decreases, while also the map v — U strictly
reduces the relevant quotient for v convex in [0, L] and |v| s |V], since in such case
|| - ||zoo strictly increases. (1

For a different proof of (4.6) see [38].

Now we can prove that a smallness condition (safe load condition) on f entails
existence of minimizers (for any boundary datum), while a violation of the safe
load may lead to collapse.

Lemma 5 Assume (4.2), (4.3) and wy € SBH(R) with .%,(wy) < +00.
Then ., achieves a finite minimum among w € SBH(R?) with spt(w —wg) C X.
Proof We use the direct method. First we show that .%, is coercive: by Lemma 4,

L
el < 1" lrsy V2 € SBHR) st sptC T 4.11)

/Owadx

1l Iw — woll oo + / fivo dx
0

L /! /!
sy (I Ny + Il )+ | [ fwods

= =

L
/0 Fow—wo) dx

L
+‘/ fWodx
0
L

IA

=

IA

- (4.12)

8

L L L

Wiy | 051+ [ o1+ 1 +‘ [
Sy

YV ws.t. spt(w —wp) C [0, L],

and by Young inequality

1 (L L L
2/0 |»'o|2dxzy/0 il v 7

hence, by denoting .%, (-, A) the localized functional in a Borel set A C R

Fnd) = [ (GIF =) ax + pasinn) + v 1051,

SyNA
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for any w in a minimizing sequence of .%;, we have ultimately

Far(wo, X) + Fr(wo, R\Y) = F(wp) >
> F(w) = Fw, X))+ Fa(w,R\X) >

L
Br(5i) + (v = gl ) Il +

L,
| [

Hence by (4.3) the functional is bounded from below. The existence of minimizers
for %, follows by sequential compactness of minimizing sequences and BH*
sequential lower semi-continuity of .%, [11, 12, 39]. O
For sake of simplicity we study only the homogeneous case (wy = 0) in the sequel.
The constant 8y/L in the safe load (4.3) cannot be improved for generic .# or
L' load as shown by the following Remark. Nevertheless for L> load we refer to
[43] where we prove a safe load condition which turns out to be less stringent on
uniform loads.

v

L
~ g 1A 7y WG sy + F2(wo, R\ 2).

Remark 4 There are examples with | f|l7s) > 8 /L, such thatinf %, = —oo :

choose f = (8y/L+¢) 8§(x —L/2), ¢ > 0, set w,(x) = 1(L/2— |x—L/2])".
Then J;, = {0,L/2,L}, w, =0, (fw,) = t(4y + ¢L/2), Fr(w;) = 3B —¢eLt/2 —
—o0 ast — +00.

Lemma 6 (%, Euler Equations) Assume (4.1), (4.2) and w minimizes %, among
v belongs to SBH(R) s.t. sptv C X . Then W= (W)" =f € A in (0,L), W = (W)
belongs to AC(I) for any interval I C X'\ S, and

@ w" =f in(0,L)\Sy
@) w— = ysign([w]) inS;, N (0, L]
(iii) wy = ysign(w]) in Sy, N[0, L)
(iv) w— = Wy in (0,L).

L
(v) /0 (W E—w)—f(z—w))dx — yZI[i—v'vH =0, Yz € SBH(R): spt(z—w) C X, S; CS,;.
Si

In particular w € BH(0, L), hence w and w = (W)’ are continuous in (0, L) but may
be discontinuous at 0 and L, even if these points do not belong to S;,.

Proof The proof can be achieved by running the same steps in the proof of
Lemma 2.

Lemma 7 Assume (4.1), (4.2) and u is the extension by zeroes of the unique solution
of (4.5). Then we have the following properties.
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Excess estimate for .%, :

FH(v) — Fr(w) = BH(S;) + (Zy [[9]] — u” [i)]) Yv € SBHR) : sptv C X .

Si
(4.13)
Excess identity for minimizers of .7, :
If v minimize F, among v € SBH(R) s.t. sptv C X, then
T T, 1 : R
Fr(v) = Fa(w) = BHSH) +, | Yov Il —u"[0]]. (4.14)
S
Necessary conditions for existence of creased minimizers of .%, :
If v minimize %, among w € SBH(R) s.t. sptw C X, and S; # @, then
" ||y > v, (4.15)

> O[] (v sign[d] —u”) = > (v |[9]] — " [3]) < —2B#(Ss) <0.  (4.16)

S S

1
B =< 2Ly2. 4.17)
By (4.16), if the set S; contains exactly in one point x then |u”(x)| > y .

Proof By exploiting u” € C(X), 4 = v" — [v]df S; N(0,L) in 2'(0,L), u €
HY(X),u” =fin ¥ andu =00nR\ ¥, the convexity of s — s?>/2 and

L L
/ W'(—u)"dx = / " (v —u)ydx —u’ (L) [V](L) — u”(0) [v](0)
0 0
we have, for every v € SBH(R) s.t. sptv C X',
A I >
Fr(v) = Fw) + | W@ —u")dx— | flv—wdx+ pHS;) +y ) Il =
2 2 A A .
L L
=A@+ [ @@ —ihir= [ o —wdct prso +y DIEl- X o1l =
0 0 5

¥ S3MN(0.L)

= F2(w) + B1(S:) + ) _(I[B] — u”[5))

‘SL

Then (4.13) is proved.



450 D. Percivale and F. Tomarelli

If v € argmin.%, and u solves (4.5), then ¥ is continuous in (0, L) by Theorem 6
and u = v, and v” = v” = ¥ hold true in R \ X' while Du-Bois Raymond equation
(v) relative to variations v, = v + &(u — v) yields

/Z(i)'(u”—i)')—f(u—v)) dx—y Y |[}]] = 0. (4.18)
S

Hence

o~ P 1 - ) . _1 W2 =
Z20) =720 =, [ 1 s+ LI [Lrvas— [we+ [ o=
1 . 1 .._u// i ST I 0 —
=, [ G+ ) B8 +7 2] [Lrvas+ [
1 Y . . 1 Wi N1
- Z/Zf(v—u)—/zf(v—u)—z;I[v]|+y;|[v]|+2/2u (=) + B 1(S;) =

y ¥ 1 1 s 1
= Z;I[U]I—sz(v—u)Jrz/Zu =) + 10,
Since’ € C(X),§ = v’ ~[0]d1 (S;N(0.L)) in 2'(0. L), u € HY(S). u" = f
inXYandu =v, ondX, v4(0)—u'(0) = [0(0)], v_(L)—u'(L) = —[0(L)], we get

Fr(v) = Fo(u) =

= ;/Zu”(v”—uﬁ)— ; /Sﬁf(v —u) + )2’ ;l[b]l —; > W]+ BHS;) =

S;N(0.L)

S;N(0.L)

= B + ;(Z Pl - Y u”m) — OO @) 1)
A

= BEs) + ) Y (Il - T0)).

Sy

Necessary conditions (4.16), (4.15) for creased minimizers follow by inserting
£(S;) > 1in (4.14).
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By #,(v) < %#,(0) = 0, L®°—BV Poincaré inequality (4.6), safe load (4.3) and
Young inequality we get

/ 5 |2dx+y2|[v1|+ﬁu<5)</ fodx < |l ol <

Sl /|v|+Z|v]| <y /|v|+Z|{v1| < @19

1 2 2
52/ |5|2dx + Ly dx+y Y |[0]]

S

and, if #(S;) > 1 then B < BH#(S;) < ! Ly? say (4.17). O
Lemma 8 (L*° Bending Moment Regularity Condition for Clamped Beam)
Assume (4.1), (4.2) and the unique solution u of (4.5) fulfils

lu” ooy < v (4.20)

Then u is also a minimizer of %, . Moreover u is the unique minimizer of .%,.
Proof Straightforward consequence of necessary condition (4.15)

Lemma 9 (Green Representation Formulae) Assume u solves (4.5). Then

L
W) = / K(e.3) f() dy @.21)
0
where
K@y = Qa0 yYGL-2) — ¥+ -t 4.22)
’ 213 2L ' '
Moreover
4
max |K(x,y)| = 27L, (4.23)
" < 4 L 4.24
[t [|zoe < 27 ||f||T(2)- (4.24)

The equality in (4.24) can be achieved: the constant 4L/ 27 is optimal for (4.24). O

Proof We perform the computations by assuming f € L'; the general case can be
handled exactly in the same way, since sptf* CC X.
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The classical Green formula provides the standard representation

L
u() = /0 G (x.y) f) dy 4.25)

where we denote by ¢(x, y) the Green function associated to the operator (d/dx)*
in(0, L) with homogeneous boundary conditions:

Gerx(x.y) = 8x—y) i (0.1)°. F(0.y) = %(0.y) = F(L.y) = %(L.y) =0 in (0.L).
Moreover, by setting P3(y) = (3L —2y)y?/L*, P(y) = y/L, we get

P;(y)+P3(L—y)=1 (4.26)
and, by setting

P3(y) ifo<y<x=<L,

J3(x,y) = .
1) %—Pa(L—y) ifo<x<y<L,

Pi(y) if0<y<x=<L,

Jilx,y) = .
1(6,3) {—Pl(L—y) if0<x<y=<L,

L x L
W) = /0 By df(y) = /0 PA(v) df (x) — / PAL—D)f(D)dr  (427)

L
i) = / Loy " () dy =

L y 0 L
_ / ) (/ Pa(0)f(x) dr — / P3(L—f)f(t)df)dy= (4.28)
0 0

y

L
- /0 K fO) dy

Hence (4.21). By standard computations, which exploit also the Green function G
for the operator (d/dx)? , we get

max |K| = max{max |K(y,y)|, max |K(0,y)|, max |K(L,y)|}.
x,y€[0,L]? y y y

2 N2 2 3
Then K(y,y) = — 2Ly3 (L—y)*. KO0,y =y(1—-7)" . K(Ly) =", — 7, together
entail

L 4
max [K(y,y)| = .  max|K(0,y)] = max|K(L,y)| = __L
¥ 8 ¥ ¥ 27
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and (4.23) follows. Estimate (4.24) follows by (4.28), (4.23). The equality is
achieved in (4.24) since f(y) = §(y — 2L/3) entails ||u”|| = 4L/27. O

Proof of Theorem 5 Assume (4.3); then the first statement follows by Lemma 5,
with wyp = 0. Now assume (4.4) and u is the solution of (4.5). Hence by (4.24)

4L
" e < 1fllrzy = v

- 27
and Lemma 8 give the conclusion, since the bending moment condition is fulfilled
by u. O
Actually non regular minimizers of .%#, do appear in some cases: we recall
additional properties of minimizers followed by some examples.

Remark 5 (Compliance Identity for Functional %,) Assume (4.1), (4.2), w satisfies
Euler conditions (i), (ii), (iii) of Theorem 6 and sptw C X. Then (by Lemma 3.5 in
[42])

1 L
Faw) = - [0 2 dx + B (S). (4.29)

Remark 6 1f (4.1), (4.2) hold and v minimizes .%, among functions with spt C X,
then f#(S;) < 2 (this fact can be shown as in the proof of Theorem 4.1 in [42]).

Next we show an example of creased minimizer of .%, with homogeneous boundary
condition and load f fulfilling the safe load condition (4.3): all properties claimed
below can be proven by the same computations done in the analysis of Example 4.1
in [42], which dealt the case of concentrated load.

Example 6 (A load which leads to creased minimizers) If we choose parameters
8, k and load f € L' such that

ky

= st

X[ZL/3—5,2L/3+8] s 0<d< L/3 s 27/4 <k<8, (4.30)
then load f fulfills the safe load condition (4.3), violates the stress regularity
condition (e.g., the solution of (4.5) fulfils ||u”||zc > y) for the related non creased
solution and the minimizers of %, among functions with spt C X, have a crease
whenever

0<B < i(ii(L)—y)z.

We notice that the necessary condition (4.17) for the existence of a crease (say 2 f <
Ly?)is fulfilled if 0 < B < (ii(L) — y)*.

We end this Section by showing that, if total mass safe load condition (4.3) holds
true and the load does not change sign, then the minimizer cannot exhibit symmetric
plastic hinges at endpoints (see Theorem 7); moreover any symmetric load of
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constant sign and fulfilling the total mass safe load condition (4.3) do not produce
plastic hinges at all (see Theorem 8).

Theorem 7 Assume (4.1)—(4.3), v minimizes %, among functions with spt C X
and either f > 0orf <0. Then S; # {0, L}

Proof Assume by contradiction S; = {0, L}. Then by Euler equations

{ @)"=f (0.L)
1(04+) =y sign[v(0)], (L-) =y sign[o(L)], v(0) =v(L) =0

and (up to interchanging boundary values at 0 and L, or changing sign in both
boundary values) only two cases may occur: either

{ @) =f (0,L)

5(04) = +y. 9(04) >0, H(L_) =—y, v(L_)>0, v(0)=0v(L) =0
4.31)

or

{ ®)" =f (0,L)
5(04) = (L) =4y, 904)>0, (L) <0, v(0)=0v(L)=0.

(4.32)
We show that both cases lead to a contradiction.
In case (4.31), we claim
. .. o
SO BID) < 0 = | TIO (ysignll©) —u©)) <0 433

[0)(L) (v sign[v](L) —u"(L)) < O

We set so = [0](0), s, = [0](L). Since (& — u”)” = 0 (0,L) and v = & + 508 +
5181, there exist ¢, d s.t.

(x) —u"(x) = (cx + d) Xy (x). (4.34)
By integration over R we get

;L2+dL+so+sL S (4.35)

by integrating (4.34) twice we get
cl’/6+dL*/24+Lsy = 0. (4.36)
Euler equations

#(0) = y signsg v"(L)V(L) = y signsg (4.37)
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entail
#(0) —u”(0) = ysignsg—u"(0) = d (4.38)
V(L) —u"(L) = ysignsy —u'(L) = cL+d. (4.39)
By solving (4.35), (4.36) we get
c = 6(so—s.)/L*, d = 2(sp —250)/L. (4.40)
By setting a = [0](0) ( sign[v](0) — u”(0)) = so(y signso — u”(0)).
b = [0)(L) (y sign[0](L) — u"(L)) = s(y signs. —u"(L)).
the thesis of claim (4.33) reads
a=sod < O, b=s(cL+d) <0, 4.41)
and since (4.31) entails s;, < 0 < 5o we get

a = 2so(sp —2s0) /L < O, b = 2s(so—2s1)/L <0 (4.42)

(notice that also in the other case with sos; < 0, e.g. so < 0 < 57, we get (4.42))
hence (4.41) and the claim (4.33) is proven. By using claim (4.33) we get

W'(L) —u"(0) < y(sp—s0) = —27, (4.43)
notice that also in the other case with sos;, < 0, e.g. 5o < 0 < s, we get
W' (L) —u"(0) > y(sp—s0) = +279. (4.44)

In any case by (4.21), (4.22)

L
2 < WD) —u'(0)] < /0 (K(L.y) — K(0.)) f() dy (4.45)

K(L,y)—K(0,y) = 3Ly* —2y° — L%y) (4.46)

1
b

IK(L,y)—K(0,y)| < |K(L,L(1—1/v/3)—K(0,L(1—1//3)| = L3—+/3-2/v/3)/3
(4.47)

By (4.45), (4.47), (4.3) we get the contradiction

L 8
2 < "W - O] < ] (3 VA —2/J3) 1fl < 3(3— \/3—2/«/3) Y <2y.
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In case (4.32), by using Green function G for d*/dx* with homogeneous boundary
conditions, we get i(x) = y + [y G(x,y)f () dy. Hence o(L) — 9(0) = yL +
[ [¥ G(x, y)dydx. Since

2

L
L
G(x,y)dx| = 4.48
ygl[gi] /0 () d 8 ( :
by Fubini-Tonelli and (4.3) we get
L L LZ L2 8
| [ eensmaad < Tis < 0T =vr @)
0o Jo 8 8 L

hence the contradiction v(L_) —v(04+) > 0. O

Theorem 8 Assume (4.1)-(4.3), f does not change sign and is symmetric:
fx) =f(L—x)x e (0,L) andeitherf > 0orf <0. (4.50)

Then there is a unique minimizer of F; among v s.t. sptv C [0, L], moreover such
minimizer is the regular solution of (4.5).

Proof By taking into account the symmetry of f and K

f) = fL—-y) K(x,y) = K(L—x,L—Yy) 4.51)

in the Green representation (4.27) we get, forx € (0,L),

u// (x)

L L
/ Ky f0) dy = / K(L—x.L—y)f()dy =
0, 0 (4.52)

/0 K(L—x)f0)dy = u"(L—x).

Then u” is even with respect to L/2.
Therefore ||u”||pcc = max{|u”(L)|, |u”(L/2)|} and by (4.21), (4.22), (4.3) we get

(L) | = /0 "KL dy‘ -

= i le /0 L/2y2(L—y)f(y)dy + le /L /Lzy(L— WS G)dy| = (4.53)
1| pLe ) L

= | e-vrovas| < G 1 lnen = g1l <7,
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()l fo-rar -2 -
/2

L L
— | Prow s [ a-vroa (4.54)
2L\ Jo L2
L 2 L
=L /0 yfdy| < L 49 £l o = 3 1Al < 7,
ullLo <y (4.55)

and the thesis follows by Lemma 8. O

S (Pb III) Clamped Kirchhoff-Love Plate with Plastic Yield
Along Free Lines

In this Section we study the minimization of the functional

2 A
Fate) = [ (Puir, T 16dx B o) +y [ (1wt = [ fwa

Spw

over scalar functions w € SBH(RR?) s.t. sptw C X.

Here V denotes the absolutely continuous part of the distributional gradient D,
while A“ denotes the absolutely continuous part of the distributional Laplace
operator, say A“w = Tr (VDW) = (Aw)“, B,y are given constants, # ! is the
1-dimensional Hausdorff measure and f is a given transverse load. All along this
section we assume

¥ C R? connected Lipschitz open set , G.D
B>0,y>0, 5.2)
n>0,2u+31>0, (5.3)
feAR), sptf C X. 5.4

Notice that for any w € SBH we have (see [4, 11, 31]):
Vw = Dw, Svw = Sow» (5.5)

Spyw is a countably % !rectifiable set (5.6)
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Spw has an approximate normal vector vg,,, la.e. in Sp,, and
vsp,, 1s uniquely defined up to the orientation at every point where it is defined,

5.7
aw aw
ol = 9 = [ s ol = [, ][ e
BUSDW avSnw
both D*w and V?w are symmetric . 5.9
Instead of confining the analysis only to the quadratic form
2 UA
M) = M| Tr M|? 5.10
Qutd =} (s + , 17 | o) 5.10)

associated to Kirchhoff-Love plate energy Zx;, we consider a generic positive
definite quadratic Q form evaluated on Vv and study the whole class of functionals
& (including Pk )

9(W)=/E(Q(VZW)—JW) dx+ B (Svw) +v| |IDwllds',  (5.11)

Spw

to be minimized among w € SBH(R?) s.t. sptw C X . We assume that Q fulfils

2
Aqijrk €R, qijnk = quiij © QM) = Z qijnk M My VM,
ijik=1
Ja,A,0<a<A<+oco: alM < QM) <AM VM,

(5.12)

here and in the following A:B =}, . A;B; and |M]|, denotes the #” norm, for 2 x 2
real symmetric matrices A, B, M. We denote Q' = 9 Q/0M so that, by (5.12) we
get

- | Q)|
(Q (M) =2 Z qijnk M), hence M| <24 VM. (5.13)
ij=1
In the particular case of Q = Qg; we have
4 UA
e (M) = M TrM)I| . 5.14
Qi (M) 3(M +A+2M(r )) (5.14)

The main results of this Section are the two statements below: Theorem 9 which
shows partial regularity of any solution (e.g. smoothness of creased plates outside
closed yield lines of finite length) if Q(M)=M:M together with a mild integrabil-
ity condition on the load; Theorem 10 which provides a smallness condition on the
load entailing global regularity and uniqueness of minimizers for 2.
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Theorem 9 (Partial Regularity for Elastic-Plastic Clamped Plate) Assume
(5.1), 5:2), Ifllz1(zy <4y andthereis p > 2 such that f € P (X). Then

/ (IV20P —fv) dx + B Sou) + 7 / A
)

Spy

achieves a finite minimum among v € SBH(R?) s.t. sptv C X, moreover every
minimizer w is also a strong solution, say:

weC'(XZ)NCHZ\ Spy) . (5.15)
A" (Spw \ Spw) = 0 (5.16)
and the pair (Spy, w) minimizes the functional
P(K,v) = / (|D2v|2—fv) dx + BAY(KNZ) +y / |[Dv]| dot!
S\K KNE
(5.17)

among pairs (K, v) such that K C R? is a closed set and v € C°(X) N C*(X \ K).
Theorem 10 (Load Regularity Condition for Clamped Plate 92) Assume:

02X is either a convex polygonal or a C* simple closed curve, (5.18)

(5.2), (5.11), (5.12), || fllp1(xy < 4y and there is p € (1, 400) such that

14
< 5.19
1Al =) 4 C (5.19)
where Cy = Co(X, p,a,A) is the constant appearing in the estimate (5.28).
Then the solution u of
ueH)(Y), divdiv Q' (D*u) = f in X, (5.20)

minimizes energy & among scalar functions in SBH(R?) with support in X.
Moreover u is the unique minimizer of & in this class.

The proofs are postponed after some preliminary Lemmas. We are not able to prove
(and even to write) the complete system of Euler equations (analogous to Lemma 6
for the beam) for functional (5.11), since we cannot hope to have enough regularity
of minimizers v to give meaning to the product (V2v : w) when p is a matrix-
valued measure; moreover for a general minimizer v the set Sp, is not smooth
enough to perform integration by parts. The difference with respect to beam problem
faced in Sect. 3 is that weak and strong formulation of free gradient discontinuity
problems coincide only in dimension n = 1. Nevertheless we can prove something
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similar to Du Bois-Raymond equation, by considering only particular variations
e(w — v), where w belongs to C>(X) N SBH(R?), sptw C ¥, v € argmin & and
e € R, as stated by the Lemma 11 below. So we get Euler equation (5.48) only
in the set X' \ Sp, and the compliance identity as stated in Lemma 12. Moreover
additional assumptions on f and d X' allow proof of basic relationship: a sufficiently
small load f in [P (X)) with p > 1 entails excess identity (5.34) and the regularity
Theorem 10. In a different perspective any f € L”(X) with p > 2 leads to partial
regularity result stated in Theorem 9.

Lemma 10 Assume (5.1), (5.2), (5.4), (5.11), (5.12) and
Il (X) < 4y (safe load condition for clamped plate) (5.21)

Then & achieves a finite minimum over w € SBH(R?) with sptw C X .
Proof 1t is a particular case of Theorem 8.3 in [16]. O

Lemma 11 Assume (5.1), (5.2), (5.4), (5.11), (5.12). Then, for any w € CZ(E) n
SBH(R?) with sptw C X, and v € argmin & (minimizing over SBH(R?) with
spt C X)) we have

/ (Q'(V?v) : (D*w — V) — f(w—v)) dx — )// [[Dv]| d#' = 0.
P Spv
(5.22)

Proof Identity (5.22) is a kind of Du Bois-Raymond equation and can be proved by
exactly the same procedure of item (iv) of Lemma 2, by performing variations of v
of the kind v + e(z — v), with |¢| < 1 to avoid cancelation of the singular set, then
exploiting minimality of v, convexity of Q and V?v = D*v — [Dv]ds#"' Sp, .
Lemma 12 (Compliance Identity for Elastic-Plastic Plate) Assume (5.1), (5.2),
(5.4), (5.11), (5.12). Then

2/ Q(V*v)dx = /fvdx — )// |[Dv]| do#" Vv € argmin & .
z by

Spv
(5.23)
Hence the following compliance identity holds true

P) = —/ O(V*v)dx + B #"(Sp,) Vv € argmin & (5.24)
)

Proof Choose w = 01n (5.22). 0
Lemma 13 (Elliptic Regularity) Assume (5.12), (5.18) and

felr, 1<p<+4oo. (5.25)
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Then the elliptic problem of fourth order (5.20) has unique solution u which is also
the unique minimizer offx ( 0(D*v) —fv) dx over v € H3(X), moreover u fulfils
the associate compliance identity

/ Q(D*u)dx = I/fudx, e.g. P(u) = ! /fudx, (5.26)
X 2 X 2 )

u belongs to W“’(Z) and there are two constants Cy, Cy, with C; = C{(X,p,a,A)
and C, = Cr(X, p,a,A) such that

lullwersy < Crllfllrcs) s (5.27)
IDullcogsy = Callf s - (5.28)
If O = Qg (Kirchhoff-Love elastic plate) then problem (5.20) reads as follows:

320 s (5.29)

ueHy(X),  Au = 8u(A+p

Proof Since /(X)) C H7%(X), by denoting C3 the related embedding con-
stant and applying standard Hilbert technique for elliptic equations, we get exis-
tence and uniqueness of solution for (5.20), minimizing the purely elastic energy
[ (Q(D*v) — fv) dx and fulfilling (5.26) together with the following estimates

(dueto (5.12), ¥ C R?, sptu C X):

lullzoe 5y < ||D'42||T(2) = |2|1/2||D2'4||L2(2)
- |2|1/2 (/ Q(D2 ) ix )1/2 _ |2|1/2 (1 /fudx)l/z B
- 4. /a \2Js -
| X1/ 12 1/2 | |;+2’1’/ 12 12
< 4 /2 1Ay uell ) = 4 V2 11l () Nutll oo ) -
hence, by H(X) C L>®(X), we get
2—1/p
lullzeeey = 5, Ml
lullrczy < 1217 llullioos) < |3§| 1Al - (5.30)

Regularity W** of solution u in (5.20) follows by standard interior regularity and use
of Lemma 4.2 p. 414 of [1] (with m = j = 2) on a finite atlas of the boundary 0 X
in the convex polygon case, and by Theorem 8.1 p. 443 of [1] in the C* boundary



462 D. Percivale and F. Tomarelli

case: hence in both cases:
lullwsrcsy < Co (Iflrczy + lullr(s)) - (5.31)

Then (5.30), (5.31) entail (5.27) with C; = (1 + |E|2/(32a))C0.

Estimate (5.27) together with Sobolev inequality entail estimate (5.28) with
G = GG = (1 + |X]*/(32a))CyCs where C; is the embedding constant:
[1D%ullcocsy < Csllullwso(s). O
Lemma 14 Assume (5.2), (5.11), (5.12), (5.18), (5.25) and u is the unique solution
of

ue HX(X), sptucC X, divdiv Q'(D’u) = fin ¥. (5.32)

Then extension by zeroes of u is in C{ X)NC (R")and the following statements hold
true.
Excess estimate for & : If u solves (5.32) then for all v € SBH(R?) s.t. sptv C ¥

20)= 2w = pr' o)+ [ (IIDv]] = Q') (D] vs,.) ) dr
" (5.33)

Excess identity for minimizers of & : If v minimize & among v € SBH(R?) such
that sptv C X and u solves (5.32) then

PO)— D) = A (Sp) +

2/ (V|[DU]|— Q/(Dzu):([DU]®vSDU))djfl_

Spv
(5.34)

Necessary conditions for existence of creased minimizers of & : If v minimize
P among v € SBH(]Rz) s.t.sptv C X, Sp, # 0, and u solves (5.32), then

” Q/(Dzu)”Loo(qu(Rz’Rz)) >y, (535)

[ (rioull= 0@ s el @vs,.) )t = =25 5n) <.
Spv
(5.36)

We emphasize that the excess estimate (5.33) holds true also under weaker assump-
tions: Q convex and C?; while the excess identity (5.34) and its consequence, say
the fact that (5.35), (5.36) are necessary conditions for creased minimizers, require
the quadratic structure (5.12) of Q.

Proof By (5.25), (5.18), (5.32) and Lemma 13 we know: D*u € C(X), u € Hg(E);
hence u € C>(X) N C'(R"). For simplicity, we will write shortly v instead of vg,,,
in the proof.
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By convexity of Q we get
P () — P(u) = BAH"(Svy) + / Q(V*v)dx+y / [ ” dx"+

Spv

fvdx /ZQ(Dzu)dx+/qudx>

Gl
> ,B%I(SDU)—H// [ U}’d%“—/f(v —u) dx—i—/ Q' (D*u): (V2v—Du) dx.
Sy, IL OV z z
(5.37)
Thanks to Lemma 13
D*ue C'(X) (5.38)
so that we can apply Lemma 11 with w = u and v € argmin &.
By (5.8), (5.20), (5.32), (5.38) and Theorems 2.15, 6.3, 6.4 of [11] we have:
Vv = DPv—[Dv]@vdA#"' Sp,NXE =
ad .
= Dzv—[avi|®vd%”1 SpyN X in 7'(%), (5-39)
v
ad
[Dv] @ v SDvﬂZ‘:[av}@vd%f‘ SpyN S (5.40)
v
o 8p(A + ) :
= divdiv Q'(D* = fQ= :
f=divdiv QD) sy f= 3,70 A i Q= Qu

Hence, integrating by parts twice and taking into accountu = v = 0 on dX, we get

Q' (D?u) : (D*v — D*u)dx =

= — / div Q' (D*u) - D(v — u) dx + / Q' (D*u) : ( dv Vs ®v;) =
z 9z gvz
:/ div div Q'(D*u) - (v — u) dx + / Q' (D%u) : ( v vy ® v;) =
by ] 9 %>
:/f(v—u)dx—}—/ Q/(Dzu):(av v;®v;)
s 0z 13
(5.41)

where vy is the outward normal to dX. We choose v = vg,, = vy on 0¥ N Sp,
and, abusing notation we define (gz V® v) = Qon dX \ Sp,; with this convention,
by denoting |, and |;, respectively the outer and inner traces at d§2 and taking into
account that d/dvy stands for the inner trace of the derivative in the direction of
outer normal, we get

v _ dv v
v | v

o

out
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so that (5.41) reads as follows

/ Q' (D*u) : (D*v — D*u) dx :/f(v—u)dx—/ Q' (D) : ([a”}u@w) .
x b)) X v ($.42)

By substituting (5.39) in (5.37) and taking into account (5.40), (5.42) and Dv = Vv
we get

PW)—Pw) > BA(Spy) + | Q(D*u): (D*v —D*u)+

Jre-osrf [

A" —/ Q' (D*u): [Vv]®@vdi# ' =
SpyNX 9
_ 1 _ _ /2 .
g (Snu)+/f(v ) dx /32 QD) - ([av}“@”)*

)
—/f(v—u)+y/ [81}} dx"' — Q' (D?u): [Vv] @ vd#"' =
b spnx LIV Spy S
= B (So) + (/ y‘[av} A Q’(Dzu):[vw@ud%l)
Sow 3]) Spw

= BA (Spy) + (/ % )[a”“ — QD) : [a”} v ®vdjf1)
spe |LOV v
(5.43)

so that (5.33) follows by(5.40). Since Q is a symmetric quadratic form we get

Q) ~ Q(B) = L (Q'(A) + QB) : (A~ B) (5.44)

hence by using (5.39), (5.40), (5.42), (5.44) and eventually (5.22) we get (5.34) as
follows:

PW)— P =
- [ (Q(V?v)— Q(D*w)) dx — / Fo—uydx +y /
P 3

Spv

[3v]‘d%1+ﬂ%1(sm):
av
1/(Q’(V2U)+ Q/(DZM)):(VZU_DZM)
2 X
a —u)d
— 14 31) 1
- Z/sm [%] o _2f,gf(”—u)dx+ﬂ%1(sm)

1 , . 1
+2/EQ(DZM).(D%—DZM)—2/S

_ I 1 Jv
= (Sm)+2/sm{y ’[av]

[8”]’ Ar" + B (Spy) =
Jv

Q' (D?u) : ([Dv] @ v)d#'' =
o

Dy

— Q' (D*u): (IDV] @)t dw'!.

(5.45)
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Then (5.35) follows by (5.2), (5.34) and minimality of v, (5.36) follow from (5.34),
(5.35). O

As a consequence of Lemma 14 we can prove the following result (announced in
Th. 2.2 of [42], for the particular case of Kirchhoff-Love plate Zk;) which states
that the minimizers of (5.11) do not exhibit any plastic yield whenever the purely
elastic solution has small second derivatives.

Lemma 15 (Bending Moment Regularity Condition for Clamped Plate)
Assume (5.1), (5.2), (5.11), (5.12), (5.18), (5.25) and the solution u of purely
elastic problem (5.20) fulfils

” Q/(Dzu)”Loo(E,g(Rz’Rz)) =v. (5.46)

Then u € argmin & (w) and u is the unique minimizer of & .
Explicitly, in the case of Kirchhoff-Love plate (functional Pk;, corresponding to
0 = Qg;) condition (5.46) reads

uA
A+2

=
Loo(X)

y. (5.47)

~ W

H wD*u + p (Tr D*u) I

Proof By (5.33) and (5.46) we get

D)~ P) = P (Sou) + ( f

Spv

(v D]l - QD) : (Dv] ® vs;,) d° 1) >

— B (o) + ( [S (v — 1 QD) o0) |IDV] d%l) > B Sp) = 0.

and the last inequality is strict if 5#'(Sp,) > 0. O

Proof of Theorem 10 Safe load condition |[|f|,1(sy < 4y entails existence of

minimizers of & over w € SBH with sptw C X, thanks to Lemma 10.
Inequalities (5.13), (5.19), (5.28) entail (5.46), hence we can apply Lemma 15 to
achieve the claim. [

Lemma 16 (Euler Equation for &) Assume (5.1), (5.2), (5.11), (5.12), (5.25),
(5.18), (5.32) and w minimizes & among v in SBH(R?) s.t. sptv C X. Then

divdiv Q'(D*w) = f 2\ Spw. (5.48)

Proof Perform smooth variations with supportin X' \ Sp,,. O

Proof of Theorem 9 Safe load condition || f||,1x) < 4y together with Lemma 10
entail the existence of minimizers for &?. So we can apply Corollary 4.14 and
Theorem 4.15 in [12] to any minimizer of &7 and get interior partial regularity in
X, then repeat the technique of [18] in this simpler case (homogeneous Dirichlet
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datum, free discontinuity allowed only for derivatives) to prove partial regularity up
to the boundary 9X.00

Remark 7 About plastic yield lines analysis we emphasize the similarity of their
properties with free discontinuity set in Blake & Zisserman functional in image seg-
mentation: we refer to [17] and [19] for geometric properties of crease set, squared-
hessian jump, stress concentration and asymptotic expansion around crease-tip of a
minimizer.

Acknowledgements This paper is dedicated to Gianni Gilardi on the occasion of his 70th
Birthday.
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Stability Results for Abstract Evolution
Equations with Intermittent Time-Delay
Feedback

Cristina Pignotti

Abstract We consider abstract evolution equations with on—off time delay feed-
back. Without the time delay term, the model is described by an exponentially stable
semigroup. We show that, under appropriate conditions involving the delay term, the
system remains asymptotically stable. Under additional assumptions exponential
stability results are also obtained. Concrete examples illustrating the abstract results
are finally given.

Keywords Delay feedbacks ¢ Evolution equations ¢ Stabilization

1 Introduction

In this paper we study the stability properties of abstract evolution equations in
presence of a time delay term.

In particular, we include into the model an on—off time delay feedback, i.e. the
time delay is intermittently present.

Let 7 be a Hilbert space, with norm || - ||, and let &7 : 7 — S be a dissipative
operator generating a Cp-semigroup (S(#)),>o exponentially stable, namely there are
two positive constants M and p such that

SOy <Me™, Vi>0, (1)

where .Z () denotes the space of bounded linear operators from J# into itself.
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470 C. Pignotti

We consider the following problem

Uty =dU@)+ BO)U(Et—1) t>0, @)
U(0) = Uy,
where 7, the time delay, is a fixed positive constant, the initial datum Uy, belongs to
A and, for t > 0, Z(t) is a bounded operator from 7 to 7.
In particular, we assume that there exists an increasing sequence of positive real
numbers {t,},, with t, = 0, such that

1) %(l‘) =0 Vte 12,, = [lzn,l‘zn_H),
2) B(t) = PBony1 Yt Dyt = [tant1, tant2)-

We denote Byyt1 = || Bant1ll2(w). n € IN, where the symbol IN denotes the set
of the natural numbers starting from 0. Moreover, denoted by 7, the length of the
interval 7,,, that is

T, =tyyt1—t, nE N, 3)
we assume
Ton>7, Ynel. 4)

Time delay effects are frequently present in applications and concrete models
and it is now well-understood that even an arbitrarily small delay in the feedback
may destabilize a system which is uniformly stable in absence of delay (see e.g.
[7,8,22,30]).

We want to show that, under appropriate assumptions involving the delay
feedback coefficients, the size of the time intervals where the delay appears and
the parameters M and p in (1), the considered model is asymptotically stable or
exponentially stable, in spite of the presence of the time delay term.

Stability results for second-order evolution equations with intermittent damping
were first studied by Haraux, Martinez and Vancostenoble [14], without any time
delay term. They considered a model with intermittent on—off or with positive—
negative damping and gave sufficient conditions ensuring that the behavior of the
system in the time intervals with the standard dissipative damping, i.e. with positive
coefficient, prevails over the bad behavior in remaining intervals where the damping
is no present or it is present with the negative sign, namely as anti-damping.
Therefore, asymptotic/exponential stability results were obtained.
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More recently Nicaise and Pignotti [23, 24] considered second-order evolution
equations with intermittent delay feedback. These results have been improved and
extended to some semilinear equations in [9]. In the studied models, when the delay
term (which possess a destabilizing effect) is not present, a not-delayed damping
acts. Under appropriate sufficient conditions, stability results are then obtained.
Related results for wave equations with intermittent delay feedback have been
obtained, in 1-dimension, in [12, 13] and [3] by using a different approach based
on the D’ Alembert formula. However, this last approach furnishes stability results
only for particular choices of the time delay.

In the recent paper [28], the intermittent delay feedback is compensated by a
viscoelastic damping with exponentially decaying kernel.

The asymptotic behavior of wave-type equations with infinite memory and time
delay feedback has been studied by Guesmia in [11] (cfr. [15]) via a Lyapunov
approach and by Alabau-Boussouira et al. [2] by combining multiplier identities
(cfr. [1]) and perturbative arguments.

We refer also to Day and Yang [6] for the same kind of problem in the case of
finite memory. In these papers the authors prove exponential stability results if the
coefficient of the delay damping is sufficiently small. These stability results could
be easily extended to a variable coefficient b(-) € L°°(0, +o00) under a suitable
smallness assumption on the L°-norm of b(-).

In [28], instead, asymptotic stability results are obtained without smallness
conditions related to the L°°-norm of the delay coefficient. On the other hand, the
analysis is restricted to intermittent delay feedback. Asymptotic stability is proved
when the coefficient of the delay feedback belongs to L' (0, +o0) and the length of
the time intervals where the delay is not present is sufficiently large. The same paper
considers also problems with on—off anti-damping instead of a time delay feedback.
Stability results are obtained even in this case under analogous assumptions.

The idea is here to generalize the results of [28] by considering abstract evolution
equations for which, without considering the intermittent delay term, the associated
operator generates an exponentially stable Cy-semigroup.

For such a class of evolution equations we already know that, under a suitable
smallness condition on the delay feedback coefficient, an exponential stability result
holds true (see [25]). We want to show that stability results are available also
under a condition on the L!-norm of the delay coefficient, without restriction on
the pointwise L*-norm.

The paper is organized as follows. In Sect. 2 we give a well-posedness result. In
Sects. 3 and 4 we prove asymptotic and exponential stability results, respectively, for
the abstract model under appropriate conditions. Stability results are established also
for a problem with intermittent anti-damping instead of delay feedback in Sect. 5.
Finally, in Sect. 6, we give some concrete applications of the abstract results.
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2  Well-posedness

In this section we illustrate a well-posedness results for problem (2).

Theorem 1 For any initial datum Uy € F€ there exists a unique (mild) solution
U € C([0, 00); ) of problem (2). Moreover,

U(t) = S Us + /O rS(t — $)B(s)U(s — 1) ds. (5)

Proof We prove the existence and uniqueness result on the interval [0, ,]; then
the global result follows by translation (cfr. [23]). In the time interval [0, #,], since
AB({t) = 0Vt € [0,11), then there exists a unique solution U € C([0, t], )
satisfying (5). The situation is different in the time interval [t;, ;] where the
delay feedback is present. In this case, we decompose the interval [, f;] into the
successive intervals [t; + jt,t; + (j + 1)7), forj = 0,...,N — 1, where N is such
that t; + (N 4+ 1)t > t,, and [t; + N7, t;]. Now, first we look at the problem on the
interval [t,#; + 7]. Here U(¢ — 1) can be considered as a known function. Indeed,
fort € [t1,1; + 7], then t — t € [0, #;], and we know the solution U on [0, #;] by the
first step. Thus, problem (2) may be reformulated on [t1, t; + 7] as

{ Uty = JU@) + go(t) te(z,21), ©)

U(z) = U(z-),

where go(t) = Z(t)U(t—1). This problem has a unique solution U € C([z, 2t], )
(see e.g. Th. 1.2, Ch. 6 of [27]) given by

Ut =St—1t)U(z-) + /tS(t—s)go(s) ds, Vte]lr,21].

Proceedings analogously in the successive time intervals [t; +jt,¢ + (j+ 1)7), we
obtain a solution on [0, ,]. |

3 Asymptotic Stability Results

Let T* be defined as

T*'—llM 7
= InM, @)
w

where M and p are the constants in (1), that is 7* is the time for which Me HT" = 1.
We can state a first estimate on the intervals I, where the delay feedback is not
present.
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Proposition 1 Assume T,, > T*. Then, there exists a constant ¢, € (0, 1) such that

1U @)1 < eall U201, ®)

for every solution of problem (2).

Proof Observe that in the time interval I, = [t2,, t2,+1] the delay feedback is not

present since (1) = 0. Thus, (8) easily follows from (1) with /c, = Me ™ <

Me T = 1. |
Let us now introduce the Lyapunov functional

FO) = FU0 5= 0O+ ) [ 126+ DllzonlveF e O
Proposition 2 Assume 1),2). Moreover, assume T, > t, ¥V n € IN. Then,
F'(t) < Bour i lUMN?. 1 € Dut1 = [tant1.tong2). ¥ n € IN. (10)
for any solution of problem (2).
Proof By differentiating the energy F(-), we have
F'() = (U@, ZU@0) +(U@0). BOU(E— 1)) + ;II%(I + Dl 2 UG

1
—, 1#ZOlzon U - ).

Then, since the operator <7 is dissipative, one can estimate

1
F(0) < |20ll2onlUOINUG =l + 120 + Dz VO an
1
—, 1#ZOlzon U - ).

Therefore, from Cauchy—Schwarz inequality,

1 1
F'(n) < 2”«%)0)”3(%)”[](0”2 +, 1%+ Dllzen VO],

Now, observe that, since T, > 1, forevery n € IN, if t belongs to I, then t + 1
belongs to I»,41 or to 4. In the first case || A(t + 1)|| ##) = Ba+1 while, in
the second case || #(t + 1)|| # ) = 0. Thus (10) is proved. |
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Theorem 2 Assume 1), 2) and T», > t for all n € IN. Moreover assume Ty, > T*,
forall n € IN, where T* is the time defined in (7). Then, if

o0
Zln [Pzttt (¢, + Topy 1 Bong1)| = —00, (12)
n=0

Eq. (2) is asymptotically stable, namely any solution U of (2) satisfies |U(t)|| — 0
fort — +oo0.

Proof Note that from (10) we obtain
F'(t) < 2By 1F(t), 1t € g1 = [tons1, tant2), n € IN.
Then, by integrating on the time interval /5,1,
F(1) < BTt F(ty,10), V1€ [tapg1, onta], Y€ IN. (13)

From the definition of the Lyapunov functional F,

1 1 [lnt+r
Fltan) = 0GP+ [ 186+ 0llza [VOPas. s

4177

Note that, for t € [t2,+1 — T, t2p+1), then t + T € [try41, tant+1 + T) and therefore,
since |Ipy42| > T itresults t + t € DLyyy U Lyyy. Now, if t + T € Ip,42, then
AB(t + 1) = 0. Otherwise, if t + t € Ip,41, then |B(t + t)|| = Ban+1. Then,
from (14) we deduce

1 5 1 min(f2,42—7.2n41) 5
F(tyut1) = 2||U(l2n+1)|| + 2B2n+l/ 1U(s)||“ds, (15)

bpn41—T

since if to,41 > fptr — T, then B(r) = 0 for all t € [try42,lon+1 + T) C
[2n+25 t2n+3).

Then, since ||U(+)|| is decreasing in the intervals /5, (the operator <7 is dissipative
and %(t) = 0), we deduce
1 2, 1 2
F(tant1) < 5 1UE2n+-D” + 2T2n+1B2n+l [U(t2n41 — D)

1 ) 1 R (16)
< 2||U(l2n+1)|| + 2T2n+1an+1||U(l2n)|| .

Using this last estimate in (13), we obtain

[U(t2ng2) II* < 2F (tang2) < B2 H17241 (¢, + T 1Boni)) [U () |?, V€ NN,
(17)



Stability Results for Evolution Equation with Time Delay 475

where we have used also the estimate (8). By iterating this argument we arrive at
|U(t2ng2) I < T g2+ (of + Topy1Bogs1) | Uo||>, ¥ e IN. (18)

Now observe that | U(7)]| is not decreasing in the whole (0, +00). However, it is
decreasing for ¢ € [t2,, thy+1), n € IN, where the destabilizing delay feedback does
not act and so

IO < U@, V1€ [tan, tang1)- (19)
Moreover, from (16), for ¢ € [ty,+1, tau+2) We have
IU@1P < 2F (1) < &P+t (¢ + Bopg 1 Tant ) | U (220) I, (20)

where in the second inequality we have used (8).
Then, we have asymptotic stability if

2B T
I} e+ 1224 (¢ + T 1Boyy1) — 0, forn — oo,

or equivalently
In |:H1:1=0€232]‘+1T2]‘+1 (Ck + T2k+1sz+1):| —> —0Q, forn — o0,

namely under the assumption (12). This concludes the proof. |

Remark 1 In particular, (12) is verified if the following conditions are satisfied:

00 )
ZBZVH-ITZVH-I < 400 and Zlncn = —00. (21)

n=0 n=0

Indeed, it is easy to see that (21) is equivalent to

o0 o0
ZBZn+1T2n+1 < 400 and Zln(Cn + Bat1T2p4+1) = —00 (22)
n=0 n=0

and that (22) implies (12).

Therefore, from (21), we have stability if | Z(t)|| € L' (0, +00) and, for instance,
the length of the good intervals I, is greater than a fixed time 7, T > T* and T > t,
namely

T, >T, VnelN.

Indeed, in this case there exists ¢ € (0, 1) such that 0 < ¢, < c.
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If we assume that the length of the delay intervals, namely the time intervals
where the delay feedback is present, is lower than the time delay t, that is

Tont1 <1, VnelN. (23)

we can prove another asymptotic stability result which is, in some sense, comple-
mentary to the previous one.

In this case we can directly work with ||U(¢)| instead of passing through the
function F(-). We can give the following preliminary estimates on the time intervals
I2n+17 n € IN.

Proposition 3 Assume 1), 2). Moreover assume Tr,+1 < T and To, > t, ¥V n € IN.
Then, fort € Iry41,

d
dtIIU(t)Ilz < BowttlUM + Bont1 [ U (220) |1 (24)

Proof By differentiating || U(f)||> we get
Z UM = 2(U@), FU@®) + 20U (1), BOU(t — 7).
Then, by using the dissipativity of the operator .7,
d 2
;YOI =2{U0). 20U - 1)).
Hence, from 2),

d

dtIIU(t)IIZ < Bos 1 [UD|? + Bos 1 [UG = D).

We can now conclude observing that since 75,4+ < t and T, > t, thenfort € Ip,4+|

itist—t € b,. Then, since ||U(?)|| is decreasing in I,, the estimate in the statement

is proved. |
The stability result follows.

Theorem 3 Assume 1), 2), Toy+1 < Tt and Ty, > 7, ¥ n € IN. Moreover assume
Ty, > T*, for all n € IN, where T* is the time defined in (7). If

00
Z In [eBZIz+1T2n+l (cn+1— e_BZIz+1T2n+l)] = —00, (25)
n=0

then every solution U of (2) satisfies |U(t)|| — 0 fort — +o0.
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Proof Fort € Ly41 = [tan+1, tant2), from estimate (24) we have

t

lu@|?* < EBZ”J””_’Z”*‘){||U(f2n+1)||2 + Byt /

Dn+1

| U(t20) ||Ze_32n+l (‘Y—t2n+1)ds} .

Then we deduce
[V = Pt [ Uty |+ €D U 1) P 1 = P O]
and therefore

IU@I? < PPt [ Ut [P + €U (120) [ = 10 20) |2,

fort € byt1 = [fant1.t2nt2), 1 € IN.
Now we use the estimate (8) obtaining

||U(t2n+2)||2 < Bt (Cn I - e—an+1Tzn+1) ||U(l2n)||2, nelN.

Thus,

1
[U(tans2) || < I:Hl:l=0832k+lT2k+l (e +1— e—sz+1Tzk+1)] 2 1 Uoll. (26)
Then the asymptotic stability result follows if

I} BTt (ck +1-— e_BZ"+1T2"+1) — 0, forn— oo,

namely if

o0
2 In I:eBZn+lT2n+1(Cn +1- e—32n+1T2n+1)] — —00, forn— oo. n

n=0

Remark 2 Observe that, when the odd intervals /5,4 have length lower or equal
than the time delay 7, the assumption (25) is a bit less restrictive than (12). Indeed,

eBant1Ton1 (Cn I e_BZn-‘rlTZu-‘rl) < 2Boant1Tont1 (Cn 4 BZn-‘rlTZn-‘rl)v Vn e IN.

Remark 3 Arguing as in Remark 1 we can show that condition (25) is verified, in
particular, if (21) holds true.
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4 Exponential Stability

Under additional assumptions on the coefficients 7}, B2,+1, ¢,, exponential stability
results hold true.

Theorem 4 Assume 1), 2). Moreover, assume

T, =T VneN, 27)
with T® > © and T° > T*, where T* is the constant defined in (7),

Top1 =T VnelN (28)
and

sup B2+ (¢ 4+ By T) =d < 1, (29)
nelN

where ¢ = Me M. Then, there exist two positive constants C, « such that
U@ < Ce || Uoll. t> 0. (30)

for any solution of problem (2).

Proof Note that, from the definition of the constant ¢, estimate (8) holds with ¢, =
¢, V n € IN. Thus, from (29) and (17) we obtain

U@ + )] < 2|Vl
and then,
U@ + D) < d?||Usll,  ¥n e,
Therefore, ||U(r)| satisfies an exponential estimate like (30) (see Lemma 1
of [12]). m

Concerning the case of small delay intervals, namely |l5,+1| < 7, Vn € IN, one
can state the following asymptotic stability result.

Theorem 5 Assume 1), 2). Moreover assume
T =T° Vnel,
with T > v and T° > T*, where the time T* is defined in (7),

Tonp1 =T, with T<t VnelN (31)
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and

sup eBZ”J”T(c +1 —e_BZ”Jr‘T) =d<1, (32)
n€N

where ¢ = Me M. Then, there exist two positive constants C, « such that
U@ < Ce || Uoll. 1> 0. (33)

for any solution of (2).

Proof The proof is analogous to the one of Theorem 4. |

5 Intermittent Anti-damping

With analogous technics we can also deal with an intermittent anti-damping term.
More precisely, let us consider the model

Ul(t) = dU@F) + BU(@E) >0,

U(0) = U, 34)

where 7 is the time delay, the initial datum U, belongs to .7 and, for t > 0, %(1) is
a bounded operator from 5 such that

(BOU,U) >0, YUe.

Thus A(t)U(¢) is an anti-damping term (cfr. [14]). In particular we consider an
intermittent feedback, that is we assume that there exists an increasing sequence of
positive real numbers {¢,},, with o = 0, such that

3) %(l) =0 Vr¢e b, = [t2n3t2n+1),
4) B(t) = Dong1 V1t € Dyti = [tant1, tant2).

We denote Dy, t1 = | Zon+1ll 2(¢), n € IN.
As before, denote by T, the length of the interval I,,, that is

T, = tyr1 — ty, n € IN.
Note that Proposition 1, which gives an observability estimate on the intervals I,

where the anti-damping is not present, still holds true. Concerning the time intervals
D>, +1 where the anti-damping acts one can obtain the following estimate.



480 C. Pignotti

Proposition 4 Assume 3) and 4). For every solution of problem (34),
d 2 2
dt”U(t)” S 2D U7, 1 € Dyy1 = [nt1. ng2], Vn €N

Proof Being o7 dissipative, the estimate follows immediately from 3). |
From Proposition 4 we deduce an asymptotic stability result.

Theorem 6 Assume 3), 4). Moreover assume T,, > T*, for alln € IN, where T* is
the time defined in (7). If

o0
Zln (62D2n+lT2n+1Cn) = —00, (35)
n=0

then the problem (34) is asymptotically stable, that is any solution U of (34) satisfies
U@ — 0 fort — 4o0.

Proof From Proposition 4 we have the estimate

d
dt”U(t)Hz < 2D, 1 [UDIP, ¢ € byy1 = [tant1,ton2], Y €N,
This implies
[U(tr2) |1 < P P41 Uty )|, V€N, (36)

Then, from estimate (8) which is always valid of course in the time intervals without
damping,

1U(t2n42) |7 < P21 Ttic, U ), ¥V ne N 37)
By repeating this argument we obtain
|U(tans2) P < T_o@®P* 1551 Ug|?, ¥ n e IN. (38)
Therefore, asymptotic stability is ensured if
17,:’=082D2"+1T2k+lck —> 0, forn— oo,
or equivalently
In (H,:‘zoewz"“m“ck) —> —oo, forn— oo.

This concludes. |
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Remark 4 In particular (35) is verified under the following assumptions:
o0 o0
ZD2n+lT2n+l < 400 and Zln ¢, = —00. 39)
n=0 n=0

Under additional assumptions on the problem coefficients T, D2,+1,c,, an
exponential stability result holds.

Theorem 7 Assume 3), 4) and
T, =T VneN, (40)

with T > T*, where the time T* is defined in (7). Assume also that

Topr =T VneNlN 41)
and

sup eXPrtiTe = 4 < 1, (42)

nelN

where, ¢ = Me™"" . Then, there exist two positive constants C, o such that
U@l < Ce™™||Toll, >0, (43)

for any solution of problem (34).

6 Concrete Examples

In this section we illustrate some examples falling into the previous abstract setting.

6.1 Viscoelastic Wave Type Equation

Let H be a real Hilbert space and let A : 2(A) — H be a positive self-adjoint
operator with a compact inverse in H. Denote by V := Z(A é) the domain of A2 .
Let us consider the problem

uy(x, 1) + Au(x, t) — /00 w()Au(x,t — s)ds + b(Hu,(x,t —7) =0 >0, (44)
0

u(x,f) =0 on 0982 x (0, +00), (45)
u(x,r) = up(x,t) in 2 x (—o0,0[; (46)
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where the initial datum u belongs to a suitable space, the constant t > 0 is the
time delay, and the memory kernel w : [0, +00) — [0, +-00) satisfies

i) e C'RT)NL(RY):
i) 1(0) = po > 0;
+o0 ~ .
iii) [, p@dt =< 1;
iv) p'(r) <—-8u(r), forsome § > 0.

Moreover, the function b(-) € L7° (0, +-00) is a function which is zero intermittently.

That is, we assume that for all n € IN there exists #, > 0, with fo = 0 and ¢, < t,,41,
such that

lw) b(l) =0 Vr¢e 12,, = [t2n5t2n+l)v
2y) D@ < bopy1 0 V1€ Dyyt = [tant1, bont2).

Stability result for the above problem were firstly obtained in [28]. We want to
show that they can also be obtained as particular case of previous abstract setting.
To this aim, following Dafermos [5], we can introduce the new variable

n'(x,s) = ulx, ) —u(x, t—s). 47)

Then, problem (44)—(46) may be rewritten as

w@ﬂ=—ﬂ—mM@0—A (AT (. 5)ds

—b(Hu,(x,t — 1) in 2 x (0, +00), (48)

ni(x,s) = —ni(x,s) + u(x, 1) in 82 x (0, +00) x (0, +00), (49)

u(x,t) =0 on 982 x (0, +00), (50)

n'(x,s) =0 in 382 x (0, +00), t > 0, (51)

u(x,0) = up(x) and u,(x,0) =u;(x) in 2, (52)

n°(x.s) = no(x.s) in 2 x (0, 400), (53)
where

up(x) = up(x,0), xe 2,
w(x) = %00 l=0. x€ L2, (54)
no(x, s) = up(x,0) —up(x,—s), x€ 82, s € (0,+00).

Set Li((O, 00); V) the Hilbert space of V-valued functions on (0, +-00), endowed
with the inner product

00000 = [ WO 060,476
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Let .77 be the Hilbert space
H =V xHxL,(0,00):V),

equipped with the inner product

—_—
= < =
ES ISR

> = (1= ) (A2 A2y + (v, D)

» (55)

o0
+ / w() (A 2w, AV yds.
0

Denoting by U the vector U = (u, u,, 17), the above problem can be rewritten in the
form (2), where AU = B(u, v, ) = (0, —bv,0) and <7 is defined by

u v
v | = -0—-@pAu— [5° u(s)Aw(s)ds | . (56)
—Wy + v

with domain (cfr. [26])

D) = { (. v.)7 € HY(2) x Hy(£2) x L2 ((0, +00): H)(R2))
o0
(=fu+ [ pemeds e @0 H@. )
0
s € (0, +00): HY(2))}
It has been proved in [10] that the above system is exponentially stable, namely
that the operator «/ generates a strongly continuous semigroup satisfying the
estimate (1), for suitable constants. Moreover, it is well-known that, the operator
7 is dissipative. Therefore, our previous results apply to this model.
As a concrete example we can consider the wave equation with memory. More

precisely, let 2 C IR" be an open bounded domain with a smooth boundary 0£2.
Let us consider the initial boundary value problem

uy(x, 1) — Au(x, t) + /OO w(s)Au(x, t — s)ds
0
+b(Hu(x,t —7) =0 in 2 x (0,400), (58)
u(x,t) =0 on 982 x (0, +00), (59)
u(x,t) = up(x,t) in £2 x (—o0,0]. (60)
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This problem enters in previous form (44)—(46), if we take H = L*(£2) and the
operator A defined by

A:9A)— H : u— —Au,

where Z2(A) = H}(2) N H*(R2).

The operator A is a self-adjoint and positive operator with a compact inverse in
H and is such that V = 2(A'/?) = H}(£2).

Under the same conditions that before on the memory kernel x(-) and on the
function b(:), previous asymptotic/exponential stability results are valid. The case b
constant has been studied in [2]. In particular, we have proved that the exponential
stability is preserved, in presence of the delay feedback, if the coefficient b of
this one is sufficiently small. The choice b constant was made only for the sake
of clearness. The result in [2] remains true if instead of b constant we consider
b = b(t), under a suitable smallness condition on the L°-norm of b(-). On the
contrary here we give stability results without restrictions on the L°°-norm of b(-),
even if only for on—off b(-).

Our results also apply to Petrovsky system with viscoelastic damping with
Dirichlet and Neumann boundary conditions:

un(x, 1) + A%u(x, 1) — / ” w(s) A%u(x, t — s)ds
0

+b(Hu(x,t —7) =0 in 2 x (0, +00), (61)

u(x, f) = g: —0 ondf x (0, +00), (62)
w(x, 1) = uo(x, £) in 2 x (—o00,0]. (63)

This problem enters into the previous abstract framework, if we take H = L*(£2)
and the operator A defined by

A:2(A)— H : u— Alu,
where Z(A) = H3(22) N H*(£2), with

HX($2) = {v cHXRQ) : v= glv) —0 on 92 }

The operator A is a self-adjoint and positive operator with a compact inverse in H
and is such that V = 2(A'/?) = H3(£2).

Therefore, under the same conditions that before on the memory kernel p(-) and
on the function b(+), previous asymptotic/exponential stability results are valid.
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6.2 Locally Damped Wave Equation

Here we consider the wave equation with local internal damping and intermittent
delay feedback. More precisely, let 2 C IR" be an open bounded domain with a
boundary 952 of class C2. Denoting by m the standard multiplier m(x) = x—xo, xo €
R”, let w; be the intersection of 2 with an open neighborhood of the subset of 952

In={x€df2 : mx) - -v(x) >0}, (64)

where v(x) denotes the outer unit normal vector to x € d52. Fixed any subset w, C
£2, let us consider the initial boundary value problem

ul‘l‘(xs t) - AM(}C, t) + anluT(xs t) + b(t)szuT(xs r— t) =0

in £2 x (0, +00), (65)

u(x,f) =0 on 982 x (0, +00), (66)

u(x,0) = up(x) and u,(x,0) =u;(x) in $£2, (67)
where X, denotes the characteristic function of w;, i = 1, 2, a is a positive number
and b in L*°(0, +00) is an on—off function satisfying (1,,) and (2,,) of Sect. 6.1. The
initial datum (uo, u1) belongs to H} (£2) x L*(2).

This problem enters into our previous framework, if we take H = L?(£2) and the
operator A defined by

A:9DA)—> H : u— —Au,

where Z2(A) = H}(2) N H*(R2).
Now, denoting U = (u, u,), the problem can be restated in the abstract form (2)
where ZU = B(u,v) = (0, —b()X,,v) and 7 is defined by

u . (v
M(v)‘_ (—Au—anlv)’ (68)

with domain Z(A) x L?(£2) in the Hilbert space .# = H x H.
Concerning the part without delay feedback, namely the locally damped wave
equation
uy(x, 1) — Aux, 1) + aXyu(x,t) =0 in  £2 x (0, +00), (69)
u(x,t) =0 on 982 x (0, 400), (70)
u(x,0) =up(x) and u(x,0) =u;(x) in £2, (71)
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it is well-known that, under the previous Lions geometric condition on the set o,
(or under the more general assumption of control geometric property [4]) where
the frictional damping is localized, an exponential stability result holds (see e.g.
[4,16-21, 29, 31]). This is equivalent to say that the strongly continuous semigroup
generated by the operator .o associated to (69)—(71), namely the one defined in (68),
satisfies (1). As well-known, the operator .o¢ is dissipative. Thus previous abstract
stability results are valid also for this model. We emphasize the fact that the set w,
may be any subset of 2, not necessarily a subset of @;. On the contrary, in previous
stability results for damped wave equation and intermittent delay feedback (see e.g.
[9, 24]) the set w; has to be a subset of w;. On the other hand, now the standard (not
delayed) frictional damping is always present in time while in the quoted papers it is
on—off like the delay feedback and it acts only on the complementary time intervals
with respect to this one.

References

1. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution
equations with memory. J. Funct. Anal. 254, 1342-1372 (2008)

2. Alabau-Boussouira, F., Nicaise, S., Pignotti, C.: Exponential stability of the wave equation
with memory and time delay. In: New Prospects in Direct, Inverse and Control Problems for
Evolution Equations. Springer Indam Series, vol. 10, pp. 1-22. Springer, Berlin (2014)

3. Ammari, K., Nicaise, S., Pignotti, C.: Stabilization by switching time—delay. Asymptot. Anal.
83, 263-283 (2013)

4. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control and
stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024-1065 (1992)

5. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297—
308 (1970)

6. Dai, Q., Yang, Z.: Global existence and exponential decay of the solution for a viscoelastic
wave equation with a delay. Z. Angew. Math. Phys. 65, 885-903 (2014)

7. Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time
delays in their feedbacks. SIAM J. Control Optim. 26, 697-713 (1988)

8. Datko, R., Lagnese, J., Polis, M.P.: An example on the effect of time delays in boundary
feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152-156 (1986)

9. Fragnelli, G., Pignotti, C.: Stability of solutions to nonlinear wave equations with switching
time-delay. Dyn. Partial Differ. Equ. 13, 31-51 (2016)

10. Giorgi, C., Mufioz Rivera, J.E., Pata, V.: Global attractors for a semilinear hyperbolic equation
in viscoelasticity. J. Math. Anal. Appl. 260, 83-99 (2001)

11. Guesmia, A.: Well-posedness and exponential stability of an abstract evolution equation with
infinite memory and time delay. IMA J. Math. Control Inform. 30, 507-526 (2013)

12. Gugat, M.: Boundary feedback stabilization by time delay for one-dimensional wave equations.
IMA J. Math. Control Inform. 27, 189-203 (2010)

13. Gugat, M., Tucsnak, M.: An example for the switching delay feedback stabilization of an
infinite dimensional system: the boundary stabilization of a string. Syst. Control Lett. 60, 226—
233 (2011)

14. Haraux, A., Martinez, P., Vancostenoble, J.: Asymptotic stability for intermittently controlled
second-order evolution equations. SIAM J. Control Optim. 43, 2089-2108 (2005)

15. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation
with a delay. Z. Angew. Math. Phys. 62, 1065-1082 (2011)



Stability Results for Evolution Equation with Time Delay 487

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Komornik, V.: Exact Controllability and Stabilization, the Multiplier Method. RMA, vol. 36.
Masson, Paris (1994)

Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer Monographs in Mathemat-
ics. Springer, New York (2005)

Lagnese, J.: Control of wave processes with distributed control supported on a subregion.
SIAM J. Control Optim. 21, 68-85 (1983)

Lasiecka, I., Triggiani, R.: Uniform exponential decay in a bounded region with
L, (0, T; Ly(X'))-feedback control in the Dirichlet boundary conditions. J. Differ. Equ. 66, 340—
390 (1987)

Lions, J.L.: Contrdlabilité exacte, perturbations et stabilisation des systemes distribués, Tome
1. RMA, vol. 8. Masson, Paris (1988)

Liu, K.: Locally distributed control and damping for the conservative systems. SIAM J. Control
Optim. 35, 1574-1590 (1997)

Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term
in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561-1585 (2006)
Nicaise, S., Pignotti, C.: Asymptotic stability of second-order evolution equations with
intermittent delay. Adv. Differ. Equ. 17, 879-902 (2012)

Nicaise, S., Pignotti, C.: Stability results for second-order evolution equations with switching
time-delay. J. Dyn. Differ. Equ. 26, 781-803 (2014)

Nicaise, S., Pignotti, C.: Exponential stability of abstract evolution equations with time delay.
J. Evol. Equ. 15, 107-129 (2015)

Pata, V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77, 333-360
(2009)

Pazy, A.: Semigroups of linear operators and applications to partial differential equations.
Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

Pignotti, C.: Stability results for second-order evolution equations with memory and switching
time-delay. J. Dyn. Differ. Equ. (2016, in press). doi:10.1007/s10884-016-9545-3

Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded
domains. Indiana Univ. Math. J. 24, 79-86 (1974)

Xu, G.Q., Yung, S.P, Li, L.K.: Stabilization of wave systems with input delay in the boundary
control. ESAIM: Control Optim. Calc. Var. 12, 770-785 (2006)

Zuazua, E.: Exponential decay for the semi-linear wave equation with locally distributed
damping. Comm. Partial Differ. Equ. 15, 205-235 (1990)



From Visco-Energetic to Energetic and Balanced
Viscosity Solutions of Rate-Independent Systems

Riccarda Rossi and Giuseppe Savaré

Abstract This paper focuses on weak solvability concepts for rate-independent sy-
stems in a metric setting. Visco-Energetic solutions have been recently obtained by
passing to the time-continuous limit in a time-incremental scheme, akin to that for
Energetic solutions, but perturbed by a ‘viscous’ correction term, as in the case of
Balanced Viscosity solutions. However, for Visco-Energetic solutions this viscous
correction is tuned by a fixed parameter . The resulting solution notion is cha-
racterized by a stability condition and an energy balance analogous to those for
Energetic solutions, but, in addition, it provides a fine description of the system
behavior at jumps as Balanced Viscosity solutions do. Visco-Energetic evolution
can be thus thought as ‘in-between’ Energetic and Balanced Viscosity evolution.
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1 Introduction

A large class of rate-independent systems are driven by

— a time-dependent energy functional & : [0, T] x X — (—o0, oo], with [0, 7] the
time span during which the system is observed, and X the space of the states of
the system,

— a (positive) dissipation functional ¥ : X x X — [0, 00), keeping track of the
energy dissipated by the curve u : [0,7] — X describing the evolution of the
system, that satisfies suitable structural properties peculiar of rate-independence.

When X is a (separable) Banach space, a natural class of dissipations is provided
by translation invariant functionals of the form Z(u,, u;) := ¥ (up—u;), where ¥ :
X — [0,00) is a (convex, lower semicontinuous) dissipation potential, positively
homogeneous of degree 1, namely ¥ (Av) = A¥(v) forall A > O and v € X.
The evolution of the rate-independent system is governed by the doubly nonlinear
differential inclusion

W@ () + 0,8t u(®) >0 inX* foraa.te (0,7), (1.1)

where 0¥ : X = X* is the subdifferential in the sense of convex analysis, while
0,8 : [0, T] x X = X* is a suitable notion of subdifferential of & w.r.t. the variable
u. As it will be apparent from the forthcoming discussion, in general (1.1) is only
formally written.

More generally, throughout this paper we shall assume that the dissipation & is
induced by a distance d on the space X, such that

(X, d) is a complete metric space. X)

We will henceforth denote a (metric) rate-independent system by (X, &, d).

Rate-independent evolution occurs in manifold problems in physics and engi-
neering, cf. [9, 10] for a survey. In addition to its wide range of applicability,
over the last two decades the analysis of rate-independent systems has attracted
considerable interest due to its intrinsic mathematical challenges: first and fore-
most, the quest of a proper solvability concept for the system (X, &, d). In fact,
since the dissipation potential has linear growth at infinity, one can in general
expect only BV-time regularity for the curve u (unless the energy functional is
uniformly convex). Thus ¥ may have jumps as a function of time. Therefore,
the pointwise derivative u’ in the subdifferential inclusion (1.1) in the Banach
setting, and the metric derivative |u/| in the general metric setup (X), need
not be defined. This calls for a suitable weak formulation of rate-independent
evolution, also able to satisfactorily capture the behavior of the system in the jump
regime.
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In what follows we illustrate the three solution concepts this paper is concerned
with, referring to Sects. 2 and 3 for more details and precise statements.

1.1 Energetic, Balanced Viscosity, and Visco-Energetic
Solutions

The pioneering papers [11, 12] advanced the by now classical concept of (Global)
Energetic solution to the rate-independent system (X, &, d) (cf. also the notion
of ‘quasistatic evolution’ in the realm of crack propagation, dating back to [4]),
which can be in fact given in a more general topological setting [8]. It is a curve
u : [0, T] — X with bounded variation, complying for every ¢ € [0, T| with

— the global stability condition
Etut) < &, v) + d(u(r),v) foreveryv € X, (Sa)

— the energy balance
&(t,u(t)) + Varg(u, [0, 1]) = £(0,u(0)) + / 0;8 (s, u(s))ds. (Eq)
0

Here, Varg(u, [0, 7]) denotes the (pointwise) total variation of the curve u induced
by the metric d, which is related to ‘energy dissipation’: in fact, (Eq) balances the
stored energy at the process time ¢ and the energy dissipated up to # with the initial
energy and the work of the external loadings, encoded in the second integral on the
right-hand side. Existence results for Energetic solutions may be proved by resorting
to a well understood time discretization procedure. Indeed, for every fixed partition
T ={"=0<1t <... <! <V = T} of the interval [0, T], with fineness
N_, are constructed as solutions

..... n=1
of the time-incremental minimization scheme

. n—1
min (&, U)+dur.0)). (IM,)

Under suitable conditions it can be shown that, for every null sequence (i), up to
a subsequence the piecewise constant interpolants (Uy, )i of the discrete solutions
converge to an Energetic solution. While widely applied, the Energetic concept has
also been criticized on the grounds that the global stability condition (Sq) is too
strong a requirement, when dealing with nonconvex energies. To avoid violating
it, the system may in fact have to change instantaneously in a very drastic way,
jumping into very far-apart energetic configurations, possibly ‘too early’. In this
connection, we refer to the discussions from [6, Ex. 6.3], [13, Ex. 6.1], as well as
to [20], providing a characterization of Energetic solutions to one-dimensional rate-
independent systems (i.e., with X = R), driven by a fairly broad class of nonconvex
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energies. In [20], the input-output relation associated with the Energetic concept
is shown to be related to the so-called Maxwell rule for hysteresis processes [22].
These features are also reflected in the jump conditions satisfied by an Energetic
solution u at every jump point ¢ € J, (u(t—), u(t+) denoting the left/right limits of
u at t and J,, its jump set), namely

d(u(t—), u(®) = &(t,u(t-)) — &, u(?)),
d(u(®), u(t+)) = &, u(t)) — &, u(t+)),

(1.2)

which show the influence of the global energy landscape of &.

The global stability condition (Sq) in fact stems from the global minimization
problem (IM; ), whereas a scheme based on local minimization would be preferable,
cf. [3] for a first discussion of this in the realm of crack propagation, and [5] in the
frame of abstract (finite-dimensional) rate-independent systems. This localization
can be achieved by perturbing the variational scheme (IM;) with a term, modulated
by a viscosity parameter &, which penalizes the squared distance from the previous
step U"~!. One is thus led to consider the time-incremental minimization

: n n—1 € 2 n—1
min (&4, U) +d(U" )+, (U ), (IM...)

which may be considered as a viscous approximation of (IM;). For fixed ¢ > 0,
the limit passage as 7 | 0 in (IM, ;) leads to solutions (of the metric formulation)
of the Generalized Gradient System (X, &,d, ¥.), where the dissipation function
Y 1 [0, 00) — [0, co) is given by

Ve(r) = r + ;rz = iw(sr) with ¥ (r) =r+ ;rz. (1.3)

We refer to [21] for existence results for gradient systems in metric spaces, driven by
dissipation potentials with superlinear growth at infinity like ¥.. In turn, it has been
shown in [13] (cf. also [15]) that, under suitable conditions on the energy functional,
time-continuous solutions (to the metric formulation) of (X, &, d, ¥.) converge as
¢ | 0, up to reparameterization, to a Balanced Viscosity (BV) solution of the rate-
independent system (X, &, d). The latter is a curve u € BV([0, T]; X) satisfying

— the local stability condition
|Déa|(tv M(t)) S 1 fOr eVery re [Os T] \ Juv (Sd,loc)

— the energy balance

& (t,u(t)) + Vargy(u, [0, 1]) = &(0, u(0)) +/t 0;8(s,u(s))ds forallre[0,T].
0
(Edv)
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Here, ID&| : [0,T] x X — [0, o0] is the metric slope of the energy functional &,
namely

ID&|(t, u) := lim sup (&t )= v))+ , (1.4)
v—u d(“a U)

and Vary y is a suitably augmented notion of total variation, fulfilling Vargy («, [a, b])
> Vary(u, [a, b)) for all [a, b] C [0, T], which measures the energy dissipated along
the jump, at a point ¢ € J,,, by means of the cost

v(t, u(t—), u(t+)) :=inf{/rl 19'|(r) (IDE|(t, (r)) v 1) dr :
o (1.5)

# € AC([ro. 1 X). () = u(t=), 9(m) = u(t+)}

that is reminiscent of the viscous approximation (IM, ;). Indeed, it is possible to
show (cf. (1.6) ahead) that every BV solution to (X, &, d) complies with the jump
conditions

Et u(t=)) — Et,u(t+)) = v(t, u(t—), u(t+))

" (1.6)
- / 19'1() (D], 9 () v 1) dr

0

at every jump point r € J,, with ¢ an optimal jump transition between u(r—)
and u(z+). Any optimal transition can be decomposed into an (at most) countable
collection of sliding transitions, evolving in the rate-independent mode, and viscous
transitions, i.e. (metric) solutions of the Generalized Gradient System (X, &, d, ¥)
with the superlinear ¥ from (1.3), and where the time variable in the energy
functional is frozen at the jump time t. Therefore, BV solutions account for the
onset of viscous behavior at jumps of the system, which can be in fact interpreted
as fast transitions (possibly) governed by viscosity. The characterization in the
one-dimensional case, with a nonconvex driving energy, from [20] reveals that the
input-output relation underlying BV solutions follows the delay rule [22], as they
tend to jump ‘as late as possible’.

A notable feature of BV solutions is that they can be directly obtained as li-
mits of the discrete solutions arising from the perturbed scheme (IM, ), when the
parameters ¢ and 1 jointly tend to zero with convergence rates such that

lim © = +o0; (1.7)
etd0 T

the argument developed in [14, 17] in the Banach setting can be in fact easily
extended to the metric framework, cf. the discussion in Sect. 3.1. This remarkable
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property has somehow inspired the approach in [19]. There, a new notion of rate-
independent evolution has been obtained in the time-continuous limit, as | 0, of
the perturbed time-incremental minimization scheme

: n n—1 128 2 n—1 :
min (5(;1, U)+ U vy + D ,U)) with ot > 0fived  (IM,,)

as a parameter. The analysis carried out in [19] in fact covers a more general,
topological setting, akin to that of [8], with a general viscous correction § : X xX —
[0, 00) compatible, in a suitable sense, with the metric d: a particular case is in
fact §(u, v) = ‘;dz(u, v) as in (IM,). In the simplified metric setting of (X), under
the same conditions ensuring the existence of Energetic solutions it is possible to
show that the (piecewise constant interpolants of the) discrete solutions arising
from (IM,) converge, as ¢ | 0 and u > O is fixed, to a (u-)Visco-Energetic
solution to the rate-independent system (X, &, d). In what follows, we will simply
speak of Visco-Energetic (VE) solutions, and often highlight their dependence on
the parameter y in the acronym VE,. A VE, solution is a curve u € BV([0, T]; X)
complying with the

— ‘perturbed’, still global, stability condition

Et,u(h) < E,v) +du(), v) + - (@), v)
2 (Sp)
for every v € X and for every r € [0, T] \ J,,

— the energy balance

G@(tv M(t)) + Vard,c(M» [07 t])

t (Ed,c)
= &(0,u(0)) + / 0:&(s,u(s))ds forallt e [0,T].
0

Here, Varg is an alternative augmented total variation functional, again estimating
the total variation induced by d, but featuring a different notion of jump dissipation
cost. In analogy with (1.5), the visco-energetic cost ¢ (we shall often write ¢, to
highlight its dependence on the parameter i, and accordingly write (Eq,)), is still
obtained by minimizing a suitable transition cost Trcyg over a class of continuous,
but not necessarily absolutely continuous, curves ¥ : E — X, with E an arbitrary
compact subset of R having a possibly more complicated structure than that of an
interval. The transition cost Trcyg evaluates (1) the d-total variation Varg(d, E) of
¥ over E; (2) a quantity related to the “gaps” of the set E; (3) a quantity measuring
the violation of the (global) stability condition (Sp) along the jump transition ¥, cf.
[19] and Sect. 2.2 ahead for all details and precise formulae. In this context as well,
it can be proved (cf. [19, Prop. 3.8]) that any VE solution u satisfies at its jump
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points ¢ € J, the jump conditions
E(t,u(t—)) — &t u(t+)) = c(t, u(t—), u(t+)) = Treye(t, 9, E) (1.8)

with ¢ : E — X an optimal transition curve between u(t—) and u(¢+). Furthermore,
any optimal transition can be decomposed into an (at most countable) collection of
sliding transitions, parameterized by a continuous variable and fulfilling the stability
condition (Sp), and pure jump transitions, defined on discrete subsets of E, along
which the stability (Sp) may be violated. A notable property of VE solutions is
that, if an optimal jump transition ¢ : E — X at a jump point ¢ does not comply
with the stability condition (Sp) at some s € E, then s is isolated and, denoting by
s— := max(E N (—o0, s)), there holds

#(5) € Argmin,cy {£(.3) +d@(s-).3) + | @) -

A complete characterization of VE solutions to one-dimensional rate-independent
systems has been recently provided in [18], showing that their behavior strongly
depends on the parameter ;. When u = 0, VE solutions coincide with Energetic
solutions and therefore they satisfy the Maxwell rule. For a sufficiently ‘strong’ vis-
cous correction, i.e. with p above a certain threshold depending on the (nonconvex)
driving energy, VE solutions exhibit a behavior akin to that of BV solutions, and
follow the delay rule. With a ‘weak’ correction, VE solutions have an intermediate
character between Energetic and BV solutions.

1.2 Main Results

In this paper, we aim to gain further insight into this in-between quality of VE
solutions and into the role of the tuning parameter u, revealed by the analysis in
[18], in a more general context. To this end, we shall study the singular limits of VE,
solutions to the (metric) rate-independent system (X, &, d) as u |, 0 and p 1 oco.
With Theorem 1 we will show that, any sequence (u,), of u, solutions
corresponding to a null sequence u, | 0 converges, up to a subsequence, to an
Energetic solution of (X, &, d). Theorem 2 will address the behavior of a sequence
(tt4)n of VE,,, solutions with parameters (, 1 oo. In this case, in accordance with
condition (1.7), we expect to obtain BV solutions. We will prove indeed that, up to
a subsequence, as i, T oo VE,,, solutions converge to a BV solution of (X, &, d).
While referring to Sects.4 and 5 for further comments and all details, let us
mention here that the proof of Theorem?2 is quite challenging. In fact, it involves
passing from the transitions that describe the jump behavior of a sequence of
VE,,, solutions, and that are given by a collection of ‘sliding pieces’ and discrete
trajectories, to the jump transitions for BV solutions, that are instead absolutely
continuous curves. This can be achieved by means of a careful reparameterization
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technique, combined with a delicate compactness argument for transition curves in
varying domains.

Plan of the Paper

In Sect.2 we collect some preliminary results, set up the basic assumptions on
the energy functional &, and give the precise definitions of Energetic, Balanced
Viscosity, and Visco-Energetic solutions to the rate-independent system (X, &, d).
In Sect. 3 we recapitulate the existence results for the three solution concepts, and
state our own Theorems 1 and 2, whose proofis developed throughout Sects. 4 and 5,
also resorting to some auxiliary results stated and proved in the Appendix.

2 Preliminary Results and Overview of the Solution
Concepts for Rate-Independent Systems

We start by fixing some notation: for a given arbitrary £ C R, we shall denote by

PBr(E) the collection of all finite subsets of E,
Q2.1
E” :=infE, E' :=supE.

Kuratowski Convergence of Sets

In view of the compactness argument developed in Sect.5 ahead, we provide a
minimal aside on the notion of Kuratowski convergence of sets, confining the
discussion to closed sets, and referring to [1] for all details. We say that a sequence
(Cy), of closed subsets of X converge in the sense of Kuratowski to a closed set C,
if

Liy—00Crn = L8$y500C = C, (2.2)
where
Li,—00oCy :={x € X : Jx, € C, such that x,, — x}, (2.3a)
Lsy»00Cy i= {x € X : 3j > n; increasing and
(2.3b)

Xy; € Cy; such that x,, — x}.

If all the closed sets C, are contained in a compact set K, then Kuratowski
convergence coincides with the convergence induced by the Hausdorff distance
[1, Prop. 4.4.14]. That is why, the Blaschke Theorem (cf., e.g., [1, Thm. 4.4.15])
is applicable, ensuring that, if K C X is a fixed compact set, then every sequence of
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closed sets (C,), C K admits a subsequence converging in the Kuratowski sense to
a closed set C C K. If the sets C,, are connected, then C is also connected.

2.1 Preliminaries on Functions of Bounded Variation
and Absolutely Continuous Functions

Let us first recall some preliminary definitions and properties related to functions
of bounded variation with values in the metric space (X, d). The pointwise total
variation Varg(u, E) of a function u : E — X is defined by

Vargq(u, E) :=
M 2.4)
sup § Y d((t1).ut) = to <t <... <ty (G}, € Br(E) ¢
j=1
with Varg(u, @) := 0. We define the space of functions with bounded variation via
BV4(E;X) :={u: E — X : Varg(u,E) < 00} .

For every u € BV4(E; X) we may introduce the function

Vi:[E ,Et] = [0,00) givenby V,(t):= Varg(u,EN[E",1]). (2.5)
Observe that V,, is monotone nondecreasing and satisfies

d(u(to), M(l‘l)) < Vard(u, [to, l‘]]) = Vu(l‘l) — Vu(l‘o) forall ¢y, t; € Ewithty) <1t;.

Since the metric space (X, d) is complete, every function u € BVy4(E;X) is
regulated, i.e. at every ¢t € E the left and right limits u(r—) and u(z+) exist (with
obvious adjustments at E~ and E™). We recall that « only has jump discontinuities,
and that its (at most) countable jump set J,, coincides with the jump set of V.

We will also consider the distributional derivative v, of the function V), and recall
that the Borel measure v, can be decomposed into the sum

v, = ¢+ v (2.6)

with vd the diffuse part of v, (i.e. the sum of its absolutely continuous and Cantor
parts), fulfilling vi({r}) = O for every t+ € [E~,E™], and v! its jump part,
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concentrated on the set J,,, so that
vi({t}) = d(u(t—), u(t)) + d(u(r)),u(r+)) foreverytel,.
Therefore we have

Varg(u, [to, 11]) = vS([to. 11]) + Jmpg(u; [to, 1]) 2.7
for every interval [fy, #;] C E, with the jump contribution

Jmpy(u; [10, 11]) :=d(u(t)), u(to+)) + d(u(ti—)), u(t))
+ Y ) u) + d@), u(t+))) - (2.8)

1€J,N(10,11)

In the definition of Balanced Viscosity and Visco-Energetic solutions, there will
come into play an alternative notion of total variation for a curve u € BV ([0, T]; X),
which will reflect the energetic behavior of the (Balanced Viscosity/Visco-
Energetic) solution at jump points. It will be obtained by suitably modifying
the jump contribution to the total variation induced by d, cf.(2.7), in terms of a
(general) cost function € : [0, T] x X x X — [0, oo], with € > d, that shall measure
the energy dissipated along a jump. Thus, hereafter we will refer to e as jump
dissipation cost. As particular cases of e, we will consider

— the viscous (jump dissipation) cost V, cf.(2.21) ahead, in the case of Balanced
Viscosity solutions;

— the visco-energetic (jump dissipation) cost C, cf.(2.28) ahead, in the case of
Visco-Energetic solutions.

With the jump dissipation cost € we associate the incremental cost
A 1[0, T] x X x X — [0,00], Ae(t,u—,uy):=e(tu—,uy)—du—,uy) 2.9)

forallt € [0,T] and u—, u4+ € X, where the notation u_, u4 is suggestive of the fact
that, in the definition of the total variation functional induced by e, the incremental
cost will be evaluated at the left and right limits u(z—) and u(z+) at a jump point of
a curve u. We will also use the notation

Ae(t,u—,u,us) := Ae(t,u—,u) + Ae(t,u,us) .

We are now in a position to introduce the augmented total variation functional
induced by e.

Definition 1 Given a (jump dissipation) cost function € and the associated incre-
mental cost Ae, and given a curve u € BV([0, T]; X), we define the incremental
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Jjump variation of u on a sub-interval [to, ;] C [0, T] by

Jmp 5 (u; [to, 11]) := Ae(to, u(to)), u(to+))

+ Ae(hu() um) + Y. Aeltu(=) u().ur)).  H10)

1€J,N(10,11)

This induces the augmented total variation functional
Varg e (u, [to, 11]) := Vara(u, [to, 11]) + Jmp 4 (u; [to, 11]) (2.11)

along any sub-interval [y, #;] C [0, 7.

Since we have subtracted from the e-jump contribution the d-distance of the jump
end-points, cf.(2.9), the d-jump contribution (2.8) to Vary cancels out, and in
fact only the diffuse contribution vd([ty,#]) remains. In fact, one could rewrite
Varge(u, [to, 11]) as

Varg e (u, [to, t1]) = v2([to, 1]) -+ Impg (u; [t0, 11]), (2.12)

with Jmp, (u; [to, 1]) defined by (2.10) with the “whole” cost e in place of its
incremental version Ag, i.€.

Impe (s [t0, 1]) :=e€(t0, uto), ulto+)) + €(t, u(ti=), u(tr))
+ Z (e(t, u(t—), u(t)) + e(t, u(t), u(t+)) . 213

1€J,N(10.11)

Clearly, Varg e (u, [ty, 11]) > Varg(u, [to, t1]), and they coincide if € = d, or when
J, = @. Moreover, as observed in [19], although it need not be induced by a distance
on X, Varg e still enjoys the additivity property

Varge (4, [a, c]) = Varge(u, [a, b])+ Varge(u, [b, c]) forall0 <a<b<c<T.

Finally, we recall that a curve u : [0, T] — X is absolutely continuous (and write
u € AC([0, T]; X)) if there exists m € L'(0, T) such that

d(u(s), u(t)) < /tm(r) dr forall0<s<tr<T. (2.14)

For every u € AC([0, T]; X), the limit

d(u(s), u(r))
N

) .
1) =1
|w|() = lim — s

exists fora.a. t € (0,7), (2.15)
cf. [2, Sec. 1.1]. We will refer to it as the metric derivative of u at t. The map

t — |u'|(¢) belongs to L'(0, T) and it is minimal within the class of functions m €
L'(0, T) fulfilling (2.14).
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2.2 Energetic, Balanced Viscosity, and Visco-Energetic
Solutions at a Glance

We now give a quick overview of the notions of rate-independent evolution this
paper is concerned with. We aim to somehow motivate the various solution concepts
and in addition highlight both the common points, and the differences, in their
structure.

Underlying the upcoming definitions, there will be the following basic conditions
on the energy functional &. Let us mention in advance that we in fact allow for a
possibly nonsmooth time-dependence ¢t +— &(t, u). However, in what follows for
simplicity we will confine our analysis to the case in which the domain of &(¢, -)
in fact coincides with X for every r € [0, T], referring to [19, Rmk. 2.7] for a
discussion of the more general case in which dom(&’(¢,-)) is a proper subset of
X (still independent of the time variable).

Basic Assumptions on the Energy

Throughout the paper, we will require that & complies with two basic properties,
involving the perturbed energy functional .% : [0, 7] x X — R

F(t,u) := &E(t,u) +d(x,,u) with x, a given reference point in X (2.16)

and its sublevel sets S¢c := {(¢,u) € [0,T] x X : Z(t,u) < C}. Namely,
Lower semicontinuity and compactness: for all C € R

& is lower semicontinuous on S¢ and the sets S¢ are compactin [0, T] xX;  (Ey)

Power control: there exists amap &2 : [0, T] x X — R fulfilling

E(t,u) — &Cs, ) E(s,u) — &(t,
lim inf (&) (s, ) > P(t,u) > limsup (s, u) (& w)
she t—s s s—t
E
for all (¢, u) € [0, T] x X, (E2)

I3Cr >0 V(Lu) e[0T xX : | P(tu)| < CpF(t.u).

We may understand the power functional &7 as a sort of “time superdifferential” of
the energy functional, surrogating its partial time derivative in the case where the
functional ¢t — &(¢,u) is not differentiable at every point of [0, 7] x X. This for
instance occurs for reduced energies having the form & (¢, u) = minyes 7 (¢, @, 1)
and such that the set of minimizers does not reduce to a singleton, as considered,
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e.g., in [7, 15, 16, 19]. By repeating the very same arguments as in [19], we may
deduce from (E;) & (E,) that

the function ¢ +— &(¢, u) is Lipschitz continuous for every u € X, with

(2.17)
P(t,u) = 0,6 (t,u) for almost all € (0, T) and for all u € X.
Therefore,
t
E(tu) = E(s,u) + / P(r,u)dr for every [s, 7] C [0, T]. (2.18)

Combining this with the power control estimate in (E,) and exploiting the Gronwall
Lemma, we conclude that

F(t,u) < F(s,u)exp(Cplt —s|) foralls, re[0,T]. (2.19)

That is why, it is significant (and notationally convenient) to work with the
functional .%y(u) := .% (0, u), which controls .7 (t, u), and thus the power functional
P(t,u),atallt € [0,T].

We are now in a position to give the concept of Energetic solution, dating back
to [11, 12], cf. also [9].

Definition 2 (Energetic Solution) A curve u € BV([0,T]; X) is an Energetic
solution of the rate-independent system (X, &, d) if it satisfies for every t € [0, T

— the global stability condition
E(tu(r)) < &(t,v) + d(u(r),v) foreveryv € X, (Sq)

— the energy balance

& (t,u(t)) + Varg(u, [0, 1]) = &(0, u(0)) + /0 P(s,u(s))ds. (Eq)

For later use, we introduce the d-stable set
Sg:={t,u) €0, T] xX : &t ,u) < &E(t,v) +d(u,v) forall v € X},

with its time-dependent sections .%4(7) := {u € X : (t,u) € 4} . We postpone to
Sect. 3.1 a discussion on the existence of Energetic solutions.

As already mentioned in the Introduction, Balanced Viscosity solutions arise
in the time-continuous limit of the time-incremental scheme (IM,.), when the
parameters & and 7 both tend to zero with ¢ 1 oo cf. (1.7). They fulfill the local
version of the stability condition (Sq), involving the metric slope of the energy
functional &, cf. (1.4). The “viscous” character of the approximation that underlies
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condition (1.7), is also reflected in the viscous jump dissipation cost. Indeed, at fixed
process time ¢ € [0, T, V(t, u—, u4) is obtained by minimizing the transition cost

Tregy (1, 9, [ro, r1]) := /rl |9'|(r) ID&|(t, 9 (r)) v 1) dr (2.20)

ro

over all absolutely continuous curves ¥ on an interval [ry, 7], connecting the two
points u_ and u4, where we recall that || is the (almost everywhere defined) metric
derivative of the curve . Namely,

V(l‘, u_, M+) = inf {TI’CBv(l‘, 19, [}’0, rl]) .
(2.21)
¥ € AC([ro, 11]; X), B (ro) = u—, ¥(r)) = u+}-

We can then introduce the incremental cost Ay (2.9) and the jump variation
Jmp, (2.10) associated with v, and thus arrive at the induced augmented total
variation Vargy (2.11), which enters into the energy balance involved in the
Balanced Viscosity concept.

Definition 3 (Balanced Viscosity Solution) A curve u € BV([0, 7]; X) is a Balan-
ced Viscosity (BV) solution of the rate-independent system (X, &, d) if it satisfies

— the local stability condition
ID&|(t,u(t)) <1 foreveryte[0,T]\]J,, (Sd.toc)
— the energy balance
& (t, u(t)) + Vargy(u, [0, 1])

t (Ed,v)
= &(0,u(0)) + /0 P(s,u(s))ds forallz e [0,T].

The notion of Visco-Energetic solution features a modified concept of stability

which also involves the viscous correction §(u, v) = ’2‘ d?(u, v). We then define the
functional

D(u, v) := d(u, v) + 8(u, v) = d(u, v) + ’2‘ & (u, v) (2.22)
and we say that a point (¢, x) € [0, T] x X is D-stable if

&%) < E(1,y) + D(x,y) = &1, y) + d(x, y) + Z (ry) forallyeX. (2.23)
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We denote by .#p the collection of all D-stable points, and by .#p(?) its section at
time ¢ € [0, T]. We also introduce the residual stability function Z : [0, T] xX — R
given by

Z(t,x) . = sup{&(t,x) — &(t,y) — D(x, y)}

yeX

= &(t,x) — ynel)f( {€(,y) + D(x,y)}

(2.24)

(for simplicity, we choose to neglect the p-dependence of the functionals D and %2
in their notation). Observe that

Z(t,x) >0 forall (r,x) € [0,T] x X with

(2.25)
Z(t,x) = 0if and only if (¢, x) € ./p,
so that Z may be interpreted as “measuring the failure” of the stability condition
at a given point (z,x) € [0, T] x X. It can be straightforwardly checked that, under
the basic lower semicontinuity assumption (E;) on &, the functional & is lower
semicontinuous on [0, 7] x X.

We now have all the ingredients to define the jump-dissipation cost for Visco-
Energetic solutions. In the same way as for Balanced Viscosity solutions, such a cost
is obtained by minimizing a suitable transition cost over a class of curves connecting
the two end-points of the jump. However, such curves, while still continuous, need
not be absolutely continuous. Further, they are in general defined on a compact
subset E C R that may have a more complicated structure than that of an interval.
To describe it, we introduce

the collection h(E) of the connected components of the set [E~, ET]\E,  (2.26)

where we recall that E~ = infE and E* = supE. Since [E™,E™] \ E is an open
set, h(E) consists of at most countably many open intervals, which we will often
refer to as the “holes” of E. Hence, the transition cost at the basis of the concept
of Visco-Energetic solution evaluates (1) the d-total variation of a continuous curve
defined on a set E, (2) the sum, over all the holes of E, of a quantity related to the
gaps (3) the measure of “how much” the curve ¢ fails to comply with the D-stability
condition (2.23) at the points in E \ {E*}.

Definition 4 Let E be a compact subset of R and % € C(E; X). For every t € [0, T

we define the transition cost function

Troye(t, 9, E) 1= Varg(9. E) + GapVarg(9.E) + Y Z(t.9(5)). (2.27)
SEE\ET
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with

1. Vary(9, E) from (2.4);
2. GapVarg(9. E) 1= 3 eqp) H (U7, ()
3. the (possibly infinite) sum

sup{d_ep Z(1,0(s)) 1 P € Pr(E)} ifE\ET # 0,
0 otherwise

Y RD() =
SEE\ET
(recall that 337 (E) denotes the collection of all finite subsets of E).
Along with [19], we observe that, for every fixed t € [0, 7] and ¥ € C(E; X), the
transition cost fulfills the additivity property

Treve(t, 3 E N [a, c]) = Treve(t, 0, E N [a, b]) + Treye(t, &, E N [b, c])

forall a < b < c. We are now in a position to define the associated visco-energetic
Jjump dissipation cost € : [0,T] x X x X — [0, o] via

c(t,u—,uy) :=inf{Trcyg(t, ), E) :
(2.28)
EER, ¥ e CE;X), YE) =u_, YE) =uy},

whence the incremental dissipation cost A¢ according to (2.9), the jump variation
Jmp,_ as in (2.10), and the augmented total variation Vargc as in (2.11).
We can now give the following

Definition 5 (Visco-Energetic Solution) A curve u € BV([0,T]; X) is a Visco-
Energetic (VE) solution of the rate-independent system (X, &, d) if it satisfies

— the D-stability condition

E(t,u(t)) < &1, v) + d(u(t), v) + ‘2‘ & (u(r), v)

(Sp)
for every v € X and for every r € [0, T] \ J,,
— the energy balance
&(t,u(t)) + Varge(u, [0, 1)
(Ed,c)

= &(0,u(0)) + /Ot P(s,u(s))ds forallz e [0,T].
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3 Main Results

Prior to stating our own results on the singular limits of VE solutions in Sect. 3.2,
in Sect.3.1 below we recall the known existence results for Energetic, BV, and
VE solutions. Under the same conditions ensuring the existence for the two former
solution concepts, we will prove our convergence statements for VE,, solutions in
the limits u |, 0 and u 1 oo, respectively.

3.1 A Survey on Existence Results

In what follows, in addition to the basic conditions (E) and (E;), we will introduce
further assumptions on the energy functional & that will be at the core of the
upcoming existence results for Energetic (Theorem 1), BV (Theorem?2), and VE
(Theorem 3) solutions. We will also illustrate the main ideas underlying their proofs.

Energetic Solutions

For the existence of Energetic solutions in the metric setting of (X) we refer to
[8, Thm. 4.5], cf. also [9] and [10, Sec. 2.1]. In accordance with these results, in
addition to the coercivity (E;) and the power control (E,), we require that

Upper semicontinuity of the power: &2 : [0, T] x X — R satisfies the conditional
upper semicontinuity condition

((tn, up) — (£, u) in [0, T] X X, &(t, up) — &E(t, u))

—s limsup P(ty, un) < P(t, ). (E3)

n—>oo

We thus have

Theorem 1 Let & : [0, T]xX — R comply with (E1), (Ey) and (Es). Then, for every
initial datum ug stable at t = 0, i.e. ug € .#4(0), there exists at least one Energetic
solution to the rate-independent system (X, &, d) with u(0) = uy.

The proof is based on a (by now standard in the frame of rate-independent systems)
time-discretization procedure, with the discrete solutions constructed by recursively
solving the time-incremental minimization scheme (IM;). Their (piecewise con-
stant) interpolants are shown to comply with the discrete versions of the stability
condition (Sq) and of the upper energy estimate in (Eq), whence all a priori estimates
stem, also based on the power control (E;). With a Helly-type compactness result,
crucially relying on (E;), we thus infer that the approximate solutions pointwise
converge to a curve u € BV([0,T];X). The continuity (cf.(2.17)) and lower
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semicontinuity properties

t, >t = &E(t,,y) —> E(@,y) forally € X,

3.1
(ty = t, u, > u) = liminf&(t,, u,) > E(t, u) G-
n—>o0

ensure the closedness of the stable set .#y, which allows us to pass to the limit
in the discrete stability condition and conclude that u complies with (Sq). Lower
semicontinuity arguments, joint with (E3), lead to the limit passage in the discrete
upper energy estimate, so that u complies with the upper energy estimate < of (Eq).
The lower energy estimate > can be then deduced from the stability condition either
via a Riemann-sum argument, formalized in, e.g., [10, Prop, 2.1.23], or by applying
[19, Lemma 6.2].

Balanced Viscosity Solutions

Along the footsteps of [15, Thm. 4.2], for the existence of Balanced Viscosity solu-
tions, in addition to (E;) and (E,), we again need to impose the (conditional) upper
semicontinuity of the power functional and, in addition, the lower semicontinuity of
the slope along sequences with bounded energy and slope. These requirements are
subsumed by the following condition:

Upper semicontinuity of the power, lower semicontinuity of the slope: & :
[0,T] x X — Rand & : [0,T] x X — R satisfy

((t,,, u,) = (t,u) in [0, T] x X, sup Fy(u,) < 0o, sup |DE|(t,, u,) < oo)
neN

neN

n nsY%n) — ’ ’
{l n | — 00 1, U t,u

limsup,_, oo Z(ty,uy) < P(t,u).

The last, key condition underlying the existence of Balanced Viscosity solutions is
that & complies with the

Chain-rule inequality: for every curve u € AC([0,T];X) the function ¢
& (t, u(t)) is absolutely continuous on [0, 7], and there holds

— jtg(t, u(t)) + Pt u@)) < |u'|()|DE|(t, u(t)) fora.a.t€(0,7). (Eg)

Under these conditions, the following existence result was proved in [15].

Theorem 2 Let & : [0, T] x X — R comply with (E,), (E»), (E}), and (E4). Then,
for every uy € X there exists at least one Balanced Viscosity solution to the rate-
independent system (X, &, d) with u(0) = u.
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As mentioned in the Introduction, in the proof of [15, Thm. 4.2] (cf. also [13]),
BV solutions arise by taking the vanishing-viscosity limit, as ¢ | 0, of the time-
continuous solutions of the Gradient Systems (X, &, d,¥.) with ¥, from (1.3).
Nonetheless, exploiting the arguments from [14, 17] in the Banach setting, the
vanishing-viscosity analysis developed in [15] could be easily adapted to the
direct limit passage in the time-discretization scheme (IM,.). In fact, the lower
semicontinuity of the slope from (E}) serves to the purpose of passing to the limit
in the dissipation term in the discrete energy-dissipation inequality arising from the
scheme (IM, ;). This leads to the total variation term Vargy(u, [0, 7]) in the energy
balance (Eqy). Instead, the upper semicontinuity of the power allows us to take the
limit in the power term of the discrete energy inequality. In this way, it is possible to
conclude that any limit curve u € BV([0, T]; X) of the discrete solutions complies
with the local stability condition (Sq0c) and with the upper energy estimate

&(t,u(t)) + Vargy(u,[0,1]) < &0, u(0)) + /0 P(s,u(s))ds. (Eﬁ;fiq

Unlike the case of Energetic solutions, where the validity of global stability
condition (Sq) was sufficient to conclude the lower energy estimate for (Eq), (Sd.10c)
is not strong enough to lead to the converse inequality of (Ey\"). This is instead
ensured by a chain-rule argument based on (E,), cf. [14, Prop. 4.2, Thm. 4.3].
Finally, let us mention that, under the very assumptions for the existence
Theorem 2, trivially adapting the argument for [17, Thm. 3.15] it can be shown that
acurve u € BV([0, T]; X) is a BV solution to the rate-independent system (X, &, d)

if and only if it satisfies (Sq 1oc), the localized energy inequality

E(t,u(t)) + Varg(u, [s,1]) < &(s, u(s)) + /t P(r,u(r))dr (3.2)

forall 0 <s <t < T, and the jump conditions

&(tut=)) — &, u() = v(t, u(t—), u(t)),
Et,u(t)) — E(tu(t+)) = v(t, u(t), u(t+)), (3.3)
Et u(t—)) — E(t ult+)) = v(t, u(t—), u(t+)) .

Visco-Energetic Solutions

As already hinted, Visco-Energetic solutions were introduced in [19] within a more
complex topological setting, featuring an asymmetric distance and a topology o,
involved in the coercivity condition on the energy functional. It turns out that,
in the present metric setting where o is the topology induced by d, (E;), (Ey)
and (E}) coincide with the conditions required on the energy functional & within
[19, Assumption < A >, Sect.2.2]. Furthermore, the particular choice §(u, v) =
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’;dz (u, v) for the viscous correction ensures the validity of [19, Assumption < B >,
Sect. 3.1]. In particular, condition [19, < B.3 >, Sect. 3.1] is fulfilled, namely D-
stability implies local d-stability, as it can be straightforwardly checked. Finally,
thanks to the lower semicontinuity of the residual functional &% from (2.24), also
[19, Assumption < C >, Sect. 3.3] is fulfilled. Therefore, [19, Thm. 3.9] applies,
ensuring the convergence of the time-incremental scheme (IM,,), with u > 0 fixed,
to a Visco-Energetic solution. In particular, we have the following existence result,
under the same conditions on the energy functional as in the existence Theorem 1
for Energetic solutions.

Theorem 3 Let & : [0,T] x X — R comply with (Ey), (Ey) and (E3). Then, for
every . > 0 and every initial datum ug € X there exists at least one VE,; solution
to the rate-independent system (X, &, d) with u(0) = uy.
The outline of the existence argument is the same as for Energetic solutions,
though the technical difficulties attached to the single steps are peculiar of the
Visco-Energetic case. The D-stability condition (Sp) and the upper energy estimate
in (Eqc) are derived by passing to the limit in their discrete versions, valid for the
discrete solutions to the time-incremental scheme (IM,,). As shown in [19, Thm.
6.5], the lower energy estimate can then be derived from (Sp) by applying [19,
Lemma 6.2].

Under the same conditions as for the existence Theorem 3, we have the following
‘stability’ result for VE solutions with respect to convergence of the parameters p,
to some strictly positive L.

Proposition 1 Ler & : [0, T xX — R comply with (E;), (Ez) and (E3). Let (ttn)n C
Sulfill

Wn —> >0 asn — oo.
Let (u%),, ug C X fulfill

uS —uy and &(0, ug) — &(0, up) as n — oo. 3.4
Then, there exist a subsequence (uy,)r and a curve u € BV([0, T); X) such that
u(0) = uo,

Un, (1) = u(t) and &(t,u,, (1)) — E(t,u(t)) foreveryt e [0,T], (3.9

and u is a VE,, solution to the rate-independent system (X, &, d).
We will outline the proof of Proposition 1 at the end of Sect. 5.1.

We conclude this section by recalling that, VE solutions as well can be charac-
terized in terms of suitable jump conditions. Namely, it was proved in [19, Prop.
3.8] that a curve u € BV([0, T1; X) is a VE solution to the rate-independent system
(X, &,d) if and only if it satisfies (Sp), the energy-dissipation inequality (3.2), and
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the jump conditions

E(t,u(t—)) — &t u(t)) = c(t, u(t—), u(?)),
Etu@) — &t u(t+)) = c(t,u(®), ut+)), (3.6)
Etut—)) — Et,ut+)) = ct, u(t—), ut+)) .

3.2 Main Results: Singular Limits of Visco-Energetic Solutions

We now consider a sequence (i,), C (0, 00), either converging to 0, or diverging
to co. Accordingly, let (#°), C X be a sequence of initial data for the rate-
independent system (X, &, d). Under conditions (E;), (E;) and (E3), there exists
a corresponding sequence of Visco-Energetic solutions (u,), C BV([0, T]; X) to the
rate-independent system (X, &, d), arising from the viscous corrections 8, (u, v) =
©d?(u, v) and satisfying the initial condition u,(0) = u).

Our first result addresses the behavior of the sequence (u,), in the case u, | 0,
under the sole conditions (E;), (E;) and (E3) guaranteeing the existence of Visco-
Energetic and Energetic solutions, cf. Theorems 1 and 3.

Theorem 1 (Convergence to Energetic Solutionsas it | 0) Let & :[0,T] x X —
R comply with (Ey), (Ez) and (Es3). Let (u2),, uy C X fulfill (3.4) and suppose
that uy € #4(0). Let (i), C (0,00) be a null sequence, and, correspondingly,
let (uy), C BV([0,T]; X) be a sequence of VE,,, solutions to the rate-independent
system (X, &, d) fulfilling u,(0) = u°.

Then, there exist a subsequence (uy,)x and a curve u € BV([0, T]; X) such that
u(0) = uy, convergences (3.5) hold, and and u is an Energetic solution to (X, &, d).

We will prove the convergence (along a subsequence) of a sequence of VE,,
solutions, as u, 1 oo, to a Balanced Viscosity solution, under the same conditions
as in the existence Theorem 2 for Balanced Viscosity solutions. Hence we need to
strengthen (E3) with (E}), and require the chain-rule inequality (E4) as well.

Theorem 2 (Convergence to Balanced Viscosity Solutions as i 1 00) Let
& 1 [0,T] xX — R comply with (E,), (E2), (E}), and (Es). Let (ug)n, uy C X
Sulfill (3.4). Let (4y)n C (0,00) be a diverging sequence, and, correspondingly,
let (uy), C BV([0,T]; X) be a sequence of VE,,, solutions to the rate-independent
system (X, &, d) fulfilling u,(0) = u’.

Then, there exist a subsequence (u,,)x and a curve u € BV([0, T]; X) such that
u(0) = ug, convergences (3.5) hold, and u is an Balanced Viscosity solution to
(X, &,d).

Both proofs will be carried out throughout Sects. 4 and 5.
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4 Proofs of Theorems 1 and 2

A preliminary Compactness Result

We start with a Helly-type compactness result for a sequence of VE,, solutions,
associated with parameters (u,),, which applies both to the limit u, | 0, and to
the limit u,, 7 oo, under the basic conditions (E;) and (E,) on &. The key starting
observation is that, since

Varg g, (1, [0,1]) > Varqg(u, [0, 1])
4.1)
for every u € BV([0, T]; X) and every u > 0,

every VE solution complies with the upper energy estimate of the energy bal-
ance (Eq), cf.(4.2) below, where the (either vanishing or blowing up) parameters
M, no longer feature. From this energy estimate there stem all the a priori estimates
and compactness properties common to the two singular limits w,, | 0 and u, 1 oo.

Proposition 2 (A Priori Estimates and Compactness) Ler & : [0,7] x X — R
comply with (Ey) and (E,). Consider a sequence (u,), C BV([0,T]; X) of curves
starting from initial data (ugy), C X converging to some uy € X as in (3.4). Suppose
that the curves u, fulfill for every n € N the upper energy estimate

E(t, uy (1)) + Varg(un, [0, 1) < &(0, up) + / P (s, u,(s))ds “4.2)
0
forallt € [0,T). Set V, :=V,, (cf. (2.5)).
Then,
AC>0VneN: sup Fo(u,(t)) + Vu(T) < C. (4.3)
t€[0,7]

Furthermore, there exist a subsequence k — ny and functions u € BV([0, T]; X),
E, V € BV([0,T]), and P € L*(0,T), such that

Up, (1) — u(?) forallt e 0,T], (4.42a)
E(t,u, (1) — E(0) forallt e (0,T], (4.4b)
Vi (1) = V(1) forallt € (0,7, (4.4c¢)
P(t,up (1)) =" P in L*°(0,7), (4.4d)

so that u(0) = ugy and there hold

d(u(s), u(r)) < V(@) —V(s) forall0<s<t<T, (4.52)
E(r) = &, u(r)) forallt € (0,T], with E(0) = &(0, up). (4.5b)
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Furthermore, for every t € J, there exist two sequences o 1 t and By | t such that
Mﬂk(ak) — u(t_) and Mnk(:Bk) - u(t+) . (4.6)

Finally, the functions (u, E,V, P) comply with

E(®) + V(@) = E(s) + V(s) + /t P(r)dr forall0 <s<t<T. 4.7)

s

The proof follows by trivially adapting the argument for [19, Thm. 7.2]. Let us
only mention that estimate (4.3) derives from (4.2), where the integral term on
the right-hand side involving the power functional is estimated by resorting to the
power control (E;,). As for (4.6), it can be shown by suitably adapting the Helly-type
compactness argument yielding (4.4a).

In the next Sects.4.1 and 4.2, we will carry out the proof of Theorem 1 and,
respectively, outline the argument for Theorem 2. In fact, in Sect. 5 we will develop
the proof of the main technical lower semicontinuity result underlying the limit
passage as i, 1 oo in the Visco-Energetic energy balance (Eq,,) and leading to

the upper energy estimate (Ei;f,q )

4.1 Proof Theorem 1

We apply Proposition 2 and deduce that there exist a subsequence (uy, )i of VE,,
solutions, and a curve u € BV([0, T]; X), such that (4.4), (4.5), and (4.7) hold. In
what follows, for simplicity we shall denote the sequence of curves (up, )r by (ux)x
and accordingly write j in place of u,,. We split the argument for proving that the
limiting curve u is an Energetic solution in some steps.

Claim 1: there holds

E(r) = &t u®), limsup P(t,u(t)) < P(t,u(t))
k—>00

(4.8)
forallr € [0, 7]\ J withJ := Nyen Uism Ju,
i.e., the countable set J is the lim sup of the sets (J,, )x. As aresult,
P(t) < Z(t,u(t)) fora.a.te (0,T). 4.9)

To prove (4.8) at a fixed ¢ € [0, T \I we observe that, since t € [0, T]\ J,, for every
k> mand m € N a given index (only) depending on ¢, the stability condition for all
ye Xandforallk > m

&t u (1) = £(t.y) + d(u (1), y) + p;k o (ui (), y) (4.10)
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holds. We choose y = u(?) in (4.10) and thus deduce that lim sup,_, o, &' (¢, ux(t)) <
&(t, u(t)). Hence, we conclude the energy convergence

Et, (1)) — E(t,u(r))  forallr € [0,T]\7, (4.11)

whence the first of (4.8). The lim sup inequality for the power term in (4.8) follows
from (E3). Then, since the set J is negligible, we have for every ¢+ € (0,7) and
re (0,(T-t) A1)

t+r t+r t+r
P(s)ds < lim sup/ P (s, ur(s))ds < / P (s, u(s))ds, 4.12)
t—=r t—=r

t—r k—00

where the second inequality follows from the second of (4.8) and the Fatou
Lemma, taking into account that sup,e(o 71 & (1, ux (1)) < Cpsup,eo 1 F (t, uk(t)) <
C by virtue of (E,), (2.19), and estimate (4.3). Therefore, (4.9) ensues upon
dividing (4.12) by r and taking the limit as r |, 0.

Claim 2: the curve u complies with

E(t,u(t)) + Varg(u, [s,1]) < &(s, u(s)) + [t P(r,u(r))dr “.13)

forallt € (0,7T], s € (0,1) \I and s = 0.
The upper energy estimate (4.13) ensues from (4.7), taking into account (4.5),

(4.8), and (4.9).
Claim 3:

u(f) € Ly(t) foreveryr e [0,T)\T. (4.14)

It follows from passing to the limit as k — oo in the stability condition (4.10).
Claim 4:

u(t—), u(t+) € F4(t) foreveryt e (0,7),

(4.15)
u(0+) € (0, u(T—) € S4(T).
Let us only prove the assertion at t € (0, T) and for u(z+): since the latter right limit
exists, we have that u(r+) = lim|, o r,Gu(s). Therefore, u(1+) € F4(t) follows
from the previously obtained (4.14), combined with the closedness of the stable set
L4, cf. (3.1).
Claim 5:

u(t) € S(t) foreveryte (0,7] nT. (4.16)

Therefore, u complies with the stability condition (Sq).
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We consider the upper energy estimate (4.13) written on the interval [s, ], for
every s € (0,7) \ J, and then take the limit of the right-hand side as s 1 ¢. We use
that u(r—) = limg,, (o (O,t)\jfu(s), and that

limsup &(s,u(s)) < &, u(t—)). 4.17)
sTt,sE(O,r)G

This follows from applying the stability condition u(s) € #4(s), which holds at all
s € (0,1) \ J, with competitor y = u(r—). Therefore & (s, u(s)) < &(s,u(t—)) +
d(u(s), u(t—)), which yields

limsup &(s,u(s)) < limsup &(s,u(t—)). (4.18)
st,s€(0,0\0 st,5€(0.0)\0

In turn,

limsup (&(s, u(t—)) — &, u(t-)))
st sG(O,t)\F.r

(1) !
< lim sup/ |=@(r,u(t—))|dr (4.19)
st s
) .
< Climsup(t—s) =0
st
with (1) due to (2.18) and (2) to the power-control estimate
|2 (r,u(t=))| < CHFo(u(t—)) < C. (4.20)

In (4.20) the first inequality ensues from (E,) and (2.19), while the second
one from the lower semicontinuity of u +— %y(u), which gives Fy(u(t—)) <
liminfsy, #o(u(s)) < C thanks to the energy bound sup,co 7 Fo(u(?)) < C,
deriving from estimate (4.3) by the lower semicontinuity of .%#y. Combining (4.18)
with (4.19) we thus conclude (4.17). We also observe that

limTianard (u,[s,1]) = d(u(t—), u(?)). 4.21)

On account of (4.17) and (4.21), from (4.13) we deduce the jump estimate
&t u(®)) + dut—), u(r)) < &, u(t—)) for every t € (0, T] nT. (4.22)

We combine this with the previously obtained stability condition (4.15) to con-
clude (4.16).
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Claim 6: the curve u complies with the lower energy estimate
t
&(t,u(r)) + Varg(u, [0,1]) > £(0,u(0)) + / P(r,u(r))dr (4.23)
0

forallt € [0, T, and thus with the energy balance (Eg).

We either apply [10, Prop. 2.1.23] or [19, Lemma 6.2, Thm. 6.5], to con-
clude (4.23) from the previously obtained (Sq).

Claim 7: the convergence of the energies & (¢, ux(t)) — &(¢, u(t)) holds at every
te[0,7].

It follows from (4.4b) and (4.5b) that liminfy— o &(t, u(t)) > &(t, u(t)) for
every t € [0,T]. To prove the converse inequality for the lim sup, we resort to a
by now classical argument based on the comparison of the energy balances (Eq)
and (Eq¢). Indeed, we have

lim sup & (z, ux (1))
k—00

€] !
< lim sup &£(0, u}) + lim sup / P (r, w(r)) dr — lim inf Varq,, (. [0,1])
0 —>00

k—00 k—00

(é) &0, up) + /(; P (r,u(r))dr — Varg(u, [0, 1]) @ &t u(r),

with (1) due to (Eqc), (2) following from the assumed convergence of the initial
data (3.4), from (4.4d) combined with (4.9), and from (4.1) and, finally, (3) due to
the just obtained energy balance (Eq).

This concludes the proof of Theorem 1.

4.2 Proof Theorem 2

Proposition 2 ensures that any sequence (u,), of VE solutions, corresponding to
parameters (, — 0o, admits a subsequence (u,, )r converging to a curve u €
BV([0, 7]; X) in the sense of (4.4) and (4.5); as in the proof of Theorem 1, hereafter
we will write ug, ug, and ¢ in place of u,,, w,,, and C,,, respectively. Thanks to
the chain rule from condition (E4), in order to prove that u is a BV solution it is

sufficient to verify the local stability (S 1oc) and the upper energy estimate (E\,"), cf.
[14, Prop. 4.2, Thm. 4.3]. The convergence of the energies & (¢, ux(r)) — &(t, u(t))
holds at every ¢ € [0, T will then follow from comparing the energy balances (Eq¢)

and (Eqy), similarly as in Claim 7 of the proof of Theorem 1.
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The Local Stability Condition (Sq,ioc)

As in the proof of Theorem 1, we introduce the setJ 1= NimeN Ugm Jy,. Since
D-stability implies local stability, we have that for every ¢ € [0, T] \ J there holds

IDE|(t, u(t)) <1 forall k > m, (4.24)

with m € N depending on ¢. Taking into account the energy bound (4.3) as well,
we are in a position to exploit the lower semicontinuity property ensured by (E).
Taking the lim inf;_, o of (4.24), we thus deduce that

IDE|(t, u(r)) <1 forallze[0,T]\T. (4.25)
We also conclude that
IDE|(1, u(t—)), IDE|(t, u(t+)) <1 forallt € (0,T), (4.26)

and analogously for |D&|(0, u(0+)) and |D&|(T, u(T—)), by arguing in the very
same way as for Claim 4 in the proof of Theorem 2. Clearly, we then have the local
stability condition at all points in [0, 7] \ J,.

ineq)

The Upper Energy Estimate (E

Combining the energy bound (4.3) and the slope estimate (4.24) with conver-
gence (4.4a) and resorting to ~(E;), we conclude that limsup,_, ., Z(t, ux(t)) <
P(t,u(t)) for all + € [0,T] \ J. Therefore, the very same argument as for Claim
1 in the proof of Theorem 2 yields that P(r) < Z(t,u(r)) for almost all r €
(0, 7). All in all, taking the liminfy— oo in (Eqc,, ) and exploiting the initial data
convergence (3.4), the previously obtained (4.5b), and the above estimate for P, we
infer that

E(T,u(T)) + likm inf Varg g, (ux,[0,7]) < &(0,u(0)) + /T P(r,u(r))dr.
—00 0

In order to conclude (ng,q), it thus remains to show that

liminf Vargc, (ux, [0, T]) > Vargy(u, [0, T]) .
k—00

This will be guaranteed by the upcoming result, whose proof will be developed
throughout Sect. 5.
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Theorem 4 Let & : [0, T] x X — R comply with (Ey), (Ez), and (E}). Let ju; 1 0o
and (uy)r, u € BV([0, T]; X) fulfill

ACr>0VkeN: sup Fo(ur(t)) < Cr, (4.27a)
t€[0,7]
up(t) = u(t) foreveryte|0,T], (4.27b)

Vte J,,, 3 (Olk)k, (,Bk)k C [0, T] with
o T t, B | tand u (o) — u(t=), w(Br) — u(t+).

(4.27¢)

Then,

likrn inf Varg g, (u, [a, b)) > Varqy(u, [a, b)) forall [a,b] C [0,T]. (4.28)
—00

5 Proof of Theorem 4

Let us mention in advance the argument for proving the lower semicontinuity
inequality (4.28) follows the same steps, outlined below, as those for the lower
semicontinuity result [17, Prop. 7.3] in the context of the limit passage from
‘viscous’ gradient systems to BV solutions. Nevertheless, we have to cope with the
(nontrivial) technical issues peculiar of the fact that the kind of transitions describing
the system behavior at jumps changes upon passing from VE to BV solutions. This
problem will be addressed in the proof of Proposition 3 ahead.

Outline of the Proof of Theorem 4

Up to the extraction of a (not relabeled) subsequence and modifying the constant
Cr from (4.27a), we may suppose that

sup Varqg, (ux, [a, b]) < CFr, 5.1
k

too. We introduce a sequence of non-negative and bounded Borel measures n; by
defining them on intervals via

nk(la, b)) := Vargg, (ux, [a, b]) forall [a,b] C [0, T].
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In view of (5.1), we have that, up to a further extraction, there exists a Borel measure
n such that n; —* 7 in duality with C([0, T]). Observe that, by (4.1), we have

n([a, b]) > lim sup ni([a, b]) > lim sup Varg(us, [a, b]) > Varg(u, [a,b]) > vy ([a, b)),
k—o00 k— 00

— u

with v,‘} the diffuse measure associated with u via (2.6). Therefore we obtain
n>vy. (5.2)

We now exploit Proposition 3 ahead to conclude that, for every ¢ € J, and any
two sequences oy 1t and By | t fulfilling (4.27¢), there holds

n({t}) = h/fn sup i ([ok, Be]) = hklggolfﬂk([“ka Bil) = v(t,u(t=),u(t+)).  (5.3)

Analogously, we can prove that

lim sup ng (o, 2]) = (2, u(t—), u(z)),

k—00

lillgl sup ni([t, Bx]) = V(& u(t), u(t+)) .

(5.4)

Arguing in the very same way as in the proof of [17, Prop. 7.3], we com-
bine (5.2)—(5.4) with the representation

Varqgy (1, [a, b])
= v4([a, b]) + Jmp, (u; [a, b])
= vd([a, b]) + V(a, u(a), u(a+)) + v(b, u(b—), u(b))

+ Z (vt ut=), u()+v(t, u®), u(t+))) ,

1€1,N(a.b)
cf. (2.12), to conclude the desired lower semicontinuity inequality (4.28).
The proof of the upcoming result is developed throughout Sect. 5.1.

Proposition 3 Ler & : [0, T]xX — R comply with (E;), (E>), and (EY). Let pi 1 0o
and (ug)g, u € BV([0,T]; X) fulfill (4.27) and (5.1). For every t € J,, pick two
sequences (ay)k, (Bx)x converging to t and fulfilling (4.27¢). Then,

liklginfvafd,ck (ug, ok, Br]) = v(t, u(t—), u(t+)) . (5.5)



518 R. Rossi and G. Savaré
5.1 Proof of Proposition 3

We split the argument in some steps, some of which in turn rely on some technical
results proved in the Appendix.

Step 1: Reparameterization

The curve u; has at most countably many jump points (# ),.ep, between the points
o and Br. We now suitably reparameterize both the continuous pieces of the
trajectory ug, as well as the optimal transitions 19" connecting the left and right

limits uk(t" —) and uk(t"—}-) at a jump point #; *. We w111 then glue all of them together
to obtain a sequence of curves (1), deﬁned on compact sets (Cy), which shall
enjoy suitable estimates (cf. Step 2), allowing for a refined compactness argument
both for the curves u; and for the sets Cy.

We set

my = ,Bk — o + Vard,ck(uks [akv ﬂk]) + Z 2™

meMy

and define the rescaling function sy : [, Bx] — [0, my] by

s(t) :=t — oy + Varag, (e [ )+ Y 27"

{meMy: ik <t}

Observe that s is strictly increasing, with jump set J;, = (t’;n)meMk. We introduce
the notation

= (st( =), 51 (B 4), I i= UpemIh, A = [se(aw), 51 (Br)].

On Ag \ I the inverse t; : Ap \ Iy — [og, Bi] of s; is well defined and Lipschitz
continuous. We set

wi(s) := (ug o t)(s) foralls € Ag\ Iy. (5.6)

The curve uy is also Lipschitz, and satisfies
Varg e, (W, [S0, 51]) < (s1—s9) forall [so,s1] C Ax \ Ik . (5.7
We check (5.7) in the case in which 5o = si(fp) and 51 = s¢(f1), with 1y < £
belonging to the same connected component of [, B¢] \ (2% )men, (the other case is

completely analogous). Then, we observe that

51— 80 = s¢(t1) — sk (to) = 11 — to + Vargg, (uk, [to, t1]) = Varge, (u, [so, s1]) -
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We now recall [19, Thm. 3.14], ensuring that at every jump point #, there exists
an optimal transition % that is continuous on a compact set EX, tight (i.e. it fulfills
Ok (™) # 9k () for every “hole” J € h(EX)), and such that

(=) = 0,((E,)7).  ult,+) =0,(EDD).  ul,) € 9,(E,),
& (1, u(ty, =) = E(1y,. u(t,,+)) = (8, u(t, =), u(ty,+))
= TI'CVE(l'fn, 19},/:,[, E{fn) (58)

= Varg(9*, E*) + GapVary (9%, EX)) + Z ALy, Oy (1)) .

m>Y'm
reEs\(EL) T

We adapt the calculations from [19, Lemma 5.1] and define the rescaling function
ok on EX by

1 = (BT

k -k k\—
= om (E]y(n)-‘r o (E]y(n)_ + Varg (%, E;, 0 [(Ey) ", 1))

a/,‘n(t) :

+ GapVarg(9%, EX N [(EX) ™, 1) + > R 95 (1) + 51K —)
rel(EL)~ A\E) T

forallr € E’;n It can be checked that aly‘n is continuous and strictly increasing, with
image a compact set S/,‘n C Ifn such that

(8,)” =0, ((E,)7) = si(t;,~)  and
$)" =05, ((E,)T)

1
om + Varg(9%, EX) + GapVary (9, EX) + Z ROk (1) + si(dh —)
reER\(ES) T

= si(ly,+) .

The inverse function =¥ : S — E* is Lipschitz continuous.
We then introduce the set

Ck = (Ak\lk) @] (UmeMkan) .

It is not difficult to check that Cy is a closed subset of A;. We extend the functions
t; and wy, so far defined on Ay \ I, only, to the set Cy by setting

t(s) = tfn and  u(s) := ﬁ,’;(r’,‘n(s)) whenever s € an for some m € M.
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Since u(#*—) = ?*((E*)™) and u(tt +) = 9% ((E*)™), we have that the extended
curve u; € C(Cy; X). Furthermore, 1, € BV(Cy; X): indeed,

Varg (1, S’,‘n) = Vard(ﬁfn, E/,‘n), Gap Varg (1, S’,‘n) = GapVard(ﬁ,’;, E/,‘n),

Yo REwm) = Y R0,

seSE\{(SE) T reEl \{(El)+}
(5.9a)
as well as
Varg (i, S* N [s0,51]) < (s1 —s0)  forallsp,s; € S¥ withsy <s;.  (5.9b)
Step 2: A Priori Estimates
It follows from (5.1) and from the fact that (8y—ay) | 0, that
C;F =my < Br — ou + Vargo(ug, [, Bil) + 2 < 2Cr (5.10)

(up to modifying the constant Cr). Moreover, in view of (5.1), (5.7), and (5.9b) we
have

sup Varg(u, Cr) < C, (5.11a)
kEN

Varg(ug, Cr N [s0,51]) < (s1—s0) forall 59,51 € Ci, 5o < 51, and k € N, (5.11b)

Finally, we remark that

sup sup Fo(u(s)) < Cr. (5.11¢)
keN seCy
Indeed, we have that
sup  Fo(w(s)) = sup Fo(u(t)) < Cr
s€A\Ik 1€[atk B\ (&) memy

in view of (4.27). Furthermore, it follows from [19, Thm. 3.16] that for all » € Efn
there holds
& (s O (1) + d@ (1), On (ER) 7)) < €, 95,(r)) + Vara(y,, B, N [(Ey) ™ r])

m? m> m

< E(ty O (ER) 7)) = E by ur(t,—)) -

m’ m



From Visco-Energetic to Energetic and Balanced Viscosity Solutions of Rate-. . . 521

Therefore,

sup Fo(u(s)) = sup Fo(D,(r) < Folur(th,—)) < Cr.

sesk, reEk,

All in all, we conclude (5.11c).

Step 3: Compactness

By virtue of estimates (5.11), we are in a position to apply the compactness result
[19, Thm. 5.4] and conclude that there exist a (not relabeled) subsequence, a
compact set C C [0,2Cp], and a function u € BV(C; X) such that, as k — oo,
there hold

. Cx — C ala Kuratowski;

. graph(u) C Li;—oograph(iy);

. whenever (s;)x € Cy converge to s € C, then u(sg) — u(s);
- w((C*) = u(CH).

Therefore, w(C™) = u(t—), and u(CT) = u(t+). Furthermore, it follows
from (5.11b) that the curve u is Lipschitz on C. Finally, for later use let us point
out that, since the functions t; take values in the intervals oy, Bx] shrinking to the
singleton {z}, there holds

RSN S

klirn sup |t(s) —#] = 0. (5.12)

—>00 ey

Step 4: Connectedness of C

Observe that, since the sets Cy are not, in general, connected, we cannot immediately
deduce that C is connected. We will however show that,

VI € h(C) there holds u(I™) = u(I") =: u;. (5.13)
In view of this, we may extend u to the whole interval [0, C*] by defining

u(s) ==y foralls € I forall I € h(C).
Hereafter, we will replace C by [0, CT]. We will split the proof of (5.13) in two
claims.

Claim 1: for every I € h(C) there exist J; such that

Ji€h(Cy) and lim J, =1, lim J;F =1T. (5.14)
k—o00 k—>o00
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This follows by repeating the very same arguments as in the proof of [19, Thm. 5.3].
Claim 2: there holds u(I”) = u(I™"). In view of the compactness property (3)
from Step 3, there holds uk(J,fE) — u(I*). Therefore,

d@() () = lim daw (). w;)

k—o00

. 1 _
< lim sup 12 (0 (e (T we () + 1)
M

. 1
< limsup 12 (Varg e, (ug, [ox, B]) + 1) = 0,
k—>00 s

where we have used Young’s equality and estimate (5.1).

Step 5: Estimate of the Transition Cost and Conclusion of the Proof

With Steps 3 and 4 we have shown that the Lipschitz continuous curve u is defined
on the interval [0, C*] and connects the left and right limits u(r—) and u(t+). We
now aim to prove that

likII_l)infvard,Ck (uka [O[k, :3/(]) = TrCBV(tv u, [O’ C+]) = V(tv M(t—), M(t+)), (515)

which will lead to (5.5).
Indeed, it follows from Lemma 1 that

ct

Tregy (1,1, [0, C*]) :/0 W|(s) IDE|(7, u(s)) v 1) ds

N
— sup { Zd(u(oi_l),u(cri))ae[inf’m] (ID&| (1, u(0)) v 1) : (5.16)

i—1

i=1
()11 € By ([0.C7D}.
Therefore, in what follows we will prove that

lim inf Varg ¢, (ux, [0, Bi])
k—00

N (5.17)
> Z d(w(oi-1), u(07)) UE[(iynf o (ID&(t,u(o)) v 1)

i=1 -

for every (0,)_, € B([0,CT]).
Let us consider a given partition (o; f.\':l € Ps([0,CT]) and fix an index

Jj € {1,...,N}. Preliminarily, we observe that, by the compactness property (1) in



From Visco-Energetic to Energetic and Balanced Viscosity Solutions of Rate-. . . 523

Step 3, there exist sequences (0]."_ Dies (ojl‘)k C Cy such that, as k — o0, there holds

of | > 01, 0f > 05 and w(o) ) > u(oj—1). w(of) > u(o)  (5.18)
where the second convergence follows from the compactness property (3). We now
distinguish two cases

1' infGE[Uj-],Uj] (lD@@l([s u(U)) 4 1) = 1’
2. infyefp;_, oy [DE| (2, u(0)) > 1.

Clearly, the second case is equivalent to infyefs,_, o;] (IDE[(7,u(0)) vV 1) > 1.
Case (1): In view of (5.18), we have

d(u(o-1).u(e) _inf  (DE|(r.u(@)) v 1)

(5.19)
= kll>nolo d(uk(qjk_l), uk(ij)) .

Case (2): We have that [D&|(t,u(o)) > § > 1 forall o € [0j-1, 0j]. First of all, we
observe that

35€(1.8) FkeN inf  inf  |DE|(t(o),u (o)) = §. (5.20)

k=k o€lof.0fINCx

To show this, we argue by contradiction and suppose that there exists a (not

relabeled) subsequence along which inf, pTetes ID&|(tx(0), ux(0)) < 1. Since
J=1

for every k € N the inf on the compact set [cr}‘_ 1,crj"] N Cy is attained by lower
semicontinuity of the map o + |D&|(tx(0), ux(0)), we deduce that there exists
a sequence (0y)r with |D&|(t(0%), ux(6%)) < 1, converging up to a subsequence
to some 6 € [0j—1,0;]. Now, t(0x) — ¢ by (5.12) and u(6x) — u(c) by the
compactness property (3) from Step 3. Hence, using the lower semicontinuity of
|D&| granted by (E}) we conclude that [D&| (¢, u(6)) < 1, in contradiction with the
assumption that infse[s;,_, ;] [DE|(2, u(0)) > 1.

Observe that (5.20) implies that Z(t(c), ux(c)) > O forallo € [crjk_1 , ajk] N Ck

and all k > k. We now deduce the uniform positivity property

dr>0 inf inf Z (4 (o), e (0)) > r. (5.21)

k=k oelof.ofINCk

Indeed, as for (5.20) we proceed by contradiction: if (5.21) did not hold, there
would exist a sequence (6y)x With Z (4 (0%), ux(6%x)) — 0, converging to some & €
[0j-1, 0j] that would fulfill Z(¢,u(¢)) = 0 by the lower semicontinuity of Z. Now,
by property (2.25), Z(t,u(6)) = 0 would imply that (¢, u(5)) belongs to the stable
set ./p. In turn, the D-stability condition (2.23) would imply that |D&’|(f,u(5)) < 1,
against the standing assumption that infs e[, o] [DE|(2, u(0)) > 1.



524 R. Rossi and G. Savaré

Now, (5.21) entails that t(0) € (&)nem, for all o € [0} |, 0{] N Gt = Z.
But then, it is not difficult to realize that the function t; must be constant on .%,.
Namely, there exists my € M such that t;(0) = t’;nk for all o € .%. It was observed
in [19, Rmk. 3.15] that the set C,‘? ={s € ank \{(ank)+} : %(rﬁlk,uk(s)) > 0} is
discrete. Trivially adapting the argument from [19, Rmk. 3.15], from (5.21) we in
fact conclude that for all k > k the set % C Ck'% consists of finitely many points
(r’é)é": \» and that the cardinality L; of the sets .Z is uniformly bounded with respect
to k, i.e.

supLy < C < o0. (5.22)
k>k
Furthermore, notice that r’g is the extremum of a hole of Cy forevery £ = 1,..., L.

The compactness statement from Step 3 (cf. again [19, Thm. 5.4]) applies, yielding
that, up to a subsequence,

1. the sets (%)« converge in the sense of Kuratowski to a finite, thanks to (5.22),
set £ = (r)k, C [0j-1. 0], such that 0;—;, 0; € L.

2. for every r; € £ there exists a sequence (r ()i, with rj (I) € % for every
k € N, such that uk(r’gk(l)) — u(ry). From now on, we will use the simplified
notation ri (/) in place of r’gk 0,

3. whenever rif’n' € 7, converge to some r; € £ as n — 00, then uy, (r][‘:) — u(r).
We now estimate d(u(0j—1), u(0;)) infoefs,, o) (IDE|(2,u(0)) V 1) by interpolat-

ing between the points 0j—; and o; the points . = (r;)/,. Thus we have

d(u(oj1). u(ep) _inf  (IDE|(r.u(@)) v 1)

< d(u(0j-1), (o)) + d(U(Q,’—l),u(Gi))ae[inf ](IDKO@I(L u(0))—-1)

0j—1:0j

L
< d((0j-1), u(0) + D_ d(u(ri—1), u(r)) (IDE| (1, u(r))—1)

=1

. . k k
< liminfd(w(o;_,), w(0;))
koo (5.23)

L
+ 121: li](nj)glfd(uk(rk(l—l)), u(re () \/zuke@(ffnkv we(re (1))
2 Jim inf d(uy(o* k 1"fL’”‘d2 -1 I
< limin (w(0j-)), (7)) + imin ; 5 (u (re (1=1)), wie (e (1))

L
+ lim gfz Rty wi(ri(D)) -
=1
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For (1), we have used that for every [ = 1,...,L there exists a sequence (r(/))
fulfilling the aforementioned convergence property (2), and applied the forthcoming
Lemma 3 with the choice ¥ (r) = r + 172 (cf. (1.3)), so that Y*(S) = J ((S—1)4+)%
with 7 ;= p,k_l, with ¢, 1= t’,‘nk — tas k — oo, and with uy := w(r()) — u(r).
We then conclude that (cf. (A.5) ahead for the definition of the generalized Moreau-
Yosida approximation @M "k/_l (&)

(ID&|(t u(r)=1) = (DE| @, u(r)~1),
< liminf \/ 20 (E(th, weruD) = L (E) W D)) (5.24)
= lim inf V20t w(re(l))  foralll=1,...,L.

Finally, for (2) in (5.23) we have applied Young’s inequality.

Observe that the term multiplied by g featuring on the right-hand side
of (5.23) involves points that are extrema of holes in Cj. Therefore, it
is estimated by GapVary(uk, Cr), whereas the third term is bounded by
Zses,knk\{(sk )+}%(t’;nk,uk(s)). Combining (5.19), and (5.23), and summing over

mj

all the points of (0;)Y_, € B/([0, C*]), we conclude the desired (5.17). This finishes
the proof of Theorem 4.
We conclude this section by giving the

Outline of the Proof of Proposition 1

The argument borrows some ideas both from the proof of Theorem 1, and of
Theorem 2. Let us briefly sketch its steps.

e Compactness: We again apply Proposition2 and deduce the existence of a
subsequence (u,, ) converging to some u € BV([0, T]; X) in the sense of (4.4)
and (4.5); hereafter we will again use the short-hands uy, (tx, and ¢ in place of
Up > P> and €, , Tespectively. We will use the notation

Dy, (u,v) == d(u,v) + “zkdz(u, v), Dy (u,v) 1= d(u, v) + ’;dz(u, v),

and write GapVary*, GapVary, Z/", %"

* The D,-stability Eondition: As in Claim 1 within the proof of Theorem 1, we
introduce the set J = Nyen Uism Jy, . First, we prove thgt the limit curve u
fulfills the stability condition (Sp,) at every ¢ € [0,7] \ J by passing to the
limit as k — oo in the D, -stability condition for the curves u, holding on
[0,T] \ J,,. Secondly, we deduce the validity of the D,-stability condition at
every ¢ € [0, T] \ J, by density argument, similarly as in the proof of Theorem 1,
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Claim 4. Here we exploit the closedness of the D, -stable set wa which is in
turn ensured by the lower semicontinuity of Z*.
* The upper energy estimate < in (Eq,): We show that for all 7 € [0, 7]

&(t,u(t)) + Varge, (u, [0, 1) < &(0,u(0)) + /t P(s,u(s))ds (5.25)
0

by taking the lim inf;_, o, in the analogous upper energy estimate for the curves
(ur)r. Let us only comment on the proof of the key lower semicontinuity
inequality

likm inf Varg ¢, (u, [a, b]) > Varge, (u, [a, b]) forall [a,b] C [0,T], (5.26)
—00

since for dealing with the other terms in (5.25) we repeat the very same arguments
as in the proofs of Theorems 1 and 2.

First of all, we may suppose that the sequence (uy); complies with the
conditions (4.27) of Theorem4. Along the footsteps of the proof of Theorem4,
we introduce the Borel measures 1y ([a, b]) := Vargc, (ux, [a, b]) and show that,
up to a subsequence, they converge to a measure 7 > vd. It then remains to
deduce that n({r}) > c(t, u(t—), u(t+)) forall t € J,, as well as the analogue
of (5.4), to conclude (5.26). With this aim we adapt the proof of Proposition 3 to
show that

1iklll)gljlgfval‘d,ck (uk, [o, Br]) = c(t, u(t—), u(t+))

at every point ¢ € J,, and for every pair of sequences (o), (Br)r converging
to ¢ and fulfilling (4.27c). Hence, we reparameterize the curves u; in the very
same way as in Step 1 of the proof of Proposition 3. By virtue of the a priori
estimates from Step 2, the compactness arguments in Step 3 yield the existence
of a Lipschitz continuous limit curve u : C — X, with C € [0,00) and
uw(C™) = u(t—), w(CT) = u(t+). Here, we can no longer replace C with
the interval [0, C*] as in the proof of Proposition 3, but we can still observe
property (5.14), based on [19, Thm. 5.3]. We now show that

likm inf Varg ¢, (ug, [, Bk]) = Treye(t, u, C) > c(t, u(t—), u(t+)) . (5.27)
—00

The lim inf-inequality for the Vary contribution to Varg, easily follows from the
aforementioned compactness arguments. For the GapVarg *_contribution (which
depends on the parameter p; via the viscous correction "zk d?), it is essential to
use property (5.14). For the " contribution, we can adapt the arguments from
the discussion of Case (2) in Step 5 of the proof of Proposition 3, also exploiting
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the lim inf-estimate

(tx —> t, xx > x) = liminf 2" (1, x) > ZH (¢, x).
k—00

This concludes the proof of (5.26).

¢ The lower energy estimate > in (Edc,): It follows from [19, Thm. 6.5]. Again,
the energy convergence &'(t, ux(t)) — &(t, u(t)) for every t € [0, T] follows from
the limit passage in the energy balance.
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Appendix
Auxiliary Results

We start with the proof of the representation formula (5.16) for the transition
cost Tregy(t, u, [0, CT]). In the upcoming statement, we replace the functional
u+— |D&|(t,u) v 1 by a general

g: X — R positive and lower semicontinuous.

Lemma 1 Let v € AC([a, b]; X). Then, there holds

b
/ 1V](5)g(w(s)) ds

a

u . N (A1)
= sup ) > d(v(oi-). v(0)) _inf g(v(0) : (o)L, € Fy(la.b)

i=1 0i—1,0i
=:8S.

In particular, the map s — |v’|(s)g(v(s)) is integrable on [a, b] if and only if S < oo.
Proof Letus fix (0;)_, € B;([a, b]). Observe that

d(v(0i-1).v(0) _inf ]g(v(ﬁ))(sl) / i Vo), _inf _g(v(@))do

0€[0i—1.0i oi— 0€|0i—1.0;

< / " WI0)0)do
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with (1) due to (2.14). Therefore, upon summing up over the indexi = 1,..., N and
using that (0;)_, is arbitrary, we conclude

b
/ [V/](5)g(v(s))ds = S.

As for the converse inequality, we now consider a partitiona = 0] < ... < 0; <
... = oy = b with fineness 7 := max;=;__n(0; — 0,—1) and introduce the functions

T =0 f € i—150i]s
000 [ab] > [ab] definedby )7 =0 ifs € @0l
0,.(s) =01 ifs € [oi-1,0),

with o_(b) := b and 0.(a) := a. Taking into account the definition (2.15) of the
metric derivative |v’|, it is a standard matter to check that, on the one hand,

lriﬁ)l (Ut(s)iat(s))d(v(ot(s))’ v(o.(s))) — [V'|(s) fora.a.s € (a,b). (A.2)

On the other hand, exploiting the lower semicontinuity of g, we observe that for
every s € [a, b] there exists Omin - (s) € [0,(s), 0-(s)] such that

inf g(v((f)) = g(U(Umin,r (S)))

0€[o,(s).0¢(5)]

Since opin - (s) — s as t | 0, by the continuity of v and the lower semicontinuity of
g we then have

liminf g0 (0inc(5))) = g(0(s))  foralls € fa.b]

Therefore, by the Fatou Lemma we have

0i—1,0i

N
Sz lim ionf; dv(oi-).v(e) _inf  ¢(v(0))

= liminf

b 1
ni / (0+(5)=0.(5)) d(v(o,(s), v(0:(5))) g(V(Omin.c (5))) ds

b
> / 1V (9)g(v(s)) ds

and we then conclude (A.1). O
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We conclude this Appendix by extending the duality formula from [2,
Lemma 3.1.5] for the (squared) metric slope [D&|?(z,-), t € [0, T] fixed, namely

1 éa f, - éar f, .
IDEP( u) = limsup & W TG0 G
2 70 T
1 A3
& (t,u) :=inf { ~ d*(u,v) + &(t,v) (A.3)
veEX 2‘1,’
the Moreau- Yosida approximation of &(z, -)

(with slight abuse of notation). We consider the case in which the dissipation
potential underlying the definition of Moreau-Yosida approximation is no longer
the quadratic ¥ (r) := érz, but a general function

Y 1 [0,00) — [0, 00) convex, L.s.c., with ¥ (0) = 0 and rl%g Iﬁfr) =o00. (A4

With ¥ we may associate the generalized Moreau-Yosida approximation of the
functional £(z,-) : X — R, via the formula (again, with slight abuse of notation, we
write %, (&) (t, u) in place of %Y (&£(t,-)) (1))

@ (&)(t,u) = inf (‘L’I// (d("t’ v) ) &, v)) (A.5)

for (r,u) € [0,T] x X, t > 0. Combining the coercivity condition (E;) with the
superlinear growth of ¥, it is straightforward to check that for all (¢, u) € [0, T] x X
and forallt > 0

MY (E)(t.u) := Argmin, ey (rw (d(“r’ v)) +éa, v)) £9.

We have the following counterpart to [2, Lemma 3.1.5].
Lemma 2 There holds for all (t,u) € [0,T] x X

¥
o (IDE|(t.1)) = limsup © &0~ Z )0

=0 T

(A.6)

The proof follows by trivially adapting the argument for [2, Lemma 3.1.5]. We
conclude this Appendix with the following lower semicontinuity result, which is
crucially used in the proof of Proposition 3.

Lemma 3 Assume (Ei), (E}), and (A.4). Let (t)r C (0,00), (t)x C [0,7], and
() C X fulfill v | O, tp — t, and uy — u for some (t,u) € [0,T] x X, with
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SUPgen & (tk, ux) < C. Then,

i i & (1) = 25 () ()
im inf

k—00 Tk

= Y (IDE(t,u)) . (A7)

Proof Forevery k € N, let u}, € MY(&)(t, u). We have that

. u - W é()(lk’ le) g(lk ukk) — T 1// :(ukv utk
g( k) glk (g)(lky I/lk) T J T

Tk Tk

Lo,
/ 0 (D& (1. 1)) dr.
Tk Jo

A%

where the latter estimate follows from [21, Lemma 4.5], with u’; is a

(measurable) selection in MY (&)(ty,u) for r € (0,7). Observe that
liminfyoo ¥* (IDE|(t, ut)) = ¥* (ID&)(2, u)) taking into account that ut — u as
k — oo for every r € (0, ), cf. the proof of [21, Lemma 4.5], and using the lower
semicontinuity of |D&| granted by (E}). Then, by Fatou’s lemma we have

imin | [ 9 (D810.19) ar = v (D81,

k—00 ‘Ck
which concludes the proof of (A.7).

Acknowledgements This paper is dedicated to Gianni Gilardi on the occasion of his 70th
birthday.

References

1. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in
Mathematics and Its Applications, vol. 25. Oxford University Press, Oxford (2004)

2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics ETH Ziirich, 2nd edn. Birkhduser Verlag, Basel
(2008)

3. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures based on local
minimization. Math. Models Methods Appl. Sci. 12, 1773-1799 (2002)

4. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence
and approximation results. Arch. Ration. Mech. Anal. 162, 101-135 (2002)

5. Efendiev, M., Mielke, A.: On the rate-independent limit of systems with dry friction and small
viscosity. J. Convex Anal. 13, 151-167 (2006)

6. Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math.
Models Methods Appl. Sci. 18, 1529-1569 (2008)

7. Knees, D., Mielke, A., Zanini, C.: Crack growth in polyconvex materials. Phys. D 239, 1470—
1484 (2010)



From Visco-Energetic to Energetic and Balanced Viscosity Solutions of Rate-. . . 531

8.

9

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Mainik, A., Mielke, A.: Existence results for energetic models for rate-independent systems.
Calc. Var. Partial Differ. Equ. 22, 73-99 (2005)

. Mielke, A.: Evolution in rate-independent systems. In: Dafermos, C.M., Feireisl, E. (eds.)

Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461-559. Elsevier,
Amsterdam (2005)

Mielke, A., Roubicek, T.: Rate-Independent Systems. Theory and Application. Applied
Mathematical Sciences, vol. 193. Springer, New York (2015)

. Mielke, A., Theil, F.: A mathematical model for rate-independent phase transformations with

hysteresis. In: Alber, H.-D., Balean, R.M., Farwig, R. (eds.) Proceedings of the Workshop on
“Models of Continuum Mechanics in Analysis and Engineering”, pp. 117-129. Shaker-Verlag,
Aachen (1999)

Mielke, A., Theil, F.: On rate-independent hysteresis models. Nonlinear Differ. Equ. Appl.
(NoDEA) 11, 151-189 (2004)

Mielke, A., Rossi, R., Savaré, G.: Modeling solutions with jumps for rate-independent systems
on metric spaces. Discrete Contin. Dyn. Syst. 25, 585-615 (2009)

Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-
independent systems. ESAIM Control Optim. Calc. Var. 18, 36-80 (2012)

Mielke, A., Rossi, R., Savaré, G.: Variational convergence of gradient flows and rate-
independent evolutions in metric spaces. Milan J. Math. 80, 381410 (2012)

Mielke, A., Rossi, R., Savaré, G.: Nonsmooth analysis of doubly nonlinear evolution equations.
Calc. Var. Partial Differ. Equ. 46, 253-310 (2013)

Mielke, A., Rossi, R., Savaré, G.: Balanced viscosity (BV) solutions to infinite-dimensional
rate-independent systems. J. Eur. Math. Soc. 18, 2107-2165 (2016)

Minotti, L.: Visco-energetic solutions to one-dimensional rate-independent problems. Discr.
Contin. Dyn. Syst. Ser. A (2017, to appear). Preprint, arXiv:1610.00507v1

Minotti, L, Savaré, G.: Viscous corrections of the time-incremental minimization scheme and
visco-energetic solutions to rate-independent evolution problems. Arch. Rational Mech. Anal.
doi:10.1007/s00205-017-1165-5 [online published]

Rossi, R., Savaré, G.: A characterization of energetic and BV solutions to one-dimensional
rate-independent systems. Discrete Contin. Dyn. Syst. Ser. S 6, 167-191 (2013)

Rossi, R., Mielke, A., Savaré, G.: A metric approach to a class of doubly nonlinear evolution
equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, 97-169 (2008)

Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences, vol. 111,
Springer, Berlin (1994)



A Duality Approach in Some Boundary
Value Problems

Dan Tiba

Abstract We describe several results from the literature concerning approxima-
tion procedures for variational boundary value problems, via duality techniques.
Applications in shape optimization are also indicated. Some properties are quite
unexpected and this is an argument that the present duality approach may be of
interest in a large class of problems.

Keywords Dual problem ¢ Fenchel theorem ¢ Optimal design ¢ The control
variational method

AMS (MOS) Subject Classification 65110, 65N22, 49J45

1 Introduction

One of the most applied discretization methods for boundary value problems of
different types, is FEM with its numerous variants. There are difficulties that may
hinder the efficiency of this approach since the finite element grid may degenerate
and certain regularity hypothesis have to be imposed in order to obtain good results,
Ciarlet [7]. Starting with dimension three, the grid generation may involve a high
degree of complexity (see for instance [14]).

In front tracking problems appearing in free boundary applications, such condi-
tions may be difficult to preserve during the iterations of the algorithm. Alternative
approaches are the recent virtual element method [3] or meshless methods [20].
In the second case, the used finite dimensional bases (for instance RBF) are quite
complex, while the VEM has still to be developed to its full potential.

In this article, we review another approach (based on duality theory) that has
already ensured powerful results [13, 21], in its variant known as the control
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variational method and can be applied to large classes of linear or nonlinear
boundary value problems admitting a variational formulation. A recent development
is due to Machalova and Netuka [15] for a beam model governed by a nonlinear
fourth-order differential equation introduced by Gao [9].

Duality is an important principle in mathematics or physics. In the context of
differential equations, dual problems may be obtained via the variational formu-
lations (or otherwise) and are useful in optimal control, numerical approximation
or theoretical advances [2, 4, 8, 11, 14]. We limit ourselves to the stationary case,
characterized by the minimization of certain energies, but extensions to evolution
equations are also possible [10, 23]. The dual optimization problem associated to it
or to its approximation, is finite dimensional.

We discuss here three basic types of results associated to the minimization
of energy, according to the constraints that are involved. In the next section, we
describe problems governed by ordinary differential equations and the constraints
are defined by some of the boundary conditions. Their number is finite and the dual
problem is finite dimensional and provides the explicit solution to the model since
no approximation is used here. Usual FEM techniques produce just approximate
solutions and special techniques are needed to avoid critical situations, [5, 6].

In Sect.3, we consider variational inequalities associated to the biharmonic
equation. The constraints are given by the convex set characterizing the restriction
(for instance, the obstacle problem). It is discretized by using a countable dense
subset of points (no finite element) and the dual optimization problem is again
finite dimensional and provides the desired approximation. This is an important
advantage, removing any geometric regularity condition.

We also investigate the p-Laplacian problem and some fourth order problem by
discretizing the constraints expressed via the boundary conditions. Here, we use
recent papers [17, 18, 24], where numerical experiments are also reported. Partial
results for the general linear elasticity system are discussed in [22].

In the last section, we briefly recall an application in shape optimization of the
control variational method [21].

The variational problems that we discuss in this short review are in classical form
or can be reformulated as an optimal control problem. The duality theory, based on
the Fenchel theorem, has a wide range of applications to many classes of boundary
value problems.

2 Ordinary Differential Equations

The classical Kirchhoff-LLove model [7] in dimension two describes the defor-
mation of a clamped cylindrical shell, under forcing acting in the normal plane,
constantly along the shell. It consists in finding the displacement with components
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v € H}(0, 1), v, € H3(0, 1) such that

1
/ [1(v1 o) ()l — cur)(s) + (v + v (5)uty + cul)’(s)] ds
oLe Q.1)

= / (fiur + fouz)(s)ds, ¥ uy € Hy(0,1), VY us € H(0, 1),
0

where (fi,f2) are the normal, respectively the tangential component of the force
acting on the arch, ¢ : [0,1] — TR denotes its curvature and /¢ is its constant
thickness. If ¢ = (¢1,¢2) : [0,1] — R? is the parametrization of the arch, with
respect to its arclength, then c(s) = ¢} (s)¢|(s) — @] (s)@5(s) is its curvature and

0(s) = arctan (Z? Esi

vector ¢" = (¢}, ¢}). Consider the orthogonal matrix

_ [ cosB(s) sinb(s)
M= ( —sin 6(s) cos 6(s) ) (2.2)

) is the angle between the horizontal axis and the tangent

and define the functions

[ }(r)— / Ww- ()[?8} 2.3)

g1 =c¢l, —g5 = h, g(0) = g.(1) =0. (2.4)

The control variational method allows the reformulation of (2.1) as an optimal
control problem. We use the notations introduced in (2.2)—(2.4):

1 1
Min {L(u,z) = 218/ u(s)ds + ; / [z’(s)]zds} , (2.5)
0 0

subject to the state equation

u_ [ ~1 (g u(s) + g1(s) o
[vz(r)} _/0 wow ()[Z(S)+gz(s):|d’ 20

with restriction

L Ju® +ga], [0
/OW (S)[z(s)+g2(s):|ds_[0:|’ 2.7
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Relation (2.6) ensures the zero initial condition for vy, v,, while (2.7) expresses
the zero final condition, i.e. the boundary conditions in (2.1). The formulation (2.5)-
(2.7) (together with (2.2)~(2.4)) needs just & € L>(0,1), i.e. ¢ € W'®(0,1)%.
Under more regularity conditions, we have (according to [13]):

Theorem 2.1 If ¢ € W3°°(0,1)? and [v},v5] is the optimal state of (2.5)~(2.7),
then it satisfies (2.1).

The existence and uniqueness of [v}, v3] € L>(0, 1) follows by the coercivity
and strict convexity of (2.5). The above result shows that indeed (2.5)—(2.7) is a
generalization of (2.1), under very weak regularity conditions on ¢. Notice that
the optimal control problem (2.5)—(2.7) has just two state (or equivalently, control)
constraints given by (2.7). One can compute the dual problem [13], which is two
dimensional (two Lagrange multipliers) and can be solved explicitly:

1 1
Min { / [A1ecosB(s) + Aresin O(s) + el(s)]*ds+
A1 A2ER 25 0

+ /0 [awr + Aows + g2) (5)]2ds),

where we have denoted wi, w, € H}(0,1) N H*(0, 1):
w/(s) = sinB(s), wj(s) = —cos b(s).

Theorem 2.2 [f 6 € L*°(0,1), then the unique solution to (2.5)—(2.7) is given
by (2.6) and

[u*,z*] = Al[ecos B, wi] + A5 [esin 6, wy],

where [A], A3] solve (2.8).

Note that the solution to (2.8) can be obtained by a 2 x 2 linear algebraic system
that expresses the corresponding necessary optimality conditions. The results from
Theorems 2.1, 2.2 show the efficiency of the duality arguments. In [5, 6] very special
FEM schemes are used to approximate (2.1), due to its singular and stiff character
(given by the small parameter ¢ > 0) and the so-called “locking problem” that
affects standard FEM approaches, in such cases.

Applying a similar method, variational inequalities for arches, with unilateral
conditions on the boundary, are discussed in [19]. In the recent paper [15], a
nonlinear beam model is discussed by the control variational approach, but the
obtained solution is no more explicit as in the case of the Kirchhoff-Love model
for arches. The admissible control set has a complex structure and discretization
procedures have to be used.
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3 Partial Differential Equations

We start with an example related to the p-Laplacian, following [24]:

Min %1/ [Vy]P + |y|”]dx—/fydx} , (3.1
PJg 2

yew,” (@)

where 2 C R is a bounded domain, p > d > 2,f € L1(2),p~ ' + ¢! = 1.

The existence of a unique solution y € Wé"” (£2) is well known, due to the
coercivity and strict convexity of (3.1). It may be interpreted as solving in a weak
sense the p-Laplacian equation in £2, with Dirichlet boundary conditions.

Let {x;}iey C 02 be a dense subset. We approximate (3.1) by an optimization
problem with a finite number of constraints (on the boundary 9£2):

1
Min % / [|Vy|p+|y|”]dx—/fydx}. (3.2)
yewlr(2) (P Jg 2

y(x;)=0,i=1.n

It makes sense due to the Sobolev embedding W!?(£2) C C(£2) since p > d.

By the same argument as above, the minimization problem (3.2) has a unique
solution y, € W'?(£2).

Formally, it may be interpreted as solving the p-Laplacian equation with mixed
boundary conditions: Dirichlet conditions in {x;} and Neumann conditions in
the remaining of 052.

One can prove via convex analysis techniques the following approximation
result:

i=1,n

Theorem 3.1 We have y, — v, the solution to (3.1), strongly in W' (£2).

This allow to replace the study of (3.1), by (3.2).

We discuss the dual problem for (3.2) which is a finite dimensional optimization
problem. We define g, : W!?(£2) — ] — oo, +00] by

0 yx)=0,i=1,n,
n = . 3.3
&) % 400 otherwise (3-3)
and h : W'?(£2) — R, given by
1
m) == [ 1P +brlac+ [ pras G4
PJg Q
Clearly, the problem (3.2) can be reexpressed via (3.3), (3.4) as
Min {g.(y) — h(y)}. (3.5)
YEW!LP(£2)
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Since g, is convex, proper, lower semicontinuous and / is concave, continuous
on W!(£2), the Fenchel theorem [2] can be applied and the dual of (3.5) has the
form

max {h*(z) — g, (2)}, (3.6)
ZEWLP(2)*

where h*, g¥ are the conjugate mappings. One can compute them and obtain

1
_ q
h*(Z) - _p |Z _f|Wl.p(_Q)*s (37)
0 = Oligx,.,
g:(z) = i; (3.8)
+o00, otherwise,

where o; € R and §,, € W!?(£2)* is a Dirac-type functional concentrated in x; €
052 (but it is not a distribution).
By (3.6)—(3.8), we can state

Theorem 3.2 The dual problem is given by:
R q . -
Min q|f_ lel.p(g)*s = Zaigx,‘s o € R
i=1

and it is a finite dimensional optimization problem.

It is known that, from the solution to the dual problem one can find the solution
to the primal problem as well, [2, p. 188]. If p = 2, the involved equations
become linear. The continuity may be obtained if f € L°(§2), with s sufficiently
big, depending on dimension.

Similar ideas can be applied to fourth order elliptic variational inequalities. An
example is given by

(1 )
win ) [ 1ae - [ hydx}, (3.9)
K:{zeHZ(Q)ﬂHé(Q); / hzdxz—l}, (3.10)
2

which can be interpreted as a simply supported plate. The unilateral condition (3.10)
is related to the mechanical work performed by the force 1 € L?(£2).

The problem (3.9), (3.10) has a unique solution y € K, due to the coercivity and
strict convexity of the functional (3.9).
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The approximating problem is

1
Inf{ /lAy|2dx—/ hydx}, (3.11)
veK, | 2 Q 0

K, = {z e H*(2); z(x)) =0, i = 1,n, / hzdx > —1} , (3.12)
2

where {x;};ey C 052 is, as before, a dense subset.

Notice that (3.11), (3.12) may have no solution due to the possible lack of
coercivity. One can use minimizing sequences in (3.11), (3.12). However, the dual
problem has solutions and the Fenchel theorem can be applied.

Theorem 3.3 The dual problem is given by

1
Min / |z|?dx
2Ja

subject to

D*z—h econv{{0} UA,},

—h + Zn:ai&ﬁ, o € R} s

i=1

A, =

where D* : [*(2) — H*(2)* is the adjoint of the linear continuous operator
D : H*(2) — L*(2), Dy = Ay.

The finite dimensional character of A, is the key point in this approach.
Other applications of the duality approach to second and fourth order variational
inequalities of obstacle type are due to [16—18]. Different duality concepts, for high
order nonlinear elliptic problems and for systems are discussed in [11, 12, 14].

4 An Application in Shape Optimization

The arguments from the previous sections have a variational character and are
strongly related to optimization problems. We argue here via a shape optimization
example [1], that they may have further consequences in optimization theory:

Min / u(x)dx, 4.1)
2

AWPAy) =f in £, 4.2)
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y=Ay=0 1inds2, 4.3)
0<m=<ux)<Ma.e.in £2, 4.4
yeC, 4.5)

where 2 is a bounded domain in R¢, C C L?(£2) is a given nonempty closed subset,
mM e R, f e L*(2).

In dimension two, relations (4.2), (4.3) model the equilibrium state of a simply
supported plate with thickness u satisfying (4.4) and deflection y, under the vertical
load f. The geometric optimization problem (4.1)—(4.5) consists in finding the plate
of minimal volume, such that the deflection remains in the prescribed set C. For
instance, we may take (tr € R4 given):

C={zel*): z(x) > —t ae. in 2}, (4.6)

which is a safety condition (the deflection should not overpass some limit). In this
example (4.6), C is even convex. However, the optimization problem (4.1)—(4.6)
remains strongly nonconvex, even for C convex, due to the nonlinear character of
the dependence u — y defined by (4.2).

It enters the category of control by coefficients problems. Notice that the
boundary value problem (4.2), (4.3) has a unique weak solutiony € H?(£2)NH}(£2).

Denote by w € H?(£2) N H,($2) the unique solution to the Dirichlet problem
Aw = fin §2. Then, (4.2), (4.3) is equivalent with

Ay =wl in 2, (4.7)
y=0 ondg, (4.8)

where [ = u™> € L>°(£2). Equations (4.7), (4.8) together with the above definition
of w may be interpreted as the optimality conditions for a linear-quadratic control
problem and is one of the simplest examples of the application of the control
variational method, [1].

The shape optimization problem (4.1)—(4.5) becomes

Min / 175 (x)dx 4.9)
2

subject to (4.7), (4.8) and the constraints [ € [M~3,m™3] and (4.5). Due to the
linearity of the dependence [ — y defined by (4.7) and the strict convexity of the
functional (4.9), we infer

Theorem 4.1 The problem (4.1)—(4.5) has at least one optimal pair [y*,u*] €
H?(2) x L*(£2). If C is convex, the optimal pair is unique.
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The existence is a consequence of usual weak lower semicontinuity arguments
and the boundedness of the set of admissible thicknesses. The problem (4.1)—(4.5)
may have many local optimal pairs since it is nonconvex, but the global optimal pair
is unique if C is convex. Uniqueness is a very unusual property in optimal design.
Such results may be extended to clamped plates [1, 21]. If M is big enough, then
one can prove that the set of admissible pairs is nonvoid. A general presentation of
shape optimization problems can be found in [19].

5 Conclusion

We have performed a short review of the control variational approach and some
of its applications. An important ingredient is the Fenchel duality theorem and the
analysis of the corresponding dual problems. The literature on duality methods in
differential equations is very rich and includes a large variety of arguments and
results. Obtaining the exact solution in certain non autonomous boundary value
problems, proving the uniqueness of the minimizer in some shape optimization
examples or developing new numerical discretization procedures via dense subsets
of points (in the considered domain) are useful properties that show the applicability
of such ideas in many directions of interest.

Acknowledgements This work was supported by CNCS Romania under Grant 211/2011.
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On the Structural Properties of Nonlinear Flows

Augusto Visintin

Abstract This work deals with the structural stability of quasilinear first-order
flows w.r.t. arbitrary perturbations not only of data but also of operators. This rests
upon a variational formulation based on works of Brezis, Ekeland, Nayroles and
Fitzpatrick, and on the use of evolutionary I"-convergence w.r.t. a nonlinear topol-
ogy of weak type. This approach is extended to flows of a class of nonmonotone
operators. A theory in progress is outlined, and is also used to prove the structural
compactness and stability of doubly-nonlinear parabolic flows of the form

a(Du) + 3y (u) 3 h,

o being a maximal monotone operator, and y a lower semicontinuous convex
function on a Hilbert space.

Keywords Doubly-nonlinear parabolic flow ¢ Evolutionary I'-convergence ¢
Fitzpatrick theory  Nonlinear weak convergence * Structural compactness and
stability
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Foreword Gianni Gilardi was one of my teachers at the University of Pavia. I
remember how accurate his lessons were, and the answers he gave to the many
questions I set to him when I was entering research. After leaving Pavia, I could no
longer profit of his suggestions; but I visited his books several times, and here I wish
to mention a couple of them.

First I would consider Analisi Tre (McGraw-Hill, Milano, 1994), the third vol-
ume of a “trilogy” that Gianni devoted to mathematical analysis, which was recently
followed by a volume on functional analysis. Analisi Tre is a remarkable account
of several issues of advanced analysis: Banach and Hilbert spaces, distributions,
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complex analysis, integral transforms and their use for the analysis of PDEs, and so
on; it also includes several examples and solved exercises. This book grew from the
notes of the course of Mathematical methods for engineering that Gianni held for
several years; I still preserve the hand-written mimeographed copy of the pre-TEX
era, that he had produced more than 30 years ago.

It is pity that Analisi Tre has not been translated into English, since some of
its results miss in the current textbooks. It may also be noticed that this book has
no bibliography; but that is understandable, since as far as I remember it was not
customary of the Author to visit the literature: most often he just did not need that,
and reproduced arguments by himself.

I will also mention a monograph, that Gianni wrote jointly with Franco Brezzi:
Functional Analysis, Functional Spaces, Partial Differential Equations. This was
published as an introductory part of the Finite Element Handbook (Chaps. 1, 2, and
3, pp- 1-121 of Part 1, Kardestuncer and Norrie eds., McGraw-Hill, New York,
1987). This is a rich account of basic notions and results on Sobolev spaces, that
are used to study boundary-value problems for linear PDEs. This text was rather
popular among us, young researchers at the Istituto di Analisi Numerica del C.N.R.,
directed by Enrico Magenes. We were used to refer to it as the Manuale delle
Giovani Marmotte (i.e., the Junior Woodchucks Guidebook).

1 Introduction

The purpose of this work is to illustrate some aspects of an ongoing research on the
structural compactness and stability of evolutionary PDEs.

Structural Compactness and Stability The term szability is usually referred to
robustness of a system as some data are perturbed. By structural stability of a
differential problem we shall mean robustness under perturbations in the data and in
the operator(s) that govern the problem. This has an obvious applicative motivation:
in reality not only data but also differential operators are accessible just with
some approximation; moreover perturbations often occur, e.g. in the coefficients of
quasilinear operators. Structural stability may thus be regarded as a basic requisite
for the applicative feasibility of mathematical models.

Let us illustrate these concepts in the set-up of abstract function spaces, for a
model problem of the form Au > &, A being a multi-valued operator acting between
Banach spaces, and 4 a datum. Given bounded families of data and of operators, we
shall formulate the issue of stability in terms of two properties:

(1) structural compactness: existence of convergent sequences of data {A,} and of
operators {A,} w.r.t. topologies that must be specified;

(i) structural stability: if A,u, > h, for any n, A, — A, h, — h and u, — u, then
u is a solution of the asymptotic problem: Au > h.

Here the selection of the relevant topologies is the crucial issue.
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For models that are formulated as a minimization principle, structural com-
pactness and stability can be studied via De Giorgi’s theory of I"-convergence.
Indirectly, this provides analogous structural properties of compactness and stability
for the associated Euler-Lagrange equation. In particular this applies to equations
that are governed by a cyclically maximal monotone operator; this typically occurs
in stationary models. Here we extend that approach to noncyclically maximal
monotone operators and to associated first-order flows.

First-Order Flows In 1976 the pioneering articles [10] of Brezis and Ekeland
and [36] of Nayroles provided a new formulation for first-order flows of cyclically
maximal monotone operators. In 1988 in the seminal paper [21] Fitzpatrick
characterized maximal monotone operators in terms of a nonstandard minimization
principle. Only recently it has been realized that an analogous approach in finite-
dimension had already been pointed out in 1982 by Krylov in [27]. Fitzpatrick’s
article prompted the generalization [45] of [10] and [36].

In the present work we deal with the extension of that theory to nonmonotone
flows of the form

Du+oa(u)sh in V’,a.e. in time(D, := 3/01); (1.1)

here V is a Hilbert space, and « : V — Z?(V’) is a nonmonotone operator. The
structural stability of the initial-value problem for (1.1) was studied in [47] and in
the parallel work [51] for a maximal monotone «.

After discussing the general theory, here we address doubly-nonlinear equations
of the form

a(Du) + dy(u) > h in V', a.e. in time, (1.2)

a being a (possibly noncyclically) maximal monotone operator, and y a lower
semicontinuous convex function(al). Incidentally, the reader will notice that this
equation misses a monotone structure, despite of the presence of two monotone
operators. This equation applies to rate-independent processes, whenever « is
positively homogeneous of degree zero (the sign function is an example).

This method can also be used to prove the structural stability of another class of
nonlinear flows that we do not address in this work, of the form

Dw+a(u) > h
in V/, a.e. in time, (1.3)
w € dp(u)

¢ being also a lower semicontinuous convex function(al); see [51]. It is known that
several phenomena of mathematical physics are modeled by PDEs of the form (1.1)-
(1.3). For instance, if the function ¢ is positively homogeneous of degree one,
then (1.3) represents a rate-independent flow; this is thus a model of hysteresis.
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Plan of Work In Sect.2 we outline some elements of the Fitzpatrick theory of
[21], define semi-monotone operators, and extend that theory to these operators. In
Sect. 4 we introduce the notion of semi-monotonicity, see e.g. [11] and [26]. On this
basis, we then generalize the Brezis-Ekeland-Nayroles principle (“BEN principle”
for short) to the first-order flow of those operators; see Theorems 8 and 9. For these
results arguments and details may be found in [51].

In Sect. 5 we define the notion of evolutionary I -convergence of weak type after
[50], and state a compactness theorem that is used ahead. In Sect.6 we define
what we call the nonlinear weak topology of V x V', and illustrate the structural
compactness and stability of first-order flows associated to representable operators,
see Theorems 11 and 12. The two latter sections mainly illustrate results of [50] and
[51]. In Sects. 7 we use Theorem 12 to show the structural compactness and stability
of the pseudo-monotone flow (1.2), see Theorem 13.

A Look at the Literature As we pointed out, Krylov’s paper [27] is of 1982,
and Fitzpatrick’s Theorem 1 appeared in 1988 in the proceedings [21]. Both
papers were not noticed for several years; some of the results of Fitzpatrick were
eventually rediscovered by Martinez-Legaz and Théra [30] and (independently)
by Burachik and Svaiter [13]. Since then a rapidly expanding literature has been
devoted to this theory, see e.g. [4-6, 14, 28, 29, 37, 38], besides many others. As
we already pointed out, Fitzpatrick’s formulation of maximal monotone operators
via a null-minimization principle casts a new light upon a formulation of first-
order subdifferential flows, that Brezis and Ekeland [10] and by Nayroles [36] had
proposed in 1976. Brezis and Ekeland [10] and Nayroles [36] assumed « to be
cyclically maximal monotone; on the basis of the Fitzpatrick theory the extension
to general maximal monotone operators was then rather obvious, see [45]. This was
then further extended to nonmonotone flows in [48].

Since the original formulation of [10] and [36] of 1976, the BEN principle was
applied in several works. For the study of doubly-nonlinear evolutionary PDEs, this
principle was used e.g. in [39] and [43]; see also Sect.8.10 of [40]. In [47] the
dependence of the solution of quasilinear maximal monotone equations on data
and operators was studied, by applying I"-convergence to the null-minimization
problem.

It is well-known that I"-convergence is due to De Giorgi; see [20] and e.g. the
monographs [2, 7, 8, 18]. The notion of evolutionary I"-convergence w.r.t. a weak
topology, that we review in Sect. 5, is weaker than that formulated in [41], see also
[19,31,32], where I"-convergence was required for almost every instant. Our choice
for a weaker notion is due to the scarcity of uniform estimates for the problems that
we deal with here.

Doubly nonlinear equations of the form (1.2) were studied in several papers, see
e.g. [1, 16, 17, 33, 34, 42]. Structural compactness and stability of equations (1.1)

I'This author learned of this paper only recently from Ulisse Stefanelli.
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((1.3), resp.) were addressed in [47] (and [51], resp.). See also [46], where structural
compactness was not addressed, and [49], where the Fitzpatrick theory was not used.

2 Fitzpatrick Theory

In this section we outline the tenets of the theory that was originated by the
pioneering paper [21] of Fitzpatrick.

The Fitzpatrick Theorem Let V be a real Banach space, and denote by (-, -) the
duality pairing between V' and V. Let o : V — Z?(V’) be a (possibly multi-valued)
measurable operator, that is, such that g7'(4) := {v e V:iglvyNA # @} is
measurable, for any open subset A of V' (see e.g. [3, 15, 25]). For instance, maximal
monotone operators have this property. We shall always assume that « is proper, i.e.,
the image set (V) is not reduced to the empty set.

In 1988 in [21] Fitzpatrick defined what is now called the Fitzpatrick function:

fa(u,v*) == (v*,v) +sup {(v* =%, 0—v) : D € V,0* € (D)}
=sup {(v*,0) — (0*.0—v) : D € V.i* €a(¥)}] V(v.,v*)eVxV.
(2.1)
This function is convex and lower semicontinuous, since it is the supremum of a
family of affine and continuous functions. Fitzpatrick proved the following result.>

Theorem 1 ([21]) A proper measurable operator a : V. — P2(V') is maximal
monotone if and only if, defining fy, as in (2.1),

fa(v,v*) > (v*,v) Y(v,v*) € VXV, (2.2)
fa(u,v*) = (v*,v) &  v* €a). (2.3)

This theorem extends a classical result of convex analysis. Let ¢ : V — R U
{400} be any proper function, and denote its convex conjugate function and its
subdifferential respectively by ¢* : V' — R U {+oo} and d¢ : V — Z2(V’). Then

) + *(v*) = (v*,v) Y(v,v*) e VxV/, (2.4)
o) + ¢*(v*) = (v*,v) & v* € dp(v). (2.5)

We shall refer to (2.2), (2.3) ((2.4), (2.5), resp.) as the Fitzpatrick system (the Fenchel
system, resp.), and to the mapping (v, v*) — @(v) + ¢*(v*) as the Fenchel function
of the operator dg. Most often the Fitzpatrick function and the Fenchel function do
not coincide.

2The proof was included in [21]. As those proceedings may not be easily available to the Reader,
the argument was displayed also in [47].
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Representative Functions The Fitzpatrick theorem suggests the following gen-
eralization of the notion of Fitzpatrick function. One says that a function f
(variationally) represents a proper measurable operator & : V — (V') if

f:VxV' — RU {+o00} is convex and lower semicontinuous,
fw,v*) > (v*,v) V(v,v*) e VxV, (2.6)
f,v*) =0 & v ea).

One accordingly says that f is a representative function, and that « is representable.
We shall denote by .% (V) the class of the functions that fulfill (2.6); and (2.6),.
In [21] it was proved that representable operators are monotone. They need not be
either cyclically monotone or maximal monotone; a counterexample is provided
ahead. However, by Theorem 1 if « is represented by its Fitzpatrick function then it
is maximal monotone.

Let us next assume that the Banach space V is reflexive. This assumption
simplifies a lot this theory, although for some of the assertions that follow it is not
needed. (A large community is engaged in the development of the Fitzpatrick theory,
and a part of that research deals with the extension of known results to nonreflexive
spaces.)

Besides the duality between V an V', we shall consider the duality between the
product space VxV’ and its dual V' xV, and the corresponding convex conjugation.
In this set-up, the convex conjugate of any function g : Vx V' — R U {+o00} is
defined by

g*(w*, w) := sup {(w*, v) + (v*, w) —g(v,v*) : (v,v*) € VxV'}

2.7
Y(w*,w) € V'xV. 2.7)

Let us denote by I, : Vx V' — R U {400} the indicator function of the graph
(denoted graph(e)) of any operator « : V — Z2(V'); i.e., for any (v, v*) € VxV/,

I,(v,v*) =0 ifv* € a(v), I,(v,v*) = +o0 ifv* € a(v).
Let us also denote by 7 the duality pairing:
7:VxV = R:(v,v*) = (v*,v), (2.8)

and by . the permutation operator Vx V' — V' xV : (v,v*) > (v*,v). The
definition (2.1) thus also reads f, = (7w + I,)* o .#, that is,

fu(,v*) = (r 4+ I)*(v*,v) Y(v,v*) € VxV'. (2.9)

Some Results Next we review some relevant properties of representative functions.

Theorem 2 ([13, 14,44]) Let V be a reflexive Banach space. A function g € % (V)
represents a maximal monotone operator a -V — P(V') if and only if g* €

FV).
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If this holds, then g* represents the inverse operator a=' : V' — 2(V).
Therefore g* o & (e F(V)) represents a.

The convex conjugate function of f,, denoted by (f,)*, thus also represents «,
whenever the operator @ is maximal monotone. By the next statement, these are
respectively the smallest and the largest representative function of «.

Theorem 3 ([13, 21, 29, 37]) Let V be a reflexive Banach space, a : V. — P (V')
be a maximal monotone operator, fy be its Fitzpatrick function, and g : VxV' —
R U {400} be a convex and lower semicontinuous function. Then

ge F(V), grepresentsa &
(2.10)
fu <8 < (fu)* pointwise in VxV'.

Theorem 4 ([44]) Let V be a reflexive Banach space. Any maximal monotone
operator o : V — P (V') can be represented by a function g € % (V) such that
* __ -1
gFr=go0I".
Any function g € % (V) that fulfills the latter condition is called a self-dual
representative. Next we display a simple example.

Proposition 1 If a function ¢ : V — R U {+00} is convex and lower semicontinu-
ous, then its Fenchel function @ : (v, v*) > @(v) + ¢@*(v*) is self-dual.

Proof For any (v, v*), (w,w*) € VXV,

P, v*) + P(w,w*) = @(v) + @™ (V") + (W) + @*(W*) = (W*,v) 4+ (v*, w),
@2.11)

and equality holds iff w* € d¢(v) and v* € dp(w). Thus @* = @ o £~ !; more
precisely,
D*(v*,v) = d(v,v") Y(v,v*) € VxV/,

(2.12)
(w,w*) € 0™ (v*,v) &  w* €dp), wedp*(). 0

For a generic maximal monotone operator to display a self-dual representative is
nontrivial. The next result provides such a representative.

Theorem 5 ([4]) Let o : V — (V') be a maximal monotone operator, fy be its
Fitzpatrick function, and set

Fo(u,v*, wow*) 1= fo (v + w, v* +w*) 4+ fo (v —w, v* —w*) + W}, + [Iw*[l},
Y(v,v*), (w,w*) € VxV/,
(2.13)

$o(v,v*) := Jinf {Fo(v, v, w,w*) : (w,w*) € VxV'} V(v,v*) e VxV'.
(2.14)

Then ¢q is a self-dual representative of a.



550 A. Visintin

Self-duality may be of much interest for variational problems. In this respect see
e.g. [22-24], where however no use is made of the Fitzpatrick theory.

Further results of the theory of variational representation of operators are briefly
reviewed e.g. in [39, 47, 51].

Examples (i) For any proper function ¢ : V. — R U {400}, the Fenchel function
f (0, v*) > @) + ¢*(v*) represents the cyclically monotone operator dg.
(As it is well-known, if ¢ is convex and lower-semicontinuous, then dg is also
maximal monotone.) Incidentally note that the Fenchel function coincides with the
Fitzpatrick function fy, only exceptionally.

(ii) Let A : V — V' be a linear, bounded and invertible monotone operator, and
define the convex and continuous mapping

fir : VXV > R:(v,v%) > b[(Av,v) + (v*, A7) Vb > 0. (2.15)

For b = 1/2, f}, represents the operator A; this is actually the Fenchel function of A.
For any b > 1/2, f, represents the monotone (but not maximal monotone) operator
a(0) = {0}, a(v) = @ for any v # 0. For 0 < b < 1/2, f; does not represents any
proper operator.

(ii1) Other examples of interest for the theory of PDEs were provided e.g. in [47];
they include for instance a representative function for quasilinear elliptic operators
of the form

H)(R2) — PH'(2)) :vi> —=V-B(Vv) (£ being a domain of RY),
(2.16)

for any maximal monotone mapping 8 : RY — Z(RY).
See also the representation of nonmonotone operators in the next section.

Minimization Principles Let a function g € % (V) represent a proper operator
a:V — 2V, and let us define the function

J(,v*) = f(v,v*) — (v*,v) Y(v,v*) e VxV'. (2.17)

Minimizing J w.r.t. both variables v, v*, the system (2.6) yields
Jw, o) =infJ & Jw,v)=0 <& v*eal). (2.18)

If instead we minimize J(v, v*) just w.r.t. v for a fixed v* € V’, then

J,v*) =0 (=infJ(,v*) & v*ea(v). (2.19)
In this case the implication “J(v, v*) = infJ(-,v*) = v* € a(v)” may fail, since
for some v* € V' a priori one might have infJ(-, v*) = +o0; this would mean
that v* ¢ «(V). However, « is surjective under suitable assumptions, e.g. maximal

monotonicity and coerciveness; in this respect see e.g. Sect.8.10 of [40], which
deals with a cyclically monotone operator «.
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3 Extension of the Fitzpatrick Theory to Nonmonotone
Operators

In this section we extend the notion of representative function to a class of
nonmonotone operators.

First we need some definitions. Let V be a linear space, and denote by (-, -) the
duality pairing between V and its dual V’. We shall say that a (possibly nonconvex)
function f algebraically represents a (possibly nonmonotone) operator & : V —
P V') if

f:VxV' — RU {+o0},
f,v*) > (v, v) Y(v,v*) e VxV/, 3.1
f,v*) =@ v) & v ea).

Henceforth we shall assume that V is a Banach space. Extending (3.1) to
the topological set-up, it is necessary to distinguish among topologies that are
intermediate between the strong and the weak topology of V x V'. Henceforth we
fix such a topology and denote it by o.

We shall say that f fopologically represents a w.r.t. o (or more briefly, o-
represents o) if

f fulfills (3.1) and is o -lower semicontinuous. 3.2)

(By an alternative nonequivalent definition, one might assume that f is sequen-
tially o-lower semicontinuous.) We shall display a nontrivial example in the next
section. We shall denote by &(V) (&5(V), resp.) the class of the functions that
fulfill (3.1) ((3.1) and (3.2), resp.). In particular we shall denote by &(V) (&,(V),
resp.) the class corresponding to the strong (weak, resp.) topology of VxV’. Thus

F(V) C E,(V) C E,(V) C EV) C EWV). 3.3)

Next we display some simple results, and refer to [51] for some of the arguments.

Proposition 2 Let f, g € & (V), and denote by oy, o the respective represented
operators. If f < g in Vx V' then graph(ag) C graph(ay).

Proposition 3 Let J be a nonempty index set, and let ; € &, (V) represent an
operator o : V. — P (V') with graph Aj, for any j € J. Then ¢ = sup;e; ¥j €
&5 (V) represents the operator o : V. — P (V') with graph A = (¢, Aj.

Ify; € Z(V) foranyj e J, then y € F(V).
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Proof By (3.1),, (3.1)3, and by the definition of y,
Y(v,v*) > (v*,v) Y(v,v*) e VxV/, 3.4)
Y, v*) = (v, v) & Vjeld, yiv,v*) = (vF,v). .

As the pointwise supremum of any family of lower semi-continuous functions
is lower semi-continuous, this yields the thesis for &, (V). If &;(V) is replaced by
Z(V), it suffices to recall that the pointwise supremum of any family of convex
functions is convex. |

Proposition 4 Ler y; € &,(V) represent an operator aj € V. — P (V') for any
Jj=1,...,N (for a finite N). Then y = minj=__n ¥; € & (V), and it represents
the operator o : V. — P (V') with graph A = ¢, A;.

Obviously no analogous property holds for .% (V), since the minimization does
not preserve convexity.

Proof As any y; is lower o-semi-continuous, the same holds for v, since for any
topology the pointwise minimum of any finite family of sequentially lower semi-
continuous functions has the same property. By (3.1),, (3.1)3, and by the definition
of ¥, for any (v,v*) € VxV/,

Y, v*) = (") & Fel: Y, v") = (vF,v).
This yields the thesis. O

Representation of the Sum of Operators Next we display two results for
equations of the form

a1 (v) +ax(v) > h inV’, (3.5)

a1, oy being two representable operators V — (V).

Theorem 6 ([S1]) Let V be a real reflexive Banach space, o; - V — P2 (V') for
i = 1,2, and assume that

eV :a(0) # 0 and ay(V) # 0, (3.6)
gi € &,(V) and g; represents o; (i = 1,2), 3.7

infive)evar {€1(v, V* —2%) + g2(v,2*)} = +oo  as ||Z*|lv = +o0.  (3.8)
Then: (i) The partial inf-convolution

(81®g2) (v, v") 1= Pgﬂ {g1(v.v* ="+ g2(v.2)} Y(v,v*) € VxV'  (3.9)
z

is an element of &,,(V), and represents the operator o) + o.
(ii) If also g1, g2 € F(V), then g1 D g2 € F (V).



On the Structural Properties of Nonlinear Flows 553

By setting o, = D; in (3.5) and integrating in time, one can extend the BEN
principle to nonmonotone flows; see Sect. 4.
This theorem can be applied e.g. to doubly nonlinear PDEs of the form

a(u) —V-y(Vu) > h in 7'(£2),

witha : R = Z(R), y : RY — Z(R") maximal monotone functions, and £2 an
open subset of RV,

4 Flow of Semi-Monotone Operators

In this section we introduce a class of nonmonotone operators, deal with their
representation (in the sense that we defined in the previous section), and extend
the Brezis-Ekeland-Nayroles (BEN) principle to the corresponding flow. We just
state some results and refer to [51] for the arguments.

Functional Set-Up Let us assume that we are given a triplet of real Hilbert spaces
V C H= H' C V' with continuous, dense and compact injections, 4.1)

whence

L*(0,T;V) C L*(0,T;H) = L*(0, T: H) C L*(0,T;V) ~ L*(0,T;V')
4.2)
with continuous and dense injections.

Let us also set
¥ :={v e L*0,T;V): Dw € L*(0,T; V')}. (4.3)

Equipped with the graph norm, this is a Hilbert space. Notice that ¥ C
C°([0,T]:H) by a standard identification. We shall also identify the spaces
L*(0,T; V)xL*(0,T; V') and L>(0, T; Vx V).

Semi-Monotone Operators If X is a Banach space, by X; (X,,, resp.) we shall
denote the topological vector space that is obtained by equipping X with the strong
(weak, resp.) topology. Let us assume that

b:V — (V') is maximal monotone,

By : V — V' is maximal monotone, Yv € V, “4.4)

Vy — (V) : v = By (u) is continuous, Yu € V,



554 A. Visintin

and define the operator
a(v) :=bw) + B, (v) YvevV. 4.5)

This operator is measurable, but obviously need not be monotone. Following
Browder [11], we shall call semi-monotone operators like «. This class is comprised
in that of (multi-valued) generalized pseudo-monotone operators of Browder and
Hess [12], which extends that of (single-valued) pseudo-monotone operators of
Brezis [9]. This class is also included in that addressed by Kenmochi in [26]. A
more general class is dealt with in [S51].

Let us next assume that

JA.B>0:VuveV,  [b)+B@lyv < Amax{|vly. lulv}+B, (4.6)
so that
le@)llv < Alvly +B  VveV. 4.7
These operators then canonically determine the global-in-time operators

B, 1 [2(0,T;V) — PL*0,T; V")) : is
. (4.8)
[By(W)](1) = Buy(u(®)) forae.t€]0,T[,Yu,v € L*(0,T; V),

a@:L*0,T;V) - P(L*0,T; V) : “o)
[@W)](5) = Buy(v(1))  forae. t €10, T[, Vv € L*0,T: V). '

Theorem 7 ([51]) Let (4.1), (4.4), (4.5) hold, and equip V x V' with a topology
o that is intermediate between the strong and the weak topology of VxV'. Let a
function g, € &5(V) represent the operator b + B, for any z € V, and be such that
the mapping

VxVxV —RU{+o0}: (z,v,v*) = g.(v,v*) is measurable. (4.10)
Let us set
e, v") = g, (v,v") Y, v*) e VxV, 4.11)

and denote by ¢ the lower semicontinuous regularized function of ¢ with respect
to o (i.e., the pointwise supremum of its o-lower-semicontinuous minorants). Then
¢ € 65(V), and it represents the operator a.

A Differential Example Next we display a differential semi-monotone operator in
a Sobolev space, and exhibit a representative function, here in the Banach set-up.
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Let £2 be a bounded Lipschitz domain of RY (N > 1), p € [2, +00], and set V :=
W,"(£2), whence V' := W' (£2). Let us assume that, setting p’ = p/(p — 1),

b:RY - 2(R") is maximal monotone,
B. : RY — R" is maximal monotone, Vz € R, (4.12)

Jaj,a; e RT :VzeR, Vv eRY  [B.(v)| <ai|v)™" + .

For any z € R, let b + B, be represented by a function g, € .# (RV).
As it is shown in [47], for any z € V the maximal monotone operator

YVe:V—>22V): v =V-[b+ B](Vv)
can then be represented by the following function ¢, € .7 (V):
@.(v,v*) = inf{/ ¢ (Vu, pye)dx: gyx € L7 (2)Y, =Veqye = v* in .@’(.Q)},
2
(4.13)

for any (v, v*) € VxV’. By Theorem 7, the function
Y. V') =@, (v.0") Y, v')eVxV (4.14)
then represents the semi-monotone operator
a:V—>22V):ve y,(v) ==V [b+ B,](Vv)

in any topology o that is intermediate between the strong and the weak topology of
VxV.

Cauchy Problem and Extended BEN Principle Let us fix a single-valued
operatora : V. — (V') as above, any u* € LZ(O, T;V’), any u® € H, and consider
the Cauchy problem

uevy,
D+ o(u) > u* inV’, a.e.in]0, 7|, (4.15)
u(0) = u°.

This problem can equivalently be formulated globally-in-time as follows:

uevy,
Du+a(u)su*  inL*0,T;V), (4.16)
u(0) = u°.
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Next we still assume that V is a Hilbert space. We deal with the representation
(in the sense of Sect.3) of the operator D; + @ in &,(L*(0,T;V)), with domain
Y = {v € ¥ : v(0) = u’}, and extend the Brezis-Ekeland-Nayroles principle of
[10, 36]; see also [45].

Theorem 8 (Extended BEN Principle) Assume that (4.1), (4.4), (4.5) and (4.6)
are fulfilled, and define & and ¢ as in (4.9) and (4.11). Fix any u® € H, and set

T
(v, v*) = /o [p(v,v* — D) — (v* — Dyv, v)]dt

r 1 1
= | [p,v* =Dw)— " v)di+ oI5 - 15 @17
A 2 2
Y (v, v*) € ¥oxL*(0,T; V'),

®(v,v*) = +o00  foranyother (v,v*) € L*(0,T; V)xL*(0,T; V').

Then & € &(L*(0,T:V)), and the Cauchy problem (4.16) is equivalent to the
following null-minimization problem:

we Vo,  Puu*)=0 (: inf @ (. u*)). (4.18)
llO

Proof @ € &(L*(0,T;V)) by part (ii) of Theorem 6, with oy = @, s = D; and the
space ¥ in place of V. As ¢ represents «,

e(v,v* —Dw, 1) — (v —=Dw,v) =0  Y(v,v*) € Yo x L20,T;V');

moreover, this function vanishes a.e. in |0, 7| if and only if v solves (4.15). This
entails that @(v, v*) > 0 for any (v, v*) € ¥ x L*(0,T; V'), and that the equation
@ (u,u*) = 0is equivalent to (4.15). |

Twice Time-Integrated Extended BEN Principle For reasons that we shall see
ahead, it is convenient to amend the above set-up by applying a further time
integration, as follows.

Let us still assume (4.1)—(4.3), and define the measure

n(A) = /(T— ndt VAe Z(0,7T) ie du@)=(T—1)dr. (4.19)
A
For any Hilbert space X, let us introduce the weighted space

T
Li(O, T;X):= {,u-measurable v:]0, T[> X :/ ||v(t)||)2( du(t) < +oo},
0
(4.20)
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and equip it with the graph norm. This is a Hilbert spaces, and

L}(0.T:V) C L;,(0.T:H) = L, (0.T:H) C L,(0.T: V) = L7, (0.T: V),

(4.21)
with continuous and dense injections. Let us set
Yy :=1{v €L, (0.T:V): D € L, (0,T; V))}, (4.22)
fix any u° € H, and define the affine subspace
Vo :={v € L,(0,T:V) : D € L}, (0, T; V'), v(0) = u°}. (4.23)

Notice that

/0 T(D,v, vy du(r) 2 / " / Dy v)di

/ dr / D) d / @l d— Ol voer,
(4.24)

so that D, is monotone on ¥, 0.
By a double time-integration, let us define the nonnegative functional

@ (v,v*) ::/OTdr/OT[go(v, v* — D) — (v* — Dy, v)]|dt

T T

(4.24) 1 T

2 Tow. v =) = " )] do + | [ 1o a— ] 11
Y(v,v*) € ¥, 0xL*0,T: V'),

(v, v*) := +o0 for any other (v, v*) € L*(0, T; V)xL*(0, T; V).
(4.25)

As ¥ N ¥, is dense in ¥, we get the next statement.

Theorem 9 (Time-Integrated Extended BEN Principle) Assume that (4.1), (4.4),
(4.5) hold, and that

Y — L2(0,T;V')s : z > B,(v) is continuous, Yv € L*(0, T: V). (4.26)

Let o be represented by a function ¢ € &,(L*(0,T:V)), and define @ and ® as
in (4.9) and (4.25).
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Then & € &y(Y,), and the Cauchy problem (4.16) is equivalent to the following
null-minimization problem:

ue V0.  But)=0 (: inf qS(-,u*)). 4.27)

0

Proof 1t suffices to notice that, as ¢ € &;(V), the Cauchy problem (4.15) is
equivalent to the null-minimization of the functional that is obtained by integrating
the nonnegative function ¢(v, v* — D,v) — (v* — D,v, v) any number of times in
10, TT. |

By comparing the functionals (4.17) and (4.25), in the latter the Reader will
notice the occurrence of the term ; f0T||v(t)||%1 dt, rather than ;||v(T)||%1. In Sect. 6
we shall see that the functional (4.25) is more prone than (4.17) to passage to the
limit by weak convergence. This is the main reason for introducing this further time
integration.

We just represented the problem (4.15) w.r.t. the strong topology. We shall be
concerned with the structural properties of compactness and stability of the initial-
value problem, in the sense that we illustrate in the next section; for that purpose we
shall represent the operator w.r.t. a weaker topology.

S Interlude: Evolutionary I' -Convergence of Weak Type

Here we extend De Giorgi’s notion of I"-convergence to operators that act on time-
dependent functions and range in a Banach space X; we then state a related result of
compactness, that will be used in the proof of Theorem 12 of the next section. We
refer to [50] for details and proofs.

Evolutionary I'-Convergence of Weak Type Let X be a real separable and
reflexive Banach space, p € [1, +o0o[, T > 0, and define the measure u as in (4.19).
Let us equip L}, (0, 7; X) with a topology t that is intermediate between the weak
and the strong topology.® For any operator

Y 100, T:X) — L (0.T) : w = W,

let us set

T
[V. El(w) = /0 vw(®E@du)  Ywe L (0.T:X), V€ € L(0.T).  (5.1)

3We assume this in consideration of the application of the next section. A reader interested just in
evolutionary I”-convergence might go through the present section assuming that u is the Lebesgue
measure and that 7 is the weak topology.



On the Structural Properties of Nonlinear Flows 559

Let {1/} be a sequence of operators Ly, (0, T; X) — L, (0, T) such that

V¥ bounded subset A of L, (0, T X),

(5.2)
{¥uw:we A ne N}isbounded in L}L(O, 7).
Ifalso ¥ : L}, (0, T; X) — L}, (0, T), we shall say that
¥, sequentially I" -converges to ¥
in the topology 7 of Lf, (0, T X) and (5.3)
in the weak topology of LL 0,7)
if and only if
[V, €] sequentially I" 7 -converges to [, £] in
5.4

L7(0,T;X), ¥ nonnegative § € L*(0, 7).

By the classical definition of sequential I"-convergence, this means that for any
§€LP(0.7)

Vw € L} (0, T;X), ¥ sequence {w,} in L], (0, T; X), 55

T

if w, - win Lf (0, T; X) then ligllnf [V, El(wn) = [, §](w),

Vw € LV (0, T; X), 3 sequence {w,} of Lf, (0, T; X) such that

W win 0. T:X) and lim [y £00) = [, €]0w) oo

This definition of evolutionary I'-convergence is quite different from that of
[41] as well as from that of [19, 31, 32]. By a simple transformation, the present
definition fits the rather general framework of I"-convergence, see Chap. 16 of [18];
that monograph however does not encompass Theorem 10 ahead.

We shall be concerned with superposition operators of the form

Y () = e(w(t)) Vw e L (0,T:X), forae. 1 €]0,T],
(5.7

@ : X — R being a lower semicontinuous function.
The next result provides the compactness of evolutionary I"-convergence, and
characterizes the I'-limit as a superposition operator.

Theorem 10 ([50]) Let X be a real separable and reflexive Banach space, p €
[1, 400 T > 0. Let {p,} be a sequence of lower semicontinuous functions X — Rt
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that is equi-coercive and equi-bounded, in the sense that

3C1,C5,C3 > 0:Vn,Vw € X, 58
Ciwlk < eu(w) < Collwlk + Cs. ‘

Moreover let ¢,(0) = 0 for any n. Let u be defined as in (4.19). Let us equip
L, (0, T; X) with a topology t that is intermediate between the weak and the strong
topology. Let us also assume that

for any sequence {Fy} of functionals L} (0, T; X) — Rt U {400},

if Sup{”W”LfL(O,T;X) we L‘;L(O, T:X), Fp(w) < C} < +o00, 5.9
neN
then {F,} has a sequentially I' T -convergent subsequence.

Then there exists a lower semicontinuous function ¢ : X — RY such that (0) =
0 and, defining the operators y, V¥, : Li 0,T;X) > Lb (0, T) for any n as in (5.7),
possibly extracting a subsequence,

Y, sequentially I' -converges to
in the topology t of L}, (0, T X) and (5.10)

in the weak topology of L}L 0,7).

6 I'-Compactness and I"-Stability of Null-Minimization

Here we illustrate the structural compactness and stability of minimization princi-
ples. We then state a result that rests on evolutionary I"-convergence w.r.t. what we
shall refer to as a nonlinear weak topology.

Structural Compactness and Stability Let us first illustrate a fairly general set-
up. Let X be a topological space and ¢ be a family of functionals X — R U {400},
equipped with a suitable notion of variational convergence. We shall use the
following terminology, which specifies what we anticipated in the Introduction.

(i) We shall say that the problem of minimizing these functionals is structurally
compact if the family ¥ is sequentially compact, and the corresponding minimizers
range in a sequentially relatively compact subset of X. (We restrict ourselves to
sequential concepts for the sake of simplicity.)

(i) We shall say that this problem is structurally stable if

U, > u inX
b, —>P® in¥ = @(u) =inf®. 6.1)
®,(u,) —infd, — 0
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(The convergence ¥,(u,) — inf¥, — 0 obviously extends the minimization
condition ¥, (u,,) = inf ¥, for any n.) Part (i) is clearly instrumental to (ii). These
definitions are trivially extended to null-minimization problems.

The selection of the notion of convergence of the family of functionals ¥ is
crucial, and may not be an obvious choice. Structural compactness and stability are
in competition: sequential compactness requires a sufficiently weak convergence,
whereas stability requires this convergence to be strong enough. The need of
compactness suggests one to use a weak-type topology for X. We shall see
that I"-convergence w.r.t. a suitable weak-type topology is especially appropriate,
more than the Mosco-convergence (namely, the simultaneous weak and strong I-
convergence to a same function, see e.g. [2, 35]).

A Nonlinear Topology of Weak Type Let us still use the notation (2.8). We shall
name nonlinear weak topology of VxV’, and denote by 7, the coarsest among the
topologies of this space that are finer than the product of the weak topology of V
by the weak topology of V', and for which the mapping 7 is continuous. For any
sequence {(v,, v¥)} in VxV’, thus*

(Vp,0)) = (v,0*) InVxV &
i (6.2)
v, =~v inV, v¥—=v* inV, (v v,)—> (v

ne

and similarly for nets. This construction is extended to the space Li 0,T;VxV)
in an obvious way: in this case the duality product reads LIZL 0, T;VxV') - R :

(v,v*) > fOT(v*, v) du (). Accordingly we set

(W, vy) 2 (v,0%) inLi(O,T;VxV’) &

N : 2 . * k- 2 v/
Uy, v in LM(O, T;V), v, v* in LM(O, T;V') and 6.3)

T T
/ (v v} (1) — / (v, v) du (o).
0 0

and similarly for nets.

I' t -Compactness and I’ t-Stability of &,(V) As the weak topology and the
nonlinear weak-type topology 7 are not metrizable, in either case one must
distinguish between topological and sequential I"-convergence, see e.g. [2, 18]. If
not otherwise specified, henceforth reference to the topological notion should be
understood.

4We denote the strong, weak, and weak star convergence respectively by —, —, %
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It is known that bounded subsets of a separable and reflexive space equipped with
the weak topology are metrizable. The same holds for the nonlinear weak topology
7 of VxV’, as it was proved in Sect.4 of [47]. This property is at the basis of the
next statement, where we define &% (V) as in Sect. 2 (here with 0 = 7).

Theorem 11 ([47] I'-Compactness, I -Closedness, I"-Stability) Ler V be a sep-
arable real Banach space, and {y,} be an equi-coercive sequence in & (V), in the
sense that

sup {[[vlly +[[v*[lv : (v, v*) € VXV, y,(v,0*) < C} < +00 VCeR. (64)
neN

Then: (i) There exists y : VxV' — R U {+00} such that, possibly extracting a
subsequence, y, I" w-converges to y both topologically and sequentially.

(ii) This entails that y € &z (V) (y € F(V) if y, € F (V) for any n).

(iii) If o, («, resp.) is the operator that is represented by y, (y, resp.) for any
n, then the superior limit of graph(w,) in the sense of Kuratowski is included in
graph(w), i.e.,

V sequence {(vy, vy) € graph(ew,)},  (va, v,) = (v,0%) = v* € a(v).
(6.5)

(iv) The assertions above hold also if the space V and y, € &z(V) are
respectively replaced by Li (0, T;V)and y, € &; (Li 0,T;V)).

Remark I In general the sequence {graph(c,)} does not converge in the sense of
Kuratowski. For instance, let us define f;, as in (2.15), for any b > 1/2. If b, =
1/2 4 1/n, then f;,, I" w-converges to fi >, but the represented operators o, do not
converge in the sense of Kuratowski to the operator « that is represented by fi/>.
Actually, in this case graph(a,,) = {(0,0)}, so that the inferior limit of graph(e,) in
the sense of Kuratowski does not include graph(o). a

Superposition Operators Let {¢,} be a sequence of representative functions of
&%(V), and define the superposition (i.e., Nemytskii) operators

Yo 1L (0.T:VxV') - LY0.T) : w > @,(w)  Vn. (6.6)
The following question arises:

if Y, I' T-converges to some operator V¥ in the sense of (5.10),
(6.7)
is then ¥ necessarily a superposition operator, too?

This would exclude the onset of long memory in the limit. The next statement, which
is essentially a particular case of Theorem 10, provides a positive answer.
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Theorem 12 Let V be a real separable Hilbert space, and |1 be the measure on
10, T[ such that du(t) = (T —t) dt. Let {@,} be a sequence of lower semicontinuous
functions VxV' — RY such that

@n € E5(V) Vn, (6.8)
E|C1, Cz, C3 >0: Vl’l, VYw e VXV/,
, , (6.9)
Cilwllysyr < @n(w) < Co|wllysyr + Cs,
©.(0) =0 Vn, (6.10)

and define the operators Vr, : Li 0, T;VxV) - L}L 0,7) by
Ynw(®) = @u(W(®)  Ywe L (0.T:VxV'), forae.t€10,T[.Vn.  (6.11)
Then there exists a lower semicontinuous function ¢ : VxV' — RT such that
pecz(V) (¢ e F(V)ifon € F(V) foranyn), (6.12)

and such that, defining the corresponding operator  : Li 0,T;VxV') — L}L 0,7)
as in (6.11), possibly extracting a subsequence,

Y, sequentiallyl” -converges to
in the topology 7 ofLi (0, T; VxV') and (6.13)
in the weak topology of L}L 0,7).

Proof Let us apply Theorem 10 with X = VxV’, p = 2 and the topology t = 7;

the hypothesis (5.9) is indeed fulfilled for this topology, because of Theorem 4.4 of
[47]. It then suffices to show that (6.8) entails (6.12). To that aim let us set

Ju(t,v,v") = @, v, v*) — (v*,v)

Y(v,v*) € VxV/, forae.t, Vn.
J(t,v,v%) = @(t,v,v*) — (v¥,v)

(6.14)
By (6.8),

/Jn(t, v, 0 )du) =0 VY(v,v*) e VxV VA € Z(0,7), (6.15)
A

and by (6.13) this inequality is preserved in the limit. Therefore J(z, v, v*) > 0 a.e.
in ]0, T[. As ¢(t, -) is w-lower semicontinuous for a.e. t, (6.12) follows. |
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7 Structural Stability of a Class of Doubly-Nonlinear Flows

The structural compactness and stability of flows of the form (1.1) was addressed in
[47] and [51]. In this section we deal with the structural compactness and stability
of doubly-nonlinear equations of the form

a(Du) + dy(u) > h, (7.1)

for a maximal monotone operator o and a lower semicontinuous convex function y.

Let the Hilbert spaces V, H be as in (4.1), and let four sequences {a,}, {y,}, {u%}
and {A,} be given such that

Vn, a, : H— £ (H) is maximal monotone, (7.2)

3C,C, > 0: Vn, ¥ (v,v*) € graph(e,),  (v*,0) > Ci|v||3, — G, (7.3)

3C3,Cs > 0: Vi, V(v,v*) € graph(ew),  [[v* |l < Gslvllw + Cay (7.4)

a,(0)>0 Vn, (7.5)

Vn, y, : V — Ris convex and lower semicontinuous, (7.6)
3C1,....,C4>0:Vn,Yv eV, Cl||v||%, —Cy < yu(v) < C3||v||%, +Cy, (1.7
ug —u’ inV, (7.8)

h, — h inL*(0,T;H). (7.9)

For any n, we formulate the following initial-value problem

u, € H'(0, T; H) N L®(0,T; V), z,€L>®0,T;H),
a,(Dyuy) + 2,2 h, inH, ae.in]0,T],
. . (7.10)
Zn € 0Yn(u,) inH, ae.in]0,T],
u,(0) = ug.

This abstract formulation encompasses several doubly-nonlinear parabolic
PDEs. For instance, let £2 be a bounded Lipschitz domain of RY (N > 1),
H = [*(2) and V = H}(2). Let @ : RY — Z(R") be maximal monotone,
let 7 : RY — R U {400} be a lower semicontinuous convex function, and define

Y Hé([?) — R U {+o0}, y(v) = / y(Vv)dx Vv e Hé([?).
2

The inclusion (7.1) is then equivalent to the following quasilinear PDE:

a(Du) —V-0y(Vu) > h in 2x1]0, T, (7.11)
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which is natural to formulate in the sense of distributions. Existence of a solution
for problems like this has been studied in several works, see e.g. [1, 16, 17, 42]. In
particular we have the following result.

Lemma 1 Under the hypotheses (4.1), (7.2)~(7.9), for any n the initial-value
problem (7.10) has at least one solution (u,,z,) € [H'(0,T;H) N L*®(0,T; V)] x
L*(0,T; H). Moreover, the sequence {(uy, z,)} is bounded in this space.

Theorem 13 ahead provides structural compactness and structural stability of this
PDE.

Null-Minimization Next we reformulate the problem (7.10) in terms of null-
minimization. Let us first notice that

T ot T ot T
/0 dr/o (Dyv, z)g dt =/0 dr/o Dy, (v(7))dt =/O Vu(v(7)) dt — Ty, (v(0))

Vv e H'(0,T; H) N L®(0,T;V),Yw € #, with ¥z € 3y,(v) a.e.in 0, TT.
(7.12)

For any n, let us represent the operator «, for instance by ¢, = (w + I,,)** (€
% (H)), define the measure p as in (4.19) and the nonnegative twice-time-integrated
functional

T T
D, (u, z, h) ::/0 dr/o [Va(w) + v, (2) — (z.u)] dt

T T +
+ (/0 dr/o [@n(Dit.h — z) — (Dyu, h — 2)u | dt) )

(7.13)

Notice that

T
&, (u,z, h) 0L / [Vn(“) + ¥ (@) = (2, “)] dp()
0
T r *
+ ( /0 [@n(Dyt, h — 2) — (Dyu, h)y | dju(t) + /0 Ya(u(r))dr =T Vn(uﬁ))
(7.14)
forany u € H'(0,T: H) N L%(0,T; V) with u(0) = uj), any z € L;,(0,T: H), and

any h € Li(O, T;V'); ®,(u,z, h) := +oo for any other (u,z,h) € [H'(0,T:H) N
L®0,T; V)| x# xV'.

Proposition 5 For any n, the pair (uy, z,,) solves the initial-value problem (7.10) if
and only if

u, € H'(0, T; H) NL®(0,T;V), =z, €L>®(0,T;H),

qan(umzn, hy) =0 (: inf qan('a',hn))y (7.15)
[H(0,T;H)NLS® (0,T;V)]XL>® (0,T;H)

u, (0) = ug.
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Moreover, (7.15), and (7.15)3 are equivalent to

T
/O [yn(un) + )’: (zn) — {zns Mn)] du(t) <0,

T T
AWWMMM%J%M&M&W@+AVwmﬂv4ﬂﬁfﬁ
(7.16)

Proof By the Fenchel system (2.4) and (2.5), the first integrand of (7.14) is nonneg-
ative. The null-minimization principle (7.15) is thus equivalent to the system (7.16).
Incidentally, the first inequality of (7.16) may be replaced by the corresponding

equation fOT. .. du(t) = 0; for the second inequality the analogous equivalence is
not obvious.
The first inequality of (7.16) is equivalent to (7.10)3. This entails that

T T
/@m%h@®=/ﬂMmﬁ—WWﬁ
0 0

(7.10)4 then follows. The second inequality of (7.16) is then equivalent to

T
/ [ﬁon(Dt“m hn - Zn) - (Dt“na hn - Zn)H] d,u(t) f Oa
0

which is tantamount to (7.10),. O
Next we prove that this problem is structurally compact and stable.

Theorem 13 Let (4.1), (7.2)—(7.9) be fulfilled. For any n, let (u,, z,) be a solution
of problem (7.10), and set ¢, = (7w + 1,,)** (¢ .F (H)). Then:

(i) There exist u € H'(0,T;H) N L>®(0,T;V) and z € L>(0,T;H) such that,
possibly extracting a subsequence,

U, = u in H'(0, T; H) N L®(0,T; V), (7.17)

AR in L*(0,T; H). (7.18)

(ii) There exists a function ¢ € % (H) such that, setting

Ir//n,(vl,vz)(l‘) = (pn(vl(t)v UZ(t))’ Ir//(vl,vz)(t) = QO(Ul(l), v2(t))a

(7.19)
fora.e.t €10, T[,Y (v, v2) € LIZL(O, T:HxH),Vn,
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then Y, ¢ Li(O, T;:HxH) — LL(O, T) and, possibly extracting a
subsequence,

Y, sequentially I"-converges to
in the topology 7w ofLi (0, T; HxH) and (7.20)
in the weak topology ofLL (0,7T) (cf. (5.3)).

(iii) There exists a convex and lower semicontinuous function y : V — R that
fulfills lower and upper estimates like (7.7), and such that, setting

T T
7w = [ @y Vi 700 = [ yoend vwe 2O.Tv),
0 0
(7.21)
possibly extracting a subsequence,
P strongly T -converges toy in L*(0, T; V), and
(7.22)

V¥ sequentially weakly I' -converges to * in L*(0,T; V).

(iv) Denoting by a : H — Z2(H) the operator that is represented by ¢, the pair
(u, ) solves the corresponding initial-value problem
ueHY(0,T;H) NL>®(0,T;V), zeL®(0,T;H),
a(Du)+z>h inH, ae in]0,T],
, (7.23)
z€dy(u) inV', ae in]0,T],
u(0) = u°.
Proof (i) Because of (7.3) and (7.4), we can apply Theorem 12. As the functions ¢,s
do not depend explicitly on ¢, there exists a function ¢ € .% (H) such that, defining
Y as in (7.19) and possibly extracting a subsequence, (7.20) is fulfilled.
By (7.6) and (7.7), there exists a convex and lower semicontinuous function y :
V — R such that
vy strongly in L?(0, T; H), (7.24)
Cilvll —C < y(v) < G|l + Ca Vv eH. (7.25)

After e.g. [2, pp.282-283], this entails that

v L y* weakly in L*(0, T; H). (7.26)
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(i) By Lemma 1, (7.17) and (7.18) hold up to extracting subsequences. This
yields

Uy — U in L2(0, T: H). (7.27)

By (7.24) and (7.26), passing to the inferior limit in (7.16); we thus get

T

/OT [y +y* ()] dr < /O (z,u) dt, (7.28)
which is equivalent to
z€dy(w) inH, ae.in]0,T]. (7.29)
(iii) Notice that

(7.10)3

T T
/ (Duttns ) dia(t) "2 / Doyalien) (T — 1) dt
0 0

T T T
7.29
— [ mwar=ra) > [ ywar-176) 2 [ Gandut,
0 0 0
(7.30)
By (7.9) then
(Ditty, by = 2) = (Dyu, h— 2) in L}, (0, T; HxH). (7.31)
(iv) (7.20) yields
T T
G,(v,w) := / on(v,w)dp(t) = / e(v, w)du(t) =: G(v,w)
0 0 (7.32)
sequentially in LIZL (0,T; HxH).
Therefore
(7.31),(7.32)
GMDu,h—z) < Nliminf G,(Duy, hy, — z,)
n—>o00
(7.33)

(1.12).37.16), r asny 7
< liminf (D, by — 7)) da(t) = (D, h —z) du(t).
0 0

n—>o0o

Thus u fulfills the time-integrated BEN principle, cf. Theorem 9; the inclu-
sion (7.23), is thus established. O

Remarks 2 (i) If instead of requiring an initial condition one prescribes u to be
T-periodic in time, then fOT(Z, Duu)dt = 0 (as z € dy(u)). In this case it is not
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needed to introduce the weight function (), and the above argument can be much
simplified.

(i) Doubly-nonlinear equations of the form (1.3) can also be formulated as null-
minimization problems. Their structural compactness and stability can be proved
via the techniques of this section, see [51]. O
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