
Modeling Malware-driven Honeypots

Gerardo Fernandez(B), Ana Nieto, and Javier Lopez

Network, Information and Computer Security (NICS) Lab,
Department of Computer Science, University of Malaga, Malaga, Spain

{gerardo,nieto,jlm}@lcc.uma.es
http://www.nics.uma.es

Abstract. In this paper we propose the Hogney architecture for the
deployment of malware-driven honeypots. This new concept refers to hon-
eypots that have been dynamically configured according to the environ-
ment expected by malware. The adaptation mechanism designed here is
built on services that offer up-to-date and relevant intelligence informa-
tion on current threats. Thus, the Hogney architecture takes advantage
of recent Indicators Of Compromise (IOC) and information about sus-
picious activity currently being studied by analysts. The information
gathered from these services is then used to adapt honeypots to fulfill
malware requirements, inviting them to unleash their full strength.

Keywords: Honeypot · Malware · Adaptive · Dynamic · Intelligence ·
IOC

1 Introduction

According to the report issued by Symantec last year, there was an increase of
36% in the collection of unique malware samples compared to the previous year
[1]. In 2016, ransomware grew considerably, affecting almost half of businesses
worldwide [2]. Infections via e-mail, phishing and botnet nodes remain the most
commonly used methods to compromise computers in the business environment.
As a consequence, one of the biggest concerns today is how to respond effectively
to malware dissemination campaigns.

Honeypot systems are designed to capture attacks by simulating real ser-
vices and/or applications. They employ deception techniques that try to sat-
isfy the attacker’s demands, providing him/her with valid responses to service
requests and apparently accepting modifications they want to make on the sys-
tem. There are two main scenarios commonly used for deploying honeypots that
differ depending on the objective pursued:

– Replicate live services of the production environment : showing a footprint
similar to that of the services offered in the production network.

– Research environments: showing a configuration of honeypots that enables
attacks to be captured, to later analyze new techniques used.

c© Springer International Publishing AG 2017
J. Lopez et al. (Eds.): TrustBus 2017, LNCS 10442, pp. 130–144, 2017.
DOI: 10.1007/978-3-319-64483-7 9

Modeling Malware-driven Honeypots 131

This paper focuses on the second scenario, specifically on the design of a
capture system that can respond to attacks performed automatically. The main
issue when designing this type of solution is the lack of information prior to the
attack. Currently, there are principally two approaches to the problem; studying
only specific scenarios (web servers, SSH/Telnet protocols, etc.), or implementing
specialized trap systems for a reduced set of malware families (eg. Mirai) [3].
However, new malware attacking these honeypots will not necessarily activate
all stages of the attack, due to an unfulfilled requirement.

The main contribution of this paper is the design of the Hogney architec-
ture to capture evidence and acquire knowledge about new malware activities
by using malware intelligence services. These services are designed to distribute
knowledge about compromised IP addresses (for filtering systems), or serve as
a platform for the exchange of information about characteristics and operation
of malware. One of Hogney’s goals is to integrate this type of service into the
dynamic adaptation process of honeypots, designed according to the require-
ments of the malware.

This article is structured as follows. Section 2 details related work. A brief
introduction to malware intelligence services is described in Sect. 3. Section 4
describes the components of the proposed architecture, whose interaction is ana-
lyzed in Sect. 5 using a specific attack example. Section 6 discusses the feasibility
of implementing and deploying the proposed solution. Finally, the conclusions
and future work are presented.

2 Related Work

There have been previous works for adapting services offered in honeypots to
attackers’ requests [4]. Honeytrap implements a connection interception service
that dynamically selects which services to offer as stated by a pre-set configura-
tion file. Honeyweb is able to emulate Apache, Microsoft IIS and even Netscape
servers. The decision of which one to serve is taken after analyzing the URL
requested and then the HTTP headers are configured according to the needs of
the attacker.

Moreover, there are honeypots for the TELNET protocol that can simu-
late that they are running under up to 8 processor architectures [5]. The deci-
sion of which architecture to use depends on the type of command sent by the
attacker. Similar work has been done with SSH [6,7] whose adaptability mech-
anism focuses on the interaction with the attacker through an established SSH
session. SIPHON [8] focuses on the construction of honeypots using physical
devices interconnected through wormholes that redirect attacks towards a set of
trap devices.

With a broader scope of application, the work in [9] shows a dynamic man-
agement system of high and low interaction honeypots, deployed in a virtualized
way according to the honeybrid decision engine. Decision making in this case is
focused on detecting interesting traffic using pre-established rules triggered by
intrusion detection engines such as Snort.

132 G. Fernandez et al.

However, these approaches do not take into account specific aspects of mal-
ware behavior. In some cases it is because the scope is not intended for automatic
propagation malware, but rather for manual attacks. In other cases the area of
study is focused on specific replication of devices, protocols or services based on
prior knowledge of attack vectors.

The Hogney architecture is intended to highlight the benefits of incorporat-
ing existing live information about current malware campaigns, recent indica-
tors of compromise (IOCs), or/and intelligence information available through
projects such as Malware Information Sharing Platform (MISP) [10] or Virus
Total Intelligence (VTI) [11], in order to build an environment as close as pos-
sible to malware needs, in such a way that its whole load is unleashed and can
be analyzed.

3 Malware Intelligence

We use the term malware intelligence [12] to refer to malware behavior and threat
information. Sometimes the terms threat intelligence and cyber threat intelligence
are also used when there is a need to describe how malware spreads, which nodes
are been used and who is behind that code. Nevertheless, we think the term
malware intelligence better represents the kind of information we need for the
architecture described in Sect. 4.

Depending on the information requested, different types of malware intelli-
gence services can be used. We classify them in three levels (L1–L3, Table 1):

L1. Services that offer lists of compromised IP addresses belonging to botnets
or that are part of any current malware deployment campaign.

L2. Services that allow information about malware files or malicious URLs to be
obtained, discovering the malware family, architecture and target operating
system, and in many cases information related to the implementation: linked
libraries, anti-analysis or anti-virus techniques, processes to which it injects
code, etc.

L3. Malware information sharing services. These services will provide the most
up-to-date information regarding the dissemination activities of malware.
They allow access to published IOCs and to information about incidents
currently under investigation, so none of the information collected has been
published.

Regarding L1 services, there is a wide range of projects that list IP addresses,
URLs or domains used by malware. For instance, a search for the domain
wrcwdxjh.org produces an output similar to the following:

wrcwdxjh.org Intel::DOMAIN
from malwaredomains.com,locky
via intel.criticalstack.com F

Modeling Malware-driven Honeypots 133

This reveals that the domain is related to Locky ransomware.
L2 services provide detailed information about files and URLs linked to mal-

ware. By submitting a file to these services we get an overview of what kind of
malicious activities it performs, what processes are launched, what services are
used and what traces it leaves behind.

Table 1. Common information obtained from malware intelligence services

Level Domain Information provided

L1 IP/Domains/URL ip-src, ip-dst, port, url, malware name

L2 File processor, architecture, mail, PE/ELF/MACH-O
executables, document specific, traffic generated
by sample, ...

L3 Threat intelligence private/public info about current threats, IOCs,
correlation of incidents, ...

A common query is to search the hash of a suspicious file in order to obtain
a report that contains, between other things, information about the architecture
and operating system needed to run the file, communications with a domain
or IP, files read or modified, libraries and methods used, file format and anti-
analysis techniques implemented. If the search request does not provide result,
the file is sent for a complete analysis that will generate the information needed.

L3 services are useful when there has been no information collected by L1
and L2 services or this information is inconclusive. L3 services provide access
to intelligence information, shared by incident response teams or malware ana-
lysts, among different organizations. Sometimes this type of service gives access
to information about active campaigns of malware not yet published, because
they are currently being studied by analysts and are therefore only labelled as
suspicious activities.

For instance, searching the hash value 64973870ed358afec07b0ebb1b70dd40 of
a file produces a response in which that hash is related to a current propagation
campaign of Locky ransomware. The code below shows part of the response
obtained when searching that hash. In addition to the information related to that
file, several IPs belonging to Locky command and control nodes are also present.

<Attribute>

<id>3367</id><org_id>2</org_id>

<info>Malspam (2016-03-16)</info>

<value>http://188.127.231.116/main.php</value>

</Attribute>

<Attribute>

<id>366617</id><type>md5</type>

<category>Payload delivery</category>

<to_ids>1</to_ids>

<uuid>56e6c1a6-3b5c-457e-9443-473402de0b81</uuid>

134 G. Fernandez et al.

<event_id>3354</event_id>

<distribution>5</distribution>

<timestamp>1457963430</timestamp>

<comment>- Xchecked via VT</comment>

<sharing_group_id>0</sharing_group_id>

<deleted>0</deleted>

<value>64973870ed358afec07b0ebb1b70dd40</value>

<ShadowAttribute/>

<RelatedAttribute>

<Attribute><id>3355</id><org_id>2</org_id>

<info>Malspam (2016-03-14)</info>

<value>64973870ed358afec07b0ebb1b70dd40</value>

</Attribute>

</RelatedAttribute>

</Attribute>

4 The Hogney Architecture

The purpose of the Hogney platform is to create trap environments to capture
activity performed by malware, adapting them progressively as new evidence
is generated to determine which action will be triggered next. Therefore, it is
necessary to design an architecture that allows analysis according to the three
stages of malware: (1) exploration, (2) infection and (3) execution of the payload.

During the exploration phase the attacker tries to discover which services
are running, checking them for vulnerabilities. An attacker succeeds if he finds a
vulnerable service for which he has an exploitation mechanism. Hogney tries to
deduce the type of service that the attacker is looking for, offering a honeypot
that meets his needs.

In the case the exploration is successful, the attacker moves on to the second
stage, infection, where the infection code is launched against a vulnerable service
for a wide range of reasons. At this point it is important to analyze the infection
vector to discern what kind of action the attacker wishes to unleash on the
honeypot: inject code, upload a file, leave code, manipulate files, send an email,
login to the system, etc. As far as possible it should be made clear to the attacker
that such action has been successfully carried out.

Thus, we reach the third stage: execution of the payload. This is where,
depending on the type of activity, the execution of the code is simulated, the
downloaded file is executed in a controlled environment, or the e-mail is sent.
However it is important to note that all the modifications executed in the vic-
tim’s environment have to be logged.

These three phases are managed by the control components shown in Fig. 1:
the interception module (IM), dynamic configuration module (DCM) and mon-
itoring of the generated evidence (EM). These three modules are fed with infor-
mation that allows the next step that malicious code intends to carry out to be
predicted.

Modeling Malware-driven Honeypots 135

A key element of the Hogney architecture is the use of malware intelligence
services. There are a multitude of services that can be used to obtain information
about malware activity, either through searching IP addresses belonging to mal-
ware campaigns, querying known infection vectors, signatures or search patterns,
or by the explicit execution of malware samples and observation of the actions
and changes made. Hogney orchestrates this information, adapting honeypots to
the three aforementioned stages. To this end, there are two different trap envi-
ronments: (i) honeypots specializing in certain protocols and/or services, and (ii)
highly interactive environments in which to execute files generated by malware.

The relationship between the components is detailed in the following
subsections.

Dynamic

(DCM)

Evidence
Container

(EC)

Honeypots

Conf. templates

Interception Module
(IM)

Evidence Monitoring
(EM)

Malware
Intelligence

Services

Fig. 1. Architecture diagram

4.1 Interception of Connections

A typical honeypot is configured to listen to a series of predefined ports. When
a connection is established with one of them, it responds as described in its
configuration. Some low-interaction honeypots only receive requests and store
them (e.g. honeyd) while medium interaction honeypots (Inetsim [13]) are able
to operate at the service level, responding to sender requests in accordance with
the behaviour configured by the operator.

The component for the interception of connections (IM) will (i) listen to all
ports studied, (ii) receive and accept connections and (iii) send service requests
to the DCM component for the configuration of honeypots (Fig. 1). Such requests
should include all the information that may have been collected at the time of
establishing the connection (IP, destination/source ports, protocol headers, etc.)
so that the DCM can more accurately estimate the honeypot with the highest
probability of success for this connection.

136 G. Fernandez et al.

4.2 Configuring Trap Services

This service is called the Dynamic Configuration Module (DCM) and is able to
dynamically discern which honeypot is the most suitable for the type of malware
involved. To achieve this objetive it is be necessary to have a repository of pre-
configured honeypots, set up in such a way that it is easy to switch from one to
another depending on the malware’s requirements, or to modify its configuration.

For instance, the SMTP protocol is frequently used by malware to send e-
mails with attachments containing some kind of malicious code. If a request is
received at port 25 it will be redirected to a honeypot capable of handling the
reception of the e-mail. However a request to the HTTP/HTTPS port can have
very different objectives: it could be an attack on the Apache web server (Win-
dows, Linux, ...), on IIS, etc. It could additionally be an attack on a particular
version of WordPress, Joomla, etc. This diversity complicates the provisioning
of a honeypot that will successfully fit the attack.

Get connection
information

(md5, sha1,

Interception
Module

Evidence
Monitoring

Evaluation
Deploy honeypot

Honeypot

Custom

Run in
Execution

Environment
Evaluation

Environment
selected

Malware
Intelligence

Services

Fig. 2. Two different execution flows of the DCM module

Consequently, this component must process the connection requests in order
to choose a honeypot, to initiate or adapt, for the malware in question. This
decision is based on the data gathered about the characteristics of the connection:

– Source IP: check whether this IP address belongs to a malware campaign
currently in progress. In this case, information must be retrieved about the
malware family and what services and applications it affects.

– Destination IP: if a file has been executed and it is trying to establish an
external connection, firewall rules must be adapted to allow this traffic. At
the same time, all traffic generated must be recorded for further analysis.

– Protocol headers: first packets of many service level protocols contain infor-
mation about the type of service expected. This must be monitored in order
to decide which honeypot, offering that service, could be set up and run.

Modeling Malware-driven Honeypots 137

– Service information: destination IP addresses, file and folders, running
processes, DNS entries, etc. This information facilitates the configuration of
suitable honeypots.

– Related files: downloaded files contain useful information about the target
operating system, required libraries, resources needed, etc., which can later
be used to select a suitable execution environment.

To illustrate, Fig. 2 shows a graph of the execution flow of this component in
two specific cases: (i) a service request is received from the interception module,
and (ii) the request is received from the evidence monitoring component upon
detection of a file created in the evidence container.

In the first case, the information about the received connection (source/des-
tination IP address, protocol, service data, destination files/folders, etc.) must
be analyzed. This information will then be used to try to find out which mal-
ware is behind that connection. Hence, queries to external intelligence services
are launched to look for any evidence of malware based on the information col-
lected. As a result, the information obtained from these services is used to adapt
a honeypot, already pre-configured, so that it is as close as possible to the sce-
nario that the attacker expects to find. The inquiry process is shown in Fig. 3,
where the diagram shows the process which determines whether the IP is linked
to malware activities. L1 services are used to determine whether or not the IP
is part of any current malware campaign. If there are not results, a query to L2
and L3 services is launched.

The second case reflected in Fig. 2 corresponds to a scenario in which the
attacker has managed to download some type of file, either within a honeypot or
when running in an execution environment configured by DCM. The monitoring
process (EM) will detect the existence of any new evidence, in the form of a
new file stored in EC, and will ask DCM to deploy an execution environment
for it. Again, this will initiate another request to malware intelligence services
to obtain information about that file, in order to gather information about how
to build a suitable environment for it. This process is reflected in Fig. 4.

4.3 Evidence Monitoring

The architecture designed includes a container of evidence to store any type of
content generated during the attack, regardless of whether it is an executable,
interpreted code, binary code, images, documents, etc. The objective of this
container is twofold: to gather as much information as possible about the actions
carried out by malware, as well as to facilitate the continuity of the attack
process, by activating the different stages implemented in the malware.

The evidence monitoring (EM) component is continuously monitoring the
creation of new evidence. When a new piece is detected, a request is sent to the
DCM containing the characteristics of the evidence (file type, operating system,
etc.). Then, a new execution environment is set up to analyze this evidence.

138 G. Fernandez et al.

Belongs to
active

campaign ?

IP/domain/port

Identify
malware family

Get service data
(url, user/pass,

Yes

No

Belongs to known
recent malware

activity ?

Query recent
hashes

Yes

No

MI
Report

Example:

Mirai C2 node

Attack via TELNET
Download malware

Expect: File (ARM ELF)

Default honeypot
behaviour

No MI report

Query service data gathered

Fig. 3. Requesting information about an IP address

4.4 Provisioning of Honeypots

Thus far, each element of the architecture described corresponds to a controlling
or monitoring process. Hogney also needs a set of preconfigured honeypots for
common scenarios susceptible to attack. Fortunately, there are a multitude of
honeypots specialized in certain environments [4] (Cowrie for ssh, glastopf for
HTTP, conpot for PLCs, jackpot for SMTP, elastichoney for elasticsearch, etc.)
and others of more general scope (inetsim). Hogney includes them as the basis
for our current set of preconfigured honeypots.

However, for a honeypot to be used by DCM, it needs to fulfill some
requirements:

– Easily configurable by modifying text files.
– Provide options for configuring banners, service folders, responses to protocol

commands, etc.
– Allow configuration of the listening network interface.
– Include capabilities for recording activities performed by attackers.

Modeling Malware-driven Honeypots 139

Document

Consult
hashes

Exist ?

File

Identify format
()

No

Yes

Executable

Identify OS

Identify Arq
x86, ARM,

Execution
reqs

Mysql, smtp, ftp,

Anti-
analysis

Virtualization,
Dissassembly,

Debugging,
Obfuscation

MI
Report

Windows x86 64bits
No anti-vm
Anti-debug
Powershell

Telnet connections
Known C2 IPs

Fig. 4. Requesting information about a downloaded file

Compliance with these requirements will allow DCM to modify the con-
figuration files according to the parameters received in a request for service
(which folders should be available, which applications, which protocol banners
are expected to be found, etc.).

In addition to specific honeypots of low, medium or high interaction it is
necessary to have execution environments where the evidence obtained can be
processed. These environments, also considered as high-interaction honeypots,
comprise both virtualized and physical machines managed by an orchestrator
process. Cuckoo Sandbox [14] has been selected for the deployment of the exe-
cution environments, largely because it covers our main needs:

– It provides an API that can be used to send files to preconfigured analysis
environments.

– It issues an activity report after the execution of files, which is easy to process
automatically.

140 G. Fernandez et al.

– Good escalation capabilities, offering different mechanisms of adaptation
where an increasing number of analysis environments is needed.

– The analysis performed is good enough for the automation needed in our
platform.

– Freely available.

5 Hogney Behavior Under the Mirai Attack

This section details the relationship between the components of the Hogney
architecture and its behavior when exposed to a well known malware propagation
attack. We have chosen Mirai because it produces a rich relationship between
the different components of the architecture. However, we want to remark that
we have designed Hogney independently of any malware family, and for the sake
of brevity we decided to only present the Mirai case.

Mirai is a botnet that principally attacks typical embedded devices in IoT.
In 2016 it became famous for causing a DDoS attack on a DNS service provider
named DYN that led to the disconnection of services like GitHub, Twitter, Red-
dit, Netflix, Airbnb among many others. It mainly attacked TELNET services
through dictionary attacks, to turn compromised devices into new botnet nodes
to be used in subsequent DDoS attacks [15].

Under this scenario (Fig. 5), the IM receives a request for connection to port
23. Next, it consults intelligence services regarding the source IP of the connec-
tion to determine whether the telnet honeypot needs to be adapted in some way.
The information obtained reveals that the originating node belongs to a Mirai
botnet.

Mirai makes telnet connections for two reasons: (i) from a bot to detect
that this service accepts known credentials and (ii) from a loader to cause the
download of a malware file. Since Mirai has malware versions for different archi-
tectures, the default configuration of the honeypot can be modified by the DCM
to show one of the architectures determined by the intelligence service (ARM in
this case).

In the use case modeled in Fig. 5 we depicted the second case, where Hogney is
receiving a connection from a Mirai loader. Here, the honeypot deployed records
the commands to be executed and even the files that the loader has specified to be
installed. There are several honeypot implementations of the telnet services (such
as Cowrie) that are able to correctly interpret regular file download commands
like curl or wget. The files downloaded are stored in the evidence container.

Once the creation of the downloaded file has been detected, the monitoring
process sends a request to the DCM to prepare a honeypot for it. It uses the
intelligence obtained from the analysis of the file (e.g. malware for ARM 32-bit
architectures in the Linux environment), to create an emulation environment to
execute the file (like QEMU [16]).

After executing the file in an environment deployed by the DCM, a connection
is made to an external IP address that, after contrasting it with the intelligence
available, could reveal a new C2 node of Mirai, or confirm that this is already

Modeling Malware-driven Honeypots 141

Attacker IM DCM Malware
Intelligence EM

Connect to
port 23

Connection established

Service Request

Commands

Deploy
TELNET Honeypot

Create execution
environment for
ARM (QEMU) Execute evidence

Monitored execution
of the evidence

Tra c established
with the attacker

Query (IP, PORT)

Evidence created

Execution Request

Fig. 5. Hogney components interaction under the Mirai attack

known. Keeping a honeypot acting as a bot node of Mirai allows access to the
information about how the C2 node operates, such as the execution of DDoS
attacks (and the IP addresses affected).

6 Implementation Discussion

The proposed architecture will eventually employ a multitude of available honey-
pots, some for generic use and others focused on certain protocols, all together
offering a wide range of solutions for the capturing of evidence. However, the
construction of a malware capture and analysis platform, like the one designed
in this paper, involves overcoming a number of obstacles, some related to design
criteria and others regarding implementation. In this section, the implementa-
tion of the main components (IM, DCM and EM) of the Hogney architecture
will be discussed.

With respect to the interception module (IM) there are currently applications,
such as honeytrap, which work in a similar way as that described for IM in
Hogney. Honeytrap is a process that remains listening on all ports, waiting for

142 G. Fernandez et al.

a connection to be requested. When this happens the connection is redirected
to the predetermined honeypot to attend the request. It also has the ability to
apply reverse proxy and mirroring techniques to address incoming connections.
The only drawback of this application is that the honeypot that is served is
defined according to the port accessed by the attacker. However, it could serve
as a basis for building the IM component that the architecture needs.

The evidence monitoring (EM) component must correlate the different events
generated, so that each piece of evidence obtained must be linked to the initial
connection that triggered its creation. Consequently, it is necessary to register
the execution of the three stages of the attack under the same case in a way that
facilitates correlation and generation of reports a posteriori.

So far, we have detected three different engines in Hogney that generate
evidence:

– The IM component, recording connections that are established with honey-
pots.

– Honeypots of low and medium interaction, which generate files and/or com-
mands.

– High-interaction honeypots, which create files and connections as a result of
running malware on them.

In this sense, the selection of Cuckoo Sandbox [14] for the management of
high interaction honeypots will benefit the organization of the evidence executed
in virtualized and physical machines. This is because Cuckoo creates a different
structure of folders and files for each file launched on an analysis machine. This
structure contains all the collected evidence provoked by the execution of the file.

The logic behind the choice of which trap environment to launch is one
fundamental aspect to be developed for the DCM component. It must decide,
depending on the information gathered, which is the most appropriate environ-
ment to serve to the attacker. For this purpose, it will use information available
through malware information services, grouped into the three levels described in
the Sect. 3.

With regard to L1 services, there is a wide range of projects that offer specific
malware information: indicators of compromise (IOCs), types of devices affected,
sources of IP used, etc. Perhaps the most convenient way to maximize results
when searching, is to use platforms that allow the user to launch queries using
several combined sources. For instance, to date the Critical Stack Intel [17]
includes 118 feeds and offers an application to query them externally.

There are several alternatives for L2 services, although we have selected two
solutions that, a priori, can cover our the needs with respect to file/URL analysis:

– Virus Total Intelligence (VTI) [11]: this service allows searches with a multi-
tude of parameters. In addition to the hash of a file, it is possible to consult
IPs or URLs linked to malware, as well as search for characteristics of the
file/URL itself (operating system, architecture, resources contained in the
file, system resources used, etc.). Although Virus Total offers free access to
its core service for antivirus evaluation, VTI is a paid service.

Modeling Malware-driven Honeypots 143

– Hybrid Analysis de PAYLOAD Security [18]: similar to VTI but with fewer
options for searching and a smaller base sample base. Nevertheless, the analy-
sis performed on the files adds some interesting features not provided by VTI,
such as the anti-analysis techniques implemented. This service, unlike the pre-
vious one, offers free access to its intelligence database by limiting the number
of queries a user can make.

Hogney will use the MISP platform [10] to access malware intelligence infor-
mation (L3 services). MISP offers different ways of sharing information, pro-
viding an API for querying and obtaining events in different formats (MISP
XML, MISP JSON, STIX, STIX JSON, CSV, etc.). Hogney will use a custom
installation of MISP connected to an external community for accessing shared
data. We will add some custom attributes to our own community created in
MISP to improve the interoperability between Hogney and MISP for configur-
ing honeypots.

7 Conclusions and Future Works

The ability of malware intelligence services to provide early recognition of mal-
ware traces is noteworthy. It is no surprise therefore, that this is why they are
widely used in many defense systems such as IDS and firewalls. Even services
like proxies and DNS use the information they provide to avoid leading the user
to malicious sites.

Until now, these services have not been used for the dynamic deployment
of honeypots. The Hogney architecture, proposed in this paper, shows the ver-
satility that they can provide to configure honeypots in the initial stages of
an attack. This functional architecture provides a set of components for the
automatic deployment of honeypots according to the intelligence information
obtained.

The next steps will be taken towards analyzing the convenience of adopting
machine learning techniques for the core of the DCM component. There has been
some progress made in creating a machine learning dataset [19] implementing
the MIST representation [20] of malware behavior. As stated by MIST’s authors,
“the representation is not restricted to a particular monitoring tool and thus can
also be used as a meta language to unify behavior reports of different sources”.
We could integrate the information gathered from malware intelligence services
to quickly create an up-to-date dataset for the DCM component.

Acknowledgments. This work has been funded by Junta de Andalucia through
the project FISICCO (TIC-07223), and by the Spanish Ministry of Economy and
Competitiveness through the project IoTest (TIN2015-72634-EXP/AEI).

References

1. Internet security threat report: vol. 21, Symantec, Technical report, 2016, April
2016

144 G. Fernandez et al.

2. SentinelOne: Sentinelone ransomware research data summary (2017). https://go.se
ntinelone.com/rs/327-MNM-087/images/Data%20Summary%20-%20English.pdf

3. Cymmetria: Mirai open source iot honeypot (2016). http://blog.cymmetria.com/
mirai-open-source-iot-honeypot-new-cymmetria-research-release

4. Nawrocki, M., Wählisch, M., Schmidt, T.C.: A Survey on Honeypot Software and
Data Analysis. arXiv.org, vol. 10, pp. 63–75 (2016)

5. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.:
IoTPOT - a novel honeypot for revealing current IoT threats. JIP 24(3), 522–533
(2016)

6. Pauna, A., Patriciu, V.V.: CASSHH – case adaptive SSH honeypot. In: Mart́ınez
Pérez, G., Thampi, S.M., Ko, R., Shu, L. (eds.) SNDS 2014. CCIS, vol. 420, pp.
322–333. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54525-2 29

7. Wagener, G., State, R., Engel, T.: Adaptive and self-configurable honeypots. In:
Integrated Network Management (IM) (2011)

8. Guarnizo, J., Tambe, A.. Bhunia, S.S., Ochoa, M., Tippenhauer, N.O., Shabtai, A.,
Elovici, Y.: SIPHON - Towards Scalable High-Interaction Physical Honeypots.
CoRR, vol. cs.CR (2017)

9. Fan, W., Fernández, D., Du, Z.: Adaptive and flexible virtual honeynet. In:
Boumerdassi, S., Bouzefrane, S., Renault, É. (eds.) MSPN 2015. LNCS, vol. 9395,
pp. 1–17. Springer, Cham (2015). doi:10.1007/978-3-319-25744-0 1

10. Wagner, C., Dulaunoy, A., Wagener, G., Iklody, A.: Misp: the design and imple-
mentation of a collaborative threat intelligence sharing platform. In: Proceedings
of the 2016 ACM on Workshop on Information Sharing and Collaborative Security,
pp. 49–56. ACM (2016)

11. G. Inc.: Virus total intelligence (2017). https://www.virustotal.com
12. Porcello, J.: Navigating and Visualizing the Malware Intelligence Space, pp. 1–7,

November 2012
13. Hungenberg, T., Eckert, M.: Internet services simulation suite (2014). http://www.

inetsim.org
14. Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The cuckoo sandbox (2012)
15. Angrishi, K.: Turning internet of things (IoT) into internet of vulnerabilities (IoV):

Iot botnets, February 2017
16. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual

Technical Conference, FREENIX Track, pp. 41–46 (2005)
17. Critical Stack Inc.: Critical stack intel // feed (2017). https://intel.criticalstack.

com
18. Payload Security.: Free automated malware analysis service (2017). https://www.

hybrid-analysis.com
19. Ramilli, M.: A machine learning dataset for everyone (2016). http://marcoramilli.

blogspot.com.es/2016/12/malware-training-sets-machine-learning.html
20. Trinius, P., Willems, C., Holz, T., Rieck, K.: A Malware Instruction Set for

Behavior-Based Analysis. Sicherheit (2010)

https://go.sentinelone.com/rs/327-MNM-087/images/Data%20Summary%20-%20English.pdf
https://go.sentinelone.com/rs/327-MNM-087/images/Data%20Summary%20-%20English.pdf
http://blog.cymmetria.com/mirai-open-source-iot-honeypot-new-cymmetria-research-release
http://blog.cymmetria.com/mirai-open-source-iot-honeypot-new-cymmetria-research-release
http://arxiv.org/abs/org
http://dx.doi.org/10.1007/978-3-642-54525-2_29
http://dx.doi.org/10.1007/978-3-319-25744-0_1
https://www.virustotal.com
http://www.inetsim.org
http://www.inetsim.org
https://intel.criticalstack.com
https://intel.criticalstack.com
https://www.hybrid-analysis.com
https://www.hybrid-analysis.com
http://marcoramilli.blogspot.com.es/2016/12/malware-training-sets-machine-learning.html
http://marcoramilli.blogspot.com.es/2016/12/malware-training-sets-machine-learning.html

	Modeling Malware-driven Honeypots
	1 Introduction
	2 Related Work
	3 Malware Intelligence
	4 The Hogney Architecture
	4.1 Interception of Connections
	4.2 Configuring Trap Services
	4.3 Evidence Monitoring
	4.4 Provisioning of Honeypots

	5 Hogney Behavior Under the Mirai Attack
	6 Implementation Discussion
	7 Conclusions and Future Works
	References

