
71

Facts: Denotators and Their Visualization and Sonification

The facts, or objects, that the rubette BigBang in RUBATO� Composer deals with are denotators, which
can be considered points in the spaces defined by their forms, as introduced in Chapter 6. So far, we have
only seen a small portion of the variety of forms that can be defined in RUBATO� Composer. However,
any conceivable musical or non-musical object can be expressed with forms and denotators, many of them
just with the category of modules Mod@. The most recent version of BigBang was made compatible with
as many forms as possible, even ones that the users may spontaneously choose to define at runtime. In order
to handle this as smoothly as possible, we had to find a suitable way of representing denotators within the
rubette, which we call BigBangObjects.1 In this chapter, we describe how this works.

71.1 Some Earlier Visualizations of Denotators

In order to understand the evolution of BigBang ’s visualization system it will be helpful to look at some earlier
attempts at visualizing denotators. Several dissertations were based on an implementation of denotators and
forms. Stefan Göller’s had visualization as its main focus and Gérard Milmeister’s included a number of
smaller visualization tools.

71.1.1 Göller’s PrimaVista Browser

The goal of Göller’s dissertation was to visualize denotators “in an active manner: visualization as nav-
igation” [372, p.55]. The result was the sophisticated PrimaVista Browser, implemented in Java3D, that
featured a three-dimensional visualization in which users could browse denotators in first-person perspec-
tive. PrimaVista could be customized in many ways using a virtual device, the Di, shown in Figure 71.1
[372, p.107].

PrimaVista was capable of representing any type of zero-addressed Mod@ denotator as a point or a set
of points in R3 while preserving both order and distance of the original data structure as well as possible.
Limit and Colimit denotators of any dimensionality and their nested subdenotators were folded in a two-
step process, first into Rn then into R3. Thereby, for any denotator d the mapping Fold : F pdq Ñ R3 had to
be injective. The first step of this process mapped the values of the Simple denotators found in the given
denotator hierarchy, regardless of their domain, into Rn by injecting or projecting each of the individual
values into R. A matrix defined which denotator dimensions were mapped into which of the n dimensions of
the real codomain space, allowing for both multiple mappings and merging mappings. A so-called greeking
procedure made sure that only denotator values up to a certain level of hierarchical depth were taken into
account, which enabled dealing with circular structures. The second step of the process consisted in folding

1 Every object that literally exists as a Java object in BigBang ’s code will be written in verbatim font here, even if
we just define them conceptually here.

1103
G. Mazzola et al., The Topos of Music III: Gestures, Computational Music Science,
https://doi.org/ 978-3-319-64481-3_16 10.1007/

© Springer International Publishing AG, part of Springer Nature 2017

https://doi.org/10.1007/978-3-319-64481-3_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-64481-3_16&domain=pdf

1104 71 Facts: Denotators and Their Visualization and Sonification

Fig. 71.1. The Di of Göller’s PrimaVista browser.

the obtained Rn vectors into R3 by privileging specified dimensions and folding the remaining ones to the
mantissa, the decimal digits after the comma.

Göller discussed adventurous ways of visualization, replacing the points in R3 with complex three-
dimensional objects the parts of which he called satellites, not to be confused with satellites as they
are defined in this context,2 each of them representing additional characteristics of the represented de-
notators. Each of Göller’s satellites is characterized by the following variable visual parameters: po-
sition px, y, zq, rotation vector prx, ry, rz, αq, scale psx, sy, szq, color pred, green, blueq, texture, sound
ppitch, loudness, instrument, sysexq [372, p.77]. The most complex object finally implemented is the Pinoc-
chio satellite shown in Figure 71.2. Göller even suggests some satellites may be moving in time to represent
parameters such as frequency. This feature was, however, finally not implemented. Another feature not im-
plemented was a generalization of the musical score, where each satellite is associated with sounds that would
be played when intersected with a plane, or more generally an algebraic variety, moving in time [372, p.84-5].
Finally, Göller discusses the concept of so-called cockpits, where an object’s subsatellites become actuators in
the form of levers, buttons, or knobs, through which users can change the underlying denotator [372, p.95].
Again, this was not implemented within the scope of his thesis. In addition to this, Göller envisioned ways
of transforming and manipulating objects that are similar to the ones of the BigBang rubette [372, p.123f].

There are several issues with Göller’s approach, some of which explain the difficulties that arose when
trying to implement the ideas. First, the folded spaces pose problems of ambiguity in visualization and
especially transformation. If one dimension of R3 represents several denotator dimensions at the same time
and the user starts transforming the denotator, it is not intuitively deducible from the visible movement how
the denotator values are affected. Representation is often ambiguous, where differences in dimensions folded
to the mantissa become only subtly visible and often visually indistinguishable from a simple projection.

2 See Sections 71.2 and 71.3, where satellites are defined as elements of sub-powersets of a denotator. Also, in Göller’s
work, there are only two levels: the main satellite and its subsatellites.

71.1 Some Earlier Visualizations of Denotators 1105

Fig. 71.2. A denotator visualized in PrimaVista using Pinocchios (satellites) of varying size and differently positioned
extremities (subsatellites).

Second, several simplifications of the denotator concept were made to enable representation within this model.
Göller does not, for instance, consider higher-dimensional Simple forms, such as ones using modules based
on R2 or C. Third, he mainly visualizes denotators on the topmost level, thereby assuming that it consists
of a Power [372, p.63]. The BigBang rubette offers solutions to several of these problems, as discussed later.

71.1.2 Milmeister’s ScorePlay and Select2D Rubettes

Even though the focus of Milmeister’s work lay in building the basic mathematical framework as well as the
interface of RUBATO� Composer, some of his rubettes offer visualizations of denotators of both general
and specific nature. The ScorePlay rubette limits itself to Score denotators and represents them in piano
roll notation. It simply visualizes a Score and enables users to play it back at a variable tempo and using
different built-in MIDI instruments. It does not allow for any interaction with the represented notes.

The Select2D rubette represents any incoming Power or List denotator as points projected to a
customizable two-dimensional coordinate system, the axes of which can be freely associated with any Simple
denotator somewhere in the denotator hierarchy. Users can then select any number of these points by defining
polygons around them (Figure 71.3). The rubette then outputs the subdenotators associated with these points
as one runs the network.

Milmeister’s rubettes provide several improvements over Göller’s software while being more limited
in other ways. ScorePlay only accepts denotators of one form and visualizes them rigidly. However, its
visualization is minimal and based on a standard immediately understandable by the user, which Göller’s
might not always be. Select2D, in addition to Power denotators, also accepts List denotators, which were
only introduced in Milmeister’s work [739, p.105]. Furthermore, it is able to represent more types of Simple
denotators than Göller’s, more precisely ones containing free modules over any number ring except for
C. Nevertheless, higher-dimensional Simple coordinates and product rings can again not be represented.

1106 71 Facts: Denotators and Their Visualization and Sonification

Fig. 71.3. The Select2D rubette showing a Score denotator on the Onset ˆ Pitch plane.

Furthermore, the rubette’s visualization capabilities do not exceed the representation of points projected to
a two-dimensional coordinate system.

71.2 An Early Score-Based Version of BigBang

Initially, the BigBang rubette was designed for a small set of score-related denotators. The first version
allowed users to handle Scores and MacroScores and was developed before in the context of an independent
research project at the University of Minnesota [1043].MacroScore is a conceptual extension of the form Score
which we casually defined earlier. It brings hierarchical relationships to Notes by imitating the set-theoretical
concept of subsets.3 The form is defined in a circular way, as follows:

MacroScore : .PowerpNodeq,
Node : .LimitpNote,MacroScoreq,
Note : .LimitpOnset, P itch, Loudness,Duration, V oiceq

Each Node associates thus a Note with a set of again Nodes, each of which again contains a Note and a set,
and so on. In short, with this construction, each Note of a MacroScore has a set of so-called satellites on a
lower hierarchical level. We could go on infinitely, but in order to stop at some point, we give some of the
Nodes empty sets, thus no satellites. The idea behind this form is that in music, we not only often group
objects together and wish to treat them as a unity, but also establish hierarchies between them. A trill, for

3 This complies with Graeser’s notion of counterpoint as “a set of sets of sets of notes”, cited in Section 13.1.

71.2 An Early Score-Based Version of BigBang 1107

instance, consists of a main note, enhanced by some ornamental subnotes.4 A simplified trill denotator could
be defined as follows:

shakeWithTurn : @MacroScorepmainNodeq,
mainNode : @NodepmainNote, ornamentalNotesq,
mainNote : @Notep. . .q,
ornamentalNotes : @MacroScorep

upNode,midNode, upNode,midNode, lowNode,midNodeq,
upNode : @NodepupNote, emptySetq,
upNote : @Notep. . .q,
emptySet : @MacroScorepq,
. . .

What is crucial to the notion of satellites is that their values are defined relatively to the ones of their anchor.
So if for instance the mainNote defined above has Pitch 60 and its satellite upNote P itch 61, the latter in
fact obtains a Pitch of 1. If another had Pitch 58 it would be defined as ´2. This way, if we transform the
anchor, all its satellites keep their relative positions to it.

Later on, another form was added to BigBang ’s vocabulary, SoundScore, which combines frequency
modulation synthesis with the MacroScore concept. Each note, in addition to having satellites, can have
modulators which modulate its frequency and change its timbre [1045]. Again, modulators have a relative
position to their carrier and would be transformed with it. The form is defined as follows:

SoundScore : .PowerpSoundNodeq,
SoundNode : .LimitpSoundNote, SoundScoreq,
SoundNote : .LimitpOnset, P itch, Loudness,Duration, V oice,Modulatorsq,
Modulators : .PowerpSoundNoteq

Denotators of these forms are all based on the same five-dimensional space spanned by the Simple
forms Onset, Pitch, Loudness, Duration, and Voice and can thus be visualized the same way. The early
BigBang rubette did this using a generalized piano roll representation, as we will explain later on.5 In sum,
all of the objects the early BigBang rubette dealt with were essentially notes.

71.2.1 The Early BigBang Rubette’s View Configurations

The visualization principle of the BigBang rubette [1043, p.4-5] combines elements of both Göller’s and
Milmeister’s models, but focuses on a minimalist appearance aiming towards simplicity and clarity. It gener-
alizes the piano roll notation also used in the ScorePlay rubette (see Section 71.1.2). Notes are represented
by rectangles on a two-dimensional plane, just as in a piano roll. However, already in early versions of Big-
Bang, the visual elements of the piano roll were separated from their original function so that they could
be arbitrarily assigned to the symbolic dimensions of the represented score denotator. This is reminiscent of
the ways Göller’s subsatellites could be assigned to any folded denotator dimensions (Section 71.1.1) or of
the spacial representation of Milmeister’s Select2D rubette (Section 71.1.2). A similar method of visualizing
was also available in presto�’s local views (see Section 50).

In order to do this we defined a set of six visual parameters

N “ tX-Position, Y -Position,Width,Height,Opacity, Coloru
4 In a similar way, Schenkerian analysis describes background harmonic progressions enhanced by ornamental fore-
ground progressions, which could be represented with MacroScores as well. However, we may find forms that are
better suited, as will be discussed below.

5 Piano roll is a standard in music software.

1108 71 Facts: Denotators and Their Visualization and Sonification

corresponding to the visual properties of piano roll rectangles, along with a set of six note parameters

M 1 “ tOnset, P itch, Loudness,Duration, V oice, SatelliteLevelu,
which corresponds to the Simple denotator in Scores with the exception of SatelliteLevel, which was used
to capture the hierarchical level of satellite notes in MacroScores and SoundScores. We then defined a view
configuration to be a functional graph V Ă N ˆ M 1. This ensures that each screen parameter n P N is
associated with at most one musical parameter V pnq that defines its value, as well as that V does not need
to include all n P N . View parameters not covered by V obtain a default value that can be defined by the
user. The traditional piano roll notation could be produced by selecting the following pairing (shown in
Figure 71.4):

V1 “ tpX-Position,Onsetq, pY -Position, P itchq, pWidth,Durationqu.

Fig. 71.4. The early BigBang rubette showing a Score in piano roll notation.

An enhanced version of the piano roll that often appears in software products also uses opacity and
color:

V2 “ tpX-Position,Onsetq, pY -Position, P itchq, pOpacity, Loudnessq,
pWidth,Durationq, pColor, V oicequ.

The possibility of arbitrary pairings, however, also enables more adventurous but possibly also inter-
esting view configurations, such as the following (Figure 71.5):

V3 “ tpX-Position,Onsetq, pY -Position, Loudnessq, pWidth, P itchq,
pColor,Onsetq, pHeight, Loudnessqu.

Experimenting with such view configurations may be especially valuable for analysis and may lead to
a different understanding of given musical data sets.

71.2 An Early Score-Based Version of BigBang 1109

Fig. 71.5. The early BigBang rubette visualizing a Score in a more experimental way.

Every view parameter can be customized at runtime. Depending on the represented note parameter, it
can be useful to ensure that a screen parameter’s value does not exceed a specific value range. For example
it may look more clear when the rectangle’s heights are limited in a way that their areas do not intersect,
just as with piano roll notation. Thus, for each n P N , we optionally define minn and maxn, the minimal
and maximal screen values. We then have two options to define the way note parameters are mapped to the
screen parameters.

1. If we choose the conversion to be relative, the minimal and maximal values of the given note parameters
minm,maxm,m P M 1, are determined for the actual score, and then mapped proportionally so that the
note with minm is represented by minn and the note with maxm by maxn. For this, we use the formula

vn “ vm ´ minm

maxm ´ minm
pmaxn ´ minnq ` minn,

where vn is the screen value for the note value vm.
2. On the other hand, absolute mapping means that every value with vm ă minn or vm ą maxn is mapped

to a new value, while all other values stay the same, i.e., vn “ vm. For absolute mapping, we have two
choices. In limited mapping, the values that surpass the limits are given the minn and maxn values,
respectively. The following formula is used:

vn “

$’’’&’’’%
minn, if vm ă minn

maxn, if vm ą maxn

vm otherwise.

For cyclical mapping, we use the formula

1110 71 Facts: Denotators and Their Visualization and Sonification

vn “

$’’’&’’’%
pvm mod pmaxn ´ minnqq ` minn,

if vm ă minn or vm ą maxn

vm otherwise.

This mapping type can be useful for the color screen parameter for example, where it is reasonable to
cycle through the color circle repeatedly to visualize a specific note parameter interval, such as an octave
in pitch, or a temporal unit, as shown in Figure 71.5, where color visualizes a time interval of length 24,
i.e., six 4/4 measures.
With absolute mapping it is possible to leave either or both of the Limits as undefined. Accordingly,
we assume minn “ ´8 or maxn “ 8. Of course, if none of the limits are defined, the visible screen
parameters correspond exactly with the original note parameters.

At runtime, the view window’s current pairings could be selected using a matrix of checkboxes with a
column for each screen parameter and a row for each note parameter, see Figure 71.5.

Satellite relations can be displayed in two ways. First, the note parameter SatelliteLevel, mentioned
above, can be assigned to any arbitrary visual parameter. This way, anchor notes are associated with integer
value 0, first-level satellites with 1, and so on. On the other hand, satellite relations may also be displayed
as lines between the centers of two note objects so that every note has lines leading to each of its direct
satellites, as shown in Figure 71.6.6 As mentioned above, since all anchors and satellites in MacroScore and
SoundScore denotators are notes, they can be represented in the same space.

Fig. 71.6. The early BigBang rubette showing a MacroScore with two levels of satellites.

6 This is a notion of satellites significantly different from Göller’s (Section 71.1.1). While Goeller uses the term to
denote movable parts of objects and represents them as denotators, but here we use it to speak of circular denotator
structures (also see Note 2).

71.3 BigBangObjects and Visualization of Arbitrary Mod@ Denotators 1111

71.2.2 Navigating Denotators

Users can navigate this two-dimensional space not only by changing their view of the space by choosing
different note parameters for the x and y view parameters, but also by changing their viewpoint by scrolling
the surface and zooming in and out without limitations. This is similar to Göller’s PrimaVista, but using two
instead of three dimensions. However, users can also open several of these views simultaneously and choose
different perspectives on the composition. This is especially valuable when performing transformations in
one view while observing how the composition is affected from the other perspective.

71.2.3 Sonifying Score-Based Denotators

In early BigBang, denotators could not only be visualized but also sonified. Even though this may be done
using another, specialized rubette such as ScorePlay, we decided to include this functionality within BigBang.
The main reason for this was the gestural interaction concept, where immediate auditive feedback is key, in
order to evoke a sense of continuity of motion. Users have to be able to judge musical structures by ear while
they are creating them, and the use of an external rubette would have slowed down the process. A second
reason was that many of the possible musical structures in early BigBang were micro-tonal, for which MIDI
feedback, as implemented in ScorePlay, is unsuited since it is strictly chromatic.7 The extension of BigBang
for SoundScores was another reason, for now timbre was part of the musical objects and had to be judged
while it was defined.

Since all the structures dealt with in early BigBang were Score-based denotators, sonification was
rather straightforward. All the objects that had to be played were Notes that existed in the same space.
They were simply played back in time, giving the user control over tempo. The microtonal and frequency
modulation structures of SoundScores made it necessary for a synthesizer to be used. For each note, a
synthesizer object, a so-called JSynNote footnoteJSyn is the name of the synthesizer framework we decided
to use, as will be explained later on. was created by converting symbolic time, pitch, and loudness into the
physical parameters time, frequency, and amplitude.

Outside BigBang, MacroScores usually have to be converted into Scores in order to be played back, a
process called flatten (see next chapter). In early BigBang, this happened in the background, since it would
have significantly slowed down the composition process. Satellites were simply converted into additional
JSynNotes accordingly. Modulators in SoundScores, however, became modulators of JSynNotes. There
were two options for playing back modulators: either their temporal parameters were ignored and they
simply played whenever their carrier was playing, or they only modulated their carrier according to their
own onset and duration. In the latter case, users had to make sure the anchor notes were playing at the
same time as their modulators, but they also had the chance to create temporally varying configurations of
modulators for a single note.

71.3 BigBangObjects and Visualization of Arbitrary Mod@ Denotators

Despite its customizability, the view concept of the early BigBang rubette was first designed to represent
Score, MacroScore, and SoundScore denotators, which are all based on the same musical space: (Power
of...) Power of Limit. There, the view concept has proven its viability, compared to other concepts such
as the ones discussed above. Now how can this concept be generalized so that BigBang can accept any
denotator?

In this section we describe how we can do this for a major part of the spaces available in Milmeister’s
version of RUBATO� Composer, which are all based on elements of the topos Mod@ over the category
of modules, as described earlier.8 The number of denotator types capable of being represented by the new

7 The use of pitch bend is an option for monophonic material, but limited as soon as several notes have to be bent
in different ways.

8 This procedure is also described in [1048, p.3], as well as briefly in [1047].

1112 71 Facts: Denotators and Their Visualization and Sonification

BigBang rubette is significantly higher than the two comparable modules PrimaVista and Select2D. Nev-
ertheless, for the time being we restrict ourselves to 0-addressed denotators and focus on number-based
modules. We exclude both modules based on polynomial rings and ones based on string rings, since their
visualization may differ markedly and will be left to future projects.

71.3.1 A Look at Potential Visual Characteristics of Form Types

As a starting point we need to reflect on the role of the five form types Simple, Limit, Colimit, Power, and
List and the way they can best be visualized. Each of these types implies another visual quality that may
be combined with the others. These qualities in early BigBang Scores were shown as clusters of rectangles
(Power) within a coordinate system (Limit) of five axes (Simple), which could in turn be variably shown
as any of six visual dimensions (x-position, y-position, width, height, color, opacity). Three of the five form
types are involved here. The Simples in a Note are based on free modules on a number ring and can thus
easily be represented by one number axis or one of the other visual properties. However, Rubato Composer
allows for many more types of Simples, each of which must be considered here.

71.3.1.1 Simple Denotators

Simple denotators are crucial to a system of visualization, since they are the only denotators that stand
for a specific numerical value in a space. Basically, every form that will be used in a practical way should
contain Simples. This despite the fact that it is possible to conceive more pathological forms, such as the
circular form that describes sets as sets of sets:

Set : .PowerpSetq.
Such forms will be of little use in our context, since anything to be represented and especially transformed
needs to contain specific numerical values. We can thus declare a first rule here:

Rule 1 In our system denotators will only be represented if they contain at least one Simple denotator
somewhere in their structure.

With the system, Simple denotators over the following modules can be represented:

Free Modules over Number Rings

The most straightforward type of modules are the free modules based on number rings such as Z,Q,R, or
C. Elements of the first three are typically represented along an axis, whereas ones of the last on a two-
dimensional Cartesian system. For modules Zn,Qn,Rn, and Cn an n-dimensional or 2n-dimensional system
of real axes will be appropriate.

Furthermore, as shown in Section 71.2.1, as long as all values of a specific denotator are known and finite,
dimensions of free modules over number rings can equally be represented by other visual parameters, such
as an object’s width, height, color, etc. Elements of the free module over C, for instance, could convincingly
be represented as width and height of objects.

Quotient Modules

For free modules over quotient modules such as Zm “ Z{mZ, Qm “ Q{mZ, Rm “ R{mZ, and Cm “ C{mZ

we choose a manner of representation that corresponds to the one introduced in the previous section, where
values are simply projected on a one- or two-dimensional coordinate system. However, instead of being
potentially infinite, the axes maximally show the numbers of the interval r0,mr, which makes zooming out
beyond this point impossible. This works in an analogous way for other view parameters that do not allow
cyclical representation, such as width, height, and opacity. Of the defined visual parameters, only color allows
for cyclical representation, in analogy to the color circle. Again, for Zn

m,Qn
m,Rn

m, and Cn
m, the system can

be extended to be n-dimensional or 2n-dimensional.

71.3 BigBangObjects and Visualization of Arbitrary Mod@ Denotators 1113

Modules over Product Rings and Direct Sums of Modules over Quotient Modules

Representation is straightforward for direct sums of any of the quotient modules discussed so far. Each of
the factors is independently associated with one of the view parameters. For example, for Z ˆ R7 we might
choose to represent the Z part with the x-axis and the R7 part with color.

Remark: More general modules which are not derived from direct sums of such quotient modules are
not yet dealt with.

71.3.1.2 Limit Denotators

The fact that Limits are products or conjunctions makes them always representable in the conjoined space,
i.e., the cartesian product of the spaces of their factors. The most simple case is a Limit of Simple denotators,
just as with our common Score denotators. Notes can be represented in Onset ˆ Pitch ˆ Loudness ˆ
Duration ˆ V oice. This is even possible if the same subspaces appear in several times. For instance, if we
define a form

Dyad : .LimitpPitch, P itchq,
its denotators are representable in the space Pitch ˆ Pitch. This also works in cases where the factors of a
Limit are not directly Simple.

71.3.1.3 Colimit Denotators

Colimits, disjunctions or coproducts, are again representable in the product space of their cofactors, even if
they then typically do not have defined values in all of the product’s dimensions. For “missing” dimensions,
we set standard values, so that the denotators are represented on a hyperplane in the entire product space.
The case where cofactors share common subspaces is especially interesting, since these subspaces will always
be populated.

An example will clarify this: we assume a form EulerScore which consists of EulerNotes and Rests,
which share the Simple forms Onset and Duration. The product space of all cofactor spaces is Onset ˆ
EulerP itch ˆ Loudness ˆ Duration. While EulerNotes fill the entire space, Rests are simply represented
on the Onset ˆ Duration plane. Thus, even though EulerNotes and Rests are actually separated by a
coproduct, both can be shown in the same space.

71.3.1.4 Power and List Denotators

Power and List forms define sets and ordered sets of distinct objects on any hierarchical level. In practice we
typically encounter them on the topmost level as for instance with all the forms supported by early BigBang,
Score, MacroScore, and SoundScore. However, it is also conceivable that they occur only at lower levels,
as in Mariana Montiel’s more detailed score form, which is defined as [760]

Score1 : .LimitpBibInfo, Signatures, Tempi, Lines,GeneralNotes,

GroupArticulations,Dynamicsq.
There, Powers appear in almost all the coordinator forms, but not at the top level. In this case we can for
instance see all BarLine or Slur denotators that appear on lower levels as indirect satellites of our main
Score1.

Power denotators can always be represented as a set of points in the space of their coordinate. An
EulerScore, for instance, can be shown as a cloud of objects in the EulerNoteOrRest space described above.
List denotators can be shown the same way, however, at the expense of the order of their elements, for it
may contradict the spatial organization. In any case, Power and List forms are in fact the main constructs
that define the discrimination of distinct visual objects. Wherever they occur, we have the opportunity to
define as many elements as we would like.

1114 71 Facts: Denotators and Their Visualization and Sonification

71.3.2 From a General View Concept to BigBang Objects

From these characteristics we can imply that all we need to have for a representation of any denotators is a
conjunction of the Simple spaces and a visualization of clouds of objects within them. These objects can be
represented in just the same way as the ones in the generalized piano roll described above, as multidimensional
rectangles. Whenever a denotator enters BigBang, the visualization space is reset based on its form, and users
have the possibility to select any form space and start drawing objects, as will be described below.

We arrive at the core part of our generalization. In short, the representation of any arbitrary denotator
relies on the fundamental difference between the various types of compound forms, Limit, Colimit, and
Power. We propose a novel system of classification that generalizes the previous notion of anchors and
satellites, based on occurrences of Power denotators. For this, we maintain the following rules:

Rule 2 The general visualization space consists of the cartesian product of all Simple form spaces appearing
anywhere in the anatomy of the given form. For instance, if we obtain a MacroScore denotator of any
hierarchical depth, this is Onset ˆ Pitch ˆ Loudness ˆ Duration ˆ V oice.

Rule 3 Any Simple form X the module of which has dimension n ą 1 is broken up into its one-dimensional
factors X1, . . . , Xn. The visual axes are named after the dimension they represent, i.e. Xn, or X if n “ 1.

Rule 4 If the same Simple form occurs several times in a Limit, it is taken to occur several times in the
product as well. For instance, the product space of Dyad is PitchˆPitch. However, if the same Simple
form occurs at different positions in a Colimit, this is not the case. For instance, Colimit of Pitch and
Pitch results in the space Pitch. This renders the space more simple, but we also lose some information.
This loss can be regained thanks to an additional spatial dimension, cofactor index, as described under
Rule 7.

Rule 5 Power or List denotators anywhere in the anatomy define an instantiation of distinct visual objects
represented in the conjoined space. Objects at a deeper level, i.e., contained in a subordinate Power or
List, are considered satellites of the higher-level object and their relationship is visually represented by
a connecting line. For example, SoundScore objects formerly considered modulators are now visually no
different from regular satellites.

Rule 6 Given a view configuration, the only displayed objects are denotators that contain at least one
Simple form currently associated with one of the visual axes. However, if an object is a satellite and one
of the Simple forms associated with the axes occurs anywhere in its parental hierarchy, it is represented
at exactly that value.

Rule 7 If there is an occurrence of either Colimits or satellites, additional dimensions are added to the ones
defined in Rules 1-3. For Colimit we add cofactor index, and for satellites sibling index and satellite
level.9 These dimensions are calculated for each object and can be visualized in the same manner as
the other ones. For instance, associating satellite level with y-position facilitates the selection of all
denotators at distinct positions of the satellite hierarchy.

We call the objects defined by these rules BigBangObjects. They are not only visual entities, but they
are the entities that the BigBang rubette deals with in every respect. All operations and transformations
available in BigBang are applied to sets of BigBangObjects, as we will see in the next chapter. The con-
sequence is that we simplify the structure of forms and denotators significantly, so that if we, for instance,
are handling denotators of a form defined as Limit of Limit of Limit and so on, we can treat it as a single
object. New objects are broken up only if there are Powers or Lists in the hierarchy. We can thus for
instance claim that in BigBang we assume that

LimitpA,LimitpB,LimitpC,Dqqq “ LimitpA,B,C,Dq.

71.3.2.1 Implications for Satellites

One of the main innovations of these definitions is a new notion of the concept of satellites. Previously,
the term was uniquely used to describe Notes in a MacroScore that are hierarchically dependent on other

9 Already present in the early BigBang, as seen in Section 71.2.1.

71.3 BigBangObjects and Visualization of Arbitrary Mod@ Denotators 1115

Notes. For instance, the analogous construction of Modulators in SoundScores was not referred to in this
way; neither was the relationship represented the same way as satellites are [1045]. Following Rule 5 above,
Modulators are now equally considered satellites and represented in precisely the same way. Another new
aspect of this is that now satellites do not technically have to have a shared space with their anchor. For
instance, if we define

HarmonicSpectrum : .LimitpPitch,Overtonesq,
Overtones : .PowerpOvertoneq,
Overtone : .LimitpOvertoneIndex, Loudnessq,
OvertoneIndex : .SimplepZq,

Overtones do not have a Pitch themselves, but merely a Loudness. Because of Rule 6, however, if we choose
to see Loudness ˆ Pitch as the axes of a view configuration, the Overtones are represented above their
anchor. An example visualization of this form will be shown below.

Above, we discussed how satellites and modulators were defined relatively to their anchors (Sec-
tion 71.2). This can also be generalized for the new notion of satellites. We add another rule:

Rule 8 Given a Simple form F , every denotator di : @F in a satellite BigBangObject, i being its index
in case the satellite contains several denotators of form F , is defined in a relative way to di@F in its
anchor, if there is such a denotator.

For instance, if we define

MacroDyad : .PowerpDyadNodeq,
DyadNode : .LimitpDyad,MacroDyadq,

the first Pitch in each satellite Dyad is defined relatively to the first Pitch in its anchor, and the second Pitch
in each satellite relatively to the second Pitch in the anchor. On the other hand, in a HarmonicSpectrum
none of the satellites share Simple denotators with their anchor and are thus defined absolutely.

71.3.3 New Visual Dimensions

The facts view of the new BigBang maintains all the features of the early BigBang and can still be navigated
the same way as described in Section 71.2.2. However, the newest version allows independent zooming in and
out horizontally and vertically, when the shift or alt keys are pressed. It also features some additional view
parameters. There is now an option to use, instead of hue (Color) values, RGB values for color, in a similar
way as that in PrimaVista. This adds more visual variety at the expense of the cyclical nature of hue, and is
especially beneficial when working with data types other than musical ones, such as images. The new view
parameters vector thus looks as follows:

N 1 “ tX-Position, Y -Position,Width,Height, Alpha,Red,Green,Blueu.
In the future, more visual characteristics can easily be added, such as varying shapes, texture, or a third
dimension.

The former note parameters, in turn, now called denotator parameters, include SiblingNumber and
ColimitIndex where appropriate and vary according to the input or chosen form. The former identifies
the index of a denotator in its Power or List, whereas the latter refers to an index based on all possible
combinations of Colimit coordinates. For instance, for an object form

ColimitpColimitpX0, X1q,ColimitpX2, X3, X4q, X5q,
where X0, ..., X5 are any other forms not containing Colimits, we get six possible configurations: an object
containing X0 gets index 0, one containing X1 gets 1, and so on.

1116 71 Facts: Denotators and Their Visualization and Sonification

For EulerScore denotators, for instance, the entire denotator parameters look as follows:

MEulerScore “ tOnset, EulerP itch1, EulerP itch2, EulerP itch3,

Loudness,Duration, ColimitIndexu.
The three-dimensional space of EulerP itch is broken up into its three constituent dimensions, and
ColimitIndex is added, with two potential values: 0 for EulerNoteOrRests containing an EulerNote,
1 for EulerNoteOrRests with a Rest.

71.4 The Sonification of BigBangObjects

As seen above in Section 71.2.3, in the early BigBang rubette, sonification was relatively straightforward,
since all objects that had to be dealt with existed in the same five-dimensional space. For the new BigBang,
this concept had to be generalized as well. For users to be able to sonify a multitude of denotators, even
ones they define themselves, the sonification system had to become more modular.

Our solution generalizes the JSynNotes described above into JSynObjects, which can contain any
number of a set of standard musical parameters. Each BigBangObject is converted into a JSynObject, by
searching for occurrences of these musical parameters anywhere in their anatomy. Any parameters neces-
sary for a sounding result subsequently obtain a standard value. For instance, if we play back a Simple
denotator Pitch, a JSynObject is created with a standard Loudness, Onset, and Duration, so that it is
audible. Especially Onset and Duration are relevant in this case. The standard values assigned for temporal
parameters are chosen such that the object plays continuously for as long as the denotator is being played.
This is particularly interesting when the denotator is transformed, which results in continuously sounding
microtonal sweeping.

JSynObjects can also have multiple pitches, in order to work with denotators such as Dyad, as defined
in Section 71.3.1.2, or other user-defined types that might describe chords, and so on. Some of the recognized
simple forms so far are all note parameters (Onset, Pitch, Loudness,Duration, V oice), as well as BeatClass,
ChromaticP itch, PitchClass, TriadQuality, OvertoneIndex, Rate, Pan, and OperationName. Rate re-
places Onset by defining the rate at which a JSynObject is repeatedly played, OperationName distinguishes
between frequency modulation, ring modulation, and additive synthesis, and TriadQuality adds an appro-
priate triad above each Pitch in the object, assuming that they are root notes. Some of the other forms are
discussed below, along with examples of the visualization of their denotators.

Another recent addition is the option of having everything played back through MIDI, either with
Java’s internal MIDI player, or by sending live MIDI data to any other application or device, via IAC
bus or MIDI interface. MIDI is event-based and thus problematic for playing continuous objects without
temporal parameters. There are two solutions to this problem implemented so far. Either, objects are repeated
continuously at a specified rate, or a note-off event is only sent when an object is replaced by another. In
the latter case, note ons are only sent again once a denotator is transformed.

In order to play back the composition in BigBang, users can press the play button in the lower toolbar.
If the denotator has a temporal existence, i.e., it contains Onsets, it can be looped, where the player
automatically determines the loop size to be the entire composition. In addition to this, any musical denotator
in BigBang can be played back by using an external MIDI controller such as a keyboard controller. Each MIDI
key of such a controller triggers one performance of the denotator, i.e., a one-shot temporal playback, a loop,
or a continuous playback, depending on the denotator. Middle C (60) corresponds to the visible denotator,
while all other keys trigger transposed versions, e.g. a half step up for 61, etc. This is especially practical
when designing sounds, i.e., denotators without Onset or Duration, such as the HarmonicSpectrum form
defined above. This way, users can design sounds and immediately play the keyboard with them, just as with
a regular synthesizer.

For the future, this system of sonification could be extended in order to work in a similar way to
view configurations. For now, whenever a new Simple form is introduced that should be sonified in a
novel way, the system has to be adjusted accordingly. With a free association of any Simple form with a

71.5 Examples of Forms and the Visualization of Their Denotators 1117

sonic parameter, just as is done for the visual system, users can experiment with spontaneously performing
parameter exchanges, or with sonifying non-musical forms.

71.5 Examples of Forms and the Visualization of Their Denotators

In this chapter, we have discussed what the objects on BigBang ’s factual level are and how they are visualized
and sonified. It is now time to give some specific examples of forms that can potentially be defined and show
how their denotators are visualized. Sonification will have to be left to the readers to try themselves. Anything
we feed the new BigBang rubette will be analyzed and visualized as described above. Users may also select
a form within BigBang upon which the facts view is cleared and they may simply start drawing denotators,
as will be described in the next chapter.

We will start with some simple constructs from set theory, move to tonal constructs, and finally give
some examples from computer music and sound design.

71.5.1 Some Set-Theoretical Structures

The most basic construct to be represented is necessarily a single Simple denotator. For instance, if we
input a Pitch, the space is merely one-dimensional, but it can be represented in various visual dimensions
simultaneously. Figure 71.7 shows the pitch middleC : @Pitchp60q – C4 is MIDI pitch 60 – being represented
in every possible visual dimension in RBGmode,10 however reasonable this may be. X, y, width, height, alpha,
red, green, and blue, all represent the value 60, depending on the minm,maxm defined (see Section 71.2.1).

Fig. 71.7. The new BigBang rubette visualizing a Pitch denotator in every visual dimension.

10 Explained in Section 71.3.3.

1118 71 Facts: Denotators and Their Visualization and Sonification

For a Power of a Simple, we get a cloud of values. Figure 71.8 shows an example of

PitchSet : .PowerpChromaticP itchq,
ChromaticP itch : .SimplepZq.

Fig. 71.8. A PitchSet simultaneously visualized using several visual characteristics.

Note that ChromaticP itch differs from Pitch in that it only allows for integer values, which models
the Western equal-tempered chromatic pitch space. In the figure, ChromaticP itch is shown on both axes,
color, width and height. This way, we can define all sorts of datatypes commonly used in music theory or
sound synthesis and visualize and sonify them. If we wanted, for instance, to compose with pitch classes
instead of pitches, we could define

PitchClassSet : .PowerpPitchClassq,
P itchClass : .SimplepZ12q.

If we wish to work with pitch-class trichords, a common construct in set theory, we can define

Trichords : .PowerpTrichordq,
T richord : .LimitpPitchClass, P itchClass, P itchClassq.

P itchSets and PitchClassSets can also be realized as ordered sets. We simply need to replace Power
with List, e.g.

OrderedP itchSet : .ListpPitchq.
In order to compose with PitchClasses the same way we can compose with Scores, i.e., create temporal
structures, we can define

PitchClassScore : .PowerpPitchClassNoteq,
P itchClassNote : .LimitpOnset, P itchClass, Loudness,Duration, V oiceq,

which is then visualized as shown in Figure 71.9.

71.5 Examples of Forms and the Visualization of Their Denotators 1119

Fig. 71.9. A PitchClassScore drawn with ascending and descending lines to show the cyclicality of the space.

71.5.2 Tonal and Transformational Theory

The next few examples imitate spaces and constructs from transformational theory and traditional music
theory.11 For a model of triads, as they are often used in transformational theory, we define

Triad : .PowerpPitch, TriadQualityq,
T riadQuality : .SimplepZ4q,

where Quality stands for one of the four standard qualities in tonal music: diminished, minor, major, and
augmented.

More generally, a simplified notion of chord progressions can be implemented as follows:

Progression : .ListpChordq,
Chord : .LimitpOnset, P itchSet, Loudness,Durationq,

assuming that all members of a chord have the same temporal and dynamic qualities. In so doing, the pitches
of a chord are actually satellites and thus also visualized this way, as can be seen in Figure 71.10. From there,
we can also define hierarchical chord progressions the same way as we did above for Score or Dyad. For
instance, we can define

MacroProgression : .ListpChordNodeq,
ChordNode : .LimitpChord,MacroProgressionq.

This way, each chord can have ornamental progressions, just as we know it from Schenkerian theory. If a
main progression is transposed, its ornamental progressions, defined in a relative way to them, are transposed
with it. The next chapter will clarify what this means.

Figure 71.11 shows an example of the depiction of Colimits. It shows a denotator of a form similar to
EulerScore, but with regular Pitch and an additional V oice parameter, thus simply using regular Notes
and Rests. In the image we see that all the rests are depicted at Pitch 0, since they do not contain a Pitch.
If we chose to depict the denotator on the Onset ˆ Duration plane, the rests would also be shown in two
dimensions.

A final example illustrates a way we can introduce rhythmical relationships other than using Onset. If
we write

11 Some of them were described in [1048].

1120 71 Facts: Denotators and Their Visualization and Sonification

Fig. 71.10. A Progression where pitches adopt the visual characteristics of their anchor chord.

Fig. 71.11. A GeneralScore with some Notes and Rests shown on the Onset ˆ Pitch plane.

Texture : .PowerpRepeatedNoteq,
RepeatedNote : .LimitpPitch, Loudness,Rate,Durationq,
Rate : .SimplepRq

we obtain a set of notes that are repeated at a certain rate, altogether forming a characteristic Texture.

71.5 Examples of Forms and the Visualization of Their Denotators 1121

71.5.3 Synthesizers and Sound Design

Finally, here are some examples of forms that allow for more sound- and timbre-oriented structures. Some
of the forms shown in Section 71.5.1 could be considered to be sound-based forms as they may be seen as
somewhat related to additive synthesis, but we can go much farther than that.12

For instance, we can define

Spectrum : .PowerpPartialq,
Partial : .LimitpLoudness, P itchq.

This models a constantly sounding cluster based on only two dimensions. Since it is not using ChromaticP itch
but Pitch, the cluster can include any microtonal pitches. Figure 71.12 shows an example of a Spectrum.
If we, however, wanted to define a spectrum that only allows for harmonic overtones, this form would not
be well suited, as we would have to meticulously arrange each individual pitch so that it sits at a multiple
of a base frequency. Instead, we could simply use the form already introduced above, HarmonicSpectrum
(Section 71.3.2.1). Figure 71.13 shows an example denotator of a set of harmonic spectra, defined as

HarmonicSpectra : .PowerpHarmonicSpectrumq.
Since satellites (Overtones) and anchors (HarmonicSpectrum) do not share Simple dimensions, they can
only be visualized if one Simple of each is selected as an axis parameter, here Pitch ˆ OvertoneIndex.
However, as we will see in the next chapter, they can both be transformed in arbitrary ways on such a plane.
These are examples of the simplest way of working with additive synthesis in BigBang. All oscillators are
expected to be based on the same wave form and a phase parameter is left out for simplicity. This is also
the case for the following examples.

Fig. 71.12. A Spectrum shown on Loudness ˆ Pitch.

12 Some of these constructions were described in [1047].

1122 71 Facts: Denotators and Their Visualization and Sonification

Fig. 71.13. A constellation of eight HarmonicSpectra with different fundamental Pitches and Overtones.

Even though the previous form leads to more structured and visually appealing results, we limited
ourselves to purely harmonic sounds, since all Overtones are assumed to be based on the same base frequency
Pitch. To make it more interesting, we can decide to unite the sound possibilities of SoundSpectrum with
the visual and structural advantages of HarmonicSpectrum by giving each Overtone its own Pitch. The
following definition does the trick:

DetunableSpectrum : .LimitpPitch,Overtonesq,
Overtones : .PowerpOvertoneq,
Overtone : .LimitpPitch,OvertoneIndex, Loudnessq.

Since values reoccurring in satellites are defined in a relative way to the corresponding ones of their anchor, we
get the opportunity to define deviations in frequency from the harmonic overtone, rather than the frequencies
themselves. A displacement of a satellite on the Pitch axis with respect to its anchor enables us to detune
them. Figure 71.14 shows an instance of such a DetunableSpectrum.

The three forms above are just a few examples of an infinite number of possible forms. Slight variants
of the above forms can lead to significant differences in the way sounds can be designed. For instance,
generating complex sounds with the above forms can be tedious as there are many ways to control the
individual structural parts. A well-known method to achieve more complex sounds with much fewer elements
(oscillators) is frequency modulation, which can be defined as follows in a recursive way:

FMSet : .PowerpFMNodeq,
FMNode : .LimitpPartial, FMSetq,

with Partial as defined above. Examples as complex as the one shown in Figure 71.15 can be created this
way. Frequency modulation, typically considered highly unintuitive in terms of the relationship of structure
and sound [199], can be better understood with a visual representation such as this one. All carriers and mod-
ulators are shown respective to their frequency and amplitude and can be transformed simultaneously and

71.5 Examples of Forms and the Visualization of Their Denotators 1123

Fig. 71.14. An instance of a DetunableSpectrum, where the fundamentals of the Overtones are slightly detuned.

parallelly, which has great advantages for sound design compared to old-fashioned skeuomorphic synthesizers
and applications.

In order to include other synthesis models, we can define

GenericSound : .LimitpOscillator, Satellites,Operationq,
Oscillator : .LimitpLoudness, P itch,Waveformq,
Satellites : .ListpGenericSoundq,
Operation : .SimplepZ3q,
Waveform : .SimplepZ4q,

where Operation represents the three synthesis operations for additive synthesis, ring modulation, and
frequency modulation. For each anchor/satellite relationship, we can choose a different operation. Each
Oscillator also has its own Waveform, here a selection of four varying ones, for instance sine, triangle,
square, and sawtooth.13 Sounds designed this way can immediately be played with by using a keyboard
controller, as seen in Section 71.4.

Finally, we can also combine multiple forms into higher-level forms that contain several objects. For
instance, a Limit of SoundSpectrum and Score allows us to create compositions containing both constantly
sounding pitches and notes with Onsets and Durations. We simply need to define

SpectrumAndScore : .LimitpSpectrum, Scoreq.
Figure 71.16 shows an example of such a composition. This way, any number of synthesis methods and
musical formats can be combined to higher-level forms and can be used simultaneously in BigBang.

These examples show how much structural variety we can create by just using a small given set of
Simple forms, and how their visualization can help us understand the structures. All of them can directly

13 A slightly different GenericSound form is described in [1048].

1124 71 Facts: Denotators and Their Visualization and Sonification

Fig. 71.15. An FMSet containing five carriers all having the same modulator arrangement, but transposed in Pitch
and Loudness.

be sonified, even while we are building the denotators. Most importantly, such forms can be defined at runtime
in Rubato Composer and they can immediately be used in BigBang. In addition to musical data types, as in
the examples here, one can define forms describing any kind of fact. For example, we programmed rubettes
that read image files (ImageFileIn), translate them into forms, and make them available to transformation
in BigBang, before being exported again or converted into musical objects by other rubettes.

In the next chapter we will discuss how such objects, once their form is defined, can be created,
manipulated, and transformed in BigBang. For this, we need to examine how the BigBang rubette implements
the level of processes.

71.5 Examples of Forms and the Visualization of Their Denotators 1125

Fig. 71.16. A composition based on a Limit of a SoundSpectrum (Pitches at Onset 0) and a Score (Pitches with
Onsets).

	71 Facts: Denotators and Their Visualization and Sonification
	71.1 Some Earlier Visualization of Denotators
	71.1.1 Göller's Priman Vista Browser
	71.1.2 Milmeister's ScorePlay and Select2D Rubettes

	71.2 An Early Score-Based Version of BigBang
	71.2.1 The Early BigBang Rubette's View Configurations
	71.2.2 BigBangObjects And Visualization of Arbitrary Mod@ Denotators
	71.2.3 Sonifying Score-Based Denotators

	71.3 BigBangObjects and VIsualization of M od@
	71.3.1 A Look at Potential Visual Characteristics of Form Types
	71.3.1.1 Simple Denotators
	71.3.1.2 Limit Denotators
	71.3.1.3 Colimit Denotators
	71.3.1.4 Power and List Denotators

	71.3.2 From a General View Concept to BigBang Objects
	71.3.2.1 Implication for Satellites

	71.3.3 New Visual Dimensions

	71.4 The Sonification of BigBangObjects
	71.5 Examples of Forms and the Visualiazation of Their Denotators
	71.5.1 Some Set-Theoectical Structures
	71.5.2 Tonal and Transformation Theory
	71.5.3 Synthesizers and Sound Design

