
Mobile Personal Identity Provider Based
on OpenID Connect

Luigi Lo Iacono1, Nils Gruschka2(B), and Peter Nehren1

1 Cologne University of Applied Sciences, Betzdorfer Str. 2, 50679 Cologne, Germany
{luigi.lo iacono,peter.nehreng}@th-koeln.de

2 Kiel University of Applied Sciences, Grenzstr. 5, 24149 Kiel, Germany
nils.gruschka@fh-kiel.de

Abstract. In our digital society managing identities and according
access credentials is as painful as needed. This is mainly due to the
demand for a unique password for each service a user makes use of. Vari-
ous approaches have been proposed for solving this issue amongst which
Identity Provider (IDP) based systems gained most traction for Web
services. An obvious disadvantage of these IDPs is, however, the level of
trust a user requires to place into them. After all, an IDP stores a lot
of sensitive information about its users and is able to impersonate each
of them.

In the present paper we therefore propose an architecture that enables
to operate a personal IDP (PIDP) on a mobile device owned by the user.
To evaluate the properties of our introduced mobile PIDP (MoPIDP) we
analyzed it by means of a prototype. Our MoPIDP architecture provides
clear advantages in comparison to classical IDP approaches in terms of
required trust and common threats like phishing and additionally regard-
ing the usability for the end user.

1 Introduction

In the last decade, the Web has become an essential part of human society.
Nearly every aspect of our daily life is infused by Web services (e.g. news reading,
travel booking, shopping etc.) and in some areas the digital services have partly
or completely eliminated the traditional services by now. In the recent years,
this trend was further pushed with the ubiquitous usage of Internet service on
mobile devices. With the increasing number of services used also the number
of user accounts is rising, which leads to one of the main open issues of digital
services: identity management [20].

Identity management (IDM) typically includes two aspects. The first is
authentication, a basic security control required in any application that inter-
acts with a user. The user claims his identity by presenting an identifier and
then giving some proof for this identity. The proof can be realized in many dif-
ferent forms (e.g. fingerprint, cryptographic protocol), but the most widespread
authentication factor by far is the password. Password authentication can be
easily implemented by a service and does not require any special software or
c© Springer International Publishing AG 2017
J. Lopez et al. (Eds.): TrustBus 2017, LNCS 10442, pp. 19–31, 2017.
DOI: 10.1007/978-3-319-64483-7 2



20 L.L. Iacono et al.

hardware on the user side. However, passwords are prone to many attacks and
misuses. Further, password authentication burdens the user the task of password
management, leading very often to simple passwords or reusing the same pass-
word for different services. Another problem of authentication is the linkability
of identities across distinct services. Most services require a valid email address
as identifier, leading the user to use the same identifier with different services.

The second aspect of identity management is management of attributes. For
performing its service, the service provider needs a number of attributes from the
user (e.g. address, birthday, credit card number). Nowadays, a service asks the
user during the registration to enter all attributes which the service might need
eventually. This creates some privacy problems. First, most services request more
attributes than necessary. Second, the user has to update attribute changes (e.g.
after moving houses) at multiple places. Finally, the distributed storage increases
the danger of unwanted attribute disclosure.

IDM systems aim to solve the issues presented before. The typical IDM archi-
tecture includes a third party, the so-called Identity Provider (IDP). The user
authenticates directly only to the IDP. The IDP than creates authentication
assertions which can be used to authenticate to services (also called relying party
(RP) in this context), this requires obviously a trust relationship between the
service and the IDP. Now the user only needs authentication credentials to the
IDP, i.e., in the case of password authentication, only one (complex and unique)
password. This enables also a single sign-on (SSO) functionality. Once the user
has logged into the IDP he can access multiple services without entering her
credentials again even when provided by distinct service providers.

Further, the IDP can also operate as attribute provider. In that case, ser-
vices are not supposed to store user attributes locally, but request attributes on
demand at the IDP and get the current values (if the user has granted access to
the attribute). To increase privacy, the assertions given to the service might even
masquerade confidential attributes. For example: if a service requires legal age
of costumers, instead of sending the birth date the IDP can send an assertion
“is older than 21 years”. Finally, the IDP can create assertions for authoriza-
tion delegation, e.g. authorizing service A to access the users pictures stored at
service B.

Despite the mentioned benefits of IDM systems, some problems remain. First,
the user must completely trust the IDP, as it can impersonate the user to the
services. This can be solved by operating a personal identity provider. In this
paper, we present a personal IDP, which can be self hosted on the user’s mobile
device. Second, most existing IDM systems are not very widespread and very
often are discontinued after a while. In order to ease the distribution, our system
is based on OAuth and OpenID Connect, two protocols which are already used
by a number of large Internet companies. Further, a self hosted IDP usually
induces the problem of discovering it. We overcame this by triggering the OpenID
protocol flows from the IDP (instead of from the service). This solves finally also
the problem of phishing attack, i.e. redirecting the user to a spoofed IDP site
and phishing the user’s IDP password.



Mobile Personal Identity Provider Based on OpenID Connect 21

The paper is organized as follows: the next section gives an overview of the
related work on authentication and identity management. Section 3 presents our
solution for a Mobile Personal Identity Provider. In Sect. 4 the security and
privacy properties of our solution is discussed and compared to other solutions.
Finally, Sect. 5 concludes the paper.

2 Related Work

2.1 Authentication and Identity Management

Since more than 20 years efforts are undertaken to replace the simple (static)
password as authentication method to Internet and especially Web services. One
possibility is using different passwords for every authentication action, named
one-time passwords (OTP), e.g. the well known S/Key from Leslie Lamport
[15]. However, OTP requires either manual password lists for every service or
special hardware tokens, which is unhandy or rather expensive. A further pos-
sibility are authentication methods based on cryptographic protocol, e.g. TLS
client authentication [9]. However, this typically requires complex management
of cryptographic credentials at the user side (e.g. transferring private keys from
one computer to another one). Further, biometric attributes (e.g. fingerprint,
face, voice) can be used for user recognition and authentication [17]. However,
until a few years ago, this required special hardware attached to the computer.

With the wide spread of mobile phones the situation has changed. Mobile
devices can act as credential storage, password generator and even as biometric
recognition sensor. Thus, it comes as little surprise, that a number of authenti-
cation systems have emerged, which use a mobile phone as primary or secondary
authentication factor. Examples are the FIDO UAF system [2], which combine
strong local authentication at the smart phone (e.g. fingerprint recognition) with
cryptographic authentication protocols, or Google Authenticator [13], a mobile
application for creating OTPs with limited lifetime [22]. However, these systems
only support the authentication aspect of identity management (IDM), lacking
authorization, delegation and attribute management.

The most known IDM protocols are SAML, OpenID and OAuth. The Secu-
rity Assertion Markup Language (SAML) [19] is a full-fledged IDM system,
offering data formats and communication patterns for all IDM functionalities
presented in the previous section. However, due to the high complexity, SAML
was only disseminated in special areas (e.g. as Shibboleth [21] in higher education
facilities or in SOA environments [25]).

OpenID [12] is a simpler identity provider (IDP) based authentication proto-
col specially for Web use cases. OpenID also did not find the broad adoption its
creators have hoped for. Finally, OAuth [16] is a protocol especially for authoriza-
tion delegation. OAuth was widely adopted for API authorization e.g. at Google
[14], Facebook [10], Twitter [26] etc. As authorization requires prior authenti-
cation, some API provider “misused” OAuth for pseudo-authentication to avoid



22 L.L. Iacono et al.

the additional implementation of OpenID, leading to proprietary OpenID exten-
sions. To overcome this issue, OpenID Connect [23] was proposed, extending the
OAuth protocol and workflow with OpenID authentication.

Some security and usability problems remain also in OpenID Connect which
where known from OpenID [8]: (1) The user has to trust the IDP with his
data. (2) When redirected to the IDP for authentication, the user has to check
carefully, that it is really the IDP and not a phishing site. (3) The user has to
remember and enter her OpenID URI at the service provider.

To overcome problem (1) the user can host her own IDP, also called a Per-
sonal IDP (PIDP). Further, problem (2) can at least be mitigated, if the PIDP
is running of the users mobile devices. In this case the user is not interacting
with a (probably spoofed) Web site, but with a local application on her mobile
phone. The idea of a personal mobile is not new, examples are can be found in
[11] or [1]. However, these systems have been developed for the outdated OpenID
2.0 and additionally still lack from problem (3).

This paper introduces a mobile personal identity provider (MoPIDP) which
eliminates the above mentioned problems. First of all, it is—to the best of our
knowledge—the first PIDP based on the current OpenID Connect standard.
Also, as a personal IDP, impersonation by the IDP is not a problem. Further,
we invert the flow control in the beginning of the protocol: instead of redirecting
the user from the RP to IDP, the MoPIDP gets the required information for the
first protocol step via a barcode from the RP and the MoPIDP contacts the RP.
This eliminates the phishing problem. Further, this increases the usability of the
overall process, as the user does not need to remember and enter her IDP’s URI.

2.2 OpenID Connect

To illustrate the differences to our MoPIDP architecture we present how OpenID
Connect works. In this paper we will solely regard the Authorization Code Flow,
as other OpenID flows have been proven to be insecure [24].

Before a service application can use OpenID authentication with a certain
IDP, it is required to register the service at the IDP. The standard way for this
is that developers register their application once at the IDP out of band. As part
of this process, the application gets a client id and a client secret to make
authenticated requests to the IDP.

Once this step is completed, OpenID Connect Authentication like shown in
Fig. 1 is possible. Here, the user (using a Web browser) accesses a restricted
resource at the service, which requires authentication. The user enters her
OpenID URI and the service redirects the user to the appropriate IDP. The
redirect contains an authentication request, which holds a number of parame-
ters including the service’s client id and a redirect url for returning to the
service. The user has to authenticate to the IDP. This can be done in different
ways, e.g. by user name and password. If the user has authenticated before and
still has an active session with the IDP, this step is omitted. Then the user is redi-
rected to the service (using the redirect URL from the authentication request).



Mobile Personal Identity Provider Based on OpenID Connect 23

Browser Service IdP

GET /protected initiate login

302 redirect

validate

302 redirect

enter username & password

validate

POST token request with code

validate200 OK ID & Access Token Token Endpoint

POST request UserInfo with Access Token (optional)

200 OK User Claims UserInfo Endpoint

+ Database

store cookie

TLS

displays protected

validate

Authorization Endpoint

Fig. 1. OpenID connect authentication

The redirect to the service contains the authentication response, which again
contains a code parameter, the authorization code.

This authorization code can be used by the service in a token request to
the IDP. If the code is correct, the IDP returns an access token1 and an ID
token. The access token can be used to access further services, e.g. requesting
detailed user info or (which is the standard OAuth use case; not shown in the
figure) invoking an external service on behalf of the user. The ID token is the
most relevant extension in OpenID connect compared to OAuth 2.0. It contains
information on the authenticated user like a subject identifier and an expiration
time stamp.

Now finally, the service returns the restricted resource to the user’s Web
client.

3 Mobile Personal Identity Provider

3.1 Requirements and Preconditions

From the aspects discussed in the previous section we derive the following
requirements for our Mobile Personal Identity Provider (MoPIDP):

Self-control. Only users themselves have full control over the MoPIDP and no
other third party is involved into the whole process. This control contains
all kind of information stored securely inside the application and who gets

1 Until here the protocol is identical to OAuth 2.0.



24 L.L. Iacono et al.

access to it. The attributes are only stored inside the users MoPIDP. The
only exception are encrypted exports for backup purposes.

Convenience. It offers an easy and secure way for login and registration on Web
services via a smartphone application. Users are not forced to enter any kind
of credential to the computer keyboard.

Profile Management. Users can add multiple profiles respectively digital identities
for different areas of application. For that reason these profiles are connected
to other kinds of attributes.

One important prerequisite for a mobile service is the addressability of the
smartphone over the Internet, even if it is connected over WiFi or mobile net-
works. In future this could be handled with IPv6 causing its bigger address room
where all devices could have their own IP address. Nowadays a so called reverse
proxy could be used by which Internet accessibility of local servers running on
any kind of computers or devices can be provided.

3.2 Overview

The architecture of the MoPIDP is based on OpenID Connect. However, due
to the requirements stated before the architecture has to be modified slightly.
In OpenID Connect an IDP is always on-line, hosted at the same domain and
accessible every time. The MoPIDP is always with the user and just on-line if
the user wants to make use of it. Another difference is, that an normal MoPIDP
is responsible for multiple users. In the new system every user owns his own
personal MoPIDP.

As every user has her own IDP, a static out of band registration like in
OpenID Connect is not reasonable. Instead, applications register dynamically
with the user’s MoPIDP on their first use. Such an use case is supported by
OpenID Connect with its specification of dynamic client registration.

Like shown above, an OpenID Connect authentication process usually starts
with the service redirecting to the IDP for entering the user’s credentials. With
their own IDP in hand users are now able to start the process right from the
device. For starting the authentication process with a smartphone, the applica-
tion on the phone needs the information where the user wants to login to. In
our implementation an unique QR code on the service’s website is used for that
purpose. The QR code is easy to create for service providers and as well easy to
scan and evaluate for smartphone applications. When the user scans it to use
the service authenticated, she gets an overview on her smartphone on the service
and the kind of information the service is requesting. After that the user has the
possibility to decide whether she wants to login respectively register with the
service or not. If she agrees a specific protocol flow starts between the service
and the MoPIDP which results in an successful authenticated user.

3.3 Protocol

In this section the protocol flow between a service and a MoPIDP will be
explained in detail. The user needs to have the application installed on his



Mobile Personal Identity Provider Based on OpenID Connect 25

Fig. 2. MoPIDP QR code example

smartphone and the service provider has to support authentication over the
MoPIDP. The QR code displayed on the website contains the content of the
query string which is used in OpenID Connect for the authentication request.
Only the client id is not included because it differs for every MoPIDP. An
example QR code is displayed in Fig. 2.

BrowserPIdP

GET initiate login

Service

POST registration request with registration token

201 registration response

asks for permission

user grants access

displays QR with URI & stateuser scans QR

Service in database?

validate

validate

validate

TLS

200 ok

no

Fig. 3. MoPIDP registration flow

Registration. The user starts the MoPIDP application and selects one of her
digital identities. After scanning the QR code the application checks if the service
has been visited before with this selected identity. If not, the MoPIDP registra-
tion flow illustrated in Fig. 3 starts after a user consent. The MoPIDP sends its
own configuration data to the registration endpoint of the service. It is the same
configuration data which is placed at /.well-known/openid-configuration in



26 L.L. Iacono et al.

OpenID Connect. So the service gets informcation about endpoints, public key
location, algorithms and much more. Also the state parameter from the QR
code and an access token for future requests to the MoPIDP registration end-
point is included. The service has to check if there is an running session for this
incoming state parameter. If it is valid the service stores the configuration data
for this user temporally. With this information the service can make a default reg-
istration request to the MoPIDP registration endpoint. Also the answer from the
MoPIDP is OpenID Connect standard and includes the parameters client id
and client secret. This happens once for every service registering with an
digital identity from an MoPIDP.

BrowserPIdP

GET initiate login

Service

POST authentication response with state

POST token request with client secret

200 OK ID & access token 

displays protected

asks for permission

user grants access

displays QR with URI & stateuser scans QR

validate

validate

validate

TLS

200 OK

(optional) POST UserInfo request with access token

200 OK ID & access token 

Service in database?

yes

validate

Fig. 4. MoPIDP authentication flow

Authentication. When the user scans the QR code and registration with
the used digital identity was already performed, the MoPIDP authentication
flow starts which is shown in Fig. 4. This happens without any user interac-
tion because the application records all visited services. The MoPIDP sends an
requests to the service which contains the same parameters as they where in
the OpenID Connect authentication response. In addition to these parameters
it includes the client id so the service can assign the right user data out of its
database.

Our system does not use redirects and also does not transfer any kind of sen-
sible data over Web browsers. That is the reason why there is no temporary code
required like in the OpenID Connect Authorization Code Flow. After a token



Mobile Personal Identity Provider Based on OpenID Connect 27

request, tokens can be send back to the service directly. This token request con-
tains client id and client secret for trust reasons. This client authentication
method is called client secret post in OpenID Connect.

As soon as the service validated the tokens, the user is successfully authenti-
cated. If additional user data is needed, there can be made another request with
the just received access token. The structure of this UserInfo request is the same
as in OpenID Connect. This mostly happens just once after initial registration
because it could replace usual registration forms.

3.4 Implementation

To demonstrate the feasibility of this approach, a functional prototype of the
system has been developed. One part of it is a dummy Web application in which
potential users want to register via the MoPIDP protocol. On the start page of
the service the unique QR code required for authentication is displayed. The QR
code includes the above mentioned information like scopes, state and redirect
uri. Further, the service includes a protected area with user-specific data.

The MoPIDP application shown in Fig. 5 has been implemented for the
Android operation system and offers the possibility to register and log on to
MoPIDP-instrumented Web applications with different user-profiles respectively
digital identities. It includes the necessary scanning mechanism for reading the
QR code, a simple web server for handling requests made to the MoPIDP appli-
cation and cryptographic libraries for signing and encrypting responses. Firstly,
the scanning of QR codes was implemented by an external application installed
on the smartphone. However, as little information as possible should leave the
MoPIDP application sandbox, which is why this functionality was integrated to
the application afterwards.

Another problem which had to be addressed was the continuous connection
between the web page opened in a browser and the web server. This connection
is necessary for the automatic authentication or registration process, since the
server must tell that the QR code has been scanned and the user is successfully
authenticated. The problem could be solved by polling, which however leads to a
permanent reloading of the page. A more efficient solution is to use WebSockets,
a TCP-based protocol that enables bi-directional connections between a web
page rendered inside a browser and a web server. The client establishes a TCP
connection to the server, which remains open unlike in the HTTP protocol. From
then on, both parties can exchange data without new HTTP requests whereby
the server can tell the client that an authentication has taken place.

As is also the case with OpenID Connect, tokens are represented as JSON
Web Tokens (JWT) [5]. JWT is an open standard for representing and sharing
claims for e.g. authorization purposes. JSON Object Signing and Encryption
(JOSE) [3] is used for signing or encrypting such JWTs to ensure integrity, con-
fidentiality and authenticity of the contained data. Frameworks for implementing
JWT and JOSE are available in many programming languages such as Java [7],
C/C++ [6] and Ruby [4]. The Java library of the JWT and JOSE is used for
the prototype, both for the service, as well as for the Android application.



28 L.L. Iacono et al.

In order to be able to sign and encrypt tokens required by the protocol, keys
must be known by the parties. Therefore, the service hosts a so called JSON
Web Key Set (JWKS) [18] on a specified .well-known location to synchronize
information about supported algorithms and the service’s public key. During
the Registration Flow, the MoPIDP application temporary hosts a JWKS too,
containing the public key of the chosen identity. Both public keys are used to
build so called Nested JWTs for the MoPIDP Flows. For example the ID Token is
such a Nested JWT since the PIDP signs the requested claims with the identity’s
private key and subsequently encrypts it with the services public key which was
pulled from the .well-known JWKS source. So indeed the ID Token is a signed
JSON nested inside an encrypted JSON.

Fig. 5. MoPIdP android application

4 Security and Privacy Considerations

Our approach obviously inherits most security properties of OAuth/OpenID
Connect. For example, authentication and confidentiality between the peers is
performed by the underlying TLS protocol. This means, the transport security



Mobile Personal Identity Provider Based on OpenID Connect 29

relies on the security of TLS and in extend on certificate and PKI security.
However, the use of TLS also eases the deployment as no additional exchange of
keys is required.

One desired property for IDP systems is the possibility of using differ-
ent identifiers for different services and prohibiting the linkability of different
accounts. Here, a personal IDP has disadvantages, as there is a one-to-one map-
ping between IDP and user. Thus, even when using different identifiers, these
ids can be easily linked. However, as the different identifiers are rather rarely
used, this disadvantage is probably not very relevant in practice.

In identity management systems, a high level of trust in the IDP is required,
because it can completely impersonate the user. A personal IDP (fixed or mobile)
has a huge advantage compared to a (traditional) external IDP, as the user itself
is the operator of the IDP.

However, the most severe security threat for IDP based authentication is
phishing. Usually, the user accesses the RP and is forwarded by the RP to the
IDP. A rogue RP can easily redirect the user to a phishing IDP instead of
the correct IDP. Therefore, the user must very carefully check the IDP before
authenticating. However, most users neglect this level of caution. As soon as
the phisher has gained the IDP authentication token (usually just a password),
he can completely impersonate the user on all of the connected sites. With a
personal IDP the phishing threat is slightly reduced, but still feasible. With our
MoPIDP, however, phishing is not possible, as the redirection step is omitted.
Instead the (personal) IDP communicates from the beginning directly to the RP.

Table 1. Comparison of security and privacy aspects

IDP PIDP MoPIDP

Impersonation − + +

Phishing − − − +

Identity linkability + o o

Transport security (TLS) o o o

Table 1 summarizes the above described security and privacy properties. It
compares a “standard” OpenID Connect deployment (IDP) with a personal IDP
(PIDP) and with our mobile personal IDP (MoPIDP).

Finally, the security of MoPIDP obviously depends on the security of the
mobile device. Access to the MoPIDP app and the database must be restricted,
e.g. by a PIN or a fingerprint. This prohibits misuse by an adversary in case of
lost or stolen device. In that case also the legitimate user looses the credentials
stored in the MoPIDP database. This is a standard problem of authentication
systems which are based on tokens stored on a mobile device. To solve this issue,
either an additional mechanism for account recovery at the service provider must
be added or regular backups of the MoPIDP database to a secure location must
be created.



30 L.L. Iacono et al.

5 Conclusion

Authentication and identity management are still open issues in our world of
online services. Despite their obvious disadvantages, password authentication
and “manual” management of identities by the end user are still the predominant
solutions.

In this paper, we presented an approach using a smart phone as personal Iden-
tity Provider. This solution exceeds usual identity management solutions with
regards to security and usability. As discussed above, a personal IDP has small
privacy disadvantages compared to standard IDP deployments (i.e. the possibil-
ity of identity linkability). However, our solution is still a major improvement
compared to current authentication schemes using an email address (with most
people: always the same address) as identifier.

References

1. Abe, T., Itoh, H., Takahashi, K.: Implementing identity provider on mobile phone.
In: Proceedings of the 2007 ACM Workshop on Digital Identity Management, DIM
2007, pp. 46–52. ACM, New York (2007). http://doi.acm.org/10.1145/1314403.
1314412

2. Alliance, F.: FIDO UAF Architectural Overview (2016). https://fidoalliance.org/
specs/fido-uaf-v1.1-rd-20161005/fido-uaf-overview-v1.1-rd-20161005.html

3. Barnes, R., Mozilla: Use Cases and Requirements for JSON Object Signing and
Encryption (JOSE) (2014). https://tools.ietf.org/html/rfc7165

4. Bennett, A.: Jose library for ruby. https://github.com/potatosalad/ruby-jose
5. Bradley, J., Sakimura, N., Jones, M.: JSON Web Token (JWT) (2015). https://

tools.ietf.org/html/rfc7519
6. Cisco Systems: cjose - jose library for c/c++. https://github.com/cisco/cjose
7. Connect2id: JOSE + JWT library for Java. https://connect2id.com/products/

nimbus-jose-jwt
8. Dhamija, R., Dusseault, L.: The seven flaws of identity management: usability and

security challenges. IEEE Secur. Priv. 6(2), 24–29 (2008)
9. Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2 (2008).

https://tools.ietf.org/html/rfc5246
10. Facebook: Access Tokens - Facebook Login - Documentation (2017). https://

developers.facebook.com/docs/facebook-login/access-tokens/
11. Ferdous, M.S., Poet, R.: Portable personal identity provider in mobile phones.

In: 2013 12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 736–745. IEEE (2013). http://
ieeexplore.ieee.org/abstract/document/6680909/

12. Foundation, O.: OpenID Authentication 2.0 (2007). http://openid.net/specs/
openid-authentication-2 0.html

13. Google: Google Authenticator (2016). https://github.com/google/google-authent
icator

14. Google: Using OAuth 2.0 to Access Google APIs | Google Identity Platform (2016).
https://developers.google.com/identity/protocols/OAuth2

15. Haller, N.: The S/KEY One-Time Password System (1995). https://tools.ietf.org/
html/rfc1760

http://doi.acm.org/10.1145/1314403.1314412
http://doi.acm.org/10.1145/1314403.1314412
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-overview-v1.1-rd-20161005.html
https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-uaf-overview-v1.1-rd-20161005.html
https://tools.ietf.org/html/rfc7165
https://github.com/potatosalad/ruby-jose
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://github.com/cisco/cjose
https://connect2id.com/products/nimbus-jose-jwt
https://connect2id.com/products/nimbus-jose-jwt
https://tools.ietf.org/html/rfc5246
https://developers.facebook.com/docs/facebook-login/access-tokens/
https://developers.facebook.com/docs/facebook-login/access-tokens/
http://ieeexplore.ieee.org/abstract/document/6680909/
http://ieeexplore.ieee.org/abstract/document/6680909/
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
https://github.com/google/google-authenticator
https://github.com/google/google-authenticator
https://developers.google.com/identity/protocols/OAuth2
https://tools.ietf.org/html/rfc1760
https://tools.ietf.org/html/rfc1760


Mobile Personal Identity Provider Based on OpenID Connect 31

16. Hardt, D.: The OAuth 2.0 authorization framework (2012). https://tools.ietf.org/
html/rfc6749.txt

17. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

18. Jones, R., Microsoft: JSON Web Key (JWK) (2015). https://tools.ietf.org/html/
rfc7517

19. Lockhart, H., Campbell, B.: Security assertion markup language (SAML)
V2.0 technical overview. OASIS Comm. Draft 2, 94–106 (2008). https://www.oas
is-open.org/committees/download.php/14360/sstc-saml-tech-overview-2.0-draft-08
-diff.pdf

20. Lopez, G., Canovas, O., Gomez-Skarmeta, A.F., Girao, J.: A SWIFT take on iden-
tity management. Computer 42(5), 58–65 (2009)

21. Morgan, R.L., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Fed-
erated security: the shibboleth approach. Educ. Q. 27(4), 12–17 (2004).
http://eric.ed.gov/?id=EJ854029

22. Rydell, J., M’Raihi, D., Pei, M., Machani, S.: TOTP: Time-based One-time Pass-
word Algorithm (2011). https://tools.ietf.org/html/rfc6238

23. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: Openid
connect core 1.0. The OpenID Foundation p. S3 (2014). http://openid.net/specs/
openid-connect-core-1 0-final.html

24. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 378–390. ACM (2012). http://dl.
acm.org/citation.cfm?id=2382238

25. Thomas, I., Meinel, C.: An identity provider to manage reliable digital identities
for SOA and the web. In: Proceedings of the 9th Symposium on Identity and Trust
on the Internet, IDTRUST 2010, pp. 26–36. ACM, New York (2010). http://doi.
acm.org/10.1145/1750389.1750393

26. Twitter: OAuth Twitter Developers (2017). https://dev.twitter.com/oauth

https://tools.ietf.org/html/rfc6749.txt
https://tools.ietf.org/html/rfc6749.txt
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://www.oasis-open.org/committees/download.php/14360/sstc-saml-tech-overview-2.0-draft-08-diff.pdf
https://www.oasis-open.org/committees/download.php/14360/sstc-saml-tech-overview-2.0-draft-08-diff.pdf
https://www.oasis-open.org/committees/download.php/14360/sstc-saml-tech-overview-2.0-draft-08-diff.pdf
http://eric.ed.gov/?id=EJ854029
https://tools.ietf.org/html/rfc6238
http://openid.net/specs/openid-connect-core-1_0-final.html
http://openid.net/specs/openid-connect-core-1_0-final.html
http://dl.acm.org/citation.cfm?id=2382238
http://dl.acm.org/citation.cfm?id=2382238
http://doi.acm.org/10.1145/1750389.1750393
http://doi.acm.org/10.1145/1750389.1750393
https://dev.twitter.com/oauth

	Mobile Personal Identity Provider Based on OpenID Connect
	1 Introduction
	2 Related Work
	2.1 Authentication and Identity Management
	2.2 OpenID Connect

	3 Mobile Personal Identity Provider
	3.1 Requirements and Preconditions
	3.2 Overview
	3.3 Protocol
	3.4 Implementation

	4 Security and Privacy Considerations
	5 Conclusion
	References




