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Stokes’ Theorem for Hypergestures

Summary. As singular homology is strongly related to de Rham cohomology, in particular by Stokes’
classical theorem, it is natural to ask for such a theorem in our context of hypergestures. But there is a
deeper reason for such a project, namely the idea that music theory of hypergestures could provide us with
models of energy exchange in gestural interaction. In such a (still hypothetical) theory, Stokes’ theorem
would play a crucial role regarding questions of energy conservation (integral invariants).

– Σ –

64.1 The Need for Stokes’ Theorem for Hypergestures

Stokes’ classical theorem states ż
C

dω “
ż

BC
ω,

where C is a compact oriented k-dimensional manifold with boundary and ω is a k ´ 1-form on C. The
operator dω is the exterior derivative of ω, and BC is the boundary of C, see Appendix Section J.8. It is well
known that this formula is valid for slightly more general situations, namely, where the boundary is not a

Stokes’ theorem is of primordial importance in many fields of physics, e.g. in mechanics (integral in-
variants, see [2]) or in electrodynamics (relating differential and integral forms of Maxwell’s equations [497]).
The reason why we are interested in such a theorem for mathematical music theory is twofold: On the one
hand, we have initiated a homological study of hypergestural structures [727] (see Chapter 63) which has
also provided us with applications to counterpoint theory [16] (see Chapter 79). As singular homology is
strongly related to de Rham cohomology, in particular by Stokes’ theorem, it is natural to ask for such a
theorem in our context of hypergestures. But there is a deeper reason for such a project, namely the idea
that music theory of hypergestures could provide us with models of energy exchange in gestural interaction.
In such a (still hypothetical) theory, Stokes’ theorem would play a crucial role regarding questions of energy
conservation (integral invariants).

64.2 Almost Regular Manifolds, Differential Forms, and Integration for
Hypergestures

We first need to specify the basic concepts that contribute to the Stokes statement. We are aware of the
somewhat sloppy style in this quite standard part of the chapter; the reader is kindly asked to fill out the
standard technical details.
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64.2.1 Locally Almost Regular Manifolds

In the present context we need hypergestures in manifolds since we are dealing with differentiable structures.
We however need quite general manifolds in the sense of what are called “almost regular manifolds” in [617]
or even more singular manifolds, where the boundaries have corners. To understand our requirement we look
at typical manifolds in the context of hypergestures. In [719], we have introduced a standard topological
space |Σ| associated with a digraph Σ, see Section 61.7. It is the colimit of the digraph’s arrow set AΣ , the
gluing operation being performed on the digraph vertices set VΣ . This topological space specifies one line
chart |a| „Ñ I “ r0, 1s per arrow a and a point chart |x| for each isolated vertex x. The specification of this

atlas is mandatory since we don’t want to glue two consecutive arrows x
a �� y

b �� z to one line. The
differentiability in the connecting vertex y is suspended. Or it may also happen that three or more arrows
share a vertex, and then the differentiability in such a vertex would not make sense. We call skeletal space
the manifold |Σ| associated with skeleton Σ.

The best conceptual approach to this situation is to embed such a manifold in a differentiable manifold
M as a subset whose charts are manifolds with boundary isomorphic to the unit interval I or to a zero-
dimensional point manifold 0. We next need cartesian products of such manifolds when hypergestures are
discussed. This means that we have to consider products of type |Σ1| ˆ |Σ1| ˆ . . . |Σn|. These manifolds are
living in cartesian products of their carrier manifolds M1,M2, . . .Mn, and the typical boundary of a product
|Σ1| ˆ |Σ2| is Bp|Σ1| ˆ |Σ2|q “ B|Σ1| ˆ |Σ2| Y |Σ1| ˆ B|Σ2|, see Figure 64.1 for an example.

Fig. 64.1. A skeletal space.

But observe that due to singular points in digraphs, such products can be inhomogeneous in their
dimension. A product may be a disjoint union of submanifolds of different dimensions.

To get a reasonable category of such manifolds, we consider differentiable morphism L Ñ M of the
carrier manifolds L,M of L,M, respectively, that restrict to atlas-compatible maps f : LI Ñ MJ , where
I, J designate the atlases of L,M, respectively. Atlas-compatibility means that, as in mathematical music
theory of global compositions, we are also given a map g : I Ñ J such that f sends I-chart Li to J-chart
Mgpiq. We denote this category of locally almost regular manifolds by LARM . Such a manifold need not have
a determined dimension, but may have several dimensions according to connected components and charts.
In what follows, we shall call dimension dimpLq of an almost regular manifold L the maximal dimension of
such components. The submanifold of L of a determined dimension k will be denoted by Lk.

The most important application of LARM for the Stokes theory lies in a reinterpretation of hy-
pergestures. Suppose we are given a hypergesture c P Σ1Σ2 . . . Σn

ÝÑ
@L over n skeleta Σ1, Σ2, . . . Σn with

values in a locally almost regular manifold L. By the very definition of hypergestures, and by the ad-
jointness property of the manifold |Σ| associated with skeleton Σ (Proposition 62), as well as the adjoint-
ness of the cartesian product and repeated function spaces (also known as currying in computer science),
Σ1Σ2 . . . Σn

ÝÑ
@L „Ñ |Σ1|ˆ|Σ2|ˆ . . . |Σn|©L, the set of continuous functions from the cartesian product of the
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skeletal manifolds to L. Within this function set, we exhibit the differentiable morphisms and denote their set
by |Σ1|ˆ|Σ2|ˆ . . . |Σn| d○L. The morphisms in the latter (more precisely: their corresponding hypergestures)
are called differentiable hypergestures; the set of these hypergestures is also denoted by Σ1Σ2 . . . Σn d○L. In
the context of the Stokes theorem, we need differentiable singular n-cubes. Their generalization to hy-
pergestures are differentiable gestural n-cubes, namely the elements of Σ1Σ2 . . . Σn d○L. The free module
RΣ1Σ2 . . . Σn d○L of R-linear combinations of differentiable gestural n-cubes (the module basis) defines the
(differentiable) n-chains over Σ1, Σ2, . . . Σn with values in L.

64.2.2 Differential Forms

On a locally almost regular manifold L (we omit the atlas if possible to ease notation), differential forms can
be considered in the sense that they are defined on each chart as usual. If such a chart Li has dimension n,
the differential forms of dimension k ď n define non-trivial real vector spaces

Źk Li,x at each point x of Li. A

differential k-form ω on L is a differentiable section in each chart
Źk Li. Since our manifolds are of different

dimensions locally, we will have to deal with forms that don’t have the same dimension everywhere, they are
not homogeneous. We therefore consider the direct sum

Ź‘k L “ À
lďk

Źl L. If we take a differential form

ω P Ź‘k L, its l-component will be denoted by ωl. As in the classical case, for a morphism f : L Ñ M of

locally almost regular manifolds, one has the canonical inverse image f˚ω P Źk L for ω P Źk M.

In the classical case, one has the exterior derivative operator d :
Źk L Ñ Źk`1 L with d2 “ 0.

For the non-homogeneous case mentioned above, we need a derivative operator d‘ defined by d‘ω “
pω0, dω0, dω1, dω2, . . .q for ω “ pω0, ω1, ω2, . . .q. For this operator, we have d2‘ω “ pω0, dω0, 0, . . .q. And
as in the classical case, the operators d and d‘ commute with inverse images.

64.2.3 Integration

Modulo linear extensions to n-chains, we need to define
ş
c
ω for a gestural n-cube c P Σ1Σ2 . . . Σn d○L.

As usual, the formula is defined to mean
ş

|Σ1|ˆ|Σ2|ˆ...|Σn| c
˚ω, which amounts to restricting ourselves to

the special case L “ |Σ1| ˆ |Σ2| ˆ . . . |Σn|. We shall define the integral by recursion on the hypergestural
parameters and recalling the Fubini theorem for iterated integration [999, Theorem 3-1]. Let pλ, tq P T |Σ1|λ,
the tangent space at λ P |Σ1|. This argument defines a form c˚ωλ,t P Ź‘pn´1q |Σ2| ˆ . . . |Σn|, and we may

suppose by recursion that Ipλ, tq “ ş
|Σ2|ˆ...|Σn| c

˚ωλ,t is defined, which yields an element of
Ź‘1 |Σ1|. So we

are left with the definition of the integral for n “ 0, 1. If n “ 0, c P L, and ω P FpLq is a function. Then we
set

ş
c
ω “ ωpcq. In dimension n “ 1, there are three cases for Σ1:

1. If AΣ1 “ H, then set
ş
c
ω “ ř

iPVΣ1
ω0pcpiqq “ ř

iPVΣ1

ş
cpiq ω0.

2. Recall from [727, Section 3] that for an arrow a of Σ1, a
´ denotes the subskeleton of Σ1 after taking

away the tail tpaq and all arrows connected to tpaq, and a` denotes the subskeleton of Σ1 after taking
away the head hpaq and all arrows connected to hpaq. In this second case, we suppose that there is
at least one arrow a, but both Aa´ and Aa` are empty. This means that, besides isolated vertices,
there are either a number of loops on a single vertex or a number of arrows between two distinct
points. This is the classical one-dimensional situation for integration on the unit interval. So we defineş
c
ω “ ř

aPAΣ1

ş
a
ω1 ` ş

isolated vertices
ω, where

ş
a
ω1 is the evident classical integration.

3. In the third case, there is an arrow a such that Aa´ Y Aa` ‰ H. We then set the recursive formulaş
c
ω “ ř

aPAΣ1
pş

c|a´ ω´ ş
c|a` ωq, a formula that reminds us of the definition of the face operator ?˝ given

in [727, Definition 3.1].
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64.3 Stokes’ Theorem

For the proof of Stokes’ theorem for hypergestures, we need a technical lemma. It refers to the Escher theorem
operation on chains c P Σ1Σ2 . . . Σn d○L which generates a chain cj P ΣjΣ1Σ2 . . . xΣj . . . Σn d○L.

Lemma 1. If c P Σ1Σ2 . . . Σn d○L is a differentiable n-cube, 1 ď j ď n, a P AΣj
, and λ P |Σ1|, then we have

pcj |a˘q˝pλq “ pcpλqj |a˘q˝,

and therefore also
pcjq˝pλq “ pcpλqjq˝.

The lemma follows from the observation that (1) the face operator yields the same linear combination on
both sides since it acts on the same Σj |a˘, and (2) the evaluation at λ is taken on the same face operator
result.

Theorem 41 (Stokes’ Theorem for Hypergestures) Let c P RΣ1Σ2 . . . Σk d○L be a k-chain in a k-dimensional

locally almost regular manifold L, and let f P Źk´1 L. Thenż
c

d‘f “
ż

Bc
f.

Proof. We can of course restrict to gestural k-cubes. For k “ 1, f is a function on L and c P Σ d○L. Let
first AΣ “ H. Then

ş
Bc f “ ř

iPVΣ
fpcpiqq, whereas ş

c
d‘f “ ř

iPVΣ
pd‘fq0pcpiqq “ ř

iPVΣ
fpcpiqq yields the

same. For the second case, Aa´ YAa` “ H, but since arrows exist, we may focus on the subskeleton bearing
those arrows, the discrete part having been already dealt with. Here,ż

c

d‘f “
ÿ

aPAΣ

ż
a

df

“
ÿ

aPAΣ

ż
Ba

f

“
ÿ

aPAΣ

fpcphpaqqq ´ fpcptpaqqq

“
ż

Bc
f,

this is the classical case. For the third case, Aa´ Y Aa` ‰ H, we haveż
c

d‘f “
ÿ

aPAΣ

ż
c|a´

d‘f ´
ż
c|a`

d‘f

“
ÿ

aPAΣ

ż
Bpc|a´q

f ´
ż

Bpc|a`q
f

“
ÿ

aPAΣ

ż
pc|a´q˝

f ´
ż

pc|a`q˝

f

“
ż

Bc
f

by recursion and since B and ?˝ coincide in dimension one.
The case of higher dimensions runs as follows:
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c

d‘f “
ż

|Σ1|

ż
cpλq

d‘f pλ P |Σ1|q

“
ż

|Σ1|

ż
Bcpλq

f (recursion)

“
ż

|Σ1|

ÿ
j

p´1qj
ż

pcpλqjq˝

f

“
ÿ
j

p´1qj
ż

|Σ1|

ż
pcpλqjq˝

f

“
ÿ
j

p´1qj
ż

|Σ1|

ż
pcjq˝pλq

f (Lemma 1)

“
ÿ
j

p´1qj
ż

pcjq˝

f

“
ż

Bc
f.

This concludes the proof of Stokes’ theorem.
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