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Categories of Gestures over Topological Categories

Summary. We generalize the topological approach to gestures, and culminate in the construction of a
gesture bicategory, which enriches the classical Yoneda embedding and could be a valid candidate for the
conjectured space X in the diamond conjecture [720]; see also Section 61.12. We discuss first applications
thereof for topological groups, and then more concretely gestures in modulation processes in Beethoven’s
Hammerklavier sonata. The latter offers a first concretization of answers to Lewin’s big question from [605]
concerning characteristic gestures. This research is a first step towards a replacement of Fregean functional
abstraction by gestural dynamics.

– Σ –

In Chapter 61, we presented a mathematical model for gestures in music. In that model, a gesture
γ is built from two components: a combinatorial “skeleton” represented by a digraph Γ , and a “body”,
represented by a configuration of continuous curves γpaq : I Ñ X on the real unit interval I with values in a
topological space X, one for each arrow a of the skeleton, and connected according to the digraph’s vertex
configuration. Given two gestures δ, γ, a morphism f : δ Ñ γ is a digraph morphism f : Δ Ñ Γ between the
skeleta Δ,Γ of δ, γ, respectively, which “extends” to a morphism of the respective bodies by a continuous
map defined on the respective topological spaces. See [719] or Section 61.5 for the formal setup. This defines
the category Gesture of gestures, which shares the two crucial properties:

• The set of gestures with skeleton Γ and with body in the topological space X is canonically provided
with a topology deduced from the compact-open topology on the set I@X of continuous maps from I to
X; this topological space is denoted by Γ

ÝÑ
@X. We therefore are capable of defining gestures of gestures,

namely gestures with values in a topological space Γ
ÝÑ
@X. Such gestures are called hypergestures.

• The hypergesture construction entails spaces of iterated hypergestures in the sense that for a sequence
Γ1, Γ2, . . . Γn of skeleta and a topological space X, we have the space Γ1

ÝÑ
@Γ2

ÝÑ
@ . . . Γn

ÝÑ
@X of n-fold

hypergestures over X. We then have the theorem that this iterated construction yields homeomorphic
topological spaces if we permute the order of these skeleta; see Proposition 61 (First Escher Theorem)
and Corollary 1. This result is of primordial significance in the creative gestural interaction in free jazz,
see [721] for a detailed discussion.

Despite these promising first results, gesture theory is still “adolescent”: Here are some questions, which
we have encountered after a first critical analysis of the state of the art:

1. In the definition of a gesture, no allusions to transformations are made. We only deal with continuous
curve systems. However, many examples from practice are more specific, they also involve transformations
generating such curves. The classical and trivial example is a shift from a note x to a note y in a
parameter space X, such as X “ Rm, to fix the ideas. This shift can be seen as a curve c : I Ñ Rm with
cptq “ T tpy´xqpxq, where T d : Rm Ñ Rm is the shift operation by d. This defines a special curve, not just
any continuous data.
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2. A very important point, also related to the previous one, refers to that famous gesture-theoretical question
posed by David Lewin [605, p.159]: “If I am at s and wish to get to t, what characteristic gesture should
I perform in order to arrive there?” A first observation must be made with respect to the general
theoretical background of the question. Lewin poses it in a thoroughly transformational context. His
book deals with transformations, with very classical affine functions on musical parameter spaces (mainly
pitch class spaces). It is however not the only occasion where he opens up a gestural connotation of his
transformational text. In many spots, he uses the word “gesture” and its paradigm, such as dancing
and other motional and emotional metaphors. Lewin’s gestural subtext is manifestly more than intuitive
rhetorics, he means gesture and not just a fancy description of transformational configurations. This is
a deep conflict in Lewin’s musical thinking: He unfolds a valid transformational theory, but the subtext
of gestures is not reflected in this theory. It remains a “dream of continuity while sleeping in the hard
‘cartesian’ bed of abstract algebra”.
In view of this observations, the question reveals its full power: How could we merge the transforma-
tional reality with the dream of continuity? The immediate mathematical response is: “by continuous
transformations!” But the question is not solved with this immediate reply, since it is not clear what
Lewin means by “characteristic”. What is a characteristic gesture in contrast to any gesture? What is
the character that has to be grasped?

3. The domain of continuous curves, I, is not only a topological space, but intrinsically has its topology
derived from the linear ordering among real numbers. This information was not exploited in the previous
theory. In other words: What is the reflection of this ordering relation within the topological space X
that embodies a gesture? Is there any rationale to introduce “directions” in X?

4. Relating more specifically to the existent theory of Chapter 61, we see this general picture: The theory
unfolds in two branches from the basic category Digraph of digraphs. The topological branch unfolds
gestures as embodiments of digraphs within topological spaces, whereas the algebraic branch realizes
digraphs as special linear categories, namely spectroids, enabeling formulaic structures typically related
to commutative diagrams defined by algebraic relations. These ramifications are radically different in-
terpretations of digraphs as basic constructors of mathematical theories. It was conjectured in [720] that
one may construct a universal category X above the two categories of the two branches, Gestoid and
Formoid, which would enable one to embed them as special cases of a comprising big structure.
There are several indications that such a category might exist. The first one is the possibility to rebuild
algebraic structures from gestures, more precisely: to rebuild groups through homotopy theory. It is in
fact well known that any group is isomorphic to a fundamental group of a topological space [993], and
we have more specifically given examples of such spaces for finitely generated abelian groups in [720],
including some musical interpretation; see also Section 78.2.10.2. Intuitively speaking, since hypergestures
generalize homotopy classes, one may say that every group is realized by a group of hypergestures of loop
gestures.
To date, the reverse direction looks less promising. No reasonable way is known to step over to gestures
from abstract categories. A universal space as conjectured in the diamond conjecture should deal with
this problem. Philosophically speaking, it is the problem of reconstructing gestural instances from general
abstract categories.

5. A seemingly different, but in fact very relevant question arises from the deeper understanding of Yoneda’s
Lemma [637]. The lemma states (among other things) that in any category C, the canonical functor
@ : X ÞÑ @X sending an object X to its presheaf @X is fully faithful, which means that the morphisms
f : X Ñ Y in C are in one-to-one correspondence with the morphisms (natural transformations) F :
@X Ñ @Y . This sounds abstract, but it means that we may look at abstract morphisms f : X Ñ Y
in terms of ordinary “old-fashioned” Fregean functions on point sets A@F : A@X Ñ A@Y for each
given argument A. This technique is a big help for reconstructing intuitive human manipulation of
mathematical objects when dealing with abstract categories. It however does not help us reconstruct the
motion, which is intuitively happening, when moving from an argument x of a function f to the value
fpxq. This deficiency is exactly what lies behind Lewin’s question: The transformations are Fregean
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functions and do not automatically involve any kind of motion as suggested by gestural utterances. So
the question would be whether there is a way to embody Fregean functions within the realm of gestures.

The plan of this chapter is this. We first generalize the idea of a gesture from a purely topological setup
to a functorial one, namely the setup of topological categories, i.e., categories internal to the category Top of
topological spaces and continuous maps, replacing the unit interval I by a topological category (see Appendix
Section J.4), the simplex category ∇, and continuous functions by continuous functors. This will be used in
the second step, where we construct gestures from morphisms in abstract categories. This step is a decisive
one towards the incorporation of abstract categories in the framework of gesture theory. It culminates in
the construction of a bicategory of gestures for any category and leads to a first answer to the diamond
conjecture. In a third step we apply these constructions to the important case of the category canonically
associated with a topological group. We also discuss technical tools for overcoming the core problem of the
mirror operation, which does not as such offer a gestural interpretation. In the fourth step, we discuss two
modulations in Beethoven’s Hammerklavier sonata op. 106 in order to apply the gestural approach for a
deeper understanding of these modulations. We shall discuss Lewin’s question about characteristic gestures.
This last discussion reveals the intrinsically dramatic character of gestural interpretations of given scores.

62.1 Gestures over Topological Categories

In this section we set up the framework for a gesture theory that is based upon categories instead of plain
topological spaces. In our setup, a category C is thought of as being a collection of morphisms, together with
two maps d, c : C Ñ C (d for “domain”, c for “codomain”), and we write f : dpfq Ñ cpfq to make these maps
evident. In what follows, we shall start from a given topological category K (see Appendix Section J.4). This
means that the collection of morphisms K is a topological space, and that domain and codomain, as well as
the composition of morphisms (on the morphism sets with the relative topologies), are continuous.

Here are two basic examples of such categories: (1) The simplex category ∇ associated with the unit
interval I: Its morphism set is ∇ “ tpx, yq|x, y P I and x ď yu, dpx, yq “ px, xq, cpx, yq “ py, yq, the
composition of morphisms is obvious, and the topology on ∇ is the relative topology inherited from the
usual product topology on I ˆ I Ă R ˆ R. (2) The graph category associated with any topological space X:
Its morphism set is XˆX, equipped with the product topology, while we set dpx, yq “ px, xq, cpx, yq “ py, yq,
and again, the composition of morphisms is the obvious one. If no confusion is likely, we denote the graph
category of X by X. Clearly, a graph category is a topological groupoid. In particular, the simplex category
∇ is just the subcategory of the graph category I on the pairs px, yq, x ď y.

If K,L are two topological categories, a topological functor F : K Ñ L is a functor, which is also
continuous as a map between morphism sets. This defines the category TopCat (in fact a 2-category,
see [131, Proposition 8.1.4]) of topological categories. In order to distinguish the set of topological functors
F : K Ñ L from the larger set K@L “ CatpK,Lq of all possible functors, we write K©L for TopCatpK,Lq.
If X,Y are topological spaces, then the map which associates with a continuous map f : X Ñ Y the
synonymous continuous functor is fully faithful, so the category of topological spaces is a full subcategory
of the category of continuous categories. Therefore we shall henceforth tacitly identify the category Top
of topological spaces and continous maps with the associated subcategory of topological categories and
continuous functors embedded in TopCat via the graph category associated with a topological space.

With this in mind, if K is a topological category, the set of continuous curves with values in K is
by definition the set ∇©K. Evidently, if K is a topological space, then ∇©K

„Ñ I@K, where I@K is the
set ToppI,Kq of continuous I-parametrized curves c : I Ñ K in the topological space K, the bijection
being induced by the restriction of a functor F : ∇ Ñ K to the canonical diagonal embedding I Ñ ∇
of the objects in ∇. This set ∇©K is the object set of a category also denoted by ∇©K if we take as
morphisms between two curves f, g : ∇ Ñ K the continuous natural transformations ν : f Ñ g, which
means that the defining maps ν : I Ñ K are continuous and satisfy the defining commutative squares for
natural transformations. We do however want it to become a topological category, and this works as follows:
We take the morphism set as being composed by the triples pf, g, νq as above. The topology is defined by
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the following construction. The set of objects of ∇©K is given the compact-open topology induced by the
topologies of ∇ and K, the subset of continuous natural transformations ν : I Ñ K within I@K is given the
topology induced by the compact-open topology on I@K. The triples are viewed as points in the product
topology on ∇©K ˆ ∇©K ˆ I@K. Clearly, this is a topological category. Also observe that in the case
of a topological space K, the compact-open topology of I@K coincides with the topology induced by the
isomorphism ∇©K

„Ñ I@K and the compact-open topology on ∇©K.

Example 70 The set ∇©K can also be enforced for a not a priori topological category K as follows. Take
any set C Ă ∇@K of functors F : ∇ Ñ K into an abstract category (suppose K small, if set theory matters)
and then select the finest topology on K such that all functors of C become continuous. For this construction
one writes ∇©CK to indicate that K is made a topological category via C, and that this is the set of all
continuous curves with respect to this topology.

62.1.1 The Categorical Digraph of a Topological Category

In order to obtain gestures in topological categories, we need to mimic the construction of a spatial digraph
[720], see also Section 61.5. To this end, we consider the two continuous tail and head functors t, h : ∇©K Ñ
K, which are defined as follows. If ν : f Ñ g is a natural transformation between f, g : ∇ Ñ K, then
tpνq “ νp0q : fp0q Ñ gp0q, and hpνq “ νp1q : fp1q Ñ gp1q. So the tail and head maps are not only set maps
but functors. Call this diagram of topological categories and continuous functors the categorical digraph1ÝÑ
K of K. If we forget about the category and just retain the objects of this configuration, we call it the
(underlying) spatial digraph of K. In particular, if Γ is a digraph, the set of morphisms Γ@

ÝÑ
K is the set of

digraph morphisms into the underlying spatial digraph of K. In other words, such a morphism assigns an
object of K to every vertex of Γ and a continuous curve (topological functor) ∇ Ñ K to every arrow of Γ ,
with matching sources and targets. We call then, by definition, a gesture with skeleton Γ and body in K a
morphism of digraphs g : Γ Ñ ÝÑ

K .
If the topological category is a topological groupoid, then we have an easy proposition which guarantees

that one may reverse all arrows, in other words: the categorical digraphs of topological groupoids are self-dual.

Proposition 1. Let K be a topological groupoid. Then we have a duality automorphism ?˚ :
ÝÑ
K

„Ñ ÝÑ
K

˚
onto

the dual digraph
ÝÑ
K

˚
(tail and head functors exchanged), which maps a curve g : ∇ Ñ K to its inverse curve

g˚ : ∇ Ñ K defined by g˚px, yq “ gp1 ´ y, 1 ´ xq´1.

Therefore, for a topological groupoid K, the set Γ@
ÝÑ
K is in bijection with its dual set Γ˚@ÝÑ

K
˚
, and

then with the set Γ˚@ÝÑ
K associated by the duality ?˚. Call the gesture g˚ : Γ˚ Ñ ÝÑ

K associated by this
bijection with a given gesture g : Γ Ñ ÝÑ

K the dual gesture. Intuitively it reverses the arrows of the skeleton
and the morphisms of the body’s curves.

62.1.2 Gestures with Body in a Topological Category

We have constructed the set Γ@
ÝÑ
K of gestures with skeleton Γ and body in a topological category K. In

the previous theory described in Section 61.6, this set was enriched to yield a topological space in order to
enable the iterative construction of hypergestures. In our present setup, we have to construct a topological
category out of the above set. To do so, recall that the special case Γ “Ò (one arrow between two different
vertices) means that we have the topological category Ò @

ÝÑ
K

„Ñ ∇©K of continuous curves c : ∇ Ñ K (with
the above mentioned compact-open topology).

The general case follows from the observation that Γ is the colimit of the following diagram D of
digraphs: We take one arrow digraph Òa“Ò for each arrow a P AΓ (AΓ is the set of arrows of Γ ) and one

1 We have chosen this wording as an analogy with the spatial digraph, where the topological space is now replaced
by the topological category. Although this is a diagram of topological categories, and not just of sets, we believe
that the intuitive wording is not confusing.
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bullet digraph ‚x “ ‚ for each vertex x P VΓ (VΓ is the set of vertices of Γ ). We take as morphisms the
tail or head injections ‚x ÑÒa whenever x “ tpaq or x “ hpaq. Then evidently, Γ

„Ñ colimD. Therefore,
the set of gestures Γ@

ÝÑ
K is bijective with the limit limD@

ÝÑ
K of a diagram of the objects of topological

categories Ò @
ÝÑ
K

„Ñ ∇©K (for the digraph’s arrows) and ‚@ÝÑ
K

„Ñ K (for the digraph’s vertices). But the
maps between these objects of categories stem in fact from functors (those from the categorical graph

ÝÑ
K).

Therefore the limit can be taken as one of a diagram of topological categories. This yields a category, whose
topology is defined as the limit topology of this diagram. This topological category is denoted by Γ

ÝÑ
@K. In

this category, a morphism is the limit of natural transformations between continuous curves and morphisms
between objects of K, the latter representing the end points of the continuous curves.

Example 71 If the topological category K is a topological space, we recover the topological category Γ
ÝÑ
@K

associated with the topological space Γ
ÝÑ
@K in the previous theory of Section 61.6.

The construction of the topological category Γ
ÝÑ
@K automatically enables the machinery of hyper-

gestures known from the previous topological space setup. And again, we have the Escher Theorem for
topological categories of hypergestures:

Proposition 2. (Escher Theorem for Topological Categories) If Γ,Δ are digraphs and K is a topological
category, then we have a canonical isomorphism of topological categories,

Γ
ÝÑ
@Δ

ÝÑ
@K

„Ñ Δ
ÝÑ
@Γ

ÝÑ
@K.

Corollary 1. The action

ÝÑ
@ : Digraph ˆ TopCat Ñ TopCat : pΓ,Kq ÞÑ Γ

ÝÑ
@K

canonically extends to an action (denoted by the same symbol)

ÝÑ
@ : rDigraphs ˆ TopCat Ñ TopCat : pW,Kq ÞÑ W

ÝÑ
@K

of the free commutative monoid rDigraphs, i.e., the monoid of commutative words W “ Γ1Γ2 . . . Γk

over the alphabet Digraph of digraphs (the objects only). It is defined inductively by Γ1Γ2 . . . Γk
ÝÑ
@K “

Γ1
ÝÑ
@ pΓ2 . . . Γk

ÝÑ
@Kq and2 HÝÑ

@K “ K.

With this hypergestural construction, we define the category of gestures with body in K, now also
including the morphisms between their skeleta. It is denoted by GesturepKq. Its objects are the objects of
Γ

ÝÑ
@K for any digraph Γ . Given two such gestures g : Γ Ñ ÝÑ

K,h : Δ Ñ ÝÑ
K , a morphism a : g Ñ h is a pair

a “ pt, νq, consisting of a digraph morphism t : Γ Ñ Δ, and a morphism ν : g Ñ h ˝ t in Γ
ÝÑ
@K, which we

also write as a diagram, but with the natural transformation being denoted by a double arrow in order to
prevent a wrong intuition about a commutative square:

Γ

t

��

g ��

h ˝ t





ÝÑ
K

ν
��

Δ
h

�� ÝÑK

If we are given a second morphism b : h Ñ k, b “ ps, μq, with codomain k : Σ Ñ ÝÑ
K , then the composition

b ˝ a : g Ñ k is defined by b ˝ a “ ps ˝ t, μ|t ˝ νq, where μ|t means that the natural transformation μ from h
to k ˝ s is “restricted” by the digraph morphism t.

The category GesturepKq therefore contains two types of subcategories: On the one hand the (comma
category) topos GpKq “ Digraph{ÝÑ

K Ă GesturepKq of gestures with body in K, the morphism being the
digraph morphisms of gesture skeleta commuting with the domain and codomain gestures. On the other

2 H denotes the empty word.
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hand, we have, for each skeleton Γ , the topological category Γ
ÝÑ
@K Ă GesturepKq. Finally, for each digraph

morphism t : Γ Ñ Δ, we have a canonical continuous restriction functor |t : ΔÝÑ
@K Ñ Γ

ÝÑ
@K. Here is the

overall picture:

GpKq
��
topos

��
GesturepKq

Δ
ÝÑ
@K

��

��

Γ
ÝÑ
@K

��

topological category
��

Δ
ÝÑ
@K

|t
continuous

�� Γ
ÝÑ
@K

62.1.3 Varying the Underlying Topological Category

For a continuous functor F : K Ñ L between topological categories, we have a canonical morphism of
categorical digraphs

ÝÑ
K Ñ ÝÑ

L , which sends vertices to vertices, namely by the given functor F : K Ñ L,
and sends curves f : ∇ Ñ K to curves F ˝ f , whereas continuous natural transformations ν : f Ñ g
are sent to the continuous natural transformations F ˝ ν : F ˝ f Ñ F ˝ g. Call this morphism a spa-
tial (categorical) digraph morphism and denote it by

ÝÑ
F . This morphism canonically induces a functor

GesturepF q : GesturepKq Ñ GesturepLq, which is compatible with the above subcategories as shown by
the following commutative diagram:

GpKq
��

��

GpF q �� GpLq
��

��
GesturepKq GesturepF q �� GesturepLq

Γ
ÝÑ
@K
��

��

Γ
ÝÑ
@F �� Γ

ÝÑ
@L
��

��

While the functor Γ
ÝÑ
@F is continuous, the functor GpF q has a number of well-known properties of

functors between topoi [639, Ch. IV.7]. The first of these properties is that GpF q is right adjoint to the
base change functor ˆÝÑ

F : GpLq Ñ GpKq which associates with a gesture g : Γ Ñ ÝÑ
L the fibre product

gesture g ˆ ÝÑ
F : Γ ˆÝÑ

L
ÝÑ
K Ñ ÝÑ

K . Furthermore, the base change ˆÝÑ
F is a logical functor (i.e., it preserves all

topos-theoretical constructs, such as sub-object classifiers, finite limits and colimits, and exponentials, and
has also a right adjoint). Paired with its right adjoint ˆÝÑ

F ˚, the base-change functor defines a geometric
morphism GpKq Ñ GpLq [639, Ch. VII.1]. We shall come back to these facts later in Section 62.2.4, when
discussing the gestural part of Yoneda’s Lemma.

62.2 From Morphisms to Gestures

To conceive of a general method for generating gestures from morphisms f : X Ñ Y in abstract categories,
we start with a heuristic consideration. Suppose that we are working in a musical parameter space R2, which
we endow with the structure of the Gaussian plane of complex numbers. Take a rotation eiθ : x ÞÑ x.eiθ

on R2. In linear algebra, this morphism f “ eiθ is an encapsulated function, which has no relation to a
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gesture, but acts by Fregean “teleportation” on x. We are stressing this fact since in contradiction to the
algebraic reality, our intuition of a rotation by angle θ is different in that we imagine a continuous rotational
movement of x around the space origin until it reaches the final position x.eiθ. This process is visualized by
the trace of x while rotating, i.e., by a continuous curve cx : I Ñ R2 : t ÞÑ x.eiθt on a circle of radius |x|.
Each intermediate position x.eiθt corresponds to a factorization f “ eiθp1´tq ˝ eiθt “ f1´t ˝ ft of f . In other
words, the curve c : I Ñ GL2pRq is a curve of factorizations of the given morphism f . This restatement of
the gesture c in terms of factorizations means that c is viewed as being an “infinite” factorization insofar as
the factors are parametrized by the curve parameter t P I.

This enables us to rethink the basic elements of a gestural interpretation of morphisms in abstract
categories. To this end, we fix a morphism f : X Ñ Y in a category C. The category rf s of factorizations of
f is defined as follows. Its morphism are the triples pu, g, vq of morphism u : X Ñ W, g : W Ñ Z, v : Z Ñ Y
such that v ˝g ˝u “ f . The domain map is dpu, g, vq “ pu, IdW , v ˝gq, while the codomain map is cpu, g, vq “
pg ˝ u, IdZ , vq. Suppose we have two morphisms pu, g, vq, pr, h, sq such that cpu, g, vq “ dpr, h, sq, h : Z Ñ Q,
then their composition is the morphism pu, h ˝ g, sq, as shown in the following commutative diagram:

X

u

��
r

�� 


W

g
��

��

Z
h

��

v

��

Q

s
		

Y

This construction entails a number of evident facts: To begin with, the category rf s has the initial object
pIdX , IdX , fq and the final object pf, IdY , IdY q. Moreover, if k : Y Ñ E and l : A Ñ X are morphisms, then
there are two functors rk˝s : rf s Ñ rk ˝ f s and r˝ls : rf s Ñ rf ˝ ls, respectively, sending pu, g, vq to pu, g, k ˝ vq
and to pu ˝ l, g, vq, respectively (keeping the above notations). If C is a topological category, then so is rf s,
if it is viewed as a subset of C3. Also, the two functors k˝, ˝l are continuous.

For any two objects X,Y in C we now build the disjoint sum rX,Y s “ š
fPX@Y rf s of the factorization

categories rf s (including the coproduct of topologies on the rf s). Therefore ∇@rX,Y s “ š
fPX@Y ∇@rf s,

and, if we endow rX,Y s with the coproduct topology, also ∇©rX,Y s “ š
fPX@Y ∇©rf s. The above con-

struction of functors from morphisms also works in this coproduct situation, and also mutatis mutandis
for topologies on these categories, i.e., conserving the above notations, we have two continuous functors
rk˝s, rX,Y s Ñ rX,Es and r˝ls : rX,Y s Ñ rA, Y s, and their associated curve functors ∇©rk˝s : ∇©rX,Y s Ñ
∇©rX,Es and ∇©r˝ls : ∇©rX,Y s Ñ ∇©rA, Y s.

Example 72 If f “ IdX , then rf s is the category of sections and retractions of X, since its objects are the
triples pu, Id, vq such that v ˝ u “ IdX .

Example 73 The category C is defined by a topological group G, i.e., as a category, has one single object
and the group elements as morphisms, then rf s „Ñ G, where G is the graph category of the topological space
G. More explicitly, the morphisms of rf s are the triples pu, g, vq of elements of G such that v ˝g ˝u “ f . Since
any two of them are free and determine the third, we take the morphisms as being the pairs pd, cq P G ˆ G,
where we have u “ d, g “ c ˝ u´1, v “ f ˝ u´1 ˝ g´1. The topology is the product topology of G ˆ G.

For example, if C is defined by the cartesian product group G “ Rn ˆ ÝÑ
GLnpRq of the additive group Rn

and the general affine group
ÝÑ
GLnpRq, rf s „Ñ Rn ˆ ÝÑ

GLnpRq, the topological space category of pairs px, gq of
points x in Rn and affine transformations g : Rn „Ñ Rn. We then have a continuous (group action) functor
ε : Rn ˆ ÝÑ

GLnpRq Ñ Rn : px, gq ÞÑ gpxq into the topological category Rn deduced from the group Rn.
Therefore, from a gesture g : Γ Ñ Rn ˆ ÝÑ

GLnpRq, we deduce a gesture ε ˝ g : Γ Ñ Rn. The latter is a gesture
whose curves are just continuous curves in real n-space, but they are not arbitrary, since they are induced
by curves of points and linear transformations. This very special case reveals the power of our construction
of factor categories: They include the concept of gestures of transformations of points, and not only abstract
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topological gestures. But they are much more powerful since a gesture in Rn ˆ ÝÑ
GLnpRq might well specify

curves that are more general than just curves of transformations, but let us make this more precise.
As in our initial example in R2 of a rotational curve cptq “ px, eiθtq, we may vary the transformation

and fix the point x, but we may as well just take an arbitrary continuous curve dptq “ pxptq, IdR2q in R2 and
let the transformation remain the identity. More generally, we may vary both, the point and the curve, and
consider a curve eptq “ pxptq, gptqq in R2 ˆ ÝÑ

GL2pRq. This opens the concept of a gesture, whose curves are
characteristic in that they may pertain either to transformational constructs, to purely topological rationales,
or to both. Such a setup works for any (topological) group action on a given module, such as, for example,
the musically relevant action of the general affine group

ÝÑ
GLpZ12q on the pitch class group Z12 (with the

discrete topology, for example).

62.2.1 Diagrams as Gestures

Example 72 suggests that one should take a closer look at the category of factorizations for module categories,
since sections and retractions define direct summands in the abelian categories. To this end, we first construct
certain standard gestures. To begin with, let g : W Ñ Z be any morphism in a category C. Then there is a
functor Œ pgq : ∇ Ñ C with

Œ pgqpx, yq “

$’’’&’’’%
IdW if x “ y “ 0,

g if 0 “ x ă y,

IdZ if 0 ă x.

(62.1)

This construction method enables the construction of gestures from diagrams in categories as follows.
Suppose that a category K is small. Then take the topology on K such that all functors c : ∇ Ñ K are
curves, i.e., we take ∇©∇@KK. Consider K as a digraph with the two maps d, c : MorpKq Ñ ObpKq from
the morphism set MorpKq to the object set ObpKq. Then we have the following morphism of digraphs
Œ: K Ñ ÝÑ

K which sends a morphism f : X Ñ Y to the curve Œ pfq with tail X and head Y . Therefore,
if we have any diagram δ : Δ Ñ K in the category K, we may compose it with Œ and obtain a gesture
Œ ˝ δ : Δ Ñ ÝÑ

K , which we denote by
ÝÑ
δ and call the discrete gesture associated with the diagram δ. This

evidently extends to a discrete gesture functor
ÝÑ
? : Δ@K Ñ Δ@

ÝÑ
K from the category of diagrams and natural

transformations to the category of gestures of these spaces.

62.2.2 Gestures in Factorization Categories

In our context, a morphism pu, g, vq in a factorization category rf s with
X

u

��
W

g
�� Z

v
��

Y

yields a curve Œ pu, g, vq : ∇ Ñ rf s. This construction can be iterated in the sense that for any sequence
g. “ pgi : Wi Ñ Wi`1qi“0,1,...m´1 of length m of morphisms in C, there is a functor Œ pg.q : ∇ Ñ C where
the restriction Œ pg.q|∇ri{m,pi`1q{ms Ñ C to the full subcategory ∇ri{m,pi`1q{ms “ tpx, yq|i{m ď x ď y ď
pi`1q{mu of ∇ is the above one-step construction for gi : Wi Ñ Wi`1. This entails that we may also consider
curves Œ pu, g., vq associated with the chain pu, g., vq of morphisms in rf s:
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X

u

��
W0 g0

�� W1 g1
�� W2 g2

�� . . . Wm´1

gm´1 �� Wm

v

��
Y

Given two such curves Œ pu, g., vq,Œ pu, h., vq of the same length m, the second one involving the
morphisms hi : Zi Ñ Zi`1 and u1 : X Ñ Z0, v

1 : Zm Ñ Y , a morphism ν. :Œ pu, g., vq ÑŒ pu, h., vq is a
natural transformation consisting of a chain of morphisms ν. “ pν0 : W0 Ñ Z0, . . . νm : Wm Ñ Zmq such
that we have this commutative diagram:

X

u

��

u1

��

W0 g0
��

ν0

��

W1 g1
��

ν1

��

W2 g2
��

ν2

��

. . . Wm´1

gm´1 ��

νm´1

��

Wm

νm

��

v

��

Z0
h0

�� Z1
h1

�� Z2
h2

�� . . . Zm´1

hm´1 �� Zm

v1
��

Y

62.2.3 Extensions from Homological Algebra Are Gestures

Now, if we consider the special case where C “ RMod, the category of left R-modules and linear homomor-
phisms over a commutative ring R, then we may take the factorization category r0s of the zero homomorphism
0 : 0 Ñ 0 on the zero module. We may further consider two exact sequences, one g. of modules W., and
one h. of modules Z., to generate curves, which we should call exact curves. Then the morphism ν. is just a
morphism between exact sequences, which means that the category of exact sequences is a canonical subcat-
egory of the category of curves in r0s. In particular, if we look at such short exact sequences (length 2), and
we restrict ourselvesto morphisms between sequences of common initial module W and terminal module Z,
we obtain the groupoid of exact sequences, and the isomorphism classes define the classical set ExtRpZ,W q
of congruence classes of extension of Z by W [635]. Consequently, we have this fact:

Fact 22 The categories of factorization are a natural extension of structures from homological algebra en-
countered, for example, in the construction of ExtnRpZ,W q.

62.2.4 The Bicategory of Gestures

Suppose that for two morphisms f : X Ñ Y, g : Y Ñ Z in a category C we are given topologies on the
factorization categories rf s, rgs such that the two functors rg˝s : rf s Ñ rg ˝ f s, r˝f s : rgs Ñ rg ˝ f s are
continuous (e.g. if C is topological). Write Grf s for the gesture topos Gprf sq. For such morphisms, we denote

the categorical digraphs
ÝÑrf s by

ÝÑ
f , and the corresponding morphisms of categorical digraphs, such as the

ones derived from g˝ and ˝f , are denoted by ÝÑg˝ and
ÝÑ̋
f . We therefore have two morphisms of categorical

digraphs ÝÑg˝ :
ÝÑ
f Ñ ÝÝÑ

g ˝ f and
ÝÑ̋
f : ÝÑg Ñ ÝÝÑ

g ˝ f , which induce the two canonical functors between topoi,
rg˝s : Grf s Ñ Grg ˝ f s and r˝f s : Grgs Ñ Grg ˝ f s. Taking coproducts on the skeleta, this induces a functor
between topoi,

b˚ : Grgs ˆ Grf s Ñ Grg ˝ f s,
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which maps a pair γ : Γ Ñ ÝÑg , φ : Φ Ñ ÝÑ
f of gestures to the gesture

ÝÑ̋
fγ \ ÝÑg˝φ : Γ \ Φ Ñ ÝÝÑ

g ˝ f.

On the other hand, the two base changes ÝÑg˝ and
ÝÑ̋
f induce3 base change functors ˆÝÑg˝ : Grg ˝ f s Ñ Grf s

and ˆÝÑ̋
f : Grg ˝ f s Ñ Grgs, which we combine to get the base change functor

b˚ : Grg ˝ f s Ñ Grgs ˆ Grf s.
By use of routine topos-theoretical arguments, we have this result (recall from [639] the definition of a
geometric morphism of topoi):

Theorem 1. Given the above conditions and notations,

(i) the base-change functor b˚ is a logical functor, i.e., it conserves all topos-theoretical structures, subobject
classifier, finite limits, colimits, and exponentials.

(ii) The coproduct functor b˚ is left adjoint to b˚, and
(iii) there is functor a : Grgs ˆ Grf s Ñ Grg ˝ f s, which is right adjoint to b˚ such that the pair pa, b˚q is a

geometric morphism of topoi.
(iv) If f or g is the identity, then b˚ is isomorphic to the identical functor. If h : Z Ñ W is a third morphism,

also sharing the above properties of f, g, then the functor b˚ is associative up to isomorphisms.

Adding up all the factorization categories relating to morphisms f : X Ñ Y , we define the coproduct
category X�Y “ š

fPX@Y Grf s. If we are given a second morphism g : Y Ñ Z with the above conditions
still holding, then we have a functor deduced from the above functor b˚, notated with capital letters:

B˚ : Y �Z ˆ X�Y Ñ X�Z (62.2)

It is associative up to isomorphisms and has the identity gesture H Ñ ÝÝÑ
IdX for each object X. If these

constructions work for all objects and morphisms (e.g. if C is topological), then the composition functors
(62.2) define a bicategory [637], the gesture bicategory of C denoted by C�. This is nearly a 2-category, except
that composition is only associative up to isomorphisms. This being so, the “morphic” half of Yoneda’s
Lemma would consist in characterizing the functors (62.2)—or else the geometric functors between the topoi
Grgs ˆ Grf s and Grg ˝ f s—which stem from composing morphisms in the original category C. This would
enable us to think of morphisms as being represented by gestures and to calculate all of the category’s
operations on the level of gestures. Given that the classical “objective” Yoneda Lemma already takes care
of the reconstruction of point sets from abstract objects by the transition from C to C@, this hypothetical
“morphic” Yoneda Lemma would give us back the full gestural intuition on the level of pC@q� while working
in abstract categories.

62.2.5 Entering the Diamond Space

In view of the preceding results, we have set up a concept space, as made explicit in the gesture bicategory
construction C�, which embraces the topological gesture theory of our former work [719] as well as the
diagram theory backing the network approach from Lewin’s and Klumpenhouwer’s transformational theory,
but also basic constructions from homological algebra, such as congruence morphisms between extensions
in abelian categories. The philosophy of this approach is that the concept of a categorical gesture, although
completely in the vein of gestural reflections fostered by musical requirements, is flexible enough to include
the extremal cases of “discrete” and properly “continuous” gestures as well. The relation between these two
cases being that continuous gestures are a kind of limit of factorization when the factors are becoming more
and more “fine grained” until they are parametrized by continuously varying real parameters; see Figure
62.1 for an intuitive image of factorization granularity. We therefore argue that this space construction is a
good candidate for our conjectural space X as described in the Diamond Conjecture [719, Section 9], see also
Section 61.12. At this stage, we do not however yet state that this space X has been found since a number
of tests have to be performed in order to learn about power vs. deficiencies of the present approach.

3 Recall that the product in a comma category is the fiber product in the original category.
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Fig. 62.1. Factorization on ∇ from one “discrete” step Œ pgq through a finite series of (discrete) factors to the
“limit” of a continuous curve of factors.

62.3 Diagrams in Topological Groups for Gestures

In this section, we want to make explicit the transition from the type of diagrams used in transformational
theory to gestures. Of course, we are not dealing here with the above embedding of diagram categories
into gesture categories, but want to transform discrete gesture curves into continuous curves that enable an
infinity of intermediate stages between the starting and the ending position of diagrammatic arrows.

To this end we first discuss the gestures with values in the factor category discussed above, namely
starting from the topological group G “ ÝÑ

GLnpRq, so that rf s „Ñ ÝÑ
GLnpRq, the topological space category of

affine transformations g : Rn „Ñ Rn, whose morphisms are parametrized by pairs pd, cq P G ˆ G of group
elements, the transition morphism g : d Ñ c representing the transformation g “ c ˝ d´1. We then know
that the data of a curve δ : ∇ Ñ G ˆ G is equivalent to its diagonal restriction to the objects I � ∇, i.e.,
to a continuous map δI : I Ñ G, where G � G ˆ G identifies G with the diagonal in G ˆ G by the diagonal
embedding (much as I is in ∇). Since I is connected, the image of δI must be either in the connected

component G` “ ÝÑ
GL

`
n pRq or in the complementary connected component G´ “ ÝÑ

GL
´
n pRq of G, whereÝÑ

GL
`
n pRq (ÝÑ

GL
´
n pRq) is the group (coset) of affine transformations with linear part in the subgroup GL`

n pRq Ă
GLnpRq (in the coset GL´

n pRq Ă GLnpRq) of transformations with positive (negative) determinant. Therefore
any gesture with body in G ˆ G with connected skeleton must have all its object curves either in G` or in
G´.

Therefore connectedness of I implies that we cannot connect transformations of different determinant

signatures, e.g., the identity IdG for G “ ÝÑ
GL2pRq and the mirror transformation m “

˜
´1 0

0 1

¸
. This is

a major problem for the continuous gestualization of discrete gestures. In fact, if we take the morphism
IdG Ñ m, there is no continuous curve starting in IdG and ending in m. Why should this be required? If we
had such a curve, αI : I Ñ G, with αIp0q “ IdG, αIp1q “ m, we could use it to generate a continuous curve
of points αI .xptq “ αIptqpxq P R2 by evaluation of the curve at a given initial point x P R2 and parameter
t P I as explained in Example 73.

In order to understand the specific problem which appears with mirroring, let us look at the generators
of G “ ÝÑ

GL2pRq and their musical meaning (see Section 8.3 for a detailed discussion). They are (1) translations
T p1,0q by one unit in horizontal direction, (2) all positive dilations of the first coordinate, (3) the above mirror

m, (4) the horizontal transvection t “
˜
1 0

1 1

¸
, and the 180o rotation R “ ´Id. For all these generating

transformations gi, except for the mirror m, there is a continuous curve δi : I Ñ G` starting at IdG and
ending at gi. This means that all transformations g P G, which can be written as products of these generators
without m, have a continuous curve δ : I Ñ G` such that δp0q “ IdG, δp1q “ g. Therefore, evaluating at
a point x P R2 yields curves δ.xptq “ δptqpxq P R2 that are induced by curves of transformations. This was
also used in the component BigBang Rubette for composition in the Rubato Composer software environment
[729]; see also Chapter 69. But the case of m does not work as is; in other words, mirroring is a non-gestural
operation. In order to pass to the mirror of an object, one has to traverse the singular state of a flattened
object in the mirror. The change of determinant sign is the hard point, so we are not in a state of overcoming
this problem within the given space. We do not want to delve into the deep and metaphorically loaded topic
of the mirror, but it is clear that the mystery of the mirror transformation must relate to the fact that there
is no gesture, no continuous transition from the original to the mirror image. Vampires have no reflection in



948 62 Categories of Gestures over Topological Categories

mirrors, and superstition is abundant with mirrors. Some “imaginary process” must be happening when we
switch to the mirror world.

There is a well-known intuitive solution of the mirror problem, which you may find whenever you ask
a person to describe what movement is the reflection of a plane figure at a line in the plane: He would
immediately make that movement the one of leafing a book’s page. Leafing turns the original figure to its
mirrored version. The point is that instead of mirroring x to ´x, it lifts it into a new dimension and rotates
the point in this dimension until it comes down to ´x. This procedure is more accurately described by
complexification of real vector spaces. In the one-dimensional case R, the mirroring mpxq “ ´x is embedded
in the Gaussian complex number plane C

„Ñ R2. Here, we have the rotation defined by multiplying x by
the complex unitary number eiθ. The image x.eiθ is the vector x looking in direction of eiθ. If we consider
the curve γptq “ eiπt P GL2pRq, t P I, then the evaluated curve γ.xptq “ γptqpxq “ x.eiπt rotates x in a half
circle to ´x. This means that the mysterious mirroring has been demystified by an inoffensive gestural curve
through complex numbers. And halfway on that curve we have its imaginary position γ.xp1{2q “ i.x, the
purely imaginary position of the curve, where its real projection vanishes.

This means that complex numbers solve the problem of the real singularity by lifting the mirror move-
ment orthogonally to the real axis in an imaginary realm. It might be that one reads our description as a
mystification of complex numbers, but the resolution of the negation x ÞÑ ´x by a rotation in a new dimen-
sion is no overinterpretation of complex numbers. A strong argument for this “gestural” reinterpretation of
negation is in fact provided by the proof of the fundamental theorem of algebra using fundamental groups in
the Gaussian plane, see [569], for example. The fundamental theorem of algebra is the most important single
thorem of algebra whose proof can be based upon the thoroughly gestural toolbox of algebraic topology.

This being so, if we are given any transformation h P ÝÑ
GLnpRq, then we may complexify it, which means

that we write h “ T s ˝η, s P Rn, η P GLnpRq and then tensorize it with the complex number eiθ P GL2pRq as
above and obtain the transformation hbeiθ “ T s˝pηbeiθq : RnbC Ñ RnbC : xby ÞÑ sb1`ηpxqby.eiθ. The
determinant of a tensor product η bκ of linear maps η P GLupRq, κ P GLvpRq being detpηqvdetpκqu, we have
detphbeiθq “ detpηq2detpeiθqn “ detpηq2p1qn ą 0. This means that complexification of any transformation h

with the rotation eiθ in C turns it into a transformation hb eiθ P ÝÑ
GL

`
2npRq. In particular, if γ : I Ñ ÝÑ

GL
`
n pRq

is a positive curve, then we obtain a curve γ b eiπ? : I Ñ ÝÑ
GL

`
2npRq : t ÞÑ γptq b eiπt such that its value starts

at t “ 0 with γp0q b 1 and ends at t “ 1 with γp1q b ´1 “ ´1γp1q b 1. If n is odd, this yields a negative
determinant transformation ´1γp1q.

For even n, this does not work directly, but one may then select a direct decomposition Rn “ V ‘W with
odd dimension dimpW q. Then we take again RnbC “ V bC‘WbC, but this time apply the complex rotation

only to the second summand W b C. Denote this restricted rotation by eiπ?|W . Then if γ : I Ñ ÝÑ
GL

`
n pRq is

a positive curve (positive determinants), we obtain a curve γ b eiπ?|W : I Ñ ÝÑ
GL

`
2npRq : t ÞÑ γptq b eiπt|W

such that its value starts at t “ 0 with γp0q b 1 and ends at t “ 1 with γp1q b ´1|W “ ´1|Wγp1q b 1,
where the latter means that ´1 is only applied to the subspace W coordinates, and thus yields a negative
determinant transformation. This second case is not as invariant as the first one for odd n since one has
to select a direct decomposition Rn “ V ‘ W , but the variety of choices offers a strong tool for turning
general curves of transformations with positive determinants into gestural curves of opposite determinant
signature. To terminate these constructions on the curve level, we add the reversed construction, which takes

the positive curve γ : I Ñ ÝÑ
GL

`
n pRq, but tensorizes it with the reversed complex rotation, i.e., γ b eiπp1´?q in

the odd-dimensional case, and γ b eiπp1´?q|W in the even-dimensional case.
This construction is easily generalized to the level of general gestures. To do so, we have to display

the signatures of all the vertices of the gesture’s skeleton Γ , since we want to define curves that change the
determinant sign via the preceding complexification technique. More precisely, we suppose that we are given
a signature for each vertex, which means that we have a digraph morphism σ : Γ Ñ Sig, where Sig is the
complete digraph

Sig “ a´´ ��

´`
�� ‘ ``��

`´
��
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with two vertices ‘,a (positive, negative). The fiber of a is the set of vertices with negative determinant,
the complementary fiber of ‘ is the set of vertices with positive determinant. This means that the arrows

mapping to a ´` �� ‘ are those from a transformation with negative determinant to a transformation with
positive determinant, etc. The complexification tools are only needed for the `´ and ´` arrows. The `´
case refers to the maps γ b eiπ? or γ b eiπ?|W according to the dimension being odd or even, whereas the
´` case refers to the maps γ b eiπp1´?q or γ b eiπp1´?q|W . The case `` takes just the positive curves as
is, tensored with the identity on C, while the case ´´ takes a negative determinant copy of the positive
curve. It is not relevant which negative copy we take, as long as the bijection GL`

n pRq „ GL´
n pRq of negation

is fixed once for all. The essential point is that all these complexified transformations start and end on
transformations that leave the real subspace Rn b 1 invariant. The intermediate transformations however
map Rn b 1 to a more general subspace of Rn b C as shown in Figure 62.2:

Fig. 62.2. The “leafing” transformation of a point in the original real space into complexified space as a function of
the complex factor, eventually producing a change of the determinant’s signature.

With this general method in mind, we now have to deal with the transformation of a discrete curve
corresponding to a transformation pu, g, vq in rf s. In view of the above complexification method, we may
concentrate on the case of u “ Id, detpvq ą 0. Our plan is to construct a continuous curve of transformations

γ : I Ñ ÝÑ
GL

`
n pRq from Id to v. The shifting part being trivial, we may focus on v P GL`

n pRq. From matrix
theory it is well known that GLnpRq is generated by subgroups isomorphic to GL2pRq. So we can write v
as a product of transformations vi affecting only two coordinates. This reduces the problem to n “ 2. We

also have v “
˜
detpvq 0

0 1

¸
.s, s P SL2pRq. But SL2pRq is generated by transvections upbq, b P R, and the 180o

rotation w [578, XI, §2]:

upbq “
˜
1 b

0 1

¸
, w “

˜
0 1

´1 0

¸
which both are endpoints at t “ 1 of countinuous curves δptq “ uptbq, ρptq “ eiπt, the latter being the rotation
as defined by the Gaussian plane. Therefore the curve

vptq “
˜

p1 ´ tq ` t.detpvq 0

0 1

¸
.δptq.ρptq

does the job in two dimensions. In short: GL`
n pRq is arcwise connected, and we have just given a constructive

proof thereof involving standard generators. In short, given any v P GL`
n pRq, we find a continuous curve

vp?q : I Ñ GL`
n pRq with vp0q “ Id, vp1q “ v. Together with the signature changing tools discussed above

(using the signature morphism σ), we have this theorem:

Theorem 2. If δ : Γ Ñ ÝÑ
GLnpRq is a diagram of (non-singular) affine transformations on Rn, then there is

a gesture δbC : Γ Ñ rIdRnbCs, whose morphisms for the extremal ∇-morphisms p0, 1q of the curves δbCpaq
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of arrows a in Γ are the transformations pIdRnbC, δpaqq. The morphisms between curve parameters s and t,
s ď t, are the factorization quotients

δ b Cpaqptq ˝ pδ b Cpaqpsqq´1.

This is not a deep theorem, but it enables the extension of discrete gestures associated with diagrams
in real n-space gestures to continuous gestures that may have to traverse complexification but start and end
at the given real transformations. This is a general theorem, which just guarantees the said extensibility and
stresses the fundamental role of complex numbers. But when thinking about Lewin’s question concerning
the characteristic gestures, although this might be the generic, it is not necessarily the characteristic one in
n-space. We shall discuss this issue in Section 62.4.3.

Coming back to the evaluation map ε from Example 73, we also have an evaluation functor ε : Rn bCˆÝÑ
GLnpRq b C Ñ Rn b C on topological categories. When we take a gesture γ : Γ Ñ Rn b C ˆ ÝÑ

GLnpRq b C, ε
yields a gesture of points in Rn b C, and if the initial and terminal values of the curves of transformations
of γ leave Rn invariant, the gestures in Rn b C also start and end in real points.

Example 74 A prototypical example would consist of a network of points in Rn connected by affine trans-

formations, i.e., a diagram of points and transformations δ : Δ Ñ Rn, such that for an arrow x
a �� y in Δ,

we have a non-singular affine transformation δpaq of points δpxq, δpyq P Rn with δpaqpδpxqq “ δpyq. Focusing
on the transformations, one therefore has a diagram as in Theorem 2, which has all its curves starting at
the identity and ending on the different δpaq for arrows a of δ. So on transformations, the diagram is a star-
shaped one with the identity as center and radiating to each of the δpaq. However, on the different starting
points δpxq, the star is uncoupled in order to be able to transform all the δpxq in the particular curves that
traverse complex spaces when determinant signs are changed to between 1 and the signature of detpδpaqq.
This means that we are given pairs pδpxq, δ b Cpaqq with variable transformations (i.e., curves) and fixed
points that are transformed according to the transformation curves by t ÞÑ δ b Cpaqptqpδpxqq. The straight-
forward generalization is to define non-constant curves in the points, too, i.e., t ÞÑ δbCpaqptqpδpxqptqq, which
comprises the two extremal cases of the purely transformational curves and the purely “topological” point
curves with constant transformation, usually the identity.

Example 75 If S1 denotes the unit circle group, which we may view as an extension of the pitch class group,
consider the topological group G “ TS1 ¸ Z2 generated by translations T t, t P S1, and the reflection ´Id
(the generator of Z2). This group has two connected components, namely G` “ TS1

and G´ “ TS1

. ´ Id.
As for the general affine group, this group defines a category with one object, and we also have rIds „Ñ G,
the topological space category with morphisms pd, cq P G ˆ G representing the quotient g “ c ˝ d´1. As
for the general affine group, the morphisms Id Ñ T t can easily be extended to continuous curves, while
for Id Ñ T t. ´ Id this is not possible for the same reason as before. We may however resolve the conflict
by again adding a dimension and embedding S1 in the sphere S2 as one of its meridian circles. What was
previously done by the rotation in C now works by the half circle rotation around the polar axis or another
axis through the embedded S1.

62.4 Modulations in Beethoven’s “Hammerklavier” Sonata op.106/Allegro: A
Gestural Interpretation

The following section is not the first occasion where gestural aspects of Beethoven’s compositions have been
discussed; see Robert S. Hatten’s study [446], or Jürgen Uhde’s and Renate Wieland’s books [1068, 1067],
for example. Our discussion however differs from earlier investigations in these two points:

• To begin with, we are applying the previous categorical theory of gestures and do not stick to the more
metaphorical and intuitive usage of the term “gesture” in previous studies. Of course, this is also a risky
enterprise since many statements, which may be acceptable or valid on those more intuitive levels of
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conceptualization, might become questionable, dubious or even untenable when made mathematically
explicit.

• Second, we focus on very delicate modulatory processes in the Allegro movement of Beethoven’s op.106,
see Section 28.2 for a detailed discussion. These are known to have quite non-standard appearances, partly
breaking with standard combinations, such as the modulation B5-major Ñ G-major to the secondary
theme in the exposition, where the modulation to the dominant is expected by standard sonata theory
[659], and partly because some so-called “catastrophe” modulations deviate from standard modulation
processes altogether.

We shall not reconsider a basic discussion of these modulatory processes, but rely on the established
methods and results as exposed in [714, ch.28.2]. However, the gestural aspects of these modulations will
open considerations of dynamical nature that do not rely solely on these methods and results. We therefore
hope that the following discussion is also useful for a basic discourse on gestures in modulatory processes.

Why is this a desirable topic? The argument is that a purely structural analysis of modulatory processes
(among others) may fail to capture the energetic understanding, the dramatic tension of the musical deploy-
ment. We are not claiming here that gestural analysis is comprising all such aspects, but it seems worthwhile
to approach those energetic and dramatic tensions by gestural dynamics since the theory of gestures is an
ideal mediator between static structures and energetic processes without having to recur to psychological,
narrative, or other extra-musical categories. Our hope is nevertheless that gestural considerations might
eventually converge to a fairly complete understanding of what is called the “dramatic content” of absolute
music, such as Beethoven’s late works.

One word about the intrinsic usage of gestures in the following analysis, as opposed to transformational
structures. Is it really necessary to work with gestures? Couldn’t one as well restate most if not all those
gestural reflections in terms of transformational (hyper)networks? It is true that some of the following gestures
(e.g. the gestures αi and α1

j shown in Figure 62.5) seem to be “overdressed” versions of transformational
networks. There are (at least) three arguments against such a suspicion:

• Gestures are completely different objects from networks. Intuitively speaking, networks only deal with
start and end points of gestures. Also, hypergestures are generalized homotopies, which networks are not.
Many of the following hypergestures are intrinsically continuous constructions, which require different,
namely topological, technical tools than transformational networks, which are essentially built upon affine
algebraic transformations. This is particularly dramatic in the context of the complexification gestures,
which move as curves out of the real spaces into complex superspaces.

• Lewin’s own unsolved dilemma is that he imagined continuous movements (his dancers!), but worked
with agebraic (Fregean) transformations. What we offering here (and in the paper [720] with Moreno
Andreatta) is nothing less than the one-to-one construction of Lewin’s dreams in terms of precise math-
ematics.

• The very language of gestures opens a style of thoughts and a paradigm of understanding that the
transformational paradigm would not have offered. In mathematics, the modern conceptual linear algebra
opened so many new ideas that would never have been conceived of in terms of old-fashioned matrix
calculus. Of course, once you have the idea, it is possible to translate it back into the old language,
but this restatement is only possible ex post. Or, to put it into Lewinian dance language: How can you
understand the dancer’s touch point configuration with the dance floor if you are not told how he or she
is connected by his or her real movements?

62.4.1 Recapitulation of the Results from Section 28.2

The modulation architecture in the Allegro movement of op. 106 is derived from a model of tonal modulation
that uses inversional and transpositional symmetries on pitch class sets as “modulators”, i.e., as operators,
which transform pitch class sets (in 12-temperament) into each other. The tonalities in this model are the
triadic interpretations Xp3q, i.e. coverings by the seven standard triadic degree chords IX , IIX , . . . V IIX
of the twelve diatonic scales X “ C,D5, D,E5, E, F, . . . B5, B. According to a fundamental hypothesis on
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this composition, a hypothesis that is derived from classical analyses by Erwin Ratz and Jürgen Uhde (see
Section 28.2), the system of possible modulators is the automorphism group AutpM0q of the diminished
seventh chord M0 “ td5, e, g, b5u. This group partitions the set of tonalities into two orbits, the eight element

orbit W “ AutpM0q.Bp3q
5 (the “world”) consisting of the tonalities of scale set tB5, D5, E,G,A,C,E5, G5u,

and the four element orbit W˚ “ AutpM0q.Dp3q (the “antiworld”) consisting of the tonalities of scale set
tD,F,A5, Bu.

This implies that modulations according to the given model are only admitted within W or within
W˚, since no modulators are available in order to switch between these worlds. It turns out that what
Uhde has coined catastrophe modulations are exactly those when Beethoven switches between world W
and antiworld W˚. And here, the “responsible” diminished seventh chord appears with a nearly obsessive
density, annihilating any melodic or tonal framework. All other modulations, within the world or within
the antiworld, obey strictly the modulation rules provided by our model. Moreover, the modulators in these
cases not only act as hidden symmetries but are also visible as symmetries between note groups that are
within the modulating score segment, see Section 28.2.

Although the above results are describing the abstract modulatory structures and also the modulator
symmetries in a strikingly precise way, which by far exceeds the predictive power of general modulation
theories, the dramatic character of these modulations is not represented. In fact, much more is happening
here than a verifiable instantiation of the model’s abstract characteristics. The richness of the modulation
dynamics has an impact that cannot be comprised by transformational diagrams connecting groups of notes.
And this precisely, since diagrams incorporate no real movement, because their arrows are just as “cartesian”
as plain set theory. We have discussed this topic in detail in the theoretical part of this chapter and in
previous work [719]. This is the reason why we propose drawing a gestural picture of these modulation
processes, which transcends the results as described in Section 28.2. So the following discussion is not about
the previous analysis and its model, but about the added value that gestural reflections can contribute to
the understanding of the note-wise embodiment of the composer’s ideas following his famous statement4:
“Was der Geist sinnlich von der Musik empfindet, das ist die Verkörperung geistiger Erkenntnis.”

62.4.2 The Modulation B5-major ù G-major Between Measure 31 and Measure 44

The first modulation, B5-major ù G-major, in the transition (measures 39-46) to the second subject could
in principle be performed by use of a “pedal modulation” [948]. We do however not encounter this modulation,
but ‘merely’ a sequence of V IIG-major-degrees whose top notes are shifted by minor thirds from each other,
i.e., exactly the situation of the pivot V II and the third translation, as predicted by the modulation with
restricted modulators (Section 28.2.2).

This compact description from Section 28.2.4 however does not grasp the elaborate note process around
that abstract fact of the V IIG-major degree. This process consists of four groups, (A) measures 31 to 34,
(B) measures 35-36, (C) measures 37-38, (D) measures 39-44. We do not discuss the concluding figure in
measures 45-46, where the modulation is already terminated, and refer to [718, 9.2.1] for that matter. The
entire process is typical for many of the modulations in this movement: It seems as if there were obstructions
to a fast and easy modulation, which have to be surmounted. In the present case, the fanfare of part (B) is
repeated in the subsequent part (C), but the second appearance first neutralizes IB5-major to the simple note d
on the third beat of measure 37, which is the third of B5-major and the fifth of G-major. The next chord then
replaces the e5 from the original fanfare by f7 and creates VG-major “ IVA-major “ ID-major. The movement
e5 ÞÑ f7 is a minor third (in terms of chromatic pitches and pitch classes, the present model is not based upon
tonal alterations). This short formula is ambiguous in terms of which symmetry might have caused it. We
have two candidates: f7 “ T 3pe5q “ T 9. ´ 1pe5q, transposition or inversion. The general modulation model

with unrestricted modulators would yield the inversion as modulator, in fact, T 9.´1.B
p3q
5 “ Gp3q. The fanfare

of part (C) could therefore also result from the inversional modulator acting upon e5. But T 9.´1 R AutpM0q.
Therefore only T 3 can transform B

p3q
5 into Gp3q. But this is not clear in part (C). A modulation process

4 What the spirit perceives through the senses from music, is the embodiment of spiritual insight.
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Fig. 62.3. The modulation process B5-major ù G-major between measure 31 and measure 45.

has happened, but neither is it evident which symmetry was applied, nor is it terminated since the cadence
part in the target tonality is not achieved in part (C). This state of ambiguity is expressed by the fermata
in measure 38. It is a moment of hesitation of uncertainty: What happened, where are we? Could we really
go on in G-major and step over directly to the last quarter of measure 46? Playing this shortened version
sounds like not having digested the process, like stepping into a new tonality in a haphazard way without
having made clear how we left the old one.

Fig. 62.4. The echo hypergesture preceding the modulation B5-major ù G-major.

Of course, the plain appearance of degree V IIG-major Ă V 7
G-major makes the target clear and cadences

the new tonality. But again, this would also be true if we made that brute connection to the last quarter
of measure 46, since that one initiates an arpeggiated V IIG-major. The point is that the stopping movement
terminated by the fermata in measure 38 was not only defined there, but started much earlier in part (A).
Harmonically, this part is a repeated arpeggio of VB5-major, terminating on the descending fifth step f ÞÑ b5
at the end of measure 34. This is by no means remarkable. But the shape of the arpeggio is! To begin
with, part (A) splits into two subsets AR and AL, whose onset and pitch relate by a downward shifting,
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AL “ T p1{8,´12q.AR, which creates a deeper and weaker (eighth notes) echo AL of the right hand part
AR (time in 1{8, pitch in semitone units). We shall henceforth focus on the parameters onset and pitch
and position these two parameters in R2, onset for the first, pitch for the second coordinate. Supposing for
the moment that AR and AL are gestures, this echo turns out to be the endpoint of a hypergesture curve
Aptq “ T tp1{8,´12q.AR, t P I that is the evaluation of the curve T tp1{8,´12q, t P I, of transformations at AR,
see Figure 62.4.

This descending echo is the outer shape of a movement that becomes already visible in the initial gesture
framed by AR. How is this gesture constructed? Refer to Figure 62.5 for the following discussion. To begin
with, we have seven small descending interval gestures α1, α2, α3, α

1
1, α

1
2, α

1
3, α4 PÒ ÝÑ

@R2, which are induced
by descending translation curves Ti along the vectors v1 “ p1{4,´4q, v2 “ p1{4,´7q, v3 “ p1{4,´12q, v1

1 “
p1{4,´16q, v1

2 “ p1{4,´19q, v1
3 “ v4 “ p1{4,´24q to the same periodically repeated f , the fifth of the given

tonality. Since we have this note as a fixed reference point, we view the translations as being the dual curves
Ti “ Si̊ to the translation curves Si associated with ´vi, i.e., Sip0q “ Id, Sip1q “ T´vi . All Ti are then
evaluated at the seven instances of f , the evaluation starting at the higher interval note and ending at f .

Fig. 62.5. The right hand hypergesture underlying AR.

Recall from Section 61.6.1 that we denote by Òn the digraph consisting of n`1 vertices, and having one
arrow from vertex i to vertex i`1 for all i “ 0, 1, 2, . . . n´1. Then we have a hypergesture β PÒ6 ÝÑ

@ Ò ÝÑ
@R2 that

deforms α1 into α2, etc., and α1
3 into α4. We leave it to the reader as an exercise to describe these deformations

explicitly in terms of homotopies of translation curves over the category of affine transformations on R2. The
hypergesture’s β projections p1, p2 :Ò6 ÝÑ

@ Ò ÝÑ
@R2 ÑÒ6 ÝÑ

@R2 via the head and tail maps on Ò yield the periodic
gesture of successively shifted f ’s on the one hand, and the ascending upper voice gesture on the other. But
there is more: We look at the shorter hypergestures β1, β2 PÒ2 ÝÑ

@ Ò ÝÑ
@R2, restrictions of β to the three vertices

α1, α2, α3 and α1
1, α

1
2, α

1
3, respectively. Then they are endpoints of a hypergesture γ PÒ ÝÑ

@ Ò2 ÝÑ
@ Ò ÝÑ

@R2. It
projects to the f hypergesture and shifts the subgesture of β1 built from the three f ’s in time (by 3{4) to the
corresponding subgesture of β2. The subgesture of β1 connecting a, c, f is shifted by an octave and time (by
3{4) to the corresponding subgesture of β2 connecting the octave shift of a, c, f . Putting everything together,
including the echo, we obtain a hypergesture γ` PÒ ÝÑ

@ Ò ÝÑ
@ Ò2 ÝÑ

@ Ò ÝÑ
@R2. Observe that such hypergesture

constructions go beyond hypernetwork constructions since they are intrinsically topological.

Fig. 62.6. The beginning of part (D) shows an ascending twofold octave echo gesture on the fifth d.
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So we are facing a hypergesture γ` that is traced on the “dance floor” of the score by part (A), and which
is a strong and multilayered expression of the descending movement towards the fifth (for the dominant)
of B5-major. Everything is stopping at this point, also supported by the “ritardando” and “diminuendo”
performance directions. The process’s period, expressed in the fanfare part (B), opens the transformed fanfare
in part (C) as discussed above. But the mentioned transformational ambiguity needs to be resolved, and this
is achieved in part (D) by use of a counter-gesture corresponding to the hypergesture of part (A). How is this
one structured, and how does it respond to the halting hypergesture of part (A)? The first two measures,
39 and 40, show a quadruple appearance of degree VG-major as initiated in (C). After the fermata, a new
movement is initiated, as shown in Figure 62.6. This is similar to the octave descending echo gesture in part
(A). However, now it is ascending in two octave steps X1 Ñ X2 Ñ X3 (we refrain from a more precise gesture
description, since this is straightforward here). This opening gesture towards the new tonality indicates that
the moment of halting and cadential termination is over: the movement is now reversed, ascending towards
new horizons, new skies.

It is not surprising that the following configuration of gestures appearing in part (D) is a complete mirror
of the configuration encountered in part (A). The hypergestural anatomy is shown in Figure 62.7. Let us

Fig. 62.7. The hypergestural configuration in part (D) mirrors the one from part (A).

describe what this “mirroring” looks like in detail. To begin with, we have a strong similarity of hypergestural
configurations. We first have nine small ascending interval gestures δ0, δ1, δ2, δ3, δ

1
1, δ

1
2, δ

1
3, δ4, δ5 PÒ ÝÑ

@R2,
which again are anchored in the periodically repeated fifth d of the given tonality G-major and add up
like β in (A) previously to a hypergesture ε PÒ8 ÝÑ

@ Ò ÝÑ
@R2. The three gestures δ1, δ2, δ3 and δ1

1, δ
1
2, δ

1
3 define

hypergestures ε1, ε2 PÒ2 ÝÑ
@ Ò ÝÑ

@R2, much as β1, β2 did in the previous situation. And these two hypergestures
also are connected to a big hypergesture φ, similarly to the above hypergesture γ. And again, the gestures
δi, δ

1
i in φ are anchored on the fifth and have the upper voice showing a characteristic chord. While in

part (A) this was the arpeggiated VB5-major, here it is the arpeggiated modulation pivot V IIG-major (which
is the upper triad in the score’s V 7

G-major). Moreover, as already mentioned previously in this section, the
pivotal V IIG-major appears arpeggiated in steps of two ascending minor thirds, which again stresses the
third transposition symmetry against the inversion that would have modulated this configuration without
restricted modulators.

62.4.3 Lewin’s Characteristic Gestures Identified?

The situation is full of similarities above the level of the elementary interval gestures in (A) and in (D). But
these are not similar. They are the carriers of what had been called “mirroring” above. What does this look
like? Let us take the paradigmatic example of the two gestures α1 in (A) and δ1 in (D). We had associated
gesture α1 with the descending onset-time shift transformation tA “ T p1{4,´4q, and δ1 can be associated with
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the ascending onset-time shift transformation tB “ T p1{4,28q. The straightforward curve of transformations is
then T1 “ S1̊ for α1 and TBptq “ T t.tB , t P I, for δ1. Evaluating these transformational gestures (curves) at

the anchor points f, d P R2 yields two curves T1.f, TB .d PÒ ÝÑ
@R2. Although these curves of transformations

and of evaluated points are mathematically straightforward, they are not evident per se. Why should the
curve connecting start and end be a linear trajectory? One could also select T 1

Bptq “ T t2.tB , for example. The
trace would be the same. This simple example shows that the gestures on the score’s dance floor are multiple.
Only the points of contact are unchanged. The difference on the gestural level pertains to the interpretative
effort (the “aesthesic” position in Valéry’s wording), not to the work’s neutral level, see Section 2.2.2 or
[704]. On the gestural interpretation level, there is a manifold of solutions beyond the generic one.

A priori, there are essentially two levels where a solution may be sought out: the evaluated points level,
i.e., the curves in Ò ÝÑ

@R2, or the transformational level, i.e., the curves of transformations in Ò ÝÑ
@ rIdÝÑ

GLpR2qs.
(We put aside the “mixed” solutions with variable points and transformations in Ò ÝÑ

@ rIdR2ˆÝÑ
GLpR2qs as already

described in Example 74.) The difference of these approaches lies in their semantic power, which is expressed
in the mathematical manifold which they describe. The simple curve level Ò ÝÑ

@R2 offers a big topological
space, but no a priori semantics. Any curve would do, be it induced by a physical hand movement rationale
as developed in [772], or by any poetic phantasy of spatial curves. In contrast, the transformational level
Ò ÝÑ
@ rIdÝÑ

GLpR2qs defines a repertory, which is more expressive as it refers to curves of transformations, such as
rotational curves, or curves of transvections, which, for example, may be loaded by musical meaning. This
situation is much the same as for transformational theory, where two determined notes are connected by an
affine transformation out of a set of transformations, which is essentially the stabilizer subgroup of the point
of departure, and where the selection of an element of that stabilizer expresses a semantic choice—except
that the manifold of curves is much larger than it is for that theory.

Let us look at the expressive richness on the hypergesture level, which defines curve gestures between
gesture α1 and gesture δ1. One first interpretative action is the earlier defined dual gesture construction
T1 “ S1̊ for α1. It exchanges the start and the end of the gesture and so doing means that the perspective
is taken from the higher note a “ T1p0q towards the anchor note f “ T1p1q, but the underlying logic stems
from the dual gesture S1, evaluated to the dual curve α1̊ that views a as the endpoint of a movement starting
in f . Duality is interpreted as going backwards, coming back to the root f , although we are moving forwards
in terms of the onset parameter. This is the first part of the mirroring operations. It is not a gesture, but a
reinterpretation of the given gesture’s curve parameter. Next, we want to compare α1̊ to δ1. They are both
ascending gestures, and they do so from the same scale degree, the fifth (call it dominant, if that matters)
of the given tonality. The first looks backwards, the second forwards in time. Looking into the past and
then into the future is a simple dramatic logic of the gestural trajectory. We view this duality argument as
a first example of thinking about Lewin’s “characteristic gesture” in the sense that the gestural operation is
a characteristic for the expression of a specific musico-logical thought.

Fig. 62.8. The elementary gestures and their abstract representation for the mirroring operations.

There are several options to connect α1̊ to δ1 in a hypergestural curve in order to construct a further
differentiation of Lewin’s “characteristic” movements. To ease the formal setup, let us think about both
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gestures starting from the same point x P R2 and ending in z for α1 and in w for δ1. So this prototypical
representation has α1̊ ptq “ T tpz´xq.x and δ1ptq “ T tpw´xq.x, see also Figure 62.8.

On the level of transformations, we have the prototypical gestures Tαptq “ T tpz´xq, t P I, and Tδptq “
T tpw´xq, t P I, representing α1̊ and δ1. In order to connect them by a curve (in fact a homotopy), one may
set Tαpsqptq “ T pQpsqpz´xqqtφpsq where φ : I Ñ GL2pRq is a loop starting and ending at Id, and where
Qpsq “ T spw´zq. The left part of Figure 62.9 shows this construction when evaluated at x and with trivial

Fig. 62.9. The elementary gestures and their abstract representation for two mirroring operations.

φ. One may also refer to the complexification technique described above in Section 62.3 and set

Qpsq “
˜
e´iπspp1 ` sq ´ sΔ1q 0

0 pp1 ´ sq ` sΔ2q

¸

with Δi “ pwi ´ xiq{pzi ´ xiq, i “ 1, 2, where Qpsq rotates the onset part by e´iπs (clockwise) and produces
an imaginary onset for s ‰ 0, 1; see Figure 62.9, right part. It is fundamentally different from the first
solution in that it means mirroring time instead of just pointing to continuously changing interval directions
in the first choice. The difference in these gestures is that they express in characteristic ways the mirroring
operation from the backwards oriented interval in (A) to the forwards oriented one in (D). These operations
represent totally different musical thoughts. We would adhere more to the second choice in the sense that it is
dramatic and coincides with the fermata: For a short moment, time becomes imaginary (here also imaginary
in terms of complex numbers), and when we have transgressed that “higher sphere of pure imagination”, we
are heading for a new tonal region.

62.4.4 Modulation E5-major ù D-major{B-minor from W to W ˚

This modulation is a catastrophe in the sense of Uhde since it leads to the antiworld W˚. As we may
recognize already from the score in Figure 62.10, measures 189-197 are of a dramatic shape. Any elaborate
motivic or harmonic effort is postponed in favor of a pertinent rhythmical presentation of diminished seventh
chords. An approach to modulation via the inversion between e and f (provided by the modulation Theorem
30 in Section 27.1.4), Ue{f “ T 9. ´ 1, V IE5-major ÞÑ ID-major “ Ue{f .V IE5-major (measures 189-192), fails;
the resolution of all alteration signs indicates the exit from tonal space. We hear the “generator” of the
catastrophe, the diminished seventh chord as such. The situation before the modulation is similar to that in
the previous modulation, where we also moved down and stayed on the fifth until the tonic was reached at
the end of measure 34. In measures 187-188, the dominant degree VE5-major appears four times, each time
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Fig. 62.10. The modulation process E5-major ù D-major{B-minor between measure 189 and measure 197.

initiating a downward four-note motif b5, a5, g, f that finally reaches the tonic and degree IE5-major at the
beginning of measure 189. In this measure a two-measure-periodic rhythmic duration sequence of multiples of
eights, namely 1{8, 3{8, 1{8, 3{8, 1{8, 3{8, 1{8, 2{8 (followed by a 1{8 rest in the left hand), which concatenates
twice the rhythm of the first four notes of the fanfare, is established and repeated without exception five
times until measure 198, where the ID-major is reached. The rhythmical energy then breaks down to an even
shorter rhythm, namely the very beginning rhythm 1{8, 3{8 of the fanfare.

The beginning of this rhythmical pattern also parallels the ambiguous situation in measures 37-38.
There, it was shown that the transition from e5 to f7 was ambiguous, being either an inversion under T 9.´1
or a transposition T 3. Since the admitted symmetries exclude the inversion, the transposition was left and
also showed its pivotal seventh degree in the following measures. But now, the situation is significantly
different. The same inversion T 9. ´ 1 does in fact transform E5-major to D-major (or B-minor for that
matter). But this is forbidden as above. Moreover—and this is different here—there is no other symmetry
in the group of modulators that would do the job. We are confronting two tonalities in different worlds,
E5-major P W and D-major P W˚. As can be expected from our previous modulation, the transformation
e5 Ñ f7 also appears in the transition from the third of V IE5-major to the third of ID-major

in the action
T 9. ´ 1pV IE5-majorq “ ID-major on the neigboring degrees in measures 190-191. The impossibility of applying
this modulator coincides with the above rhythmic pattern. This time there is no modulator. And as opposed
to the fanfare that works in our previous case, it cannot be completed, i.e., it is blocked in its salient initial
stage.

62.4.5 The Fanfare

In order to discuss the gestural interpretation of this process, we have to investigate the fanfare in more detail.
We shall lead this discussion in a less technical style regarding the gestural formalisms, because technicalities
can easily be filled out by the attentive reader, and because the point here is less the technical than the
semantic level enabled by our gestural toolbox.
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As is evident from the previous description, we have to focus on the rhythmic structure of this gestu-
rality. To do so, we look at the time coordinates of the fanfare: onset and duration, see Figure 62.11. They
show a bipartite gestural anatomy. We recognize two groups of gestures: the two ascending arrows to the
left, and the two horizontal arrows to the right. These groups correspond to the pitch-ascending part and
the pitch-descending part in the fanfare.

Fig. 62.11. The representation of the fanfare on the time-related plane of onset and duration.

So we view these structures as a gestural construction, which starts with the first ascending curve
and deforms to the second ascending curve. This defines a hypergesture in the rhythm-space of onset and
duration. In our understanding, the ascending character means that we address a downbeat, a halting
energy. This elementary gesture (first arrow) is deformed to a second appearance (second ascending arrow).
This deformation is shown as hypergesture ρ in the left lower part of Figure 62.12. This interpretation is
ontologically non-trivial since it creates a continuous transition from the initial note to the second longer
one, which amounts to imagining an entire curve of intermediate notes that succeed each other in infinitely
near onset times and durations. This enrichment in fact fills out the empty time-space that is not denoted
on the score by what in our musical imagination takes place while the first note is being heard/played. The
hypergesture connecting the first and second arrow gestures is the connection of this first rhythmic step to
the second in the same way, but conceptually and in the perceptive/performative level at a higher stage of
imaginative coherence.

The first hypergesture ρ is followed by a second hypergesture σ, which deforms an arrow connecting
two eighth notes to the arrow between two quarter notes. This time, the deformation of these arrows is
not the hypergesture connecting a repeated halting movement, but expresses the halting movement of a
regular succession of notes of same duration. It is not the repetition of a halting movement, but the halting
of a repetitive movement: the roles of repetition and halting are exchanged. In order to connect these two
hypergestures ρ and σ, we give two gestural transitions: First, the initial hypergesture ρ is rotated (in a
rotative curve gesture) into the intermediate hypergesture ρ1 (upper left corner in Figure 62.12). Then, ρ1 is
deformed into σ, but also replaced by its dual ρ1˚ (not shown explicitly in the figure, since it just reverses
the homotopy direction). This guarantees that the hypergesture moves from a lower duration to a higher
one as required in σ. So we have a hypergesture of skeleton Ò2 connecting ρ and σ. The other variant avoids
duality, but uses a diagonal mirror operation to flip ρ into ρ2 in the upper right corner of Figure 62.12. Of
course, this requires a complexification of the real 2-space, which we do not draw to keep the visualization
simple. Again, from the intermediate ρ2, we deform down to σ by a similar transformation curve as that for
the preceding case between ρ1 and σ. And again, we have a hypergesture of skeleton Ò2, this time generating
σ from ρ via ρ2.

Again, we have different characteristics, which are addressed in these two paths from ρ to σ: The first
keeps orientation (by a rotation in the onset-duration plane), but has to reverse curve time in the duality
switch, while the second reverses onset and duration (through an imaginary rotation in complex numbers).
According to the above statement that the second σ is not the repetition of a halting movement (which
ρ was), but the halting of a repetitive movement. The exchange of onset and duration in the imaginary
mirror path seems more to the point of this rhythmical construction. The dialectic pairing of ρ and σ in this
interpretation resolves the repeated attempt to halt time in ρ by its hypergestural deformation to a completed
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Fig. 62.12. The first hypergesture ρ is followed by a second hypergesture σ, which deforms an arrow connecting
two eighth notes to the arrow between two quarter notes. We show the hypergestural connection between these two
hypergestures.

repetition, and then into its halting slow-down. From this point of view, the repeated presentation of the
fanfare’s first part ρ in the catastrophe modulation perpetuates that internally already prototyped repeated
halting and thereby expresses in an unfolding of the “idea in a nutshell” the failure to release the tension
and to modulate in a well-structured way into the antiworld. The final reduction to the initial arrow of ρ
in the ritardando measures 199-200 completes this failure and brings the energies to their exhaustion, the
gesture dissolves.

62.5 Conclusion for the Categorical Gesture Approach

In this chapter, we have constructed a categorical framework of gestures, generalizing the topological ap-
proach from Chapter 61, and culminating in the construction of a gesture bicategory, which enriches the
classical Yoneda embedding. This framework could be a valid candidate for the conjectured space X in the
diamond conjecture (see Section 61.12). Future research will have to investigate typical algebraic categories
of modules or topoi above module categories, or word monoids (in particular regarding scale theory [274],
which deals a lot with factorization!), which are representative of algebraic music theories. We have discussed
first applications of this framework for topological groups, and then more concretely gestures in modulation
processes in Beethoven’s Hammerklavier sonata. The latter have offered a first concretization of answers to
Lewin’s big question from [605] concerning characteristic gestures. The characters in our setup have been
provided by well-chosen transformational gestures and their semantic interpretation in terms of dramatic
instances. Despite these concrete examples, the present research has not solved the morphic half of Yoneda’s
idea, namely the fully gestural reconstruction of arrows in abstract categories, but it is a first step towards
a replacement of Fregean functional abstraction by gestural dynamics. The fact that core constructions in
homological algebra, such as extensions, are naturally incorporated in this approach is a sign of having
embarked in the right direction.
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62.6 Functorial Gestures: General Addresses

To this point, mathematical gesture theory has been developed under the tacit assumption that the classical
addressed approach in functorial mathematical music theory, based upon the category Mod@ of modules,
would not apply to gestures. However, such a restriction is superfluous, and we will develop here the functorial
extension of the theory of local gestures in topological categories. We shall later include this extension into
the global gesture theory, too, see Section 66.8.

In the categorial context, a continuous curve is a continuous functor g : ∇ Ñ X with values in a
topological category X. Its “points” are the values at the objects x P ∇. To generalize this situation to more
functorially conceived points, we take the domain ∇ ˆ A for a general address, i.e., a topological category
A P TopCat. An A-addressed curve in X is a continuous functor g : ∇ ˆ A Ñ X. Evidently, if f : B Ñ A
is an address change in TopCat, we get a new curve g.f :“ g ˆ pId∇ ˆ fq from g and f . Also, if x P I
is an object of ∇, we have the injection f : 1 Ñ ∇ : 0 ÞÑ x and the associated address change curve
g|x : A Ñ I ˆ A Ñ X : a ÞÑ gpx, aq; we shall need this latter construction especially for g|0 and g|1.

As in the zero-address case, we have a topological category (with object set) denoted by ∇©AX :“
p∇ˆAq©X, and continuous natural transformations ν : g Ñ h of curves g, h : ∇ˆA Ñ X as morphisms. The
definition of the topology on this set is completely analogous to the construction in the zero-addressed case,
see Section 62.1. Clearly, the address change f : B Ñ A now induces a continuous functor ©f : ∇©AX Ñ
∇©BX. Also, if x P I is an object (a point) of ∇, we have a continuous functor ©|x : ∇©AX Ñ A©X into
the topological category A©X with the compact-open topology. In particular, we have the tail and head
functors tA “ ©|0, hA “ ©|1 : ∇©AX Ñ A©X, which define the A-addressed categorical digraph A@

ÝÑ
X of X.

The digraph of the object maps of A@
ÝÑ
X is called the spatial A-addressed digraph of X. Again, similarly to

the zero-addressed case, an A-addressed gestures with skeleton digraph Γ and body X is a digraph morphism
g : Γ Ñ A@

ÝÑ
X into (the spatial digraph of) A@

ÝÑ
X . The set of these gestures is denoted by Γ@A

ÝÑ
X .

We have the following functorial maps: Given an address change f : B Ñ A, a continuous functor of
topological categories m : X Ñ Y , and a digraph morphism t : Δ Ñ Γ , we have

Γ@fX : Γ@A
ÝÑ
X Ñ Γ@B

ÝÑ
X,

Γ@Am : Γ@A
ÝÑ
X Ñ Γ@A

ÝÑ
Y ,

t@AX : Γ@A
ÝÑ
X Ñ Δ@A

ÝÑ
X.

To turn Γ@A
ÝÑ
X into a topological category, denoted as earlier by Γ

ÝÑ
@AX, observe that Γ is the colimit

of the diagram D of digraphs described in Section 62.1.2. Then we have Γ@A
ÝÑ
X

„Ñ limD A@
ÝÑ
X since Ò

@A
ÝÑ
X

„Ñ A@
ÝÑ
X , which turns Γ@A

ÝÑ
X into a topological category since TopCat is finitely complete.

One expects the Escher Theorem 61 to be true for general addresses, too. We have this extension, which
is valid for locally compact Hausdorff addresses:

Proposition 3. (Functorial Escher Theorem) If Γ,Δ are digraphs, X is a topological category, and A,B
are two locally compact Hausdorff topological categories, then we have a canonical isomorphism of topological
categories,

Γ
ÝÑ
@AΔ

ÝÑ
@BX

„Ñ Δ
ÝÑ
@BΓ

ÝÑ
@AX.

Modulo taking limits, the proof boils down to the special case where Γ “ Δ “Ò. Then we have to prove
that there is a (canonical) isomorphism Ò ÝÑ

@A Ò ÝÑ
@BX

„ÑÒ ÝÑ
@B Ò ÝÑ

@AX of topological categories. Because of

Ò @A
ÝÑ
X

„Ñ A@
ÝÑ
X , this means that A@

ÝÝÝÑ
B@

ÝÑ
X

„Ñ B@
ÝÝÝÑ
A@

ÝÑ
X , i.e.,

p∇ ˆ Aq©pp∇ ˆ Bq©Xq „Ñ p∇ ˆ Bq©pp∇ ˆ Aq©Xq.
This isomorphism follows from the following series of isomorphisms that are all due either to the universal
property of the compact-open topology (Mathematical Appendix, Section J.4.1.2, Theorem on Exponential
Correspondence) or to the isomorphism X ˆ Y

„Ñ Y ˆ X of cartesian products. We start with the right
expression above.
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p∇ ˆ Bq©pp∇ ˆ Aq©Xq „Ñ p∇ ˆ Bq©p∇©pA©Xqq „Ñ
∇©pB©p∇©pA©Xqqq „Ñ ∇©pB ˆ ∇©pA©Xqq „Ñ
∇©p∇ ˆ B©pA©Xqq „Ñ ∇©p∇©pB©pA©Xqqq „Ñ

∇©p∇©ppB ˆ Aq©Xqq „Ñ ∇©p∇©ppA ˆ Bq©Xqq „Ñ
p∇ ˆ ∇q©ppA ˆ Bq©Xq „Ñ p∇ ˆ ∇q©ppA ˆ Bq©Xq permute the two copies of ∇.

The last expression is the result we get from the same procedure, but starting from the left expression above,
and we are done.

We shall give musical applications of this functorial formalism in Section 78.4.1.

62.7 Yoneda’s Lemma for Gestures

The classical Yoneda Lemma (Appendix Section G.2) deals with the Yoneda functor Y : C Ñ C@ : X ÞÑ @X,
and in its general shape states that for any presheaf (contraviariant functor) F P C@ and object X in C, we
have a bijection

Natp@X,F q „Ñ X@F.

In our present situation, we also have presheaves, but they are different from the classical ones. For a
topological category X, we have the presheaf (denoted by the classical symbol as no confusion is likely)
@X : Digraph ˆ TopCat Ñ TopCat : pΣ,Aq ÞÑ Σ

ÝÑ
@AX. It is not representable in the classical sense,

but nevertheless we have a representational situation here. Denote by
ÝÝÝÝÝÑ
TopCat

©
the category of presheaves

F : DigraphˆTopCat Ñ TopCat; its objects are also called gestural presheaves. Observe that the natural
transformations in this category need to refer to morphisms in TopCat; we then also denote by NatTCpF,Gq
the set of morphisms f : F Ñ G in

ÝÝÝÝÝÑ
TopCat

©
.

Definition 111 A gestural presheaf F : Digraph ˆ TopCat Ñ TopCat is said to be gesturally repre-

sentable iff it is isomorphic in
ÝÝÝÝÝÑ
TopCat

©
to @X for a topological category X. We then also say that F is

represented by the gesture space X.

In what follows, we shall prove a Yoneda Lemma that identifies morphisms in
ÝÝÝÝÝÑ
TopCat

©
, i.e., natural

transformations f : @X Ñ F of gestural presheaves with an evaluation of determined functors at X. To this
end, we consider the category TC-Digraph of TC-digraphs that are internal to TopCat©, the category of
presheaves on TopCat that have values in TopCat (we also call them “continuous presheaves”). A TC-
digraph D is given by natural head and tail morphisms D “ η, τ : C Ñ P between (continuous) presheaves
C,P P TopCat©, C being called the presheaf of curves, while P is called the presheaf of points. A morphismÝÑ
f “ pf∇, f .q : D1 Ñ D2 for D1 “ η1, τ1 : C1 Ñ P1, D2 “ η2, τ2 : C2 Ñ P2 is the usual pair of morphisms
f∇ : C1 Ñ C2, f

. : P1 Ñ P2 that commutes with head and tail morphisms. Every gestural presheaf
F gives rise to such a TC-digraph F∇ Ñ F . that evaluates to A@F∇ “ pÒ, Aq@F,A@F . “ p., Aq@F ,
the evaluation at the line digraph Ò and the singleton digraph ., while the head and tail morphisms are
defined by the two injections . ÑÒ. This digraph is denoted by

ÝÑ
F . In particular, if F “ @X, we have

A@X∇ “ pÒ, Aq@X “ A@X∇, A@X . “ p., Aq@X “ A@X ., where X∇ :“ ∇@X,X . :“ X. This digraph is
denoted by

ÝÑ
X . With this digraph formalism, we have a Yoneda Lemma for gestural presheaves F that are

limits of curve functors, i.e. pΣ,Aq@F
„Ñ limDpF∇, F .q, where D is the usual diagram of digraphs whose

colimit is Σ. Call such functors limiting functors. For example, all the gesturally representable functors are
limiting.

Theorem 39 (Yoneda Lemma for Functorial Gestures) For a topological category X and a limiting gestural
presheaf F , we have a bijection

NatTCp@X,F q „Ñ TC-DigraphpÝÑ
X,

ÝÑ
F q.
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If
ÝÑ
f “ pf∇, f .q is a morphism

ÝÑ
X Ñ ÝÑ

F , the classical Yoneda Lemma states that this is equivalent to having
a pair f∇ P X∇@F∇, f . P X@F .such that the two images ηf∇, τf∇ : X∇ Ñ F . defined by the functors
η, τ : F∇ Ñ F . and the two two images f .h, f .t : X∇ Ñ F . defined by head and tail morphisms X∇ Ñ X
coincide5, respectively:

ηf∇ “ f .h,

τf∇ “ f .t.

The proof runs as follows. For a natural transformation f : @X Ñ F , the evaluation pΣ,Aq@f :
Σ

ÝÑ
@A@X Ñ pΣ,Aq@F for general digraphs Σ and topological categories A commutes with its evaluations

pÒ, Aq@f :Ò ÝÑ
@AX Ñ pÒ, Aq@F p., Aq@f : .

ÝÑ
@AX Ñ p., Aq@F at the arrow Ò and the point digraph ., which

means that, in view of the limiting character of these functors, the arrow and point evaluation functors
determine one-to-one the original morphism f . But these two evaluations mean the commutativity (with the
left and right vertical arrows, respectively) of this functor diagram:

A@X∇

h

��
t

��

A@f∇
�� A@F∇

η

��
τ

��
A@X .

A@f .
�� A@F .

But this is equivalent to the Yoneda evaluation at A of the digraph morphism
ÝÑ
f :

ÝÑ
X Ñ ÝÑ

F , and we are
done.

This lemma has a deep impact on the gestural understanding of artistic utterance. While the functor F
is not defined by gestures, nor has its values in gestural structures, the functors @X are gestural by their very
construction. The natural transformations f : @X Ñ F define gestural perspectives on F , our understanding
of F in terms of gestural functors. One could call the entire big functor NatTCp@?, F q the functorial gestural
aesthetics of F . It tells us how much we can know about F in terms of gestural constructions. This is an
important tool to discuss musical constructions that are not, a priori, gestural in nature. Such a situation
may occur typically in electronic music, but also in classical constructions of scores that are not derived from
gestural aspects. In terms of the classical Yoneda Lemma, we could consider the category TC-Digraph and
the Yoneda functor Y : TC-Digraph Ñ TC-Digraph©, and the above big functor would mean restricting
the functorial domains to the subcategory @TC Ă TC-Digraph of gesturally representable functors

ÝÑ
X ,

and asking whether the functor Y : TC-Digraph Ñ TC-Digraph© Ñ @TC© is still fully faithful.

62.8 Examples from Music

In the following three examples, we shall illustrate this situation, namely for constructions of sound waves,
spectral compositions, and MIDI-related ON-OFF processes.

In all three examples, we shall use non-representable functors of the same nature: powers functors,
which are well-known to be non-representable as TopCat is not a topos.

62.8.1 Collections of Acoustical Waves

The first example considers the topological space Z “ Cnpr0, 1s,Rq of n times differentiable functions on the

unit interval, describing sound events in a defined time interval r0, 1s. The functors are A@F∇
Z “ 2A@Z∇

,
whose elements are sets g of morphisms gi : A Ñ Z∇, or, equivalently, morphisms gi : ∇ ˆ A Ñ Z, the
latter being interpreted as curves with values in Z that are parametrized by values in A, i.e., for each a P A,
we have a curve gi,a : ∇ Ñ Z, which is equivalent to a curve r0, 1s Ñ Z as we are dealing with topological

5 This can be restated as a diagram limit condition.

mailto:X@F.such
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spaces here. Technologically, this means that we are given a processual setup that creates a curve of sound
events for each parameter choice a P A. Such a situation is standard when working with Max MSP software,
for example.

Next, we also need the functor F ., which we define by A@F .
Z “ 2A@Z . Its values are the sets of A-

parametrized sound events. The head and tail transformations are the evident maps η, τ : A@F∇
Z Ñ A@F .

Z

that send curves to their head and tail values. These sets are given the indiscrete topology.
It is a bit tricky to find morphisms f : @X Ñ FZ . One way of doing so is to think about the above

condition ηf∇ “ f .h, τf∇ “ f .t. We have to select two sets, f∇ Ă X∇@Z∇, f . Ă X@Z, such that these
conditions hold, meaning that for every g∇ P f∇ there is a g. P f . such that ηg∇ “ g.h, and a g.˚ P f . with
τg∇ “ g.˚t, and vice versa. For example, ηg∇ “ g.h : X∇ Ñ FZ means that for every curve κ : ∇ Ñ X,
we have g∇pκqp1q “ g.pκp1qq. These are quite involved conditions. But it is easy to find solutions. Take any
set f . Ă X@Z. Then define f∇ as follows. For every g. P f ., define g.,∇pκ,mq “ g.pκpmqq for any curve
κ : ∇ Ñ X and morphism (!) m P ∇. The set f∇ is built from these morphisms g.,∇, and it is evident that
this is a solution to our problem. It is also clear that this solution holds for any topological space Z.

62.8.2 Collections of Spectral Music Data

The second example uses the same architecture as the previous one, but Z is now a different space that is
related to spectral composition methods. Instead of sets of parametrized sound events in Cnpr0, 1s,Rq, we
now define Fourier coefficients that are time-dependent. More precisely, we define sound events as functions
of time x P R via the Fourier expressions

wpxq “
˘8ÿ
n

cnpxqei2πnνpxqx,

where every member of the function sequence cn, ν : R Ñ C has compact support, we have real values
for ν, and the sequence produces a convergent sum at all times. Call Zspec the topological space of these
sequences with one of the usual topologies (in fact defined by scalar products). Then our digraph of presheaves
F∇
Zspec

Ñ F .
Zspec

represents sets of parametrized time-dependent Fourier coefficients used in classical spectral
compositions.

62.8.3 MIDI-Type ON-OFF Transformations

For our third example, we take A@F .
EHL “ 2A@REHL

and A@F∇
EHLDGC “ 2A@REHLDGC

, where REHL is
the three-dimensional real vector space of note events with onset (E), pitch (H), and loudness (L), whereas
REHLDGC is the six-dimensional real vector space of note events with onset (E), pitch (H), loudness (L),
duration (D), glissando (G), and crescendo (C). Again, the powersets are given the indiscrete topology. Here,
the head and tail functors are defined by the typical operators from the MIDI ON and OFF functions, namely
η (for ON) is defined by the first projection pEHL : REHLDGC Ñ REHL : px, y, z, u, v, wq ÞÑ px, y, zq, while τ
(for OFF) is defined by the alteration function α : REHLDGC Ñ REHL : px, y, z, u, v, wq ÞÑ px`u, y`v, z`wq.
In this situation, we can construct a morphism as follows. We again start with a set f . Ă X@REHL. The set
f∇ Ă X@REHLDGC consists of these morphisms: For every l : X Ñ REHL inf ., we take its two composed
morphisms l0 : X∇ Ñ REHL : κ ÞÑ lpκp0qq and l1 : X∇ Ñ REHL : κ ÞÑ lpκp1qq. Then we define members
of f∇ Ă X@REHLDGC by taking for each l : X Ñ REHL the function l∇ : X∇ Ñ REHLDGC : κ ÞÑ
pl1pκq, l0pκq ´ l1pκqq. It is immediate that this defines a solution.
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