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Preface to the Second Edition

Comprendre, c’est
attraper le geste

et pouvoir continuer
Jean Cavaillès [181, p. 186]

A major reason for a second edition of The Topos of Music—besides the simple fact that the first
edition is now sold out—goes back to spring 2002, when I was completing its first edition, published in fall
2002. I was asked to give a talk in the MaMuX seminar of the IRCAM in Paris, to explain how I applied
the mathematics of The Topos of Music to my free jazz improvisations.

While preparing my talk I realized that despite the presence of mathematical music theory the decisive
generator of my instant compositions was the gestural deployment of formulas, the “action painting” of
musical thoughts, not the abstract formulas in their static facticity. First and foremost this was a shocking
insight in view of the forthcoming publication of the formulaic setup in The Topos of Music.

Fortunately, I knew from Hermann Hesse that “every end is a beginning”1, which meant in my case
that the end of a scientific development as traced in the book’s first edition initiated the next step: a music
theory of gestures. It goes without saying that this new phase would not destroy the previous research, but
incorporate it as the stratum of facticity in an extended ontology of embodiment, where facts are the output
of processes and their gestural generators.

In the sequel, I discovered that I was far from being the first scholar and artist to discover the crucial
role of gestures in music. For instance, free jazz pianist Cecil Tayor, music philosopher Theodor Wiesengrund
Adorno, or lateral thinker Paul Valéry had clearly stressed the dancing essence of art, an insight that I had
embodied in my own pianist’s art, but never understood on an intellectual level.

Of course, I could not be satisfied by the very existence of gesture philosophy or gestural practice, just
as I could not accept traditional music and performance theory when I started my enterprise of mathematical
music theory in 1978. The gesturally colored thoughts and actions needed a rigorous conceptualization in
the same vein as my efforts before the first edition of The Topos of Music.

In 2002, I was in the privileged position to work in the multimedia division of Peter Stucki at the
Institut für Informatik of the University of Zurich. I had excellent PhD students, and we could, with one of
them, Stefan Müller, realize a first experimental software for the gestural representation of a pianist’s hand,
a work presented at the ICMC conference in 2003 [772].

This experimental preliminary work was then taken as a point of departure for a mathematical theory
of musical gestures. I presented this theory in a course in spring 2005 at École normale supérieure in Paris,
a course that was later in 2007 taken as the material basis of my French book La vérité de beau dans la
musique [718]. The first publication of a formally more evolved mathematical theory of musical gestures was

1 Actually, he says that “Jeder Anfang ist ein Ende,” but the reverse is immediate.
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written with co-author Moreno Andreatta in 2007 [720]. This date could be called the birthday of a valid
mathematical theory of musical gestures.

Until the publication of this second edition of The Topos of Music, several important conceptual ex-
tensions of the mathematical theory of musical gestures, models of musical gestural processes, as well as a
number of theorems have been published. The decade from date of birth to the presence proved that the
mathematical theory of musical gestures is an important added value to the theory described in the first
edition of The Topos of Music.

We can however not state that this theory of gestures is in a complete state, quite the opposite is
true: The coming years will reveal important news of theoretical as well as practical nature. So why did we
make the decision to publish the present state of the art? The first argument is that the present state is
rich enough to define concrete new directions, be it in music theory, such as harmony or counterpoint, be
it in performance theory, or be it in the understanding of embodiment in the making of music. The second
argument is that the present material, roughly 500 pages of new material, is ample enough to present a
book’s stature. And the third and very important argument is that we would like to communicate the state
of the art in the spirit of Cavaillès: Understanding is catching the gesture and being able to continue. The
co-authors of the gesture theory part, René Guitart, Jocelyn Ho, Alex Lubet, Maria Mannone, Matt Rahaim,
and Florian Thalmann, are a wonderful confirmation of this philosophy. So let us continue!

Here is a summary of the new material and its authorship. Whenever I don’t mention the author, it is
my own contribution, all others are mentioned explicitly.

Until Part XIV, nearly everything is as in the book’s first edition, refer to the preface of that edition
(also included in this edition) for detailed summaries. The only new content—besides errata corrections—is
Chapter 45 in Part XI, which is a shortened version of a paper [110] on a statistical analysis of Chopin’s
Prélude op. 28, No. 4, written with Jan Beran, Robert Goswitz, and Patrizio Mazzola.

Gesture theory starts with Part XV: Gesture Philosophy for Music. Chapter 57 gives an overview of
philosophical aspects of gestures, including works by Jean-Claude Schmitt, Vilém Flusser, Michel Guérin,
Adam Kendon, David McNeill, Juhani Pallasmaa, André Chastel, Émile Benveniste, Marie-Dominique
Popelard, and Anthony Wall. In Chapter 58, we discuss the presemiotic approch to gestures in the French
perspective of Maurice Merleau-Ponty, Gilles Deleuze, Jean Cavaillès, Charles Alunni, and Gilles Châtelet.
Paul Valéry is also referenced in Section 59.4.

Chapter 59 deals with gestural aspects in cognitive science. After a review of Embodied AI and an-
thropology, Alex Lubet in Section 59.5 introduces us to gestural disability studies, focusing on two famous
disabled pianists: Horace Parlan and Oscar Peterson (in his last years). Then in Section 59.6 Lubet reflects
on perception of musical gesture as being inherently synaesthetic.

Chapter 60 concludes this part with a review of musical models of gesturality as proposed by Wolfgang
Graeser, Theodor W. Adorno, Neil P. McAngus Todd, David Lewin, Robert Hatten, Marcelo Wanderley,
Claude Cadoz, and Marc Leman.

Part XVI introduces the mathematics of gestures. Chapter 61 presents the mathematical concept of a
gesture in a topological space and states the Diamond Conjecture, which deals with a hypothetical big space
that unites algebraic and topological categories. Chapter 62 extends the theory from gestures in topological
spaces to gestures in topological categories and introduces functorial gestures, i.e., functors on topological
categories with values in the category of gestures, similar to functorial compositions in the previous theory.

Chapter 63 presents a generalized singular homology, where cubes are replaced by general hyperges-
tures. Hypergesture homology applies to a gestural model of counterpoint and to a gestural refinement of
performance stemma theory.

Chapter 64 presents—similar to Chapter 63—Stokes’ Theorem for hypergestures. This theorem applies
to problems in gestural modulation theory.

Chapters 65 and 66 discuss categories of local and global compositions, processes/networks, and ges-
tures, together with their functorial relationships. This triple typology composition/process/gesture corre-
sponds to the ontological dimension of embodiment with its three coordinates facts/processes/gestures.

In Sections 67.1–67.7 of Chapter 67, René Guitart develops a fascinating and demanding mathematical
model of mathematical creativity, where thought is viewed as an algebra of gestures.
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In Section 61.14, we, Maria Mannone and Guerino Mazzola, present a group-theoretical model of Georg
Wilhelm Friedrich Hegel’s initial discourse in his Wissenschaft der Logik, a model that applies to the Yoneda
concept of creativity [726, Chapter 19.2]. We illustrate the method with an experimental composition by
Mannone. This discussion extends over Sections 67.8–67.15 and completes Chapter 67.

Part XVII deals with concept architectures and software for musical gesture theory. Chapter 68 explains
the denotator formalism for gestures over topological categories. Chapter 69 is a summary of the Java-based
RUBATO� Composer software [739], written to sketch the framework of Chapters 70–74, where Florian
Thalmann presents his gesture-oriented software component, the BigBang rubette. This discourse again
follows the coordinates of the dimension of embodiment: facts, processes, gestures, which in this situation
specify to: visualization and sonification of denotators (Chapter 71), BigBang’s operation graph (Chapter
72), and gestural interaction and gesturalization (Chapter 73). In the final Chapter 74 of this part, Thalmann
discusses musical examples.

Part XVIII is entitled The Multiverse Perspective because it opens up the relationship of gesture
theory with string theory in theoretical physics. After a critical review of Hermann Hesse’s Glasperlenspiel
with regard to its gestural deficiencies, we, Mazzola and Mannone, develop the Euler-Lagrange formalism of
world-sheets for musical gestures. This theory extends to functorial global gestures over global topological
categories.

Part XIX is dedicated to applications of gesture theory to a number of musical themes.
Chapter 79 deals with singular gesture homology being applied to counterpoint.
Chapter 80 introduces a gestural restatement of modulation theory, applying in particular Stokes’

Theorem for hypergestures.
Chapter 81 applies gesture theory to a gestural performance stemma theory.
Chapter 82 is written by Jocelyn Ho as a creative presentation of composition and analysis as embodied

gestures in an inter-corporeal world. She presents two compositions, Toru Takemitsu’s Rain Tree Sketch II
and her own composition Sheng for piano, smartphones, and fixed playback.

Chapter 83 is Mannone’s analysis and classification of a conductor’s movements from the viewpoint of
gesture theory.

Chapter 84 is a review of gestural aspects that were developed in Flow, Gesture, and Spaces in Free
Jazz [721].

Chapter 85 is written by Matt Rahaim and presents the gestural approach to understanding Hindustani
music in its vocal gesturality.

Chapter 86 is a first approach, written by Mannone, to a future theory of vocal gestures. The short
addendum was written by Mazzola.

The Appendix has been enriched by additional complements on mathematics (Chapter J) plus comple-
ments on physics (Chapter K).

The Leitfaden III has been added to the original Leitfaden I & II for the gestural chapters.
The ToM CD has been updated, containing now the present book’s pdf ToposOfMusic.pdf. However

the original CD is no longer added to the book, instead the ToM CD can be downloaded from

www.encyclospace.org/special/ToM CD.zip.

Concerning the division of the now very large book into parts, this is the split:

• Volume I: Theory, Prefaces and Table of Contents, Parts I to VII
• Volume II: Performance, Parts VIII to XIV
• Volume III: Gestures, Parts XV to XIX
• Volume IV: Roots, Appendices

My sincere acknowledgments go to my co-authors and to Springer’s Ronan Nugent and Frank Holzwarth
as well as to Birkhäuser’s Thomas Hempfling.

Minneapolis, October 2017 Guerino Mazzola
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Preface

Man kann
einen jeden Begriff,
einen jeden Titel,

darunter viele Erkenntnisse gehören,
einen logischen Ort nennen.

Immanuel Kant [519, p. B 324]

This book’s title subject, The Topos of Music, has been chosen to communicate a double message: First,
the Greek word “topos” (τ óπoς = location, site) alludes to the logical and transcendental location of the
concept of music in the sense of Aristotle’s [40, 1154] and Kant’s [519, p. B 324] topic. This view deals with
the question of where music is situated as a concept—and hence with the underlying ontological problem:
What is the type of being and existence of music? The second message is a more technical understanding
insofar as the system of musical signs can be associated with the mathematical theory of topoi, which realizes
a powerful synthesis of geometric and logical theories. It laid the foundation of a thorough geometrization of
logic and has been successful in central issues of algebraic geometry (Grothendieck, Deligne), independence
proofs and intuitionistic logic (Cohen, Lawvere, Kripke).

But this second message is intimately entwined with the first since the present concept framework of
the musical sign system is technically based on topos theory, so the topos of music receives its topos-theoretic
foundation. In this perspective, the double message of the book’s title in fact condenses to a unified intention:
to unite philosophical insight with mathematical explicitness.

According to Birkhäuser’s initial plan in 1996, this book was first conceived as an English translation
of my former book Geometrie der Töne [682], since the German original had suffered from its restricted
access to the international public. However, the scientific progress since 1989, when it was written, has
been considerable in theory and technology. We have known new subjects, such as the denotator concept
framework, performance theory, and new software platforms for composition, analysis, and performance, such
as RUBATO� or OpenMusic. Modeling concepts via the denotator approach in fact results from an intense
collaboration of mathematicians and computer scientists in the object-oriented programming paradigm and
supported by several international research grants.

Also, the scientific acceptance of mathematical music theory has grown since its beginnings in the
late 1970s. As the first acceptance of mathematical music theory was testified to by von Karajan’s legendary
Ostersymposium “Musik und Mathematik” in 1984 in Salzburg [383], so is the significantly improved present
status of acceptance testified to by the Fourth Diderot Forum on Mathematics and Music [711] in Paris,
Vienna, and Lisbon 1999, which was organized by the European Mathematical Society. The corresponding
extension of collaborative efforts in particular entail the inclusion of works by other research groups in this
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book, such as the “American Set Theory”, the Swedish school of performance research at Stockholm’s KTH,
or the research on computer-aided composition at the IRCAM in Paris.

Therefore, as a result of these revised conditions, The Topos of Music appears as a vastly extended
English update of the original work. The extension is visibly traced in the following parts which are new with
respect to [682]: Part II exposes the theory of denotators and forms, part V introduces the topological theories
of rhythms and motives, part VIII introduces the structure theory of performance, part IX deals with the
expressive semantics of performance in the language of performance operators and stemmata (genealogical
trees of successively refined performance), part X is devoted to the description of the RUBATO� software
platform for representation, analysis, composition, and performance, part XI presents a statistical analysis
of musical analysis, part XII concludes the subject of performance with an inverse performance theory, in
fact a first formalization of the problem of music criticism.

This does however not mean that the other parts are just translations of the German text. Considerable
progress has been made in most fields, except the last part XIV which reproduces the status quo in [682].
In particular, the local and global theories have been thoroughly functorialized and thereby introduce an
ontological depth and variability of concepts, techniques, and results, which by far transcend the semioti-
cally naive geometric approach in [682]. The present theory is as different from the traditional geometric
conceptualization as is Grothendieck’s topos theoretic algebraic geometry from classical algebraic geometry
in the spirit of Segre, van der Waerden, or Zariski.

Beyond this topos-theoretic generalization, the denotator language also introduces a fairly exceptional
technique of circular concept constructions. This more precisely is rooted in Finsler’s pioneering work in
foundations of set theory [322], a thread which has been rediscovered in modern theoretical computer sciences
[5]. The present state of denotator theory rightly could be termed a Galois theory of concepts in the sense that
circular definitions of concepts play the role of conceptual equations (corresponding to algebraic equations
in algebraic Galois theory), the solutions of which are concepts instead of algebraic numbers.

Accordingly, the mathematical apparatus has been vastly extended, not only in the field of topos
theory and its intuitionistic logic, but also with regard to general and algebraic topology, ordinary and
partial differential equations, Pólya theory, statistics, multiaffine algebra and functorial algebraic geometry.
It is mandatory that these technicalities had to be placed in a more elaborate semiotic perspective. However,
this book does not cover the full range of music semiotics, for which the reader is referred to [703]. Of course,
such an extension on the technical level has consequences for the readability of the theory. In view of the
present volume of over 1300 pages, we could however not even make the attempt to approach a non-technical
presentation. This subject is left to subsequent efforts. The critical reader may put the question whether
music is really that complex. The answer is yes, and the reason is straightforward: We cannot pretend that
Bach, Haydn, Mozart, or Beethoven, just to name some of the most prominent composers, are outstanding
geniuses and have elaborated masterworks of eternal value, without trying to understand such singular
creations with adequate tools, and this means: of adequate depth and power. After all, understanding God’s
‘composition’, the material universe, cannot be approached without the most sophisticated tools as they
have been elaborated in physics, chemistry, and molecular biology.

So who is recommended to read this book? A first category of readers is evidently the working scientist
in the fields of mathematical music theory, the soft- and hardware engineer in music informatics, but also
the mathematician who is interested in new applications from the above fields of pure mathematics. A
second category are those theoretical mathematicians or computer scientists interested in the Galois theory
of concepts; they may discover interesting unsolved problems. A third category of potential readers are all
those who really want to get an idea of what music is about, of how one may conceptualize and turn into
language the “ineffable” in music for the common language. Those who insist on the dogma that precision
and beauty contradict each other, and that mathematics only produces tautologies and therefore must fail
when aiming at substantial knowledge, should not read such a book.

Despite the technical character of The Topos of Music, there are at least four different approaches to its
reading. To begin with, one may read it as a philosophical text, concentrating on the qualitative passages,
surfing over technical portions and leaving those paragraphs to others. One may also take the book as a
dictionary for computational musicology, including its concept framework and the lists of musical objects
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and processes (such as modulation degrees, contrapuntal steps) in the appendices. Observe however, that
not all existing important lists have been included. For example, the list of all-interval series and the list of
self-addressed chords are omitted, the reader may find these lists in other publications. Thirdly, the working
scientist will have to read the full-fledged technicalities. And last, but not least, one may take the book as
a source for ideas of how to go on with the whole subject of music. The GPL (General Public License2)
software sources in the appended CD-ROM may support further development.

The prerequisites to a more in-depth reading of this book are these. Generally speaking, a good acquain-
tance with formal reasoning as mathematics (including formal logic) preconizes, is a conditio sine qua non.
As to musicology and music theory, the familiarity with elementary concepts, like chords, motives, rhythm,
and also musical notation, as well as a real interest in understanding music and not simply (ab)using it, are
recommended. For the more computer-oriented passages, familiarity with the paradigm of object-oriented
programming is profitable. We have not included the appendix on mathematical basics because it should
help the reader get familiar with mathematics, but as an orientation in fields where the specialized mathe-
matician possibly needs a specification of concepts and notation. The appendix was also included to expose
the spectrum of mathematics which is needed to tackle the formal problems of computational musicology.
It is by no means an overkill of mathematization: We have even omitted some non-trivial fields, such as
statistics or Lambda calculus, for which we have to apologize.

There are different supporting instances to facilitate orientation in this book. To begin with, the table
of contents and an extensive subject and name index may help find one’s key-words. Further, following the
list of contents, a leitfaden (on page xlix) is included for a generic navigation. Each chapter and section is
headed by a summary that offers a first orientation about specific contents. Finally, the book is also available
as a file ToposOfMusic.pdf with bookmarks and active cross-references in the appended CD-ROM (see page

In order to obtain a consistent first reading, we recommend chapters 1 to 5, and then appendix A:
Common Parameter Spaces (appendix B is not mandatory here, though it gives a good and not so technical
overview of auditory physiology). After that, the reader may go on with chapter 6 on denotators and then
follow the outline of the leitfaden (see page xlix).

This book could not have been realized without the engaged support of nineteen collaborators and
contributors. Above all, my PhD students Stefan Göller and Stefan Müller at the MultiMedia Laboratory of
the Department of Information Technology at the University of Zurich have collaborated in the production
of this book on the levels of the LATEX installation, the final production of hundreds of figures, and the
contributions sections 20.2 through 20.5 (Göller) and sections 47.3 through 47.3.6.2 (Müller). My special
gratitude goes to their truly collaborative spirit.

Contributions to this book have been delivered by (in alphabetic order): By Carlos Agon, and Gérard
Assayag (both IRCAM) with their precious Lambda-calculus-oriented presentation of the object-oriented
programming principles in the composition software OpenMusic described in chapter 52, Moreno Andreatta
(IRCAM) with an elucidating discourse on the American Set Theory in section 11.5.2 and section 16.3, Jan
Beran (Universität Konstanz) with his contribution to the compositional strategies in his original composition
[103] in section 11.5.1.1, as well as with his inspiring work on statistics as reported in chapters 43 and 44,
Chantal Buteau (Universität and ETH Zürich) with her detailed review of chapter 22, Roberto Ferretti
(ETH Zürich) with his progressive contributions to the algebraic geometry of inverse performance theory in
sections 39.8 and 47.2, Anja Fleischer (Technische Universität Berlin) with her short but critical preliminaries
in chapter 23, Harald Fripertinger (Universität Graz) with his ‘killer’ formulas concerning enumeration of
finite local and global compositions in sections 11.4, 16.2.2 and appendix C.3.6, Jörg Garbers (Technische
Universität Berlin) with his portation of the RUBATO� application to Mac OS X, as documented in the
screenshots in chapters 40, 41, Werner Hemmert (Infineon) with a very up-to-date presentation of room
acoustics in section A.1.1.1 and auditory physiology in appendix B.1 (we would have loved to include more
of his knowledge), Michael Leyton (DIMACS, Rutgers University) with a formidable cover figure entitled
“Dark Theory”, a beautiful subtitle to this book, as well as with innumerable discussions around time
and its reduction to symmetries as presented in chapter 48, Emilio Lluis Puebla (UNAM, Mexico City)

2 A legal matter file is contained in the book’s CD-ROM, see page li.
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with his unique and engaged promotion and dissipation of mathematical music theory on the American
continent, especially also in the preparation and critical review of this book, Mariana Montiel Hernandez
(UNAM, Mexico City) with her critical review of the theory of circular forms and denotators in section 6.5
and appendix G.2.2.1, Thomas Noll (Technische Universität Berlin) with his substantial contributions to the
functorial theory of compositions, and for his revolutionary rebuilding of Riemann’s harmony and its relations
to counterpoint, Joachim Stange-Elbe (Universität Osnabrück) with a very clear and innovative description
of his outstanding RUBATO� performance of Bach’s contrapunctus III in the Art of Fugue in sections 42.2
through 42.4.3, Hans Straub with his adventurous extensions of classical cadence theory in section 26.2.2
and his classification of four-element motives in appendix O.4, and, last but not least, Oliver Zahorka (Out
Media Design), my former collaborator and chief programmer of the NeXT RUBATO� application, which
has contributed so much to the success of the Zürich school of performance theory. To all of them, I owe my
deepest gratitude and recognition for their sweat and tears.

My sincere acknowledgments go to Alexander Grothendieck, whose encouraging letters and, no doubt,
awe inspiring revolution in mathematical thinking has given me so much in isolated phases of this enterprise.
My acknowledgments also go to my engaged mentor Peter Stucki, director of the MultiMedia Laboratory
of the Department of Information Technology at the University of Zurich; without his support, this book
would have seen its birthday years later, if ever. My thanks also go to my brother Silvio, who once again (he
did it already for my first book [670]) supported the final review efforts by an ideal environment in his villa
in Vulpera. My thanks also go to the unbureaucratic management of the book’s production by Birkhäuser’s
lector Thomas Hempfling and the very patient copy editor Edwin Beschler. All these beautiful supports
would have failed without my wife Christina’s infinite understanding and vital environment—if this book is
a trace of humanity, it is also, and strongly, hers.

Vulpera, June 2002 Guerino Mazzola
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56

The Topos of Gestures

Summary. This is the third1 part of The Topos of Music and deals with gestures. We summarize the
trajectory gestures took from the first edition of The Topos of Music to the present second edition.

– Σ –

As already mentioned in the preface to the second edition of this book, work on the first edition in
2002 had ended when its author discovered (in the context of a talk he gave on the 18th of May at IRCAM
about his improvisational technique and its relationship to mathematical music theory) that gestures were
as essential if not more prominent than abstract formulas for his improvisational practice.

At first this was a considerable shock in view of the imminent publication of The Topos of Music. But
it soon turned out to define the very power of Mazzola’s research in future years. The third part of this book
in its second edition, fifteen years after the first edition, is the present state of the art, an art that is far from
completed, to be clear.

The role of gesture theory can be understood from its ontological status. We refer to Section 57.1
for a more detailed discussion of musical ontology with gestures. Ontology of music answers the questions
“Where?” (realities), “Why?” (semiotics), and “How?” (communication). This was discussed in Chapter 2.

With gestures, we add the answer to the question: “how does music come into being?” It is in fact not
true that music is just a collection of facts (done things), but it is strongly focused on the action of making,
be it the performance of a score, the improvisation in jazz or the free setting in contemporary creative
musicking.

The topos of gestures is not thought of as a topos in Grothendieck’s understanding, although the study
of gestures involves a number of mathematical topoi. The title, above all, focuses on the second understanding
of “topos”, namely the Kantian conceptual localization2 of music in its gestural unfolding. It is a substantial
extension of the concept of music from facts to gestures, from its static ontology to an ontology of the
making. In this sense, we are far from a terminal theory of gestures, and this is good: otherwise the ontology
of making would be contradicting itself.

1 The first part is theory, while the second is performance.
2 See our catchword on page ix.
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57.1 A Short Recapitulation of Musical Ontology

Summary. This short section recapitulates the global architecture of the ontology of music.

– Σ –

Ontology of music includes three dimensions: realities, semiotics, and communiction. It also includes
the extension of ontology to the fourth dimension of embodiment. We call this extension “oniontology” for
reasons that will become evident soon.

Fig. 57.1. The three-dimensional cube of musical ontology.

57.1.1 Ontology: Where, Why, and How

Ontology is the science of being. We are therefore discussing the ways of being which are shared by music.
See Chapter 2 for a detailed discussion. As shown in Figure 57.1, we view musical being as spanned by three
‘dimensions’, i.e., fundamental ways of being. The first one is the dimension of realities. Music has a threefold
articulated reality: physics, psychology, and mentality. Mentality means that music has a symbolic reality
that it shares with mathematics. This answers the question of “where” music exists.
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The second dimension, semiotics, specifies that musical being is also one of meaningful expression.
Music is also an expressive entity. This answers the question of “why” music is so important: it creates
meaningful expressions, the signs which point to contents.

The third dimension, communication, stresses the fact that music exists also as a shared being between
a sender (usually the composer or musician), the message (typically the composition), and the receiver (the
audience). Musical communication answers the question of “how” music exists.

Fig. 57.2. The hypercube of musical oniontology.

57.1.2 Oniontology: Facts, Processes, and Gestures

Beyond the three dimensions of ontology, we have to be aware that music is not only a being that is built from
facts, finished results; no, music is strongly also processual, creative, and living in the very making of sounds.
Musical performance is a typical essence of music that lives, especially in the realm of improvisation, while
being created. The fourth dimension, embodiment, deals with this aspect, it answers the question “how come
into being?” It is articulated in three values: facts, processes, and gestures. This fourth dimension gives the
cube of the three ontological dimensions a threefold aspect: ontology of facts, of processes, and of gestures.
This four-dimensional display can be visualized as a threefold imbrication of the ontological cube, and this,
as shown in Figure 57.2, turns out to be a threefold layering, similar to an onion’s. This is the reason why
we coined this structure “oniontology”—sounds funny, but it is appropriate terminology.

57.2 Jean-Claude Schmitt’s Historiographic and Philosophical Treatise “La
raison des gestes dans l’Occident médiéval”

“La raison des gestes dans l’Occident médiéval” was published in 1990 [946]. It is the most complete and
important contribution to the history of the concept, philosophy, and social and religious roles of gestures
during the early centuries of our modern Western culture. It starts with a summary of the ancient Greek
and Roman traditions: Plato, Aristotle, Cicero, and Quintilian, and then draws a trajectory through the
Middle Ages, starting with the early writings of Martianus Capella (between 410 and 470), culminating in
the sophisticated and detailed writings of Paris-based theologist Hugues de Saint-Victor (1096-1141), and
terminating with a detailed discussion of the transition of the Christian culture during the twelfth and
thirteenth centuries to an “intellectual Renaissance” where new technologies, the new medical paradigm of



surgery, the first universities, and the rediscovery of ancient traditions generate new perspectives on the
phenomenon of gestures.

Before we discuss the most evolved definition of a gesture by Hugues de Saint-Victor, let us summarize
the relation of gestures to the Christian religion and church in the Middle Ages as it is described and analyzed
by Schmitt. As gestures are always related to the human body, their role is strongly related to the position
of the body in the early Christian tradition. This position has two contradictory faces. On the one hand, our
body is the “prison of the soul” and also occupies the role of a cause of sin and mean animalistic behavior.
In this face, the body’s gestures must be limited and controlled by the high moral and holy principles of the
Christian soul that seeks its salvation in God. This perspective explains the repression of mimes, histrions and
jugglers, and also of feminine body movements or more generally of any erotically colored gestural utterances.
On the other hand, the central essence of Christian religion is described by the Eucharist, the transformation
of bread and wine into Christ’s body and blood. Here, the body signifies incarnation of a divine existence,
and therefore it receives a totally different role, not sinful and animalistic, but realizing the embodiment of
a divine revelation. In this second face, gestures, above all the priests’ precisely canonized gestures when
delivering the holy communion, but also in the ecstasy of mystical Christians, such as stigmatist Francis
of Assisi, are understood as connectors that transcend verbal expressivity. According to Schmitt, what is
common to these two faces is that gestures are (1) expressive in the sense that the relate the internal human
moods or emotions or thoughts to the external reality of visible bodies, (2) communicative, i.e., they transfer
contents as signs (Hugues de Saint-Victor calls them signa), and (3) technical in the sense that they ask us
to make something.

It is remarkable that many modern approaches to a theory of gestures germinated in the Middle Ages (if
not in Greek Antiquity), for example the association of gesture with language (the basis of Adam Kendon’s
and David McNeil’s theories; see Section 57.7), the idea of music being more than sound, including gestures
in its dancing expressivity, or more generally the theories of non-verbal communication.

Apart from the fact that Schmitt recognizes the Middle Ages as a “civilization of gestures”, a fact
that positions the project of this book in a long cultural tradition, it is interesting to discuss the concept
of a gesture that has been defined in Hugues de Saint-Victor’s De institutione novitiorum, written in Paris
around 1140. In Chapter XI, he starts with a definition of a gesture:

Gestus est motus et figuratio membrorum corporis, ad omnem agenda et habendi modum.

Gesture is the movement and figuration of the body’s limbs with an aim, but also according to the
measure and modality proper to the achievement of all action and attitude.1 That gesture is the human
body’s movement (motus) is in harmony with traditional, ancient musically and rhetorically motivated
conceptualizations. But the specification of the movement as also the body’s figuratio is new and specific
to Hugues de Saint-Victor’s setup. Schmitt interprets figuration as as the creation of a configuration of the
body’s members which express the soul’s movements. We cannot follow this interpretation; it seems too
strongly directed towards a semantic view (gestures are expressing internal contents of mood, etc.). We
would prefer to simply see the configuration of the body’s limbs in this characterization, meaning that a
gesture is more than a general movement; it is the movement of an articulated whole, a combination of parts
(the limbs) that relate to each other in a complex anatomic architecture. The second couple of properties:
action and attitude, which are attributed to modus, translated as measure and modality by Katsman, are
more difficult to understand. Katsman and also Schmitt use longer circumscriptions of modus in its relation
to action and attitude. The Latin wording is very short and elegant, being reduced to the preposition ad,
meaning that modus is for, specified by action and attitude. This means that the body’s movement and
(con)figuration are directed to a modality, which is specified by action and attitude.

57.2.1 Comments

We don’t see the semantic valuation as explicitly as Schmitt does. It is a movement and figuration of the
body with a specification, not a general movement, but carrying a modality. This modality is not a priori

1 Following the translation by Roman Katsman [524]; see also http://sites.utoronto.ca/tsq/12/katsman12.shtml.
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meaningful; it is an action and attitude, not more and not less. One could object that Hugues de Saint-Victor’s
comments about the nature of a gesture as a sign would suggest a semiotic specification in his definition.
This seems plausible in the context of Hugues de Saint-Victor’s Christian background: A gesture must be
meaningful to comply with the general principle of meaningful life sub specie aeternitatis divinae; this is
evidenced in Schmitt’s concluding chapter, L’Efficacité symbolique: Everything is meaningful, if not magic,
and incessantly observed by God. We would prefer not to load this definition too much with a semiotic scheme.
This needn’t mean that gestures in Hugues de Saint-Victor’s understanding are a presemiotic concept, but
it could mean that gestures not only are carriers of given contents but could be involved in the creation of
contents, that they could be semantic generators. We shall come back to this question when discussing the
modern French philosophy of gestures in Chapter 58.

57.3 Vilém Flusser’s Gesten: Versuch einer Phänomenologie

57.3.1 A Short Introduction to Flusser’s Essay

Flusser’s German essay [328] was first published in 1991. The author focuses on a phenomenological approach,
i.e., following his own words in the first chapter, a non-historical philosophical perspective, where freedom is
not bound to linear time, but gets off ground without any preconception and describes or analyzes gestures in
their singular specific shapes. These are the chapters: 1. Geste und Gestimmtheit (Gesture and Coherence) 2.
Jenseits der Maschinen (Beyond Machines) 3. Die Geste des Schreibens (The Gesture of Writing) 4. Die Geste
des Sprechens (The Gesture of Speaking) 5. Die Geste des Machens (The Gesture of Making) 6. Die Geste
des Liebens (The Gesture of Loving) 7. Die Geste des Zerstörens (The Gesture of Destroying) 8. Die Geste
des Malens (The Gesture of Painting) 9. Die Geste des Fotographierens (The Gesture of Photographing) 10.
Die Geste des Filmens (The Gesture of Filming) 11. Die Geste des Maskenwendens (The Gesture of Mask
Turn-over). The first chapter is an introduction to the general topic of gesture phenomenology. Here, Flusser
gives a definition of the gesture concept, which is a thoroughly semiotic one: gestures have meaning. We
will discuss this in the next section. He however stresses that there is no general theory of what he calls
“interpretation of gestures”, which means that there is no theory that would offer a scientific approach to what
gestures mean. The keyword “Stimmigkeit” (“coherence”) means a symbolic transformation of “Stimmung”
(“mood”), an artistic transfiguration, using gestures, of the emotional atmosphere. The author is aware that
this is a circular statement: Understanding gestures means using gestures to explain their transformational
power of creating/giving meaning.

The second chapter is an attempt to position the gestural phenomenon within a triple characterization
of how we work in this world: in the author’s words, ontology describes the world how it is, deontology looks
at how the world should be, and methodology deals with the ways we act to actually change the world.
The remaining chapters discuss (but not exhaustively) a spectrum of gestural phenomena that the author
considers important.

57.3.2 The Semiotic Neurosis

Flusser’s phenomenology of gestures is one big conjuration of the concept of a gesture. His definition is
essentially negative: Freedom, that part that cannot be satisfied in the causal determination of the human
body’s intentional movements and its associated tools. He searches desperately for the meaning of that
movement. For, what is meaningless cannot be understood. This is the semiotic trap which has been avoided
by Châtelet, Alunni and their French associates.

My mathematical music theory is also pre- or a-semiotic. The musical realization of symmetries, groups,
gestures, etc. is not a preliminary form of meaning. Remember Hanslick [438]: “The content of music are
sounding moved forms.” What would be the meaning of a dodecahedron, a sphere, a fractal geometry? This
is it: Nothing a priori, as much as a pirouette of a dancer.
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The semiotic neurosis is virulent. I (Mazzola) had described that already in my novel fragment “Das
Geschlecht des Klaviers” (“The Gender of the Piano”). And in that artistic Harakiri jazz performance where
content and expression were provocatively exchanged.

Meaning is always a alquid pro aliquo, a replacement action. This should not happen ad infinitum
(Hegel’s bad infinity where 1 ÞÑ . . . n ÞÑ n ` 1 ÞÑ n ` 2 . . .). To avoid this pathology (if one does not want
to end up in meaningless dead ends), the only solution is to introduce circularity: The system of signs is
autoreferential; it has, as a directed graphical structure, cycles. Using this strategy, a semiotic can work
perfectly, eventually coming back to itself. The question of the function of circularity however remains; to
state it in a provocative style: What is the meaning of circularity, apart from the fact that it eliminates bad
infinity?

Let us first focus on circularity as a special case of a reference, and let us say “pointer” instead
of “reference”, since this concept describes better the activity of pointing that generates the referential
relation. In circularity, the pointer action remains valid. But the target of a pointer is the same as the
starting instance: x ÞÑ x. It is action or movement, without moving anything; nothing happens to x. It is
a conceptual pirouette, turns around itself. The autoreference, the self-pointer unmasks exactly the concept
of a pointer since it is, in the circularity, a pointing without any effect. Is a gesture this pointing without
considering any visible effect on its object?

Let us have a look at Frege’s interpretation of the relation of circular pointing. Here it is nothing but the
ordered pair px, xq. For Frege, the reference is reduced to the empty relation of a formal juxtaposition x to
x. This is what already Châtelet had recognized. But in our case, the Fregean emptiness is also a conceptual
one: One ends up in the not-understanding if the pointing movement is not embedded in the mathematical
formalism. The pirouette of thought is a thought of the pirouette. The thought of a pirouette is a pirouette
of the thought, same altogether.

Once the related components (relata) are removed, what remains is the plain pointing movement, the
elementary finger pointing described by Tommaso Campanella! And this one is a “pure” gesture, the pointer
qua pointing, without de Saussure’s signifiant and signifié.

This is why a gesture is presemiotic: It is a condition for the very concept of a sign. The pointing action
is that part of a sign which is preconceived as a gesture. Signs are compound concepts.

Fig. 57.3. The threefold ramified Hjelmslev sign gesture.

What is the role of Hjelmslev’s construction here? His idea is the following: Instead of explaining the
three parts of a sign, expression Ex, signification Sg, and content Ct, Hjelmslev conceives all three parts
as pointers to the same concept; they are signs by themselves, i.e., Ex ÞÑ pEx1, Sg1, Ct1q, and so on. It is a
threefold ramified gesture; see Figure 57.3.

Hjelmslev’s idea is pure gesturality. He replaces de Saussure’s inhomogeneous conceptuality by the
homogeneous threefold pointing structure. This is utterly elegant, but it simultaneously positions gesturality
at the first position. His conceptual substance of a sign is a threefold ramified gesture.
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Conclusion: The semiotic concept of a sign needs the preconception of a gesture, in Hjelmslev’s homo-
geneous approach even the simple gesture defined by a threefold ramification.

Remark 1. It is coherent with the French school (specifically with regard to Alunni) that gestures are gen-
erators of meaning since the gesture concept is fundamentally responsible for the sign concept (not only for
examples of signs!). Gestures in first place enable the structure of signification, of the pointer to meaning.

This is a giant step: Conceptual mathematics above all needs the mathematical theory of gestures.
I believe that Grothendieck took exactly this giant step: Moving away from 20th century mathematics of
structures (after the 19th century mathematics of objects) to the 21st century mathematics of concepts.
Motives, scheme, etc. are just excellent examples of this conceptual research.

57.4 Michel Guérin’s philosophie des gestes

57.4.1 The Essay’s Structure

This is a typical French non-semiotic approach; however it is similar in its phenomenological style to Flusser’s
essay. Guérin discusses four gesture types which he considers to be elementary, i.e., the simplest ones and a
complete set of such elements. They are: Faire (make), don(ner) (donate, gift), écrire (write), danser (dance).
In a second part of the essay, Guérin summarizes these four aspects and observes (p.79) that in occidental
thinking, the thought of a gesture has never occurred; he also refers to Bergson for this.

57.4.2 Gestural Ontology and Four Elementary Gestures

The author does not give a definition of a gesture, but exhibits a number of characteristics of that concept,
e.g., (p. 13) as a relation between body and mind, (p. 32) the gesture informs by its deformation; it desires
a remote form and caresses a near one; (p. 35) when matter is reduced to formulas, the gesture has no
countenance (prise) anymore; (p. 45) the gesture’s essence is its contact; (p. 72) the gesture of dance is an
expression that expresses nothing; (p. 76) dance touches the sacred; in its pure form it has no intention; (p.
80) gesture is ambiguous between history and project; (p. 82) the sense of gesture is found in the dialogical
relation of mode and function; (p. 84) the work (l’oeuvre) is the perfect circle of an exploited gesture (I
would also refer to Mallarmé’s le livre here); (p. 95) at the beginning is the gesture (auto-motion); (p. 115)
the first art is dancing the gesture; (p. 129) thinking is the action of the presence, the presence of the action.

In the concluding second part (added later to the first part) he reconsiders the “quadrature” (the four
elementary gesture types) and adds the ontology of presence in the dancing thought (following Nietzsche),
as well as its mirror nature (the same but turned around), not really well explicated; I know better mirror
analyses in my own work. He then adds the “Figure” concept following Rilke, in that we think in figures, the
forms of gestures. Gesture has finality without end (finalité sans fin), and gesture is finiteness of the circular
loop foot-hand. It generates space from this circularity, it generates every thought, the announcement, the
angel’s appearance before any content is transferred. On page 108, a mathematical allusion is made: le geste
est son proper “mathème”, il est coextensive à son apprendre; il s’enseigne lui-même.

Although, as a substitute for a definition, these characteristics are important, it is not clear whether
they are generic or only valid for their specific gestural types. The layer of reality of these gestures is not
specified. Is writing a physical gesture? Or a mixed reality? Dancing seems physical, but it is evidently also
highly symbolic, etc.

In particular, the last example: the gesture of thought, is that a symbolic gesture? Then, in what
presence would it happen? Here the question of its reality/realities is particularly delicate: What is the
relation of a mental gesture’s reality to the reality of thoughts in general? This is very important since
gestures of thought are considered as being basic.

Also the blurring of biological, anthropological, and symbolic levels of “realities”/perspectives is con-
fusing, in particular when they are (ab)used to generate evidence.
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The discourse about the gesture of writing is badly written. Also full of those very French word games
of alliteration type, such as La lettre tue parce qu’elle se tâıt. Especially in view of the fact that all those
negative statements about the separating role of writing are written.

It is further not clear why the author specifies the four types as gestures. While this is clear for dancing,
it is not clear for donation. Not every action is a gesture. We are not informed why he qualifies them as
gestures, even if one agrees intuitively. This is the typical philosophical style: abstract and imprecise.

Many of the above characteristics are mysterious, for example, the above il s’enseigne lui-même, what
does that mean? How does such a self-instruction work? Is there a subject for that? Etc.

Finally, there is absolutely no structure theory. Everything is utterly fuzzy.

57.5 Flusser and Guérin: Some Consequences

From the two contributions we draw these conclusions:

• The ontology of gestures is a proper ontological topic of philosophy.
• Gestures are dialogical, live in presence, are circular, elastic, are presemiotic, and are as such already

differentiated (being gestural can be ramified into different types).

The big question would be this one: If this differentiation is not a semiotic one, i.e., “writing” is not
the meaning of such a gesture, what else can it be?

We are asked to develop an anatomy of gesturality, and to do so, we need a structure theory. Evidently,
we can describe the structure of natural gestures, such as writing, using the mathematical theory of gestures.
And this for the entire quadrature. But for the gesture of thinking, I am not so sure, except if the general
mathematical theory of gestures (over topological categories) would be taken as a candidate of a general
theory of gestural thinking. This would then be Guérin’s mathème.

Of course, the category-theoretical theory of gestures would not be a philosophical first movement
since it is embedded in mathematical concept architectures. But we don’t ask for such a philosophically
foundational theory. We have to be very careful here in the interpretation of the musical ontology. It is not
claimed that one of its dimensions, or even dimensional values, can be reduced to others. Gestures can also
be communicative, and specific in their realities. It is only the semiotic dimension that would not be specific
in gestural perspectives. Which does not mean that this dimension is absent altogether, but it can and will
be near to vanishing.

Philosophy confirms the necessity of an ontological dimension of embodiment. It also, in principle,
confirms the necessity of a structural theory of gestures, and let us call this the anatomy. But this anatomy
will not presuppose semiotics as an essential conceptual ingredient, only—if at all—as a technical tool.
Mathematics would be such a tool.

We could call this a height structure, as opposed to a depth structure. We should liberate ourselves
from the tyranny of the vertical: things might be fundamental on top, not down there. In circular conceptual
architectures, every locus without which other loci fall apart would be called “essential”. Are gestures essen-
tial? Their mathème is, there is no valid theory of gestures (not only a philosophy) without a mathematical
structure theory. The claim of a mathème is empty if it isn’t made explicit as a mathematical building. This
necessity is what we have to explicate.

Evidently, many philosophers and, helas, also music theorists and computer scientists, maintain that a
definition of “gesture” and a corresponding structure theory are superfluous. However, physics teaches us that
this is erroneous. The physical concept of time as a real (or complex) coordinate has a trivial ontology. But
its behavior under transformations is characteristic for the comprehension of its ontology. Ontology is above
all reified in the concept’s behavior, not in its static Kantian “Ding an sich”. This is Yoneda: What time is
as such is irrelevant. It is how it behaves (as a functor). Being as a “so-sein” (suchness), not only “da-sein”
(being here, existing). This is also essential for gestures. Abstract existence is irrelevant and may be replaced
by suchness. Better: Existence is the locus in the topos and this is the isomorphism class of the functor,
i.e., Yoneda is also a theorem about the replacement of existence by suchness. In fact, all characteristics are
verbs, suchness (answering How is the gesture behaving?), never existence (except perhaps presence, that
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prae-esse, being in front of you). The later contributions by Châtelet are not present here, but they will be
in complete coherence with the present ones.

Ontology is no longer fundamental now as a first existence, but is as a first suchness. How gestures are
manifested, their suchness, this is where they are (exist) and what they are. Existence survives as suchness.

Remark 2. The philosophical part should not try to use the fundamental role of gestures as an ontological
first thing, but only (1) stress its independence from other ontological dimensions, (2) elaborate their specific
attributes, and (3) explicate the program to work these attributes out, a thing that may fail in parts.

57.6 A Program

Here is our proposed program:

1. Gestures are presemiotic. This has been described above.
2. They are non-essential. Their essence is contact. They are dialogic (see there!).
3. Gestures are dialogic. They are neither subjective nor objective, but grounded in the second person

(you); see Benveniste for this. They are also formally this irreducible movement I Ñ X.
4. They are auto-motion. This follows from the dialogical explanation above.
5. They are elastic. This is covered by the hypergesture concept which generalizes homotopy.
6. They are an interface between body and mind. This is covered by our discussion of cognitive aspects, in

particular the action-body, mirror neurons, Yoneda-on-the-body, etc.
7. They include a mathème, a self-instructing mathematical structure. This is the mathematical theory of

gestures.
8. They are in presence. They might be covered by the flow theory developed in the free jazz discourse.
9. Circularity of gestures. This is a delicate topic, to be discussed below.

57.6.1 Circularity

Here is a model of how gestures could involve circularity on the conceptual level. Circularity is not covered
by finalité sans fin and similar attributes. They are merely word games.

Fig. 57.4. The circularity of gestures and their mathematical theory.

We had seen that the presemiotic character of gestures is evidenced in Hjelmslev’s idea of purely
gestural description of the sign structure; see Figure 57.3, where the threefold non-terminating gestural
skeleton defines the structure of a sign. If we understand the mathematical theory of gestures as an outcome
of the semiotic system of mathematics, semiotics is induced by the concept of a gesture, but induces the
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mathematical structure theory of gestures (their mathème); see Figure 57.4. But the latter is the precise
framework to yield a valid definition of a gesture. This is a type of essential circularity. None of its points
can be omitted without a loss of other points.

When arguing about gestures, one may start in an adequate point of the circular cycle and then
proceed to the next point without claiming that any of these points be more fundamental than others. It is
an operational discourse, not an essentialistic one.

57.7 The Semiotic Gesture Concept of Adam Kendon and David McNeill

In this section we refer to an important Anglo-Saxon tradition of gesture theory. We discuss the two well-
known theories of Adam Kendon and David McNeill; see Figure 57.5. We focus on the semiotic aspect of
these theories; psychology as such is not our focus here.

We first refer to Adam Kendon’s book “Gesture—Visible Action

Fig. 57.5. Adam Kendon (left) and
David McNeill.

as Utterance” [530]. He first discusses possible definitions of a gesture,
then recapitulates historical contributions from Classical Antiquity, then
from the nineteenth century, and finally from the twentieth century. Next
he discusses classification issues and gesture units and phrases. He then
thematizes semantic issues. Discussions of pointing and other more spe-
cific gesture types follow. The book—which is a rich source of examples
about speech-related gestures—terminates with a discussion of gestures
without speech (when they replace words), gestures and sign language,
and a summary of the state of the art. Similarly to David McNeill’s ap-
proach, Kendon’s is a theory of language (in the broader sense, including
non-verbal systems; we come back to this in the following discussion of
McNeill’s work). He stresses the “very intimate way in which gesture is
integrated with speech.” And he concludes: “For a truly inclusive view of human language, gesture must be
taken into account.”

We want to focus on Kendon’s attempts to define gesture, rather than summarize the book, since his
approach to this concept is, together with McNeill’s theory, a very special understanding of the phenomenon
of gestures.

The second chapter, “Visible action as gesture,” is devoted to the problem of defining gestures. The
author gets off the ground with suggesting that “‘Gesture’ is a term for visible action when it is used as
an utterance or as a part of an utterance.” He then asks what ‘utterance’ is and “how actions in this
domain are recognized as playing a part in it.” His first clarification refers to Ervin Goffman’s definition
[375], namely that utterance is “any ensemble of action that counts for others as an attempt by the actor to
‘give’ information of some sort.” This generality is however not what Kendon will use; it is also too general
since anything can be interpreted as information. Such a definition would be abstract nonsense. Kendon
then cites the Oxford English Dictionary (2nd edition 1989) where ‘gesture’ is defined as “a movement of
the body, or any part of it, that is expressive of thought or feeling.” After an analysis of the intentionality
in utterances, he concludes:“‘Gesture’ we suggest, then, is a label for actions that have the features of
manifest deliberate expressiveness.” The critical concept is ‘expressiveness’, but Kendon makes this clear
in his comment following that definition: “The more a movement shares these features (manifest deliberate
expressiveness, G.M.), the more likely it is to be given privileged status in the attention of another and to be
seen as part of the individual’s effort to convey meaning.” So expressiveness is about conveying meaning. This
is an unequivocally semiotic statement: Gestures are expressing meaning, they are signs (although complex
ones) that communicate meaning. The information in Goffman’s definition is made precise as semantic
information. In other words: gestures are signs in the sense of semiotics. And they are always related to the
body’s actions, no more abstract concept of a gesture is addressed. This will be confirmed by the second
gesture theorist of this school.

Our reference to David McNeill is due to his book “Gesture & Thought” [741]. In the introduction,
he defines the general scope of his theory:“Now [the emphasis] is how gestures fuel thought and speech.(...)
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Gesture, language, and thought are seen as different cognitive, and ultimately biological levels. (...) Gestures
are active participants in speaking and thinking.” This makes clear that McNeill is restricting his gesture
theory to gestures that are in different ways coexisting with language; this is also the reason he uses the
concept of “language” in two ways: first as the linguistic phenomenon, and then in a larger sense—we
might say: in a semiotic sense—as a system where the linguistic part of language is joined by the gestural
part of language. Let us denote the language concept that includes gestures by “Language”. Referring to
neuroscientist Antonio Damasio, McNeill states that “language is inseparable from imagery”, and that the
imagery is covered by gestures. The connection between these two components is existential, and also,
language evolution could not have happened without gestures: “To treat gestures in isolation from speech
makes no more sense than to read a book by only looking at the ‘g’s.” In this sense, McNeill takes over
from Kendon what he calls the “Kendon continuum”, namely a sequence of roles that gestures can play in
relation to the linguistic language part; see Figure 57.6. To the extreme left, we have gesticulation, where
gestures are completely secondary with respect to language, and to the extreme right, we have the case of
sign language, where gestures are given the structure of a full-fledged linguistic semiotics.

Fig. 57.6. The semiotic aspect of Kendon’s continuum.

What is essential in this approach is that gestures in McNeill’s theory always “carry meaning”, they are
in a general semiotic sense signs. Accordingly, this language enables synonymous signs: a gesture might have a
word that points to the same meaning, McNeill calls such words “lexical affiliates”. Another semiotic property
of gestures is what Karl-Erik McCullogh calls “semiotic components”. These are meaning-bearing parts of
gestures, of the hand’s orientation for example. More generally, gestures here are also given an anatomy:
They unfold in time, and define groups of gestural movements that McNeill calls “phrases”, namely gestural
units that have a complete inner structure: the sequence of phases: from preparation to prestroke to stroke to
stroke hold to poststroke and to retraction. Gestures are also given two viewpoints: the third-person observer
viewpoint, where a gesture presents an entity in a narration, and the first-person character viewpoint, which
represents the speaker who is “inside the gesture space”.

McNeill stresses a different structure of the semiosis in his theory. He claims that the Saussurean
semiotics is a static one, which needs a complementary view of a “dynamic” semiosis, i.e., one where meaning
is not a fact, but a process, following the ideas of Russian psychologist Lev Semyonovich Vygotsky [1100].
For Vygotsky, language and thought are two overlapping instances, and neither of them contains the other.
This contribution is enriched by the insights of Maurice Merleau-Ponty that language is not the thought’s
dress, but its body. The semiosis for McNeill is given an ontology of an existential action, with a reference to
Martin Heidegger’s understanding of language as a “house of being”, not a detached formal representation
of an object.

The concrete implication of these ideas culminates in what McNeill calls the “Growth Point” (GP).
From McNeill’s home page we read: “A growth point (GP) is a dynamic unit of online verbal thinking.
It is sui generis—not the same as units of synchronic linguistic description (words, morphemes, etc.). The
GP combines unlike modes of cognition imagery and linguistic categorial content.(...) It does not exist at
all times, and comes into being at some specific moment; the formation of a growth point is this moment,
theoretically, and it is made visible in the onset of the gesture.” The GP formalizes the interaction of image
(gesture) and linguistic code.
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57.7.1 Comments

The theories of Kendon and McNeill are above all theories of gestures that are intimately related to language.
Moreover, gestures are conceived as bodily utterances; gestures in another context, such as melodic gestures
in music or dance gestures of ice skaters, are not addressed. Moreover, the expressivity of gestures as they
are defined in this school is a semiotic one: gestures express meaning, they are signs in a semiotic system of
a generalized language (including gestures as well as linguistic signs).

57.8 Juhani Pallasmaa and André Chastel: The Thinking Hand in Architecture
and the Arts

Juhani Pallasmaa’s beautiful book “The Thinking Hand” [814] deals with “the essence of the hand and its
seminal role in the evolution of human skills, intelligence and conceptual capacities.” And the rationale for
this program is that “the hand has its own intentionality, knowledge and skills.” Pallasmaa, a famous Finnish
architect and writer, evidently focuses on topics that pertain to the culture of architecture, specifically (and
these are the chapter titles): the mysterious hand, the working hand, eye-hand-mind fusion, the drawing
hand, embodied thinking, body self and mind, emotion and imagination, and, finally, theory and life.

Our interest in this book, and also the following “Le geste dans l’art” by the famous French art historian
André Chastel, lies in their focus on the hand as a central gestural instance. This does not mean that symbolic
intellectual human skill must stem from the hand, as some anthropologists (such as neurologist Frank R.
Wilson [1135]) argue, or as Anaxagoras claimed that humans are intelligent because they have hands. But it
is evident that the hand and the brain are deeply interconnected, in the sense that the hand is neurologically
and physiologically distributed all over the nervous and muscular systems. Pallasmaa makes an attempt to
define the hand and concludes from these facts that “the hand is fundamentally beyond definability.” The
problem of such a definition seems to be less the anatomy or physiology than the understanding of the hand’s
functionality, and the latter is obviously related to the gestures hands are performing. We shall see in the
next Section 57.9 that hand gestures with their complex ambiguity of sense production are prominent in
literary contexts. The potentiality of such gestures is also the key to the idea of the hand gestures being “the
tongue and general language of Human Nature, which, without teaching, man in all regions of the habitable
world do at the sight most easily understand,” as the English physician John Bulwer writes in 1644 [158].
We may anticipate here that it will be shown that gestures in the mathematical sense of the word (to be
defined in Section 61.5) in fact can give rise to symbolic objects, such as abstract mathematical groups, the
key word being the fundamental group of a topological space; see Section 78.2.10.2.

The non-definability of the hand’s dynamic potential is not only a given fact, it is also the consequence
of the common lack of language power in the discourse about gestures. The very concept of a gesture is
extremely demanding, and this may also be one reason why there is no gesture theory in music: it is simply
beyond the language power of scientists educated in the humanities to be able to even describe a gesture,
and in particular a hand’s gesture with its multiple finger configuration, and its complex spatio-temporal
unfolding. That the hand’s gestures are so central in Pallasmaa’s approach is also important in view of the
theory of embodiment which he sets forth. It is evident from his arguments that the hand’s gestures (and
not only its anatomy and physiology) must play the role of a link between the body and the mind. This is
a crucial statement for the ontology of gestures. They could offer the missing link in the cartesian divide, a
link that is also still missing in the embodied AI approaches, which believe in emergent properties of (even
cheap) embodied design.

Chastel’s book [188] is a collection of three published papers: “L’art du geste à la Renaissance”,
“Sémantique de l’index”, and “Signum harpocraticum”. They all deal with hand gestures in painting. The
general program behind his exposé is what he calls “Prolégomènes à une critique de la gesturalité dans
l’art.” His analyses focus around Renaissance paintings, but also deal with Greek vases and reach to 20th
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century art. The most basic gesture he exhibits is the pointing gesture (index), that gesture which Tommaso
Campanella [945] had called the only unconditionally understandable and basic human gesture.2

Chastel, fully in congruence with Schmitt’s treatise [946] which we have discussed in Section 57.2, refers
to Cicero and Quintilian and then recognizes the character of those classical gestures as tamed phenom-
ena:“Les gestes que retient le peintre, ce sont naturellement les gestes stéréotypés, répétitifs, tous construits
et codifiés dans le vécu.” More precisely:“Il n’est pas absurde de considérer ces formes comme les éléments
d’une sorte d’ars memoriae religieux.”

From this situation of tamed gesture, Chastel discovers a strong disgression into a totally different
gestural ontology which was initiated in Leon Battista Alberti’s theoretical writing, De pictura (1435), where
he writes:“Coi movement dell membra mostran movement dell’animo.” Chastel comments on it saying that
it is a program of painting where the painted figures no longer represent a condition or a quality, but a
being. And Leonardo da Vinci adds:“Lo bono pittore ha da dipingere due cose principali, cioè l’homo e il
concetto della mente sua. Il primo è facile, il secondo difficile perché s’ha a figurare con gesti e movimenti
delle membra.” And Chastel summarizes that: “La naiveté sémantique du geste, sur laquelle nous avons
édifié notre exposé, était en somme compromise par la théory des moti.” It is the theory of movements, these
characteristics of untamed gestures, which gives Chastel the argument for a radical change of gestures with
Alberti and da Vinci. He concludes that:“Le geste de l’index était si remarkable, si chargé de sense pour
Léonard qu’il est devenu avec lui une sorte de geste pur.” The reference to the extremely complex and powerful
configuration of 130 pointing gestures in Leonardo’s Last Supper illustrates this theory. Summarizing, the
hand’s gestures—above all the pointing gesture—are for Chastel and Pallasmaa germinal phenomena that
initiate an autonomous ontology of gestures beyond their plain semiotic role as nonverbal signs.

57.9 Émile Benveniste and Marie-Dominique Popelard/Anthony Wall:
Gestures as a Dialogical Category

Émile Benveniste in [100] sets up a refined analysis of the Saussurean sign structure that connects the
signifier (signifiant) to its signified (signifié) by means of the signification process (signification). Benveniste’s
analysis of signification stresses the role of the subjects involved in the process when pronouns are involved.
The classical trias of first, second, and third person, je/tu/il (I/you/he), reveals a fundamentally different
situation when the deictic nature of these pronouns is at stake. He separates the first two personal pronouns
je/tu from the third one considering the mechanisms that enable their full meaning. Whereas the first two
persons involve a substantial subjective involvement, the third person, which he qualifies as a “non-person,”
are independent of subjective dimensions. It is in fact well known that the pronouns je/tu are strong shifters;
their full meaning is only achieved by the integration of the underlying subjects which perform enunciations
including those pronouns.

This shift from a formal signification process to one that essentially involves the subject(s) of enunciation
is not only a formal enrichment of Saussure’s abstract scheme, it also creates an ontological dimension in
that the existence and presence of subjects underlying the pronouns je/tu becomes a conditio sine qua non
for the possibility of meaningful fulfillment of these pronouns’ signifiés. In the spirit of dialogical linguistics,
as forwarded by Michail Bakhtin, [70] the first two persons pertain to a relational understanding of linguistic
utterances. It is stated that je/tu implicitly or explicitly always presuppose the presence of a co-enounciators,
meaning that the ontology realized by these pronouns always includes the presence of the Other that is
addressed when using je/tu. The Saussurean abstract scheme thereby morphs to a speech act where the
deictic completion enforces a co-existence of the Other. This is not a direct necessity of gesturality, but
in the action that such a co-existence includes (addressing your words to another person), it opens up a
dimension that transcends the objective facticity of the third person.

2 It is remarkable that recent research by Michael Tomasello and collaborators in neuropsychology [1062, 1063] has
demonstrated that pointing is a basic and exclusive human ability that children learn at the age of one year, and
that this gesture is a root of human language development.
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Benveniste’s approach is exemplified and discussed in Popelard’s and Wall’s short, and easy-to-read,
book “Des faits et gestes” [857]. Their discourse traces a dialogue about gesture and fact between a philoso-
pher (Popelard) and a literary scientist (Wall). Their understanding of gestures does not include a precise
definition,3 but a phenomenological analysis, mainly focusing on gestures as complements of language, and
this in the spirit of Kendon (whom they cite) and McNeill. They attribute to gestures a fundamental role:
“Ce sont les gestes qui se servent de nous.” It is here a typically French approach to gestures: They are not
just a variant of language (in its more general concept), but genuine communicative phenomena.

They discuss gestures working out two main examples: Michelangelo’s Creation of Adam and Stendhal’s
Le rouge et le noir. In both instances, they focus on the hand’s gesture, in Michelangelo’s case between God
and Adam, and in Stendhal’s case between Madame de Rhênal and her lover Julien. Their interaction is a
dialogical one that is based on a mutual communication with its inherent ambiguity in the sense that these
gestures don’t communicate given contents, but create a joined sense uniquely by their bidirectional exchange.
Their gestures don’t share the classical Saussurean signifé, but create a sense that is built upon the second
person’s co-presence: “Aucun geste se fait tout seul.” And: “Les faiseurs de gestes sont des co-gestionnaires.”
They create a “nous”, a we-community4 that gives their gestures their sense. This is a remarkable shift from
Saussure’s signifé to a sense that transcends the semiotic setup.

3 On page 10, they however state that “un geste engage un corps qu’il met en mouvement: en temps et en espace,
un corps se trouve animé. Comment? En signifiant quoi? Faire un geste dirait quelque chose. La question est de
savoir quoi.”

4 It might be a bit unprecise to identify the second person singular pronoun with the first person plural pronoun
here. Benveniste would not have accepted this identification. Rather he would prefer understanding that the second
person, “you”, is a shared identity of intimacy without the ontology of a “public” community of the plural.



58

The French Presemiotic Approach

Summary. The French school of diagrammatic philosophers was inspired by Gilles Deleuze’s comments on
Bacon [258] and then elaborated upon and deepened by gesture theorists and philosophers, such as Gilles
Châtelet [190] and Charles Alunni [24]. This important French approach to gestures reveals a delicate aspect
of embodiment in that gestures are conceived as being presemiotic. Gestures—except when ‘tamed’ by social
codes—are not signs in a semiotic environment.

– Σ –

The French school of diagrammatic philosophers was inspired by Gilles Deleuze’s comments on Bacon
[258] and then elaborated upon and deepened by gesture theorists and philosophers, such as Gilles Châtelet
[190] and Charles Alunni [24]. It is remarkable here that we encounter thinkers who are approaching embod-
iment not directly in a body-centered discourse, but instead focus on gestures as dynamic structures that
act upon and through the body in a physical sense, but also more abstractly. We shall come back to this
important nuance of embodiment when discussing the problem of the subject that is generated upon the
body’s basic existence. The French diagrammaticians typically focused on gestures qua dynamic layer of em-
bodiment, an approach that had already been inaugurated by the French mathematician Jean Cavaillès, who
had claimed that [181, p. 178] !Comprendre, c’est attraper le geste et pouvoir continuer." (“Understanding
is catching the gesture and being able to continue.”) This characteristic French dancing thought (also shaped
in Pierre Boulez’s reflection on gesture in music [141]) was in fact stated with respect to mathematical theo-
ries, and as such it was one of the very first principles of gestural embodiment in mathematics, an idea now
quite fashionable through the work of Lakoff and Núñez [570], but also anticipated in Châtelet’s observation
[190] that the Fregean concept of a function f in mathematics is a dramatic (and questionable) abstraction
that replaces the moving gesture from argument x to its functional value fpxq by a kind of disembodied
‘teleportation’, where the evidence of the functional relation is wrapped and hidden if not destroyed.

This important French approach to gestures1 reveals a delicate aspect of embodiment in that gestures are
conceived as being presemiotic. Gestures—except when ‘tamed’ by social codes—are not signs in a semiotic
environment. They are not a realization of Ferdinand de Saussure’s famous signification process from the
expressive signifiant to the content of signifié [933]. Châtelet (loc. cit.) is very clear in this point: !Le concept
de geste nous semble crucial pour approcher le mouvement d’abstraction amplifiante des mathmatiques. (.
. .) Un diagramme peut immobiliser un geste, le mettre au repos, bien avant qu’il ne se blottisse dans un
signe, et c’est pourquoi les géomètres ou les cosmologistes contemporains aiment les diagrammes et leurs
pouvoirs d’évocation préemptoire." (“The concept of a gesture seems crucial to approach the amplifying
movememt of abstraction in mathematics. (...) A diagram can immobilize a gesture, put it to rest long
before it is hidden in a sign; this is why geometers and contemporary cosmologists love diagrams and their
power of preemptive evocation.”) A gesture can be immoblilized by a diagram (which in this French theory
is a kind of disembodied gesture) before it becomes a sign. And Alunni confirms this creative presemiotic
role of gestures: !Ce n’est pas la règle qui gouverne l’action diagrammatique, mais l’action qui fait émerger

1 There are other French approaches to gesture theory, such as Geneviève Calbris, for example.
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la règle." (“It is not the rule which governs diagrammatic action but it is action which causes the rule to
emerge.”) This is a theory of gestures that diverges from that of the Anglo-Saxon school2 centered around
Adam Kendon and David McNeill [741], where (loc. cit., p. 58) it is stated that “the gesture is created by
the speaker as a materialization of meaning.”

58.1 Maurice Merleau-Ponty

Summary. The French philosopher Maurice Merleau-Ponty embarked in 1945 on a new positioning of human
language in his influential Phénoménologie de la perception [751]. The pivotal point of his approach consists
in a revision of the relation between language and thought.

– Σ –

In some sense, the preceding section was a preliminary discourse on the French theory of gesture, which is
radically different from the semiotically loaded approaches of Kendon and others. Historically, reverberating
Valéry’s visionary anticipation of the mental dimension of hand gestures (see the head of this chapter), the
French philosopher Maurice Merleau-Ponty embarked in 1945 on a new positioning of human language in his
influential Phénoménologie de la perception [751]. The pivotal point of his approach consists in a revision of
the relation between language and thought [751, p. 211]: “The word and speech must somehow cease to be
a way of designating things or thoughts, and become the presence of that thought in the phenomenal world,
and, moreover, not its clothing but its token or its body.” This entails a deep change of the localization of
contents (loc. cit.): “We find here, beneath the conceptual meaning of the words, an existential meaning
which is not only rendered by them, but which inhabits them, and is inseparable from them. (...)

This power of expression is well known in the arts, for example in music. The musical meaning of a
sonata is inseparable from the sounds which are its vehicle: before we have heard it no analysis enables us to
anticipate it; once the performance is over, we shall, in our intellectual analysis of the music, be unable to do
anything but carry ourselves back to the moment of experiencing it. During the performance, the notes are
not only ‘signs’ of the sonata, but it is there through them, it enters into them.” Merleau-Ponty then gives
this embodiment a more concrete shape: “The spoken word is a genuine gesture, and it contains its meaning
in the same way as the gesture contains it. This is what makes communication possible.” The meaning
addressed here is however not the naive semantic layer of a sign. Merleau-Ponty specifies: “The spoken word
is a gesture, and its meaning, a world.” This dramatic restatement of “meaning” destroys all those formally
semiotic perspectives, meaning a world is a dispersive action blurring all delimitations of clear-cut semantic
units. We shall come back to this point while discussing Châtelet’s philosophy later in Section 58.4.

58.2 Francis Bacon and Gilles Deleuze

Summary. The philosopher Gilles Deleuze’s 1981 work discusses Francis Bacon: La logique de la sensation
[258], dealing with the painter’s sensational confessions made during David Sylvester’s Interview with Francis
Bacon: The Brutality of Fact [1029]. In these reflections, Deleuze introduces what is now known as the pensée
diagrammatique, the French school of gestural philosophy.

– Σ –

A strong proclivity for embodied approaches to the arts was initiated by those painters who displayed
an innovative understanding of what the action of painting means. It is known that Jackson Pollock stressed
gestural action as opposed to illustration. And in a remarkable series of interviews [1029], Francis Bacon
made clear that his diagrammatic gestures were more important to his creative work than mentally planned
strategies: “The marks are made, and you survey the thing like you would a sort of graph. And you see

2 There are other Anglo-Saxon approaches to gesture, for example, by Jürgen Streeck, Eve Sweester, and Katharine
Young.
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within this graph the possibilities of all types of fact being planted. (...) In the way I work I don’t in fact
know very often what the paint will do, and it does many things which are very much better than I could
make it do. Is that an accident? (...) What has never yet been analyzed is why this particular way of painting
is more poignant than illustration. I suppose because it has a life completely of its own. (...) So the artist
may be able to open up or rather, should I say, unlock the valves of feeling.”

These insights imply a shift from the abstract semiotics of expression-signification-content to a more
embodied understanding of speech and its “score” in codified language. Such a trend was then strengthened
by the philosopher Gilles Deleuze’s 1981 work that discusses Francis Bacon: La logique de la sensation [258],
dealing with the painter’s sensational confessions made during David Sylvester’s Interview with Francis
Bacon: The Brutality of Fact [1029]. In these reflections, Deleuze introduces what is now known as the
pensée diagrammatique, the French school of gestural philosophy. Deleuze takes from Bacon’s statements the
word “graph” and translates it to “diagramme” and even “geste”.

The crucial statement made by Francis Bacon about his working experience and

Fig. 58.1. Charles
Alunni (Oil paint-
ing by Dominique
Renson).

approach is this: “The marks are made, and you survey the thing like you would a
sort of graph. And you see within this graph the possibilities of all types of fact being
planted. (...) In the way I work I don’t in fact know very often what the paint will do,
and it does many things which are very much better than I could make it do. Is that an
accident? (...) What has never yet been analyzed is why this particular way of painting
is more poignant than illustration. I suppose because it has a life completely of its own.
(...) So the artist may be able to open up or rather, should I say, unlock the valves of
feeling.” Bacon’s graphing action does not illustrate a fact, but innervates the work of
art such that it becomes a living organism of poignant tension.

58.3 Jean Cavaillès and Charles Alunni

Summary. For the mathematician Jean Cavaillès (Figure 58.2), gestures are not just carriers for the trans-
portation of content, but elastic bodies that must be caught like balls in a game, and which require con-
tinuation in order to keep the game going. In a far-reaching consequence, the philosopher Charles Alunni
(Figure 58.1) has accepted not only the presemiotic status of gestures, but also their creative power [91]: “It
is not the rule that governs the diagrammatic action, but the action that causes the rule to emerge.”

– Σ –

In the French school, a gesture is a presemiotic concept that need not convey

Fig. 58.2. Jean
Cavaillès, mathe-
matician and pioneer
of the French philos-
ophy of gestures.

meaning; it is understood as being capable of generating content, but this is not es-
sential. This latter approach enables a much subtler deployment of gesture in collab-
orative environments, since it is vital to collaboration to create mutual understanding
without presupposing shared knowledge. Jean Cavaillès summarizes the French phi-
losophy of gestures in a concise way that entails heavy consequences for the entire
conceptualization of the art of collaboration [181]: “Understanding is catching the
gesture and being capable of continuing.” So gestures are not just carriers for the
transportation of content, but elastic bodies that must be caught like balls in a game,
and which require continuation in order to keep the game going. Deleuze completes
Merleau-Ponty’s approach in that he now emphasizes the logical and therefore mental
side of the gestural innervation of artistic creativity, and also the distributed identity
suggested by Bacon’s approach: The artist’s ego is now spread over the entire paint-
ing, it reverberates with the painter’s action points and opens the locked “valves of
feeling”.

This revelation had an incredible impact on the French philosophers, and it also reassembled forerunners
and future leaders of the diagrammatic school. The most notable, following the doyen Valéry, was the
mathematician and philosopher Jean Cavaillès (1903-1944), who in his rejection of “uniformity” was shot by
the Nazis.
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His definition of “understanding” as being a gestural information exchange gives gestures a decisive role
for the transmission of thoughts in that they act not as external carriers of thoughts, they are the thoughts
themselves. That which is understood is reified in the gestural continuation, not in the thoughtful implosion.
In a far-reaching consequence, the philosopher Charles Alunni has not only accepted the presemiotic status
of gestures, but also their creative power [91]: “It is not the rule that governs the diagrammatic action,
but the action that causes the rule to emerge.” Gestures not only make communication, but they “make
sense”, make what will later be followed on the level of facticity. The rule, the law, that which separates the
truth from the false. Alunni’s step looks tiny, but it is the reversal of the old laws. Gestures are, in Alunni’s
approach, the law-makers, not the ornaments of established truths.

58.4 Gilles Châtelet

Summary. The most difficult and radical of the French diagrammaticians is mathematician and philosopher
Gilles Châtelet (1945-1999), see Figure 58.3. We shall devote this section to his revolutionary insight.

– Σ –

His writings are therefore difficult, they merge the cold and precise abstraction

Fig. 58.3. Gilles
Châtelet (Gravure by
Jean-Claude Darras).

of mathematics and the hot conceptual magma of philosophy. Perhaps this mixture
was the right one to enable him to set forth a theory of gestures that would, in the
long run, have a significant and lasting impact upon the inner life of the sciences.
Châtelet’s radically presemiotic gesture theory is described in his book Figuring
Space [190] (the French title Les enjeux du mobile would be better translated as
The Stake of the Mobile). For Châtelet, gestures are definitively not identical with
diagrams, they are wild vibrations and can be disembodied by diagrams and thereby
are transformed from the ontology of the making to that of diagrammatic processes
[190, p.9/10]: “A diagram can immobilize a gesture, put it to rest long before it

hides itself within a sign, and this is why the contemporary geometers or cosmologists love diagrams and
their power of preemptive evocation.”

Let us now take a glance at Châtelet’s somewhat arcane characterization of gestures [190]:

The gesture is not substantial: it gains amplitude by determining itself. Its sovereignty is equal to its pen-
etration and that is why we refer to the gesture’s ‘accuracy’: the precision of the strike is proof of the
reverberation of its skill. The gesture inaugurates a family of gestures, whereas the rule only enunciates
‘instructions’, a protocol for decomposing the action into endless repeatable acts. The gesture possesses a
historical exemplariness: if one can speak of an accumulation of knowledge over the course of successive
generations, one should speak of gestures inaugurating dynasties of problems.

Similarly to Cecil Taylor’s statement about rhythm-sound being found in the amplitude of each time
unit, the gesture is not substantial, but pulsates in its own penetration. It has no ‘material kernel’, all
is in its mobility, it is essentially self-referential. The rule is not self-referential but atomizes actions into
‘instructional units’, which have no sense except to be repeated ad infinitum. The historical unfolding
of a gesture is a dynasty of problems, not the sedimentation of facticity. Gestures only survive in their
pulsating movement, they absorb results and heat them up into germinating abysses. To date, a history
of gestures has not been written—perhaps such an undertaking will be as difficult and problematic as
the history of free jazz beyond the banal collection of factual residues.

The gesture is not a simple spatial displacement: it decides, deliberates and suggests a new modality of ‘mov-
ing oneself ’—Hugues de Saint-Victor defined the gesture as ‘the motion and figuration of the members
of the body according to the measure and modalities of all action and attitude’. The gesture refers to a
disciplined distribution of mobility before any transfer takes place: one is infused with the gesture before
knowing it.
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The definition of Saint-Victor describes the anatomy of a gesture. It is a distributed mobile figuration,
not a moving point. The potentiality of the figuration to be deformed is already an expression of the
gesture’s mobility.

The gesture is elastic: it can crouch on itself, leap beyond itself and reverberate, whereas the function gives
only the form of the transit from one external term to another external term, the act exhausts itself in
its result. The gesture is therefore involved with the implicit pole of the relation.

This is the core difference with mathematical functions. Châtelet is probably the first to have observed
the illusion of arrows for functions. Compared to a function, a gesture is a living animal, which has no
mutually external parts. The question arises of course about how the elasticity and living character can
be conceived beyond the metaphorical imagery. But it is evident, that we need a new conceptualization
here, and that Châtelet is still far from having built such a renewal. His language is as elastic as his
gestures.

The gesture envelops before grasping and sketches its unfolding long before denoting or exemplifying: already
domesticated gestures are the ones that serve as references.

This is again a clear negation of any semiotic casting of gestures. Only domesticated gestures can be
‘slaves’ of meaning and carry it around in denotation and exemplification. The referential arrow of
pointers that characterize semiotic signification are not yet activated, gestures do not hit and prick their
targets, but envelop and sketch. They are ontological sketches of processes and facts.

A gesture awakens other gestures: it is able to store all the allusions’ provocative virtualities, without debas-
ing them into abbreviation.

Gestures do not abbreviate or put to sleep, but penetrate without becoming tired. They are constantly
transcending facticities and melting them to virtualities, similarly to heating up wax in order to reshape
it. They might be called the fires of thought, or, in Taylor’s terms (from Unit Structures): naked fire
gestures.

In 1991, Cecil Taylor recorded the video Burning Poles [1039] with William Parker on flute and bass,
André Martinez on drums and percussion, and Tony Oxley on drums. On the 10:20 minute piece Poles,
Taylor appears as magic cantor and dancer; he floats about his open grand piano, singing and reciting
cryptic incantations while scratching and plucking the internal strings of the piano, or hitting the strings
with a soft mallet. The music and performance is a percussive shaping of the body of time in a tense
trajectory of gestures, and is an excellent illustration of Châtelet’s circumscription of “gesture”. Taylor’s
performance radically differs from the music as construed in Unit Structures—there are no structures to be
broken, no starting and terminal points of functions, no empty time spaces where time shards are imbricated.
Taylor invokes a big, smoothly flowing gestural organism that feeds its identity by its incessant unfolding and
caressing of time and space. The piano’s strings are not merely objects for sound production, but extensions
of Taylor’s aesthetic of creating and sculpting innervated space-time. Although some of the lyrics of Taylor’s
Sprechgesang may convey normal English words, their extramusical meaning is completely irrelevant; as any
kind of localized or preconceived meaning is irrelevant, the gestures are pulsating in a germinal ontology
of pure making. No concrete result is achieved, no objective message is conveyed, no truth is established,
and when it is over, nothing remains except the desire to review the performance, to delve again into that
dis-objected making.

The underlying question to all these gestural approaches is what it means to think in terms of gestures.
Or, coming back to Adorno’s and Wieland’s program (see also Section 60.2), what it means to think of music
in its performance. Adorno’s answer is very clear: “Performing music [is] making music.” And he means
“bringing into existence” by “making”. Music is only in its very making, exactly what Merleau-Ponty’s
statement, which we discussed earlier 58.1, means. This entails that thinking of music must happen in its
making, an insight that is in fact widely accepted. The German music psychologist Helga de la Motte-
Haber writes [234, Vol. X]: “Musical thinking is fundamentally a thinking within music. Where difficult
interpretations have to be discussed, not only musicians, but also authors such as August Halm or Hermann
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Kretschmar refer to illustrative examples. (...) Analyses of music are often difficult to read, because the
structure of linguistic sentences is limited in its power of adaptation to musical facts. You may operate
with predicates and objects, but subjects are problematic. (...) Therefore unnatural passive constructions
are added in order to eliminate situations where the subject just be hidden.”

The problem is however not the subject as such, but its embedding in the mental space of music. This
space comprises all three levels of embodiment: facts, processes, and gestures. The subject is not relevant on
the factual level, a standard situation for common scientific knowledge. One may write huge treatises on music
on that level. That type of insight is important and established, but the thinking of music beyond facticity
is less codified. In fact, it tends to escape codification when approaching the inner regions of embodiment.
This is what “thinking within music” means: thinking beyond facticity.

It is remarkable that Châtelet is aware of this way of thinking, when he reflects upon the famous
paradigm of “thought experiments” in physics. Here is where he brings in the necessity of gestures for
scientific thinking [190]:

One could even say that the radical thought experiment is an experiment where Nature and the Under-
standing switch places. Galileo sometimes puts himself in Nature’s place, which, in its simplicity, could not
have chosen to ‘move at an inconceivable speed an immense number of very large bodies, to produce a result
for which the moderate movement of a single body turning around its own centre would suffice’. Einstein
was in the habit of saying that it was necessary to put oneself in God’s place to understand Nature. There is
nothing surprising therefore in these teleportations where Einstein takes himself for a photon and positions
himself on the horizon of velocities (...), in these immersions where Archimedes, in his bathtub, imagines
that his body is nothing but a gourd of water. Thus, to understand the photon, it is necessary to become a
photon and, to understand floating, it is necessary to turn oneself into a wineskin! The thought experiment
taken to its conclusion is a diagrammatic experiment in which it becomes clear that a diagram is for itself its
own experiment. The gestures that it captures and particularly those that it arouses are no longer directed
towards things, but take their place in a line of diagrams.

To understand the gestural virtuality of thought experiments, let us

Fig. 58.4. Archimedes in the
bathtub with his thought exper-
iment.

consider Archimedes’ bathtub situation (Figure 58.4). The king’s crown must
be checked on the specific weight of its material: Is it gold or is it a faked
composition? Archimedes imagines the crown being immersed in water. Then
the crown is removed from water, but only virtually, in order to keep the
water shape as is. This action is followed by a virtual replacement of the
hollow volume by water in the shape of the crown. Then physics is reset and
since that crown-shaped water will not move, the weight of that water volume
is balanced by the force of the surrounding water. Again, this imaginary
construction is applied to the crown being re-immersed in its original position
(everything is impossible in the real world!), and we conclude that the force
of the surrounding water acted upon the real crown equals the weight of that

water volume (with opposite signs). Therefore, the bathtub experiment is a sequence of virtual gestures on
virtual objects, which are, in Châtelet’s reading, just parts of the gestural configuration.

This text is not only remarkable as such, but can be used for a thought experiment. We take the text
and virtually remove all physical instances, replacing them by adequate musical ones. And here is the virtual
text:
One could even say that the radical thought experiment is an experiment where Music and the Understanding
switch places. Murail sometimes puts himself in Music’s place, which, in its simplicity, could not have chosen
to ‘move at an inconceivable tempo an immense number of very large sounds, to produce a result for which
the moderate movement of a single sound turning around its own centre would suffice’. Bach was in the habit
of saying that it was necessary to put oneself in God’s place to understand Music. There is nothing surprising
therefore in these teleportations where Murail takes himself for a sound and positions himself on the horizon
of tempi (...), in these immersions where Beethoven, at his piano, imagines that his body is nothing but an
envelope of waves. Thus, to understand the sound, it is necessary to become a sound and, to understand
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waves, it is necessary to turn oneself into a vibration! The thought experiment taken to its conclusion is
a diagrammatic experiment in which it becomes clear that a diagram is for itself its own experiment. The
gestures that it captures and particularly those that it arouses are no longer directed towards things, but take
their place in a line of diagrams.

This thought experiment makes evident that de la Motte-Haber’s “thinking in music” is akin to making
an experiment of thought, and that this making is a gestural category. Châtelet’s thinking in physics offers
a model for thinking in music, and that model is based upon a gestural action in a virtual space-time. It is a
way of thinking in the making. This is not to say that such activity does not entail facts! Archimedes’ insight
creates a fact, and the king’s valuation of that artisan who faked the crown in sentencing him to death is
anything but virtual. Let us terminate this philosophical perspective by Marcel Marceau’s wonderful saying:

To mime the wind, one becomes a tempest.
To mime a fish, you throw yourself into the sea.



59

Cognitive Science

Summary. This chapter deals with gestural arguments in cognitive science. We first discuss the idea of a
“science of embodiment”, then discuss the neurological vicinity of speech and manual gesture centers (Broca
area), also referring to Merleau-Ponty’s linguistic philosophy and to the 3D Mental Rotation experiments by
Shepard and Cooper. In this context, Donald’s gestural anthropology is mentioned, together with Valéry’s
philosophy of dance and Taylor’s critique of disembodied music. The chapter terminates with a fascinating
discussion of musical gesture from the perspective of disability studies. Its focus is on two hand-impaired
jazz pianists, Horace Parlan and Oscar Peterson.

– Σ –

59.1 Embodiment

Summary. What is the substance, the essence, of the concept of the body that persists in medicine, yoga,
psychology, performance, and philosophy?

– Σ –

The question relating to the semiotic state of a gesture not only separates this French school from
the mentioned Anglo-Saxon school, it also reveals a deep problem concerning the semiotic understanding
of embodiment. What does it mean to be embodied? What is that body whose substance reifies gestures?
Such questions have been dealt with by linguists, of course, since Maurice Merleau-Ponty, the figurehead of
embodied linguistics, exposed the role of words as gesturally active bodies, and not as clothes and carriers of
our thoughts and emotions; see Section 58.1. In a very lucid exposition [1088], the Italian semiotician Patrizia
Violi has discussed the semiotic embodiment problematic. Her discourse rightly points out the polysemy of
the word “body”, which is evident: the word means very different things in medicine, yoga, psychology,
performance, and philosophy. But the underlying question is what Violi puts into evidence: What is the
substance, the essence, of this concept that persists in all these approaches? “In order to develop a fully
embodied theory of semiosis we certainly need a bringing together of body and subject, and to do this we
must develop an approach to subjectivity which is quite different from the transcendental Ego that is implicit
in the classical structuralist framework.”

It is remarkable how the Saussurean disembodied abstraction in his sign concept (signifiant/signifié)
resembles the Fregean abstraction in his disembodied concept of a mathematical function (see Section 57.3.2).
Violi confronts the linguistic category of a subject with the ontological one of the self as a being (also
referring to Émile Benveniste’s investigations on enunciation theory [100]) and observes that “the theory of
enunciation removes the issue of embodiment altogether.” And she concludes that we are confronted with
the paradoxical fact that “on the one hand there is a theory of embodiment without subject, on the other
a theory of the subject without a body.” We learn that Violi opens a question which by far transcends the
conceptual/semiotic analysis of “body” or “embodiment”, but points to the problem of how substantial these
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concepts could be in the very making of thoughts. The linguistic category she alludes to is a gate to the
problem of why embodiment is such a basic category of any type of articulation, verbal and beyond. Or, to
re-state in Merleau-Ponty’s spirit: If the words are the thoughts’ body, what can we draw from such a body’s
anatomy when we think?

59.1.1 Embodiment Science

In light of the many and diverse fields from the full range of disciplines, in which embodiment plays an ever
increasing role, we find numerous arguments in favor of the creation of a human body/embodiment science.
We emphasize that we are hardly the first to have considered such a multidisciplinary endeavor. Two such
enterprises come from France and the United States:

The first is the initiative of Frenchman Bernard Andrieu1 entitled Le site du corps, it can be found
online [35]. Andrieu describes his approach as follows: !Pour étudier comment le corps a été étudié et in-
terprété par la science et la philosophie, notre recherche est organisée autour de deux grands axes, développés
en parallèle depuis 1986: la désincarnation scientifique du corps et la description du sujet incarné par les
philosophies du corps. Notre postulat est de lier l’épistémologie et l’ontologie du corps en démontrant com-
ment la modélisation du corps présuppose, en le laissant le plus souvent dans l’implicite, une conception
ontologique du corps." (“In order to study how the body has been investigated and integrated by science
and philosophy, our research is organized around two great axes, developed simultaneously since 1986: the
scientific disembodiment of the body and the description of the embodied subject by philosophies of the
body. Our postulate is to connect epistemology and ontology of the body by showing how the body’s mod-
eling presupposes, keeping it however mostly implicit, an ontological concept of the body.”) The initiative
is very well organized, including a number of books,2 research, international connections, and the French
internet network. In particular, it lists all doctoral theses in France in the years 1971-2007 with the word
“corps” in their titles. The site reveals a great awareness of the multidisciplinary nature of the subject and
also offers a historical perspective of the body. Although the site is centered around French contributions
and perspectives, we consider this initiative a vital step towards an institutionalization of a science of the
human body. Andrieu’s initiative also comprises the journal “Corps” [36].

Another enterprise is more philosophical, though not restricted to philosophical discourse. It was created
and directed by Richard Shusterman,3 who has institutionalized his theoretical and practical approaches in
the Center for Body, Mind, and Culture at Florida Atlantic University [974]. Like Andrieu, Shusterman has
created an incredibly rich resource for scholarly research, which also includes information on mind-body
practices such as Feldenkrais, Alexander Technique, and Confucian and Zen approaches, which are beyond
the purview of our discussion, but which are relevant to understanding Shusterman’s comprehensive approach
and his understanding of philosophy as a quest for good life. His seminal paper Somaethetics: A Disciplinary
Proposal, published [975] in 1999, displayed a model of what could be regarded as a philosophy of the human
body and embodiment. In his critical review of Alexander Baumgarten’s Aesthetica, Shusterman proposes
a discipline of “somaesthetics,” defined as “the critical, meliorative study of the experience and use of one’s
body as a locus of sensory-aesthetic appreciation (aesthesis) and creative self-fashioning.” In remarkable
agreement with Andrieu’s approach, Schusterman states that “Beyond the essential epistemological, ethical,
and sociopolitical issues, the body plays a crucial role in ontology.” He adds that “analytical philosophy
examines the body as a criterion for personal identity and as the ontological ground (through its central
nervous system) for explaining mental states.” On this ground, Shusterman then defines three fundamental
dimensions of somaesthetics:

1. Analytical somaethetics, describing “the basic nature of bodily perceptions and practices and also of their
function in our knowledge and construction of reality.”

1 Professor at the Faculty of Sport/UHP of Nancy University, France.
2 Among others, one on a philosophy of the body, the skin, suntan, etc.
3 Dorothy F. Schmidt Eminent Scholar in the Humanities, Professor of Philosophy and English and Director of the
Center for Body, Mind, and Culture at Florida Atlantic University. See
http://www.fau.edu/humanitieschair.

http://www.fau.edu/humanitieschair
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2. Pragmatic somaethetics, “having a distinctly normative, prescriptive character—by proposing specific
methods of somatic improvement and engaging in their comparative critique.”

3. Practical somaesthetics, “being concerned not with saying but with doing, this practical dimension is
the most neglected by academic body philosophers, whose commitment to the discursive logos typically
ends in textualizing the body.”

He views the disciplinary proposal in a “double meaning: as a branch of learning or instruction and as a
corporeal form of training and exercise.” He strongly argues for a wider conception of philosophy, including
“the ancient idea of philosophy as an embodied practice, a way of life.”

Given the above tour d’horizon as well as Andrieu’s and Shusterman’s strong arguments for a science
of the human body and embodiment, we can now attempt to describe the state of the art of the scientific
discipline of embodiment. We focus on the analytical rather than the practical dimension, and on the global
picture of such a scientific proposal. We do not yet problematize the concepts of “body” or “embodiment”
in the manner of Violi, but will postpone this topic until Section 59.1.1.1. We embrace the artistic insights
exposed in our tour d’horizon as a strong argument for further investigating the architecture of a science
that could contribute to the unification of methodologies and findings regarding the role of the body in
the construction of higher cognition, intelligence, knowledge, and culture. Recent insights from the hard
sciences, neurobiology and embodied artificial intelligence draw a picture of a new type of homunculus.
Whereas the classical homunculus was a topographic image of the interface between the body’s limbs and
their sensorio-motor innervations, we now display an integrated map of action and perception. This unified
action-perception topography of the body is what we would call the action-homunculus. It is the integral of
all the dimensions that define our physiological existence as a space-time of action and perception. It is the
global interface with extensional reality of the human existence. Although we are far from understanding its
detailed mechanisms, we can conjecture that this layer is the bodily basis for whatever we may experience
physiologically as living beings.

This is one extremal set of data, from which we have to draw a line to the other extremal set of
human existence: cognition, emotions, and higher human dimensions such as language, non-verbal semiotic
systems (traffic, fashion, alimentation, social interaction, emotions, sexual and erotic codes, and so on), logic,
mathematics, and the arts. Let us call this layer the cognitive stratum.

It is one of the big implicit axioms of all scientific and artistic approaches to embodiment that the
layer of the action-homunculus (or any corresponding concept they would associate with the body’s basic
reality) is the first level of a cognitive leading to the cognitive stratum. We use the term cognitive embryology
because it is a second axiom of this philosophy of embodiment that the cognitive stratum is the completion
of a complex organic evolution and not something which is added at once and stemming from a metaphysical
platonic sky or from some divine fertilization. This is a strong assumption that contradicts the Leibnitz
monadic principle: there are no two worlds, our thoughts are created from the action-homunculus and not
imported from another reality.

59.1.1.1 The Cognitive Layer

This setup is not a fact, but a basic approach to an attempt to understand cognition and intelligence in a
very precise evolutionary architecture. The cognitive layer is the grownup shape of the action-homunculus.
Although this approach is far from complete, we must ask whether such a strong fundamental assumption or
principle can be the basis of a scientific (multi)discipline. The model of a scientific discipline par excellence
is modern physics. It is an extremely successful science with a complex theory and an overwhelming arsenal
of applications in other sciences and in practice. Physics may alter its shape as theory and experiments
evolve, but it is also built upon a very abstract and invariant principle, namely that nature is governed by
a small set of laws. At present, the architecture of these laws is dramatically simple: Nature is completely
described by three types of forces: electro-weak force, strong force and gravitation. And all efforts in the Big
Science of elementary particle physics are united by the axiom that these forces should be expressions of one
basic force, an endeavor coined ToE: Theory of everything. Nothing confirms such a far-out principle, but
physicists agree that this is the big challenge.
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In view of this exemplary model of a hard science it is reasonable to make an analogous effort in the
understanding of the human condition, namely that the cognitive stratum is the endpoint of a cognitive
embryology based upon the action-homunculus.

What is the critical point in such a scientific enterprise? The big question is this: How is it possible
to describe and understand the transition from the action-homunculus to the cognitive layer? In embodied
Artificial Intelligence, the problem is manifest: All efforts on the level of robotics and other cheap or expensive
embodiment machines are in a desperate search for emergent properties. There is no general methodology that
would suggest how higher cognitive performance can emerge from low-level actions. The same is true when
dealing with neurophysiological approaches to action-perception: We know quite a lot about the mechanisms
of action-perception cycles, but there is a critical missing link from the action-homunculus to the cognitive
stratum. We suggest that a science of the body and of embodiment should declare as its principle that we
must find this missing link in the same spirit as that of modern physics’ search of the unified force in the
ToE.

Therefore, we propose a model of such a science that connects the action-homunculus to the cognitive
stratum by a layer which may be called the action-to-cognition layer, in short A2C. We propose an A2C
which is built upon the theory of gestures. It is not, however, a defining feature of this science but a
proposal—motivated from gesture theory in music—of how such a layer may be conceived.

An approach to dealing with the missing link between the action-homunculus and the cognitive stratum
is deduced from musical gesture theory. Its motivation stems from the well-known fact that in music, thoughts
are known to be embodied in the performer’s gestural actions. In this general shape, the idea is, however,
metaphorical and abstract. Can we hope to make this more precise? Let us first recapitulate what is given:
We have to search for a connecting structure between action-homunculus and the cognitive stratum. Now,
the action-homunculus is already wellprepared to deal with gestures: actions are no longer a static body
shape, actions can be taken as elementary structures to enable gestures. The action-homunculus is a body
in action.

Understanding the musical theory of gestures from a more philosophical point of view may give a hint of
how this problem can be attacked. In the concept of a gesture, we have two material ingredients: the skeleton
and the body (see Section 61.5). The skeletal ingredients act upon the body: the vertexes and arrows are
embodied by points and continuous curves on the body. The latter may be thought of as being given from
the action-homunculus as a space, where action takes place. When accessed from the layer of gestures, this
body is not directly grasped; instead we only experience it through the configurations of continuous curves
defined by the map g on the skeleton. The ontology of the body is not directly accessible, we are forced
to act via gestures upon this body X. The body X only exists as an embodiment of the possible skeleta.
This means that X is an abstract entity and that its ontology for us humans is only visible when we let our
gestures act upon this body X. We would like to call the totality of gestural actions (all the maps g with
variable skeleta D) the body’s embodiment. We cannot know X, but only how it “feels” like acting on X.
So is X forever hidden to our insight? Not really, and this is one of the most beautiful results from modern
mathematics, category theory, to be precise. The result is known as Yoneda’s Lemma. Expressed in common
language it is known as the Yoneda philosophy (see Section 9.3), which states that a mathematical object is
completely known if we know how it looks when observed from all objects of the same type. For example, a
topological space is completely known if we know all the continuous maps from any other topological space.
Now, in our case the set of all gestures targeting one and the same body is precisely the situation described
by Yoneda’s philosophy. This means that once we know all gestures on X, the system CpXq is completely
known, and then the points of X, being the constant curves on X, are also known. In other words: Yes, the
system of all gestures on X gives a lot of information about X.

Our interpretation of these facts is that the embodiment of the body by the system of all gestures
creates a machinery which we may control and which allows us to instantiate X when experienced through
our gestures. The ontology of X is not given directly, but mediated through our gestural dynamics. And, if
we use the recursive machinery of hypergestures, the passage to the cognitive stratum will occur in a series
of hypergestural intermetidate layers, unfolding from simple gestures on X to highly hypergestural ones in
hypergesture spaces. This means that we have good reason to conjecture that the missing A2C link between
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the action-homunculus and the cognitive stratum might be realized by the category of gestures acting upon
the action-homunculus’ body. Violi’s subject may then be interpreted as being the identification of the body
when the system of gestures operates in the creation of the ontology as mediated by Yoneda’s Lemma.

59.2 Neuroscience

Summary. We discuss some neuroscientific arguments about the hypergestural reality in cognition, in par-
ticular mirror neurons.

– Σ –

Hypergestures are gestures of gestures; see Section 61.6 for a precise definition. Hypergestures are
attractive, but are problematic with respect to many situations in the perception of families of shapes.
Robert S. Hatten [446] has observed that we often encounter discrete sequences of events, gestures and
shapes as opposed to continuous spectra. This seems to create a problem when applying the hypergesture
concept to such discrete situations.

Suppose that we have the basic situation of two gestural configurations, for example two drum gestures
or two spatial gestures of a pianist’s hand, as shown in Figure 59.1. Such configurations are not naturally
connected by a continuous family of intermediate states. If we want to build a hypergestural curve connecting

Fig. 59.1. Two situations of discrete families of gestures, which are thought to be deformed hypergesturally into
each other by a virtual continuous deformation.

them, we would need to invent a non-existent auxiliary structure. Is this legitimate? Is there any reason
beyond the inner logic of the hypergestural system to do so? Or is this just a theoretical artifact to connect
disconnected items?

Merleau-Ponty’s philosophical claims are supported by recent results from cognitive science and neu-
roscience. Maurizio Gentilucci and Michael C. Corballis [362] have proposed a theory of gradual transition
from manual gesture to speech: “It is supposed that speech itself a gestural system rather than an acoustic
system, an idea captured by the motor theory of speech perception and articulatory phonology. Studies of
primate premotor cortex, and, in particular, of the so-called “mirror system” suggest a double hand/mouth
command system that may have evolved initially in the context of ingestion, and later formed a platform for
combined manual and vocal communication. In humans, speech is typically accompanied by manual gesture,
speech production itself is influenced by executing or observing hand movements, and manual actions also
play an important role in the development of speech, from the babbling stage onwards.” The premotor cortex
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Fig. 59.2. The left hemisphere of the human brain, showing Broca’s area and its significance for fine-grained and
fast motor control in musicians and the production of speech.

lies above Broca’s area, which is responsible for the speech production, as opposed to Wernicke’s area, which
takes care of speech perception; see Figure 59.2.

Merleau-Ponty’s theories are confirmed by the topological vicinity

Fig. 59.3. 3D mental rotation is
virtual gestural activity.

in Broca’s area of language and gesture as motor-related human com-
petences. Recent results investigating the relation between sight reading
competences of professional musicians and spatial competences have re-
vealed a strong correlation in the same Broca area [986]. More precisely,
the spatial competence was chosen to be the mental 3D rotation com-
petence of spatial objects as first investigated by Shepard and Cooper
[959].

This competence means the velocity and accuracy of being able to
decide whether two 3D objects are a rotational displacement (rotation
plus translation) of each other or a rotational displacement of the mirror
image of each other. It was shown in the Cooper-Shepard experiments
that the comparison of such spatial objects was effectively performed by
their mental, i.e., virtual, rotation (3DMR = 3D Mental Rotation). This
indicates that the comparison of two spatial objects is realized by a motor action: moving them around in a
mental space. This is very near to Châtelet’s thought experiments. We compare shapes by a very common
gestural action: taking the objects in our hands and moving them around.

The result of those investigations comparing musical skills and 3DMR are remarkable: It turns out
that professional musicians have a significantly better spatial competence than control groups. And that the
neuronal gray matter is more abundant in the relevant Broca area. In other words: musical activity (playing
an instrument while sight reading the score) and mental rotational skills are managed by the same locality
of the brain. The experiment’s result is also true in the other direction: Persons suffering from amusia are
significantly weaker in their ability to mentally rotate objects [116]. In a nutshell, it has been revealed that
musical imagination and 3DMR are both driven by a profiled gestural motor activity.

Coming back to our problem of associating two gestures, we are now motivated by the findings of
cognitive neuroscience to model such an activity by a hypergestural curve in a mental space which con-
nects the respective gestures. Such a hypergestural continuation between discrete shapes is not artificial, but
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cognitively motivated. We in fact perform hypergestures when comparing objects and identifying their com-
monalities. This can again be restated with a more philosophical wording: Understanding is throwing around
gestures through hypergestural trajectories and catching them in order to continue. Cavaillès is confirmed
in an astonishingly modern sense!

Summarizing, we have found a geometric definition of a gesture, which explodes in its power of accu-
mulated applications in a hypergestural construct. This ‘heating up’ of the gestural concept not only enables
a rich repertory of concrete shapes in space-time, but also captures the paradigmatic action of comparing
shapes or gestures that are only given as discrete points, but are cognitively correlated in a continuous way,
germinating from motor actions as required in music, speech, and spatial competences. Broca’s area, which
hosts these neural processes, seems to accumulate the hypergestural potency of understanding in the making.

In neuroscience there are a number of discoveries and associated theories relating the action-body
to higher cognitive functions. Let us refer to the most prominent one, associated with the discovery of
mirror neurons by Giacomo Rizzolatti and collaborators in 1992. These neurons were discovered in the
ventral premotor cortex of the monkey [910]: “The fundamental characteristic of these neurons was that
they discharged both when the monkey performed a certain motor act (e.g., grasping an object) and when
it observed another individual (monkey or human) performing that or a similar motor act.” Similar findings
were made for humans, and also for acoustical, not only visual, input. These results have been interpreted as
evidence that human cognition is a closed circuit process: The passive perception is mirrored in the action
layer, and there is growing evidence that, vice versa, action also induces sensorial neurons (visual cortex)
to fire [285]. It has induced a series of models of human cognition and intelligence, individually, socially,
and culturally. And it is astonishing that Cavaillès’ above statement that understanding means catching the
gesture and continuing, is nothing else but the mirror neuron mechanism in neuroscientific terms: Perception
activates the neurons for action, you continue the action when understanding. This philosophy is akin to
other neuroscientific approaches, such as Wolfgang Prinz’s theory [864] of common coding of perception,
cognition, and action, stating that these three human performances share one and the same code, a theory
that had been suggested by the American psychologist William James and neuroscientist Roger Sperry
[997]. The theory of mirror neurons, which can be interpreted as an embodied version of ideas that were also
virulent in the above French gesture theory, has entailed a number of models for different areas of science.
Let us mention two of them. Neurologist Vilayanur S. Ramachandran argues [877] that mirror neurons are
the agents for the human capacity for learning and imitation, and that they will play the role for psychology
that DNA did for biology: “Mirror neurons will provide a unifying framework and help explain a host of
mental abilities that have hitherto remained mysterious and inaccessible to experiments.”

59.2.1 Embodied AI

This research makes clear that a precise mathematical conceptualization of gestures and their embodied
aspects is feasible. We have published two papers [720, 723] on this theory and shall come back to it
in more detail below, when discussing the missing link between embodiment and cognition. The point in
this conceptualization is that we shall be able to shed light on Violi’s question concerning subject and
embodiment, but also on the problem of how gestures and embodiment are related, a question that remained
unanswered in the above French approach to gestural embodiment. Violi’s question is also critical in the
ongoing embodied AI research, as typically represented by the breath-taking investigations with robots
and biological simulators conducted by Rolf Pfeifer and collaborators [846]. They quite radically state that
“embodiment is an enabler for cognition or thinking: in other words, it is a prerequisite for any kind of
intelligence. So, the body is not something troublesome that is simply there to carry the brain around, but
it is necessary for cognition.” The problem here is that the body can be simulated by electro-mechanical
machines (sometimes even by what they call “cheap design,” simple robots that do things just because
their mechanical configuration enables it, such as walking down the street), but there is no evidence or
even experimental proof that the gestural dynamics of these machines can transcend the level of a banal
vaudeville show. In Violi’s words: What must be added to transform the body into a subject? And vice versa:
In what way is the subject acting upon its body? After the failure of the brain-oriented symbolic AI and the
nerve-oriented connectionist AI, we have now arrived at the upside-down variant that starts at the feet and
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aims at reaching the brain’s performance through the body’s intelligence, so to speak. The critical question
arises from the problem of understanding the added value of action, of gesture, of what makes the dynamic
body become a subject without any postulate of divine instantiation of a soul. In Pfeifer’s statement, the
body was recognized as being necessary for intelligence. In a trivial sense, this is true, since disembodied
clouds of intelligence have never been observed to date. But the underlying thesis is that it is also sufficient
that intelligence is an emergent property of complex dynamic body configurations.

59.3 Anthropology

Summary. The Australian anthropologist Merlin Donald maintains that mirror neurons offer a basic mech-
anism for a cultural mimesis thesis.

– Σ –

The Australian anthropologist Merlin Donald maintains [273] that mirror neurons offer a basic mecha-
nism for a cultural mimesis thesis: “Most importantly, the fundamentals of articulatory gesture, from which
all languages are built, were put in place when mimetic capacity emerged.”

In the vein of Donald’s anthropological perspective, Italian performance artist Romina De Novellis
considers the body’s nonverbal communication as an embryonic form of ‘high culture’. Therefore, to reach
an integral vision of these phenomena and their origins, the investigation of infancy is essential. De Novellis’s
inquiry refers to a process similar to Darwinian evolution [244] that is structured in firmly linked stages of
development. Her anthropological investigations refer to a 20th century perspective on the body, called Les
mutations du regard by Alain Corbin, Jean-Jacques Courtine, and Georges Vigarello in the third volume
of their comprehensive analytical work Histoire du corps [217]. These mutations affect not just the idea of
the body as a means of communication but also as a projection of the mental and imaginative worlds, two
elements important to Saussure in his semiotic analysis of human existence.

Curiously, the origins of the popular tradition of the physical body are recovered in the trance state,
where the body becomes a communicative container of language. In the 1950s, Diego Carpitella and Ernesto
De Martino [658], during a series of trips around southern Italy, recovered many testimonies of women who
represented the performative behaviors of the attarantate tradition in the area of Salento, where folk rituals
and festivities give us a quite primordial representation of the body in trance, expressing a psychological
journey of emotions. When dealing with trance and bodily manifestations of emotions, it becomes necessary
to understand the body as a representation, as a performance of its proper psychological dynamics.

While the evolutionary emergence of the mimetic capacity is a anthropological argument, the problem
we referred to in the review of Violi’s discussion remains unanswered: How can higher cognition emerge from
the embodied action scheme in humans? How can we describe the evolution of language, logic, mathematics,
music, and other arts from the action-perception cycles and mirror neurons?

59.4 Dance

Summary. At present, dance as a way of thinking in the embodied making of space-time has become the
basic method for understanding embodied movement as thought. We discuss Cecil Taylor’s, Paul Valéry’s,
and Rudolf Laban’s ideas on dance.

– Σ –

Our introduction of dance to music theory goes back to the presentation of Mazzola regarding his formal tools
in shaping free improvisation at a conference at IRCAM in 2002 [709], as already described in the second
edition’s preface. He learned following a dramatic insight that free improvisation is not about abstract
algebraic tools, those theories which he had developed in this book’s first edition [714], but about gestures
that are embodied in the dancing hands of the acting pianist. This opened his approach to the vital shaping
force of the body in the art of music, an approach supported by the insights of Cecil Taylor, the monstre
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sacré of improvised piano music, stating [996] that: “I try to imitate on the piano the leaps in space a dancer
makes.” Taylor quite radically opposes a representative type of Western music culture: “David Tudor is
supposed to be the great pianist of the modern Western music because he’s so detached. You’re damned
right he’s detached. He’s so detached he ain’t even there. Like, he would never get emotionally involved in
it; and dig, that’s the word, they don’t want to get involved with music. It’s a theory, it’s a mental exercise
in which the body is there as an attribute to complement that exercise. The body is in no way supposed to
get involved in it.”

All of a sudden, the body became a core creator, not only the carrier of detached spiritual entities. And
the famous mime Marcel Marceau echoed Taylor in saying: !Dans le vide de l’espace quelqu’un dessine, crée
à travers son corps l’infini du temps. Les mains bavardent, le buste s’exalte, le regard s’illumine et la scène
se remplit petit à petit. " (“In the emptiness of space somebody draws, creates with his body the infinity of
time. The hands chatter, the bust heats up, the view is illuminated and the scene is filled bit by bit.”) The
body was recognized for not only inhabiting a given space-time, but even creating it. It was the visionary
French poet and philosopher Paul Valéry who summarized these artistic perspectives on embodiment with
his famous inscription about the fundamental role of the hand in human cognition and creativity4 on Paris’
Palais Chaillot:

Dans ces murs voués aux merveilles
J’accueille et garde les ouvrages

De la main prodigieuse de l’artiste
égale et rivale de sa pensée
L’une n’est rien sans l’autre.

(In these walls devoted to the marvels
I receive and keep the works
of the artist’s prodigious hand
equal and rival of his thought

one is nothing without the other.)

It is not surprising that Valéry wrote an essay on the philosophy of dance [1074], in which he concludes
not with a scholarly description of dance, but by suggesting we start dancing our thoughts instead of thinking
about dance. This image of a thorough consciousness of the primacy of embodiment in the arts is completed
by the fact that in dance and its theories, embodiment has been a strong and important approach, as borne
out by Jaques-Dalcroze’s eurhythmics [743] and by Rudolf Laban’s work that for the first time succeeded in
creating a subtle dance notation. But even more, Laban’s geometric language was able to make evident the
role of the human body in the very definition of space.5

At present, dance as a way of thinking in the embodied making of space-time has become the basic
method for understanding embodied movement as thought [869]. However, it remains problematic to deter-
mine what precisely is the thought that dance is expressing or, more radically, what precisely is a “thought”?

59.5 Disabled Gestures Versus Gestures Disabled: Parlan’s Versus Peterson’s
Pianism

Summary. This essay discusses musical gesture from the perspective of disability studies. Its focus is on
two hand-impaired jazz pianists, Horace Parlan and Oscar Peterson. Its theme is the distinction between
“disabled gestures” (Parlan) and “gestures disabled” (Peterson), with its principal methodology the analysis
of recorded performances. Parlan, right side hemiplegic, as a result of childhood polio, always played the
piano as a person with a disability. Thus, he played the instrument with a unique approach to gesture and

4 The magic of the hand has recently been described in a marvelous book by architecture theorist Juhani Pallasmaa
[814]; see also Section 57.

5 See also the treatise [460], dealing with Laban’s subtle contribution to the notation of dance, where the movement
is never formally described, but only pointed at and left to the dancer’s existential embodiment.
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texture, the latter defined here as “the polyphony of gestures.” An analogy is made to juggling, because,
with significant right hand limitations, unable to produce bass, harmony, and melody simultaneously, Parlan
must constantly switch between these elements. His intriguing gestural-textural idiom thus emerges from
an obviously uniquely configured mind-body: “disabled gestures.” Peterson, disabled late from a stroke in
1993, continued to perform as an essentially one-handed (right hand) pianist, with very limited left hand
contributions, consisting of slow moving bass lines and, rarely, dyads. His post-stroke playing is most often
“less,” a textural subset of his prior, virtuosic, Tatum-esque style, and also of gestural-textural norms for jazz
piano in tonal idioms. His playing is perceived as having missing elements; thus, “gestures disabled.” The
essay concludes with a contemplation of the potential application of the disabled gestures/gestures disabled
binary, in particular a consideration of its use with instruments besides piano, for which it is excellently
suited. There is a brief consideration of the binary’s suitability to guitar, in reference to jazz musician
Django Reinhardt and blues artist CeDell Davis.

– Σ –

59.5.1 Performative Gestures: Disabled Jazz Pianists

The musical traditions that interest me most originate in American vernacular traditions. They include rock,
jazz, and blues. I have argued previously [623, 624, 625] that these, which value wide interpretive latitudes in
performance—including improvisation, composing/arranging one’s own part, and openness to broad variance
in rhythm/phrasing—tend to provide greater opportunities to and allow acceptance by musicians whose
bodies do not enable them to meet those normative requirements of instrumental or vocal technique that
pertain most notably to the “standard repertoire” of Western classical music. Non-normativity does not,
however, necessarily preclude virtuosity, and may even be the source of unique gestural styling.

The artist to whom I’ve given most attention in my research is jazz pianist Horace Parlan [623, 624, 625].
Hemiplegic, largely paralyzed on his right side, as a result of childhood polio, Parlan played mostly with his
left hand, which supplies bass notes, chords, and faster moving melodies, obviously by necessity alternating
these functions most/much of the time, though he is quite adept at including chords with his left hand
melodies. Oscar Peterson [626], a better-known pianist, became disabled late in life, as a result of a stroke
and lost most of the use of his left hand, which he used only for slow moving bass lines, chording and playing
melodies with the right, sometimes simultaneously.

I distinguish between these pianists by characterizing Parlan’s playing as comprised of “disabled ges-
tures” and Peterson’s post-stroke playing as composed of “gestures disabled.” The distinction has much to do
with the different trajectories of the artists’ careers. Parlan was disabled quite young and, from the beginning
of his studies, always played the piano with physical limitations. With his right hand nearly immobile, Parlan
was never able to play the standard classical repertoire or any conventional two-handed textures and was
thus required to develop a highly individualistic approach, characterized by a fast and facile left hand and
arm and a slow right locked into a limited number of dyad formations that nearly always play successions of
parallel intervals. Peterson, by contrast, was known for his exceptionally virtuosic technique throughout his
career, even receiving acclaim from many critics after his stroke for having maintained much of that prowess
[626], praise I would argue combined wishful thinking, understandable support for an esteemed artist and,
to the degree that it was true, referred only to the pianist’s unaffected right hand and arm.

This essay is principally concerned with Parlan’s “disabled gestures,” which are more distinctive and
interesting than Peterson’s “gestures disabled.” The latter derive from a more conventional approach to the
instrument, that is, Peterson’s own pre-stroke technique. I have treated Peterson’s post-stroke career and
playing at great length elsewhere [626] and offer a consideration of his work here primarily in the interest
of a contrast to Parlan’s, as both an individual artist and an exemplar of a particular relationship between
disability and gesture.
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59.5.2 Horace Parlan: Disabled Gestures

Unlike disabled classical pianists who never use their impaired hand at all, Horace Parlan6 used his immobile
but large right hand in a manner akin to the mallets of a xylophone or marimba, striking the keys with two
fingers at a time in dyads; typically, depending on the fingers used parallel octaves or thirds, less often fourths.
He could not use his thumb, which significantly limited the speed of his right hand, typically used for melody
by jazz pianists. This made right hand legato possible for Parlan only with the use of the damper pedal,
which he employs extensively. Parlan’s functional limitations have never held him back from a distinguished
career as a sideman or leader. Notably, he has often performed in the most challenging, exposed contexts for
a pianist, as a soloist and, famously, in duets, with tenor saxophonist Archie Shepp.

Like any jazz pianist, Parlan played differently according to context, in particular depending on whether
or not he has the support of bass and, to a lesser extent, drums. But his disability also—inevitably—caused
him to produce different gestures and textures than those produced by pianists with two fully able hands.
Before observing the distinctiveness of Parlan’s playing, we must consider how an audience perceives a
pianist’s gestures.

We should assume a degree of synesthesia on the part of most of the audience. Note that I have been
avoiding the term “listeners,” because I propose that even those who cannot see the pianist for whatever
reason (such as those listening to an audio recording), unless they have never had sufficient vision (or, perhaps
rarely, because they have simply never seen a pianist), are imagining a visual element, whether it is some
semblance of an actual pianist, a sequence of contours, or some combination thereof. It is also likely that the
music is received to some degree tactilely.

59.5.3 Parlan with Bass (and Drums)

The best resource for viewing Parlan’s playing with rhythm section, in particular the tonal support of bass, is
the Archie Shepp Band video, The Geneva Concert [960], recorded in concert at the New Morning Jazz Blues
Festival (portions of the concert are easily accessed online on YouTube and other websites). Understandably,
most of the shots of Parlan playing are taken during his solos, with occasional shots of comping, that is, his
mostly chordal accompaniments to instrumental solos, by saxophonist Shepp and bassist Wayne Dockery,
and to Shepp’s vocals. It is illuminating to see how he plays, with an exceptional left hand and a right hand
whose fingers are essentially immobilized but used in a manner somewhat analogous to mallet percussion,
such as vibraphone, marimba, and xylophone. At the same time, it is important to recognize that there is
no simple, precise correspondence between the gestures as seen and as heard. The distribution of musical
material between the hands, and thus also the polyphony of gestures, is not always audibly obvious, arguably
less so than in the playing of able-bodied jazz pianists, particularly since Parlan will often transfer melody
from his right hand—with which he could only play parallel dyads and at no more than a moderate tempo—to
his exceptionally nimble left, without shifting register, or divide melody between the hands.

Although Parlan obviously played technically and texturally quite differently from other jazz pianists,
due to his disability, this can easily go unnoticed, even among highly skilled and knowledgeable listeners. I
discovered this at the 2010 University of Guelph Jazz Festival Symposium, at which, as keynote speaker, I
lectured about Parlan and his hand impairment. After my talk, I met several jazz scholars who had known
and admired Parlan’s playing for decades, but who were unaware of his limitations. (Because Parlan has
lived in Denmark and mostly worked in Europe since 1973, he is mostly known in North America through his
audio recordings.) Even more striking are those critics who misunderstand his hand impairment in ways that
are belied fairly easily by listening alone. Thom Jurek [514] characterizes Parlan’s fourth and fifth fingers as
“useless,” while Stephen Thomas Erlewine [304] writes that

If it weren’t for the inventive chord voicings and percussive right-hand attack, it would be impossible
to tell that he was missing two fingers on his right hand, since his playing is remarkably agile and
fluid.

6 See https://www.theguardian.com/tv-and-radio/2015/jul/11/horace-parlan-tribute-david-hepworth.

https://www.theguardian.com/tv-and-radio/2015/jul/11/horace-parlan-tribute-david-hepworth
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Yet another anonymous writer describes Parlan as “an excellent modern jazz pianist, with a strong left
hand,” without reference to his disability [271].

The extent to which Parlan played right hand octaves, easy to hear and even easier to see, belies the
observations of the two critics regarding Parlan’s useless or missing fingers. That he could not use his right
thumb at all, but used all his immobile fingers, invites percussive playing, but this is not a characteristic
of Parlan’s right hand only, nor did he at all eschew legato, though, as previously noted, unable to use
his (typically all-important) right thumb, he often relied on the damper pedal. While his hand impairment
obviously affected Parlan’s chord voicings, as his characteristic right hand intervals are octaves or thirds, he
also often chorded with the left hand alone. At no time in any video of Parlan’s playing have I observed him
playing anything but dyads with his right hand: mostly octaves and thirds, but also sevenths and, rarely,
fourths. If he was able to play one note at a time or more than two notes simultaneously with his right hand,
he chose not to. I suspect, though, that this enormous consistency of right hand texture is a forced choice,
though one that Parlan used to great and unique advantage.

Once one is aware of Parlan’s disability and knows what to listen for, the differences in his ges-
ture/texture from that of his pianist colleagues become more readily apparent, even when he was supported
by a rhythm section, our concern at this time. These differences are, not surprisingly, even more obvious
when he was not supported by bass and drums, either playing when solo or in his renowned duet recordings
with Shepp (to which we will turn later). Although, out of necessity—but surely also in part owing to an
outstanding harmonic imagination—he voiced chords differently from able-bodied pianists, and often only
with his left hand, the differences are not such that even the most astute listener is likely to attribute them
to his hand impairment without access to video. Although his technical proclivities largely emerged from his
impairment, an able-bodied pianist could certainly play as he does, although, to the best of my knowledge,
none do. Further, the idiosyncrasies of his playing are often manifested in things he does not do, and listeners
are, of course, far more likely to focus on what a performer does than the infinite number of roads not taken.

59.5.4 Parlan with Rhythm Section

As a soloist supported by bass and (usually) drums, Parlan gestured quite differently from other pianists.
Because his pitch/rhythmic language, though personal and imaginative, grounded him in the post-bop idiom
of his collaborators, the uniqueness of his pianistic textures and contours only appear as remarkable as they
are once one is aware of his impairment and knows what to listen for and, when possible, to watch.

As can be witnessed in this quartet performance with Archie Shepp, among the configurations of
harmony and melody he employs—like most post-bop pianists supported by a rhythm section, Parlan left
bass lines to his bassist—Parlan often played melody with his able left hand, while comping simultaneously,
if sparsely, with the same hand and less often with his right. Left hand melody with right hand comping,
spare though the chords may be, is, of course, essentially the inversion of the typical configuration of melody
and harmony.

Parlan’s left hand melodies often extend into a higher range than that hand typically goes and exhibit
a greater proclivity for continuous ascent—that is, toward and sometimes beyond the body—than his right
hand melodies. Thus, although there is a certain physical relaxation characteristic of the hand’s motion
toward the body, its melodic ascent translates in sound into heightened tension, the opposite affect from the
natural tendency toward tonal descent in right hand melodies as it moves inward.

Other features of Parlan’s soloing include slower-moving lyrical right hand melody in parallel intervals,
at times joined by the left with chords, all in rhythmic unison; antiphony at the phrase level between left and
right; and, perhaps the most visually striking, melody divided between the hands, often in oblique motion,
with a moving left against a static right. All these gestural templates were strongly idiomatic to the pianist’s
impaired right hand. Any of the performances from The Geneva Concert [960] offers significant opportunities
to see as well as listen to Parlan’s idiosyncratic technique, but “Arrival,” “Steam,” and “Sophisticated Lady”
particularly stand out. The first two are especially notable as they are uptempos, something not found at
all in Parlan’s recorded solo oeuvre and only occasionally in his recorded duets with Shepp. It appears that
tempo was not a limitation at all for Parlan when there was a rhythm section to support him. The inclusion
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of bass seems more important than drums, both because of its obvious ability to provide and because,
elsewhere, in Parlan’s own DVD documentary, Horace Parlan by Horace Parlan [819], he chose to perform
accompanied only by bass.

59.5.5 Parlan as Soloist

The only video I am aware of that is available commercially or on social media that features Parlan unaccom-
panied (there are no videos available of the many Shepp/Parlan duets) is his arrangement of the traditional
spiritual “Deep River,” from the video documentary Horace Parlan by Horace Parlan [819]. (On all other
performances in this film, Danish bassist Jimmi Pederson accompanies Parlan.) The principal difference
between Parlan’s solo playing and his work with rhythm section is, much like it is for any jazz pianist in a
similar tonal idiom, the necessity of providing bass notes. The main technical distinction between Parlan and
able-bodied pianists is, of course, the larger responsibility of his left hand, which must also supply harmony
and any fast-moving melody. These three functions cannot all be simultaneous, though, and the bass line,
which is uniformly sparse in these performances—mostly comprised of isolated if prominent pitches—but
no less important for being so, alternates with either chords or melody. Left hand chords accompanied Par-
lan’s right hand melody, which is characteristically slow to moderate in speed and in parallel octaves, made
legato via the damper pedal. Left hand melodies in this no-rhythm-section context were even more often
long ascending than when Parlan played with a rhythm section (even when it is bass only, as in this video).
These ascents sound and feel as if they are a natural continuation of the leap up from bass notes. This
is particularly notable toward the end of “Deep River.” Further, the trajectory of these melodies is often
completely ascending, that is, without any deviating descending motion, however brief, such that they have
the gestural sense of arpeggios and thus a quasi-harmonic feeling, regardless of whether their interval content
readily suggests chords or not. Thus, a sense of harmony emerges from a gesture that suggests it—that is,
continuous ascent—rather than from intervallic content.

(Later in the documentary, during Parlan’s performance of his composition “Arrival”—also heard in
The Geneva Concert—we get a brief glimpse of his left foot working the damper pedal. This is doubtless a
consequence of his impairment and it is possible that, because it changes his orientation to the keyboard, it
has an influence on his playing, leading him to favor the upper register.)

In addition to “Deep River,” on the abovementioned documentary, Parlan has recorded three solo
albums: Musically Yours (1979, re-released 2010) [821], The Maestro (1982; re-released 1995) [818], and
Voyage of Rediscovery (1999; re-released as Horace Parlan in Copenhagen, 2008) [820]. The gestural/textural
characteristics described above in the pianist’s performance of “Deep River” are all in evidence throughout
these recordings. After one has seen Parlan’s playing, the distribution of musical material between the hands
can be determined in these audio-only recordings with some confidence. These three albums comprise a large
database of solo performances that reveals Parlan’s tendencies in a manner that cannot be determined from
a single piece, albeit the one available on video. The relationship to his hand impairment is clear.

Taken as a body of work, the most striking aspects of Parlan’s solo playing are the complete lack of
uptempos, the large portion of the time, perhaps even a plurality, spent playing left hand melody alone
(accompanied by the pedal resonances of previously played notes in all registers), and the sparseness and
exposure of bass notes. Although Parlan could play melody with his left hand as fast as necessary for any
tempo, as evidenced in Archie Shepp’s Geneva concert, the limitations of his right hand appear to prevent
him from accompanying the left appropriately to enable quick tempi. It is possible that there was another
reason for the pianist’s having chosen only slow and medium tempos, but their absolute consistency over
three albums (plus “Deep River”) strongly suggests that fast solo playing was not an option.

Of course, the lack of fast tempi in Parlan’s recorded solo oeuvre is striking only when that repertoire
is considered as a whole, not in individual works. Much more distinguishing, if not unique, is the great
preponderance of solo, left hand melody in every performance. The pianist’s solo output, like much of
his work with rhythm section, is largely a one-handed affair. Since Parlan could not possibly provide all
functions typically delivered by solo jazz pianists in tonal idioms—bass, harmony, and melody—he often
alternated sparse bass notes with abundant, virtuosic, left hand melody, occasionally buttressed by chords.
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In addition, he less frequently comped with the right hand. As previously noted, this left hand melody-in-
the-midrange/right hand chords-above texture is a distinguishing characteristic of Parlan’s playing that also
contributes to his unusual chord voicings. As previously mentioned, at times the right hand joins in melody,
often repeating a dyad in alternation with moving notes in the left, creating a rapid-fire oblique motion. At
other times, when the left hand is not soloing (supported only by damper pedal resonances), more typical
textures are employed, such as left hand bass and chords (in alternation), supporting right hand melody in
parallel intervals, or chordal passages employing both hands.

Finally, the role of the bass notes requires an accounting. Parlan was a post-bop, rather than a stride
player, who only occasionally visited the lower register. Typically, only one bass note, or occasionally a
bass dyad, is played at a time, in alternation with another left hand function, harmony or melody. These
alternations can be quite rapid. What is striking, though, is that the right hand, as best I can tell, never
strikes notes simultaneously with the left hand when the latter is in the bass register. This may simply be a
style feature of choice, or it may also be related to Parlan’s right side impairment that affects both his hand
and foot.

The result of the forced choices that emerge from Parlan’s impaired right hand and extraordinarily
nimble left are more transparent in Parlan’s solo playing than when he is supported by a rhythm section.
Far from making him a lesser player than his peers, his inventiveness with texture and gesture in light of
his technical limitations are a source of great fascination. That he could not “do everything at once” makes
for a rapid alternation of textures and registers, somewhat evocative of the Baroque stile brise, which may
be most familiar in lute music and Johann Sebastian Bach’s unaccompanied works for violin and cello. The
most unusual texture, though one Parlan uses a great deal, is the solo left hand melody. Its alternation
with occasional bass notes give the music a stop-time quality, made even more interesting by the rhythmic
unpredictability of the timing of the bass and the asymmetry of the left hand phrases of varying lengths.

There is certain strangeness about this nearly monophonic piano texture that the late disability theorist
Tobin Siebers [968] argues is intrinsic to Modernist aesthetics. Given his extraordinary tonal, especially
harmonic, imagination, it is not unreasonable to place Parlan in the company of such great post-bop solo
players as Bill Evans and Thelonious Monk. Comparisons to the latter are especially apt, given that Parlan
shared Monk’s affinity for sparse textures and lack of interest in overt displays of technique. In that context,
it is noteworth that Parlan recorded two solo performances of Monk’s classic “Ruby, My Dear,” on both
Musically Yours [821] and The Maestro [818].

59.5.6 Parlan’s Duets with Archie Shepp

There are no videos7 of the Parlan and Shepp duo available commercially or on social media. The roles Parlan
assigned to his hands in these performances must therefore be conjectured from a copious body of audio
recordings, consisting of five albums, both studio and in concert. The textures and gestures employed seem
in essence the same as those in his solo recordings. Notably different from Parlan’s solo albums, though, are
there occasional uptempo pieces with a proclivity for steady tempos, with the notable exception of the album
Goin’ Home (1979, re-released 2010) [961], a collection of spirituals and similar works, often performed in a
rubato style, evocative of preaching. As an accompanist, Parlan is distinguished for his eschewal of walking
bass—not surprising given that his bass notes are always sounded alone—and a nearly consistent avoidance
of steady enunciation of the beat, with the exception of a couple of pieces, “Backwater Blues” (from Trouble
in Mind, 1980, re-released 2010) [962] and “Mama Rose” (from En Concert: First Set, 1987) [963], that
employ ostinatos. That the pulse is felt so strongly without either artist constantly marking it—Parlan in
particular shapes time without consistently playing on the beat, while Shepp is often given to Coltrane-like
“sheets of sound” that go “outside”—turns the lack of rhythm section into an advantage, with a kind of
seemingly effortless swing. I am tempted to suggest that the lightness of texture of this duo mirrors and
magnifies Parlan’s own playing, in which the tonal tasks of bass, harmony, and melody are out of necessity
constantly juggled.

7 But see https://www.juno.co.uk/products/archie-shepp-horace-parlan-trouble-in-mind/552212-01/.

https://www.juno.co.uk/products/archie-shepp-horace-parlan-trouble-in-mind/552212-01/
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Parlan’s solos in these duo performances are similar in gesture and texture to those on his solo record-
ings. His support of Shepp occasionally employs a stride texture, and at times utilizes ostinatos, but more
often he only comps, with either left hand or both hands, in much the same manner as he plays with rhythm
section in the Geneva concert. His comping is heavily syncopated, leveraging the phenomenon that his—and
Shepp’s—playing around the beat with great momentum results in the beat being heard and, perhaps even
more, felt, whether it is actually enunciated or not.

Of particular interest is “Deep River,” from the album En Concert: Second Set [964], which Parlan also
plays solo in his documentary, as discussed above. Parlan’s proclivity for long, ascending left hand lines is
at its most marked, both under Shepp’s tenor saxophone performance of the melodic “head” and in the solo
that follows, as well as in the pianist’s own solo. The impression of melody-as-harmony in such passages
is reinforced with skillful pedaling. With a duration of 11:54, the performance is nearly twice as long as
Parlan’s video solo (6:31). The two performances of Duke Ellington’s “Sophisticated Lady,” from Reunion
[965] and Second Set [964], are also standouts. Parlan plays mostly chords here, but topped with such a
strong melody that the impression is more of counterpoint than homophony. Reunion also includes “Cousin
Flo,” in which, unique among these recorded duets, Parlan plays only a left hand basso ostinato much of the
time, transposing it according to blues chord changes.

59.5.7 Disabled Gestures

That Parlan’s hand impairment and the unique gestures and textures it generates in his playing have been
largely overlooked—or perhaps “over-listened”—surely owes in part to the limited, even nonexistent, oppor-
tunities those of us in the Western Hemisphere have had to see him play. But, more important, they also
owe to habits of listening that are so focused on tonality and those aspects of rhythm most closely related to
tonality. Parlan was an artist with an extraordinary tonal, especially harmonic, imagination and, although
it is beyond the purview of this essay, some of his invention appears to be a function of the need to voice
chords differently, owing to his right hand impairment. This hand is best at reaching large dyads, such as
sevenths. And since Parlan often played melody with chordal punctuations in his left hand while comping
with his right, chord voicings are often interesting.

More important though, is what I previously called “juggling.” Parlan had to do so much of the work of
a tonal jazz pianist with his left hand—bass, harmony, and melody—that he had to alternate these functions
rapidly. This creates a shaping of time based on shifts of register and function. Perhaps most notable are the
many times when all that is freshly sounded is left hand melody, accompanied by recently pedaled notes in
one or both hands. These resonances are not drones—most of these pieces have steadily moving harmonies—
but they are un-damped resonances that accumulate into chords in a manner evocative of hammer dulcimers
such as the Persian santur, Indian santoor, and Chinese yangqin, giving Parlan’s often monophonic playing
an Eastern quality that I have not heard elsewhere. That there is an expectation in piano playing of a more
consistently polyphonic texture only adds to the special quality of Parlan’s artistry.

Of course, the character of Parlan’s playing is not only a function of a left hand equal to the demands of
multitasking, but also of the impaired right hand whose limitations impose greater work on the left. Parlan
seems not to play simultaneously with his right hand while he is striking bass notes. He only uses his right
hand for harmonic dyads, slow moving melodies in parallel octaves, and shared melodies with the left, in which
the right often plays repeated notes in alternation with the left’s melodic motion. Thus, Parlan’s right hand
is limited in its independence, its textural capabilities, and its speed, all of which contribute—positively—to
a sparseness like no other.

This may be most readily appreciated in his duets with Archie Shepp, where bass notes are relatively
infrequent and Parlan’s comping is usually rhythmically quite varied and highly syncopated, though it is
firmly wedded to the beat, in contrast to Shepp’s frequent “sheets of sound.” That both players are charac-
teristically intense—Shepp with a technique, sound, and style honed in free jazz, Parlan with extraordinary
harmonic invention and richness, even within impairment-imposed textural limitations—is tempered and
given a sense of flight when unencumbered by the bottom and beat of a rhythm section. The steady pulse
is instead kept, perhaps even performed, by listeners, who perform a calculus upon the duo’s rhythmic
inventions, especially Parlan’s sense of swing.
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Beyond the specifics of Parlan’s music per se, his playing within such forthright limitations provides an
important lesson in the genesis of gesture and texture. Parlan’s playing in an improvisational idiom reminds
us as few others can that we all think and perform with our bodies. It is only the atypicality of Parlan’s
body—that is, its right side and especially the right hand—that makes the corporeality of performance so
obvious. While another pianist might be able to emulate Parlan, Parlan has only ever been a pianist with
a very specific limiting impairment, to whom a particular textual and gestural imagination is absolutely
idiomatic and frames his musical imagination.

This relationship of corporeality to invention is true of every body, of course, but the presence of
standard technique and repertoire as defined in Western classical music—whose hegemonic influence is so
strong within certain sectors that it can safely be referred to simply as “music”—has deflected attention
from the physicality of music making. Canonic works are composed for “piano,” not the particular physical
idiosyncrasies of any single “pianist.” This even applies to those works composed for a single hand—almost
always the left—since the technique is normalized for the one able hand, while the disabled hand is exiled
from performance.

I find in Parlan’s unique approach to the piano based on his impairment “disabled gestures”—a posi-
tive concept—because they are the natural outcome of a lifetime of making the musical best of significant
physical limitations. In this context, it makes sense to think of the piano and the human body as interact-
ing instruments. Although neither a guitar nor a saxophone has the polyphonic capabilities of the piano, I
suspect that few among us think of them as “less” than the piano, in part because they both are readily
capable of many things, such as access to considerable timbral variety, that are challenging at the keyboard
and not in the repertoire of every skilled pianist. Likewise, because he thought and played with the body
he had (as we all do, if less noticeably), Parlan had easier access to what is gestural and texturally special
about his playing than an able-bodied pianist whose imagination is differently wired corporeally.

59.5.8 Gestures Disabled: Oscar Peterson

Fig. 59.4. Oscar Peterson. Photo Reuters/Jean-Bernard Sieber-ARC, reproduced with permission.

Those “gestures disabled” that are exemplified in Oscar Peterson’s playing from 1994 to his death
are something quite different from the “disabled gestures” described above in the music of Horace Parlan.
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Peterson was a very different pianist with a very different impairment history. As quoted in Block [121], a
self-proclaimed “traditionalist”, long known for his formidable technique and aggressive playing, Peterson
had a major stroke in 1993. After a period of rehabilitation, he resumed performing in 1994 and performed
until his death in 2007.

The stroke seriously affected his left side. Post-stroke recordings—ten CDs, one DVD, and a radio
transcription of National Public Radio’s Marian McPartland’s Piano Jazz [742]—all indicate that Peterson
could only play single notes and, though rarely, dyads with his left hand, and only slowly, apparently using
arm, rather than finger weight. Much of the time in recordings [742, 832, 833, 834, 835, 836, 837, 838, 839,
840, 841, 842], he appears to be playing with his right hand only, an assessment whose reliability owes to
substantial registral spreads between the bass line and upper voices when the left hand is used.

While critical assessment of Peterson’s post-stroke playing runs the gamut from enthusiasm to vicious
condemnation, critics, liner note authors, and the pianist himself (especially in his conversation with Mc-
Partland) are unanimous in that Peterson played “less” after acquiring his disability. “Less” in this context
is not meant aesthetically; rather, the artist was incapable of delivering much texture with his left hand.
And, although Peterson’s right hand seemed unaffected and he remained capable of playing extremely fast
with it, as in his performance with McPartland, many critics, particularly Stephen Holden [477] and the
pianist himself (as quoted in Moon) [762], felt that his playing in this period was more restrained and lyrical.
Holden in particular felt that, as I have observed with Parlan, Peterson used his forced choices to musical
advantage.

While I am inclined to agree with Holden that, at least in some ways, Peterson became a more thoughtful
musician as a result of this major physical challenge, I am less concerned with that aesthetic judgment than
with drawing a distinction between Parlan’s “gestures disabled” and Peterson’s “disabled gestures.” As we
have seen and heard, Parlan, a disabled pianist his entire life, out of necessity developed an approach to
gesture and texture that differs radically from that of any of his colleagues, most notably in the preponderance
of monophony (accompanied only by previously pedaled notes) and the rapid alternation of registers and
tonal functions that he cannot fulfill simultaneously.

Peterson, by contrast, had had a long career as an able-bodied pianist known for his dazzling technique
prior to acquiring his disability late in life. While there was a new lyrical bent in his playing, even at times
eschewing technical virtuosity altogether [742], there is never in him the sense of gestural/textural innovation
that emerges from Parlan’s lifetime of thinking and playing with an impaired body. Peterson either plays as
much of what he would have played pre-stroke or he plays simpler—but not unprecedented—textures that
one might encounter in another pianist.

It is not only because Peterson’s disability was acquired late that his playing is—by his own admission—
“less,” rather than gesturally-texturally creative. It is also because the nature of Peterson’s impairment was
different from Parlan’s or that of any of the famous disabled classical pianists. It is a simple question of which
hand was impaired and to what degree. Like Parlan, all the famous classical pianists with hand injuries—
Paul Wittgenstein, Leon Fleisher, and Gary Graffman (I exclude composer Robert Schumann from this list
as a non-performer)—lost right hand function, or, in Wittgenstein’s case, the right arm. The best-known
one-handed classical repertoire such as the Ravel and Prokofiev concertos and the Brahms arrangement of J.
S. Bach’s unaccompanied violin Chaconne—is for the left hand. This owes only in part to the existence and
commissions of famous injured virtuosi. Some of these works exist for other reasons, for example, as etudes.
Finally, it is widely acknowledged that the left hand is better suited to one-handed pianism.

Pianist-composer Hans Brofeldt [155] attributes this advantage to the left thumb being more apt for
melody than the right hand fifth (“pinky”) finger and to the left arm’s greater capacity for upward leaps, an
auspicious feature of Parlan’s playing, as he quickly shifts registers and thus also functions, due of course,
to the left thumb’s advantageous position over the right’s. But I would also add Brofeldt’s characterization
that the left side has more ready access to the critical bass range of the instrument. Of course, Parlan made
significant use of his impaired hand, far more than Peterson does, because both of the latter’s more significant
disability and that disability’s very late acquisition. (Brofeldt is also adamant that any hand injury renders
that hand utterly useless for a pianist, a classical musician’s perspective fortunately not shared by either
Parlan or Peterson.)
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As Holden observed [477], Peterson was late in life essentially a one-handed pianist, far more than
Parlan. There are no dazzling shifts of function in Peterson’s playing. The left hand only plays slow bass lines.
The right plays melody and comps, sometimes during solos doing both at the same time. Like Parlan, Peterson
had large hands that facilitate this. From a gestural-textural perspective, Peterson is most interesting playing
unaccompanied, which, unlike Parlan, can be heard only very rarely, in two recorded performances, both
of his own compositions: “Love Ballade” (on McPartland’s 1997 radio program) [742] and “When Summer
Comes,” on The Very Tall Band: Live at the Blue Note (1999) [837]. The former includes little or no
improvisation, the latter a bit more, with more jazz feeling but not a great deal of virtuosity: both are
essentially Romantic in style. Peterson tells McPartland that “Love Ballade” is influenced by Chopin; thus
the use of “ballade” rather than “ballad”. In both pieces, the right hand employs Romantic piano textures,
most notably arpeggiation beneath melody. Peterson composed more after his stroke, which Robert Sandall
[271] associates with the pianist’s reduced technical capacities and Richard Palmer [815] proposes was a
means of continued creativity during Peterson’s initial post-stroke inability to play. Like Parlan’s, Peterson’s
solo performances avoid uptempos. As further evidence of the pianist’s limitations, “When Summer Comes”
is by far the shortest of the three unaccompanied solos by the stars of The Very Tall Band, the others
by vibraphonist Milt Jackson and bassist Ray Brown. (When McPartland plays a solo during their radio
program, she tells Peterson it is to give him a medically needed break) [742].

The above discussion illustrates Peterson’s “disabled gestures.” In his impressively frank conversation
with McPartland, he professes his significant limitations and aptly characterizes the new limitations on his
playing as “still me.” “Me” is often, though not always, characterized by relentlessly fast right hand melodies,
at times supported by chords in that same hand, but less support from the left, only in the form of simpler bass
lines and (as best I can tell) no chords whatever. Some textural elements are either conspicuously missing
or reduced in density from what they once were in Peterson’s playing and remain the gestural-textural
norm in post-Swing Era tonal jazz piano. These omissions—of anticipated normative texture, not necessarily
of aesthetic value—are heard—and likely otherwise synaesthetically perceived—as empty time/space. The
support of such aggressive guitarists as Lorne Lofsky and Ulf Wakenius during essentially one-handed solos
exemplifies these “gaps” in musical texture, reminding the audience of the missing or reduced left hand
contribution, an absence felt more than when, for example, Parlan (who never plays with guitar comping or
other chordal support) plays left hand melody alone over bass (and drums). Over a lifetime of performance
with an impaired hand, Parlan, by contrast, mastered the “disabled gestures” of keeping all musical elements
in play through rapid alternation and register transfer; his disability resulted not in an aesthetic deficit, but
in a display of extraordinary prowess and invention, and a particularly creative shaping of time by means of
shifting gestures and textures.

Post-stroke, Peterson’s playing in various ways manifested capacities diminished from the pianist’s
legendary Tatum-esque technique. With a rhythm section (or McPartland’s second piano), he played reduced
textural elements, such as comping with only the right hand and performing much-simplified, slow bass lines.
But the conceptions of gesture and texture remain the same as prior to his stroke. Whether he was more
dependent on his accompanists than before is a matter of debate and Peterson at times seems to have changed
his mind (or, I prefer not to think, contradicted himself) [626].

59.5.9 Conclusion

Perhaps the distinction between disabled gestures and gestures disabled might best be illustrated by harken-
ing back to my experience presenting Horace Parlan’s music to an audience that thought it knew him and was
surprised to learn of his impairment. Were I to have presented on Oscar Peterson (and assuming his stroke
was not known to the audience), the likelihood that “something was missing” would, I believe, be far greater.
Even if Parlan’s audience were to have noticed his unique approach to gesture and texture—which might
be overshadowed by his tonal creativity, I doubt that many would speculate that it arose from disability.
Other pianists, like Thelonious Monk and Cecil Taylor, are also geniuses of gesture and texture, but their
creativity does/did not emerge from physical limitation. “Disabled gestures,” then, are roughly analogous
to, for example, “blues gestures” or “Italianate gestures;” an element of style, not of defect.
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Post-stroke, Peterson, on the other hand (pun not so much intended as inevitable), plays in a manner
in which the “holes” in the otherwise normative texture are obvious. It would not be challenging to ascertain
that the diminished texture results from diminished physical capacity. The lack of (much) left hand is made
more obvious when, as was typical in this period (and much before Peterson as well), guitar supplies much of
the harmony, albeit in a very different manner than piano. “Gestures disabled,” then, exhibit a loss, perhaps
not aesthetic—a matter of critical debate [626]—but surely a deficiency in texture that deviates from a norm
indicated by style and those musical elements that remain.

It remains to be seen the degree to which the distinction between disabled gestures and gestures disabled
is operative for instruments beyond piano, for which it is extremely apt. I have, in my earlier work, alluded
to that distinction in a discussion of the legendary hand-impaired guitarist Django Reinhardt [624]. It is even
more applicable to the underappreciated Delta blues master, CeDell Davis [656], both of whose hands are
impaired by childhood polio. (Owing to a series of strokes, Davis no longer plays at all, but still sings.) In
both guitarists’ work, impairment is an impetus for creativity, that is, for disabled gestures, for style rather
than defect. The application of these categories is a project that has only begun.

59.6 Aristotle, Blind Lemon Jefferson, and Vilayanur S. Ramachandran Walk
into a Bar: Blues, Blindness, Politics, and Mirror Neurons

59.6.1 Introduction

I propose elsewhere in this volume that the perception of musical gesture is inherently synaesthetic, not
only aural, but visual and often tactile, as well. Surely the case for visual perception of musical gesture is
supported by references to “high” and low” pitch, “horizontal and vertical” tonal relationships, and musical
“form” and “architecture,” “tone color,” and, of particular relevance here, the “blues.” Some visual analogies
such as these are culturally and temporally contingent. “High” and “low” pitch had opposite meanings for
ancient Greek and medieval theorists. “Horizontal” and “vertical,” understood to be unfolding (“melodic”)
and simultaneous (“harmonic”) relationships, are so construed because of their display in standard Western
staff notation. The value of visual imagery so evoked is thus, to say the least, problematic, as it has no clear
and unambiguous relationship to perception.

My focus here, though, is in the blues, a musical idiom synaesthetically named. As a scholar of disability
studies in music, I find it most ironic that it has been said that the archetypal bluesman (rarely a woman), the
person best qualified to deliver this sound-as-color imagery, is blind. (In an incidence of triple synesthesia—
aural/visual/tactile—it is often said that the “blues is a feeling,” a clause that produced 43K Google hits in
a search on 25 July 2015.) Not only have there been numerous blind blues musicians, such as Blind Lemon
Jefferson, Blind Blake, and Blind Willie McTell, there have been a few sighted musicians (even, at one time,
Bob Dylan, alias “Blind Boy Grunt”) who have appropriated blind identity [1], doubtless believing, like
neurologist Oliver Sacks [925], the “Blind” is “almost an honorific.”

59.6.2 Division by (Almost) Zero: Many Blind Bluesmen but Few Blind Blues

It is a great curiosity that there are virtually no blues songs about blindness. The term “blues” applies not
only to a musical idiom, but also to an emotional reference that the Oxford Dictionary of American English
(online) defines as “feelings of melancholy, sadness, or depression.” The three blues songs identified by Taylor
and Hughes [1038] as concerning blindness, all by blind artists—“I Must Be Blind, I Cannot See” (Blind
Roger Hays), “Lord I Wish I Could See” (Blind Gary Davis), and “Stone Blind Blues” (Sleepy John Estes)
all characterize that disability in emotionally “blue” terms, not surprising giving the hardships sightlessness
must have imposed on African-American men in the mid-20th century. Given its impact on livelihood,
education, socialization, and other activities, blindness must have been a central and disadvantaging factor
of identity in these and other blind blues musicians’ lives; its virtual absence as a theme of blues songs is a
question that must be explored.
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Blues scholars Yuval Taylor and Hugh Barker [1038], who compiled the very short list of blues songs
about blindness, offer two possible explanations for the dearth of such compositions. The first is that the
artists chose not to call attention to their disabilities. This is at least in part belied by the number of
them—apparently a majority during the pre-electric period of the blues [120]—who used “Blind” in their
stage names. The second reason Taylor and Hughes propose [1038], that the audience for the blues was and
remains overwhelmingly sighted and thus not interested in songs about blindness, is compelling, owing to
the rationale, which we shall shortly see, behind artistic renderings of negative emotion.

In “Blues and Catharsis,” philosopher Roopen Majithia [1009] references Aristotle on music in observing
that the artistic performance of negative emotions is a means by which such feelings are purged. It makes
sense then that the subject matter of blues songs appeals more broadly to the experiences of listeners than
would a song concerning a particular disability they have not experienced (and which perhaps they find too
frightening to contemplate). As Majithia states (p. 90):

[T]he blues has always been about universal themes: love and loss; trying to find strength in the face
of misfortune; metaphoric, often comic, vignettes of sex; and so on—themes that increasing occurred
in the parlance of urban culture in ways that resonated with the experiences of people, cutting across
race and gender.

If Majithia is to be believed—as he is by me—audiences for the blues (far) beyond the African-American
audiences for whom and from whom the music originated are able to “see” themselves in (African-American)
culture-specific situations, so long as they are able to generalize these to more universal conditions that
resonate with their own experience. (A serious blues enthusiast and activist, Majithia, who grew up in India,
may himself be Exhibit A for the universality of his beloved music.) Majithia sees this universalization
cutting across not only racial/cultural, but also gender lines. What he does not reference—and what Taylor
sees as likely impregnable—is that barrier which comes between the experiences of the disabled and the
able-bodied. In the case of the blues, whose archetypal blind artists are at once attributed sage-like qualities
perceived as emerging from their particular suffering, it seems that that suffering is magnified by its silence,
that is, its exclusion from the subject matter of blind artists’ repertoires.

59.6.3 Seeing Blind Blues: Gesture, Flow, Circuitry, and Amplification

That this topic has landed in a book concerning gesture theory owes to a kind of synaesthetic performance,
a way of visualizing Aristotle’s theory of music and emotion, as put forth in his Politics, localized to the
blues by Majithia, made specific to blind bluesmen by me, and (as we will soon see) illuminated by the
discoveries of Vilayanur S. Ramachandran [877]. The cathartic performances referenced (and to some degree
specified through a discussion of modes and emotions) by Aristotle, and of which Majithia regards the blues
as exemplars, form a kind of complete circuit that is easy to envision. Majithia, who particularly values the
blues in live, intimate performance, sees a link between catharsis and community that evokes the image of a
circuit, in which audience and artist feed upon each other’s emotionally purgative energies. As long as the flow
is based on the two terminals’—audience and artists’—perception of commonalities of experience/emotional
response or “feeling,” the flow between terminals is unproblematic.

That circuit, however, is problematized by the complications that arise from one of its terminals—the
blind artist—being perceived as “other,” as paranormal—gifted with special insight while lacking sight—by
an audience that understands itself as normative, as is the tendency of communities grounded in common
interests (in this case, the blues). That blind musicians possess special insight is a belief not only apparently
held by the blues community, for whom the sightless minstrel is archetypal, but also in Japanese [663] and
Ukrainian [544] traditions. Particularly apropos here, given the importance of Aristotelian philosophy upon
Majithia’s analysis of the blues, is the honored position of the blind minstrel in ancient Greek civilization,
best known today through Homer, though certainly more as a literary than a musical figure.

Although Majithia mentions many blues artists in his essay, none of them are blind. I have no reason
to believe that this is intentional. His clear preference is for electric blues, in which blind artists are, perhaps
surprisingly, not uncommon. But they far less likely to be called “Blind” [120], which likely explains their
lesser collective notoriety than in acoustic blues.
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As a musician myself, one who amplifies his instruments as needed, I imagine the (mostly) sighted
audience’s and blind artists’ circuit as a feedback loop—as it would be even with sighted artists—but one
whose flow of energy requires transducers or whose flow of sound requires preamplifiers, so different are
the charges emitting from the two generators (performers and listeners). That feedback by nature is both a
type of amplification quite analogous to the energy buildup that is the successful communication between
audience and performers as well as a kind of mirror relationship—though one in which the reflections grow
louder, not smaller—is apropos.

I qualify this characterization by noting that it is less so that audience and (blind) artists are different
than that they are perceived as different. In all likelihood, it is the audience that marks the difference between
sighted humanity and blind humanity more powerfully. The audience has always had the capacity not only
to recognize certain blues artists as blind, but to foreground disability as an aspect of their identity—even to
essentialize it—by naming so many of these artists “Blind,” while, for all practical purposes, denying those
artists the right to express that important facet of their identities in song. This is an exemplar of the social
challenges that have likely always and in all places been part and parcel of life with a disability.

A discussion that has migrated from Aristotle and politics to imagined renderings of that politics as
circuitry is itself a circuit that must be completed with a reference to neuroscientist Ramachandran [877].
Ramachandran’s extension of Giacomo Rizzolatti’s discovery of the behavior of mirror neurons—simply put,
that the same cell fires in a human (or other primate) when perceiving an activity as in the being performing
it—seems compellingly foreshadowed by Aristotle’s observations on shared catharsis between musicians and
audience, rendered with eloquent specificity in Majathia’s descriptions of live performance of the blues in
intimate settings. My concern, of course, is that there is something troubling about the metaphorical mirror
when the performer is blind and his (almost always a man) blindness is at once valorized and denied, the
latter by being essentially banned from his performance repertoire.

59.6.4 Epilogue: Puns as Gestures

I cannot exit this stage without an exegesis of the opening clause of the title of this essay. I propose that the
associative value—the meaning, as opposed to their sound—of words is received as a polyphony of percussion,
likely the snare drum rimshots the jokes that make us laugh against our better natures.

As most Americans (and perhaps others) will know, the title of this essay is a reference to the catch
phrase “a priest, a minister, and a rabbi walked into a bar” that begins many jokes. The line is a rarity
among its kind in that it is funny in and of itself, regardless of what follows, owing to its improbability, both
for its consortium of clergy and their role as communal social drinkers. In their place, I have inserted three
intellectual giants in their respective fields, whose juxtaposition across time, space, field, and nationality is
significantly more improbable than the imbibing clergy who inspired their encounter in my title. My own
experience of the code switching in this title mirrors the synaesthesia I ascribed to the blues early in this
essay, in which blues music (aural) becomes color (visual) becomes “a feeling” (tactile). Here the associative
value of the title (meaning/thought) evokes the percussion associated with standup comedy (aural), which
becomes tactile (because the code switching is complex enough to require intellectual labor that is felt as
well as thought).

It is often said that a joke that needs to be explained is not funny. In this case, I do not think (and hope)
the joke in my title requires an explanation to be funny. I do think humor, as gesture across the senses, is a
subject worthy of contemplation. Most importantly, though, the juxtaposition of Greek philosophy, African-
American music, disability studies, and contemporary neuroscience makes not just for a funny title, but also
is a serious matter of interdisciplinary illumination, one that, paradoxically if metaphorically, even sheds
light upon blindness.
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Models from Music

In these walls devoted to the marvels
I receive and keep the works

of the prodigious hand of the artist
equal and rival of his thought

one is nothing without the other.
Paul Valéry, inscription at the Palais Chaillot, Paris

Summary. We discuss contributions from music theory, performance, and technology to gestural mod-
eling.

– Σ –

Music in theory and performance is a field where thinking and embodied making, the mindful gesture,
have been a traditional topic of attempts at theorization. It is a classical saying that music must be thought in
the making, in performance. These insights are shared by Theodor Wiesengrund Adorno [8], Roger Sessions
[972], Alexandra Pierce [848], Renate Wieland [1068], and Manfred Clynes [206], and we may just cite one
representative statement by Adorno: “Notation wants music to be forgotten, in order to fix it and to cast
it into identical reproduction, namely the objectivation of the gesture, which for all music of barbarian
cultures martyrs the eardrum of the listener. The eternization of music through notation contains a deadly
moment: what it captures becomes irrevocable.(...) Musical notation is an expression of the Christianization
of music.(...) It is about eternity: it kills music as a natural phenomenon in order to conserve it—once it is
broken—as a spiritual entity: The survival of music in its persistence presupposes the killing of its here and
now, and achieves within the notation the ban from its mimetic representation.” Despite these harsh insights,
Robert S. Hatten rightly complains that: “Given the importance of gesture to interpretation, why do we not
have a comprehensive theory of gesture in music?” This reflects the dichotomy between performance practice,
where embodiment and gesturality are well-known perspectives, and theoretical understanding, which might
also be difficult because music theory has been a very rigid, algebraically shaped formalism that has had no
chance to deal with topological considerations needed for gestural and embodied analysis.

This dichotomy appears condensed in David Lewin’s celebrated book on musical transformation theory
[605], where he asks: “If I am at s and wish to get to t, what characteristic gesture should I perform in order
to arrive there?” He thinks about a dancer, about the embodied musical subject, and the metaphor is quite
strong. However, Lewin’s transformational theory is all but gestural; it is a very conservative formalism of
abstract mathematical functions in the spirit of Emmy Noether of (at that time) modern algebra in the
late 1920s, and there is no topology, no continuity or even homotopy, at all. Gesture research in music has
however taken place in the field of computer-aided performance and in our own computerized implementation
of musical performance gesture theory for the pianist’s hand.
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60.1 Wolfgang Graeser

Summary. Graeser’s tragic biography and work: from symmetry theory to gestures.

– Σ –

Perhaps the most radical and tragic first gesturally oriented scientific ap-

Fig. 60.1. Wolfgang
Graeser. Zentralbibliothek
Zürich, Mus NL 162 (Nach-
lass Wolfgang Graeser).

proach to music is that of Wolfgang Graeser (1906-1928), a German mathe-
matician and music theorist, who had studied mathematics, physics, music,
and oriental languages since the tender age of seventeen in Berlin and Zurich.
He became famous for his symmetry-oriented analysis of Bach’s Art of Fugue
[387]. But a dramatic change in his understanding of music took place when he
saw how dancers were rehearsing with Bach’s Goldberg Variations. This led to
his understanding that all of the musical essence was expressed in the dancers’
bodily movement. His last writing was consequently an essay on embodiment
[388], wherein he concluded: “Now we comprehend the body uncaged and with-
out veiling insinuations.” This explosion in his understanding was more than an
intellectual insight, it effectively opened to him a completely new view of the
essence of art. But it was also too much of a revolution in his understanding of
human expression. At age twenty-two he committed suicide, overwhelmed by
his deep and by that time lonely insights.

60.2 Adorno, Wieland, Sessions, Clynes

Summary. This section discusses four contributions to gesturality from prominent music performance pro-
fessionals and theorists. Their position is quite radically opposed to the European tradition of score-based
music.

– Σ –

In the domain of music, gestures were first thematized in musical performance theory. This seems quite
natural, since our hands and limbs are in many ways the physical medium between a written score and the
sound of a musical piece. It is the philosopher and musicologist Theodor Wiesengrund Adorno, who made the
first argument for a gestural understanding of music [8] in 1946: “Correspondingly the task of the interpreter
would be to consider the notes until they are transformed into original manuscripts under the insistent eye of
the observer; however not as images of the author’s emotion—they are also such, but only accidentally—but
as the seismographic curves, which the body has left to the music in its gestural vibrations.” Adorno argues
for what Mazzola had called “the score as a repertory of frozen gestures” in [718]. He does not argue for the
emotional message of gestures. Rather, he argues for their nature as “vibrating” bodily utterances. At first
sight, this may look overly materialistic and far from the symbolic meaning of musical creation, but we shall
see in a moment that Adorno insinuates a spiritual component in the gestural dynamics. This perspective is
in fact supported by the very history of score notation. Originally, scores encoded the gestural hints in the
graphemes of Medieval neumes. These graphemes then successively morphed to the present notation, which
has abstracted neumatic threads to discrete point symbols; see also Section 86.2.3.

Adorno’s student, Renate Wieland, and her fellow scholar Jürgen Uhde [1068] make the teacher’s
approach more explicit and apply it the their system of piano performance. Wieland: “Originally affects
were actions, related to an exterior object, along the process of internalization they were detached from
their object, but they are still determined by the coordinates of space. (...) There is therefore something
like gestural (space) coordinates.” She makes clear that gestures are abstractions from concrete actions,
however they remain geometric entities in some more generic space. Wieland also argues that the emotional
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connotation in music originally is e-motion, out-movement, and so the gestural transmutation is not an
artificial construct, but the restatement of the original phenomenon.

60.2.1 Theodor Wiesengrund Adorno

Theodor Wiesengrund Adorno has done deep analyses of performance, in particular with respect to their
subcutaneous gestural implications as published in his posthumous work Zu einer Theorie der musikalischen
Reproduktion [8]. It is interesting to see how Adorno gets off the ground with his gestural discourse on the
same basis as Sessions and Clynes, namely a radical critique of the score-based reduction of music (translated
from [8, p. 227/8]):

Notation wants music to be forgotten, in order to fix it and to cast it into identical reproduction,
namely the objectivation of the gesture, which for all music of barbarian cultures martyrs the eardrum
of the listener. The eternization of music through notation contains a deadly moment: what it captures
becomes irrevocable.

(...)
Spatialization (through notation) means total control. This is the utopic contradiction in the

reproduction of music: to re-create by total control what had been irrevocably lost.
(...)
All making music is a recherche du temps perdu.

And later on (translated from [8, p.235]):

Musical notation is an expression of the Christianization of music.
(...)
It is about eternity: it kills music as a natural phenomenon in order to conserve (or “embalm”

G.M.) it—once it is broken—as a spiritual entity: The survival of music in its persistence presupposes
the killing of its here and now, and achieves within the notation the ban (or “detachment” G.M.)
from its mimetic1 representation.

To begin with, Adorno, Sessions, and Clynes agree upon the fact that music notation, and its score,
abolishes music, which is fixed and cast into a format for identical reproduction. It does so in objectifying
the gesture and thereby martyring the eardrum, an act of barbarian culture. It is remarkable that musical
notation is related to barbarian culture. The eternization of music in the notation’s casting is killing music;
it retains a dead body, not the living music. This eternity of dead—in fact, embalmed—bodies appears as
a Christian ritual of sacred denaturation. The procedure of notation kills the music’s here and now; its
expressivity is annihilated, banned forever. The notational process kills through spatialization, which means
total control. Time does not fly by anymore, a note is a point in a dead space of eternity. Adorno views this
as being the great contradiction of notation in that it claims total control for a reproduction of what has
been irrevocably lost. It is a temps perdu, and making music is doomed to a recherche du temps perdu.

Adorno then makes important comments on what he views as being the gestural substance of music
(translated from [8, p.244/5]):

As each face and each gesture, each play of features, is mediated by the I, so the musical moments
are the very arena of mimic in music. What must be read and decoded within music are its mimic
innervations.

(...)
However, a pathetic or cautious or expiring location does not signify pathos, caution, or expiration

as a spiritual thing, but maps the corresponding expressive categories into the musical configuration,
and those who want to perform them correctly have to find those encapsulated gestures in order to
mimic them.

1 For Adorno, “mimesis” means “expression of expression,” and this is precisely our context: The expression as
content is expressed via rhetorical shaping.
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(...)
Finding through reading: the decoding work by the interpreter; the very concept of musical perfor-

mance is the path into the empire of mimic characters.
(...)
The spatialization of gestures, that impulse of neumatic notation is at the same time the negation

of the gestural element.
(...)
By the visual fixation, where the musical gesture is positioned into a simultaneous relation to its

equals, it ceases to be a gesture, it becomes an object, a mental thing.

Here Adorno refers to the mimetic category in his theory. It is the category “expression of expression.”
So it is about the expression of emotions, for example, not about emotions, and it is about the musical image
of these expressions. Therefore, we have to read those mimic innervations of gestural expressions in music.
Musical performance deals with the explication of those hidden innervations, with the action of displaying
them in the making, here and now. And it now becomes clear that the neumatic notation creates static
photographs of those gestures, which negate them by this spatial fixation. The spatial trace of a gesture is
its negation, freezing it as a spatial object.

We should, however, briefly digress on the very concept of a space here, since it is not what a geometer or
a physicist would call a space. In physics, a space is a geometric entity that can have different interpretations,
so space-time is (locally speaking) a four-dimensional real vector space, and the mathematical structure of
time is not different from that of the three space coordinates. Of course, the Lorentz metric distinguishes time
in the metrical structure of space-time, but it is still a metrical space. In performance theory of music, time has
a radically different role. The four-dimensional space of onset, pitch, loudness, and duration for piano music,
which is used in score notation, does not have the ontology of musical time. Under no circumstances would
the onset or duration coordinates be accepted as representing the time that takes place in performance. This
differentia specifica in the performative time concept is related to gestures, not to geometric representation.
For Adorno, gesture has an existential character; it cannot be objectivized; it only exists in the moment of
the making; it is mediated by the I, which cannot be cast in a dictionary—the I is the non-lexical, the shifter,
par excellence. However, it is not part of the subject, it is not subjective as opposed to being objective (the
score objects are so). I is only mediated by the I, it seems to lie between subject and object; therefore, the
utterance of a gesture is neither object nor subject.

Adorno continues (translated from [8, p.269]):

The true reproduction is the mimicry of a non-existent original.
(...)
But this mimicry of the non-existent original is at the same time nothing else but the X-ray

photography of the text.
(...)
Its challenge is to make evident all relations, transitions, contrasts, tension and relaxation fields,

and whatever there is that builds the construction, all of that being hidden under the mensural notation
and the sensorial surface of sounds.

The true reproduction is not a reference to an object out there; the original is non-existent, and it is
not the I, which would be an existent entity. It is something mysterious since there is an X-ray procedure,
but it does not show something hidden in the dead object of the score. It is as if that mystery would be
brought to existence by the very X-ray procedure. The innervation must be made, not only discovered and
pointed to.

Adorno’s concept of a gesture is as difficult as it is radically different from what can be described in
terms of traditional subject-object duality.

Let us see what Adorno concludes from all these subtle reflections (translated from [8, p.269,270,271]):

What happens in true performance is the articulation of the sensorial appearance that reaches
into the most hidden details, wherein the totality of the construction, the gesture of the work, reveals
its mimical execution.
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(...)
The concept of clarity defines the degree of an analytical performance: everything that exists as

relations within the mensural text must become clear, but this concept cannot be understood in a
primitive way, i.e. as a clarity of every single relation, but as a hierarchy of clarity and blurredness
in the sense of the clarity of the overall structure, the mimic gesture.

And he summarizes this entire perspective on gestural performance (translated from [8, p.247]):

Correspondingly the task of the interpreter would be to consider the notes until they are trans-
formed into original manuscripts under the insistent eye of the observer; however not as images of
the author’s emotion—they are also such, but only accidentally—but as the seismographic curves,
which the body has left to the music in its gestural vibrations.

60.2.2 Renate Wieland

As a student of Adorno, piano pedagogue Renate Wieland (Figure 60.2), in collaboration with her colleague
Jürgen Uhde, has developed a theory of piano performance that is based upon Adorno’s gestural philosophy.

Fig. 60.2. Renate Wieland.

The remarkable feature of this work is that she succeeds in
(1) giving her approach a clear-cut separation from emotional dramaturgy and
(2) reshaping gesture theory in an explicit geometric language.

She makes these two points very clear in her text (translated from [1068, p.169]):

Musical gestures are perceived in the free conducting movement, in the playing movement and
sublimated in the spiritual mimesis of pure imagination. Whatever the level, such experiments are
always within space. Originally, affects were actions, related to an exterior object, along the process of
interiorization they were detached from their object, but they are still determined by the coordinates
of space.

(...)
Language reminds us everywhere of the connection of affect and movement and of the way ges-

tures behave in space. It speaks about hautiness, elevation and inclination, about greatness of mind,
pettiness, about respectful and forward, etc.

(...) There is therefore something like gestural coordinates; they can help ask how the gestural
impulse out of the inner is projected into space, how it wants to expand, which direction is dominant:
Is its energy vertically or horizontally active? Does it rather propagate ahead or backward? Upward
or downward? To the right or to the left? Are forces acting more concentrically or excentrically? Does
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the gesture rather point “inward,” as we read in Schumann’s work, or “outward”? Which amplitude
does the expression choose? Does it live in all spatial dimensions, and with what proportion and
intensity?

She reminds us of the etymology of the word “emotion”: ex movere, to move from inside out. She also
makes clear that the original setup is now internalized, but that it remains a spatial concept. She then gives
examples of etymological shifts, which are parallel to this internalization process: Words now mean abstract
things, but when we go to the kernel of a meaning, it is related to a spatial action. So the mimetic action in
Adorno’s sense is the expression of that spatially conceived gesture in the realm of musical space. She adds
the following excellent illustration of a gestural mimesis in music (translated from [1068, p.169]):

Models of contrast between extreme vertical and horizontal gestures are found in Beethoven’s
Bagatelle op.126,2.

(...)
Aggressively starting initial gestures are answered by flat, conciliating gestures, where the extremes

are polarized to the outermost in the course of the piece. In this way, asking again and again, gesture
becomes plastic in the end. But it only succeeds insofar as it constitutes a unity, is emanated from
one inner central impulse.

(...)
Gestures are the utmost delicate; where their unity is disturbed, their expression immediately

vanishes.

It is again in Adorno’s and Session’s spirit that she views gestures as being extremely unstable in their
existentiality: Nothing is easier than to disturb and vaporize a gesture. It is by this fact that Gilles Châtelet,
one of the fathers of French gesture theory, has characterized gestures as being the smile of existence [190].

Wieland finally transcends her approach in a seemingly breathtaking intensification, which reads as
follows (translated from [1068, p.190]):

The touch of sound is the target of the comprising gesture; the touch is so-to-speak the gesture
within the gesture, and like the gesture at large, it equally relates to the coordinates of space.

(...)
The eros of the pianist’s touch is not limited to the direct contact with the key, the inner surface

of the entire hand pre-senses the sound, etc., etc.

She introduces what one could call the reverberance of a gesture, namely the gesture within a gesture,
meaning that a gesture can incorporate other gestures, can become a gesture of gestures. We shall see later
in Section 61.6, relating to our own research, that this concept is very powerful for the theory of gestures in
that it enables complex imbrications of gestures, so-called hypergestures, for the construction of movements
of movements of movements..., an idea that is crucial in the dynamics of musical utterances.

60.2.3 Roger Sessions

The dramatically intense but still underestimated role of gestures in performance has been described in a
beautifully clear way by American composer and music critic Roger Sessions in his book Questions About
Music [972, Chapter III]:

It is fairly obvious, I suppose, that our total awareness of movement—which in essence signifies
our awareness of time as a process—demands sustained attention, which is limited to the duration
of the specific act of movement in question; it holds us captive, as it were, for the duration. We are
aware of a beginning and an end. In respect to space on the other hand, the words “beginning” and
“end” have an essentially metaphorical meaning; they represent boundaries or limits that remain
even after we have become aware of them, as does all that lies between. Our attention is our own
to husband and deploy as we wish. We can withdraw it and absent ourselves merely by averting or
closing our eyes, and return whenever and for as long as we wish.



60.2 Adorno, Wieland, Sessions, Clynes 895

What I am saying is that we experience music as a pattern of movement, as a gesture; and that
a gesture gradually loses its meaning for us insofar as we become aware of having witnessed it, in
its total identity, before. If it is to retain this meaning in its full force, it must be on each occasion
reinvested with fresh energy. Otherwise we experience it, to an increasing degree, as static; its impact,
as movement, diminishes, and in the end we cease to experience it as movement at all. Its essentially
static nature has imposed itself on our awareness.

This is why I am convinced that the performer is an essential element in the whole musical picture.
It is why I came to realize that my earlier dreams—that composers might learn to freeze their own
performance, in wax or otherwise (tape recorders had not been invented at that time)—were, to put
it bluntly, quite ill-directed. They were ill-directed, above all, for the reasons I have been outlining; a
gesture needs constant renewal if it is to retain its force on subsequent repetitions. Composers above
all should know this, especially if they have developed the practice of taking part in performances
of their own work. Each performance is a new one, and the work is always studied and approached
anew, even by the composer. The same, it should be obvious, is true of professional performers. I
would go even much further and point out that there is no such thing as a “definitive” performance
of any work whatever. This is true even of performances by the composer himself, in spite of the fact
that recordings of his performances of his own work should be made and preserved, for a number of
quite obvious reasons.

Session’s discussion of movement as a processing of time leads him to

Fig. 60.3. Roger Sessions.

acknowledge that this dynamical action is a gesture—not only in the making,
but also in the music’s perception. So he gives the argument for a messaging
of gestures, and by means of gestures, which is our topic in this chapter. It is
remarkable that he then recognizes that a gesture cannot preserve its meaning
except in its energetic refreshment on each occasion of performance. This is very
similar to the French theory of gestures; see Chapter 58 and [721, Chapter 7.2],
which stresses the impossibility to tame living gestures.

He moreover recognizes the performer’s essential role in the “whole mu-
sic picture” and also reminds composers, himself included, that their work of
musical creation is not accomplished until it is performed. This does not mean
that a composer must intervene in the performance of his/her works. Some are
dead and simply cannot do this anymore. No, it means that the completion of
a musical work cannot be achieved before its performance has occured. In this
sense, performance is strongly what semioticians call a deictic part of the musical sign system: Musical signs
reach their full meaning only and essentially through their pragmatic instantiation.

This second insight is strongly related to the gestural aspect since gestures are not lexicographic, they
are shifters, as Sessions stresses with his “French” view on gestures. We are not astonished that Manfred
Clynes refers to Session’s writings in his critique of score-based music.

60.2.4 Manfred Clynes

The Australian pianist and theorist Manfred Clynes conceived expressivity as a shaping of performance in
pulses, those embodiments of essentic forms, via specific deformations of duration and loudness; see [205,
Section 13.3]. He claimed that such pulses were characteristic of the emotional expressivity of composers
such as Beethoven, Mozart, etc. Clynes’ pulses are not only emotional categories, but also, and perhaps
more significantly, curves of gestural utterances. Clynes accordingly constructed and patented a machine,
the sentograph, providing us with an interface to grasp such gestural movements. Following Clynes’ ideas,
Hungarian composer Tamas Ungvary has constructed a sentograph that can be used by improvising com-
posers in order to play/create music by gestural input [1069]. Ungvary replaces the usual encoding of sound
events at discrete points in a parameter space by an intrinsically gestural input that is given by variable
pressure and angle on a joystick (Figure 60.4). Despite the fascinating perspective on musical creation, the
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Fig. 60.4. Tamas Ungvary playing the sentograph. The joystick is accessed with the right middle finger.

gestural input remains very abstract insofar as no significant movement of the fingers is possible. The musi-
cian has to stay in contact with that fixed piece of metal and cannot move freely in space. This restriction
heavily limits the natural human need for movements when gestures have to be created from the living
body. Perhaps a more natural encoding of the input parameters would improve the expressive power of this
interesting machine.

60.3 Johan Sundberg and Neil P. McAngus Todd

Summary. These two authors discuss gestural aspects in computational performance theory and cognitive
modeling.

– Σ –

On a more down-to-earth level, gesture has been studied by Johan Sundberg and collaborators. In a
paper entitled “Is the Musical Ritard an Allusion to Physical Motion” [560], Sunberg and Ulf Kronman have
studied final ritard as a phenomenon akin to physical ritard. The model conjectures that a tempo decrease
at the end of a musical piece would be related to a quadratic function, which appears for mechanical ritard
with a constant force. So we suppose that we are given a constant force F , and its action on a given
mass m, which generates a constant deceleration a “ F {m according to Newton’s second law. Given an
initial velocity v, the velocity after t seconds is v ´ a.t. Hence the distance sptq traveled after t seconds is

sptq “ şt
0
v ´ a.τdτ “ t.v ´ a{2.t2. If the final velocity at time t0 is 0, we have t0.a “ v, whence spt0q “

pv{aq.v ´ a{2.pv{aq2 “ v2{2a. Therefore velocity at time t is vptq “ v.
a

1 ´ sptq{spt0q. Supposing that this
physical situation relates to the musical one by a constant c, i.e., sptq “ c.Eptq, E being the symbolic onset,
we get T ptq “ T pt0q.a1 ´ Eptq{Ept0q. This implies

T pEq “ T pE0q.a1 ´ E{E0,

namely the tempo at onset E being the above function of the tempo T pE0q at the beginning E0 of the ritard,
the onset E and the beginning onset E0. The experimental situation is shown in Figure 60.5. The parabolic
tempo curve relates to the phase I in the left graph. Phase II is interpreted as a linear tempo decrease.

Besides the poor fit of the measured tempo with the mathematical curve, the question arises why such a
mechanical function should hold. What is the musical analog to mass, what is the force analog to a constant
mechanical force? We do not see any musical structure entailing such a mechanical model. It is interesting
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Fig. 60.5. The parabolic tempo curve (right figure) relates to the phase I in the left graphic. Phase II is interpreted
as a linear tempo decrease.

that the ritard phase II relates to a quite sophisticated harmonic and melodic musical process, which is not
taken into account.

Another mechanical model of agogics has been proposed by Neil P. McAngus Todd in [1060]. He rightly
observes that the final retard is only a very special agogical situation and therefore models his tempo curves
according to a superposition of accelerando/ritardando units that are defined by a triangular sink potential
V . Accordingly, tempo is defined as a velocity v, and the total energy of the system, E “ 1

2mv2`V—supposed

to be constant (why so?)—gives the velocity formula v “ a
2pE ´ V q{m. Todd further supposes that there

is an intensity variable I for loudness, with a relation I “ K.v2 that is common to many physical systems.
This yields the relation I “ 2KpE ´ V q{m and sums up to an aggregated formula I “ ř

l 2KpE ´ Vlq{ml

if the grouping of the piece is taken into account. The idea is that there is a physical energy and intensity
parameter system that controls the “surface” of the tempo (= velocity) via classical energy formulas. The
background structure is an energetic one, i.e., the tempo curve and loudness are expressions of mechanical
dynamics. The author comments on his method as follows [1060, p.3549]:

The model of musical dynamics presented in this paper was based on two basic principles. First,
that musical expression has its origins in simple motor actions and that the performance and percep-
tion of tempo/musical dynamics is based on an internal sense of motion. Second, that this internal
movement is organized in a hierarchical manner corresponding to how the grouping of phrase structure
is organized in the performer’s memory.

The author also suggests a physiological correlate of this models:

...it may be the case that expressive sounds can induce a percept of self-motion in the listener
and that the internal sense of motion referred to above may have its origin in the central vestibular
system. Thus, according to this theory, the reason why expression based on the equation of elementary
mechanics sounds natural is that the vestibular system evolved to deal with precisely these kinds of
motions.

Todd refers to the insights of neurophysiologists that the vestibular system is also sensitive to vibrational
phenomena. The musical expressivity is therefore understood as an effect of transformed neurophysiological
motion.

The drawback of this approach is that finer musical structures are not involved in the structuring of the
energy that shapes tempo/intensity. And even if that could be done, there is an essential kernel of this shaping
method that should be based upon paradigms of motion. These paradigms do not however appear clearly in
the above approach. More precisely: The complex motion dynamics of the vestibular system cannot easily
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be mapped onto the structures of performative expressivity. What is the operator that transforms whatever
structures of motion into expression parameters? If music were isomorphic to motion, no such isomorphism
could be recognized from Todd’s approach.

60.4 David Lewin and Robert S. Hatten

Summary. Here we have a strong argument for a gesture theory in music and performance theory, however
without a strictly theoretical conceptualization.

– Σ –

Coming from a seemingly opposite position, namely music theory, the American

Fig. 60.6. David
Lewin.

music theorist David Lewin (Figure 60.6) introduced in 1987 the gestural perspective
in his seminal book Generalized Musical Intervals [605]. Well, nearly, since the theory
and the textual representation are more complex. Lewin’s book describes what is now
called “transformational theory”, later adapted by his student Henry Klumpenhouwer
to become K-nets [599]. Such a network replaces an “amorphous” set of tone objects
by a diagram, where the tone objects are placed at the diagram’s vertices, while the
diagram’s arrows designate (affine) transformations mapping tone objects into each
other; see [34] for a modern interpretation of this theory in terms of category theory.
The strictly scientific setup of transformational theory is not really gestural. Lewin
argues against what they call the “cartesian thinking”, which observes musical objects
as res extensae.

Opposed to this passive attitude, Lewin suggests that transformations between
musical points (such as pitch classes, for example) are the new path to pursue. In [605,

p.159], we read: “If I am at s and wish to get to t, what characteristic gesture should I perform in order
to arrive there?” Now, this language sounds very gestural, but is dependent upon different mathematical
principles. Let us clarify this subtle mathematical point, which may escape the non-professional. Lewin’s
theory uses classical transformations and then, in Klumpenhouwer’s networks, diagrams of transformations.

We have shown in [719] that Klumpenhouwer’s and Lewin’s transformational networks are typically
points of projective limits of diagrams of affine transformations in musical standard spaces (pitch class spaces,
for example). This is a giant step ahead, since projective (and inductive) limits are related to processes,
namely the underlying diagrams. Diagrams are systems of transformations between a set of spaces and they
relate points in those spaces by determined transformations, see Figure 60.7. But they are not identical with
the point systems generated by the so-called limit construction. An intuitive, and incidentally mathematically
correct, way of characterizing diagrams is as generalized equations, whereas the objects from the limits are
solutions of such equations. So the diagrams play the role of industrial plants, producing facts (factum,
what is made), namely Klumpenhouwer’s K-nets. So the Lewinian digression from cartesian facticity (or
extensionality) is the step to processes, but not to gestures.—We have to discuss this difference more precisely
in order to understand the missing processes and gestures. In a diagram of transformations, these arrows,
which encode transformations, are intuitive graphemes. They are used everywhere in mathematics to denote
functions, transformations, or homomorphisms. In category theory, such arrows are called morphisms, and
their meaning is absolutely abstract. But already in the classical language as framed by set theory, arrows
denote functions f in the sense of Gottlob Frege.

What is such a function? It is (together with its domain X and codomain Y ) a set f of ordered pairs
px, yq, where the second component y is denoted by fpxq. So these two components have nothing more in
common than their being part of a set f of ordered pairs. There is no interior relation beyond this association.
Coming back to the arrow notation f : X Ñ Y for such a function, the arrow has absolutely no relation
to the interior of its shaft. One could as well write f : X♦Y . This is a dramatic fact: Arrows suggest a
movement, but this is merely illusory. Nothing moves. This has been observed by the French philosopher and
mathematician Gilles Châtelet [190]. For example, if we take the matricial representation of a rotation R in
three-space, the matrix has no relation to the rotational movement. Matrices are functional objects and do
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not imply any continuous displacement of points whatsoever. The only relation of matrices to real movements
is created by the calculation of so-called eigenvectors, which may eventually help define a rotational axis, and
then an angle or rotation, and finally (!) give the option to realize this rotation by successively increasing
the rotational angle from zero to the actual value.

It should be clear by now that the arrow notation for functions is intuitively

Fig. 60.7. A diagram K
of transformations between
spaces S, T ,P, and Q.

associated with movements, but does not correspond to any movement at all.
Coming back to Lewin’s transformational theory, this means that his language
that refers to moving from one point to another, and a fortiori his suggestion
of a gesture relating point s to point t, are different from the reality of his
mathematical formalism. He speaks about gestures, but writes about processes.
In short: his theory is processual, half way between facts and gestures in terms
of the axis of embodiment. It would be very interesting to investigate Lewin’s
text with that subtext of gestural thinking in mind, since he repeatedly uses this
metaphor in a speaking way. With regard to his question about the movement
of s to t, he adds [605, p.159]: “This attitude is by and large the attitude
of someone inside the music, as idealized dancer and/or singer. No external
observer (analyst, listener) is needed.”

This is a remarkable statement, which leads to the question set forth by music

Fig. 60.8. Robert S.
Hatten.

theorist Robert S. Hatten in his book with the now explicitly gesture-related title
Interpreting Musical Gestures, Topics, and Tropes [446]: “Given the importance of
gesture to interpretation, why do we not have a comprehensive theory of gesture in
music?” For Hatten gesturality became a core topic when he learned that performance
of classical piano music, Mozart, Beethoven, Schubert, is strongly determined by ges-
tural attitudes. This is best exemplified when comparing Glenn Gould’s interpretation
of Beethoven’s op. 57, Appassionata, to Vladimir Horowitz’s version. Gould’s perfor-
mance completely lacks gesturality. His so-called “analytical’ reading is the opposite of
what Adorno had recommended, and amounts to Beethoven minus gestures, a substan-
tial negation given the strongly gestural nature of Beethoven’s music. Hatten confirms
this in theory, as does Gould by his contrafactual experiment.

Hatten’s definition of a gesture reads as follows: “Gesture is most generally defined as communicative
(whether intended or not), expressive, energetic shaping through time (including characteristic features of
musicality such as beat, rhythm, timing of exchanges, contour, intensity), regardless of medium (channel) or
sensory-motor source (intermodal or cross-modal).” He distinguishes his understanding of gestures from the
school of Adam Kendon and David McNeill in that (1) semantic aspects are not characteristic and (2) he
stresses “energetic shaping through time”, an interesting wording, since the main subject is “shaping”, an
action, not shaping of something, but pure action. The making in itself becomes a central feature, not the
resulting facts generated by the making! And he adds, in remarkable congruence with Wieland’s abstract
geometry of gestures, that: “at a higher, more symbolic cognitive level, the representation of gesture may be
considered amodal, in that it is not restricted to any particular modality.”

This shift away from the conservative semiotic perspective on gestures can also be observed in psychol-
ogy. In Susan Goldin-Meadow’s book Hearing gesture: How our hands help us think [377], a title reminiscent
of Paul Valéry’s phrase at the head of this chapter, she investigates the role of gestures in the development of
a child’s ability to reason mathematically. She writes: “Advances in mathematical reasoning are very likely
to come first in gesture—and they do. (...) Do new ideas always come first in gesture, regardless of domain?”

Coming back to the context of musical gestures, the question of semiotics of gestures arises when we
display the overall image of traditional Western musical performance; see Figure 60.9. This process starts
from the score, which is a text of more or less analyzed symbols. The score symbols are then “thawed” and
unfold in gestures, which interact with the interface of an instrument and thusly induce sounding events. (The
reversed process of freezing gestures is concretely taking place in a MIDI recording session.) The meaning of
music is thereby guaranteed by the dominant role of the score. The entire process is only produced in order to
rhetorically communicate the given meaning that was recognized in the score’s symbolic code. This canon is
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Fig. 60.9. The triangle of Western musical performance.

broken up once the lower vertex of the triangle, the score, is not present. It is not a general truth that music
must be produced starting from a given abstract score text. It could as well start from the gestural utterance
and its interaction with the instrumental interface that acts like a dance floor for a gestural dance. In other
words, the semiotic approach to gestures in music is traditionally related to the score-driven production of
music.

But there are many musics that are not score-driven, and free jazz is one of them, while (standard)
jazz is not; it is framed in the scores of song forms, lead sheets, and similar ready-mades. It was a dramatic
insight in Mazzola’s own development as a pianist and as a theorist in mathematical music theory for him
to learn that his free jazz playing had nothing to do with score-driven logic and meaning (see [718] for that
affair).

Once making music has been freed from the interpretational task of classical Western performance,
the question of meaning becomes secondary, making music is no longer just an expression of given meaning.
Semantics is no longer the core business, and, as Ornette Coleman states: it is no longer a question of playing
the background of other things, such as meaning, symbols, calculations, everything but music.

To summarize, gestures have been recognized as essential to music. The layer of semiotic musical
functions has been recognized as being unimportant, or only important in relation to gesture. The background
of score-driven rhetoric has been abolished by free jazz and other gesture-oriented music, liberating the
musician to freely dance on the instrumental interface. A wonderful example of free jazz without any reference
to score or associated semiotics is the double LP Mu [195] by Don Cherry, on pocket trumpet, piano, bells,
flute, percussion, and voice, and Ed Blackwell, on drums, percussion and bells. The music here is completely
free of global strategies. Nobody tells Don and Ed where to go. They just throw gestures at each other and
play a game of free gestural dialogs without pre-meditated meaning and significance, creating new sounds
that facilitate a gestural dance by maintaining a sonic equilibrium. Although there is a strong reference to
something like folk sound, the music is not following any specific ethnic tradition, it is just free playing.
Blackwell’s percussion is not bound by strict rhythmic frames, and often utilizes the more loose concept of
“phase shifting” heard in many varieties of African drumming. Often, he abruptly stops patterns and lets
the empty space of time go by, and then takes up another germ of time without any reference, without any
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obligation to mean anything. The freshness of this music is exactly rooted in its independence from given
semantics. It “don’t mean a thing,” but it has got so much swing.

60.5 Marcelo Wanderley and Claude Cadoz, Rolf Inge Godøy and Marc Leman

Summary. This section describes more technologically oriented conceptualizations of gestures. Refer to [168]
and [371].

– Σ –

In [168], Claude Cadoz and Marcelo Wanderley give a summary of the gesture concept and its specific
structure for the performing musician. Their discourse is based on a list of definitions of a gesture that can
be found in dictionaries and gesture research resources. All these definitions are stated in common language
and share the following two characteristics:

• Gestures are defined as human body movements that
• carry information or, in other words, are expressive.

This implies that all these definitions interpret gestures as a special type of signs, semiotic instances that
express some content or meaning. Carrying information is however arcane: how is information present in a
gesture, and where in the movement’s anatomy is this information located? Also, the more contemporary
concept of information is not defined. And what information is considered relevant?

Cadoz and Wanderley however take a typically French turn and propose a definition that is not semiotic:
In [168, p.73], we read: “We consider that the word gesture (or the French equivalent geste) necessarily
makes reference to a human being and to its body behavior—whether they be useful or not, significant
or meaningless, expressive or inexpressive, conscious or not, intentional or automatic/reflex, completely
controlled or not, applied or not to a physical object, effective or ineffective, or suggested.”

The main point of their paper is—following their own words [168, p.74]—to discuss human-human
and/or human-machine communication through gestures in a musical context. When moving to the concept
of a musical gesture, they recognize that theirs may be quite different from the general concept. In fact,
one of the musical gesture definitions states that “the notion of a musical gesture that at the time it occurs
involves no actual human movement but merely refers to it is quite common.”

Although they refrain from presenting a universally valid definition of the gesture concept, they admit
[168, p.74] that “in essence, the direct or indirect reference to human physical behavior tends to be the
common denominator to all the notions.”

After the general exposition of the gestural concepts, the authors proceed to a more detailed typology of
musical gestures. They refer to Christophe Ramstein’s [878] methodology for analyzing instrumental gestures
[168, p.74]:

• a phenomenological approach, i.e., a descriptive analysis;
• a functional approach, referring to the possible functions a gesture may perform in a specific situation;
• an intrinsic approach (from the musician’s point of view), it is based on the conditions of gesture pro-

duction by the performer.

In the phenomenological approach, they propose the classification that uses gestural primitives. Fol-
lowing Insook Choi [196], gestural primitives are “fundamental human movements that relate the human
subject to dynamic responses in an environment.” Choi proposes three types of gestural primitives, both
device- and signal-independent:

• Trajectory-based primitives: e.g. changes of orientation;
• Force-based primitives: e.g. gradient movements;
• Pattern-based primitives: e.g. quasi-periodic movements.
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In the functional approach,2 following Cadoz’s proposal [169], they identify three different functions
(complementary and dependent on each other):

• material action, modification and transformation of the environment—the ergotic function;
• perception of the environment—the epistemic function;
• communication of information towards the environment—the semiotic function.

In view of the French generalization to non-semiotic gestures, it is remarkable, if not quite strange, that
in the following discussion of an instrumental gesture the authors state [168, p.79]: “Instrumental gesture
is considered as a “communication modality” complementary to empty-handed gestures. They are therefore
singular in that they possess, à la fois, all three characteristics of the gestural channel: ergotic, epistemic
and semiotic.”

They then focus on gesture typology with this rationale [168, p.82]: “The importance of gesture typolo-
gies is then not to completely describe acoustic musical instruments but to provide general guidelines for
the design of gestural input devices, mostly regarding the presence of different types of feedback related to
different gestures.” In the their typology of instrumental gestures, they distinguish between three types:

• Excitation gesture; it can be instantaneous (percussive or picking) or continuous.
• Modification gesture; it can be parametric (continuous variation of a parameter, such as vibrato) or

structural (when the modification is related to categorical differences, such as the insertion/removal of
an extra part, e.g. a mute in the case of the trumpet, or a register in an organ).

• Selection gesture (a choice among multiple similar elements in an instrument).

The system is then illustrated by a number of case studies, involving different instruments, such as
cello, clarinet, and bagpipe.

Godøy’s and Leman’s book [371] is an edited volume that recollects a number of contributions around
the topic of musical gestures, meaning gestures that arise while producing or perceiving music. The contrib-
utors include well-known researchers in that field, such as Marcelo Wanderley, Frédéric Bevilacqua, Roberto
Bresin, Antonio Camurri, and Albrecht Schneider, for example. The initiative for this book came from a
European research project, COST87—ConGAS—Gesture Controlled Audio Systems, running from 2003 to
2007. The book is conceived as a representation of a highly interdisciplinary collaboration, however without
aiming at a final discussion of the book’s topic.

The book is divided into three parts. Part I, “ Gestures in Music”, introduces definitions, examples,
and a history of gestures in music. Part II, “Gestural Signification”, provides a theoretical framework for
the formation of signification in gesture in music. Part III, “Gesture Generation and Control”, concerns the
processing and control of gesture in music.

Answering the question “Why Study Musical Gestures” (title of Chapter 1), it is stated that “we
believe that musical experience is inseparable from the sensation of movement, and hence, that studying
theses gestures, what we call musical gestures, ought to be a high priority task in music research.”

In Chapter 2, besides categorizing gestures as poietic or aesthetic utterances, it is stated that the
core role of gestures is to provide a “bridge between movement and meaning”, it “surpasses the cartesian
divide between physics and mind.” This is a clear conceptualization of “gesture” as a semiotic entity: it has
meaning, although its production is different from meaning that we deal with in linguistic systems: gestures
“demonstrate”, while languages “say” or “denote”. And accordingly, Part II deals with the semantic aspect
of this gesture concept.

The definitions of “gesture” are taken from three perspectives: communication, control, and metaphor.
Communication happens when gestures are vehicles for meaning in social interaction, control when gestures
are elements of computational and interactive systems, and metaphor when gestures work as concepts that
project physical movements on cultural topics. Summarizing, they define “musical gesture as an action
pattern that produces music, is encoded in music, or is made in response to music.” They distinguish between
four types of functional aspects of musical gestures: sound-producing, communicative, sound-facilitating, and
sound-accompanying, and they represent these four characteristics quantitatively in the 2D plane with two

2 The intrinsic approach is not explicitly discussed in this paper.
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axes, one spanned by the couple “sound producing/sound-accompanying” , the other by the couple “sound-
facilitating/communicative”. This representation is used to position musicians as opposed to dancers at their
musical gesture values; see Figure 60.10.

Fig. 60.10. Four types of functional aspects of musical gestures. Left: Musicians, right: dancers.

Chapter 2 concludes stating that “Up until now, there is no single unequivocal definition of gesture,
although most authors seem to agree that gestures involve both body movement and meaning.” Chapter 3
discusses gestures in performance for a number of classical and electronic musical instruments. Chapter 4 is
a historical overview and, after an interesting survey, starting with Aristoteles and Platon, concludes: “The
motional and gestural qualities of music have been known since antiquity, and have been developed in various
musical styles and genres.” However, the reference to Jean-Claude Schmitt’s important book about medieval
gesture theory is missing, and also the reference to the French gesture philosophy, which is unfortunately
completely absent (except for Maurice Merleau-Ponty) in this book.

The gestural production of embodied meaning is addressed in Chapter 6 of Part II. Meaning results
from a chain of transformations (synaestetic, kinesthetic, cenaesthetic) from sonic features to cognitive strata.
The third, “canaestetic transformation can be seen as a precondition for a fully symbolized type of meaning
formation.” This confirms the initial principle that “gestures can be understood as close to body movements
and close to meaning.” “Gesture can be considered as a hierarchically structured action pattern to which we
can have mental access.”

The concept of “gesture” is differentiated according to the three personal dimensions of “I”, “You”,
“He/She/It”. The first person shows a gestural ontology that relates to the concepts of flow, presence, and
cause-effect. The second person shows that gestures are more than isolated phenomena, they pertain to a
dialogical dimension (also stressed by Émile Benveniste’s theory of pronouns; see also Sections 57.9 and 59.1),
and this is also confirmed by neuroscience (as made evident by the mirror neuron phenomenon to which this
text does not refer). The third person perspective deals with the objectively measurable traces of gestures.

The chapter terminates with the “question to what extent music is gesture.” It is concluded that
music contains gesture but music is also (auto)referential: its internal gestures refer to one-another. As
a final conclusion, gestures are characterized as multi-modal (audio, motor, etc.), multi-level (space-time
hierarchies), and monistic (bridging the cartesian divide) phenomena. The last Section 7 of this part deals
with basic bio-kinetics in activation and signification.

The third part of that book deals with more technical topics: gesture generation and control, discussing
gesture and timbre or the conductor’s gestures and their mapping to sound synthesis.



Part XVI

Mathematics of Gestures



61

Fundamental Concepts and Associated Categories

Summary. This chapter introduces the definition, some basic propositions and first examples regarding the
mathematical concept of a gesture for topological spaces. It also includes a short discussion of the topos-
theoretic logic that is implied by the topos of directed graphs.

– Σ –

61.1 Introduction

This chapter presents a programmatic category-oriented framework for the description of the gestural rela-
tions between musical and mathematical activities, a first publication was given in [719]. This relation may
be described in terms of adjointness between functors, which extend the functorial setup discussed in the first
edition [714] of this book. Thus, on a meta-level, the relations between musical and mathematical activities
are investigated from a mathematical point of view.

Far from being isomorphic, music and mathematics seem to involve some common structures which
can be related by one of the most powerful concepts of category theory: the notion of adjoint functors. This
construction, proposed by Daniel Kan in the 1950s as a technical device for the study of the combinatorial
properties in homotopy theory [518], turns out to be the most adequate tool to link three main categories: the
equations or formulas (category of spectroids), the diagram schemes (category of directed graphs) and the
gestures (category of diagrams of curves in topological spaces). In a schematic way, we may view mathematics
and music as adjoint functors between the categories of formulas and gestures:

formulas
music ��

mathematics
gestures

The category of directed graphs, which has been recently proposed as a foundational concept in mathe-
matics for both classical and categorical set-theory [280], seems to provide a musically interesting mediating
structure between the two other categories, on which music and mathematics act in adjoint positions. By
means of diagrams, mathematics turns gestures into formulas. In fact, a diagram is a system of transforma-
tional arrows. On such a system you may follow different paths starting and ending at the same two points.
These paths can be viewed as gestural movements. If two such paths commute, i.e., they yield the same
composed transformation, then we have exactly what is called a formula or equation: Two expressions yield
the same result. Quite generally speaking, formulas are commutativity relations between gestural paths.
Conversely, musical activity “unfreezes” formulas into gestures that can be described as the unfolding of
formulas in space-time.

With such a conceptual framework we want to include embodied performance into the formalization
of musical structures. In [720] we argued that the categorical presentation of Klumpenhouwer networks1 as

1 See also Section 65.2 for a mathematical description of Klumpenhouwer networks.
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elements in limits of diagrams of spaces and transformations has some important operational consequences.
A parallel argumentation applies to the usage of the category of directed graphs of curves in topological
spaces as a theoretical framework of gesture theory. From a purely theoretical aspect, “gestures of gestures”
(or hypergestures) as well as “natural gestures” are canonically defined, as we will see by discussing the case
of the gesture of a finger of a piano player’s hand and its hypergestural generalizations. As in the case of
the development of category and topos theory, as discussed by Mac Lane in [636], the notion of gesture as
suggested here offers a good illustration of “collision” between algebraic and topological methods.

But there is another intriguing aspect of this new categorical setup for musical gestures which deals with
the philosophical ramification of category theory. Category theory is more than a useful universal language,
eventually providing the theoretical setting for the foundations of mathematics. When applied to a complex
human activity such as music, category theory offers the conceptual framework generating a new theoretical
perspective of the relations between the philosophy of music and the philosophy of mathematics, in fact, by
shedding new light on the understanding of the genesis and ontology of musical and mathematical activities.2

The case of gesture theory suggests that we can naturally transfer Mac Lane’s conception of mathematics
as “an elaborate tightly connected network of formal systems, axiom systems, rules, and connections” [638,
p.417] to music. The adjoint functors that we establish between the formal category of formulas and the
functional universe of gestures suggest that musical activity could be also conceived as arising from a formal
network based on some dynamic concepts that evolve according to their function. This framework has some
very interesting philosophical consequences, especially when trying to update the debate on the relation
between the structural conception of mathematics and the structuralist approach to music.3 We suggest that
mathematical structuralism could be taken as a philosophical position for the music-theoretical activity once
it is accepted that mathematical music theory is about music conceived as a structured system. As rightly
observed by Elaine Landry and Jean-Pierre Marquis in an interesting attempt at putting category theory into
a historical, foundational and philosophical context [575], “the problem with standard structural approaches
is that they cleave to the residual Fregean assumption that there is one unique context that provides us with
the pre-conditions for the actual existence of ‘structures’ or for the possible existence of types of structured
systems” [575, p.21]. And as the categorical framework suggests that “mathematical concepts have to be
thought of in a context that can be varied in a systematic fashion” [575, p.21], the categories of formulas,
diagrams, and gestures in music suggest that the functorial adjointness that we shall present provides a
general framework for the study of gestures in a given musical context.

Unfolded from the scant category of digraphs, the linear categories associated with digraphs (spectroids
[351]) and the categories of gestures split the structural content of the morphism concept: Whereas the
algebraic context of spectroids (which also includes the transformational approach to music theory) leaves
the morphism concept in its abstract setup inherited from the classical Fregean approach to functions, i.e.,
the totally abstract relation between argument and functional value, the category of gestures is built upon
morphisms which are derived from continuous curves, such that the movement from argument to value is
mediated along the entire curve following the curve parameter. The gesture is a morphism, where the linkage
is a real movement and not only a symbolic arrow without bridging substance. The arrow is a symbol of
category theory which suggests a bridge between domain and codomain and thereby points to a metaphor

2 Essentially, this is due to Alexander Grothendieck’s reinvention of the point concept in algebraic geometry. He
redefines a point as being a morphism f : X Ñ Y in the category of schemes, and conversely, using the Yoneda
Lemma, a morphism f : X Ñ Y in any category can be viewed as a point in the presheaf associated with Y . This
means that the original Euclidean point concept (punctus est cuius pars nulla est) is replaced by the elementary
concept of a morphism, which determines the ontology of a category. This point of view suggests that such
morphisms, which are commonly understood as “arrows”, induce a dynamical aspect; a morphism is the movement
of an arrow. In this spirit, mathematical activities are presently being debated as gestural movements along such
arrows, instead of abstract manipulation of symbols [24]. But the arrow-oriented approach to mathematics also
enables a description of basic musical concepts as activities in terms of morphisms. David Lewin’s transformational
theory [605], Thomas Noll’s harmonic morphology [802] and our categorical approach to performance theory [714,
Chapter 35] are examples thereof.

3 See [31] for a detailed discussion on the emergence and the rise of the notion of mathematical structure in music
from an algebraic perspective.
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overloaded by embodiment. However, according to Jean Cavaillès [91] “Comprendre est attraper le geste et
pouvoir continuer.” This means that human evidence and operational competence are intimately tied to the
embodied movement, and this is a gesture, not the abstract arrow.

We therefore argue that the gestural movement should be considered as being the missing link between
abstract formulaic intelligence and plain bodily gesticulation. And it offers a generative force in the creation
of significance and regularity of rule-based systems. This refers to a substantial insight of Charles Alunni
[24]: “Ce n’est pas la règle qui gouverne l’action diagrammatique, mais l’action qui fait émerger la règle.”

61.2 Towards a Musical String Theory

It is well known that the formal description, classification, and analysis of music in terms of local or global
systems of note sets in adequate parameter spaces does not grasp the full reality of music. In fact, beyond this
music-theoretical reality, music must be performed, i.e., the formally parametrized note configurations must
be mapped into physically meaningful spaces, see [243] for a musicological account of performance theory;
see Part IX and Part X for a more mathematical and computational overview. Although performance theory
may yield sophisticated sounds from a “mechanical” score, it does not embody the musician’s instrumental
activity. When we play music, we make the performed sounds. This is more than a set of sound events, more
than a CD recording may ever trace on its acoustic level. The important role of embodiment of sounds is
rightly testified by the strong need for concerts, where performance is not only heard, but also experienced
from the musicians’ bodies in movement. Understanding of music is strongly enhanced if not enabled by
means of its presentation in moving bodies, or, to put it more concisely: in musical gestures.

It may be argued that gestures are, like performances of shaped sounds, rhetorical means to convey
a meaning which in principle is faithfully represented in the score’s content. This is however erroneous
for two reasons. To begin with, score signs are not unambiguously loaded with meaning. The creation of
signification of musical signs shares a deictic nature. Only the user (in particular: the performing artist)
can complete the partial meaning of musical score signs. It can be shown that there is an infinity of such
completions, be it on the symbolic level 13.4.1, or be it on the level of agogics, articulation, or dynamics
46. The second—really dramatic—reason is that there are many types of music which are not subjected to
the scheme “score to performance,” at least not if score means a structural or processual scheme controlling
sound production. Much jazz music, for example, is defined through its bodily realization rather than as a
projection of score information. Cecil Taylor’s piano music is a stunning example of the primacy of bodily
gestures (what Volker Spicker calls the “Abstraktmotiv” [998]) over structures, a fact often pointed out by
Taylor himself. And for Beethoven, as also observed by Robert S. Hatten [446], ruling out gestural shaping
misses the musical contents, as beautifully illustrated by Glenn Gould’s notorious “contrafactual” recording
of op. 57 Appassionata, where, for example, the cascade in bars 14-15 of the opening movement is not played
as a gestural cascade, but as a static structure of arpeggiated VII-chords, which destroys completely the
inherent movement, as performed by Vladimir Horowitz, say.

Despite the intuitive understanding of what a gesture is, including body movement and semantics,
a precise conceptualization looks less easy. We agree with Jean-Claude Schmitt [946] that the medieval
definition of a gesture, as given by Hugues de Saint-Victor, remains one of the most adequate, at least
when referring to the concrete human body: “Gestus est motus et figuratio membrorum corporis, ad omnem
agendi et habendi modum.” Gesture is the movement and figuration of the body’s limbs with an aim, but also
according to the measure and modality proper to the achievement of all action and attitude. Most important
is that it is an articulated figuration, a composition of parts (limbs), and that it includes a movement of
that figuration in the space-time of the given body. Moreover, it serves for any (omnem) mode of action
and attitude, so it has a purpose or target, but it does not, automatically, point to a semantic level, it only
reaches the mode of an activity/habit.4 Often, in the definition of a gesture, the sign character (signifier–
signification–signified) is included, for example in Adam Kendon’s and David McNeill’s approach [530, 741];

4 This is also confirmed by the comment of Jean-Claude Schmitt [946] in his comment on Saint-Victor’s definition:
“Le geste enveloppe avant de saisir et esquisse son déploiement bien avant de dénoter ou d’exemplifier; ce sont les
gestes déjà domestiqués qui font référence.”
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see also Section 57.7. Together with the French diagrammatic philosophers, such as Charles Alunni [24],
we do not share this perspective and would rather say that a gesture is a presemiotic entity, although it
may be a component of a sign. But this is not mandatory. For example, in dance or in music, gestures are
often bare of meaning. They stand for themselves, and this in particular as esthetic entities. We should also
add that our reference to Saint-Victor does not mean that we shall limit ourselves to this definition. It is
only a point of departure, and we shall transcend its strict reference to the human body and its limbs and
consider much more abstract or metaphoric configurations in the following mathematical theory of gestures,
including gestural objects relating to graphics and sounds. But what is important for our understanding
of the concept is that in Saint-Victor’s definition, the composed parts on the one hand and the presemiotic
nature of a gesture on the other are recognized.

The shift from abstract algebra and transformational paradigms to gestures is not a purely formal one,
since the basic object given by a gesture is not a “point” within an algebraically shaped space, which may be
connected to other points by functional correspondence. A gesture, by its parametrized curve character, has
interiorized the transformational approach: its endpoints are intrinsically related by the curve parameter.
This is in contrast to the functional correspondence, where an arrow effectively has nothing which exists
in its shaft, it is a purely graphical symbol. No additional transformational input is needed. This is an
enrichment which has been realized for similar constructions in the physical string theory of elementary
particles. In this language, particles are also curves of an ample inner nature, when compared to the classical
point-like elementary particle models. For example, in string theory, the electric charge of an electron may
be constructed geometrically as a winding number of the electron loop around a supplementary compact
dimension, i.e., by an instance of the fundamental group of the compact dimension. In this spirit, the gestural
approach is an enrichment of musical object categories, which enables a refinement of the conceptual anatomy
and at the same time a rapprochement to the human reality of making music. We could call it a musical
string theory, but see Chapter 75.

61.3 Initial Investigations: Diagrams of Curves

Fig. 61.1. The technical description of hand and elbow movements in Marek’s treatise on piano playing shows
gestures in the form of complex curve configurations.

The consultation of detailed technical treatises on virtuoso piano playing reveals a high consciousness
of the gestural side of this art. For example, the classical book Lehre des Klavierspiels [651] by Ceslav Marek,
a student of Theodor Leschetitzki, a legendary student of Franz Liszt, teaches that the movements of the
hand and the elbow are types of gestural curve configurations; see Figure 61.1.

In his PhD thesis [771], Stefan Müller has implemented this approach in software to obtain a computer-
generated virtual piano performance, transforming the data of a standard score into movements of a
computer-graphical hand model. This means that we had to define a system of curves in space-time, which
describe the movements of a hand that plays a given score. The problem is extremely complex, since one
has to deal with (1) the complex geometry of the human hand, (2) the dynamic conditions of Newton’s
law, which describes the possible trajectories of the fingers’ and carpus’ masses as a function of available
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Fig. 61.2. The hand model used for a computer-graphic simulation of a pianist’s performance. This hand is modeled
after Chopin’s.

forces, and (3) the question concerning optimal solutions to such system conditions. We modeled the hand by
parameterized space-time curves γiptq of the five tips and the carpus; see Figure 61.2. The curve parameter
t is an abstract parameter, which cannot be identical with the time value for the following reason. In fact,
scores have successive notes of different pitch for the same finger that must be connected by a continuous
curve while time remains unchanged! This symbolic gesture must be taken as a default setup, which is later
deformed to comply with physical and geometric conditions. See Chapter 78 for the theory of performance
based upon symbolic and physical gestures.

Fig. 61.3. The six space-time curves of one hand of a pianist as modeled by Stefan Müller in [771].

An animation of such a performance was shown at the ICMC 2003 [772], the performed piece being the
right hand of Carl Czerny’s small exercise op. 500. The overall picture of such a configuration of space-time
curves of fingers and carpus is shown in Figure 61.3.

The lesson drawn from this preliminary study about gestures is that they are not single curves, but
complex configurations of curves (in our example, each finger shows a concatenation of three curves, one for
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moving down to the key, then one while resting on that key, and a third for moving away from the key). And
the space of such curves may show an arbitrarily complex topology (for the fingers, one is confronted with a
manifold in a high-dimensional real space, which is defined by the geometric and physical constraints); see
Section 78.2.3 for a more concise representation of the hand’s geometry. We shall now step over to a general
definition of a gesture, which comprises the topological as well as the configurational aspects of the concept.

61.4 Modeling a Pianist’s Hand

One of the most evident gestural expressions is the body movement of a performing musician. Think of
the gestural power of famous pianists. It is logical that one should therefore attempt to model gestures of
musicians. In collaboration with my PhD student Stefan Müller, I embarked in the modeling of the pianist’s
hand [772] on the level of computer graphics. The idea was not only to model the hand’s movements, but
also to implement a software that could transform the abstract symbols of a score into hand movements that
were adequate for the rendering of the score on a piano keyboard.

The project had three components:

1. Modeling the hand with its spatio-temporal trajectory in the movement.
2. Transforming abstract score symbols of notes (what we call deep-frozen gestures, since they historically

stem from neumatic abstraction, neumes being gestural signs) into symbolic gestures, i.e., curves in a
space related to the piano keyboard geometry.

3. Deforming symbolic hand gestures into physically valid spatio-temporal curves of the pianist’s hand.

61.4.1 The Hand’s Model

This task was accomplished with a simplified representation of the hand by six curves γiptq in physical space-
time with space axes x, y, z to denote the momentous position of the hand, and e, the physical time of that
position. The curve parameter t is not the physical time, it is just an abstract curve parameter (Figure 61.2).
The curves γ1, . . . γ5 represent thumb, index, middle, ring, and little finger, respectively, while γ6 represents
the carpus.

These curves are subjected to geometric constraints G resulting from their connectivity as parts of
the hand’s geometry. We refer you to [772] for more details. And the curves are subjected to mechanical
constraints M , which means that if we think of the ith finger’s mass mi, and if the pianist is capable of
exerting a maximal force of Ki upon that mass, then Newton’s second law imposes the inequality

mi|d2γspace
i {de2ptq| ď Ki

at any curve parameter value t, where γspace is the three-dimensional spatial part of the curve.

61.4.2 Transforming Abstract Note Symbols into Symbolic Gestures

Refer to Figure 61.4 for the following discussion. In traditional performance theory, we look at the trans-
formation ℘score of score symbols into sound events. This is shown in the bottom row of the rectangular
diagram of Figure 61.4. In the gestural extension of this disembodied process, we have to create the sonic
result via gestural actions. The sounds are just the result of physical gesture curves interacting with the
keyboard; these curves are shown in the right top corner of the diagram.

In order to generate these physical curves, one first has to unfreeze the note symbols and to transform
them into gestural symbols. This unfreezing process is shown in the left top-bottom half of the diagram. This
does not create physical gesture curves, but only symbolic gesture curves, which are faithful representations
of the note symbols. This process resembles the MIDI interpretation of notes insofar as the commands
associated with notes are abstract movements: In MIDI, a note is defined by an ON command, which means,
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Fig. 61.4. The four levels of performance: symbolic score representation (left bottom), performed sound events (right
bottom), symbolic gesture curves (left top), physical gestures (right top).

go down to that pitch at a determined moment, and the MIDI velocity used to move down to the key defines
loudness. Then the finger remains in that position until the OFF command tells it to move up again, etc.

This representation defines a very abstract gesture, but it is this that tells the fingers in a qualitative
way how to move. This movement is shown in the top left corner. We see the symbolic gesture associated
with a sequence of three notes in the bottom left corner. The finger moves down over a first key, then remains
there and after its duration moves up, changes the key coordinate, goes down to the second key with a second
velocity, remains there for its duration, moves up, shifts to a third key position, moves down with the third
velocity, remains for its duration, and finally moves up. All these phases are connected in a continuous curve,
which has angles, i.e., it is not differentiable, and whose movement is orthogonal to the time axis E when
moving down at a determined velocity.

61.4.3 From Symbolic Hand Gestures to Physical Gestures

The third step toward gestural performance is the horizontal transformation on top of the diagram in Figure
61.4. The given symbolic gesture does the right thing, but it does not move within the geometric and
physical constraints. These constraints define a subspace of the space of all continuous curves, in fact a
manifold XpG,Mq in terms of global geometry. We are given the symbolic gesture curve from the top left
data and now have to create a physically valid deformation thereof, i.e., one that fulfills the geometric and
mechanical constraints G, M . This is a very delicate operation. Essentially, it boils down to looking at the
symbolic gesture γSymbolicptq and then searching for one γPhysicalptq that is as near as possible to γSymbolicptq
and lives in XpG,Mq. The delicate point is that it is often not possible to cope with all conditions for a
perfect performance, since, for example, physics does not allow for infinite velocities. So when the finger has
to play two different keys in immediate succession without a pause, the duration of the first note must be
shortened in order to jump from the first to the second key. Such difficulties must be met by defining distance
between curves in such a way that musical constraints are given a high weight. For example, the prescribed
key coordinates cannot be changed, while durations may be changed, but only a little. It may then happen
that there is no solution to a given score input and its associated symbolic curve. This must be possible as
a function of the anatomic and physical constraints given by human conditions. We have implemented this
process and have performed a simple Czerny exercise in a movie that is illustrated in Figure 61.5.
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Fig. 61.5. A Czerny exercise played by the computer-graphical model of a pianist’s hand according to the gestural
“unfreezing” process described in the text.

61.5 The Mathematical Definition of Gestures

In the following definition of a gesture, we shall rely on Saint-Victor’s definition and implement the
(con)figuration of a gesture by the articulation of diagrams. We shall then describe the movement in the
parametrization of curves representing the figuration, and we shall formalize the body’s space-time by a
topological space, where the movement takes place. The semantics of gestures will not be our concern here;
this must be dealt with after a thorough investigation of the formal mathematics of gestures.

Let us first review the category Digraph of directed graphs, in short: digraphs. This is a basic category
for algebra as well as for topology. In the naive setup, its objects are functions Γ : A Ñ V 2 from a set
A “ AΓ of arrows to the cartesian square V 2 “ V ˆ V of the set V “ VΓ of vertices. The first projection
t “ pr1 ˝Γ is called the tail function, the second t “ pr2 ˝Γ is called the head function of the digraph. For an

arrow a, the vertices tpaq and hpaq are called its head and tail, respectively, and denoted by tpaq a� hpaq.
A morphism f : Γ Ñ Δ of digraphs is a couple f “ pu, vq of functions u : AΓ Ñ AΔ, v : VΓ Ñ VΔ such that
v2 ˝ Γ “ Δ ˝ u.

It can be shown that Digraph is a topos, see Appendix Section J.1.3. In particular, it has a a final
object, 1 “ t T�� , which is embedded by the true morphism T : 1 Ñ Ω into a subobject classifier

Ω “ fF ��

P
�� t

Q��

T

��
N

��

Every evaluation Γ@Ω describes the set of subdigraphs of Γ , together with its canonical Heyting logic.
This fact may be used to introduce gestural logic; see Section 61.13.

We need a special subcategory of digraphs, the spatial digraphs. Such a digraph is associated with a
topological space X and denoted by

ÝÑ
X . By definition, the arrow set is AÝÑ

X
“ I@X, the set of continuous

curves c : I “ r0, 1s Ñ X in X, while the vertex set is VÝÑ
X

“ X, hpcq “ cp1q, and tpcq “ cp0q. A spatial

morphism is a digraph morphism
ÝÑ
f :

ÝÑ
X Ñ ÝÑ

Y canonically induced by a continuous map f : X Ñ Y . The
subcategory of spatial digraphs and morphisms is denoted by SpaceDigraph. A spatial digraph is more than
a digraph: it is also a topological digraph in the following sense. The set AÝÑ

X
“ I@X of arrows of

ÝÑ
X is a

topological space by the compact-open topology, and the head and tail maps h, t : I@X Ñ X are continuous.
Moreover, for a continuous map f : X Ñ Y , the arrow map I@f : I@X Ñ I@Y is continuous.

Given a digraph Δ and a topological space X, a Δ-gesture in X is a digraph morphism δ : Δ Ñ ÝÑ
X ,

i.e., a realization of the abstract vertices and arrows within a topological space, as shown in Figure 61.6. It
is essential here to distinguish the curve parameter of a gesture from the time parameter, which intervenes
in a number of common gestures. For example, when drawing a curve on a sheet of paper, this gesture,
δ : Δ Ñ ÝÑ

X , would have the arrow digraph Δ “Ò with Ò“ ‚ Ñ ‚ and the space X “ R2 ˆ R, whose first
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two coordinates denote the points of the paper surface, whereas the third denotes the physical time when a
point at given parameter value is drawn on the paper sheet. We discuss the time parameter in the following
Example 59.

Fig. 61.6. A gesture in the ordinary 3-space.
Fig. 61.7. An elementary finger gesture of a
pianist’s hand.

Given two gestures, δ : Δ Ñ ÝÑ
X, γ : Γ Ñ ÝÑ

Y , a morphism f : δ Ñ γ is a digraph morphism f : Δ Ñ Γ
such that there exists a spatial morphism

ÝÑ
h :

ÝÑ
X Ñ ÝÑ

Y which commutes with f , i.e.,
ÝÑ
h ˝ δ “ γ ˝ f . This

defines the category Gesture of gestures, and we have a projection p : Gesture Ñ Digraph, which sends the
gesture δ : Δ Ñ ÝÑ

X to the underlying digraph Δ. So it is essentially a forgetful functor: it cancels out the
spatial interpretation of the given digraph.

Example 59 Let us give here an elementary example of the gesture of a finger of a piano player’s hand.
The gesture represents the movement of a finger going down to a key, staying in that position for the
duration of a tone, and then moving back upwards to be ready for the next movement. This gesture has

three segments, which we formally relate to a gesture defined on the digraph, Π “ ‚ d� ‚ h� ‚ u� ‚.
The space of this gesture is three-dimensional, i.e., FingerSpace “ R3, where the first coordinate is the
height above the keyboard (position, positive direction for approaching the piano), the second is the time,
and the third parametrizes the pitch (the coordinate of the key on the piano’s keyboard). Then a finger
gesture π : Π Ñ ÝÝÝÝÝÝÝÝÝÑ

FingerSpace is a diagram of curves as shown in Figure 61.7.

Example 60 A more involved example is provided by the gestural space of an entire hand, as investigated
in [772] in the context of the simulation of a pianist’s playing from a given score, under constraints from the
hand’s geometry as well as the physical dynamics from Newton’s second law (limits of forces avaliable from
the pianist’s performance). Figure 61.2 shows the hand position in time. It is given by six points γiptq in
the 4-space R4 with three space coordinates (pitch, vertical position above keyboard, and horizontal frontal
position from the key face line) and one time coordinate. The fingertips are represented by the indexes
i “ 1, 2, . . . 5, while the carp is represented by i “ 6. Observe that the time coordinate is not the curve
coordinate t! A gesture’s curve coordinate is an abstract parametrization of the curve in a given space, not
the material time coordinate, which may also be absent, as shown in the gestures from Figures 61.9 and
61.10.

61.6 Hypergestures

If gestures of a certain kind are themselves conceived as points in a space, one may study gestures within
such a gesture-space. These may be called hypergestures. In order to define them, we need to know how to
turn the set of gestures Δ@

ÝÑ
X into a topological space. Now, the special case Δ “Ò means that we have the

topological space Ò @
ÝÑ
X

„Ñ I@X of continuous curves c : I Ñ X (with the above mentioned compact-open
topology). The general case follows from the observation that Δ is the colimit of the following diagram
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D of digraphs: We take one arrow digraph Òa“Ò for each arrow a P AΔ and one bullet digraph ‚x “ ‚
for each vertex x P VΔ. We take as morphisms the tail or head injections ‚x ÑÒa whenever x “ tpaq
or x “ hpaq. Then evidently, Δ

„Ñ colimD. Therefore, the set of gestures Δ@
ÝÑ
X is bijective to the limit

limD@
ÝÑ
X of a diagram of topological spaces Ò @

ÝÑ
X

„Ñ I@X. The topology of Δ@
ÝÑ
X is defined as the limit

topology of this diagram, the space with this topology is denoted by Δ
ÝÑ
@X. In the case of a metric d defining

the topology of X, it is well known that the compact-open topology on I@X coincides with the topology
defined by the metric

ÝÑ
d pγ, γ1q “ supt dpγptq, γ1ptqq. And then, the topology of Δ

ÝÑ
@X is defined by the metric

Δ
ÝÑ
@dpγ, γ1q “ ř

aPAΔ

ÝÑ
d pγa, γ1

aq.
This construction is functorial in both arguments: If h : Γ Ñ Δ, f : X Ñ Y is a couple of morphisms of

digraphs and topological spaces, respectively, then the canonical map pf, hq “ ÝÑ
f ˝? ˝ h : Δ

ÝÑ
@X Ñ Γ

ÝÑ
@Y is

continuous and functorial in h, f . For example, if h : p Ñ Δ is the embedding of a single vertex p, the map
pIdX , hq : Δ

ÝÑ
@X Ñ p

ÝÑ
@X is the restriction of gestures to the point p. If we select a particular gesture ξ in

p
ÝÑ
@X, i.e., a point ξ P X, then the fiber pIdX , hq´1pξq is the set of gestures sending p to ξ. If in particular

Δ “ 1, this fiber is the set of loops in ξ.
By the above, one may now repeat the gesture construction and consider the topological (and espe-

cially, the metric) space of hypergestures Γ
ÝÑ
@Δ

ÝÑ
@X, hyperhypergestures Λ

ÝÑ
@Γ

ÝÑ
@Δ

ÝÑ
@X, etc. Notice that

in particular, the space Ò ÝÑ
@ Ò ÝÑ

@X is the topological space I2@X of homotopies in X, i.e., hypergestures
generalize homotopies between continuous curves. Here is a useful proposition concerning the order in which
hypergestures are constructed:

Proposition 61 (First Escher Theorem5) If Γ,Δ are digraphs and X is a topological space, then we have a
canonical homeomorphism

Γ
ÝÑ
@Δ

ÝÑ
@X

„Ñ Δ
ÝÑ
@Γ

ÝÑ
@X.

This results from the above fact that a digraph is the colimit of its arrows, glued together on their head and
tail points. On the one hand this entails that the hypergesture space Γ

ÝÑ
@Δ

ÝÑ
@X is the limit of the spaces with

arrows Ò ÝÑ
@Δ

ÝÑ
@X, which are in turn identified with the spaces of curves I@Δ

ÝÑ
@X, but these are the limit of

spaces I@I@X over the arrow system of Δ. On the other hand, one may also first start with the limit over
the arrow system of Δ and then pass to the limit over the arrow system of Γ . Thus, the two limit systems
can be applied in any order, and this means that the two topological spaces in question are isomorphic by
universal properties of colimits and limits. One may also use the fact that double limits exchange.

Corollary 23 The action

ÝÑ
@ : Digraph ˆ Top Ñ Top : pΓ,Xq ÞÑ Γ

ÝÑ
@X

canonically extends to an action (denoted by the same symbol)

ÝÑ
@ : rDigraphs ˆ Top Ñ Top : pW,Xq ÞÑ W

ÝÑ
@X

of the free commutative monoid rDigraphs, i.e., the monoid of commutative words W “ Γ1Γ2 . . . Γk

over the alphabet Digraph of digraphs (the objects only). It is defined 6 inductively by Γ1Γ2 . . . Γk
ÝÑ
@X “

Γ1
ÝÑ
@ pΓ2 . . . Γk

ÝÑ
@Xq and HÝÑ

@X “ X.

Example 61 Referring to the finger gestures described in Example 59, we want to discuss an example of
piano finger hypergesture. Before so doing, let us mention a quite intriguing statement of Renate Wieland
and Jürgen Uhde in [1067]:

Die Klangberührung ist das Ziel der zusammenfassenden Geste, der Anschlag ist sozusagen die Geste
in der Geste.7

5 The reference to Maurits Cornelis Escher is given because in his art, flipping roles are an important artistic tool.
6 To be precise, this action is defined up to homeomorphisms.
7 The touch of sound is the target of the embracing gesture, the keystroke is so to speak the gesture within the
gesture.
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Although the precise meaning of this statement is somewhat cryptic, it could be interpreted as arguing that
a gesture may be thought of as being built from other gestures. Recall that a hypergesture is built from
a system of homotopies of the curves that compose its vertex gestures. Now, let us take a hypergesture
η :ÒÑ ÝÝÝÝÝÝÝÝÝÑ

FingerSpace. This means that we have a continuous curve of finger gestures ηptq, t P I, from the
initial finger gesture ηp0q to the final finger gesture ηp1q.

Musically, this means that in the given FingerSpace, two gestures can be related to each other by
thinking of the final gesture as a result of an infinite series of intermediate gestures. So they may be connected
cognitively by just deforming the original gesture to obtain the final one. This seems to be obvious in our
example, since no obstruction to such a deformation is indicated. The next example shows that in a less
trivial space, viz. the torus, such deformations are not always possible and from a cognitive point of view, this
would lead us to conceive radically different strategies in the management of gestures. In fact, the existence
of hypergestures relates to the fundamental group of the underlying topological space.

Fig. 61.8. There is no hypergesture from η to ν (left), while these two gestures are isomorphic (right).

Example 62 Take the (two-dimensional) torus X “ T2 and the final digraph 1; see Figure 61.8. Then, if

η, ν : 1 Ñ ÝÑ
T2 are the horizontal equatorial circle curve at the origin 0 of T2 and the vertical meridian curve

at the origin, respectively, there is no hypergesture of type Ò from η to ν, whereas the diagonal reflection on
T yields the morphism Id1 : η Ñ ν.

This makes clear the difference between hypergestures and morphisms: Hypergestures realize the “ar-
rows” between vertex gestures as curves, whereas morphisms realize them by transformations between the
vertex curves.

61.6.1 Spatial Hypergestures

Intuitively, gestures allude to a movement in space, where the curve parameter plays the role of time. This
is however misleading and restrictive. Let us explain it by the representation of complex bodies as spatial
hypergestures. If we start with the space of loops in 3D, i.e., the gesture space X “ 1

ÝÑ
@R3, a gesture of

diagram Γ in X is a hypergesture β P B “ Γ
ÝÑ
@1

ÝÑ
@R3; see Figure 61.9 for an example.

With spatial hypergestures, one can essentially do all the computer graphics constructions, such as spline
surfaces of Bézier type [710]. Such a surface, when defined by a grid of pn` 1q ˆ pm` 1q points, appears as a
hypergesture Òn ÝÑ

@ Òm ÝÑ
@R3, where Òn is the digraph consisting of n`1 vertices, and having one arrow from

vertex i to vertex i ` 1 for all i “ 0, 1, 2, . . . n ´ 1. Then, using this type of purely spatial hypergestures β,
which we temporarily call body, we may model its movement in time as a gesture μ PÒ ÝÑ

@BˆR, having values
in the space of pairs pβ, τq of bodies and times. This allows for the description of realistic body movements
(viz. animated graphics) for dance or sports, for example. In fact, Ò ÝÑ

@B ˆ R
„ÑÒ ÝÑ

@Bˆ Ò ÝÑ
@R, i.e., such a

movement is a pair of a Ò-hypergesture of bodies in Ò ÝÑ
@Γ

ÝÑ
@1

ÝÑ
@R3 and a time gesture in Ò ÝÑ

@R. Figure 61.10
shows four stages of a deformation of a body of type Σ

ÝÑ
@1

ÝÑ
@R3, where Σ is a digraph with four vertices

z, w1, w2, w3 and three arrows, ai : z Ñ wi, i “ 1, 2, 3.
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Fig. 61.9. A knot represents a complex hypergesture built from loop gestures.

Fig. 61.10. Four stages (from left to right) of a “dancing” hypergesture of type Ò with values in spatial hypergestures
of type Σ

ÝÑ
@1

ÝÑ
@R3.

Σ “ ‚

‚

��

		 

‚ ‚
In this example, we may reinterpret the hypergesture in Ò ÝÑ

@Σ
ÝÑ
@1

ÝÑ
@R3 “Ò Σ1

ÝÑ
@R3 by use of Proposition

61 and its Corollary 1: While our gesture is a curve of Σ-shaped hypergestures of loops, we may use the
isomorphism Ò Σ1

ÝÑ
@R3 „Ñ 1 Ò Σ

ÝÑ
@R3 to view the hypergesture in question as being a loop of hypergestures

which are curves of Σ-shaped gestures in X.

61.7 Categorically Natural Gestures

We now proceed to the construction of a gesture for each digraph, and this in a so-called natural way,
i.e., such that the category of digraphs is related to the associated gestures in a structurally compatible
way, which mathematicians call “natural” (see [637] for a background). We have spatialization functor
Space : Digraph Ñ SpaceDigraph as follows: We first take the colimit |Δ| of the following diagram of
topological spaces (see Figure 61.11): For every arrow of Δ, we take one copy of the unit line I “ r0, 1s, and
for each vertex one copy of the singleton space t˚u. Then we take the maps from the singleton spaces to the
line copies ˚ ÞÑ 1 or ˚ ÞÑ 0 for each coincidence of arrow heads or tails and arrows.

The colimit topology is this: The skeletal space |Δ| is all the copies of the unit line I being glued together
in their common vertices, and the open sets in |Δ| are the sets intersecting in an open set for each line I.
This space is in fact a metric space, i.e. we view it as being given the induced metric from RVΔ ‘CAΔ on the
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Fig. 61.11. To the right, the diagram for the colimit topology derived from the digraph to the left.

subspace consisting of basis vectors ev indexed by vertices v P VΔ. The arrow a P AΔ is realized by a cartesian

product of the line p1 ´ sqet ` seh, s P I for an arrow t
a� h, times the unit circle S1 “ expp2πisq, s P I,

in C indexed by the arrows. This means that we have a twisted line pp1 ´ sqet ` seh, expp2πisqq, s P I in the

direct sum captq “ Ret ‘Reh ‘Cea Ă RVΔ ‘CAΔ . We write
ÝÑ
Δ “ ÝÑ|Δ| “ I@|Δ|. The spirals serve two needs:

(1) They disambiguate arrows which share heads and tails and (2) they make loops that look like circles,
and consequently spirals for “non-loops” are the most natural way to “draw” them.

Moreover, we have natural transformation g : IdDigraph Ñ ÝÑ
? , which means that there is a gesture

gpΔq : Δ Ñ ÝÑ
Δ for each digraph, which varies functorially. The gesture maps the vertices v of Δ to the

points gpΔqpvq “ ev of |Δ|, and the arrows t
a� h to the curves gpΔqpaq “ ca in |Δ| (to ease intuitive

understanding, we use the representation in the metric space RVΔ ‘ CAΔ , but in reality we refer to the
corresponding structures in the defining colimit). The gesture gpΔq : Δ Ñ ÝÑ

Δ has the following universal
property:

Proposition 62 For any morphism f : Δ Ñ Γ of digraphs and any gesture γ : Γ Ñ ÝÑ
X , there is a unique

continuous map |f | : |Δ| Ñ X such that its associated digraph morphism
ÝÑ
f “ ÝÑ|f | :

ÝÑ
Δ Ñ ÝÑ

X induces a
morphism gpfq : gpΔq Ñ γ of gestures.

This follows by standard arguments from the universal property of the colimit topology on |Δ|. In fact,
the identity maps on the unit intervals defining the colimit |Δ| must be mapped into the curves defining the
gesture γ, and this uniquely determines the morphism |f | by the universal property of colimits.

Corollary 24 The maps Δ ÞÑ ÝÑ
Δ and f ÞÑ ÝÑ

f define a functor
ÝÑ
? : Digraph Ñ SpaceDigraph and the

gesture gpΔq : Δ Ñ ÝÑ
Δ defines a natural transformation g : IdDigraph Ñ ÝÑ

? , also called the natural gesture
associated with the digraph Δ.

Corollary 25 The gesture gpΔq : Δ Ñ ÝÑ
Δ defines a functor g : Digraph Ñ Gesture which is left adjoint to

the projection p : Gesture Ñ Digraph, in symbols g % p. This means that

DigraphpΔ, ppγqq „Ñ GesturepgpΔq, γq
is a bijection, which is functorial in both arguments Δ, γ.

61.8 Connecting to Algebraic Topology: Hypergestures Generalize Homotopy

Algebraic topology is a fundamental field in mathematics that induced the most spectacular change in math-
ematical thinking in the 20th century. As the name suggests, this field connects the category T of topological
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spaces and continuous maps with algebraic categories, such as the category G of groups and group homo-
morphisms. One of the most successful processes in algebraic topology is the transition from a topological
space X to an associated group, namely the fundamental group π1pXq of X (subjected to some technical
conditions, which me may neglect in this introduction). The method that enables such a construction is
most remarkable if not paradoxical. The fundamental group is built on continuous curves c : I Ñ X, that
is, those objects which give rise to gestures in X. One would intuitively expect that such curves are already
fuzzy objects, and not quite what could give rise to precise abstract algebraic structures such as groups. But
the opposite is true: Continuous curves are too precise objects. What is needed in algebraic topology are
classes of curves that emerge from making curves even less precise! The technical concept for this operation
is called homotopy. Two curves c0, c1 in X are called homotopic if they can be deformed into each other in a
continuous way. Technically, this means that there is a continuous map C : I2 Ñ X such that c0ptq “ Cp0, tq
and c1ptq “ Cp1, tq for all t P I. For the curves of two gestures of same skeleton, such a homotopy is shown
in Figure 61.12.

Fig. 61.12. In this homotopy, the left gesture is deformed to the right one by a continuous family of intermediate
gestures. The gesture’s curves (e.g. c0 and c1) are homotopic to each other.

The reader will immediately recognize that such a homotopy of gestures is a special case of a hyperges-
ture with skeleton Ò“ ‚ Ñ ‚. In other words, homotopy is a special case of a hypergesture. Now, the relation
of homotopy is an equivalence relation, and one may therefore consider equivalence classes of homotopic
curves (or gestures), the so-called homotopy classes. This means that we do not look at curves, but at fuzzy
drawings of such curves: It does not matter where we draw precisely our lines, a small deviation will not
change the homotopy class!

The miracle or paradox is that under such a smearing of curves, symbolic structures become real. The
precise construction runs as follows. We consider the set I@X of all curves in X. We do not consider any
homotopic curve pairs, but only pairs c0, c1 such that they coincide at their endpoints, i.e., homotopies such
that c0p0q “ c1p0q and c0p1q “ c1p1q. We denote such a “pointed” homotopy class of curve c by rcs. We may
now concatenate curves: If curve e, f : I Ñ X are such that ep0q “ fp1q, then we build the new curve e ˝ f
defined by pe ˝ fqptq “ ep2tq for 0 ď t ď 0.5 and pe ˝ fqptq “ fp2t ´ 1q for 0.5 ď t ď 1; see Figure 61.13.

This concatenation is not associative, i.e., if we have three curves e, f, g with common contact points,
then e ˝ pf ˝ gq ‰ pe ˝ fq ˝ g, but if we define the concatenation of homotopy classes by res ˝ rf s “ re ˝ f s,
then, whenever all concatenations are defined, we have res ˝ prf s ˝ rgsq “ pres ˝ rf sq ˝ rgs, which we write
res˝rf s˝rgs. This means that the most basic algebraic law of associativity is enabled by the fuzzy construction
of (pointed) homotopy classes. The pointed homotopy classes of curves in X together with the composition
of classes defined by their concatenation are called the fundamental groupoid of X, denoted by Π1pXq,
where as the substructure of those curve classes with a point x P X as common start- and endpoint is
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Fig. 61.13. Composition of curves with common endpoints.

called the fundamental group of X and is denoted by π1pX,xq. Recall that the fundamental group is really
a construction that relates to hypergestures of skeletons Ò, which connect loop gestures of skeleton 1.

The structure π1pX,xq is in fact a mathematical group, with the class of the constant curve in x as
neutral element and the inverse of a curve class rcs being defined by rcs´1 “ rc1s with c1ptq “ cp1´ tq. If X is
path-wise connected (i.e., any two points can be joined as endpoints of a continuous curve), then π1pX,xq is
independent of x, and we denote it by π1pXq. Which groups do we encounter by such a construction? The
most important group of integers Z is the fundamental group of X “ S1, the circle. It is also the group of
the 3D space, where a column is taken away, as shown in Figure 61.14. This is a very important space for
dancers; they may move in curves around the columns, but if such a curve goes around the column, it is not
homotopic to the constant curve, the column is a real obstruction in this space and is responsible for the
emergence of Z. The standard loop gesture for n P Z is the function cnptq “ ei2πnt, if we view the circle as a
subset of the plane of complex numbers.

Fig. 61.14. The fundamental group of the circle is the same as that of a 3D space with a column. The number n P Z

is represented by the loop gesture cnptq “ ei2πnt.

Besides this basic group, one also reaches all finite cyclic groups Zn, for example the important group
Z12 of pitch classes. The following is a remarkable result in algebraic topology,; see also [970][993, p.147]:

Theorem 37 For any group G there exists a topological space X and a point x P X such that G
„Ñ π1pX,xq.
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This shows that all groups, those fundamental structures of mathematics, arise from loop gestures and
derived hypergestures.8 We shall discuss the gestural realization of such algebraic structures in more detail
in the next section.

We conclude this section with a short presentation of the construction of modular groups Zn from
fundamental groups. See Figure 61.15. The spaces having π1pXq “ Zn are the lens spaces Ln,1. These are

Fig. 61.15. The fundamental groups of lens spaces Ln,1 are the modular groups Zn. The generator of Zn is represented
by the movement on the n-hour clock by one unit, as represented on the upper level as a gesture on the circular
skeleton Zn.

quotient spaces of the three-dimensional sphere S3 under an action of the group Zn as follows: One represents
points of S3 as pairs px, yq of points x, y P S2 of the 2-sphere S2, lying on tangent circles cut out by a common
radius as shown in 61.15. We have the canonical action of Zn on such pairs by rotating each component, x
and y, by the angle 2π{n. The quotient space Ln,1 “ S3{Zn is the lens space. The unit 1 P π1pLn,1q “ Zn of
the fundamental group of the lens space is represented on S3 by the gesture with skeleton Zn and by sending
every arrow to the curve segment on the two circles on S3, which connects two successive hours on the n-hour
clock. This is an interesting fact because not only do we have a fundamental group representation of Zn, but
also one which has a very natural gestural interpretation as an elementary movement on an n-hour clock.

61.9 Gestoids

Given a topological space X, consider the category HX of homotopy classes of curves. Its objects are the
elements of X, while the morphism set HXpx, yq is the set of homotopy classes of curves starting in x and
terminating in y. The composition of homotopy classes is the homotopy class of the composed curves. Clearly,
this is a groupoid, the inverse of a curve class rγs being the class rγ˚s of the inverted curve γ˚ptq “ γp1´ tq.
In particular, the group HXpx, xq is the fundamental group π1px,Xq of X in x. The category HX is called
the fundamental groupoid of X. If δ : Δ Ñ ÝÑ

X is a gesture, the groupoid generated by the arrows and point

8 It is also well known [569] that the fundamental theorem of algebra can be proved using arguments from homotopy
theory.
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of δ via the canonical morphism Δ
δ� ÝÑ

X Ñ HX is denoted by Hδ and called the fundamental groupoid of
δ.

Example 63 If Δ “ 1 is the final digraph, and if δ : 1 Ñ ÝÑ
X is a loop δpT q in x, then Hδ is the subgroup of

the fundamental group π1px,Xq generated by the homotopy class of δpT q.
We now linearize9 the fundamental groupoid over a commutative ring R, i.e., the sets HXpx, yq are taken

as a basis over R, and the composition is defined by bilinear extension from the given basis composition.
We call this category R-HX the (R-)gestoid of X. For R “ R, the gestoid is given the structure of a linear
topological category over R as follows. We first define a symmetric bilinear form B on every morphism
set R-HXpx, yq. If p, q are two curve classes, their square distance with respect to B must be dpp, qq2 “
Bpp ´ q, p ´ qq “ Bpp, pq ` Bpq, qq ´ 2Bpp, qq, and if we set Bpp, pq “ 1 for all basis vectors p, then
this yields the defining values Bpp, qq “ 1 ´ 1

2dpp, qq2. For every finite subset F Ă HXpx, yq, there is an
injection iF : RxF y Ñ R-HXpx, yq. We take the canonical pseudometric on each space RxF y and then
the finest topology on R-HXpx, yq such that all injections iF : RxF y Ñ R-HXpx, yq are continuous, i.e.,
the colimit topology for the diagram DX of all finite metric spaces RxF y, together with the injections
RxF 1y Ñ RxF y for the inclusions F 1 Ă F . Then it is standard to verify that the bilinear composition
R-HXpy, zq ˆ R-HXpx, yq Ñ R-HXpx, zq is continuous.10 This means that the linearized category R-HX is
topological, i.e., composition, addition, and scalar multiplication of morphism are continuous. The linearized
image of the fundamental groupoid Hδ of a gesture δ is called the (R-)fundamental gestoid of δ and denoted
by RGδ. Intuitively, this is the portion of the gestoid of X which is covered by arrows from the given gesture.
So the gestoid is a linearized groupoid.

Example 64 In the above Example 63, the fundamental gestoid RGδ over the reals is the group algebra
RHδ.

From this construction, the category R-Gestoid of R-gestoids is the following. The objects, called
gestoids, are the R-linear categories G, i.e., we have bilinear composition, addition, and scalar multiplication
of morphisms on the R-modules x@y of morphisms. A morphism q : G Ñ H is a linear functor, i.e., all maps
qpx, yq : x@y Ñ qpxq@qpyq are R-linear. Moreover, every endomorphism R-algebra is a group algebra, i.e.,
there is a group Gx such that x@x

„Ñ RGx, and for any two objects x, y, if the morphism set is not empty,
then x

„Ñ y. So we may select one group Gc per connected component c of the gestoid to describe the group
algebras x@x

„Ñ RGc in that component.
In this way we have associated a gestoid in R-Gestoid to a topological space X, and then also to a Δ-

gesture δ : Δ Ñ ÝÑ
X in X. Let us check that this assignment completes to functors on the respective categories.

To begin with, if f : X Ñ Y is continuous, then it maps homotopic curves to homotopic curves, and we
deduce a functor Hf : HX Ñ HY , and then by linear extension a linear functor R-Hf : R-HX Ñ R-HY , i.e.,
a morphism of R-gestoids.

Finally, if f : δ Ñ γ is a morphism of gestures, then the associated morphism of spatial digraphs is not
uniquely determined, but the induced functors on the R-gestoids of the given gestures are well defined. So
we have the required functor

G : Gesture Ñ Groupoid Ñ R-Gestoid

which connects the topological level of gestures via the level of groupoids from algebraic topology to its
linearized version of gestoids.

9 Given a category C and a commutative ring R, its linearization RC is the category whose objects coincide with
the objects of C, while for two objects X,Y , the morphism set X@RCY is the free R-module generated by the set
X@CY of C-morphisms from X to Y , and the composition of morphisms in RC is the bilinear extension of the
composition in C.

The linearized category RC is an R-linear category, which by definition means that all morphism sets X@Y are
R-modules, and that the composition of morphisms is R-bilinear.

10 Observe that the cartesian product of the colimits R-HXpy, zq,R-HXpx, yq identifies to the colimit of the cartesian
products of the subspaces generated by finite sets of morphisms from the fundamental groupoid.
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61.9.1 The Fundamental Group, Klumpenhouwer Networks, and Fourier Representation

One interesting aspect in this construction is that the R-gestoid of a gesture is based upon groupoids, and
these are essentially groups (the automorphism groups in the objects) plus isomorphisms which induce group
isomorphisms via conjugation. But this is akin to the background structure of group diagrams used for local
networks, and in particular for K-nets. So one might ask whether it is possible to generate gestures which
give rise to groupoids relating in a canonical way to given local networks.

This is a central topic in the overall strategy of gestural constructions, since we would like to relate
gestures to the abstract algebra of networks or other algebraic concepts, which at first sight have nothing
to do with gestures. This concern is intimately related to the fundamental problem of New AI: How is it
possible to (re)build symbolic thinking from instances of embodiment. How is it in particular possible to
rebuild abstract algebra from gestures? In our context, we have made a step in this direction by use of
the powerful tool of fundamental groupoids from algebraic topology. But it is still not a concrete result
insofar as the role of this construction is not made explicit or applied to specific problems or constructs from
mathematical music theory.

We therefore want to investigate the possible groupoids that intervene in the gestoid construction.
Such a reconstruction would entail that, intuitively speaking, we are able to remodel abstract algebraic
processes in terms of gestural dynamics. We believe that, in fact, understanding abstract algebra is strongly
enhanced (if not enabled) if it uses the gestural embodient, this is what Cavaillès [91] seems to suggest (see
the citation in our introduction). For the music, this would mean that we could envisage the question of how
to “perform” abstract algebraic structures. This is a deep question, since making music is intimately related
to the expression of thoughts. So we would like to be able to express the algebraic insights, as revealed by
use of K-nets, or symmetry groups, for example, in terms of musical gestures. To put it more strikingly: Is
it possible to play the music of thoughts?

Now, every group, and in particular (for our music-theoretical interests) every finitely generated abelian
group, is the fundamental group of a topological space. The latter follows from the fact that such a group
is a finite product of cyclic groups, that the fundamental group of a product of topological spaces is the
product of the fundamental groups of the factors, and that a finite cyclic group Zn is the fundamental group
of the lense space Ln,1, which is the quotient S3{Zn of the 3-sphere S3 Ă C2 modulo the group action
k.pz, wq “ pukz, ukwq, u “ e2πi{n [569, Example 7.15], whereas Z is the fundamental group of the circle S1

(or of SOp2q, etc.). Therefore, in particular, the classical pitch class group Z12 is in fact a fundamental group,
namely that of the cartesian product L3,1 ˆ L4,1. Musically speaking this means that

Fact 19 All groups, in particular the finitely generated abelian groups, such as the pitch class groups Z12,
defining K-networks, may be realized via fundamental groups on the level of topological spaces.

This is a possibility which is most relevant for the problem of effectively playing such networks. But
let us explain the situation. We have just learnt that important abstract groups are realized as fundamental
groups of topological spaces. This means that curves in topological spaces may represent elements of such
abstract groups, whereas the concatenation of such curves realizes abstract group operations. Since the
generators of our groups are finite in number, this opens the question whether we may find gestures such
that their arrows are associated with the generators of our groups, and whether it is possible to give an
interpretation of the involved topological spaces, in particular, the lense spaces, in terms of spaces of more or
less complex bodily gestures. This is an open question. But the lense spaces are objects of low dimension and
may probably intervene for gestures of conductors’ or musicians’ limbs. This is plausible from our previous
work on a pianist’s hand as described in Example 60.

For music theory, the best situation would be the following:

Conjecture 1 For every K-net, there is a gestoid of the same digraph which contains a K-net isomorphic
to the given K-net.

Let us make this conjecture more precise to give a suggestion of how a K-net could be interpreted
within a gestoid. To this end, recall that an R-gestoid has a group algebra x@x “ Rπ1px,Xq for each
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of its objects x, and that for any path f : x Ñ y, we have a conjugation isomorphism of R-algebras
Intf : x@x

„Ñ y@y : z ÞÑ f ˝ z ˝ f´1. So we are in the category AlgR of R-algebras, and the given gesture

γ : Γ Ñ ÝÑ
X defines a diagram Dγ of R-algebras, the algebra Rπ1px,Xq at point x, and algebra isomorphisms.

To give a K-net means to select an element of limDγ . In terms of the category AlgR, this means evaluating
the diagram of representable functors @Rπ1px,Xq at the address RZ, since RZ@B

„Ñ B˚, where B˚ is
the group of multiplicatively invertible elements of B. If we have a space X with π1px,Xq „Ñ Z12, then an
element zx P Z12 corresponds to a point in RZ@B

„Ñ B˚ for B “ RZ12. The combination of an algebra
isomorphism Intf with a multiplication by a group element simulates the affine morphisms used in K-net
theory. Therefore this structure yields a model for K-nets in finitely generated abelian groups.

The intriguing point in this presentation is that the musical interpretation of elements z P Z12 as pitch
classes seems to be somewhat mysterious when reinterpreting Z12

„Ñ π1px,Xq. Why should a multiple loop
be associated with a pitch? There is however a very natural interpretation of this mystery in terms of Fourier
theory. If a periodic time function xptq with frequency 1 is represented by a Fourier series xptq “ ř

n γne
i2πnt

with finitely many non-vanishing coefficients γn, the functions εnptq “ ei2πnt are linearly independent, and
εn “ εn1 for n P Z. Therefore the function x is in fact an element of the group algebra11 CZ, if we identify
εn with n P Z. It is now easy to reinterpret the elements of Z in a natural way as being elements of a
fundamental group.

In fact, consider the circle S1, which we identify with the unitary group U Ă C of complex numbers of

length 1. Then a gesture δ : 1 Ñ ÝÑ
S1 is a loop in S1. In particular, we have the gesture ε : 1 Ñ ε1 associated

with the loop ε1 : I Ñ S1 in 1 P U . This yields the fundamental component of the Fourier representation,
and it is a generator of the fundamental group π1p1, S1q „Ñ Z. So the Fourier representation corresponds to
the formal sum

ř
n γnε

n in the complex gestoid CGε, i.e., the linearization of the fundamental groupoid over
the complex numbers. In short:

Fact 20 The Fourier representation is the linear combination in the complex gestoid CGε of gesture classes,
which are powers of the fundamental loop gesture in 1.

The converse, i.e., the reinterpretation of elements in more general gestoids in terms of time functions,
is a challenging problem. In particular, we are asked to reinterpret the loops in the fundamental group Zm

of a lense space Lm,1 in terms of acoustically meaningful functions.

61.10 Gabriel’s Spectroids and Natural Formulas

From the category Digraph of digraphs, one may also derive algebraic instead of topological structures. On
one side, this is motivated by the well-known dichotomy of topology versus algebra as guiding paradigms in
mathematics. On the other side, as we shall see in Section 61.10.1, an algebraic perspective on digraphs is
musically motivated by the theory of local musical networks.

Our approach refers to Gabriel’s construction of spectroids12 from digraphs [351, 352], which runs as
follows. Given a commutative artinian ring k, the category k-Spectroid of k-spectroids has the k-spectroids
as objects: They are k-linear categories S, where any two different objects x ‰ y are non-isomorphic, where
the endomorphism algebras x@x of all objects x are local (i.e., the non-invertible endomorphisms of x are a
(two-sided) ideal Radpxq Ă x@x), and such that the morphism spaces x@y have finite length over k. We shall
henceforth omit the finiteness condition except when explicitly stated. The morphisms between k-spectroids

11 A group algebra is a monoid algebra, where the monoid is a group.
12 The term spectroid is akin to spectrum. This is intentional since, by Gabriel’s thesis [351], one has this fact: For
B a k-algebra over an artinian commutative ring k, consider the category ModB of right B-modules of finite
k-length, and take the full subcategory SppModBq of representatives of all indecomposable injective modules.
Then if every right ideal of B is two-sided, there is a bijection between the objects of SppModBq and the prime
spectrum SpecpBq, i.e., the set of two-sided prime ideals of B (meaing that any inclusion aIb Ă I for such an ideal
I, and a, b P B implies a P I or b P I).



926 61 Fundamental Concepts and Associated Categories

are the local13 k-linear functors f : S Ñ T , i.e. those carrying the radical RadpSq into RadpT q. In the sequel,
we fix k “ R as the base ring of spectroids and omit this specification.

The analog construction of gestures is an algebraic interpretation of digraphs instead of a topological
one. We interpret vertices as objects and arrows as morphisms in spectroids. More precisely, a digraph is
called radical iff it is the digraph RadpSq of a spectroid S having the noninvertible morphisms as its arrows
and the domain and codomain maps d, c : RadpSq Ñ S as tails d “ t and heads c “ h of arrows. The
category RadicalDigraph of radical digraphs has the radical digraphs RadpSq as their objects and the graph
morphisms r : RadpSq Ñ RadpT q induced by morphisms s : S Ñ T of the underlying spectroids, we then
write r “ Radpsq. This category is the algebraic analog to the category SpaceDigraph of spatial digraphs. A
morphism of digraphs φ : Δ Ñ RadpSq is called a Δ-formula in S.

Example 65 Given a digraph Δ, we have the R-category RΔ, which is the linearized path category14

RΔ “ RPathpΔq. Consider the digraph Δ “ t X��Y �� and the quotient category S obtained from RΔ by
division through the ideal generated by the relations X2 ´ Y X, Y 2 ´ XY,XY ` Y X,X3. This means that
we have a three-dimensional radical RadpSq “ Rx`Ry`Rxy, with the relations x2 “ yx “ ´y2, xy “ ´yx,
and x3 “ 0. Now, if we are given a digraph Γ , a formula ψ : Γ Ñ RadpSq is the assignment of any vector
ψpaq P RadpSq to an arrow a P AΓ , since there is only one vertex in RadpSq. Then the formula is completely
described by labeling the arrows of Γ with their images and writing down the relations in S. For example,
if Γ “ 1, and if the ψ-image of T is ψpT q “ xy ` 3y2, then we may write the formula as

ψ “ txy`3y2 �� , pxy ` 3y2q2 “ 0.

Given two formulas φ : Δ Ñ RadpSq, ψ : Γ Ñ RadpT q, a morphism f : φ Ñ ψ of formulas is a morphism
f : Δ Ñ Γ of digraphs such that there is a morphism Radpsq : RadpSq Ñ RadpT q of radical digraphs which
commutes with f , i.e., ψ ˝ f “ Radpsq ˝ φ. The category of formulas is denoted by Formula, and we have a
canonical projection q : Formula Ñ Digraph by forgetting about the radical codomain.

For a digraph morphism f : Δ Ñ Γ , we have the associated functor Pathpfq : PathpΔq Ñ PathpΓ q
and its linearized extension Rf : RΔ Ñ RΓ . This defines a functor R? : Digraph Ñ Spectroid, and then,
by restriction to the radicals, a functor Rad : Digraph Ñ RadicalDigraph : Δ ÞÑ RadpΔq “ RadpRΔq. For
every digraph Δ, we have a canonical formula rpΔq : Δ Ñ RadpΔq given by the identity on the arrows and
vertices.

Proposition 63 For any morphism f : Δ Ñ Γ of digraphs and any formula ψ : Γ Ñ RadpSq, there is a
unique functor Rf : RΔ Ñ S such that its associated digraph morphism Radpfq : RadpΔq Ñ RadpSq induces
a morphism rpfq : rpΔq Ñ ψ of formulas.

Corollary 26 The maps Δ ÞÑ RadpΔq and f ÞÑ Radpfq define a functor Rad : Digraph Ñ RadicalDigraph
and the formula rpΔq : Δ Ñ RadpΔq defines a natural transformation r : IdDigraph Ñ Rad, also called the
natural formula associated with the digraph Δ.

Corollary 27 The formula rpΔq : Δ Ñ RadpΔq defines a functor r : Digraph Ñ Formula which is left
adjoint to the projection q : Formula Ñ Digraph, in symbols r % q. This means that

DigraphpΔ, qpψqq „Ñ FormulaprpΔq, ψqq
is a bijection, which is functorial in both arguments Δ,ψ.

13 By definition the non-invertible morphisms of S.
14 The path category of a digraph Δ has the vertex setVΔ as the object set and the paths x Ñ x1 Ñ . . . y as morphisms

from vertex x to vertex y. The composition of morphisms is the composition of paths, while the lazy path of length
0 in x is the identity in x.
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61.10.1 Solutions of Representations of Natural Formulas by Local Networks

If we are given a formula, it is natural to ask for its solutions. We do not elaborate on this subject here,
but since it is an essential technique for the construction of (local) networks,15 it is necessary to indicate
the relation to these concepts, which are important in music theory [719, 599]. A spectroid is deduced from
the situation of a category Modk of k-modules over a commutative ring k. Then the morphism sets M@N
are k-modules and the composition is bilinear. One selects a complete set of representatives of isomorphism
classes of indecomposable injective modules and considers the full subcategory S defined by these objects.
Therefore a formula ψ : Γ Ñ RadpSq defines a diagram of morphisms in S, which is a special case of a
diagram ψ : Γ Ñ Modk as considered in network theory. We therefore call ψ a generalized formula. Now,
this is equivalent to giving a k-linear functor kψ : kΓ Ñ Modk defined on the spectroid kΓ . But if we
take the natural formula rpΓ q : Γ Ñ RadpΓ q, kψ defines an obvious morphism fpψq : rpΓ q Ñ ψ. And if we
are given relations R among the arrows associated with ψ, this means that we may factorize fpψq through
the quotient category kΓ {R and instead give a morphism fpψq{R : rpΓ q{R Ñ ψ. Therefore, the generalized
formulas in Modk are “representations” of natural formulas or quotients thereof.

To deal with solutions, we need points in the modules, which are the vertex images of the generalized
formula. To this end, one selects a module A (an address module in the theory of denotators; see Chapter
6) and then evaluates the representable functors @ψpxq of the vertex modules ψpxq at A, whence a diagram
A@ψ of sets A@ψpxq, which are related by the evaluated morphisms A@ψpaq for arrow a of Γ . A solution
of the generalized formula ψ at address A is, by definition, an element s of the limit A@ limψ of this set
diagram. This is precisely what we called a local network in the theory of networks [720]. Summarizing:

Fact 21 Local networks are the solutions of generalized formulas at selected addresses A.

61.11 The Tangent Category

In algebraic geometry, the Zariski tangent space TX,x of an R-rational point of an R-scheme is the R-linear
dual pm{m2q˚ of the quotient m{m2 of the maximal ideal m of the local ring OX,x; see also Appendix Section
F.4.1. In an R-spectroid S, every endomorphism algebra x@x is local with maximal ideal mx “ Radpxq. So we
may associate the following linear category with tangent spaces: Consider the quotient category S{RadpSq2
and take its linear subcategory TS which for x ‰ y has TSpx, yq “ RadpSqpx, yq{RadpSq2px, yq, while
TSpx, xq “ R ‘ Radpxq{Rad2pxq. So the endomorphisms in TSpx, xq are identified with the formal sums
μ ` ε.t, μ P R, t P Radpxq{Rad2pxq, which are added component-wise and multiplied under the infinitesimal
condition ε2 “ 0 via pμ ` ε.tq ˝ pν ` ε.sq “ μν ` ε.pνt ` μsq. If for x ‰ y, f P TSpx, yq, then we formally write
ε.f instead of f , and then ε.f ˝ pμ` ε.tq “ ε.μf . This means that we view the tangent category as built from
“tangent vectors”, as indicated by the ε-coefficient.

If f : S Ñ U is a morphism of spectroids, then, being local, it factorizes to fR : S{Rad2pSq Ñ
U{Rad2pUq and then evidently also takes the tangent subcategories into one another, yielding a functor
Tf : TS Ñ TU . This defines a functor on the category of spectroids.

Example 66 If S “ R1 with the final digraph 1 “ t T�� , then TS looks as follows: It has just one object
x and its endomorphisms TSpx, xq are the algebra Rrεs of dual numbers μ ` ε.t, μ, t P R. Such a number
represents the tangent of length t at the point μ of the affine line A over the reals.

Then, if we are given a formula ψ : Γ Ñ RadpSq, we consider the morphisms in TS defined by ψ as

follows: for x ‰ y and an arrow x
a� y, we take ψa “ ε.pψpaq mod Rad2q, and for a loop x

a� x,

15 Recall that a local network is described by a diagram of modules Mi and affine module homomorphisms, together
with an element mi P Mi for each vertex module Mi, such that any two such elements are mapped to each other
by the given homomorphisms. In other words, a local network is an element of the limit of the given diagram. See
[720] for more details on this construction.
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we take ψa “ 1 ` ε.pψpaq mod Rad2q. Therefore, in the tangent category TS , we have the exponential

rule for endomorphisms on x, i.e., for two loops x
a,b� x, we have ψa`b “ ψa ˝ ψb, while for x ‰ y, loops

x
a� x, y

c� y, and an arrow x
b� y, we have ψb˝ψa “ ψb “ ψc˝ψb. Denote then by Tψ the subcategory

of TS generated by the arrows ψa, a P AΓ and their inverses—if they exist—and call this the tangent category
of the formula ψ. The inverses are of course precisely the automorphisms pψaq´1 “ 1`ε.p´ψpaq mod Rad2q,
which we may also think of being generated by new “inverse arrows” ´a on Γ , much as it is done in the
Bass-Serre theory of graphs of groups [970]. So we also write ψ´a “ 1 ` ε.p´ψpaq mod Rad2q for these
inverses. Observe that for a formula ψ : Γ Ñ RadpSq of a finite digraph Γ , the tangent category Tψ has only
finitely many morphisms between different objects and the endomorphism monoids are finitely generated
commutative groups.

In analogy to the fundamental group construction on the topological branch of our discussion, we may
now linearize the tangent category Tψ of a formula. We denote this by Fψ and call it the radical formoid of
the formula ψ. In the above-mentioned situation of a finite digraph of the formula ψ, the radical formoid has
finite-dimensional morphism vector spaces x@y for different objects x, y, whereas the endomorphism spaces
are group algebras x@x

„Ñ RTψpx, xq over the finitely generated commutative groups Tψpx, xq.
Given two formulas ψ : Γ Ñ RadpSq, φ : Δ Ñ RadpUq and a morphism f : ψ Ñ φ of formulas, we

have an auxiliary morphism s : S Ñ U of spectroids such that Radpsq commutes with f : Γ Ñ Δ. So for
any arrow a P AΓ , we have spψpaqq “ φpfpaqq. Moreover, sp1xq “ 1spxq. Therefore for the residual categories

modulo Rad2, we have the residual functor s{Rad2 : S{RadpSq2 Ñ U{RadpUq2, which on loops x
a� x

in x acts by s{Rad2p1x ` ψpaq mod Rad2q “ 1spxq ` spψpaqq mod Rad2 “ 1spxq ` spφpfpaqq mod Rad2,

and on arrows x
a� y for x ‰ y yields s{Rad2pψpaq mod Rad2q “ φpfpaqq mod Rad2. This shows that

we have a functor Ff : Fψ Ñ Fφ associated with f , and this assignment is obviously functorial. Therefore
we have a functor F : Formula Ñ R-Formoid, the latter category being, by definition, the category of linear
categories generated from subcategories of residual categories mod Rad2 of spectroids.

Example 67 In the above Example 66, if we take the natural formula rp1q : 1 Ñ RadpR1q, sending the true
arrow T to the radical residue ε, we get Trp1q

„Ñ Z, the integer z corresponding to the power 1 ` ε.z in Rrεs.
We are now ready to observe the overall path from the final digraph 1 “ t T�� when the gestural and
formulaic functors are applied. On the one hand, the topological construction of the fundamental gestoid
Ggp1q is the category RZ, the group algebra over R of the group of integers, and the latter comes in via the
generator of the fundamental group of the circle S1. On the other hand, the radical formoid Frp1q is also the
group algebra RZ, where Z now comes in as the group generated by the “tangent vector” 1`ε, corresponding
to the residue ε of the generating loop T of the linearized path algebra R1

„Ñ RrT s associated with the final
digraph 1. So both constructions yield isomorphic categories

Ggp1q
„Ñ Frp1q

when taking the gestural or formulaic branch. Of course, this identification of the results from the two paths
is not possible for general digraphs, since the gestoid is built from a groupoid, whereas the formoid stems from
a spectroid, where different objects are never isomorphic. So for general digraphs Γ we have GgpΓ q  „ÑFrpΓ q.

This can be made more precise on the endomorphism algebras. The fundamental gestoid GgpΓ q of a
digraph Γ is easily calculated: It is well known [590, Theorem 10.7] that the fundamental group of a graph
is free, the number of generators being given from the number of edges added to a spanning tree. So nor-
mally, this is a non-abelian group, whereas the formoid FrpΓ q has abelian groups defining the endomorphism
algebras.

Example 68 Let us discuss the example of the classifying digraph Ω shown in Section 61.5. Here, the
gestoid GgpΩq is as follows: The natural gesture of Ω has the topological space
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|Ω| “ fF

P

N

t

Q

T

��

whose fundamental group is the free group π1p|Ω|q “ xT,Q,R, Sy generated by the four loops16 T,Q,R “
NP , and S “ NFP . The groupoid of the space is then uniquely described by the two objects f, t, their
groups f@f

„Ñ t@t
„Ñ π1p|Ω|q, the isomorphism f@f

„Ñ t@t being given by conjugation N?P , whereas the
morphisms between the two objects are t@f “ Nt@t

„Ñ t@t, f@t “ Pt@t
„Ñ f@f . The groupoid is then the

two-object linear category with the group algebras RxT,Q,R, Sy as endomorphism algebras.
On the other hand, the category RΩ of Ω has two objects and the linear combinations of paths

with given start and end as morphisms, where we then have to divide by the paths of length ě 2. This
division yields the endomorphism algebra f@f

„Ñ Rrεs and t@t
„Ñ Rrε1, ε2s (two infinitesimals ε1, ε2 with

ε21 “ ε22 “ ε1ε2 “ ε2ε1 “ 0). Then the image 1 ` εF of the loop F generates Z and we have the group
algebra RZ as endomorphism algebra of FrpΩq in f . In t, we have the group algebra RZ2 „Ñ RZ bR RZ as
endomorphism algebra of FrpΩq.

61.12 The Diamond Conjecture

The preceding constructions are by no means in a complete theoretical shape. For example, the formulaic
branch does not rely on the real numbers, any commutative field k or artinian commutative ring would
equally provide a reasonable setup. For example, the formoids over the fields of positive characteristic p
yield group algebras Frp1q

„Ñ kZp over the cyclic group Zp, and this algebra would be needed to reflect
the appearance of fundamental groups Zp for lense spaces, as mentioned above. Moreover, the reduction
modulo Rad2 is not mandatory. More general reductions modulo Radn, n ą 2, would also yield interesting
information. For example, we could take care of longer paths in categories kΓ than just those of length 1.

In order to shape the hypothetical ideal architecture, which should encompass and harmonize the two
branches, we present the subsequent diamond diagram. It is topped by a hypothetical category X, which
should unite the algebraic and the topological branches. The hypothetical functors G,F, u, v, x, y are shown
in dotted arrows. It is further conjectured that for the functors G and F , we have the adjunctions F % G and
G % F . Finally, it is conjectured that the ascending/descending arrows can be completed to a commutative
diagram by two ascending/descending arrows, x, y/u, v.

X
u



v

��

R-Formoid

G
��

x

��

R-Gestoid
y

��

F
��

Formula

q �� ��

F

��

Gesture

G
��

p
Digraph

��

g

��

��

r

��

In other words, starting from a common basis of elementary mathematical structures, i.e., the digraphs,
we have a double unfolding of musically relevant structures: gestures and formulas. Our hypothesis is that
there exists a “universe” X, whose ontology englobes these two branches in a natural way and at the same
time expresses a unified comprehension of music.

16 This follows immediately from the Seifert-Van Kampen theorem [590, Chapter 10]. In fact, |Ω| is the colimit of
a loop graph L1 and the colimit L2 of three copies of the loop graph. L2 is obtained by gluing together the loop
graphs in a nondegenerate point, so their fundamental group is free over three generators. And the gluing of L1

with L2 is in one nondegenerate point f , so the total fundamental group is free over the three generators of π1pL2q
and the generator of π1pL1q, whence the claim.
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61.13 Topos Logic for Gestures

This section is quite sketchy, but nonetheless important for future research since it introduces a logical
technique for gestures, formulas and their related gestoids and formoids. Since Digraph is a topos, every
digraph Δ has a canonical logic, i.e., a Heyting algebra on the sub-digraph sets SubpΔq “ Δ@Ω, for the
subobject classifier Ω. The logical operations on SubpΔq are as follows. If Γ,Σ are two sub-digraphs of Δ,
then we have Γ ^ Σ “ Γ X Σ and Γ _ Σ “ Γ Y Σ. The implication Γ ùñ Σ is a bit more involved: We
have VΓ ùñ Σ “ pVΔ ´VΓ q YVΣ . The arrows are the following: They include Γ XΣ, all arrows on vertices of
the intersection VΓ X VΣ which are not in Γ , all Δ-arrows on vertices in VΔ ´ VΓ , and all Δ-arrows between
vertices in VΓ X VΣ and vertices in VΔ ´ VΓ .

This Heyting logic is identified with the contravariant functor @Ω : Digraph Ñ Heyting with values
in the category Heyting of Heyting algebras. The functor also applies to gestures and formulas by applying
the logical operations to the respective domains. More precisely, if γ : Γ Ñ ÝÑ

X is a gesture, then the set
of subgestures Subpγq of γ inherits the Heyting structure on its domain Γ . Mutatis mutandis, the analog
Heyting structure is realized for the set Subpψq of a formula ψ.

Example 69 In mathematical music theory, local networks are also used for the description of prominent
triadic chords; see [719, 714] for details. In particular, the major, minor, and diminished triadic degrees of the
major scale are described by the orbits xfypxq “ tx, fpxq, f2pxq, f3pxq, . . .u of single affine transformations
f “ T tg with fpxq “ t ` gx, acting on a particular pitch class p. Here is a list of such local networks for the
all triadic degrees of the C-major scale Cmaj “ t0, 2, 4, 5, 7, 9, 11u (identifying c with 0 P Z12, c7 “ d5 with
1 P Z12, etc.). We have

I “ t0, 4, 7u “ xT 73yp0q, 0 ��7 ��4��

III “ t4, 7, 11u “ xT 73yp11q, 11 ��4 ��7��

II “ t2, 5, 9u “ xT 113yp9q, 9 ��2 ��5��

IV “ t5, 9, 0u “ xT 93yp5q, 5 ��0 ��9��

V I “ t9, 0, 4u “ xT 93yp4q, 4 ��9 ��0��

V “ t7, 11, 2u “ xT 53yp7q, 7 ��2 ��11��

V II “ t11, 2, 5u “ xT 12yp2q, 2 ��5 ��11��

with the two intervals 7 Õ 4 in I, III and 0 Õ 9 in IV, V I being generated by the same transformation
each, i.e., T 73 for the first interval and T 93 for the second. This defines a digraph ΓC with the vertex set
VΓC

“ Cmaj and the unique arrows i Ñ j associated with the above transformations; see Figure 61.16.

Taking the gesture space Fingers “ Π
ÝÑ
@FingerSpace as topological target space17, we fix a hypergesture

γC : ΓC Ñ ÝÝÝÝÝÑ
Fingers.

and then look for the logic on SubpγCq. We denote by γX the restriction of γC to a subdigraph X of ΓC . We
also identify the subdigraph associated with a degree X with X. Then the logical operations can be performed
on the seven degrees. For example, one has γV ùñ γI “ γIYIV YV I , or else γIV ùñ γV “ γIIIYV .

Whereas the Heyting-algebra structure of Subpγq is by construction isomorphic to the Heyting algebra
SubpΓ q of its domain Γ “ ppγq, the system of gestoids Gγ1 Ă Gγ for the subgestures γ1 Ă γ within SubpGγq
may look completely different depending on the topology of the space X present in γ : Γ Ñ ÝÑ

X and of
the map γ as such. In particular, the characterization of gestoids such as Gγ1^γ2 , Gγ1_γ2 , or Gγ1 ùñ γ2 for
subgestures γ1, γ2 of γ must be investigated within SubpGγq, and, mutatis mutandis, for logical constructions
on the branch of formoids.

17 Of course, one could enrich the context by blowing up the finger space to include the real shape of a finger, but
this is not important here.
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Fig. 61.16. The C-major scale can be covered by a net defined by the seven transformations defining the degrees.
Each degree is represented by its digraph, which is a subdigraph of the digraph ΓC of the scale.

When applying logic to hypergestures γ in spaces W
ÝÑ
@X, where W “ Γ1Γ2 . . . Γk, Proposition 1 enables

logical operations of “inner” digraphs Γi, i ą 1, since one may shift those digraphs to the leftmost position
and get the commutative word W “ ΓiΓ2 . . . pΓi . . . Γk. Then one may apply logical operations to the digraph
Γi for the subgestures Subpγ1q of the gesture γ1 corresponding to γ after the permutation of digraph letters
in W , and finally switch back to the corresponding gesture in the original space W

ÝÑ
@X.

61.14 The Escher Theorem for Hypergestures

Summary. We discuss some musical applications of the Escher Theorem.

– Σ –

61.14.1 Hypergestures and the Escher Theorem for Fux Counterpoint

The Escher Theorem (see Proposition 61 in Section 61.6) is the following, seemingly inoffensive, statement,
which essentially states that iterated hypergestures can be built in any order of the involved directed graphs:

Theorem 38 Let Γ1, Γ2, . . . Γn be n digraphs, X a topological space, and π a permutation of the set
t1, 2, ...nu. Then there is a canonical homeomorphism (i.e., a bijection which conserves all topological struc-
tures)

Γ1
ÝÑ
@Γ2

ÝÑ
@ . . . Γn

ÝÑ
@X

„Ñ Γπp1q
ÝÑ
@Γπp2q

ÝÑ
@ . . . Γπpnq

ÝÑ
@X.

This does not mean that the hypergestures in the space to the left are the same as those in the space to
the right, but there is a one-to-one correspondence among these hypergestures which is perfectly compatible
with all topological relations among neighborhoods.

A musical example will make this more lucid. The first species of Fux theory of counterpoint considers
two voices, punctus contra punctum. There are two melodic lines, the cantus firmus (c.f.), and the discantus,
as shown at the bottom of Figure 61.17. There are two readings of the term “punctus contra punctum”:
According to the common ‘vertical’ understanding, the discant ‘point’ (the upper tone at a given onset in
the example) is set against the cantus firmus ‘point’ (the lower tone at a given onset in the example). This
must always be a consonant interval (prime, minor third, major third, fifth, minor sixth, major sixth). The
more adequate, but less known, interpretation is the ‘horizontal’ one: The ‘point’ is a defined interval at a
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Fig. 61.17. Bottom: The first species Fux counterpoint exhibits two melody lines: the cantus firmus (lower melody,
c.f.) and the discantus, upper melody.

given onset time, whereas the ‘counter-point’ to this is the subsequent interval [924]. This makes more sense
since the compositional tension is not vertical, but horizontal. Whatever the interpretation, the result is this
double melodic configuration, whose vertical or horizontal genealogy is however no longer retraceable, i.e.,
the listener or reader of a given contrapuntal composition cannot tell from that data how it was constructed,
vertically or horizontally, The result is neutral.

Fig. 61.18. Maurits Cornelis Escher’s Belvedere as an illustration of the bifurcation of neutral image regions into
incompatible perspectives. ©2017 The M.C. Escher Company-The Netherlands. All rights reserved www.mcescher.com.

http://www.mcescher.com
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According to the discussion of continuous extensions of discrete sequences of gestures, if we allow the
horizontal (in time direction) continuous extension of the discrete sequence of a two-voice counterpoint
melody and simultaneously the vertical (in pitch class direction) continuous extension of the two discrete
melodies, then the entire configuration looks like a tubular shape, as shown in Figure 61.17, above the
bottom score. The upper left reading is then the common interpretation: connecting two melodies by a curve
of melodies in the pitch class circle domain. The upper right reading is the more essential one, showing the
time-oriented curve of intervals in pitch class space. In terms of hypergestures, the left one is a loop of lines,
whereas the right one is a line of loops. The Escher Theorem lets these two hypergestures correspond to
each other. This elementary example shows that the interpretation of a complex shape may give rise to very
different readings in terms of skeletons and bodies of hypergestures.

This generates a dramatic hot spot in the interpretational activity, which drives the free understanding
of musical shapes. I have to stress the adjective “free” here, since in a standard interpretation only one view
is cultivated. It is never a line of loops, but must be strictly read as a loop of lines. Standardization is a strong
poison against creativity. Its etymology from “stand hard” is speaking: the softness of interpretation is given
no chance. This hot spot is based upon the n! permutations of skeletal digraph sequences that generate the
hypergesture space Γπp1q

ÝÑ
@Γπp2q

ÝÑ
@ . . . Γπpnq

ÝÑ
@X.

These permutational variants are ways of breaking the delicate equilibrium of an uninterpreted shape.
Each permutation generates a completely different hypergesture. One could view these departures from the
neutral cusp towards a variety of interpretational sinks as a bifurcation process: The neutral trajectory of
perception explodes into n! interpretations, perspectives, or ways of handling one and the same neutral
datum. Such a bifurcational process is best illustrated by a work of Maurits Cornelis Escher (see Figure
61.18), where neutral regions of the graphics (imagine a horizontal strip between the upper and lower levels
of the architecture) are split into different, mutually exclusive, perspectives. This is the reason, why we coin
the above theorem “Escher Theorem”. We view this variety of switching into different interpretations, we
have chosen the header statement from Saint Augustine: modulation as a switching action between different
musical perspectives.

61.14.2 Rebecca Lazier’s Vanish: Lawvere, Escher, Schoenberg

The category of (hyper)gestures is significant beyond the reciprocal interplay of free jazz musicians; it is
fundamental for a gestural understanding of music. We want to sketch such an aspect here, because our
concern is with the sophisticated active way of listening to music, as thematized by a number of musicians,
such as Albert Ayler, or scholars, such as Helga de la Motte-Haber.

Listening to and understanding intelligent music is by no means a passive activity; a fortiori, a quality
performance of free jazz requires an optimum of activity in order to be able to throw back the gestures one
has received. This type of active listening, of course, is not exclusive to free jazz, and in this section we present
a short study another type of music that is rich in fluctuation and permutation, viz. Schoenberg’s String
Trio, op. 45, a twelve-tone composition. The Trio is rich in intense gestural textures, mirroring Schoenberg’s
intense state during the period of its 1946 composition; Schoenberg had just suffered a nearly fatal heart
attack.

Rebecca Lazier, inspired by the gestural offerings of the Trio as well as by the Trio’s overall beauty,
created a choreographed arrangement of the piece for seven dancers, titled Vanish, which premiered in New
York City in 2002. Lazier describes her program: “In order to create parallels between Schoenberg’s musical
evolution and the evolution of the moving body and dance composition, I was required to create broader
choreographic constructs that consisted of many voices and many experiments.”

Her experiment specifically punctuates the gestural strength of the piece, and in turn facilitates a
gestural way of listening. Lazier innervates the music with a network of hypergestural projections that are
manifested in the gestures of the dancers, elevating the piece to a type of dynamic dancing hypergesture.
This may justify the funny title “Making Schoenberg Dance” of her paper in [587]. To return to the subject
of “active listening,” this dance interpretation intimately intertwines a visual counterpart with the process
of invested listening, providing another vital perspective on Schoenberg’s music and gestures in general.
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When Mazzola presented Lazier’s choreography to his students, they were quite surprised about being
confronted with a dancing Schoenberg perspective. Isn’t this music anything but dance? Does a visual
counterpart detract from the strength of the music? Isn’t it an abstract, highly intellectual affair? We
understand that dodecaphonic threads, the realizations of variants of the composition’s grundgestalt, are
gestures that are thrown into the composition without being explicitly connected with each other within the
piece’s notated structures.

Schoenberg himself was aware of the “dancing” character of such opposi-

Fig. 61.19. Choreo-
grapher Rebecca Lazier.

tional musical threads in space-time, and in the Trio, the architecture of im-
perfection is loaded with Michael Cherlin’s time shards that float in a space of
atemporal emptiness, of broken references and non sequiturs. Such structural ru-
ins cannot be built upon a fixed framework; they are only aesthetically justified as
strong gestures in the sense of Châtelet: they gain their amplitude by determining
themselves; their self-referential sovereignty equals their penetration. Otherwise,
we were lost in the listening adventure of such islands of beauty.

Lazier symmetrically parallels the five parts of the Trio: Teil 1, Episode
1, Teil 2, Episode 2, Teil 3: Teil 1 is a constructive exposition of dodecaphonic
material, based upon seven ‘dodecaphonic series for dancers’: Each dancer invents
a series of movement units according to the sequence

near-death/transience/flight/hover/shiver/...

... slide/propel/crash/soar/fling/tender/explode

of words. These series are exposed in Teil 1 and reflect a well-formed counterpoint of dancers and movements.
Teil 3 is a symmetric movement and reprises Teil 1, but also vanishes into oblivion at the end. The middle
part, Teil 2, is dominated by what Lazier calls “catching phrase.” Here is the description [587]:

Each dancer was asked to run across the stage space, ‘catch’ something of any shape or size and then
continue running off. The word ‘catching’ served as the inspiration for the dancers to create their own
movements without visual information from the choreographer, hence, the movements were infused
with individual perceptions, memories, and psychology.

Lazier does not follow the surface of the musical sound, but the vibrations of the twelve-tone rows, and
she does not comment on the structure of the composition by some mirroring or mickey-mousing of musical
events, she lets her dancers catch the musical gestures and demonstrate their understanding thereof in their
performance of Teil 2. The dancers catch Schoenberg’s gestures of rows and the free floating shards of time.

It is also remarkable that the collective and collaborative hypergesture realized by the dancers escapes—
has to escape—the choreographer’s control. This is her statement: “Movement itself or the syntax was
placed beyond my willful control: either in the hands of chance, or in the bodies of the dancers.” The dance
itself made a revealing impression to my (Mazzola’s) students: They felt that the overarching hypergestures
were very clearly perceived and that the elasticity of the bodies contributed a lot to the more resonant
understanding of the compact musical events and processes. The gestural understanding created what could
be called a logic of bodies, and brought out certain aspects of the piece that were shrouded in pure acoustical
space. The term “logic of bodies” is not a simple metaphor or even an abuse of the word “logic” in order
to give the “primordial” reality of bodies a higher ‘intellectual’ status. The secret behind this wording is
that gestures bear a natural logic in the most formal sense of mathematics. In fact, the category of directed
graphs, the skeleta of gestures—which generalize the human skeleta–are a topos, i.e., a mathematical category
full of logical and geometric properties. The most interesting fact for us is that every directed graph bears
the structure of a Heyting algebra, which is the core structure of intuitionistic logic18 that was thoroughly
investigated by the school of Charles Ehresmann and William Lawvere [376].

18 In intuitionistic logic, the negation of the negation of a statement is not equal the original statement, but somewhat
more true. Also the law of the excluded third is invalid. See also Appendix Section G.5.



61.14 The Escher Theorem for Hypergestures 935

This logic is therefore a natural enrichment of the naked skeleton. Its parts behave like truth values that
are distributed over the body: Each bone, the chest, the limbs, the pelvis, all these parts are truth values of
the skeleton. We shall not delve further into these aspects, but it is essential to know that they are there, ready
to be dealt with in a more sophisticated analysis of gestures. It would be important and profitable to enrich
Lazier’s choreography by a logical analysis of her dancers’ body configurations. Lazier’s Vanish therefore
appears as a highly inspiring contribution to the synopsis of Lawvere’s, Escher’s and Schoenberg’s iridescent
perspectives, which are somewhat more substantially interrelated than Gödel’s, Escher’s, and Bach’s.



62

Categories of Gestures over Topological Categories

Summary. We generalize the topological approach to gestures, and culminate in the construction of a
gesture bicategory, which enriches the classical Yoneda embedding and could be a valid candidate for the
conjectured space X in the diamond conjecture [720]; see also Section 61.12. We discuss first applications
thereof for topological groups, and then more concretely gestures in modulation processes in Beethoven’s
Hammerklavier sonata. The latter offers a first concretization of answers to Lewin’s big question from [605]
concerning characteristic gestures. This research is a first step towards a replacement of Fregean functional
abstraction by gestural dynamics.

– Σ –

In Chapter 61, we presented a mathematical model for gestures in music. In that model, a gesture
γ is built from two components: a combinatorial “skeleton” represented by a digraph Γ , and a “body”,
represented by a configuration of continuous curves γpaq : I Ñ X on the real unit interval I with values in a
topological space X, one for each arrow a of the skeleton, and connected according to the digraph’s vertex
configuration. Given two gestures δ, γ, a morphism f : δ Ñ γ is a digraph morphism f : Δ Ñ Γ between the
skeleta Δ,Γ of δ, γ, respectively, which “extends” to a morphism of the respective bodies by a continuous
map defined on the respective topological spaces. See [719] or Section 61.5 for the formal setup. This defines
the category Gesture of gestures, which shares the two crucial properties:

• The set of gestures with skeleton Γ and with body in the topological space X is canonically provided
with a topology deduced from the compact-open topology on the set I@X of continuous maps from I to
X; this topological space is denoted by Γ

ÝÑ
@X. We therefore are capable of defining gestures of gestures,

namely gestures with values in a topological space Γ
ÝÑ
@X. Such gestures are called hypergestures.

• The hypergesture construction entails spaces of iterated hypergestures in the sense that for a sequence
Γ1, Γ2, . . . Γn of skeleta and a topological space X, we have the space Γ1

ÝÑ
@Γ2

ÝÑ
@ . . . Γn

ÝÑ
@X of n-fold

hypergestures over X. We then have the theorem that this iterated construction yields homeomorphic
topological spaces if we permute the order of these skeleta; see Proposition 61 (First Escher Theorem)
and Corollary 1. This result is of primordial significance in the creative gestural interaction in free jazz,
see [721] for a detailed discussion.

Despite these promising first results, gesture theory is still “adolescent”: Here are some questions, which
we have encountered after a first critical analysis of the state of the art:

1. In the definition of a gesture, no allusions to transformations are made. We only deal with continuous
curve systems. However, many examples from practice are more specific, they also involve transformations
generating such curves. The classical and trivial example is a shift from a note x to a note y in a
parameter space X, such as X “ Rm, to fix the ideas. This shift can be seen as a curve c : I Ñ Rm with
cptq “ T tpy´xqpxq, where T d : Rm Ñ Rm is the shift operation by d. This defines a special curve, not just
any continuous data.
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2. A very important point, also related to the previous one, refers to that famous gesture-theoretical question
posed by David Lewin [605, p.159]: “If I am at s and wish to get to t, what characteristic gesture should
I perform in order to arrive there?” A first observation must be made with respect to the general
theoretical background of the question. Lewin poses it in a thoroughly transformational context. His
book deals with transformations, with very classical affine functions on musical parameter spaces (mainly
pitch class spaces). It is however not the only occasion where he opens up a gestural connotation of his
transformational text. In many spots, he uses the word “gesture” and its paradigm, such as dancing
and other motional and emotional metaphors. Lewin’s gestural subtext is manifestly more than intuitive
rhetorics, he means gesture and not just a fancy description of transformational configurations. This is
a deep conflict in Lewin’s musical thinking: He unfolds a valid transformational theory, but the subtext
of gestures is not reflected in this theory. It remains a “dream of continuity while sleeping in the hard
‘cartesian’ bed of abstract algebra”.
In view of this observations, the question reveals its full power: How could we merge the transforma-
tional reality with the dream of continuity? The immediate mathematical response is: “by continuous
transformations!” But the question is not solved with this immediate reply, since it is not clear what
Lewin means by “characteristic”. What is a characteristic gesture in contrast to any gesture? What is
the character that has to be grasped?

3. The domain of continuous curves, I, is not only a topological space, but intrinsically has its topology
derived from the linear ordering among real numbers. This information was not exploited in the previous
theory. In other words: What is the reflection of this ordering relation within the topological space X
that embodies a gesture? Is there any rationale to introduce “directions” in X?

4. Relating more specifically to the existent theory of Chapter 61, we see this general picture: The theory
unfolds in two branches from the basic category Digraph of digraphs. The topological branch unfolds
gestures as embodiments of digraphs within topological spaces, whereas the algebraic branch realizes
digraphs as special linear categories, namely spectroids, enabeling formulaic structures typically related
to commutative diagrams defined by algebraic relations. These ramifications are radically different in-
terpretations of digraphs as basic constructors of mathematical theories. It was conjectured in [720] that
one may construct a universal category X above the two categories of the two branches, Gestoid and
Formoid, which would enable one to embed them as special cases of a comprising big structure.
There are several indications that such a category might exist. The first one is the possibility to rebuild
algebraic structures from gestures, more precisely: to rebuild groups through homotopy theory. It is in
fact well known that any group is isomorphic to a fundamental group of a topological space [993], and
we have more specifically given examples of such spaces for finitely generated abelian groups in [720],
including some musical interpretation; see also Section 78.2.10.2. Intuitively speaking, since hypergestures
generalize homotopy classes, one may say that every group is realized by a group of hypergestures of loop
gestures.
To date, the reverse direction looks less promising. No reasonable way is known to step over to gestures
from abstract categories. A universal space as conjectured in the diamond conjecture should deal with
this problem. Philosophically speaking, it is the problem of reconstructing gestural instances from general
abstract categories.

5. A seemingly different, but in fact very relevant question arises from the deeper understanding of Yoneda’s
Lemma [637]. The lemma states (among other things) that in any category C, the canonical functor
@ : X ÞÑ @X sending an object X to its presheaf @X is fully faithful, which means that the morphisms
f : X Ñ Y in C are in one-to-one correspondence with the morphisms (natural transformations) F :
@X Ñ @Y . This sounds abstract, but it means that we may look at abstract morphisms f : X Ñ Y
in terms of ordinary “old-fashioned” Fregean functions on point sets A@F : A@X Ñ A@Y for each
given argument A. This technique is a big help for reconstructing intuitive human manipulation of
mathematical objects when dealing with abstract categories. It however does not help us reconstruct the
motion, which is intuitively happening, when moving from an argument x of a function f to the value
fpxq. This deficiency is exactly what lies behind Lewin’s question: The transformations are Fregean
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functions and do not automatically involve any kind of motion as suggested by gestural utterances. So
the question would be whether there is a way to embody Fregean functions within the realm of gestures.

The plan of this chapter is this. We first generalize the idea of a gesture from a purely topological setup
to a functorial one, namely the setup of topological categories, i.e., categories internal to the category Top of
topological spaces and continuous maps, replacing the unit interval I by a topological category (see Appendix
Section J.4), the simplex category ∇, and continuous functions by continuous functors. This will be used in
the second step, where we construct gestures from morphisms in abstract categories. This step is a decisive
one towards the incorporation of abstract categories in the framework of gesture theory. It culminates in
the construction of a bicategory of gestures for any category and leads to a first answer to the diamond
conjecture. In a third step we apply these constructions to the important case of the category canonically
associated with a topological group. We also discuss technical tools for overcoming the core problem of the
mirror operation, which does not as such offer a gestural interpretation. In the fourth step, we discuss two
modulations in Beethoven’s Hammerklavier sonata op. 106 in order to apply the gestural approach for a
deeper understanding of these modulations. We shall discuss Lewin’s question about characteristic gestures.
This last discussion reveals the intrinsically dramatic character of gestural interpretations of given scores.

62.1 Gestures over Topological Categories

In this section we set up the framework for a gesture theory that is based upon categories instead of plain
topological spaces. In our setup, a category C is thought of as being a collection of morphisms, together with
two maps d, c : C Ñ C (d for “domain”, c for “codomain”), and we write f : dpfq Ñ cpfq to make these maps
evident. In what follows, we shall start from a given topological category K (see Appendix Section J.4). This
means that the collection of morphisms K is a topological space, and that domain and codomain, as well as
the composition of morphisms (on the morphism sets with the relative topologies), are continuous.

Here are two basic examples of such categories: (1) The simplex category ∇ associated with the unit
interval I: Its morphism set is ∇ “ tpx, yq|x, y P I and x ď yu, dpx, yq “ px, xq, cpx, yq “ py, yq, the
composition of morphisms is obvious, and the topology on ∇ is the relative topology inherited from the
usual product topology on I ˆ I Ă R ˆ R. (2) The graph category associated with any topological space X:
Its morphism set is X ˆX, equipped with the product topology, while we set dpx, yq “ px, xq, cpx, yq “ py, yq,
and again, the composition of morphisms is the obvious one. If no confusion is likely, we denote the graph
category of X by X. Clearly, a graph category is a topological groupoid. In particular, the simplex category
∇ is just the subcategory of the graph category I on the pairs px, yq, x ď y.

If K,L are two topological categories, a topological functor F : K Ñ L is a functor, which is also
continuous as a map between morphism sets. This defines the category TopCat (in fact a 2-category,
see [131, Proposition 8.1.4]) of topological categories. In order to distinguish the set of topological functors
F : K Ñ L from the larger set K@L “ CatpK,Lq of all possible functors, we write K©L for TopCatpK,Lq.
If X,Y are topological spaces, then the map which associates with a continuous map f : X Ñ Y the
synonymous continuous functor is fully faithful, so the category of topological spaces is a full subcategory
of the category of continuous categories. Therefore we shall henceforth tacitly identify the category Top
of topological spaces and continous maps with the associated subcategory of topological categories and
continuous functors embedded in TopCat via the graph category associated with a topological space.

With this in mind, if K is a topological category, the set of continuous curves with values in K is
by definition the set ∇©K. Evidently, if K is a topological space, then ∇©K

„Ñ I@K, where I@K is the
set ToppI,Kq of continuous I-parametrized curves c : I Ñ K in the topological space K, the bijection
being induced by the restriction of a functor F : ∇ Ñ K to the canonical diagonal embedding I Ñ ∇
of the objects in ∇. This set ∇©K is the object set of a category also denoted by ∇©K if we take as
morphisms between two curves f, g : ∇ Ñ K the continuous natural transformations ν : f Ñ g, which
means that the defining maps ν : I Ñ K are continuous and satisfy the defining commutative squares for
natural transformations. We do however want it to become a topological category, and this works as follows:
We take the morphism set as being composed by the triples pf, g, νq as above. The topology is defined by
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the following construction. The set of objects of ∇©K is given the compact-open topology induced by the
topologies of ∇ and K, the subset of continuous natural transformations ν : I Ñ K within I@K is given the
topology induced by the compact-open topology on I@K. The triples are viewed as points in the product
topology on ∇©K ˆ ∇©K ˆ I@K. Clearly, this is a topological category. Also observe that in the case
of a topological space K, the compact-open topology of I@K coincides with the topology induced by the
isomorphism ∇©K

„Ñ I@K and the compact-open topology on ∇©K.

Example 70 The set ∇©K can also be enforced for a not a priori topological category K as follows. Take
any set C Ă ∇@K of functors F : ∇ Ñ K into an abstract category (suppose K small, if set theory matters)
and then select the finest topology on K such that all functors of C become continuous. For this construction
one writes ∇©CK to indicate that K is made a topological category via C, and that this is the set of all
continuous curves with respect to this topology.

62.1.1 The Categorical Digraph of a Topological Category

In order to obtain gestures in topological categories, we need to mimic the construction of a spatial digraph
[720], see also Section 61.5. To this end, we consider the two continuous tail and head functors t, h : ∇©K Ñ
K, which are defined as follows. If ν : f Ñ g is a natural transformation between f, g : ∇ Ñ K, then
tpνq “ νp0q : fp0q Ñ gp0q, and hpνq “ νp1q : fp1q Ñ gp1q. So the tail and head maps are not only set maps
but functors. Call this diagram of topological categories and continuous functors the categorical digraph1ÝÑ
K of K. If we forget about the category and just retain the objects of this configuration, we call it the
(underlying) spatial digraph of K. In particular, if Γ is a digraph, the set of morphisms Γ@

ÝÑ
K is the set of

digraph morphisms into the underlying spatial digraph of K. In other words, such a morphism assigns an
object of K to every vertex of Γ and a continuous curve (topological functor) ∇ Ñ K to every arrow of Γ ,
with matching sources and targets. We call then, by definition, a gesture with skeleton Γ and body in K a
morphism of digraphs g : Γ Ñ ÝÑ

K .
If the topological category is a topological groupoid, then we have an easy proposition which guarantees

that one may reverse all arrows, in other words: the categorical digraphs of topological groupoids are self-dual.

Proposition 1. Let K be a topological groupoid. Then we have a duality automorphism ?˚ :
ÝÑ
K

„Ñ ÝÑ
K

˚
onto

the dual digraph
ÝÑ
K

˚
(tail and head functors exchanged), which maps a curve g : ∇ Ñ K to its inverse curve

g˚ : ∇ Ñ K defined by g˚px, yq “ gp1 ´ y, 1 ´ xq´1.

Therefore, for a topological groupoid K, the set Γ@
ÝÑ
K is in bijection with its dual set Γ˚@ÝÑ

K
˚
, and

then with the set Γ˚@ÝÑ
K associated by the duality ?˚. Call the gesture g˚ : Γ˚ Ñ ÝÑ

K associated by this
bijection with a given gesture g : Γ Ñ ÝÑ

K the dual gesture. Intuitively it reverses the arrows of the skeleton
and the morphisms of the body’s curves.

62.1.2 Gestures with Body in a Topological Category

We have constructed the set Γ@
ÝÑ
K of gestures with skeleton Γ and body in a topological category K. In

the previous theory described in Section 61.6, this set was enriched to yield a topological space in order to
enable the iterative construction of hypergestures. In our present setup, we have to construct a topological
category out of the above set. To do so, recall that the special case Γ “Ò (one arrow between two different
vertices) means that we have the topological category Ò @

ÝÑ
K

„Ñ ∇©K of continuous curves c : ∇ Ñ K (with
the above mentioned compact-open topology).

The general case follows from the observation that Γ is the colimit of the following diagram D of
digraphs: We take one arrow digraph Òa“Ò for each arrow a P AΓ (AΓ is the set of arrows of Γ ) and one

1 We have chosen this wording as an analogy with the spatial digraph, where the topological space is now replaced
by the topological category. Although this is a diagram of topological categories, and not just of sets, we believe
that the intuitive wording is not confusing.
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bullet digraph ‚x “ ‚ for each vertex x P VΓ (VΓ is the set of vertices of Γ ). We take as morphisms the
tail or head injections ‚x ÑÒa whenever x “ tpaq or x “ hpaq. Then evidently, Γ

„Ñ colimD. Therefore,
the set of gestures Γ@

ÝÑ
K is bijective with the limit limD@

ÝÑ
K of a diagram of the objects of topological

categories Ò @
ÝÑ
K

„Ñ ∇©K (for the digraph’s arrows) and ‚@ÝÑ
K

„Ñ K (for the digraph’s vertices). But the
maps between these objects of categories stem in fact from functors (those from the categorical graph

ÝÑ
K).

Therefore the limit can be taken as one of a diagram of topological categories. This yields a category, whose
topology is defined as the limit topology of this diagram. This topological category is denoted by Γ

ÝÑ
@K. In

this category, a morphism is the limit of natural transformations between continuous curves and morphisms
between objects of K, the latter representing the end points of the continuous curves.

Example 71 If the topological category K is a topological space, we recover the topological category Γ
ÝÑ
@K

associated with the topological space Γ
ÝÑ
@K in the previous theory of Section 61.6.

The construction of the topological category Γ
ÝÑ
@K automatically enables the machinery of hyper-

gestures known from the previous topological space setup. And again, we have the Escher Theorem for
topological categories of hypergestures:

Proposition 2. (Escher Theorem for Topological Categories) If Γ,Δ are digraphs and K is a topological
category, then we have a canonical isomorphism of topological categories,

Γ
ÝÑ
@Δ

ÝÑ
@K

„Ñ Δ
ÝÑ
@Γ

ÝÑ
@K.

Corollary 1. The action

ÝÑ
@ : Digraph ˆ TopCat Ñ TopCat : pΓ,Kq ÞÑ Γ

ÝÑ
@K

canonically extends to an action (denoted by the same symbol)

ÝÑ
@ : rDigraphs ˆ TopCat Ñ TopCat : pW,Kq ÞÑ W

ÝÑ
@K

of the free commutative monoid rDigraphs, i.e., the monoid of commutative words W “ Γ1Γ2 . . . Γk

over the alphabet Digraph of digraphs (the objects only). It is defined inductively by Γ1Γ2 . . . Γk
ÝÑ
@K “

Γ1
ÝÑ
@ pΓ2 . . . Γk

ÝÑ
@Kq and2 HÝÑ

@K “ K.

With this hypergestural construction, we define the category of gestures with body in K, now also
including the morphisms between their skeleta. It is denoted by GesturepKq. Its objects are the objects of
Γ

ÝÑ
@K for any digraph Γ . Given two such gestures g : Γ Ñ ÝÑ

K,h : Δ Ñ ÝÑ
K , a morphism a : g Ñ h is a pair

a “ pt, νq, consisting of a digraph morphism t : Γ Ñ Δ, and a morphism ν : g Ñ h ˝ t in Γ
ÝÑ
@K, which we

also write as a diagram, but with the natural transformation being denoted by a double arrow in order to
prevent a wrong intuition about a commutative square:

Γ

t

��

g ��

h ˝ t





ÝÑ
K

ν
��

Δ
h

�� ÝÑK

If we are given a second morphism b : h Ñ k, b “ ps, μq, with codomain k : Σ Ñ ÝÑ
K , then the composition

b ˝ a : g Ñ k is defined by b ˝ a “ ps ˝ t, μ|t ˝ νq, where μ|t means that the natural transformation μ from h
to k ˝ s is “restricted” by the digraph morphism t.

The category GesturepKq therefore contains two types of subcategories: On the one hand the (comma
category) topos GpKq “ Digraph{ÝÑ

K Ă GesturepKq of gestures with body in K, the morphism being the
digraph morphisms of gesture skeleta commuting with the domain and codomain gestures. On the other

2 H denotes the empty word.
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hand, we have, for each skeleton Γ , the topological category Γ
ÝÑ
@K Ă GesturepKq. Finally, for each digraph

morphism t : Γ Ñ Δ, we have a canonical continuous restriction functor |t : ΔÝÑ
@K Ñ Γ

ÝÑ
@K. Here is the

overall picture:

GpKq
��
topos

��
GesturepKq

Δ
ÝÑ
@K

��

��

Γ
ÝÑ
@K

��

topological category
��

Δ
ÝÑ
@K

|t
continuous

�� Γ
ÝÑ
@K

62.1.3 Varying the Underlying Topological Category

For a continuous functor F : K Ñ L between topological categories, we have a canonical morphism of
categorical digraphs

ÝÑ
K Ñ ÝÑ

L , which sends vertices to vertices, namely by the given functor F : K Ñ L,
and sends curves f : ∇ Ñ K to curves F ˝ f , whereas continuous natural transformations ν : f Ñ g
are sent to the continuous natural transformations F ˝ ν : F ˝ f Ñ F ˝ g. Call this morphism a spa-
tial (categorical) digraph morphism and denote it by

ÝÑ
F . This morphism canonically induces a functor

GesturepF q : GesturepKq Ñ GesturepLq, which is compatible with the above subcategories as shown by
the following commutative diagram:

GpKq
��

��

GpF q �� GpLq
��

��
GesturepKq GesturepF q �� GesturepLq

Γ
ÝÑ
@K
��

��

Γ
ÝÑ
@F �� Γ

ÝÑ
@L
��

��

While the functor Γ
ÝÑ
@F is continuous, the functor GpF q has a number of well-known properties of

functors between topoi [639, Ch. IV.7]. The first of these properties is that GpF q is right adjoint to the
base change functor ˆÝÑ

F : GpLq Ñ GpKq which associates with a gesture g : Γ Ñ ÝÑ
L the fibre product

gesture g ˆ ÝÑ
F : Γ ˆÝÑ

L
ÝÑ
K Ñ ÝÑ

K . Furthermore, the base change ˆÝÑ
F is a logical functor (i.e., it preserves all

topos-theoretical constructs, such as sub-object classifiers, finite limits and colimits, and exponentials, and
has also a right adjoint). Paired with its right adjoint ˆÝÑ

F ˚, the base-change functor defines a geometric
morphism GpKq Ñ GpLq [639, Ch. VII.1]. We shall come back to these facts later in Section 62.2.4, when
discussing the gestural part of Yoneda’s Lemma.

62.2 From Morphisms to Gestures

To conceive of a general method for generating gestures from morphisms f : X Ñ Y in abstract categories,
we start with a heuristic consideration. Suppose that we are working in a musical parameter space R2, which
we endow with the structure of the Gaussian plane of complex numbers. Take a rotation eiθ : x ÞÑ x.eiθ

on R2. In linear algebra, this morphism f “ eiθ is an encapsulated function, which has no relation to a
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gesture, but acts by Fregean “teleportation” on x. We are stressing this fact since in contradiction to the
algebraic reality, our intuition of a rotation by angle θ is different in that we imagine a continuous rotational
movement of x around the space origin until it reaches the final position x.eiθ. This process is visualized by
the trace of x while rotating, i.e., by a continuous curve cx : I Ñ R2 : t ÞÑ x.eiθt on a circle of radius |x|.
Each intermediate position x.eiθt corresponds to a factorization f “ eiθp1´tq ˝ eiθt “ f1´t ˝ ft of f . In other
words, the curve c : I Ñ GL2pRq is a curve of factorizations of the given morphism f . This restatement of
the gesture c in terms of factorizations means that c is viewed as being an “infinite” factorization insofar as
the factors are parametrized by the curve parameter t P I.

This enables us to rethink the basic elements of a gestural interpretation of morphisms in abstract
categories. To this end, we fix a morphism f : X Ñ Y in a category C. The category rf s of factorizations of
f is defined as follows. Its morphism are the triples pu, g, vq of morphism u : X Ñ W, g : W Ñ Z, v : Z Ñ Y
such that v ˝g ˝u “ f . The domain map is dpu, g, vq “ pu, IdW , v ˝gq, while the codomain map is cpu, g, vq “
pg ˝ u, IdZ , vq. Suppose we have two morphisms pu, g, vq, pr, h, sq such that cpu, g, vq “ dpr, h, sq, h : Z Ñ Q,
then their composition is the morphism pu, h ˝ g, sq, as shown in the following commutative diagram:

X

u

��
r

�� 


W

g
��

��

Z
h

��

v

��

Q

s
		

Y

This construction entails a number of evident facts: To begin with, the category rf s has the initial object
pIdX , IdX , fq and the final object pf, IdY , IdY q. Moreover, if k : Y Ñ E and l : A Ñ X are morphisms, then
there are two functors rk˝s : rf s Ñ rk ˝ f s and r˝ls : rf s Ñ rf ˝ ls, respectively, sending pu, g, vq to pu, g, k ˝ vq
and to pu ˝ l, g, vq, respectively (keeping the above notations). If C is a topological category, then so is rf s,
if it is viewed as a subset of C3. Also, the two functors k˝, ˝l are continuous.

For any two objects X,Y in C we now build the disjoint sum rX,Y s “ š
fPX@Y rf s of the factorization

categories rf s (including the coproduct of topologies on the rf s). Therefore ∇@rX,Y s “ š
fPX@Y ∇@rf s,

and, if we endow rX,Y s with the coproduct topology, also ∇©rX,Y s “ š
fPX@Y ∇©rf s. The above con-

struction of functors from morphisms also works in this coproduct situation, and also mutatis mutandis
for topologies on these categories, i.e., conserving the above notations, we have two continuous functors
rk˝s, rX,Y s Ñ rX,Es and r˝ls : rX,Y s Ñ rA, Y s, and their associated curve functors ∇©rk˝s : ∇©rX,Y s Ñ
∇©rX,Es and ∇©r˝ls : ∇©rX,Y s Ñ ∇©rA, Y s.

Example 72 If f “ IdX , then rf s is the category of sections and retractions of X, since its objects are the
triples pu, Id, vq such that v ˝ u “ IdX .

Example 73 The category C is defined by a topological group G, i.e., as a category, has one single object
and the group elements as morphisms, then rf s „Ñ G, where G is the graph category of the topological space
G. More explicitly, the morphisms of rf s are the triples pu, g, vq of elements of G such that v ˝g ˝u “ f . Since
any two of them are free and determine the third, we take the morphisms as being the pairs pd, cq P G ˆ G,
where we have u “ d, g “ c ˝ u´1, v “ f ˝ u´1 ˝ g´1. The topology is the product topology of G ˆ G.

For example, if C is defined by the cartesian product group G “ Rn ˆ ÝÑ
GLnpRq of the additive group Rn

and the general affine group
ÝÑ
GLnpRq, rf s „Ñ Rn ˆ ÝÑ

GLnpRq, the topological space category of pairs px, gq of
points x in Rn and affine transformations g : Rn „Ñ Rn. We then have a continuous (group action) functor
ε : Rn ˆ ÝÑ

GLnpRq Ñ Rn : px, gq ÞÑ gpxq into the topological category Rn deduced from the group Rn.
Therefore, from a gesture g : Γ Ñ Rn ˆ ÝÑ

GLnpRq, we deduce a gesture ε ˝ g : Γ Ñ Rn. The latter is a gesture
whose curves are just continuous curves in real n-space, but they are not arbitrary, since they are induced
by curves of points and linear transformations. This very special case reveals the power of our construction
of factor categories: They include the concept of gestures of transformations of points, and not only abstract
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topological gestures. But they are much more powerful since a gesture in Rn ˆ ÝÑ
GLnpRq might well specify

curves that are more general than just curves of transformations, but let us make this more precise.
As in our initial example in R2 of a rotational curve cptq “ px, eiθtq, we may vary the transformation

and fix the point x, but we may as well just take an arbitrary continuous curve dptq “ pxptq, IdR2q in R2 and
let the transformation remain the identity. More generally, we may vary both, the point and the curve, and
consider a curve eptq “ pxptq, gptqq in R2 ˆ ÝÑ

GL2pRq. This opens the concept of a gesture, whose curves are
characteristic in that they may pertain either to transformational constructs, to purely topological rationales,
or to both. Such a setup works for any (topological) group action on a given module, such as, for example,
the musically relevant action of the general affine group

ÝÑ
GLpZ12q on the pitch class group Z12 (with the

discrete topology, for example).

62.2.1 Diagrams as Gestures

Example 72 suggests that one should take a closer look at the category of factorizations for module categories,
since sections and retractions define direct summands in the abelian categories. To this end, we first construct
certain standard gestures. To begin with, let g : W Ñ Z be any morphism in a category C. Then there is a
functor Œ pgq : ∇ Ñ C with

Œ pgqpx, yq “

$’’’&’’’%
IdW if x “ y “ 0,

g if 0 “ x ă y,

IdZ if 0 ă x.

(62.1)

This construction method enables the construction of gestures from diagrams in categories as follows.
Suppose that a category K is small. Then take the topology on K such that all functors c : ∇ Ñ K are
curves, i.e., we take ∇©∇@KK. Consider K as a digraph with the two maps d, c : MorpKq Ñ ObpKq from
the morphism set MorpKq to the object set ObpKq. Then we have the following morphism of digraphs
Œ: K Ñ ÝÑ

K which sends a morphism f : X Ñ Y to the curve Œ pfq with tail X and head Y . Therefore,
if we have any diagram δ : Δ Ñ K in the category K, we may compose it with Œ and obtain a gesture
Œ ˝ δ : Δ Ñ ÝÑ

K , which we denote by
ÝÑ
δ and call the discrete gesture associated with the diagram δ. This

evidently extends to a discrete gesture functor
ÝÑ
? : Δ@K Ñ Δ@

ÝÑ
K from the category of diagrams and natural

transformations to the category of gestures of these spaces.

62.2.2 Gestures in Factorization Categories

In our context, a morphism pu, g, vq in a factorization category rf s with
X

u

��
W

g
�� Z

v
��

Y

yields a curve Œ pu, g, vq : ∇ Ñ rf s. This construction can be iterated in the sense that for any sequence
g. “ pgi : Wi Ñ Wi`1qi“0,1,...m´1 of length m of morphisms in C, there is a functor Œ pg.q : ∇ Ñ C where
the restriction Œ pg.q|∇ri{m,pi`1q{ms Ñ C to the full subcategory ∇ri{m,pi`1q{ms “ tpx, yq|i{m ď x ď y ď
pi`1q{mu of ∇ is the above one-step construction for gi : Wi Ñ Wi`1. This entails that we may also consider
curves Œ pu, g., vq associated with the chain pu, g., vq of morphisms in rf s:
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X

u

��
W0 g0

�� W1 g1
�� W2 g2

�� . . . Wm´1

gm´1 �� Wm

v

��
Y

Given two such curves Œ pu, g., vq,Œ pu, h., vq of the same length m, the second one involving the
morphisms hi : Zi Ñ Zi`1 and u1 : X Ñ Z0, v

1 : Zm Ñ Y , a morphism ν. :Œ pu, g., vq ÑŒ pu, h., vq is a
natural transformation consisting of a chain of morphisms ν. “ pν0 : W0 Ñ Z0, . . . νm : Wm Ñ Zmq such
that we have this commutative diagram:

X

u

��

u1

��

W0 g0
��

ν0

��

W1 g1
��

ν1

��

W2 g2
��

ν2

��

. . . Wm´1

gm´1 ��

νm´1

��

Wm

νm

��

v

��

Z0
h0

�� Z1
h1

�� Z2
h2

�� . . . Zm´1

hm´1 �� Zm

v1
��

Y

62.2.3 Extensions from Homological Algebra Are Gestures

Now, if we consider the special case where C “ RMod, the category of left R-modules and linear homomor-
phisms over a commutative ring R, then we may take the factorization category r0s of the zero homomorphism
0 : 0 Ñ 0 on the zero module. We may further consider two exact sequences, one g. of modules W., and
one h. of modules Z., to generate curves, which we should call exact curves. Then the morphism ν. is just a
morphism between exact sequences, which means that the category of exact sequences is a canonical subcat-
egory of the category of curves in r0s. In particular, if we look at such short exact sequences (length 2), and
we restrict ourselvesto morphisms between sequences of common initial module W and terminal module Z,
we obtain the groupoid of exact sequences, and the isomorphism classes define the classical set ExtRpZ,W q
of congruence classes of extension of Z by W [635]. Consequently, we have this fact:

Fact 22 The categories of factorization are a natural extension of structures from homological algebra en-
countered, for example, in the construction of ExtnRpZ,W q.

62.2.4 The Bicategory of Gestures

Suppose that for two morphisms f : X Ñ Y, g : Y Ñ Z in a category C we are given topologies on the
factorization categories rf s, rgs such that the two functors rg˝s : rf s Ñ rg ˝ f s, r˝f s : rgs Ñ rg ˝ f s are
continuous (e.g. if C is topological). Write Grf s for the gesture topos Gprf sq. For such morphisms, we denote

the categorical digraphs
ÝÑrf s by

ÝÑ
f , and the corresponding morphisms of categorical digraphs, such as the

ones derived from g˝ and ˝f , are denoted by ÝÑg˝ and
ÝÑ̋
f . We therefore have two morphisms of categorical

digraphs ÝÑg˝ :
ÝÑ
f Ñ ÝÝÑ

g ˝ f and
ÝÑ̋
f : ÝÑg Ñ ÝÝÑ

g ˝ f , which induce the two canonical functors between topoi,
rg˝s : Grf s Ñ Grg ˝ f s and r˝f s : Grgs Ñ Grg ˝ f s. Taking coproducts on the skeleta, this induces a functor
between topoi,

b˚ : Grgs ˆ Grf s Ñ Grg ˝ f s,
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which maps a pair γ : Γ Ñ ÝÑg , φ : Φ Ñ ÝÑ
f of gestures to the gesture

ÝÑ̋
fγ \ ÝÑg˝φ : Γ \ Φ Ñ ÝÝÑ

g ˝ f.

On the other hand, the two base changes ÝÑg˝ and
ÝÑ̋
f induce3 base change functors ˆÝÑg˝ : Grg ˝ f s Ñ Grf s

and ˆÝÑ̋
f : Grg ˝ f s Ñ Grgs, which we combine to get the base change functor

b˚ : Grg ˝ f s Ñ Grgs ˆ Grf s.
By use of routine topos-theoretical arguments, we have this result (recall from [639] the definition of a
geometric morphism of topoi):

Theorem 1. Given the above conditions and notations,

(i) the base-change functor b˚ is a logical functor, i.e., it conserves all topos-theoretical structures, subobject
classifier, finite limits, colimits, and exponentials.

(ii) The coproduct functor b˚ is left adjoint to b˚, and
(iii) there is functor a : Grgs ˆ Grf s Ñ Grg ˝ f s, which is right adjoint to b˚ such that the pair pa, b˚q is a

geometric morphism of topoi.
(iv) If f or g is the identity, then b˚ is isomorphic to the identical functor. If h : Z Ñ W is a third morphism,

also sharing the above properties of f, g, then the functor b˚ is associative up to isomorphisms.

Adding up all the factorization categories relating to morphisms f : X Ñ Y , we define the coproduct
category X�Y “ š

fPX@Y Grf s. If we are given a second morphism g : Y Ñ Z with the above conditions
still holding, then we have a functor deduced from the above functor b˚, notated with capital letters:

B˚ : Y �Z ˆ X�Y Ñ X�Z (62.2)

It is associative up to isomorphisms and has the identity gesture H Ñ ÝÝÑ
IdX for each object X. If these

constructions work for all objects and morphisms (e.g. if C is topological), then the composition functors
(62.2) define a bicategory [637], the gesture bicategory of C denoted by C�. This is nearly a 2-category, except
that composition is only associative up to isomorphisms. This being so, the “morphic” half of Yoneda’s
Lemma would consist in characterizing the functors (62.2)—or else the geometric functors between the topoi
Grgs ˆ Grf s and Grg ˝ f s—which stem from composing morphisms in the original category C. This would
enable us to think of morphisms as being represented by gestures and to calculate all of the category’s
operations on the level of gestures. Given that the classical “objective” Yoneda Lemma already takes care
of the reconstruction of point sets from abstract objects by the transition from C to C@, this hypothetical
“morphic” Yoneda Lemma would give us back the full gestural intuition on the level of pC@q� while working
in abstract categories.

62.2.5 Entering the Diamond Space

In view of the preceding results, we have set up a concept space, as made explicit in the gesture bicategory
construction C�, which embraces the topological gesture theory of our former work [719] as well as the
diagram theory backing the network approach from Lewin’s and Klumpenhouwer’s transformational theory,
but also basic constructions from homological algebra, such as congruence morphisms between extensions
in abelian categories. The philosophy of this approach is that the concept of a categorical gesture, although
completely in the vein of gestural reflections fostered by musical requirements, is flexible enough to include
the extremal cases of “discrete” and properly “continuous” gestures as well. The relation between these two
cases being that continuous gestures are a kind of limit of factorization when the factors are becoming more
and more “fine grained” until they are parametrized by continuously varying real parameters; see Figure
62.1 for an intuitive image of factorization granularity. We therefore argue that this space construction is a
good candidate for our conjectural space X as described in the Diamond Conjecture [719, Section 9], see also
Section 61.12. At this stage, we do not however yet state that this space X has been found since a number
of tests have to be performed in order to learn about power vs. deficiencies of the present approach.

3 Recall that the product in a comma category is the fiber product in the original category.
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Fig. 62.1. Factorization on ∇ from one “discrete” step Œ pgq through a finite series of (discrete) factors to the
“limit” of a continuous curve of factors.

62.3 Diagrams in Topological Groups for Gestures

In this section, we want to make explicit the transition from the type of diagrams used in transformational
theory to gestures. Of course, we are not dealing here with the above embedding of diagram categories
into gesture categories, but want to transform discrete gesture curves into continuous curves that enable an
infinity of intermediate stages between the starting and the ending position of diagrammatic arrows.

To this end we first discuss the gestures with values in the factor category discussed above, namely
starting from the topological group G “ ÝÑ

GLnpRq, so that rf s „Ñ ÝÑ
GLnpRq, the topological space category of

affine transformations g : Rn „Ñ Rn, whose morphisms are parametrized by pairs pd, cq P G ˆ G of group
elements, the transition morphism g : d Ñ c representing the transformation g “ c ˝ d´1. We then know
that the data of a curve δ : ∇ Ñ G ˆ G is equivalent to its diagonal restriction to the objects I � ∇, i.e.,
to a continuous map δI : I Ñ G, where G � G ˆ G identifies G with the diagonal in G ˆ G by the diagonal
embedding (much as I is in ∇). Since I is connected, the image of δI must be either in the connected

component G` “ ÝÑ
GL

`
n pRq or in the complementary connected component G´ “ ÝÑ

GL
´
n pRq of G, whereÝÑ

GL
`
n pRq (ÝÑ

GL
´
n pRq) is the group (coset) of affine transformations with linear part in the subgroup GL`

n pRq Ă
GLnpRq (in the coset GL´

n pRq Ă GLnpRq) of transformations with positive (negative) determinant. Therefore
any gesture with body in G ˆ G with connected skeleton must have all its object curves either in G` or in
G´.

Therefore connectedness of I implies that we cannot connect transformations of different determinant

signatures, e.g., the identity IdG for G “ ÝÑ
GL2pRq and the mirror transformation m “

˜
´1 0

0 1

¸
. This is

a major problem for the continuous gestualization of discrete gestures. In fact, if we take the morphism
IdG Ñ m, there is no continuous curve starting in IdG and ending in m. Why should this be required? If we
had such a curve, αI : I Ñ G, with αIp0q “ IdG, αIp1q “ m, we could use it to generate a continuous curve
of points αI .xptq “ αIptqpxq P R2 by evaluation of the curve at a given initial point x P R2 and parameter
t P I as explained in Example 73.

In order to understand the specific problem which appears with mirroring, let us look at the generators
of G “ ÝÑ

GL2pRq and their musical meaning (see Section 8.3 for a detailed discussion). They are (1) translations
T p1,0q by one unit in horizontal direction, (2) all positive dilations of the first coordinate, (3) the above mirror

m, (4) the horizontal transvection t “
˜
1 0

1 1

¸
, and the 180o rotation R “ ´Id. For all these generating

transformations gi, except for the mirror m, there is a continuous curve δi : I Ñ G` starting at IdG and
ending at gi. This means that all transformations g P G, which can be written as products of these generators
without m, have a continuous curve δ : I Ñ G` such that δp0q “ IdG, δp1q “ g. Therefore, evaluating at
a point x P R2 yields curves δ.xptq “ δptqpxq P R2 that are induced by curves of transformations. This was
also used in the component BigBang Rubette for composition in the Rubato Composer software environment
[729]; see also Chapter 69. But the case of m does not work as is; in other words, mirroring is a non-gestural
operation. In order to pass to the mirror of an object, one has to traverse the singular state of a flattened
object in the mirror. The change of determinant sign is the hard point, so we are not in a state of overcoming
this problem within the given space. We do not want to delve into the deep and metaphorically loaded topic
of the mirror, but it is clear that the mystery of the mirror transformation must relate to the fact that there
is no gesture, no continuous transition from the original to the mirror image. Vampires have no reflection in
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mirrors, and superstition is abundant with mirrors. Some “imaginary process” must be happening when we
switch to the mirror world.

There is a well-known intuitive solution of the mirror problem, which you may find whenever you ask
a person to describe what movement is the reflection of a plane figure at a line in the plane: He would
immediately make that movement the one of leafing a book’s page. Leafing turns the original figure to its
mirrored version. The point is that instead of mirroring x to ´x, it lifts it into a new dimension and rotates
the point in this dimension until it comes down to ´x. This procedure is more accurately described by
complexification of real vector spaces. In the one-dimensional case R, the mirroring mpxq “ ´x is embedded
in the Gaussian complex number plane C

„Ñ R2. Here, we have the rotation defined by multiplying x by
the complex unitary number eiθ. The image x.eiθ is the vector x looking in direction of eiθ. If we consider
the curve γptq “ eiπt P GL2pRq, t P I, then the evaluated curve γ.xptq “ γptqpxq “ x.eiπt rotates x in a half
circle to ´x. This means that the mysterious mirroring has been demystified by an inoffensive gestural curve
through complex numbers. And halfway on that curve we have its imaginary position γ.xp1{2q “ i.x, the
purely imaginary position of the curve, where its real projection vanishes.

This means that complex numbers solve the problem of the real singularity by lifting the mirror move-
ment orthogonally to the real axis in an imaginary realm. It might be that one reads our description as a
mystification of complex numbers, but the resolution of the negation x ÞÑ ´x by a rotation in a new dimen-
sion is no overinterpretation of complex numbers. A strong argument for this “gestural” reinterpretation of
negation is in fact provided by the proof of the fundamental theorem of algebra using fundamental groups in
the Gaussian plane, see [569], for example. The fundamental theorem of algebra is the most important single
thorem of algebra whose proof can be based upon the thoroughly gestural toolbox of algebraic topology.

This being so, if we are given any transformation h P ÝÑ
GLnpRq, then we may complexify it, which means

that we write h “ T s ˝η, s P Rn, η P GLnpRq and then tensorize it with the complex number eiθ P GL2pRq as
above and obtain the transformation hbeiθ “ T s˝pηbeiθq : RnbC Ñ RnbC : xby ÞÑ sb1`ηpxqby.eiθ. The
determinant of a tensor product η bκ of linear maps η P GLupRq, κ P GLvpRq being detpηqvdetpκqu, we have
detphbeiθq “ detpηq2detpeiθqn “ detpηq2p1qn ą 0. This means that complexification of any transformation h

with the rotation eiθ in C turns it into a transformation hb eiθ P ÝÑ
GL

`
2npRq. In particular, if γ : I Ñ ÝÑ

GL
`
n pRq

is a positive curve, then we obtain a curve γ b eiπ? : I Ñ ÝÑ
GL

`
2npRq : t ÞÑ γptq b eiπt such that its value starts

at t “ 0 with γp0q b 1 and ends at t “ 1 with γp1q b ´1 “ ´1γp1q b 1. If n is odd, this yields a negative
determinant transformation ´1γp1q.

For even n, this does not work directly, but one may then select a direct decomposition Rn “ V ‘W with
odd dimension dimpW q. Then we take again RnbC “ V bC‘WbC, but this time apply the complex rotation

only to the second summand W b C. Denote this restricted rotation by eiπ?|W . Then if γ : I Ñ ÝÑ
GL

`
n pRq is

a positive curve (positive determinants), we obtain a curve γ b eiπ?|W : I Ñ ÝÑ
GL

`
2npRq : t ÞÑ γptq b eiπt|W

such that its value starts at t “ 0 with γp0q b 1 and ends at t “ 1 with γp1q b ´1|W “ ´1|Wγp1q b 1,
where the latter means that ´1 is only applied to the subspace W coordinates, and thus yields a negative
determinant transformation. This second case is not as invariant as the first one for odd n since one has
to select a direct decomposition Rn “ V ‘ W , but the variety of choices offers a strong tool for turning
general curves of transformations with positive determinants into gestural curves of opposite determinant
signature. To terminate these constructions on the curve level, we add the reversed construction, which takes

the positive curve γ : I Ñ ÝÑ
GL

`
n pRq, but tensorizes it with the reversed complex rotation, i.e., γ b eiπp1´?q in

the odd-dimensional case, and γ b eiπp1´?q|W in the even-dimensional case.
This construction is easily generalized to the level of general gestures. To do so, we have to display

the signatures of all the vertices of the gesture’s skeleton Γ , since we want to define curves that change the
determinant sign via the preceding complexification technique. More precisely, we suppose that we are given
a signature for each vertex, which means that we have a digraph morphism σ : Γ Ñ Sig, where Sig is the
complete digraph

Sig “ a´´ ��

´`
�� ‘ ``��

`´
��
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with two vertices ‘,a (positive, negative). The fiber of a is the set of vertices with negative determinant,
the complementary fiber of ‘ is the set of vertices with positive determinant. This means that the arrows

mapping to a ´` �� ‘ are those from a transformation with negative determinant to a transformation with
positive determinant, etc. The complexification tools are only needed for the `´ and ´` arrows. The `´
case refers to the maps γ b eiπ? or γ b eiπ?|W according to the dimension being odd or even, whereas the
´` case refers to the maps γ b eiπp1´?q or γ b eiπp1´?q|W . The case `` takes just the positive curves as
is, tensored with the identity on C, while the case ´´ takes a negative determinant copy of the positive
curve. It is not relevant which negative copy we take, as long as the bijection GL`

n pRq „ GL´
n pRq of negation

is fixed once for all. The essential point is that all these complexified transformations start and end on
transformations that leave the real subspace Rn b 1 invariant. The intermediate transformations however
map Rn b 1 to a more general subspace of Rn b C as shown in Figure 62.2:

Fig. 62.2. The “leafing” transformation of a point in the original real space into complexified space as a function of
the complex factor, eventually producing a change of the determinant’s signature.

With this general method in mind, we now have to deal with the transformation of a discrete curve
corresponding to a transformation pu, g, vq in rf s. In view of the above complexification method, we may
concentrate on the case of u “ Id, detpvq ą 0. Our plan is to construct a continuous curve of transformations

γ : I Ñ ÝÑ
GL

`
n pRq from Id to v. The shifting part being trivial, we may focus on v P GL`

n pRq. From matrix
theory it is well known that GLnpRq is generated by subgroups isomorphic to GL2pRq. So we can write v
as a product of transformations vi affecting only two coordinates. This reduces the problem to n “ 2. We

also have v “
˜
detpvq 0

0 1

¸
.s, s P SL2pRq. But SL2pRq is generated by transvections upbq, b P R, and the 180o

rotation w [578, XI, §2]:

upbq “
˜
1 b

0 1

¸
, w “

˜
0 1

´1 0

¸
which both are endpoints at t “ 1 of countinuous curves δptq “ uptbq, ρptq “ eiπt, the latter being the rotation
as defined by the Gaussian plane. Therefore the curve

vptq “
˜

p1 ´ tq ` t.detpvq 0

0 1

¸
.δptq.ρptq

does the job in two dimensions. In short: GL`
n pRq is arcwise connected, and we have just given a constructive

proof thereof involving standard generators. In short, given any v P GL`
n pRq, we find a continuous curve

vp?q : I Ñ GL`
n pRq with vp0q “ Id, vp1q “ v. Together with the signature changing tools discussed above

(using the signature morphism σ), we have this theorem:

Theorem 2. If δ : Γ Ñ ÝÑ
GLnpRq is a diagram of (non-singular) affine transformations on Rn, then there is

a gesture δbC : Γ Ñ rIdRnbCs, whose morphisms for the extremal ∇-morphisms p0, 1q of the curves δbCpaq
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of arrows a in Γ are the transformations pIdRnbC, δpaqq. The morphisms between curve parameters s and t,
s ď t, are the factorization quotients

δ b Cpaqptq ˝ pδ b Cpaqpsqq´1.

This is not a deep theorem, but it enables the extension of discrete gestures associated with diagrams
in real n-space gestures to continuous gestures that may have to traverse complexification but start and end
at the given real transformations. This is a general theorem, which just guarantees the said extensibility and
stresses the fundamental role of complex numbers. But when thinking about Lewin’s question concerning
the characteristic gestures, although this might be the generic, it is not necessarily the characteristic one in
n-space. We shall discuss this issue in Section 62.4.3.

Coming back to the evaluation map ε from Example 73, we also have an evaluation functor ε : Rn bCˆÝÑ
GLnpRq b C Ñ Rn b C on topological categories. When we take a gesture γ : Γ Ñ Rn b C ˆ ÝÑ

GLnpRq b C, ε
yields a gesture of points in Rn b C, and if the initial and terminal values of the curves of transformations
of γ leave Rn invariant, the gestures in Rn b C also start and end in real points.

Example 74 A prototypical example would consist of a network of points in Rn connected by affine trans-

formations, i.e., a diagram of points and transformations δ : Δ Ñ Rn, such that for an arrow x
a �� y in Δ,

we have a non-singular affine transformation δpaq of points δpxq, δpyq P Rn with δpaqpδpxqq “ δpyq. Focusing
on the transformations, one therefore has a diagram as in Theorem 2, which has all its curves starting at
the identity and ending on the different δpaq for arrows a of δ. So on transformations, the diagram is a star-
shaped one with the identity as center and radiating to each of the δpaq. However, on the different starting
points δpxq, the star is uncoupled in order to be able to transform all the δpxq in the particular curves that
traverse complex spaces when determinant signs are changed to between 1 and the signature of detpδpaqq.
This means that we are given pairs pδpxq, δ b Cpaqq with variable transformations (i.e., curves) and fixed
points that are transformed according to the transformation curves by t ÞÑ δ b Cpaqptqpδpxqq. The straight-
forward generalization is to define non-constant curves in the points, too, i.e., t ÞÑ δbCpaqptqpδpxqptqq, which
comprises the two extremal cases of the purely transformational curves and the purely “topological” point
curves with constant transformation, usually the identity.

Example 75 If S1 denotes the unit circle group, which we may view as an extension of the pitch class group,
consider the topological group G “ TS1 ¸ Z2 generated by translations T t, t P S1, and the reflection ´Id
(the generator of Z2). This group has two connected components, namely G` “ TS1

and G´ “ TS1

. ´ Id.
As for the general affine group, this group defines a category with one object, and we also have rIds „Ñ G,
the topological space category with morphisms pd, cq P G ˆ G representing the quotient g “ c ˝ d´1. As
for the general affine group, the morphisms Id Ñ T t can easily be extended to continuous curves, while
for Id Ñ T t. ´ Id this is not possible for the same reason as before. We may however resolve the conflict
by again adding a dimension and embedding S1 in the sphere S2 as one of its meridian circles. What was
previously done by the rotation in C now works by the half circle rotation around the polar axis or another
axis through the embedded S1.

62.4 Modulations in Beethoven’s “Hammerklavier” Sonata op.106/Allegro: A
Gestural Interpretation

The following section is not the first occasion where gestural aspects of Beethoven’s compositions have been
discussed; see Robert S. Hatten’s study [446], or Jürgen Uhde’s and Renate Wieland’s books [1068, 1067],
for example. Our discussion however differs from earlier investigations in these two points:

• To begin with, we are applying the previous categorical theory of gestures and do not stick to the more
metaphorical and intuitive usage of the term “gesture” in previous studies. Of course, this is also a risky
enterprise since many statements, which may be acceptable or valid on those more intuitive levels of
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conceptualization, might become questionable, dubious or even untenable when made mathematically
explicit.

• Second, we focus on very delicate modulatory processes in the Allegro movement of Beethoven’s op.106,
see Section 28.2 for a detailed discussion. These are known to have quite non-standard appearances, partly
breaking with standard combinations, such as the modulation B5-major Ñ G-major to the secondary
theme in the exposition, where the modulation to the dominant is expected by standard sonata theory
[659], and partly because some so-called “catastrophe” modulations deviate from standard modulation
processes altogether.

We shall not reconsider a basic discussion of these modulatory processes, but rely on the established
methods and results as exposed in [714, ch.28.2]. However, the gestural aspects of these modulations will
open considerations of dynamical nature that do not rely solely on these methods and results. We therefore
hope that the following discussion is also useful for a basic discourse on gestures in modulatory processes.

Why is this a desirable topic? The argument is that a purely structural analysis of modulatory processes
(among others) may fail to capture the energetic understanding, the dramatic tension of the musical deploy-
ment. We are not claiming here that gestural analysis is comprising all such aspects, but it seems worthwhile
to approach those energetic and dramatic tensions by gestural dynamics since the theory of gestures is an
ideal mediator between static structures and energetic processes without having to recur to psychological,
narrative, or other extra-musical categories. Our hope is nevertheless that gestural considerations might
eventually converge to a fairly complete understanding of what is called the “dramatic content” of absolute
music, such as Beethoven’s late works.

One word about the intrinsic usage of gestures in the following analysis, as opposed to transformational
structures. Is it really necessary to work with gestures? Couldn’t one as well restate most if not all those
gestural reflections in terms of transformational (hyper)networks? It is true that some of the following gestures
(e.g. the gestures αi and α1

j shown in Figure 62.5) seem to be “overdressed” versions of transformational
networks. There are (at least) three arguments against such a suspicion:

• Gestures are completely different objects from networks. Intuitively speaking, networks only deal with
start and end points of gestures. Also, hypergestures are generalized homotopies, which networks are not.
Many of the following hypergestures are intrinsically continuous constructions, which require different,
namely topological, technical tools than transformational networks, which are essentially built upon affine
algebraic transformations. This is particularly dramatic in the context of the complexification gestures,
which move as curves out of the real spaces into complex superspaces.

• Lewin’s own unsolved dilemma is that he imagined continuous movements (his dancers!), but worked
with agebraic (Fregean) transformations. What we offering here (and in the paper [720] with Moreno
Andreatta) is nothing less than the one-to-one construction of Lewin’s dreams in terms of precise math-
ematics.

• The very language of gestures opens a style of thoughts and a paradigm of understanding that the
transformational paradigm would not have offered. In mathematics, the modern conceptual linear algebra
opened so many new ideas that would never have been conceived of in terms of old-fashioned matrix
calculus. Of course, once you have the idea, it is possible to translate it back into the old language,
but this restatement is only possible ex post. Or, to put it into Lewinian dance language: How can you
understand the dancer’s touch point configuration with the dance floor if you are not told how he or she
is connected by his or her real movements?

62.4.1 Recapitulation of the Results from Section 28.2

The modulation architecture in the Allegro movement of op. 106 is derived from a model of tonal modulation
that uses inversional and transpositional symmetries on pitch class sets as “modulators”, i.e., as operators,
which transform pitch class sets (in 12-temperament) into each other. The tonalities in this model are the
triadic interpretations Xp3q, i.e. coverings by the seven standard triadic degree chords IX , IIX , . . . V IIX
of the twelve diatonic scales X “ C,D5, D,E5, E, F, . . . B5, B. According to a fundamental hypothesis on
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this composition, a hypothesis that is derived from classical analyses by Erwin Ratz and Jürgen Uhde (see
Section 28.2), the system of possible modulators is the automorphism group AutpM0q of the diminished
seventh chord M0 “ td5, e, g, b5u. This group partitions the set of tonalities into two orbits, the eight element

orbit W “ AutpM0q.Bp3q
5 (the “world”) consisting of the tonalities of scale set tB5, D5, E,G,A,C,E5, G5u,

and the four element orbit W˚ “ AutpM0q.Dp3q (the “antiworld”) consisting of the tonalities of scale set
tD,F,A5, Bu.

This implies that modulations according to the given model are only admitted within W or within
W˚, since no modulators are available in order to switch between these worlds. It turns out that what
Uhde has coined catastrophe modulations are exactly those when Beethoven switches between world W
and antiworld W˚. And here, the “responsible” diminished seventh chord appears with a nearly obsessive
density, annihilating any melodic or tonal framework. All other modulations, within the world or within
the antiworld, obey strictly the modulation rules provided by our model. Moreover, the modulators in these
cases not only act as hidden symmetries but are also visible as symmetries between note groups that are
within the modulating score segment, see Section 28.2.

Although the above results are describing the abstract modulatory structures and also the modulator
symmetries in a strikingly precise way, which by far exceeds the predictive power of general modulation
theories, the dramatic character of these modulations is not represented. In fact, much more is happening
here than a verifiable instantiation of the model’s abstract characteristics. The richness of the modulation
dynamics has an impact that cannot be comprised by transformational diagrams connecting groups of notes.
And this precisely, since diagrams incorporate no real movement, because their arrows are just as “cartesian”
as plain set theory. We have discussed this topic in detail in the theoretical part of this chapter and in
previous work [719]. This is the reason why we propose drawing a gestural picture of these modulation
processes, which transcends the results as described in Section 28.2. So the following discussion is not about
the previous analysis and its model, but about the added value that gestural reflections can contribute to
the understanding of the note-wise embodiment of the composer’s ideas following his famous statement4:
“Was der Geist sinnlich von der Musik empfindet, das ist die Verkörperung geistiger Erkenntnis.”

62.4.2 The Modulation B5-major ù G-major Between Measure 31 and Measure 44

The first modulation, B5-major ù G-major, in the transition (measures 39-46) to the second subject could
in principle be performed by use of a “pedal modulation” [948]. We do however not encounter this modulation,
but ‘merely’ a sequence of V IIG-major-degrees whose top notes are shifted by minor thirds from each other,
i.e., exactly the situation of the pivot V II and the third translation, as predicted by the modulation with
restricted modulators (Section 28.2.2).

This compact description from Section 28.2.4 however does not grasp the elaborate note process around
that abstract fact of the V IIG-major degree. This process consists of four groups, (A) measures 31 to 34,
(B) measures 35-36, (C) measures 37-38, (D) measures 39-44. We do not discuss the concluding figure in
measures 45-46, where the modulation is already terminated, and refer to [718, 9.2.1] for that matter. The
entire process is typical for many of the modulations in this movement: It seems as if there were obstructions
to a fast and easy modulation, which have to be surmounted. In the present case, the fanfare of part (B) is
repeated in the subsequent part (C), but the second appearance first neutralizes IB5-major to the simple note d
on the third beat of measure 37, which is the third of B5-major and the fifth of G-major. The next chord then
replaces the e5 from the original fanfare by f7 and creates VG-major “ IVA-major “ ID-major. The movement
e5 ÞÑ f7 is a minor third (in terms of chromatic pitches and pitch classes, the present model is not based upon
tonal alterations). This short formula is ambiguous in terms of which symmetry might have caused it. We
have two candidates: f7 “ T 3pe5q “ T 9. ´ 1pe5q, transposition or inversion. The general modulation model

with unrestricted modulators would yield the inversion as modulator, in fact, T 9.´1.B
p3q
5 “ Gp3q. The fanfare

of part (C) could therefore also result from the inversional modulator acting upon e5. But T 9.´1 R AutpM0q.
Therefore only T 3 can transform B

p3q
5 into Gp3q. But this is not clear in part (C). A modulation process

4 What the spirit perceives through the senses from music, is the embodiment of spiritual insight.
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Fig. 62.3. The modulation process B5-major ù G-major between measure 31 and measure 45.

has happened, but neither is it evident which symmetry was applied, nor is it terminated since the cadence
part in the target tonality is not achieved in part (C). This state of ambiguity is expressed by the fermata
in measure 38. It is a moment of hesitation of uncertainty: What happened, where are we? Could we really
go on in G-major and step over directly to the last quarter of measure 46? Playing this shortened version
sounds like not having digested the process, like stepping into a new tonality in a haphazard way without
having made clear how we left the old one.

Fig. 62.4. The echo hypergesture preceding the modulation B5-major ù G-major.

Of course, the plain appearance of degree V IIG-major Ă V 7
G-major makes the target clear and cadences

the new tonality. But again, this would also be true if we made that brute connection to the last quarter
of measure 46, since that one initiates an arpeggiated V IIG-major. The point is that the stopping movement
terminated by the fermata in measure 38 was not only defined there, but started much earlier in part (A).
Harmonically, this part is a repeated arpeggio of VB5-major, terminating on the descending fifth step f ÞÑ b5
at the end of measure 34. This is by no means remarkable. But the shape of the arpeggio is! To begin
with, part (A) splits into two subsets AR and AL, whose onset and pitch relate by a downward shifting,
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AL “ T p1{8,´12q.AR, which creates a deeper and weaker (eighth notes) echo AL of the right hand part
AR (time in 1{8, pitch in semitone units). We shall henceforth focus on the parameters onset and pitch
and position these two parameters in R2, onset for the first, pitch for the second coordinate. Supposing for
the moment that AR and AL are gestures, this echo turns out to be the endpoint of a hypergesture curve
Aptq “ T tp1{8,´12q.AR, t P I that is the evaluation of the curve T tp1{8,´12q, t P I, of transformations at AR,
see Figure 62.4.

This descending echo is the outer shape of a movement that becomes already visible in the initial gesture
framed by AR. How is this gesture constructed? Refer to Figure 62.5 for the following discussion. To begin
with, we have seven small descending interval gestures α1, α2, α3, α

1
1, α

1
2, α

1
3, α4 PÒ ÝÑ

@R2, which are induced
by descending translation curves Ti along the vectors v1 “ p1{4,´4q, v2 “ p1{4,´7q, v3 “ p1{4,´12q, v1

1 “
p1{4,´16q, v1

2 “ p1{4,´19q, v1
3 “ v4 “ p1{4,´24q to the same periodically repeated f , the fifth of the given

tonality. Since we have this note as a fixed reference point, we view the translations as being the dual curves
Ti “ Si̊ to the translation curves Si associated with ´vi, i.e., Sip0q “ Id, Sip1q “ T´vi . All Ti are then
evaluated at the seven instances of f , the evaluation starting at the higher interval note and ending at f .

Fig. 62.5. The right hand hypergesture underlying AR.

Recall from Section 61.6.1 that we denote by Òn the digraph consisting of n`1 vertices, and having one
arrow from vertex i to vertex i`1 for all i “ 0, 1, 2, . . . n´1. Then we have a hypergesture β PÒ6 ÝÑ

@ Ò ÝÑ
@R2 that

deforms α1 into α2, etc., and α1
3 into α4. We leave it to the reader as an exercise to describe these deformations

explicitly in terms of homotopies of translation curves over the category of affine transformations on R2. The
hypergesture’s β projections p1, p2 :Ò6 ÝÑ

@ Ò ÝÑ
@R2 ÑÒ6 ÝÑ

@R2 via the head and tail maps on Ò yield the periodic
gesture of successively shifted f ’s on the one hand, and the ascending upper voice gesture on the other. But
there is more: We look at the shorter hypergestures β1, β2 PÒ2 ÝÑ

@ Ò ÝÑ
@R2, restrictions of β to the three vertices

α1, α2, α3 and α1
1, α

1
2, α

1
3, respectively. Then they are endpoints of a hypergesture γ PÒ ÝÑ

@ Ò2 ÝÑ
@ Ò ÝÑ

@R2. It
projects to the f hypergesture and shifts the subgesture of β1 built from the three f ’s in time (by 3{4) to the
corresponding subgesture of β2. The subgesture of β1 connecting a, c, f is shifted by an octave and time (by
3{4) to the corresponding subgesture of β2 connecting the octave shift of a, c, f . Putting everything together,
including the echo, we obtain a hypergesture γ` PÒ ÝÑ

@ Ò ÝÑ
@ Ò2 ÝÑ

@ Ò ÝÑ
@R2. Observe that such hypergesture

constructions go beyond hypernetwork constructions since they are intrinsically topological.

Fig. 62.6. The beginning of part (D) shows an ascending twofold octave echo gesture on the fifth d.
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So we are facing a hypergesture γ` that is traced on the “dance floor” of the score by part (A), and which
is a strong and multilayered expression of the descending movement towards the fifth (for the dominant)
of B5-major. Everything is stopping at this point, also supported by the “ritardando” and “diminuendo”
performance directions. The process’s period, expressed in the fanfare part (B), opens the transformed fanfare
in part (C) as discussed above. But the mentioned transformational ambiguity needs to be resolved, and this
is achieved in part (D) by use of a counter-gesture corresponding to the hypergesture of part (A). How is this
one structured, and how does it respond to the halting hypergesture of part (A)? The first two measures,
39 and 40, show a quadruple appearance of degree VG-major as initiated in (C). After the fermata, a new
movement is initiated, as shown in Figure 62.6. This is similar to the octave descending echo gesture in part
(A). However, now it is ascending in two octave steps X1 Ñ X2 Ñ X3 (we refrain from a more precise gesture
description, since this is straightforward here). This opening gesture towards the new tonality indicates that
the moment of halting and cadential termination is over: the movement is now reversed, ascending towards
new horizons, new skies.

It is not surprising that the following configuration of gestures appearing in part (D) is a complete mirror
of the configuration encountered in part (A). The hypergestural anatomy is shown in Figure 62.7. Let us

Fig. 62.7. The hypergestural configuration in part (D) mirrors the one from part (A).

describe what this “mirroring” looks like in detail. To begin with, we have a strong similarity of hypergestural
configurations. We first have nine small ascending interval gestures δ0, δ1, δ2, δ3, δ

1
1, δ

1
2, δ

1
3, δ4, δ5 PÒ ÝÑ

@R2,
which again are anchored in the periodically repeated fifth d of the given tonality G-major and add up
like β in (A) previously to a hypergesture ε PÒ8 ÝÑ

@ Ò ÝÑ
@R2. The three gestures δ1, δ2, δ3 and δ1

1, δ
1
2, δ

1
3 define

hypergestures ε1, ε2 PÒ2 ÝÑ
@ Ò ÝÑ

@R2, much as β1, β2 did in the previous situation. And these two hypergestures
also are connected to a big hypergesture φ, similarly to the above hypergesture γ. And again, the gestures
δi, δ

1
i in φ are anchored on the fifth and have the upper voice showing a characteristic chord. While in

part (A) this was the arpeggiated VB5-major, here it is the arpeggiated modulation pivot V IIG-major (which
is the upper triad in the score’s V 7

G-major). Moreover, as already mentioned previously in this section, the
pivotal V IIG-major appears arpeggiated in steps of two ascending minor thirds, which again stresses the
third transposition symmetry against the inversion that would have modulated this configuration without
restricted modulators.

62.4.3 Lewin’s Characteristic Gestures Identified?

The situation is full of similarities above the level of the elementary interval gestures in (A) and in (D). But
these are not similar. They are the carriers of what had been called “mirroring” above. What does this look
like? Let us take the paradigmatic example of the two gestures α1 in (A) and δ1 in (D). We had associated
gesture α1 with the descending onset-time shift transformation tA “ T p1{4,´4q, and δ1 can be associated with
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the ascending onset-time shift transformation tB “ T p1{4,28q. The straightforward curve of transformations is
then T1 “ S1̊ for α1 and TBptq “ T t.tB , t P I, for δ1. Evaluating these transformational gestures (curves) at

the anchor points f, d P R2 yields two curves T1.f, TB .d PÒ ÝÑ
@R2. Although these curves of transformations

and of evaluated points are mathematically straightforward, they are not evident per se. Why should the
curve connecting start and end be a linear trajectory? One could also select T 1

Bptq “ T t2.tB , for example. The
trace would be the same. This simple example shows that the gestures on the score’s dance floor are multiple.
Only the points of contact are unchanged. The difference on the gestural level pertains to the interpretative
effort (the “aesthesic” position in Valéry’s wording), not to the work’s neutral level, see Section 2.2.2 or
[704]. On the gestural interpretation level, there is a manifold of solutions beyond the generic one.

A priori, there are essentially two levels where a solution may be sought out: the evaluated points level,
i.e., the curves in Ò ÝÑ

@R2, or the transformational level, i.e., the curves of transformations in Ò ÝÑ
@ rIdÝÑ

GLpR2qs.
(We put aside the “mixed” solutions with variable points and transformations in Ò ÝÑ

@ rIdR2ˆÝÑ
GLpR2qs as already

described in Example 74.) The difference of these approaches lies in their semantic power, which is expressed
in the mathematical manifold which they describe. The simple curve level Ò ÝÑ

@R2 offers a big topological
space, but no a priori semantics. Any curve would do, be it induced by a physical hand movement rationale
as developed in [772], or by any poetic phantasy of spatial curves. In contrast, the transformational level
Ò ÝÑ
@ rIdÝÑ

GLpR2qs defines a repertory, which is more expressive as it refers to curves of transformations, such as
rotational curves, or curves of transvections, which, for example, may be loaded by musical meaning. This
situation is much the same as for transformational theory, where two determined notes are connected by an
affine transformation out of a set of transformations, which is essentially the stabilizer subgroup of the point
of departure, and where the selection of an element of that stabilizer expresses a semantic choice—except
that the manifold of curves is much larger than it is for that theory.

Let us look at the expressive richness on the hypergesture level, which defines curve gestures between
gesture α1 and gesture δ1. One first interpretative action is the earlier defined dual gesture construction
T1 “ S1̊ for α1. It exchanges the start and the end of the gesture and so doing means that the perspective
is taken from the higher note a “ T1p0q towards the anchor note f “ T1p1q, but the underlying logic stems
from the dual gesture S1, evaluated to the dual curve α1̊ that views a as the endpoint of a movement starting
in f . Duality is interpreted as going backwards, coming back to the root f , although we are moving forwards
in terms of the onset parameter. This is the first part of the mirroring operations. It is not a gesture, but a
reinterpretation of the given gesture’s curve parameter. Next, we want to compare α1̊ to δ1. They are both
ascending gestures, and they do so from the same scale degree, the fifth (call it dominant, if that matters)
of the given tonality. The first looks backwards, the second forwards in time. Looking into the past and
then into the future is a simple dramatic logic of the gestural trajectory. We view this duality argument as
a first example of thinking about Lewin’s “characteristic gesture” in the sense that the gestural operation is
a characteristic for the expression of a specific musico-logical thought.

Fig. 62.8. The elementary gestures and their abstract representation for the mirroring operations.

There are several options to connect α1̊ to δ1 in a hypergestural curve in order to construct a further
differentiation of Lewin’s “characteristic” movements. To ease the formal setup, let us think about both
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gestures starting from the same point x P R2 and ending in z for α1 and in w for δ1. So this prototypical
representation has α1̊ ptq “ T tpz´xq.x and δ1ptq “ T tpw´xq.x, see also Figure 62.8.

On the level of transformations, we have the prototypical gestures Tαptq “ T tpz´xq, t P I, and Tδptq “
T tpw´xq, t P I, representing α1̊ and δ1. In order to connect them by a curve (in fact a homotopy), one may
set Tαpsqptq “ T pQpsqpz´xqqtφpsq where φ : I Ñ GL2pRq is a loop starting and ending at Id, and where
Qpsq “ T spw´zq. The left part of Figure 62.9 shows this construction when evaluated at x and with trivial

Fig. 62.9. The elementary gestures and their abstract representation for two mirroring operations.

φ. One may also refer to the complexification technique described above in Section 62.3 and set

Qpsq “
˜
e´iπspp1 ` sq ´ sΔ1q 0

0 pp1 ´ sq ` sΔ2q

¸

with Δi “ pwi ´ xiq{pzi ´ xiq, i “ 1, 2, where Qpsq rotates the onset part by e´iπs (clockwise) and produces
an imaginary onset for s ‰ 0, 1; see Figure 62.9, right part. It is fundamentally different from the first
solution in that it means mirroring time instead of just pointing to continuously changing interval directions
in the first choice. The difference in these gestures is that they express in characteristic ways the mirroring
operation from the backwards oriented interval in (A) to the forwards oriented one in (D). These operations
represent totally different musical thoughts. We would adhere more to the second choice in the sense that it is
dramatic and coincides with the fermata: For a short moment, time becomes imaginary (here also imaginary
in terms of complex numbers), and when we have transgressed that “higher sphere of pure imagination”, we
are heading for a new tonal region.

62.4.4 Modulation E5-major ù D-major{B-minor from W to W ˚

This modulation is a catastrophe in the sense of Uhde since it leads to the antiworld W˚. As we may
recognize already from the score in Figure 62.10, measures 189-197 are of a dramatic shape. Any elaborate
motivic or harmonic effort is postponed in favor of a pertinent rhythmical presentation of diminished seventh
chords. An approach to modulation via the inversion between e and f (provided by the modulation Theorem
30 in Section 27.1.4), Ue{f “ T 9. ´ 1, V IE5-major ÞÑ ID-major “ Ue{f .V IE5-major (measures 189-192), fails;
the resolution of all alteration signs indicates the exit from tonal space. We hear the “generator” of the
catastrophe, the diminished seventh chord as such. The situation before the modulation is similar to that in
the previous modulation, where we also moved down and stayed on the fifth until the tonic was reached at
the end of measure 34. In measures 187-188, the dominant degree VE5-major appears four times, each time
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Fig. 62.10. The modulation process E5-major ù D-major{B-minor between measure 189 and measure 197.

initiating a downward four-note motif b5, a5, g, f that finally reaches the tonic and degree IE5-major at the
beginning of measure 189. In this measure a two-measure-periodic rhythmic duration sequence of multiples of
eights, namely 1{8, 3{8, 1{8, 3{8, 1{8, 3{8, 1{8, 2{8 (followed by a 1{8 rest in the left hand), which concatenates
twice the rhythm of the first four notes of the fanfare, is established and repeated without exception five
times until measure 198, where the ID-major is reached. The rhythmical energy then breaks down to an even
shorter rhythm, namely the very beginning rhythm 1{8, 3{8 of the fanfare.

The beginning of this rhythmical pattern also parallels the ambiguous situation in measures 37-38.
There, it was shown that the transition from e5 to f7 was ambiguous, being either an inversion under T 9.´1
or a transposition T 3. Since the admitted symmetries exclude the inversion, the transposition was left and
also showed its pivotal seventh degree in the following measures. But now, the situation is significantly
different. The same inversion T 9. ´ 1 does in fact transform E5-major to D-major (or B-minor for that
matter). But this is forbidden as above. Moreover—and this is different here—there is no other symmetry
in the group of modulators that would do the job. We are confronting two tonalities in different worlds,
E5-major P W and D-major P W˚. As can be expected from our previous modulation, the transformation
e5 Ñ f7 also appears in the transition from the third of V IE5-major to the third of ID-major

in the action
T 9. ´ 1pV IE5-majorq “ ID-major on the neigboring degrees in measures 190-191. The impossibility of applying
this modulator coincides with the above rhythmic pattern. This time there is no modulator. And as opposed
to the fanfare that works in our previous case, it cannot be completed, i.e., it is blocked in its salient initial
stage.

62.4.5 The Fanfare

In order to discuss the gestural interpretation of this process, we have to investigate the fanfare in more detail.
We shall lead this discussion in a less technical style regarding the gestural formalisms, because technicalities
can easily be filled out by the attentive reader, and because the point here is less the technical than the
semantic level enabled by our gestural toolbox.
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As is evident from the previous description, we have to focus on the rhythmic structure of this gestu-
rality. To do so, we look at the time coordinates of the fanfare: onset and duration, see Figure 62.11. They
show a bipartite gestural anatomy. We recognize two groups of gestures: the two ascending arrows to the
left, and the two horizontal arrows to the right. These groups correspond to the pitch-ascending part and
the pitch-descending part in the fanfare.

Fig. 62.11. The representation of the fanfare on the time-related plane of onset and duration.

So we view these structures as a gestural construction, which starts with the first ascending curve
and deforms to the second ascending curve. This defines a hypergesture in the rhythm-space of onset and
duration. In our understanding, the ascending character means that we address a downbeat, a halting
energy. This elementary gesture (first arrow) is deformed to a second appearance (second ascending arrow).
This deformation is shown as hypergesture ρ in the left lower part of Figure 62.12. This interpretation is
ontologically non-trivial since it creates a continuous transition from the initial note to the second longer
one, which amounts to imagining an entire curve of intermediate notes that succeed each other in infinitely
near onset times and durations. This enrichment in fact fills out the empty time-space that is not denoted
on the score by what in our musical imagination takes place while the first note is being heard/played. The
hypergesture connecting the first and second arrow gestures is the connection of this first rhythmic step to
the second in the same way, but conceptually and in the perceptive/performative level at a higher stage of
imaginative coherence.

The first hypergesture ρ is followed by a second hypergesture σ, which deforms an arrow connecting
two eighth notes to the arrow between two quarter notes. This time, the deformation of these arrows is
not the hypergesture connecting a repeated halting movement, but expresses the halting movement of a
regular succession of notes of same duration. It is not the repetition of a halting movement, but the halting
of a repetitive movement: the roles of repetition and halting are exchanged. In order to connect these two
hypergestures ρ and σ, we give two gestural transitions: First, the initial hypergesture ρ is rotated (in a
rotative curve gesture) into the intermediate hypergesture ρ1 (upper left corner in Figure 62.12). Then, ρ1 is
deformed into σ, but also replaced by its dual ρ1˚ (not shown explicitly in the figure, since it just reverses
the homotopy direction). This guarantees that the hypergesture moves from a lower duration to a higher
one as required in σ. So we have a hypergesture of skeleton Ò2 connecting ρ and σ. The other variant avoids
duality, but uses a diagonal mirror operation to flip ρ into ρ2 in the upper right corner of Figure 62.12. Of
course, this requires a complexification of the real 2-space, which we do not draw to keep the visualization
simple. Again, from the intermediate ρ2, we deform down to σ by a similar transformation curve as that for
the preceding case between ρ1 and σ. And again, we have a hypergesture of skeleton Ò2, this time generating
σ from ρ via ρ2.

Again, we have different characteristics, which are addressed in these two paths from ρ to σ: The first
keeps orientation (by a rotation in the onset-duration plane), but has to reverse curve time in the duality
switch, while the second reverses onset and duration (through an imaginary rotation in complex numbers).
According to the above statement that the second σ is not the repetition of a halting movement (which
ρ was), but the halting of a repetitive movement. The exchange of onset and duration in the imaginary
mirror path seems more to the point of this rhythmical construction. The dialectic pairing of ρ and σ in this
interpretation resolves the repeated attempt to halt time in ρ by its hypergestural deformation to a completed
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Fig. 62.12. The first hypergesture ρ is followed by a second hypergesture σ, which deforms an arrow connecting
two eighth notes to the arrow between two quarter notes. We show the hypergestural connection between these two
hypergestures.

repetition, and then into its halting slow-down. From this point of view, the repeated presentation of the
fanfare’s first part ρ in the catastrophe modulation perpetuates that internally already prototyped repeated
halting and thereby expresses in an unfolding of the “idea in a nutshell” the failure to release the tension
and to modulate in a well-structured way into the antiworld. The final reduction to the initial arrow of ρ
in the ritardando measures 199-200 completes this failure and brings the energies to their exhaustion, the
gesture dissolves.

62.5 Conclusion for the Categorical Gesture Approach

In this chapter, we have constructed a categorical framework of gestures, generalizing the topological ap-
proach from Chapter 61, and culminating in the construction of a gesture bicategory, which enriches the
classical Yoneda embedding. This framework could be a valid candidate for the conjectured space X in the
diamond conjecture (see Section 61.12). Future research will have to investigate typical algebraic categories
of modules or topoi above module categories, or word monoids (in particular regarding scale theory [274],
which deals a lot with factorization!), which are representative of algebraic music theories. We have discussed
first applications of this framework for topological groups, and then more concretely gestures in modulation
processes in Beethoven’s Hammerklavier sonata. The latter have offered a first concretization of answers to
Lewin’s big question from [605] concerning characteristic gestures. The characters in our setup have been
provided by well-chosen transformational gestures and their semantic interpretation in terms of dramatic
instances. Despite these concrete examples, the present research has not solved the morphic half of Yoneda’s
idea, namely the fully gestural reconstruction of arrows in abstract categories, but it is a first step towards
a replacement of Fregean functional abstraction by gestural dynamics. The fact that core constructions in
homological algebra, such as extensions, are naturally incorporated in this approach is a sign of having
embarked in the right direction.
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62.6 Functorial Gestures: General Addresses

To this point, mathematical gesture theory has been developed under the tacit assumption that the classical
addressed approach in functorial mathematical music theory, based upon the category Mod@ of modules,
would not apply to gestures. However, such a restriction is superfluous, and we will develop here the functorial
extension of the theory of local gestures in topological categories. We shall later include this extension into
the global gesture theory, too, see Section 66.8.

In the categorial context, a continuous curve is a continuous functor g : ∇ Ñ X with values in a
topological category X. Its “points” are the values at the objects x P ∇. To generalize this situation to more
functorially conceived points, we take the domain ∇ ˆ A for a general address, i.e., a topological category
A P TopCat. An A-addressed curve in X is a continuous functor g : ∇ ˆ A Ñ X. Evidently, if f : B Ñ A
is an address change in TopCat, we get a new curve g.f :“ g ˆ pId∇ ˆ fq from g and f . Also, if x P I
is an object of ∇, we have the injection f : 1 Ñ ∇ : 0 ÞÑ x and the associated address change curve
g|x : A Ñ I ˆ A Ñ X : a ÞÑ gpx, aq; we shall need this latter construction especially for g|0 and g|1.

As in the zero-address case, we have a topological category (with object set) denoted by ∇©AX :“
p∇ˆAq©X, and continuous natural transformations ν : g Ñ h of curves g, h : ∇ˆA Ñ X as morphisms. The
definition of the topology on this set is completely analogous to the construction in the zero-addressed case,
see Section 62.1. Clearly, the address change f : B Ñ A now induces a continuous functor ©f : ∇©AX Ñ
∇©BX. Also, if x P I is an object (a point) of ∇, we have a continuous functor ©|x : ∇©AX Ñ A©X into
the topological category A©X with the compact-open topology. In particular, we have the tail and head
functors tA “ ©|0, hA “ ©|1 : ∇©AX Ñ A©X, which define the A-addressed categorical digraph A@

ÝÑ
X of X.

The digraph of the object maps of A@
ÝÑ
X is called the spatial A-addressed digraph of X. Again, similarly to

the zero-addressed case, an A-addressed gestures with skeleton digraph Γ and body X is a digraph morphism
g : Γ Ñ A@

ÝÑ
X into (the spatial digraph of) A@

ÝÑ
X . The set of these gestures is denoted by Γ@A

ÝÑ
X .

We have the following functorial maps: Given an address change f : B Ñ A, a continuous functor of
topological categories m : X Ñ Y , and a digraph morphism t : Δ Ñ Γ , we have

Γ@fX : Γ@A
ÝÑ
X Ñ Γ@B

ÝÑ
X,

Γ@Am : Γ@A
ÝÑ
X Ñ Γ@A

ÝÑ
Y ,

t@AX : Γ@A
ÝÑ
X Ñ Δ@A

ÝÑ
X.

To turn Γ@A
ÝÑ
X into a topological category, denoted as earlier by Γ

ÝÑ
@AX, observe that Γ is the colimit

of the diagram D of digraphs described in Section 62.1.2. Then we have Γ@A
ÝÑ
X

„Ñ limD A@
ÝÑ
X since Ò

@A
ÝÑ
X

„Ñ A@
ÝÑ
X , which turns Γ@A

ÝÑ
X into a topological category since TopCat is finitely complete.

One expects the Escher Theorem 61 to be true for general addresses, too. We have this extension, which
is valid for locally compact Hausdorff addresses:

Proposition 3. (Functorial Escher Theorem) If Γ,Δ are digraphs, X is a topological category, and A,B
are two locally compact Hausdorff topological categories, then we have a canonical isomorphism of topological
categories,

Γ
ÝÑ
@AΔ

ÝÑ
@BX

„Ñ Δ
ÝÑ
@BΓ

ÝÑ
@AX.

Modulo taking limits, the proof boils down to the special case where Γ “ Δ “Ò. Then we have to prove
that there is a (canonical) isomorphism Ò ÝÑ

@A Ò ÝÑ
@BX

„ÑÒ ÝÑ
@B Ò ÝÑ

@AX of topological categories. Because of

Ò @A
ÝÑ
X

„Ñ A@
ÝÑ
X , this means that A@

ÝÝÝÑ
B@

ÝÑ
X

„Ñ B@
ÝÝÝÑ
A@

ÝÑ
X , i.e.,

p∇ ˆ Aq©pp∇ ˆ Bq©Xq „Ñ p∇ ˆ Bq©pp∇ ˆ Aq©Xq.
This isomorphism follows from the following series of isomorphisms that are all due either to the universal
property of the compact-open topology (Mathematical Appendix, Section J.4.1.2, Theorem on Exponential
Correspondence) or to the isomorphism X ˆ Y

„Ñ Y ˆ X of cartesian products. We start with the right
expression above.
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p∇ ˆ Bq©pp∇ ˆ Aq©Xq „Ñ p∇ ˆ Bq©p∇©pA©Xqq „Ñ
∇©pB©p∇©pA©Xqqq „Ñ ∇©pB ˆ ∇©pA©Xqq „Ñ
∇©p∇ ˆ B©pA©Xqq „Ñ ∇©p∇©pB©pA©Xqqq „Ñ

∇©p∇©ppB ˆ Aq©Xqq „Ñ ∇©p∇©ppA ˆ Bq©Xqq „Ñ
p∇ ˆ ∇q©ppA ˆ Bq©Xq „Ñ p∇ ˆ ∇q©ppA ˆ Bq©Xq permute the two copies of ∇.

The last expression is the result we get from the same procedure, but starting from the left expression above,
and we are done.

We shall give musical applications of this functorial formalism in Section 78.4.1.

62.7 Yoneda’s Lemma for Gestures

The classical Yoneda Lemma (Appendix Section G.2) deals with the Yoneda functor Y : C Ñ C@ : X ÞÑ @X,
and in its general shape states that for any presheaf (contraviariant functor) F P C@ and object X in C, we
have a bijection

Natp@X,F q „Ñ X@F.

In our present situation, we also have presheaves, but they are different from the classical ones. For a
topological category X, we have the presheaf (denoted by the classical symbol as no confusion is likely)
@X : Digraph ˆ TopCat Ñ TopCat : pΣ,Aq ÞÑ Σ

ÝÑ
@AX. It is not representable in the classical sense,

but nevertheless we have a representational situation here. Denote by
ÝÝÝÝÝÑ
TopCat

©
the category of presheaves

F : DigraphˆTopCat Ñ TopCat; its objects are also called gestural presheaves. Observe that the natural
transformations in this category need to refer to morphisms in TopCat; we then also denote by NatTCpF,Gq
the set of morphisms f : F Ñ G in

ÝÝÝÝÝÑ
TopCat

©
.

Definition 111 A gestural presheaf F : Digraph ˆ TopCat Ñ TopCat is said to be gesturally repre-

sentable iff it is isomorphic in
ÝÝÝÝÝÑ
TopCat

©
to @X for a topological category X. We then also say that F is

represented by the gesture space X.

In what follows, we shall prove a Yoneda Lemma that identifies morphisms in
ÝÝÝÝÝÑ
TopCat

©
, i.e., natural

transformations f : @X Ñ F of gestural presheaves with an evaluation of determined functors at X. To this
end, we consider the category TC-Digraph of TC-digraphs that are internal to TopCat©, the category of
presheaves on TopCat that have values in TopCat (we also call them “continuous presheaves”). A TC-
digraph D is given by natural head and tail morphisms D “ η, τ : C Ñ P between (continuous) presheaves
C,P P TopCat©, C being called the presheaf of curves, while P is called the presheaf of points. A morphismÝÑ
f “ pf∇, f .q : D1 Ñ D2 for D1 “ η1, τ1 : C1 Ñ P1, D2 “ η2, τ2 : C2 Ñ P2 is the usual pair of morphisms
f∇ : C1 Ñ C2, f

. : P1 Ñ P2 that commutes with head and tail morphisms. Every gestural presheaf
F gives rise to such a TC-digraph F∇ Ñ F . that evaluates to A@F∇ “ pÒ, Aq@F,A@F . “ p., Aq@F ,
the evaluation at the line digraph Ò and the singleton digraph ., while the head and tail morphisms are
defined by the two injections . ÑÒ. This digraph is denoted by

ÝÑ
F . In particular, if F “ @X, we have

A@X∇ “ pÒ, Aq@X “ A@X∇, A@X . “ p., Aq@X “ A@X ., where X∇ :“ ∇@X,X . :“ X. This digraph is
denoted by

ÝÑ
X . With this digraph formalism, we have a Yoneda Lemma for gestural presheaves F that are

limits of curve functors, i.e. pΣ,Aq@F
„Ñ limDpF∇, F .q, where D is the usual diagram of digraphs whose

colimit is Σ. Call such functors limiting functors. For example, all the gesturally representable functors are
limiting.

Theorem 39 (Yoneda Lemma for Functorial Gestures) For a topological category X and a limiting gestural
presheaf F , we have a bijection

NatTCp@X,F q „Ñ TC-DigraphpÝÑ
X,

ÝÑ
F q.
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If
ÝÑ
f “ pf∇, f .q is a morphism

ÝÑ
X Ñ ÝÑ

F , the classical Yoneda Lemma states that this is equivalent to having
a pair f∇ P X∇@F∇, f . P X@F .such that the two images ηf∇, τf∇ : X∇ Ñ F . defined by the functors
η, τ : F∇ Ñ F . and the two two images f .h, f .t : X∇ Ñ F . defined by head and tail morphisms X∇ Ñ X
coincide5, respectively:

ηf∇ “ f .h,

τf∇ “ f .t.

The proof runs as follows. For a natural transformation f : @X Ñ F , the evaluation pΣ,Aq@f :
Σ

ÝÑ
@A@X Ñ pΣ,Aq@F for general digraphs Σ and topological categories A commutes with its evaluations

pÒ, Aq@f :Ò ÝÑ
@AX Ñ pÒ, Aq@F p., Aq@f : .

ÝÑ
@AX Ñ p., Aq@F at the arrow Ò and the point digraph ., which

means that, in view of the limiting character of these functors, the arrow and point evaluation functors
determine one-to-one the original morphism f . But these two evaluations mean the commutativity (with the
left and right vertical arrows, respectively) of this functor diagram:

A@X∇

h

��
t

��

A@f∇
�� A@F∇

η

��
τ

��
A@X .

A@f .
�� A@F .

But this is equivalent to the Yoneda evaluation at A of the digraph morphism
ÝÑ
f :

ÝÑ
X Ñ ÝÑ

F , and we are
done.

This lemma has a deep impact on the gestural understanding of artistic utterance. While the functor F
is not defined by gestures, nor has its values in gestural structures, the functors @X are gestural by their very
construction. The natural transformations f : @X Ñ F define gestural perspectives on F , our understanding
of F in terms of gestural functors. One could call the entire big functor NatTCp@?, F q the functorial gestural
aesthetics of F . It tells us how much we can know about F in terms of gestural constructions. This is an
important tool to discuss musical constructions that are not, a priori, gestural in nature. Such a situation
may occur typically in electronic music, but also in classical constructions of scores that are not derived from
gestural aspects. In terms of the classical Yoneda Lemma, we could consider the category TC-Digraph and
the Yoneda functor Y : TC-Digraph Ñ TC-Digraph©, and the above big functor would mean restricting
the functorial domains to the subcategory @TC Ă TC-Digraph of gesturally representable functors

ÝÑ
X ,

and asking whether the functor Y : TC-Digraph Ñ TC-Digraph© Ñ @TC© is still fully faithful.

62.8 Examples from Music

In the following three examples, we shall illustrate this situation, namely for constructions of sound waves,
spectral compositions, and MIDI-related ON-OFF processes.

In all three examples, we shall use non-representable functors of the same nature: powers functors,
which are well-known to be non-representable as TopCat is not a topos.

62.8.1 Collections of Acoustical Waves

The first example considers the topological space Z “ Cnpr0, 1s,Rq of n times differentiable functions on the

unit interval, describing sound events in a defined time interval r0, 1s. The functors are A@F∇
Z “ 2A@Z∇

,
whose elements are sets g of morphisms gi : A Ñ Z∇, or, equivalently, morphisms gi : ∇ ˆ A Ñ Z, the
latter being interpreted as curves with values in Z that are parametrized by values in A, i.e., for each a P A,
we have a curve gi,a : ∇ Ñ Z, which is equivalent to a curve r0, 1s Ñ Z as we are dealing with topological

5 This can be restated as a diagram limit condition.

mailto:X@F.such
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spaces here. Technologically, this means that we are given a processual setup that creates a curve of sound
events for each parameter choice a P A. Such a situation is standard when working with Max MSP software,
for example.

Next, we also need the functor F ., which we define by A@F .
Z “ 2A@Z . Its values are the sets of A-

parametrized sound events. The head and tail transformations are the evident maps η, τ : A@F∇
Z Ñ A@F .

Z

that send curves to their head and tail values. These sets are given the indiscrete topology.
It is a bit tricky to find morphisms f : @X Ñ FZ . One way of doing so is to think about the above

condition ηf∇ “ f .h, τf∇ “ f .t. We have to select two sets, f∇ Ă X∇@Z∇, f . Ă X@Z, such that these
conditions hold, meaning that for every g∇ P f∇ there is a g. P f . such that ηg∇ “ g.h, and a g.˚ P f . with
τg∇ “ g.˚t, and vice versa. For example, ηg∇ “ g.h : X∇ Ñ FZ means that for every curve κ : ∇ Ñ X,
we have g∇pκqp1q “ g.pκp1qq. These are quite involved conditions. But it is easy to find solutions. Take any
set f . Ă X@Z. Then define f∇ as follows. For every g. P f ., define g.,∇pκ,mq “ g.pκpmqq for any curve
κ : ∇ Ñ X and morphism (!) m P ∇. The set f∇ is built from these morphisms g.,∇, and it is evident that
this is a solution to our problem. It is also clear that this solution holds for any topological space Z.

62.8.2 Collections of Spectral Music Data

The second example uses the same architecture as the previous one, but Z is now a different space that is
related to spectral composition methods. Instead of sets of parametrized sound events in Cnpr0, 1s,Rq, we
now define Fourier coefficients that are time-dependent. More precisely, we define sound events as functions
of time x P R via the Fourier expressions

wpxq “
˘8ÿ
n

cnpxqei2πnνpxqx,

where every member of the function sequence cn, ν : R Ñ C has compact support, we have real values
for ν, and the sequence produces a convergent sum at all times. Call Zspec the topological space of these
sequences with one of the usual topologies (in fact defined by scalar products). Then our digraph of presheaves
F∇
Zspec

Ñ F .
Zspec

represents sets of parametrized time-dependent Fourier coefficients used in classical spectral
compositions.

62.8.3 MIDI-Type ON-OFF Transformations

For our third example, we take A@F .
EHL “ 2A@REHL

and A@F∇
EHLDGC “ 2A@REHLDGC

, where REHL is
the three-dimensional real vector space of note events with onset (E), pitch (H), and loudness (L), whereas
REHLDGC is the six-dimensional real vector space of note events with onset (E), pitch (H), loudness (L),
duration (D), glissando (G), and crescendo (C). Again, the powersets are given the indiscrete topology. Here,
the head and tail functors are defined by the typical operators from the MIDI ON and OFF functions, namely
η (for ON) is defined by the first projection pEHL : REHLDGC Ñ REHL : px, y, z, u, v, wq ÞÑ px, y, zq, while τ
(for OFF) is defined by the alteration function α : REHLDGC Ñ REHL : px, y, z, u, v, wq ÞÑ px`u, y`v, z`wq.
In this situation, we can construct a morphism as follows. We again start with a set f . Ă X@REHL. The set
f∇ Ă X@REHLDGC consists of these morphisms: For every l : X Ñ REHL inf ., we take its two composed
morphisms l0 : X∇ Ñ REHL : κ ÞÑ lpκp0qq and l1 : X∇ Ñ REHL : κ ÞÑ lpκp1qq. Then we define members
of f∇ Ă X@REHLDGC by taking for each l : X Ñ REHL the function l∇ : X∇ Ñ REHLDGC : κ ÞÑ
pl1pκq, l0pκq ´ l1pκqq. It is immediate that this defines a solution.
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63

Singular Homology of Hypergestures

Summary. In this chapter we interpret the basic cubic chain spaces of singular homology in terms of
hypergestures in a topological space over a series of copies of the arrow digraph Ò. This interpretation allows
for a generalized homological setup. The generalization is (1) to topological categories instead of topological
spaces, and (2) to any sequence of digraph pΓnqnPZ instead of the constant series of Ò. We then define
the corresponding chain complexes, and prove the core boundary operator equation B2 “ 0, enabling the
associated homology modules over a commutative ring R. We discuss some geometric examples and a musical
one, interpreting contrapuntal rules in terms of singular homology.

– Σ –

63.1 An Introductory Example

Let us give an introductory example of the Escher Theorem, which has musical relevance, before we embark on
the homological theme. Let G be a topological group, X a topological space, and G ˆ X Ñ X a continuous
group action. Denote by GX the topological category whose objects are the elements of X, and whose
morphisms g : x Ñ y are the triples px, y, gq P X2 ˆ G such that y “ gx, the topology of GX being induced
from the product topology on X2 ˆ G. If the topologies are all indiscrete, a continuous curve F : ∇ Ñ GX
is just a functor.

A classical example for such a topological category GX from transformational music theory is the
canonical action of the general affine group G “ ÝÑ

GLpZ12q “ TZ12 ¸ Zˆ on the pitch class set X “ Z12,
together with the indiscrete topology. Recall that in Section 62.2.1, we have constructed special curves,
so-called discrete gestures, Œ pgq : ∇ Ñ GX for every morphism g : x Ñ y as follows:

Œ pgqps, tq “

$’’’&’’’%
Idx if s “ t “ 0,

g if 0 “ s ă t,

Idy if 0 ă s.

We may therefore identify morphism of GX with such discrete gestures. Composing such discrete gestures,
we may more generally define discrete gestures Œ pg1, g2, . . . gnq for any sequence g1, g2, . . . gn of morphisms
which can be composed to g1˝g2˝. . . gn, see Section 62.2.1 or [723, 3.1] for details. We have Œ pg1, g2, . . . gnq PÒÝÑ
@ GX.

In our musical example, we may interpret a consonant interval as being a discrete gesture

Œ pgq PÒ ÝÑ
@

ÝÑ
GLpZ12qZ12

associated with a morphism g : c Ñ d from a cantus firmus pitch class c to discantus pitch class d, where
g “ T k is the translation by a Fux consonance k “ d ´ c P K “ t0, 3, 4, 7, 8, 9u. If Œ pg1q,Œ pg2q, . . . Œ pgnq

 
G. Mazzola et al., The Topos of Music III: Gestures, Computational Music Science, 
https://doi.org/10.1007/978-3-319-64481-3_8 

965© Springer International Publishing AG, part of Springer Nature 2017 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-64481-3_8&domain=pdf
https://doi.org/10.1007/978-3-319-64481-3_8


966 63 Singular Homology of Hypergestures

is a sequence of n such discrete interval gestures, stemming from morphisms gi : ci Ñ di, i “ 1, . . . n, we
have the morphisms fi :Œ pgiq ÑŒ pgi`1q, i “ 1, . . . n ´ 1, defined by the natural transformations on curve
arguments 0, 1 via fip0q “ T ci`1´ci , fp1q “ T di`1´di , i “ 1, . . . n ´ 1. This defines a hypergestural curve

Œ pf1, f2, . . . fnq PÒÒ ÝÑ
@

ÝÑ
GLpZ12qZ12

which formally represents a first species contrapuntal sequence of n consonant intervals. Applying the Escher
Theorem for the exchange permutation of the first and the second digraph Ò, the sequence Œ pf1, f2, . . . fnq
corresponds to the discrete curve from the cantus firmus curve Œ pc1,2, c2,3, . . . cn´1,nq defined by the transla-
tional morphisms ci,i`1 : ci Ñ ci`1 to the discantus curve Œ pd1,2, d2,3, . . . dn´1,nq defined by the translational
morphisms di,i`1 : di Ñ di`1 for i “ 1, 2, . . . n ´ 1. These two interpretations of a contrapuntal sequence
correspond to the two musicological interpretations of the word “contra”: The sequence Œ pf1, f2, . . . fnq is
the original meaning, i.e. that the opposition is between successive intervals, whereas the other interpreta-
tion, the discantus curve being the “opposition” to the cantus firmus line, is well known, but historically not
adequate; see [924] for details. The Escher Theorem mediates between these two interpretations.

The present homological approach is deduced from the following observations. To begin with, sin-
gular homology is based on continuous functions on standard objects, either n-dimensional simplexes or
n-dimensional cubes [635]. It is well known that both, the simplicial and the cubical homology, yield the
same homology groups. Our approach is based on cubic homology; see [999] for a good presentation of cubic
homology. This one considers continuous functions s : In Ñ X on the n-dimensional cubes, n-fold cartesian
products In “ I ˆ I ˆ . . . I of the real unit interval I, with values in a topological space X. These functions
are called singular n-cubes. Let us look at some singular cubes on the torus surface X “ T2, see Figure
63.1. A singular 0-cube is a map σ0 from the singleton I0 to T2, a singular 1-cube is a continuous line map
σ1 : I Ñ T2, a 2-cube is a continuous square surface map σ2 : I2 Ñ T2.

Fig. 63.1. Singular cubes on the torus. A 0-cube is a point, a 1-cube is a continuous line map, a 2-cube is a continuous
square surface map. And four 1-cubes circumscribing the torus hole.

In homology, for a given (unitary) commutative ring R, one builds the modules CnpR,Xq of n-chains,
i.e. the formal R-linear combination of singular n-cubes. The “yoga” of homology is that one can map n-
chains to n ´ 1-chains by the R-linear boundary homomorphism Bn : CnpR,Xq Ñ Cn´1pR,Xq such that
Bn ˝ Bn`1 “ 0. This means that Bn`1 “ ImpBn`1q Ă Zn “ KerpBnq. The quotients HnpR,Xq “ Zn{Bn`1

are called nth homology modules. One of their significations is that their dimension may measure holes in
the topological space X. Let us make a simple example for the torus. If we look at a singular 1-cube σ1, its
boundary B1σ1 is an alternate sum of its faces (the two curve endpoints): B1σ1 “ σ1|x“1 ´ σ1|x“0, where x
is the curve parameter on I. If we look at a singular 2-cube σ2, its boundary B2σ2 is an alternate sum of
its four faces σ2|x“0, σ2|x“1, σ2|y“0, σ2|y“1, which are the restrictions of σ2 to its four “face” subsets defined
for the conditions x “ 0, x “ 1, y “ 0, y “ 1 on the I2’s coordinates x and y. These four contiguous singular
1-cubes define a 1-chain, namely the alternate sign sum σ2|x“1 ´σ2|x“0 `σ2|y“0 ´σ2|y“1. But it is clear that
if we concatenate four contiguous singular 1-cubes γ1, γ2, γ3, γ4 as shown in Figure 61.8, their sum cannot
stem from the boundary of a singular 2-cube, since the torus has a hole that prevents the existence of such a
surface on T2. This means that the hole circumscribed by the chain γ1 `γ2 `γ3 `γ4 in Z1 defines a non-zero
element of H1pR,T2q.
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The connection between homology and gesture theory is as follows. We have

ToppIn, Xq „Ñ ToppI,ToppI, . . .ToppI,Xq . . .q.
Then, because ToppI,Xq „ÑÒ @

ÝÑ
X , we may identify ToppIn, Xq with the space Ò @ Ò @ . . . Ò ÝÑ

@X of n-fold
hypergestures in X for the sequence Ò, . . . Ò of n copies of the one-arrow digraph Ò . In other words, the
singular n-cubes in X are very special hypergestures.

This means that the basic objects of (cubic) homology are special hypergestures. Therefore it is straight-
forward to consider the task of defining a homology theory for hypergestures, and we shall do so for the
categorical hypergestures. This means that we shall introduce homology based upon a sequence Γ1, Γ2, . . . Γn

of arbitrary digraphs instead of the classical sequence of one-arrow digraphs Ò. Recall from Section 62.2.3
that homological extensions are also special concepts derived from gestural constructions related to cate-
gories of factorizations. So the present approach is a further example of the conceptual homological power
of mathematical gesture theory.

63.2 Chain Modules for Singular Hypergestural Homology

As it is standard in homology theory, we shall consider a commutative ring R as the basic coefficient domain
for modules in homology. To begin with, we need the modules generated by singular cubes. If Γ1, Γ2, . . . Γn is
a sequence of n digraphs, and if K is a topological category, a gestural n-cube is, by definition, a hypergesture
s P ΓnΓn´1 . . . Γ1

ÝÑ
@K. We denote by RΓnΓn´1 . . . Γ1

ÝÑ
@K the free R-module over the basis ΓnΓn´1 . . . Γ1

ÝÑ
@K.

The elements of this module are called gestural n-chains. The 0-chains are the elements of RK, the free R-
module over the objects of K.

Since we shall consider n-chains for sequences of not necessarily identical digraphs, we need to specify
the definition of such modules for variable digraphs. The idea is that to define boundary homomorphism B
between any such chain modules, we need a sufficiently (but not too) general context where boundary homo-
morphisms can be defined. One could define our theory for any infinite sequence Γ. “ Γ1, Γ2, . . . of digraphs.
In the present context, we want to choose a type of digraph sequence that provides us with a finiteness con-
dition, namely that our infinite sequence Γ. should use only a finite number of digraphs. Let us denote them
by Γ0, Γ1, . . . Γd´1. Then the sequence Γ. may be encoded as a d-adic number 0.c1, c2, . . . ci, ci`1, . . ., where
each entry 0 ď ci ă d refers to one of the digraphs of our selection Γ0, Γ1, . . . Γd´1. The total information,
the sequence of digraphs and the basic topological category K, will be encoded by the d-adic “number”
K.c. “ K.c1, c2, . . . ci, ci`1, . . .. For example, if we take the classical sequence in cubic singular homology in a
topological space X of constant digraphs Ò, encoded by H “ Γ0, Ò“ Γ1, we have the encoding X.1111 . . .; or
for a finite theory, X.1111 . . . 11000000 . . .. We could also take H “ Γ0, Ò“ Γ1, t T�� “ Γ2, the last digraph
being the final digraph 1 with loop T in the category of digraphs. The code S1.210000 . . . would then encode
the hypergestures in Ò 1

ÝÑ
@S1 in the unit circle S1, the space H Ò 1

ÝÑ
@S1 being a singleton.

Given these conventions and a sequence K.c., we can now consider the n-chain modules. The module
Cn of all n-chains is the direct sum of all modules defined by selecting any partial sequence of n (not
necessarily contiguous) digraphs in the digraph sequence. This means that we have to look at the n-length
hypergestures defined by a partial sequence in the d-adic “number”, cj1 , cj2 , . . . cjn , with j1 ă j2 ă . . . jn, on

Γcjn
, . . . Γcj1

ÝÑ
@K. We define Cn “ CnpK.c.q to be the direct sum of all these length n hypergesture R-modules

RΓcjn , . . . Γcj1

ÝÑ
@K, with the restriction that for any such n-length sequence, we take it only once if it occurs

for different index sequences. For example, in the classical case of cubic singular homology X.1111 . . ., we
have CnpK.1111 . . .q “ R ÒÒ . . . Ò ÝÑ

@K, the R-module generated by the hypergestures on n copies of Ò with
values in K. We have built the sequence of n-chain modules, starting with C0pK.c.q “ RK. The next step
is to define the boundary homomorphims Bn : Cn Ñ Cn´1. As usual, we set Cn “ 0 for negative n, and
therefore automatically Bn “ 0 for n ď 0.
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63.3 The Boundary Homomorphism

The classical homology boundary operator Bn “ B on n-chains c “ ř
i rigi is the R-linear extension of its

action on the basis, the gestural n-cubes:

Bp
ÿ
i

rigiq “
ÿ
i

riBgi.

So let us select a length-n sequence Γ0, Γ1, . . . Γi, . . . Γn´1 of digraphs and look at the boundary operator
on a single gestural n-cube g P Γ0Γ1 . . . Γi . . . Γn´1

ÝÑ
@K. The classical formula has two components: the face

operator g ÞÑ gi,α, and then the alternating combination of faces:

Bg “
n´1ÿ
i“0

ÿ
α“0,1

p´1qi`αgi,α.

The face operator creates a chain in Cn´1, and this works by means of evaluation of the original singular
cube on n ´ 1-dimensional subcubes of g, its faces. The classical situation makes two choices to define such
faces. First, we select a dimension i “ 0, 1, . . . n ´ 1 in the cube In. This coordinate space I has the two
extremal values, α “ 0, α “ 1. The faces in this dimension are the restrictions of the singular cube g (which
is a function!) to the subsets In|α “ 0, In|α “ 1, which are functions on the remaining n ´ 1 coordinates, in
fact singular n ´ 1 cubes; we denote them by gi,α.

This classical setup can be generalized to gestures as follows. First, observe that in the gestural un-
derstanding of the unit interval, 0 is just the tail argument, and 1 is the head argument of the continuous
curve given on the digraph Ò. In other words, if we have a singular cube g : I Ñ X, this corresponds to the
gesture g˚ :ÒÑ ÝÑ

X . The evaluation at tail t and head h of Ò then corresponds to the restriction of g˚ to the
two vertices of Ò, yielding two points g˚ptq, g˚phq of X, and the classical formula suggests that we take the
head point with positive, and the tail point with negative sign α, yielding g˚phq ´ g˚ptq.

This situation is suitable in the simple case of one single arrow, but for general digraphs, we need a
formula that takes care of all possible arrows (if any). The idea is this: if we look at what happens in the
above evaluation at head and tail, we recognize that the head value is the result of calculating the gesture on
the digraph that results from (1) omitting the tail vertex t and (2) taking the digraph resulting from all that
is left after removing the arrows that are connected to t. In other words, the general procedure for a digraph
Γ is to (1) select an arrow a P AΓ in the arrow set AΓ of Γ , then (2) take the tail ta of a, and then(3) restrict
to the digraph Γ |a´ obtained from removing ta and all arrows connected to ta. The analogue procedure for
the head of a would yield the restricted digraph Γ |a`, resulting from removing the head ha as well as all
arrows connected to this head. So, for our elementary situation, we have Ò |a´ “ thu, Ò |a` “ ttu.

Fig. 63.2. The two reductions of the skeleton digraph of a gesture.

This construction will work if it manages to exhaust all arrows. More precisely, we may define the face
of a gesture g P Γ

ÝÑ
@K on a discrete digraph Γ as the sum

ř
vPVΓ

gpvq of the values of g on the digraph’s
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vertices. The general case for these face operations can be set recursively as follows: We restrict the situation
to the digraphs Γ |a´ and Γ |a`, see Figure 63.2.

In the simple situation of Γ “Ò, we have only points left. In the general case, there will be arrows left in
both, Γ |a´ and Γ |a` after omitting the tail and head of arrow a. But we now have less arrows and vertices.
Therefore we can apply the recursive definition of face construction. This boils down to this definition:

Definition 112 Let g : Γ Ñ ÝÑ
K be a gesture. Then its face g˝ is defined as follows, with values in the chain

module RK:

1. If AΓ “ H (discrete skeleton), then we set

g˝ “
ÿ

vPVΓ

gpvq.

2. The general case is defined recursively on the number of arrows in AΓ :

g˝ “
ÿ

aPAΓ

pg|a´q˝ ´ pg|a`q˝.

3. The face homomorphism is canonically extended by linearization to the face homomorphism RΓ
ÝÑ
@K Ñ

RK on chains x “ ř
g cgg by

x˝ “
ÿ
g

cgg
˝.

So far, our procedure for gestures was restricted to the digraph that is the first (left) in the sequence of
digraphs defining hyergestures. This corresponds to taking the faces with respect to the first coordinate of
the hypercube In. In the definition of the boundary operator B, we take faces with respect to all the other
coordinates. In order to deal with this more general coordinate selection, we use the Escher Theorem. It will
allow us to transform the ith coordinate space to the first one and to perform face operators there. More
precisely, if g P Γ0Γ1 . . . Γn´1

ÝÑ
@K, and if 0 ď i ă n, we consider the permutation πi that maps the ith index

to the first and leaves the others unaltered, resulting in a sequence ΓiΓ0 . . . Γi´1Γi`1 . . . Γn´1
ÝÑ
@K, and then

the Escher Theorem yields a hypergesture gi P ΓiΓ0 . . . Γi´1Γi`1 . . . Γn´1
ÝÑ
@K, corresponding to g. We also

extend by linearization this map g ÞÑ gi to the chain modules generated by these gesture spaces. To gi we
apply the face operator, resulting in a hypergesture g˝

i P Γ0 . . . Γi´1Γi`1 . . . Γn´1
ÝÑ
@K, the ith face of g. With

this construction, the boundary operator is defined by

Bng “
n´1ÿ
i“0

p´1qig˝
i ,

yielding a chain in Cn´1, and we finally extend this operator linearly to Cn. Observe that the power p´1qi is
the signature of πi. It is immediate from the above linearization procedures for Escher correspondences and
faces that for any chain x P Cn, we have

Bnx “
n´1ÿ
i“0

p´1qix˝
i .

It remains to be shown that this boundary operator verifies the crucial equation B2 “ 0, which then
enables us to define the homology modules:

Proposition 64 With the above notations, the composition Bn´1˝Bn is the zero homomorphism Cn Ñ Cn´2.

Proof. It suffices to prove B2 “ 0 on hypergestures g P Γ0Γ1 . . . Γn´1
ÝÑ
@K. We step through all important

points of the proof and leave details to the reader. If all digraphs are discrete, we have Γ0Γ1 . . . Γn´1
ÝÑ
@K

„Ñ
KΓ0ˆΓ1ˆ...Γn´1 , and the vanishing of B2 follows from the proof idea in the classical case of cubic homology,
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namely that for i ď j, gipxqjpyq “ gj`1pyqipxq, and they cancel out since the signs of the ´1 coefficients are
different. The same argument works for the case where all digraphs Γi are isomorphic to Ò or discrete.

For the general case, we have

Bn´1pBngq “
n´1ÿ
i“0

p´1qiBn´1pg˝

i q

“
n´1ÿ
i“0

p´1qi
AΓiÿ
a

Bn´1ppgi|a´q˝q ´ Bn´1ppgi|a`q˝q

“
n´1ÿ
i“0

n´2ÿ
j“0

AΓi
ˆAΓjÿ

pa,bq

p´1qi`jpppgi|a´q˝

j |b´q˝ ´ ppgi|a´q˝

j |b`q˝ ´ ppgi|a`q˝

j |b´q˝ ` ppgi|a`q˝

j |b`q˝q.
Similar to the classical case we need to show that for any sign combination α, β P t`,´u, and i ď j, we
have

ppgi|aαq˝
j |bβq˝ “ ppgj`1|bβq˝

i |aαq˝.

The left side is

ppgi|aαq˝
j |bβq˝ “ pp

Aaαÿ
c

pgi|aα|c´q˝ ´ pgi|aα|c`q˝qj |bβq˝.

Since Escher permutation in j, the face operator, and restriction |bβ , are linear, this yields

ppgi|aαq˝
j |bβq˝ “

Aaαÿ
c

pppgi|aα|c´q˝qj |bβq˝ ´ pppgi|aα|c`q˝qj |bβq˝.

But evidently, the double restriction |aα|c˘ commutes, therefore gi|aα|c˘ “ gi|c˘|aα and also gi|c˘ “ hi for
an Escher transformed hi of an h defined on c˘ instead of Γi in the ith coordinate. Therefore, recursion on
the size of Γi yields

pphi|aαq˝
j |bβq˝ “ pphj`1|bβq˝

i |aαq˝

for all these restricted hypergestures h. Since these restrictions cover all of aα, this implies ppgi|aαq˝
j |bβq˝ “

ppgj`1|bβq˝
i |aαq˝, and we are done since these components appear with opposite sign.

Since by this result, ImpBn`1q Ă KerpBnq, we can define homology modules:

Definition 113 With the above notations, for a sequence K.c. of digraphs c. and topological category K, we
have a chain complex

. . . �� CnpK.c.q Bn �� Cn´1pK.c.q �� . . . C0pK.c.q �� 0

and we may define hypergestural homology modules

HnpK.c.q “ KerpBnq{ImpBn`1q
for all n.

The following result about functoriality of homology is straightforward:

Proposition 65 If f : K Ñ L is a topological functor, and if we are given a sequence Γ. of digraphs, encoded
as number c. as above, then the canonical morphism of chain complexes Cpf : CpK.c.q Ñ CpL.c.q induces a
canonical sequence, functorial in f , of homology module homomorphisms Hnpfq : HnpK.c.q Ñ HnpL.c.q.
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This functoriality implies that each sequence Γ. of digraphs generates a sequence of invariants on
topological categories K that comprise the classical homology modules associated with the constant sequence
K.1̄.

Example 76 Let us first look at a simple example involving different digraphs, namely the case mentioned
above, K.210000 . . . “ K.210̄, encoding the hypergestures in Ò 1

ÝÑ
@K in K. We have this chain complex:

0 �� R Ò 1
ÝÑ
@K

B2 �� R Ò ÝÑ
@K ‘ R1

ÝÑ
@K

B1 �� RK �� 0

If g PÒ ÝÑ
@K, we have Bg “ gphq ´ gptq, which in a musical situation expresses the formal difference between

end state of gesture g and its initial state.
If g P 1

ÝÑ
@K, then Bg “ 0. Defining D1 : R Ò ÝÑ

@K Ñ RK by linear extension to the free module by
g ÞÑ Δpgq “ gphq ´ gptq, we have ImpB1q “ ImpD1q and therefore

H0 “ RK{ImpD1q.
If R is a field, and if K is a topological space, dimpH0q is well known to be the number of pathwise components
of K.

Further, KerpB1q “ KerpD1q ‘ R1
ÝÑ
@K. Let us calculate ImpB2q. For g PÒ 1

ÝÑ
@K, we have

B2g “ g˝
0 ´ g˝

1

with g˝
1 “ 0 since a˘ “ H, and g˝

0 “ gptq ´ gphq P 1
ÝÑ
@K. As above, we now define D2 : R Ò 1

ÝÑ
@K Ñ R1

ÝÑ
@K

via D2pgq “ gphq ´ gptq, and we have ImpB2q “ ImpD2q Ă R1
ÝÑ
@K. Therefore

H1 “ KerpD1q ‘ R1
ÝÑ
@K{ImpD2q,

where the right factor is generated by homotopy classes of loops, and the left one is generated by loops.
Finally, we have H2 “ KerpD2q, the space of loops of loops.

For a first topological category, take K “ S1, the topological space of the unit circle. The factor
R1

ÝÑ
@K{ImpD2q is the fundamental group R-algebra of homotopy classes of loops, since all classes are

represented by loops at a fixed point. Their group composition is also well defined: H1pS1.210̄q “ KerpD1q‘
Rπ1pS1q.

For a second topological category, we consider the topological category defined by a topological group
K “ G, which is quite the contrary to the category defined by a topological space: we have a single object, the
group’s identity Id P G, whereas the morphisms x : Id Ñ Id are the group elements, and their composition
x ˝ y is the group operation. A curve g : ∇ Ñ G is a continuous function g with gpy, zq ˝ gpx, yq “ gpx, zq for
any 0 ď x ď y ď z ď 1. For example, if G “ SL2pRq, then

the shearing spx, yq “
˜
1 y ´ x

0 1

¸
and the dilation dpx, yq “

˜
ey´x 0

0 ex´y

¸
are examples of such curves.

To calculate H0, observe that G has a single point. Furthermore ImpB1q “ ImpD1q “ 0, since all objects
of ∇ go to the identity for a curve ∇ Ñ G. Therefore H0

„Ñ R.
To get H1, let us look at a curve F : ∇ Ñ 1

ÝÑ
@G. It is defined by a natural transformation μpx, yq :

F pxq Ñ F pyq with μpy, zq˝μpx, yq “ μpx, zq for any morphisms x ď y, y ď z in ∇, i.e. we have a commutative
diagram of group elements for any morphism s ď t, continuous in x, y, s, t, as follows:

F pxqpsq
F pxqps,tq

��

μpx,yqpsq�� F pyqpsq
F pyqps,tq
��

F pxqptq
μpx,yqptq

�� F pyqptq
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where all objects of the square are the identity of G. This implies

μpx, yqptq “ F pxqps, tq´1 ˝ μpx, yqpsq ˝ F pyqps, tq.
Taking s “ 0, the natural transformation μpx, yq : F pxq Ñ F pyq is defined once we have μpx, yqp0q :
F pxqp0q Ñ F pyqp0q such that μpy, zqp0q ˝ μpx, yqp0q “ μpx, zqp0q. But we may set this initial value to Id.
Suppose that we are given two curves F0, F1 : ∇ Ñ G. We may define an intermediate curve F pxq “ F1 for
every x ą 0. Evidently, then the natural transformation μpx, 1q “ Id connects F pxq to F1 for all x ą 0. To
connect F0 to F pxq “ F1, we take the initial transformation μp0, xq “ Id and then the following special case
of the above formula

μp0, xqpsq “ F0p0, sq´1 ˝ Id ˝ F pxqp0, sq “ F0p0, sq´1 ˝ F1p0, sq.
It is easy to verify that this rule defines a continuous curve from F0 to F1. This means that any two curves
F0, F1 are endpoints F0 “ F p0q, F1 “ F p1q of a curve F : ∇ Ñ 1

ÝÑ
@G, and this means that ImpD2q

is generated by all differences of any two gestures in 1
ÝÑ
@G. Moreover, since all gestures g PÒ ÝÑ

@G have
D1pgq “ 0, KerpD1q “Ò ÝÑ

@G. Therefore KerpB1q “ C1pK.c.q “Ò ÝÑ
@G ‘ R1

ÝÑ
@G. Therefore

H1
„Ñ R Ò ÝÑ

@G ‘ R,

where the second factor represents the quotient of R1
ÝÑ
@G modulo the module of gesture differences. The

second homology group H2 is described as in the general case above.

Example 77 This example relates to the category GX derived from a group action GˆX Ñ X as described

above. We suppose here that its topology is indiscrete, as in the case of the musical category
ÝÑ
GLpZ12qZ12.

For the classical cubic homology we have this result:

Theorem 40 The first homology module of an indiscrete topological category GX is the free R-module

H1pGXq “ RGzX ,

where GzX is the set of orbits of this action.

Its proof is quite involved and resides on a series of lemmata; we leave it as an exercise to the reader.



64

Stokes’ Theorem for Hypergestures

Summary. As singular homology is strongly related to de Rham cohomology, in particular by Stokes’
classical theorem, it is natural to ask for such a theorem in our context of hypergestures. But there is a
deeper reason for such a project, namely the idea that music theory of hypergestures could provide us with
models of energy exchange in gestural interaction. In such a (still hypothetical) theory, Stokes’ theorem
would play a crucial role regarding questions of energy conservation (integral invariants).

– Σ –

64.1 The Need for Stokes’ Theorem for Hypergestures

Stokes’ classical theorem states ż
C

dω “
ż

BC
ω,

where C is a compact oriented k-dimensional manifold with boundary and ω is a k ´ 1-form on C. The
operator dω is the exterior derivative of ω, and BC is the boundary of C, see Appendix Section J.8. It is well
known that this formula is valid for slightly more general situations, namely, where the boundary is not a

Stokes’ theorem is of primordial importance in many fields of physics, e.g. in mechanics (integral in-
variants, see [2]) or in electrodynamics (relating differential and integral forms of Maxwell’s equations [497]).
The reason why we are interested in such a theorem for mathematical music theory is twofold: On the one
hand, we have initiated a homological study of hypergestural structures [727] (see Chapter 63) which has
also provided us with applications to counterpoint theory [16] (see Chapter 79). As singular homology is
strongly related to de Rham cohomology, in particular by Stokes’ theorem, it is natural to ask for such a
theorem in our context of hypergestures. But there is a deeper reason for such a project, namely the idea
that music theory of hypergestures could provide us with models of energy exchange in gestural interaction.
In such a (still hypothetical) theory, Stokes’ theorem would play a crucial role regarding questions of energy
conservation (integral invariants).

64.2 Almost Regular Manifolds, Differential Forms, and Integration for
Hypergestures

We first need to specify the basic concepts that contribute to the Stokes statement. We are aware of the
somewhat sloppy style in this quite standard part of the chapter; the reader is kindly asked to fill out the
standard technical details.
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64.2.1 Locally Almost Regular Manifolds

In the present context we need hypergestures in manifolds since we are dealing with differentiable structures.
We however need quite general manifolds in the sense of what are called “almost regular manifolds” in [617]
or even more singular manifolds, where the boundaries have corners. To understand our requirement we look
at typical manifolds in the context of hypergestures. In [719], we have introduced a standard topological
space |Σ| associated with a digraph Σ, see Section 61.7. It is the colimit of the digraph’s arrow set AΣ , the
gluing operation being performed on the digraph vertices set VΣ . This topological space specifies one line
chart |a| „Ñ I “ r0, 1s per arrow a and a point chart |x| for each isolated vertex x. The specification of this

atlas is mandatory since we don’t want to glue two consecutive arrows x
a �� y

b �� z to one line. The
differentiability in the connecting vertex y is suspended. Or it may also happen that three or more arrows
share a vertex, and then the differentiability in such a vertex would not make sense. We call skeletal space
the manifold |Σ| associated with skeleton Σ.

The best conceptual approach to this situation is to embed such a manifold in a differentiable manifold
M as a subset whose charts are manifolds with boundary isomorphic to the unit interval I or to a zero-
dimensional point manifold 0. We next need cartesian products of such manifolds when hypergestures are
discussed. This means that we have to consider products of type |Σ1| ˆ |Σ1| ˆ . . . |Σn|. These manifolds are
living in cartesian products of their carrier manifolds M1,M2, . . .Mn, and the typical boundary of a product
|Σ1| ˆ |Σ2| is Bp|Σ1| ˆ |Σ2|q “ B|Σ1| ˆ |Σ2| Y |Σ1| ˆ B|Σ2|, see Figure 64.1 for an example.

Fig. 64.1. A skeletal space.

But observe that due to singular points in digraphs, such products can be inhomogeneous in their
dimension. A product may be a disjoint union of submanifolds of different dimensions.

To get a reasonable category of such manifolds, we consider differentiable morphism L Ñ M of the
carrier manifolds L,M of L,M, respectively, that restrict to atlas-compatible maps f : LI Ñ MJ , where
I, J designate the atlases of L,M, respectively. Atlas-compatibility means that, as in mathematical music
theory of global compositions, we are also given a map g : I Ñ J such that f sends I-chart Li to J-chart
Mgpiq. We denote this category of locally almost regular manifolds by LARM . Such a manifold need not have
a determined dimension, but may have several dimensions according to connected components and charts.
In what follows, we shall call dimension dimpLq of an almost regular manifold L the maximal dimension of
such components. The submanifold of L of a determined dimension k will be denoted by Lk.

The most important application of LARM for the Stokes theory lies in a reinterpretation of hy-
pergestures. Suppose we are given a hypergesture c P Σ1Σ2 . . . Σn

ÝÑ
@L over n skeleta Σ1, Σ2, . . . Σn with

values in a locally almost regular manifold L. By the very definition of hypergestures, and by the ad-
jointness property of the manifold |Σ| associated with skeleton Σ (Proposition 62), as well as the adjoint-
ness of the cartesian product and repeated function spaces (also known as currying in computer science),
Σ1Σ2 . . . Σn

ÝÑ
@L „Ñ |Σ1|ˆ|Σ2|ˆ . . . |Σn|©L, the set of continuous functions from the cartesian product of the
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skeletal manifolds to L. Within this function set, we exhibit the differentiable morphisms and denote their set
by |Σ1|ˆ|Σ2|ˆ . . . |Σn| d○L. The morphisms in the latter (more precisely: their corresponding hypergestures)
are called differentiable hypergestures; the set of these hypergestures is also denoted by Σ1Σ2 . . . Σn d○L. In
the context of the Stokes theorem, we need differentiable singular n-cubes. Their generalization to hy-
pergestures are differentiable gestural n-cubes, namely the elements of Σ1Σ2 . . . Σn d○L. The free module
RΣ1Σ2 . . . Σn d○L of R-linear combinations of differentiable gestural n-cubes (the module basis) defines the
(differentiable) n-chains over Σ1, Σ2, . . . Σn with values in L.

64.2.2 Differential Forms

On a locally almost regular manifold L (we omit the atlas if possible to ease notation), differential forms can
be considered in the sense that they are defined on each chart as usual. If such a chart Li has dimension n,
the differential forms of dimension k ď n define non-trivial real vector spaces

Źk Li,x at each point x of Li. A

differential k-form ω on L is a differentiable section in each chart
Źk Li. Since our manifolds are of different

dimensions locally, we will have to deal with forms that don’t have the same dimension everywhere, they are
not homogeneous. We therefore consider the direct sum

Ź‘k L “ À
lďk

Źl L. If we take a differential form

ω P Ź‘k L, its l-component will be denoted by ωl. As in the classical case, for a morphism f : L Ñ M of

locally almost regular manifolds, one has the canonical inverse image f˚ω P Źk L for ω P Źk M.

In the classical case, one has the exterior derivative operator d :
Źk L Ñ Źk`1 L with d2 “ 0.

For the non-homogeneous case mentioned above, we need a derivative operator d‘ defined by d‘ω “
pω0, dω0, dω1, dω2, . . .q for ω “ pω0, ω1, ω2, . . .q. For this operator, we have d2‘ω “ pω0, dω0, 0, . . .q. And
as in the classical case, the operators d and d‘ commute with inverse images.

64.2.3 Integration

Modulo linear extensions to n-chains, we need to define
ş
c
ω for a gestural n-cube c P Σ1Σ2 . . . Σn d○L.

As usual, the formula is defined to mean
ş

|Σ1|ˆ|Σ2|ˆ...|Σn| c
˚ω, which amounts to restricting ourselves to

the special case L “ |Σ1| ˆ |Σ2| ˆ . . . |Σn|. We shall define the integral by recursion on the hypergestural
parameters and recalling the Fubini theorem for iterated integration [999, Theorem 3-1]. Let pλ, tq P T |Σ1|λ,
the tangent space at λ P |Σ1|. This argument defines a form c˚ωλ,t P Ź‘pn´1q |Σ2| ˆ . . . |Σn|, and we may

suppose by recursion that Ipλ, tq “ ş
|Σ2|ˆ...|Σn| c

˚ωλ,t is defined, which yields an element of
Ź‘1 |Σ1|. So we

are left with the definition of the integral for n “ 0, 1. If n “ 0, c P L, and ω P FpLq is a function. Then we
set

ş
c
ω “ ωpcq. In dimension n “ 1, there are three cases for Σ1:

1. If AΣ1 “ H, then set
ş
c
ω “ ř

iPVΣ1
ω0pcpiqq “ ř

iPVΣ1

ş
cpiq ω0.

2. Recall from [727, Section 3] that for an arrow a of Σ1, a
´ denotes the subskeleton of Σ1 after taking

away the tail tpaq and all arrows connected to tpaq, and a` denotes the subskeleton of Σ1 after taking
away the head hpaq and all arrows connected to hpaq. In this second case, we suppose that there is
at least one arrow a, but both Aa´ and Aa` are empty. This means that, besides isolated vertices,
there are either a number of loops on a single vertex or a number of arrows between two distinct
points. This is the classical one-dimensional situation for integration on the unit interval. So we defineş
c
ω “ ř

aPAΣ1

ş
a
ω1 ` ş

isolated vertices
ω, where

ş
a
ω1 is the evident classical integration.

3. In the third case, there is an arrow a such that Aa´ Y Aa` ‰ H. We then set the recursive formulaş
c
ω “ ř

aPAΣ1
pş

c|a´ ω´ ş
c|a` ωq, a formula that reminds us of the definition of the face operator ?˝ given

in [727, Definition 3.1].
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64.3 Stokes’ Theorem

For the proof of Stokes’ theorem for hypergestures, we need a technical lemma. It refers to the Escher theorem
operation on chains c P Σ1Σ2 . . . Σn d○L which generates a chain cj P ΣjΣ1Σ2 . . . xΣj . . . Σn d○L.

Lemma 1. If c P Σ1Σ2 . . . Σn d○L is a differentiable n-cube, 1 ď j ď n, a P AΣj
, and λ P |Σ1|, then we have

pcj |a˘q˝pλq “ pcpλqj |a˘q˝,

and therefore also
pcjq˝pλq “ pcpλqjq˝.

The lemma follows from the observation that (1) the face operator yields the same linear combination on
both sides since it acts on the same Σj |a˘, and (2) the evaluation at λ is taken on the same face operator
result.

Theorem 41 (Stokes’ Theorem for Hypergestures) Let c P RΣ1Σ2 . . . Σk d○L be a k-chain in a k-dimensional

locally almost regular manifold L, and let f P Źk´1 L. Thenż
c

d‘f “
ż

Bc
f.

Proof. We can of course restrict to gestural k-cubes. For k “ 1, f is a function on L and c P Σ d○L. Let
first AΣ “ H. Then

ş
Bc f “ ř

iPVΣ
fpcpiqq, whereas ş

c
d‘f “ ř

iPVΣ
pd‘fq0pcpiqq “ ř

iPVΣ
fpcpiqq yields the

same. For the second case, Aa´ YAa` “ H, but since arrows exist, we may focus on the subskeleton bearing
those arrows, the discrete part having been already dealt with. Here,ż

c

d‘f “
ÿ

aPAΣ

ż
a

df

“
ÿ

aPAΣ

ż
Ba

f

“
ÿ

aPAΣ

fpcphpaqqq ´ fpcptpaqqq

“
ż

Bc
f,

this is the classical case. For the third case, Aa´ Y Aa` ‰ H, we haveż
c

d‘f “
ÿ

aPAΣ

ż
c|a´

d‘f ´
ż
c|a`

d‘f

“
ÿ

aPAΣ

ż
Bpc|a´q

f ´
ż

Bpc|a`q
f

“
ÿ

aPAΣ

ż
pc|a´q˝

f ´
ż

pc|a`q˝

f

“
ż

Bc
f

by recursion and since B and ?˝ coincide in dimension one.
The case of higher dimensions runs as follows:
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c

d‘f “
ż

|Σ1|

ż
cpλq

d‘f pλ P |Σ1|q

“
ż

|Σ1|

ż
Bcpλq

f (recursion)

“
ż

|Σ1|

ÿ
j

p´1qj
ż

pcpλqjq˝

f

“
ÿ
j

p´1qj
ż

|Σ1|

ż
pcpλqjq˝

f

“
ÿ
j

p´1qj
ż

|Σ1|

ż
pcjq˝pλq

f (Lemma 1)

“
ÿ
j

p´1qj
ż

pcjq˝

f

“
ż

Bc
f.

This concludes the proof of Stokes’ theorem.



65

Local Facts, Processes, and Gestures

Summary. In this chapter we describe the mathematical framework for the three fundamental layers of
musical ontology: facts, processes, and gestures. The layer of facts is described by the theory of local and
global compositions, a major topic in American Set Theory [765] and in the European school developed by the
author and his collaborators [682]. The second layer is captured by the American Transformational Theory
[605, 538] and, again in Europe, by the author’s theory of categorical limits (and colimits) as embedded in
topos theory [714]. The third layer has been the author’s main concern in the last ten years [720, 723, 727],
also paralleled by American research such as Robert S. Hatten’s work [446].

– Σ –

All of this is also strongly motivated by software developments in the Rubato Composer environment
[739, 730], especially related to the universal music data format of denotators for the topos of presheaves
over modules. Since the present software development in collaboration with Florian Thalmann [730] has
progressively focused on a seamless integration of factual, processual, and gestural aspects, a ‘global’ music
theory requires a more and more unified view of musical ontology. Therefore we want to present this “theory
of everything” in its mathematical shape, including some interesting new examples and results regarding
global networks, especially a global “Zarlino network” motivated by neo-Riemann theory, and gestures over
locally compact points that occur in mathematical performance theory, as well as functors relating singular
hom of hypergestures and hypernetworks.

65.1 Categories of Local Compositions

On the level of facts we deal with sets of musical objects, such as chords, motives, etc. It is the level of
mathematical music theory which is related to American Set Theory [765] and the early work of the Zurich
school [670, 682]. We have formalized this level in [714] with categories of local compositions. The minimal
workable category for this type of theory is the category Mod@ of presheaves over modules. Let us shortly
recall the conceptual framework developed in Section 7.4. The usual objects in this music theory are triples
pK,A, F q, where K Ă A@F , A is a module, and F is a presheaf. We usually write K Ă A@F and call this an
objective local composition in F with address A. In this chapter we don’t deal with more general functorial
local compositions, namely subfunctors K Ă @AˆF . We henceforth omit the specification “objective” for all
theories of this chapter. If K Ă A@F , L Ă B@G, then a morphism K Ñ L is a pair pf, αq where α : A Ñ B
is an affine module morphism and f : K Ñ Lα is a set map, the set Lα being the image of L under the
map α@G : B@G Ñ A@G, such that there exists a natural transformation h : F Ñ G with f “ A@h|K.
We write f : K Ñ L if no confusion is likely. The category of (objective) local compositions is denoted by
ObLoc. The subcategory of objective local modular compositions ComLoc is the full subcategory of ObLoc
whose local compositions K have their functor F being represented by a module M over a commutative
ring R, i.e. K Ă A@M . For a zero-addressed modular local composition K Ă 0@M , its module RK is the
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submodule of M generated by all differences k ´ k0 for a fixed k0 P K. The map K ÞÑ RK extends to a
functor from zero-addressed modular local compositions to modules.

Typical modular local compositions are chords Ch of pitch classes, i.e. zero-addressed local compositions
Ch Ă 0@Z12, while Thomas Noll’s self-addressed chords [802] are Z12-addressed local compositions Sh Ă
Z12@Z12. A set S of dodecaphonic series would be a local Z11-addressed composition S Ă Z11@Z12. The
retrograde operation on dodecaphonic series is represented by the address change R : Z11 Ñ Z11 sending the
canonical affine basis vector ei to e11´i for i “ 0, 1, . . . 11 (e0 “ 0). David Lewin’s time spans are elements
of R@R, i.e. self-addressed onsets, while his interval operation is an address change, but see page 103 for
details, including those about intervallic invariance for time spans. Non-modular local compositions are
often generated from power set constructions. For example, the non-representable functor 2R‘Z, evaluating
at address A to A@2R‘Z “ 2A@R‘Z, can be used to describe sets of A-addressed melodic motives with real
onsets and integer pitches.

Local modular compositions have been classified (i.e. their isomorphism classes have been calculated)
for the most important modules. Complete class lists for zero-addressed and self-addressed chords of pitch
classes as well as 2-, 3-, and 4-element zero-adressed melodic motives are given in Chapter 11. We come back
to the more general classification theorem for global modular compositions, as demonstrated in Chapter 15,
in Section 66.2.

65.2 Categories of Local Networks

Networks are the mathematical shapes associated with processual or transformational approaches to music
theory—and to other branches of the sciences, such as artificial and natural neural networks and object-
oriented programming. For example, Karl Pribram’s theory of dendritic neural processing [862] could be
understood using the formalism of global networks. Instead of sets, one now uses (projective) limits of
diagrams, i.e. the musical objects now represent diagrams of transformations between a list of elements. This
approach has been forwarded by David Lewin [605] and Henry Klumpenhouwer [538] and was anticipated
by the author regarding circle chords in [670] (see Figure 65.1) and elaborated in Noll’s dissertation on
transformational harmony [802]. It is remarkable to see that local networks arise when we deal with nerves
of global compositions (see Section 66.1.1), and especially when we deal with module complexes used in the
classification theorem of global compositions (see Section 66.2).

Fig. 65.1. A major seventh chord is generate by two pitch classes 0, 11 and a single transformation f “ T 7.3. It
unites two circle chords, the major and the minor chord, generated by f , starting from 0 or from 11, respectively.

Limit objects have been introduced in mathematical music theory with the development of the universal
denotator format in the Rubato project since 1992 [690, 689] and systematically used in [714]. Here is the
general framework to deal with such structures. Networks have two components: a digraph Γ and a category
C. A local network is a digraph morphism g : Γ Ñ C of the underlying digraphs. Observe that even if Γ
is discrete, i.e. has no arrows, the map g indexes the codomain objects of C. A local network is always an
indexed family of objects and morphisms, not just a set. A local network may identify different vertices or
arrows. If no vertices or arrows are identified, g is called faithful. Faithful local networks without arrows
are just bijections of the vertex sets to subsets of category objects. But they are more than these object
sets, they “order” them by the digraph’s vertices. Local networks can be transformed according to two
operations. If g : Γ Ñ C is a local network, if t : Δ Ñ Γ is a digraph morphism, and if f : C Ñ D, then
the composition f ˝ g ˝ t : Δ Ñ D is a new local network. For example, if g is a faithful local network on a
discrete digraph Γ , then the automorphism group AutpΓ q of Γ is just the permutation group of its vertices,
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and the orbit g ˝ AutpΓ q can be identified with the underlying image set of g. This technique has been used
for the classfication of local compositions in [670].

Morphisms between local networks are defined as follows: If g : Γ Ñ C and h : Δ Ñ D are local networks,
a morphism f : g Ñ h is a triple f “ pγ : Γ Ñ Δ,u : C Ñ D, n : h ˝ γ Ñ u ˝ gq, consisting of a digraph
morphism γ, a functor u, and a natural transformation n. This defines the (big) category LocNet of local
networks, and we denote by LocNetpCq the subcategory of networks over C, with morphisms f “ pγ, IdC , nq,
and by LocNetpΓ, Cq its subcategory of local networks n : Γ Ñ C, with morphisms f “ pIdΓ , IdC , nq. For

Fig. 65.2. A dodecaphonic network with address Z11.

music, a most prominent example of a category of networks is the category LocNetpş
Cq over the category

ş
C

of points over a category C. This is defined as follows. Its objects (the “points”) are the A-addressed points
x of presheaves F over C, i.e. x P A@F , or equivalently with Yoneda: x : @A Ñ F . The morphisms f : x Ñ y
from point x : @A Ñ F to point y : @B Ñ G are pairs f “ pα : A Ñ B, h : F Ñ Gq of morphisms in C and
in C@, respectively, such that h ˝ x “ y ˝ @α; we notate these morphisms by h{α. Figure 65.2 shows such a
network with A “ Z11, F “ @Z12, and four points s,Rs, IRs, Is, representing a dodecaphonic series s and
its standard transforms by retrograde R and inversion I. The retrograde is a morphism α on the address
Z11, whereas the inversion is a morphism h on the presheaf @Z12.

For many examples, it is even reasonable to restrict to the subcategory FlatLocNetpCq of flat local
networks over C. Its objects are local networks in LocNetpş

Cq which have their points all at one and the
same address A and presheaf F , which means that the natural transformations associated with arrows of the
digraph are all endomorphisms of F , i.e. we work in the category

ş
EndpF q (with variable F ). Flat morphisms

between such flat local networks are defined as follows: If g : Γ Ñ ş
EndpF q, h : Δ Ñ ş

EndpGq, g on address A,

h on address B, then the digraph transformation t : Γ Ñ Δ and address change α : A Ñ B induce a natural
transformation npφq : g Ñ h ˝ t, φ P NatpF,Gq, which is defined by the following morphism family of points
at vertex i P VΓ :

@A
giÝÝÝÝÑ F

α

§§đ §§đφ

@B
hptpiqqÝÝÝÝÑ G

Such a morphism is denoted by φ{tα or φ{α if t “ IdΓ . For example, if we go back to Figure 65.2, we can
interpret it as a flat morphism from the left vertical network g on F “ @Z12, with one arrow T 11. ´ 1{Id
connecting s to Is, to the right vertical network h, also on F , with one arrow T 11. ´ 1{Id connecting Rs
to IRs. The morphism φ{α : h Ñ g is defined by φ{α “ Id{T 11. ´ 1. The classical K-nets [537] are all
zero-addressed and flat local networks, often on F “ @Z12 or on 2@Z12 . However, their morphisms are not
flat in general, but see [720] for a category-theoretical discussion of K-nets.
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65.3 Categories of Local Gestures

If local networks refined local compositions by introducing functions that connect their elements, local
gestures now refine local networks in that these functions are replaced by continuous curves from arguments
to function values. This refinement is not only a topological task, but also takes care of the categorical
context of local networks.

Here is the formal setup in a short recapitulation, but refer to Chapter 62 for a detailed discussion.
Continuous curves are topological functors f : ∇ Ñ K from the simplex category ∇ to a topological category
K. A curve is a morphism in the category TopCat of topological categories. To distinguish topological
functors from category-theoretical ones, we write K©L for TopCatpK,Lq. The set ∇©K of curves in K
becomes a category with ∇©K as its object set, while a morphism ν : f Ñ g between curves f and g is
a continuous natural transformation, meaning that ν : I Ñ K is continuous. ∇©K becomes a topological
category as follows: The morphisms are viewed as triples pf, g, νq P ∇©K ˆ ∇©K ˆ I©K, each space given
the compact-open topology. This construction generalizes the purely topological situation where K is a
topological space and curves are continuous maps I Ñ K, see 62.1 or [723].

The spatial digraph
ÝÑ
K of a topological category K is the digraph with VÝÑ

K
“ K,AÝÑ

K
“ ∇©K, and

tpgq “ gp0q, hpgq “ gp1q. Then a (local) gesture is a digraph morphism g : Γ Ñ ÝÑ
K , the digraph Γ is called

the gesture’s skeleton, and the category K its body. The set Γ@
ÝÑ
K becomes a topological category by the

fact that Γ is the colimit of a diagram D of arrows and points, so that Γ@
ÝÑ
K

„Ñ limDÝÑ
K , but for the one-

arrow digraph Ò, we have Ò @
ÝÑ
K

„Ñ ∇©K, a topological category. Therefore the limit Γ@
ÝÑ
K is a topological

category, which we denote by Γ
ÝÑ
@K.

Morphisms between local gestures are defined as follows. Let g : Γ Ñ ÝÑ
K,h : Δ Ñ ÝÑ

L be two gestures.
Then a morphism f : g Ñ h is a triple f “ pt : Γ Ñ Δ,n : K Ñ L, ν : ÝÑn ˝ g Ñ h ˝ tq, where t is a digraph
morphism, n a topological functor, and ν a natural transformation. Composition of morphisms is evident.
This defines the category LocGesture of local gestures.

65.3.1 Local Gestures on Topological Categories of Points

An important example of a topological category that plays the role of the a gestural body is given by the
category of points over a topological category C as follows. For a topological category C, define the continuous1
presheaf category Cτ “ tF P C@, F “ continuousu, the morphism set NatpF,Gq being given by the topology
generated by the condition that all maps A@ : NatpF,Gq Ñ pA@F q@pA@Gq are continuous, where we take
the compact-open topology on a set S@T of morphisms between topological spaces S and T .

We want to show that the Yoneda map Y oneda : C Ñ Cτ is defined and continuous. To begin with,
we show that for an object A of C, the functor Y onedapAq “ @A is continuous. Let g : C Ñ B be
a morphism in C. Then the map g@A : B@A Ñ C@A is continuous. In fact, the composition map c :
B@AˆC@B Ñ C@A is continuous by definition. The embedding p?, gq : B@A Ñ B@AˆC@B : x ÞÑ px, gq
is continuous, and g@A “ c ˝ p?, gq, whence the claim. The functor Y oneda is also continuous, i.e. we
show that the morphism maps ξ : A@B Ñ p@Aq@p@Bq are continuous. By definition, we have to show
that the maps X@ξ : A@B Ñ pX@Aq@pX@Bq are continuous for all objects X of C. Let K Ă X@A be
compact and U Ă X@B be open. Denote by rK,U s the set of all continuous functions f : X@A Ñ X@B
such that fpKq Ă U , a member of the subbasis of the compact-open topology on this function space.
Show that X@ξ´1prK,U sq is open. Let p P X@ξ´1prK,U sq, which means that under the composition map
˚ : A@B ˆ X@A Ñ X@B, tpu ˆ K maps into U . Since K is compact, there is a neighborhood S of
p and a neighborhood T of K such that ˚pS ˆ T q Ă U . This means that S Ă X@ξ´1prK,U sq and we
are done. Next we show that the Yoneda map Y : Natp@A,Gq Ñ A@G : h ÞÑ A@hpIdAq is continuous.
This is the composition of two continuous maps: the evaluation A@ : Natp@A,Gq Ñ pA@Aq@pA@Gq and
the identity evaluation pA@Aq@pA@Gq Ñ A@G : f ÞÑ fpIdAq. The latter is continuous since the inverse
image of an open set U Ă A@G is the subbase open set rtIdAu, U s. Finally, we show that the inverse

1 Continuous meaning that these presheaves map into the category Top of topological spaces.
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Y 1 : A@G Ñ Natp@A,Gq, which maps x P A@G to the following natural transformation at object X:
X@Y 1pxq : X@A Ñ X@G : g ÞÑ Gpgqpxq, is continuous if G maps to locally compact Hausdorff topological
spaces. We call such a presheaf locally compact Hausdorff. We have to show that for every X, the map
X@Y 1 : A@G Ñ pX@Aq@pX@Gq is continuous. Let K Ă X@A be compact and U Ă X@G open. Let us
show that X@Y 1´1prK,U sq is open. The map X@Y 1pxq has this factorization

X@Y 1pxq : X@A
G� pA@Gq@pX@Gq ?pxq� X@G

into two continuous factors. The first is independent of x and maps K to the compact set L “ GpKq.
Suppose that x P X@Y 1´1prK,U sq This means that for all l P L, lpxq P U . Since l is continuous, there is
an compact neighborhood Wlpxq of x with lpWlpxqq Ă U , meaning that l P rWlpxq, U s. Since L is compact,
there are finitely many l1, . . . lk such that L Ă Ť

irWlipxq, U s. Therefore L Ă rW pxq, U s if W pxq is a compact
neighborhood of x contained in the finite intersection neighborhood

Ş
irWlipxq, U s. Therefore, for every

y P W pxq, lpyq P U for all l P L, i.e. W pxq Ă X@Y 1´1prK,U sq, QED.
This shows that under the local compactness condition on G, we have a Yoneda homeomorphism

Y : Natp@A,Gq „Ñ A@G. Let us therefore restrict to the subcategory LCTop of locally compact topological
Hausdorff categories, i.e. the morphism sets are all locally compact Hausdorff and the target category of
presheaves is LCTop, which means that C is locally compact Hausdorff and the Yoneda embedding is
Y oneda : C Ñ Clcτ with Clcτ “ tfunctors f : Copp Ñ LCTopu, the category of locally compact Hausdorff
presheaves. We may therefore topologize the set of morphisms x@y between points x : @A Ñ F, y : @B Ñ G
as follows: We take the product topology on the cartesian product Natp@A,F q ˆ Natp@B,Gq ˆ A@B ˆ
NatpF,Gq, and given its subset x@y the induced topology. With this topology, the composition of morphisms
y@z ˆ x@y Ñ x@z is continuous. In fact, the composition of morphism sets B@C ˆ A@B Ñ A@C is
continuous by definition on C. Let us see that the composition NatpG,Hq ˆ NatpF,Gq Ñ NatpF,Hq is also
continuous. It is evidently sufficient to show this on the evaluation of all these presheaves at an object X,
i.e.

pX@Gq@pX@Hq ˆ pX@F q@pX@Gq Ñ pX@F q@pX@Hq
is continuous. But this is true because our presheaves are locally compact. Therefore the category

şlc
C of points

over a locally compact category C and with values in locally compact presheaves is a topological category.
Local gestures in this category are called gestures of locally compact points over C.

And here is an example about gestures of locally compact points in musical performance theory. Refer
to Parts VIII through XII and [725] for the mathematical theory of performance. We start with the small
locally compact topological category Framen of n-dimensional frames. The objects are frames, i.e. cubes
c “ ra1, b1s ˆ . . . ran, bns Ă Rn, ai ď bi for all i “ 1, . . . n. They are the frames where a piece of music has its
notes in an n-dimensional parametrization. The morphisms are the inclusions of frames. They will be used to
generate restrictions of performance vector fields. The locally compact topology of this category is given by the
Euclidean metric d on R2n, where the frames are represented as points. The functor F : Frameoppn Ñ Top
which we consider here is the functor of C1 vector fields, i.e. if c is an n-dimensional frame, F pcq “ tv :
c Ñ Tc|v is a C1 vector fieldu, Tc being the tangent bundle of c. Since c is compact, the metric pv, wq “
maxcpdpvpxq, wpxqq for the Euclidean distance d on vectors in Rn defines a locally compact topological space.
In performance theory, such fields are called performance fields, the most prominent example being the tempo
and tuning curves, both one-dimensional performance fields. In performance theory one considers operators
on performance vector fields, which alter performance fields according to given rationales, typically stemming
from musical analysis. Here we just suppose that such an operator is a differentiable automorphism on F ,
i.e., an automorphism of the tangent bundle F pcq which is natural in c, i.e., commutes with restrictions to
smaller frames. This is a common situation in performance theory. Let us understand what a morphism
between two points v1 : @c1 Ñ F, v2 : @c2 Ñ F is. It is described by a subframe inclusion α : c1 Ă c2 and an
operator φ : F

„Ñ F such that the diagram
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@c1
v1ÝÝÝÝÑ F

α

§§đ §§đφ

@c2
v2ÝÝÝÝÑ F

commutes. But this means that the restriction v2˝α of v2 to the subframe c1 is the transformed version φ˝v1
of the field on the smaller frame. In other words, φ´1˝v2˝α “ v1, the restricted field is the transformed version
of the restricted larger field under the inverse of the operator φ. This is exactly what one needs in performance
theory to step from a “mother performance” to its “daughter performance”. Now a curve in this topological
category of points is a curve of such restrictions and operators, i.e. a continuous transition from the mother
performance to the daughter performance. In performance theory, the successive refinement of performances
works according to the performance stemma. This is an “inheritance” tree digraph Γ starting at a primary
performance and ramifying to daughter performances for parts of the original piece. This means that for
each vertex x of the stemmatic tree, we have a frame cx and a performance field vx. If this vertex ramifies
to a number of daughter performance vertices x1, . . . xk this means that we have a number of subframes
cxi

Ă cx, usually disjoint from each other, such as the two subframes separating a piano performance of the
right from the performance of the left hand. For each of these subframes we have a curve of performance
operators φiptq and of restrictions αiptq, t P I, which defines the transition to the daughter performance field
for each i as described above.

65.4 Connecting Functors

Local compositions, networks, and gestures are connected by a number of functors. To make the parallelism
of gesture and network constructions more visible graphically, we write Γ œ C for LocNetpΓ, Cq.
• Gestures to Networks: Let g : Γ Ñ ÝÑ

K be a local gesture. We have a functor form :
ÝÑ
K Ñ K (“form”

for “formalize”, a terminology relating to forms and denotators in the Rubato Composer environment
[730]) sending a curve c : ∇ Ñ K to the morphism cp0, 1q : cp0, 0q Ñ cp11q and a vertex (an object!) inÝÑ
K to itself. If ν : g Ñ h is a morphism in

ÝÑ
K , its restriction to the endpoints of curves defines a morphism

form ˝ ν of associated local networks. This creates a functor form : Γ
ÝÑ
@K Ñ Γ œ K.

• Networks to Compositions: For a functor from networks to compositions, we have to restrict to flat
local networks. Then we have a functor fact : FlatLocNet Ñ ObLoc assigning to a flat local network
g : Γ Ñ ş

EndpF q at address A the local composition tgpiq|i P VΓ u Ă A@F . If h : Δ Ñ ş
EndpGq is a

second flat local network, and if φ{tα : g Ñ h is a flat morphism, then we obtain a morphism of local
compositions factpφ{tαq : factpgq Ñ factphq as follows: The element gpiq, i P VΓ , is mapped to the
element hptpiqqα. We have to show that this map is in fact a morphism of local compositions. Since the
morphism φ{tα is flat, we have hptpiqqα “ A@φpgpiqq. Therefore the map does not depend on i, but only
on the element gpiq, it is a well-defined set map. And the map is induced by the natural transformation
φ on the underlying functors.

• Compositions to Networks: If we are given a local composition K Ă A@F , it defines a discrete
network npKq on the discrete digraph K with the identity K Ñ K as network map. If a morphism
f{α : K Ă A@F Ñ L Ă B@G is given, there is a map f 1 : K Ñ L that induces f , i.e. α ˝ f 1 “ f since
α : L Ñ Lα is surjective. Evidently, the flat network morphism pf 1, α, φq : npKq Ñ npLq projects to f{α
under the above functor fact. But the map pf 1, α, φq is not a functorial assignment.

• Networks to Gestures: This transition is more delicate. We first of all need a topological category K
to be able to define gestures there. There is a trivial solution for non-topological categories: Just give
them the indiscrete topology. Then by the discrete gesture construction in Section 62.2.1, for a morphism
g : W Ñ Z in a category C there is a functor Œ pgq : ∇ Ñ C. This is automatically a curve for the
indiscrete topology on C. This construction yields a functor Γ œ C Ñ Γ

ÝÑ
@C, right-inverse to the functor

form if the category C is given the indiscrete topology. No solution of this transition is known for general
topological categories. However, for local networks of points in Rn (variable n), the method defined by
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the Bruhat decomposition of linear transformations as described in [730, 2.3] yields gestures lying above
given local networks for the projection functor form, however not in any functorial way. The Bruhat
method is very important for implementations of gestural user-interfaces for musical composition.

65.5 Hypernetworks and Hypergestures

The fact that the spaces Γ
ÝÑ
@K of local gestures with skeleton Γ and body K are new topological cat-

egories and the parallel fact that spaces of local networks Γ œ C in categories C also are new cate-
gories enable the iteration of such constructions. We may consider the topological local gesture category
Δ

ÝÑ
@Γ

ÝÑ
@K of local gestures with skeleton Δ and body Γ

ÝÑ
@K as well as the category Δ œ Γ œ C of local

Δ-networks with values in the category Γ œ C. Local gestures for such an iteration are called hyperges-
tures, local networks for such an iteration are called hypernetworks. It is immediate that hypernetworks
and hypergestures are functorial in the basic categories, i.e. for a sequence of digraphs Γ0, Γ1, . . . Γn´1,
if f : K Ñ L is a topological functor of topological categories, we have a canonical topological functor
Γ0

ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@K Ñ Γ0

ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@L, and if f : C Ñ D is a functor, then we have a canonical

functor Γ0 œ Γ1 œ . . . Γn´1 œ C Ñ Γ0 œ Γ1 œ . . . Γn´1 œ D.
Moreover, since we have the form functor

ÝÑ
K Ñ K, we have the corresponding functor from hyperges-

tures to hypernetworks,

ÝÑ
@2 œ: Γ0

ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@K Ñ Γ0 œ Γ1 œ . . . Γn´1 œ K,

which, for topological functors f : K Ñ L, yields the commutative diagram

Γ0
ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@K

ÝÑ
@2œÝÝÝÝÑ Γ0 œ Γ1 œ . . . Γn´1 œ K

ÝÑ
@f

§§đ §§đœf

Γ0
ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@L

ÝÑ
@2œÝÝÝÝÑ Γ0 œ Γ1 œ . . . Γn´1 œ L

65.5.1 Escher Theorems

Escher theorems have been proved for topological and categorical hypergestures in [720, 723], see Sections
61.14, 62.1.2. Their proof can be based upon the fact that double limits commute. This proof carries over to
hypernetworks.

Theorem 3. (Escher Theorem) For a sequence of digraphs Γ0, Γ1, . . . Γn´1, a topological category K, a
category C, and a permutation π P Sn, we have canonical isomorphism of topological categories or categories,
respectively:

Γ0
ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@K

„Ñ Γπp0q
ÝÑ
@Γπp1q

ÝÑ
@ . . . Γπpn´1q

ÝÑ
@K,

Γ0 œ Γ1 œ . . . Γn´1 œ C „Ñ Γπp0q œ Γπp1q œ . . . Γπpn´1q œ C.

65.6 Singular Homology of Hypernetworks and Hypergestures

Singular homology for topological spaces K has been generalized in [727] to hypergestures since singular
cubic n-chains, i.e., continuous maps c : In Ñ K P ToppIn,Kq in a topological space K, can be viewed as
iterated 1-chains I Ñ ToppIn´1,Kq, i.e., they are n-fold hypergestures in Ò ÝÑ

@ Ò ÝÑ
@ . . . Ò ÝÑ

@K. Generalizing
this fact, we have looked at n-fold hypergestures c P Γ0

ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@K for topological categories K

instead of n-chains, see Chapter 63. Homology is then defined by a procedure that is independent of the
special topological conditions, see Chapter 63. We first introduce a face operator c˝ P K for a gesture
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c P Γ
ÝÑ
@K. For a given commutative ring R, we define the module CkpR,K, Γ˚q of k-chains as the free

R-module generated by all k-fold hypergestures of partial and different k-length sequences of skeleta from
the original sequence Γ˚ “ Γ0, Γ1, . . . Γn´1. We then define a boundary operator using the Escher theorem
as follows. Let c P Γ0

ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@K and call ci P Γi

ÝÑ
@Γ0

ÝÑ
@ . . . Γi´1Γi`1 . . . Γn´1

ÝÑ
@K the corresponding

hypergesture given by the Escher theorem. Then we set Bnc “ řn´1
i“0 p´1qic˝

i . This map is extended linearly to
the module CnpR,Γ.,Kq. The important fact is that Bn´1 ˝ Bn “ 0, i.e. Zn´1 “ KerpBn´1q Ă Bn “ ImpBnq.
The quotient module Hgest

n´1pR,K, Γ˚q “ Zn´1{Bn is called the n ´ 1st gestural homology module of the data
R,K, and Γ˚.

This procedure is totally independent of the specific nature of chains. This means that we can also
define homology with the above procedures mutatis mutandis for hypernetworks instead of hypergestures.
The only difference is that we now start from any category C instead of a topological category K, and that
we take hypernetworks instead of hypergestures. This enables the definition of network homology modules
Hnet

n´1pR, C, Γ˚q. It is immediate that if we are given a functor f : K Ñ C, then the above hypergesture-to-
hypernetwork maps induce homology module homomorphisms

Hkpfq : Hgest
k pR,K, Γ˚q Ñ Hnet

k pR, C, Γ˚q
for all indices k in our sequence. Let us summarize this discourse by saying that homology theory is the
classical technical tool to connect hypergestures or hypernetworks of different levels. It has been a key to the
solution of the Weil and Fermat conjectures, and this is why we expect them to give us essential insights to
gestural and transformational music theory.



66

Global Categories

Summary. We discuss global categories of compositions, processes, and gestures.

– Σ –

66.1 Categories of Global Compositions

Let us first recall the category of objective global compositions introduced in Chapter 13. We will not deal
with non-objective global compositions in this chapter. Global compositions arise from the music-theoretical
interpretation of sets of musical objects X by coverings with specific subsets Y Ă X. For example, a major
scale X Ă Z12 may be covered by the set C “ tIX , IIX , . . . V IX , V IIXu of seven degree triads. Or a musical
analysis of a composition, given as a set X Ă N of notes in a note space N , may be interpreted analytically
with a covering C “ tC1, . . . Cnu consisting of subsets Ci Ă X. The covering then defines an atlas of
charts which intersect in a specific way and define a global structure, similarly to a geographic atlas or a
differentiable manifold or an algebraic variety, which we call a(n objective) global composition. Here is the
definition:

Definition 114 A(n objective) global composition consists of these components:

1. a set G, the support, and a finite covering I of G by non-empty sets,
2. an address module A,
3. a family pKt Ă A@FtqT of A-addressed local compositions,
4. a surjection I? : T Ñ I,
5. a bijection φt : Kt

„Ñ It for each t P T ,
6. for each couple s, t P T such that Is X It ‰ H, the induced bijection

φs,t : φ
´1
s pIs X Itq „Ñ φ´1

t pIs X Itq
is an isomorphism

φs,t{1 : pφ´1
s pIs X Itq, A@Fsq „Ñ pφ´1

t pIs X Itq, A@Ftq
of local compositions.

The data 3.-5. are called an A-addressed atlas of the global composition which is often denoted by GI . The
bijections φt are called the charts of the atlas. Two atlases are equivalent if their disjoint union is also an
atlas for GI . The global composition is defined by an equivalence class of atlases.

If GI and HJ are two global compositions, a morphism f : GI Ñ HJ is a triple of maps f “ pf1 :
G Ñ H, f2 : I Ñ J, α : A Ñ Bq with f1piq Ă f2piq for each i P I, such that for each chart Kt Ă A@Ft

for It in GI , and Ls Ă B@Gs for Is “ f2pItq in HJ , the map f1|Kt : Kt Ñ Ls is a morphism f1|Kt{α of
local compositions. This defines the category ObGl of (objective) global compositions. It contains the full
subcategory of ObLoc, the latter being identified with the global compositions having a singleton covering.

G. Mazzola et al., The Topos of Music III: Gestures, Computational Music Science, 
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Fig. 66.1. The morphisms between nerves of different coverings (singletons, thirds, triads, tetrades) of the diatonic
scale.

66.1.1 Simplicial Methods

Before we discuss some important examples, we introduce a powerful geometric method for understanding
global compositions: the simplicial functor. It will also be useful mutatis mutandis for global networks and
global gestures. We will not explicate those aspects here since they are straightforward once the case of
global compositions is understood. This method is based on the nerve functor N : ObGlob Ñ Cat mapping
a global composition GI to the simplicial complex NpGIq of its covering I. In combinatorial topology, this
is also called the covering’s nerve. It is a small category, whose objects are finite, non-empty sets σ Ă I such
that their intersection Xσ is not empty. An n-simplex is a simplex having n ` 1 elements. Its morphisms are
the inclusions σ Ă τ . Nerves define a functor since (with the above notation for a morphism, f : GI Ñ HJ)
f2|σ : σ Ñ f2pσq defines a natural transformation between associated nerves. Nerves are visualized by
the so-called geometric realization, or geometric nerve, which shows 0-simplices as points, 1-simplices as
lines connecting two 0-simplex points, 2-simplices as triangular surfaces, 3-simplices as tetrahedra volumes,
and so on for higher dimensional geometric shapes. It turns out that frequent geometric constructions in
neo-Riemann theory are special cases of this simplicial method, rather than so-called duality constructions.

Figure 66.1 shows the geometric nerve morphisms between different coverings of the diatonic scale:
From one-element to thirds to the classical triadic to the tetradic covering, we have morphisms of global
compositions induced by the identity on the supporting scale and embeddings of singletons in intervals,
intervals in triads, and triads in tetrades. One sees that the famous harmonic band the nerve of the triadic
covering, a Möbius strip, is embedded in the full torus nerve for the tetradic covering.

Moreover, a simplex σ induces a local composition on its intersection, which we also denote by Xσ.
This defines the contravariant functor, the simplicial weight XNpGIq : NpGIqopp Ñ ObLoc of local sub-
compositions of GI induced on the simplex intersections. The simplicial weight is a powerful technique for
the description and classification of global compositions. We may attach the isomorphism class to each local
composition of the simplicial weight of GI and then obtain the class nerve CNpGIq. In some cases, this is
a full set of invariants for GI , i.e. its isomorphism class is determined by its class nerve. Figure 66.2 shows
the intervallic class nerve of a three-element motif in Z2

12. Such three-element motives are in fact classified
by their intervallic class nerves, while four-element motives are not classified by the class nerve of their
three-element submotif coverings, see Section 14.5 and 17.1 for examples and counterexamples. The class
nerve of the triadic Möbius strip of the diatonic scale is shown in Figure 66.3.
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Fig. 66.2. The class nerve CNpM p2qq for the inter-
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Fig. 66.3. The class nerve of the harmonic strip; the

numbers are the class numbers of chords, intervals,

and notes in the classification list N.1.

In view of the often high-dimensionality of nerves of compositions it is recommended to restrict the
geometric perspective to low dimensions, and this is the standard approach in neo-Riemann theory. The
general procedure is this: One takes the simplicial weight functor XNpGIq : NpGIqopp Ñ ObLoc, selects
a subcategory Sel Ă ObLoc and considers the fiber of XNpGIq|Sel over Sel. In neo-Riemann theory, one
considers typically the covering p3q of the local composition Z12 of pitch classes by major and minor triads.

This defines a global composition Z
p3q
12 which has up to five-dimensional simplices (a pitch class can sit in six

different triads). One therefore only looks at simplices σ having at least two elements in Xσ. The fiber over his
subcategory defines a subcategory of the nerve, in fact Jack Douthett’s and Richard Steinbach’s “Chicken-
wire” category [276] with only zero- and one-dimensional simplices. Like many approaches to global theory,
neo-Riemannian geometry constructs global compositions starting from a local composition G and defines
global compositions GI from a covering I of G by interesting subcompositions. This evidently defines a global
composition whose support is G, and whose charts are the local compositions from I, the gluing isomorphisms
being all identities. We call such a global composition an interpretation of G. A global composition which
is isomorphic an interpretation is called interpretable. It is one of the main results of classification theory to
have classified many types of global compositions and to have given criteria for interpretability.

66.2 Classification of Global Compositions

Here is the most general classification theorem for global compositions, proved for zero-addressed global
compositions in [670, p.52 ff.] and then for general addresses in Section 15.3.2, Theorem 18.

Theorem 42 (Geometric Classification of Global Compositions)
Let A be a locally free module of finite rank over the commutative ring R. Consider the A-addressed

global compositions GI with the following properties (*):

• the modules R.Gi that are generated by the charts Gi, i.e., by all differences x ´ y, x, y P Gi within the
chart spaces, are locally free of finite rank;

• the modules of affine functions AffpGiq are projective.

Then there exists a subscheme J of a projective R-scheme of finite type whose points ω : SpecpSq Ñ J are in
one-to-one correspondence with the isomorphism classes of global modular compositions at address S bR A
sharing the properties (*).

Special cases of this result are the complete lists of isomorphism classes for local compositions K Ă Z12

(zero-addressed chords), zero-addressed motives of 1,2,3, and 4 elements M Ă Z2
12, and self-addressed chords

in ZN or in the dual number space ZN rεs; see Appendices N.1 and O. The proof of this theorem resides
on the construction of the resolution ΔpGIq Ñ GI of a global composition, a free global composition over
NpGIq, and on the classification of orbits of modules of affine functions on the resolution under the action of
the automorphism group of this resolution. This technique vastly generalizes the idea of investigating local
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compositions as orbits under the permutation group of their discrete indexing networks as described earlier
in Section 65.2.

66.3 Non-interpretable Global Compositions

The existence of non-interpretable global compositions is a dramatic step in the understanding of music, a
detailed discussion of such a situation is given in Chapter 17. The reason is that the combination of local charts
on a global composition can generate musical connectivity that is not representable in a single composition.
But it has deeper consequences, namely that we can also create non-interpretable global networks and
gestures using the classification of global compositions. We come back to this context when discussing global
networks and gestures.

Here are two examples of non-interpretable global compositions, both zero-addressed.

Fig. 66.4. A global Möbius-type network. It is not

interpretable because its associated global composi-

tion shown in Figure 66.5 is not interpretable.

Fig. 66.5. The global, non-interpretable composi-

tions associated with the global network in Figure

66.4.

The first example is very simple to construct. We take a support set G “ tx0, x1, x2, x
1
2u of four points

and cover it by two charts G1 : tx0, x1, x2u „Ñ Z3 : xi ÞÑ i and G2 : tx0, x1, x
1
2u „Ñ Z3 : x0 ÞÑ 0, x1 ÞÑ

1, x1
2 ÞÑ 2. The charts are glued together by the identity on the two-element intersection tx0, x1u. This

global composition is not interpretable since in any Z3-vector space, the three points of the charts would be
collinear, and therefore only three points would result instead of four.

The second example is more refined since it does not simply double points by gluing special subsets;
refer to Figure 66.5. This global composition has a support of six points G “ tx1, x2, x3, x4, x5, x6u. It has
three charts Gi, i “ 1, 2, 3, defined as follows: All charts are in zero-addressed local compositions in R2,
namely G1 : tx1, x2, x3, x4u „Ñ ty1 “ p0, 0q, y2 “ p0, 1q, y3 “ p1, 0q, y4 “ p1, 1qu Ă R2 : xi ÞÑ yi, G2 :
tx1, x2, x5, x6u „Ñ ty1̊ “ p1, 1q, y2̊ “ p1, 0q, y5 “ p0, 0q, y6 “ p0, 1qu Ă R2 : xi ÞÑ yi̊ , i “ 1, 2, xi ÞÑ yi, i “ 5, 6,
and G3 : tx3, x4, x5, x6u „Ñ ty3 “ p0, 0q, y4 “ p0, 1q, y5 “ p1, 0q, y6 “ p1, 1qu Ă R2 : xi ÞÑ yi. To decide
whether this is an interpretable global composition or not, we apply a criterion from Section 15.2.2. Let
f be an affine function on G. Then evidently, writing fij “ fpxiq ´ fpxjq, we have f21 “ f43, f21 “ f56,
f56 “ f34 “ ´f43. Therefore f43 “ ´f43 “ 0, and f21 “ f56 “ f34 “ 0, no affine function can separate points
x2 from x1, x5 from x6, and x3 from x4. According to Proposition 16 in Section 15.2.2, G is not interpretable.

66.4 Categories of Global Networks

Global networks as interpretations of local networks related to K-nets have been considered implicitly by
Robert Peck [829] in neo-Riemannian theory. Similarly to global compositions we may define global networks
as follows:

Definition 1. A global network consists of these components:

1. a digraph Γ , the support, and a finite covering I of Γ by non-empty sub-digraphs,
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2. an address module A,
3. a family pkt : Δt Ñ ş

EndpFtqqT of A-addressed flat and faithful local networks,

4. a surjection I? : T Ñ I,
5. an isomorphism φt : Δt

„Ñ It for each t P T ,
6. for each couple s, t P T such that Is X It ‰ H, the induced isomorphism

φs,t : φ
´1
s pIs X Itq „Ñ φ´1

t pIs X Itq
extends to a flat isomorphism of flat local networks

φs,t{1 : pφ´1
s pIs X Itq Ñ

ż
EndpFsq

q „Ñ pφ´1
t pIs X Itq Ñ

ż
EndpFtq

q.

The data 3.-5. are called an A-addressed atlas of the global network, which is often denoted by Γ I . The
bijections φt are called the charts of the atlas. Two atlases are equivalent if their disjoint union is also an
atlas for Γ I . The global composition is defined by an equivalence class of atlases.

If Γ I and ΣJ are two global networks, a morphism f : Γ I Ñ ΣJ is a triple of maps f “ pf1 : Γ Ñ
Σ, f2 : I Ñ J, α : A Ñ Bq with f1piq Ă f2piq for each i P I, such that for each chart Δt Ñ ş

EndpFtq for It in

Γ I , and Λs Ñ ş
EndpGsq for Is “ f2pItq in ΣJ , the map f1|Δt : Δt Ñ Λs induces a flat morphism ψt{f1|Δtα

of flat local networks. This defines the category GlobNet of global networks. It contains the full subcategory
of FlatLocNet, the latter being identified with the global networks having a singleton covering.

Fig. 66.6. The gluing lemma (left) and the two gluing types in the neo-Riemann global network (middle and right).

66.4.1 Non-interpretable Global Networks

To ease notation, we shall denote zero-addressed flat local networks on digraphs Γ with values in modules M
by f : Γ Ñ M instead of f : Γ Ñ ş

Endp@Mq. Let us first prove a simple criterium with splitting circle maps.

Consider the following simple zero-addressed global network construction; refer to Figure 66.6, left network.
The global network is supported by the digraph Γ on the top of Figure 66.6, and we are given two charts of
three points and two arrows each, intersecting at the middle vertical arrow. The left chart G1 : Γ1 Ñ Z12 is

a diagram x
f� y

f� z, the right chart G2 : Γ2 Ñ Z12 is a diagram u
g� v

g� w. The charts are

intersecting on the subdiagrams x
f� y and u

g� v, which are connected by an isomorphism of local
networks h. Call this global network G.
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Lemma 2. If ptx, yu,Z12q is a generating local composition, the global composition G is not interpretable by
a faithful local network on any Z12-module M .

In fact, suppose that there is a local network L : Γ Ñ M whose interpretation LtΓ1,Γ2u is isomorphic
to G. Let x1, y1, z1 be the points in M corresponding to the points x, y, z of chart G1. Then there is an
isomorphism of local compositions f : ptx, y, zu,Z12q „Ñ ptx1, y1, z1u,Mq, and hhence an isomorphism of the
underlying modules f0 : Z12tx, y, zu „Ñ Z12tx1, y1, z1u. Since tx, yu is generating, Z12tx, y, zu “ Z12, and its
image Z12tx1, y1, z1u is isomorphic to Z12. But as Z12 is self-injective, this image is a direct summand of M :
M “ Z12tx1, y1, z1u ‘ M 1 „Ñ Z12 ‘ M 1. Observe that h is in fact a module isomorphism since ptx, yu,Z12q
is generating. The analogous statement is therefore true for the second chart G2 since ptu, vu,Z12q is also
generating via the isomorphism h. Since u, v map to x1, y1, too, Z12tu, v, wu maps to the same module as
Z12tx, y, zu does. Therefore both charts map to the common coset x1 ` Z12tx1, y1, z1u in M . Transposing
on M by T´x1

, we may suppose that the images of both charts lie in Z12tx1, y1, z1u, which means that we
may suppose wlog that M “ Z12. But then the transformation f on the first chart must coincide with the
transformation g on the second chart in the local network in M . This implies that z1 “ fpy1q “ gpy1q “ w1,
where w1 is the third point on the second chart. But then there are only three points on this network, it is
not faithful, and we are done.

Fig. 66.7. The global Zarlino network.

This criterium applies to show that a global network related to neo-Riemannian approaches is in fact
not interpretable. The network is shown in Figure 66.7. It is motivated by the desire (1) to use the fact
that major and minor triads are circular chords as shown in Figure 65.1, and (2) to connect major and
minor triads under the classical Zarlino inversion that connects major to minor triads exchanging tonic and
fifths and exchanging major third with minor third. We represent all major and minor triads as circle chord
networks. All gluing data are identities except the two types shown in the middle and right graphics on
Figure 66.6. Since the middle gluing data are present in each major/minor couple of the Zarlino network,
the network cannot be interpretable. It is a torus-shaped grid with shifted horizontal gluing connections,
and every triadic chart appears twice, once in a fifth tower, and once in a fourth tower.

A second criterium for non-interpretability of global networks is the existence of a global functor
globfact : GlobNet Ñ ObGlob, which maps interpretable global networks to interpretable global composi-
tions. We leave it to the reader to define this functor. It is essentially the extension of the fact functor for
local theories described in the second item of Section 65.4, just gluing together charts of local objects. An
example of this criterium is the global network shown in Figure 66.4. It projects to the non-interpretable
global composition shown in Figure 66.5 and discussed in Section 66.3. Therefore it is also not interpretable.

The classification of global networks is not settled, and it is far from evident. We are afraid that it is as
difficult as the classification of the representation of digraphs in linear algebra. The latter is a wild problem
in the sense that one could classify all module categories if that were possible. Therefore the factualization
functor globfact : GlobNet Ñ ObGlob is essential in that the classification of the codomain category helps
us understand the isomorphism classes of global networks.
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66.5 Categories of Global Gestures

Here is the definition of a global gesture, similar to the definition of global networks or compositions:

Definition 115 A global gesture consists of these components:

1. a digraph Γ , the support, and a finite covering I of Γ by non-empty subdigraphs,
2. a family pkt : It Ñ ÝÑ

KtqI of faithful1 local gestures,
3. for each couple s, t P I such that Is X It ‰ H, the identity Ids,t of digraphs Is X It extends to an

isomorphism fs,t “ pIds,t, ns,t, νs,tq of local gestures,

fs,t : ks|Is X It
„Ñ kt|Is X It.

The data in 2. and 3. are called an atlas of the global gesture, which is often denoted by Γ I . The local
gestures kt are called the charts of the atlas. Two atlases are equivalent if their disjoint union is also an atlas
for Γ I . The global gesture is defined by an equivalence class of atlases.

If Γ I and ΣJ are two global gestures, a morphism f : Γ I Ñ ΣJ is a pair of maps f “ pf1 : Γ Ñ Σ, f2 :
I Ñ Jq with f1piq Ă f2piq for each i P I, such that for each chart kt : It Ñ ÝÑ

Kt in Γ I , and lt : Is Ñ ÝÑ
Ls for

Is “ f2pItq in ΣJ , the map f1|kt : It Ñ Is induces a local gesture morphism pf1|It, ht, ntq : kt Ñ ls. This
defines the category GlGesture of global gestures. It contains the full subcategory of LocGesture, the latter
being identified with the global gestures having a singleton covering.

The functorial transition from global networks to global compositions cannot be copied without prob-
lems to the transition from global gestures to global networks. The point is that the local transition functor
form : Γ

ÝÑ
@K Ñ Γ œ K does not conserve faithfulness in general since many gestures g from x to y can give

the same morphism gp0, 1q from x to y. And the natural transformations for gestures over locally compact
points also do not yield flat local networks and morphisms. In this generality, gestures are definitely richer
than networks.

66.6 Globalizing Topological Categories: Categorical Manifolds

Intuitively, a categorical manifold is a manifold whose charts are topological categories. We first have to
recall from Appendix J.4.2 that a (small) category is a directed graph Γ : C1 Ñ C2

0, with an arrow set
called morphism set C1, and a vertex set called object set C0, together with two maps e : C0 Ñ C1,
m : C1 ˆC0 C1 Ñ C1 for identification of objects and identity morphisms and composition of morphisms.
A topological category is the same, except that all objects and maps are in the category Top of topological
spaces and continuous maps. A topological digraph is a digraph Γ : AΓ Ñ V 2

Γ that is internal to Top, i.e.,
the objects and maps are in Top. Therefore, a topological category is a topological digraph that is enriched
by the two continuous maps e and m, together with the category-theoretical axioms.

Definition 116 A categorical manifold is a finite covering I of a topological digraph Σ by non-empty open
sub-digraphs Σι Ă Σ (meaning that their arrow and vertex sets are open in Σ’s arrow and vertex sets) which
are all endowed with eι,mι and define topological categories; they are called the manifold’s charts. Moreover,
the non-empty intersections Σι X Σκ are also supposed to be topological categories that are induced by the
super-categories Σι, Σκ. Such a categorical manifold is denoted by ΣI .

If ΣI , ΔJ are two categorical manifolds, a morphism f : ΣI Ñ ΔJ is a pair of morphisms f “ pφ, F q,
φ : Σ Ñ Δ being a continuous digraph map, and F : I Ñ J a set map such that φpΣιq Ă ΔF pιq for all ι P I,
and the map φ|Σι : Σι Ñ ΔF pιq is a morphism of topological categories.

This defines the category CatMan of categorical manifolds.

1 Meaning that the digraph morphism kt is mono.
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Example 78 Every topological category is a categorical manifold with a single chart. Every covering of
a topological category by a set of open non-empty subcategories defines a categorical manifold, since the
non-empty intersections of any two subcategories are subcategories. We call categorical manifolds that are
isomorphic to such objects interpretable categorical manifolds, in analogy to the situation for global compo-
sitions. We don’t know whether there are non-interpretable categorical manifolds. The conjecture is “yes”.

We can visualize this construction on the topological category ∇. Take an open interval covering
J “ tr0, b1r, sa2, b2r, . . .san, 1su of its object set r0, 1s. Figure 66.8 shows the categorical manifold ∇J .

Fig. 66.8. The categorical manifold obtained from an open interval covering of the object set of ∇.

Example 79 If ΣI is a covering of a digraph Σ with the discrete topology, we may consider for every
subdigraphΣι of this covering its path category PathpΣιq. Adding the paths of these subdigraphs toΣ defines
a larger graph, which we denote by PathpΣIq and call the path manifold of ΣI . We have the intersection
formula PathpΣιq X PathpΣκq “ PathpΣιq X Σκq. PathpΣIq is a categorical manifold with the discrete
topology. Check that this is not a special case of Example 78.

Example 80 See Figure 66.9 for this example. Take two copies ∇1,∇2 of the basic topological category
∇. Select two open intervals sa1, b1r, sa2, b2rĂ I, and consider the full open subcategories ∇pa1, b1q Ă ∇1,
∇pa2, b2q Ă ∇2 defined on the objects from sa1, b1r, sa2, b2r, respectively. The evident linear bijection q :
sa1, b1r „Ñsa2, b2r defines an isomorphism of categories q : ∇pa1, b1q „Ñ ∇pa2, b2q. Now glue ∇1,∇2 together
along the subcategories ∇pa1, b1q,∇pa2, b2q via q. This colimit Γ I of topological digraphs defines a categorical
manifold that has two charts, I “ t∇1,∇2u, whose intersection is the glued part q : ∇pa1, b1q „Ñ ∇pa2, b2q.
One sees that even if two morphisms, one in ∇1, the other in ∇2, are such that their domains and codomains
could define a composed morphism, this will not be possible in general in Γ I ; this manifold is not a category
anymore. Check that this is a special case of Example 78.

Example 81 A practical musical example results from the hand’s space-time MC “ W ˆ C (see Section
78.2.3 for W ). This topological space (qua topological category) may be covered by open subsets that reflect
regions describing where the hand may move within the total space, and where it may not be positioned. Such
constraints can occur for particular hand anatomy or for requirements that result from the composition’s
structure. The resulting categorical manifold is of type defined in Example 78.

To get an idea of the hand’s space-time MC and its possible categorical manifolds, we can think of the
keyboard-related space. In principle, every point can be reached by a pianist’s hands. However, physiological
and physical limitations impose some space-time restrictions.

To study the space-configurations in the keyboard-related space in detail, we can cover it with open
subsets instead of regarding it as a whole, following the physical limits of physiology (muscle forces, etc.):



66.6 Globalizing Topological Categories: Categorical Manifolds 995

Fig. 66.9. The categorical manifold obtained from gluing two copies of ∇ along ∇-shaped subcategories.

one open space-time set for every fingertip and finger, taking into account the possible articulations; one
open set for the motion of each hand’s palm. Which point of keyboard space can be reached, and how fast,
depends on the degree of freedom of articulations, with constraints due to flexibility and speediness. For
example, the same fingertip cannot touch two keys at the opposite extremes of the keyboard if sufficient
time is missing to perform such a movement. This defines a region in space-time. While writing a symbolic
score, the composer has to verify the realizability of such gestures to avoid any Procrustes effect.

The following proposition is immediate from the fact that the categories of topological digraphs and of
topological categories are finitely complete (check the existence of fiber products and of the terminal object).

Proposition 66 The category CatMan is finitely complete.

This being so, we may define gestures with values in categorical manifolds. Take a digraph Γ and a
categorical manifold ΣI . Then a gesture g : Γ Ñ ΣI is defined as follows. To begin with, let Γ “Ò (see
Section J.1.1). Then for the basic topological category ∇, which is a special categorical manifold, we have
the morphism set ∇@ΣI in CatMan. This set is covered by the subsets ∇@Σι for the charts Σι of I. These
subsets are already known to define topological categories. And their intersections are the sets ∇@pΣι XΣκq,
which are topological categories for the same reason. Therefore ∇@ΣI is given the structure of a categorical

manifold that we also denote by
ÝÑ
ΣI . Since every digraph Γ is the colimit of the diagram D of its arrows and

vertices, we may define Γ@ΣI as limD, the limit (that exists by Proposition 66) of its arrow values of type
∇δ@ΣI , ∇δ the ∇ for arrow Òδ,

Γ
ÝÑ
@ΣI “ lim

δ
∇δ@ΣI “ lim

δ

ÝÑ
ΣI .

Definition 117 With the above notations, a gesture g : Γ Ñ ΣI is by definition an element of the categorical
manifold Γ

ÝÑ
@ΣI .

Figure 66.10 shows a gesture in a topological manifold.
In particular, we may now build hypergestures over categorical manifolds, a necessary prerequisite for

an Escher Theorem over categorical manifolds. Here is this theorem, whose proof is immediate as it follows
the same ideas used for the proof for topological categories.

Theorem 4. (Escher Theorem) For a sequence of digraphs Γ0, Γ1, . . . Γn´1, a categorical manifold ΣI , and
a permutation π P Sn, we have canonical isomorphism of categorical manifolds:
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Fig. 66.10. Top line: Left and middle show two line gestures (defined on the line digraph Ò), while the right one
is not allowed since it does not map into a chart. Bottom line: Here we see a gesture that is defined on the chain
digraph of length 2, and this one is allowed as its connecting point maps into the intersection category.

Γ0
ÝÑ
@Γ1

ÝÑ
@ . . . Γn´1

ÝÑ
@ΣI „Ñ Γπp0q

ÝÑ
@Γπp1q

ÝÑ
@ . . . Γπpn´1q

ÝÑ
@ΣI .

66.7 Globalizing Skeleta

The next step toward globalization of gestures deals with global skeleta. Suppose that we are given a global
digraph ΓG, i.e., a covering G of digraph Γ by non-empty subgraphs Gι. The category GlobalDigraph
of global digraphs has as morphisms morphisms of digraphs, together with maps of the coverings that
respect images of covering subgraphs. In the situation of global gestures, as defined in Definition 115, we are
given such a global digraph, and we suppose that every chart Gι is embedded in the categorical manifold
ΣI . In our situation of a global gesture with values in ΣI , this means that we are given local gestures

gι,κ : Gι X Gκ �
ÝÑ
ΣI , gκ,ι : Gι X Gκ �

ÝÑ
ΣI that can be transformed into each other by an automorphism

fι,κ : ΣI „Ñ ΣI of the underlying categorical manifold2 ΣI . A global gesture is given by its local charts

gι : Gι �
ÝÑ
ΣI . This means that the global gesture is an element g “ pgιqι P ś

ι Gι
ÝÑ
@ΣI , together with the

above automorphism conditions, which define a determined subset of
ś

ι Gι
ÝÑ
@ΣI . Since this cartesian product

of categorical manifolds is a categorical manifold, the only question is whether the automorphism conditions
define a submanifold. We know that

ś
ι Gι

ÝÑ
@ΣI is covered by categories that intersect in categories. The

question is: are the intersections of these categories with the set of global gestures also categories? The answer
is yes, since the automorphism conditions have nothing to do with the structure of natural transformations
which define morphisms in such manifold categories. This means that the set of global gestures g : ΓG Ñ ΣI

is a categorical manifold, which we denote by the known symbol ΓGÝÑ
@ΣI . Observe that if ΣI is a topological

manifold, then so is ΓGÝÑ
@ΣI .

2 In this context, to simplify the formalism, we only deal with local gesture chart isomorphisms where the natural
transformations ns,t in Definition 115 are identities.
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Fig. 66.11. The two hypergestures g1, g2 PÒ2 ÝÑ
@Ξ

ÝÑ
@RT are glued together to a global gesture g on pÒ3qJ , J “ tÒ2, Ò2u,

along their intersection on Ò and exchanging the two arrows of the bifurcated digraph Ξ (two arrows starting from
the same vertex) of the gestures in space-time RT .

Example 82 Global skeleta reflect the classical situation of a global composition (see Chapter 13) that is
a patchwork of local subcompositions (charts). Since we are now dealing with gestures, the patchwork is not
a set-theoretic one, but deals with skeleta. Figure 66.12 shows a simple example. The composition’s gestural
setup is defined on the skeleton r3sL \r2s r3sR, and this skeleton is seen as a union of subdigraphs J1 and
J2. Their intersection J1 X J2 is the line digraph r1s from point 1 to point 2.

Fig. 66.12. A global digraph for a simple composition. See Example 82 for details.

The final result here would be a global Escher Theorem, which we state as a conjecture without proof:
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Theorem 5. (Global Escher Theorem) For a sequence of global digraphs ΓG0
0 , ΓG1

1 , . . . Γ
Gn´1

n´1 , a categorical
manifold ΣI , and a permutation π P Sn, we have canonical isomorphism of categorical manifolds:

ΓG0
0

ÝÑ
@ΓG1

1
ÝÑ
@ . . . Γ

Gn´1

n´1
ÝÑ
@ΣI „Ñ Γ

Gπp0q
πp0q

ÝÑ
@Γ

Gπp1q
πp1q

ÝÑ
@ . . . Γ

Gπpn´1q
πpn´1q

ÝÑ
@ΣI .

66.8 Functorial Global Gestures

As described in Section 62.6, we may also unfold gesture theory in a functorial setup, i.e., for general
addresses. In this section, we want to include the functorial perspective into the global concept architecture.

We again have to start with gestures with values in a categorical manifold, but this time the gestures
are A-addressed for a topological category A.

Take a digraph Γ and a categorical manifold ΣI ; then an A-addressed gesture g : Γ ÑA ΣI is defined as
follows. To begin with, let Γ “Ò. Then for the topological category ∇ we have the morphism set ∇@AΣI in
CatMan. This set is covered by the subsets ∇@AΣι for the charts Σι of I. These subsets define topological
categories, and their intersections are the topological categories ∇@ApΣι X Σκq. Therefore ∇@AΣI is given

the structure of a categorical manifold that we also denote by A@
ÝÑ
ΣI . Since every digraph Γ is the colimit

of the diagram D of its arrows and vertices, we may define Γ
ÝÑ
@AΣI as limD, the limit of its arrow values of

type ∇δ@AΣI , ∇δ the ∇ for arrow Òδ,

Γ
ÝÑ
@AΣI “ lim

δ
∇δ@AΣI “ lim

δ
A@

ÝÑ
ΣI .

Definition 118 With the above notations, an A-addressed gesture g : Γ ÑA ΣI is by definition an element
of the categorical manifold Γ

ÝÑ
@AΣI .

The last step toward globalization of gestures deals with global skeleta for A-addressed gestures. Suppose
that we are again given a global digraph ΓG (a covering G of digraph Γ by non-empty subgraphs Gι). For

global gestures, we are given local A-addressed gestures gι,κ : Gι X Gκ �A

ÝÑ
ΣI , gκ,ι : Gι X Gκ �A

ÝÑ
ΣI

that can be transformed into each other by an automorphism fι,κ : ΣI „Ñ ΣI of the underlying categorical
manifold ΣI .

Again, a global A-addressed gesture is given by its local charts gι : Gι �A

ÝÑ
ΣI . This means that the

global gesture is an element g “ pgιqι P ś
ι Gι

ÝÑ
@AΣI , together with the above automorphism conditions,

which define a determined subset of
ś

ι Gι
ÝÑ
@AΣI . These automorphism conditions define a submanifold as

already discussed above. Therefore the set of global gestures g : ΓG ÑA ΣI is a categorical manifold, which
we denote by the known symbol ΓGÝÑ

@AΣI .
This construction verifies all the functorial properties that one expects. For an address change f : B Ñ

A, a categorical manifold morphism m : ΣI Ñ ΞJ , and a global digraph morphism t : ΔH Ñ ΓG, we have
a (functorially) corresponding morphism of categorical manifolds:

ΓG@fΣ
I : ΓGÝÑ

@AΣI Ñ ΓGÝÑ
@BΣI

ΓG@Am : ΓGÝÑ
@AΣI Ñ ΓGÝÑ

@AΞJ

t@fΣ
I : ΓGÝÑ

@AΣI Ñ ΔHÝÑ
@AΣI .

The last step of Escher theorem type is this theorem, whose proof is obvious from the preceding theorem
versions:

Theorem 6. (Global Functorial Escher Theorem) For a sequence of global digraphs and addresses

ΓG0
0 , ΓG1

1 , . . . Γ
Gn´1

n´1 ,

A0, A1, . . . An´1,
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a categorical manifold ΣI , and a permutation π P Sn, we have canonical isomorphism of categorical mani-
folds:

ΓG0
0

ÝÑ
@A0

ΓG1
1

ÝÑ
@A1

. . . Γ
Gn´1

n´1
ÝÑ
@An´1

ΣI „Ñ Γ
Gπp0q
πp0q

ÝÑ
@Aπp0qΓ

Gπp1q
πp1q

ÝÑ
@Aπp1q . . . Γ

Gπpn´1q
πpn´1q

ÝÑ
@Aπpn´1qΣ

I .



67

Mathematical Models of Creativity

Summary. We claim that category theory is a mathematical theory, proceeding from the observation of
mathematical activities and gestures, and constructing a mathematical theory as a kind of algebra of these
gestures. Especially, categoricians observe their own activity, and so category theory is also constructing a
mathematical theory of itself, of its own system of gestures. We imagine that this theory can be used to
model any activity, by a parallel action with the categorical activity. This categorical modeling is what we
need for a mathematical holding of mathematical creativity because every activity is in fact somehow an
activity of modeling.

– Σ –

67.1 Forewarning: Invention of Gestures in Mathematics

67.1.1 Thinking Exactness, Like a Rolling Mind

The question with respect to any given activity α is: in this area of activity α what is being modeled, and
how does it work? Our modeling will be the construction of a relation between the work into α and the
work into category theory, a relation from acts in α to acts in category theory. Categorical modeling seems
possible when α = mathematics, when α = music.

For us creation and invention in mathematics is analogous to creation and invention in music, the
mathematician playing with theories and models resembles the musician playing with instruments and in-
terpretations. We do not argue and expand this view; we let that to our reader only as a conducting wire.

Our final and highest claim will be (for future works): this approach of creativity in mathematics by
category theory can be elaborated as a mathematical method.

‹
With respect to the question of modeling of creativity as a matter of priority we have to lower our

attention to Truth, Being, and Phenomenon, and we have to consider the truth conditions of mathematical
activity. A working mathematician does not think of truth or reality, but only of exactness. He is constructing
proofs, and for that his base is a strong observation of the mathematical activity.

Neither ontology nor phenomenology, but actology: we believe to such an extent that mathematics is a
thought and an act, mainly at this very moment where the opening thought cancels itself as a known thought.
Even though the three terms ontology, phenomenology, and actology are in a borromean configuration, each
term is what holds the two others parallel to the borromean configuration of “the Being, the World, the Act”,
or its first cousin: “Truth, Horizon, Exactness”. This configuration probably yields an explanation of why
creativity in mathematics is possible. But at first, to develop a method of invention, we have to emphasize
actology as such and the question of gestures.

G. Mazzola et al., The Topos of Music III: Gestures, Computational Music Science, 
https://doi.org/10.1007/978-3-319-64481-3_12 
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We believe that acting mathematical thought has to transit through the effective act of doing a calcu-
lation. And at the time of this act, logical prescriptions and certainties of truths are fired, being replaced
by the risk of exactness. Here we consider “calculation” in a very large sense, including arithmetics, alge-
bra, combinatorics, geometrical constructions, recursions, calculus of limits, and even what can be named
algebraic argumentation from “mathematical logic”. We highlight the fact that “mathematical logic” is an
algebro-geometrical interpretation of the old philosophical logic; in some sense it is philosophical logic upside
down: the question of the truth in language and legitimate words is replaced by the question of exact writing
and clear visibility of a coincidence.

We emphasize the fact that exactness is related to connectivity and continuity, as in the sentence: “this
figure is exact.” This is far from the idea of “truth”, a notion implying two points, the first one being the
idea of a fixed datum; and the second one, as a consequence, the fact—or the order perhaps—that we have
to participate in its coming. So exactness is not an order, it is just a geometrical noticing which is saying
about a given situation: there are no gaps, no interruptions, the process is continuously working. Hence it is
directly related to the mathematical meaning of “exact” within the notion of exact sequence or exact square.
And this notion is enough to control and to give sense to mathematical activity.

Creativity in mathematics is possible under this condition, when you play with exactness of calculations
as a child innocently plays with rolling stones or drawings on a beach. So you do gestures into writings,
forgetting singular interpretations of these gestures, remembering that any previous gesture is due to an
oversight: a priori you are innocent in any assigned sense, divested of unadorned truth or useful reality, a
posteriori only do you risk a sense for your gesture. This is the mathematical pulsation.

67.1.2 Thought as an Algebra of Gestures

Category theory has several aspects. It is an ordinary mathematical theory; it provides a mathematical
return of a particular historical examination of mathematical gestures in the first part of the 20th century.
At the turn of mathematical structuralism and universal algebra, at the beginning of algebraic topology,
it unifies previous mathematical fields such as groups and lattices. It allows us for example to understand
invariants, dualities and completions. And so it is useful in various mathematical areas such as algebraic
geometry, computing sciences, physics, as well as for modeling in engineering science. In these fields this
tool allows advances without a priori questions on foundations or logic, but rather as a continuation of the
algebro-geometric intuition observable with gestures, and offering new gestures.

But also some tools in category theory, e.g. adjunctions, limits, completions, and topoi, have philosoph-
ical interpretations, and we can use category theory to express some philosophy such as ontology, philosophy
of difference, dialectics, as well as various metaphysics or pragmatics or even logic. Category theory allows
a modeling of philosophy, in fact from all aspects of mathematical analysis of mathematical gestures.

Augustus De Morgan knew well that mathematics and logic are different when he said (quoted in [816]):
“The two eyes of exact science are mathematics and logic.” Today we can emphasize this thought as follows.
Unlike the foundational perspective of set theory and logic, category theory provides a downwards analysis
of mathematical gestures, mainly of structurings, and it could even be understood as a theory of theories.
And category theory seems to be useful for exposition and development of mathematical creativity, as a
mathematical guide towards a method of invention of gestures in mathematics (and reflexively in category
theory itself). This point is our objective.

‹
Apart from this forewarning and the conclusion, this section has four parts, where our ideas are repeated,

without being identically reiterated. Here are some of the ideas discussed into these parts.
In the first part (Sections 67.2 and 67.3) we ask for a method of invention, namely a categorical

method for almost-free mathematical invention, away from stricto-sensu logical and set theoretical paths,
from ‘applications’, in fact related to the mathematical pulsation as a mathematical gesture into writings and
among diagrams. We highlight the fact that objects are semblances; we discuss simple objects and structures.
We introduce the question of necessity of objects as universes and completions. We hope that this introduces
good examples of mathematical gestures and exactness.
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In the second part (Section 67.4) we propose a mathematical description of mathematical gestures,
we discuss history of mathematics as a tool for invention, and we examine the nature of mathematical
productions as a writing of gestures, supported by their own history.

In the third part (Section 67.5) the accent is put on the analysis/synthesis process, and the invention of
the mathematical tools for that, namely the invention of the coordination, putting gestures into equations,
curves and shapes calculus, converging toward general functional analysis.

In the fourth and last part (Section 67.6), we insist on the stage setting of mathematical works in terms
of modeling of gestures as transitive actions, and on the analysis of the living shapes of these stages. Hence
a final proposal of general cohomology as ethical directive to close back the method.

‹
This chapter being only a reflection or an obsessive rumination, the reader will find many examples and
related theorems in the referenced publications. Here all our examples can easily justify the categorical
approach.

We hope this short overview will help our reader learn the link proposed by our title between pulsation,
transit and history, and its pertinence with respect to mathematical creativity or invention of gestures, in
order to model shapes or forms (categorically), and to compute invariants and curvatures (cohomologically).

67.2 Method and Objects, Summarily Explained: I—Preamble

67.2.1 Prelude to a Discourse of a Method: “Caminos”, “Aletheia”, Irreverence

67.2.1.1 Categorical Modeling, Method, Estrangement, Intellectuality

In this writing we would like to contribute to an examination of a new method in mathematics that we
name categorical modeling, useful as a method of invention in many mathematical disciplines, and (why
not?) especially in this young branch of mathematics named category theory, whose real purpose is the
mathematical examination of mathematical gestures and activities.

But we have not to confuse the mathematical branch “category theory” with the method “categorical
modeling”. In category theory, we explain by diagrams, we construct universal diagrammatical explanations
standing back mathematical gestures, we develop in itself algebras of diagrams and structures, and again we
construct diagrammatical explanations standing back categorical gestures, and so on. Hence Cats Ă Maths
i.e., category theory is a part of mathematics, it can be purely developed in itself. In categorical modeling
we replace mathematical situations by categorical situations such as diagrams, inventing a kind of “functor”
Maths ÝÑ Cats (“functor” in its original linguistic sense, as in Carnap’s works). It is a branch of applied
mathematics, as in fact formal logic is, and it needs more than pure mathematics. For instance, it needs
teaching and history of mathematics, going off pure mathematics, whereas in category theory (as in any part
of) Maths, it is possible to work “internally”, in the semi-closed algebraic thinking of categorical notions
and algebras.

The exact meaning for us of “modeling” is expressed by the French word: modelage. So a “model” is
not an emergency tank of knowledge for future actions, but at first a peculiar track of an action, to be read.
Working in pure mathematics is also a matter of modeling. By the term “modeling” we want to cover all
meanings of the word “model”: construction in set-theoretical theory of models or in universal algebra and
with structures in category theory, as well as modeling in science and technology by numerical models and
optimization; and making of a sketch or a mockup, or a design; and computation within a given algebraic
organization.

‹
Estrangement is a key word for anyone who wants a chance to solve a problem: do not try to force the solution,
let the calculus expand its own naturalness; let your mind forget the concrete aspect of the question, and
move around its form, only proposing new terms; at the beginning a problem has to be nothing else than
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a pure abstract object, and slowly we have to discover links with similar objects. This point is decisively
paradoxical: given a singular datum, strangely we proceed to its categorization (in a linguistic, but also in
a mathematical sense), i.e., we invent a system of objects different from the singular datum, but which are
similar (sic!), among them and with the singular datum, with possibilities of modifications between them,
and on this system, we introduce discrimination by properly adapted concepts. So we reach an estrangement
(a foreign land) of the initial singular datum, and our new knowledge of the singular datum will be the shape
of this foreign land. It works as negative or apophatic theology, saying that we can never truly define God in
positive words, as in cataphatic theology; we can only speak of God by negation, speaking of God only in
terms of what He is not. In our domain, the domain of all possible calculus, it is an unsecured loan, but with
a chance of getting off ground. So in mathematics we do work in harmony with the proverb: why go straight
to the point when it is possible to bypass? Or as expressed in a funny way by Henri Poincaré: “Mathematics
consists of proving the most obvious thing in the least obvious way.” (quoted in [816]).

This is our method to grasp the renewed shape of the problem. And to do so, we need to accept that
the “reality” which was so transparent and obvious becomes opaque [367] and incomprehensible; then we
can start to write down a non-conformist calculus expressing the new shape we are trying to imagine. In
passing we should note that the shape here is analogous to the form in [400], [401]: the disposition of the
object in front of a background.

Positively, after its initial darkening step, another name for this “estrangement” could be “structuring”!
The only thing you have to do is to try some constructions or deconstructions, inside any world that you
build or destroy, etc. You have to structure and to observe effects of your functional data on these structures.
You structure a geometrical situation when you add new lines to the initial figure, and this has two effects;
on the one hand it complicates and darkens the picture, but on the other hand in this obscurity we can
clarify some new terms and bring them to the forefront. The same works when we structure an algebraic
situation, when we state that in fact a precise group law is involved, and this allows us use of terms in this
structure. Clearly structuring is a main resource for categorization and estrangement, a second one being
doubt about a chosen structuring, opening a new field for re-structuring, by what we name mathematical
pulsation.

And of course we have to apply this ‘key word’ (estrangement or structuring) to our problem here,
which is to determine a creative method.

‹
Our method will be via universal properties, but it is not at all “the” universal method. Many things are
invented inside a given closed area of mathematics such as elementary geometry, combinatorics, algebra, etc.,
without any categorical recourse, even if most often the a posteriori explanation in terms of categories would
be possible. In many cases to intend to make use of category theory would be exaggerated; for example to
compute

lim
xÑ1´

8ź
n“1

´
1 ` x2n

?
n ´ 1

2

¯´
1 ´ x2n`1

?
n ` 1

2

¯
“ 2,

what we have to do is to construct a path into an internal space made of reasonings with inequalities,
increases, algebraic operations, numbers, etc. A priori we do not need external construction of functors, even
if a posteriori our space of reasoning can be reformulated as a category, or if a posteriori our equality comes
as evaluation of an invariant.

‹
So to do mathematics of any kind, as well as to develop our method as a mathematical trick, we have to
write an unknown evolving path in the open unknown space of mathematical entities, according to the deep
view of Antonio Machado [634, p.222]:

Caminante, son tus huellas el camino, y nada más; caminante, no hay camino, se hace camino al
andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver
a pisar. Caminante, no hay camino, sino estelas en la mar.
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(Wanderer, it is your tracks which are the road, and nothing else. Wanderer, there is no road, walking makes
the road . . . ).

In fact these open caminos exist in the mathematical world, as well as in the world of language, in the
world of music, etc. When we invent our thoughts (i.e., what we were saying just a short moment prior to
thinking it) we do not yet know the end of our sentence; when we play music the same phenomenon occurs,
etc. Nevertheless we suppose some future existence of a foreign land or more accurately a foreign structure
into which our invention is thrown.

The invention of a musical, a poetical, or a mathematical object is the invention of such an open
camino; from now on, we will speak of an open invention of a path, and for us, these paths are exactly the
mathematical creations, performed as if throwing a “letter” (or a “name”) into an unknown future structure.

‹
Toward a method—assuming that vast unifying meaning of “modeling”—a first principle is that any math-
ematical datum (number, law, table, figure, geometry, theory, function, representation, etc.) is an object; a
second principle is that any gesture among these objects (to write, to erase, to replace, to modify in any
way, etc.) is an arrow. A third principle is that gestures or arrows are objects, and objects are “semblances”,
i.e., they are valuable only as pretexts for actions (compositions and factorizations with new arrows). So
“Categorical modeling” means a development of general mathematical modeling with the starting view and
the support of category theory.

Of course our purpose is somewhat auto-reflexive, as categorical modeling is supposing category theory,
and can be applied to itself and to searching in category theory, in such a way to merge with itself.

And therefore we use the locution “discourse of a Method” to signify that we are looking for a
discourse coming from inside the method (as if the method were speaking to itself), and not for a discourse
outside the method on the subject of a method.

Clearly the question of our research is to identify a method, and not the sole method; exactly as classical
algebra was not the sole method for mathematics. Moreover we claim that this method is very good for a
posteriori analysis of almost all inventions, but we do not claim that it enables many discoveries. Any real
new discovery in fact needs new inventiveness in categorical modeling in order to be understood by that
method. So this method is not complete, and has to be thought and used in an open way, producing its own
dialectical development.

What we want to stress is that for René Descartes, to use algebra was a decisive promising gesture in
geometry; and similarly with categorical modeling and category theory—in fact a somewhat natural extension
of algebra (and this point should be necessarily explained at length)—we cherish the hope of fruitful new
adventures in the world of mathematics.

Actually by “a method” we mean a method of navigation in the open space of mathematical creation or
truth. The method is an equipment of human understanding for travel across the seas of sciences, as expressed
by Francis Bacon [59, p.77], as quoted in [80, p.35]. But for us this is not only a method of discovering (as
the scientific method is for Bacon), but also a method of invention. The question is not only to discover the
laws of nature with the help of convenient tools to bring them out, but to open the ways of invention, by
an observation of the human activity of invention (into the dialectic—via analysis and synthesis—between
objects and arrows).

‹
In previous publications we made other partial examinations, with subjects as models, signs and forms, see
for example [424]. Here we have to use these examinations and several of our epistemological studies recently,
such as [425], [426], [427], [428]. We use also our earlier works on actions and machines [405] and ébauches de
structures (or draft structures, rough sketches of structures), [402] considered as generalizations of sketches,
and allude to other papers.

We will miss here many decisive explanations of the interpretations of categorical results (in logic,
epistemology, and philosophy; in structuralism and model theory, etc.), and we do not consider the question
of the theory of knowledge, of its relationship to metaphysics, language, etc.; it has to be for future works,
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with the right historical explanations; here we consider all that as being a little out of our subject, which is
related to a method of invention.

We think also that at least implicitly any very technical progress results from a historical reconstruction
of a personal view of some past mathematical data, as a teaching aid for our auto-education in mathematics.
But we pass to further reflections the examination of this philosophical knot of pedagogy, education, science
and history, the knot whose name is simply—for us and from an aesthetic point of view—mathematics. Any
desire for a method based on mathematical activity has to pay attention to that.

Of course, from a technical point of view, here a lot of results of many categorists—included in our
own formation’s story—could explicitly or implicitly take an active part in our reflections. We use only three
decisive classical notions: adjoint functors or construction of free objects, limits or gluing, Kan extensions.
The free objects act as imaginary data, something like stratagems (cunnings or ruses of reason), whereas
limits and extensions act as computing machines. A mathematical development consists of a succession of
mechanical actions (general substitutions and gluings) among stragems (figures and terms): that is what we
named a path. We use the Yoneda Lemma in the perspective of shape theory and representation, sketches
and topoi. We consider these tools as variations around the following theme: to provide a diagrammatic
presentation of mathematical gestures of analysis and synthesis, estrangement and structuring, in most of
mathematical works. But for the moment we do not try to develop some more technical tools necessary for
our subject, such as cohomological algebra in its very general state; we content ourselves with some brief
indications.

‹
We would like to adopt the attitude of a pensive mathematician, i.e., the attitude of a working mathematician
engaged in mathematical intellectuality according to that nice notion of François Nicolas, of trying to transmit
in common language the mathematical thinking, in answer to any demand of mathematics.1

Mathematical intellectuality has three components: theoretical organization of mathematical thinking
in relation with rationality, logical development of mathematical discourse in relation with its performative
and demonstrative method, aesthetic relation with sensible domains, through beauty and intuition. Any wish
for a method of invention has to assume these components.

As Nicolas spelt out [789], mathematically intellectuality of René Guitart is centered on a decision
to make nondiscernable the work of thoughts immanent in the mathematical text and the work of the
mathematician reading and appropriating this text. So we work according to what he called “Guitart lemma”:
every mathematical text is isomorphic to the set of its relations with the world of mathematicians.

This is one of the reasons we believe that mathematics is a collective invention, in which the part played
by each player is not at all definitive, depending precisely on the future invention of new interpretations. For
mathematical creation, we depend on our personal knowledge of history, and onf the web of our mathematical
interlocutors: this is the breeding ground for our ingenuity.

The point here, for our method, is the transmission of the system of mathematical thinking as being
the objective shape of mathematical invention; we believe that category theory is well adapted to this
transmission. A strong argument for that is that category theory started as a “mathematical history” of
mathematical practices, of inventive mathematical gestures, with an accent on searching for invariants via
new structuring, and distancing ourselves from previous knowledge, representations or direct calculus.

‹
Our method will be at first directed by the will to estrange from our private intellectuality; at the math-
ematical level we have to leave our habitus, even our skills and convenient interpretations, to start again
with fresh interpretations. And what is more, estrangement goes through irreverence relative to definitions,
logic rules and paradoxes. Let us remember that “irreverence is basically the champion of liberty” (Mark
Twain) and “the essence of mathematics is liberty” (Georg Cantor): we mean that estrangement, via its
basic irreverent behavior, is near the idea promoted by Byers [166] that creating mathematics is supposing

1 For Nicolas, there is also a comparable musical intellectuality [789], [790].
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a natural familiarity with a kind of provocation of ambiguity, contradiction and paradox. This is included in
the idea of distancing ourselves from well-known reasons and of mathematical pulsation.

‹
In continuing with this introductory section we will observe the institution of algebra as a method

of invention, by Descartes—even though naturally he was not the creator or inventor of algebra (or of
geometry)—and its significance for Locke with respect to general rational creativity, further than the scope
of magnitudes and quantities. Also we will introduce Vico’s view of mathematics with respect to ‘ingenium”
and creativity, a kind of criticism of the idea of a method, and iat the same time a strengthening of the
possibility of creativity in mathematics. As he said: “to prove is to create.” We will conclude in the style
of Badiou’s platonism, by his following idea: to do mathematics is a positive reinforcement of our tendency
of pure thinking, and so it is nice for pleasure and the good life—in spite of our enslavement by numerical
control through averages and statistics.

Perhaps mathematics produces true propositions; but more important is that when it does so, mathe-
matics is beautiful. The beauty of mathematics lies on the final production of an unexpected clearing after a
long and difficult walk in the dark of rationality (see Alain Badiou [65, p.12]).

Through pedagogical, scientific and historical aspects, we have to emphasize this beauty out of a specific
method of invention—namely the algebra of categories—that we want to promote.

This is why we consider mathematics as a craft or even an art (motor of the art of rational thinking,
according to Descartes) or a production of the ingenium according to Vico (but certainly not as pragmatic
scientific knowledge), and category theory as an observatory of the beauty of mathematical gestures.

So we are with our backs to the wall: is it reasonable to believe that we can construct a method
to produce free beauty? Free beauties of variations on truths? A method of mathematical invention of
mathematics?

67.2.1.2 With René Descartes

The discipline today named algebraic geometry has its roots in works of Pierre de Fermat and René Descartes.
However Descartes specifically promoted algebraic geometry as a method—that is to say an algebraic method
of analysis and synthesis—for geometrical problems; this sets a concrete example for its “Discours de la
méthode” (“Discourse on the Method of Rightly Conducting the Reason, and Seeking Truth in the Sciences”);
we can say that his “Géométrie” is one of the “Discourses of the Method”: through algebra, the Method
itself is speaking.

For Descartes, algebra-for-geometry was not only a new discipline, but it was more, a mathemati-
cal method of description and observation of mathematical invention in geometry, a mathematical process
to discover possible ways of invention of ancient and modern geometers. Algebraic computations replace
deductions in the style of Aristotle; elementary mathematical gestures are reduced to rewritings and sub-
stitutions. Then truth will not proceed from an eternal logical principle external to the mathematician, or
even from geometrical evidences, but from actually present gestures of the mathematician, the computations
that algebraic expressions encode. Rather than a “foundation” at the beginning of mathematics, algebra is
a codification process for mathematical gestures. As a discipline, its problems come from questions about
clarification of gestures, included in algebra itself.

Of course when doing such a drastic reduction of geometry to algebra, by introduction of the operations
of arithmetics in geometry, we lose something, which is the natural spirit of geometry, and the corresponding
gestures. These gestures (to draw a line or a circle, to draw a tangent to a curve, to look at specific triangles
and associated points, at conics, and focus, to cut and to glue figures, etc.) are replaced with combinations of
algebraic operations (additions, multiplications, substitutions). This cartesian reduction is itself a high-level
gesture, which modifies the corresponding internal systems of gestures in geometry and in algebra, and also
modifies the sets of simple elements, the nature of compositions and decompositions.

Later, in 1655, John Wallis introduced the plane and the (cartesian) axes—the so called cartesian
coordinates [1104]. In fact Jakob and Johann Bernoulli were the first to speak of “cartesian coordinates” [957,
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p.342]). They achieved a proof of the cartesian translation process, reaching Descartes’ double replacement
gesture:

Conic Ô second degree equation.

Into this transitory mental space that he had introduced between geometry and algebra, René Descartes
invented a new object, Descartes’ oval.

On the one hand the oval is described by an equation (of the fourth degree), as a solution to the
anaclastic problem. On the other hand (a branch of) it is constructed as a mixture (gluing or graphical
juxtaposition) of the two “gardener constructions” for ellipses and hyperbola [264, vol. VI, p.428]. Hence the
mathematician decides to extend his algebraic and his geometrical activities:

second degree Ñ fourth degree equation, hyperbola and ellipse Ñ ovals.

The oval can be constructed as follows (gardener-type construction, see below Figure 67.1 and the figure
of the mechanism).

The three points F , K, G are fixed. A rope GCKCE of length f is attached at G and E (fixed on FE
with FE “ L), and is stretched passing through C (moving on FE), K and C again, and E. When the rod
FE turns around F , the point C moves on the oval.

f = L-r+2r’’+r’,  r2d-r’’2(c+d)+r’2c-d(c+d)c = 0,
          ar+br’ =k.

C

F K G

E

d

r’
r’’

L-r

 r

c

Fig. 67.1. Cartesian oval: from a mechanism to a diagram and a tripolar equation.

The proposal of this oval partakes in the invention of the general ideal of a curve [80]. In the 19th
century it will be an important geometrical actor in the algebra of elliptic functions. Today there are a lot
of constructions for ovals, as for example these two very easy ones(Figure 67.2):

This “object” is at the beginning of a fruitful story [76, 77]; an example of a historical scenery, see
Section 67.4.2.3. Its first effect is to open the closed universe of conics to higher dimensions, into the infinite
universe of algebraic curves. This opening is clear from the gardener construction and bipolar equation as
well from rectangular equations: If the bipolar equation of a branch ar ` br1 “ k is written, with r `nr1 “ q,
with n “ b

a , q “ k
a , then the complete rectangular equation (for the two branches) can be written [379, Tome

I, p.218], with one focus F at p0, 0q and the other G at pp, 0q, with FG “ p “ c ` d ě 0,

rp1 ´ n2qpx2 ` y2q ` 2n2px ` q2 ´ n2p2s2 “ 4q2px2 ` y2q,
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Fig. 67.2. Cartesian oval: more elementary construction and reduction to bipolar equation.

and if n “ ˘1, it reduces to the conic
px´ p

2 q2
q2

4

´ y2

q2´p2

4

“ 1.

Looking at the two other constructions, we see the left plan construction uses two circles, CpA,Rq and
CpA1, R1q. We obtain a point C of the oval as the intersection of AB and A1B1, with AB1 and A1B parallel,
B P CpA,Rq, B1 P CpA1, R1q. We do not know who the inventor of this construction is. The right construction
(given by a perspective in three dimensions) is the proof by De Tranquelléon in 1864 [266] of the result of
Quételet and Chasles exhibiting an oval as a projection of the intersection of two right circular cones with
parallel axes. We let the reader prove these constructions and deduce two parametrizations of the oval.

These pictures are also a mathematical object, a presentation of this other object which is the oval. In
fact we claim that mathematical objects do not really exist: there are only presentations (constructions or
parametrizations, etc.) of objects, ready for manipulation and transformation. In other words, an “object” is
only a name for an ideal reduction of several equivalent presentations, as a functional data ready for action.
This is the case even with drawings of various complete ovals, such as the blue and the red ones below (Figure
67.3), with equations

p´3x2 ´ 3y2 ` 24x ` λ ´ 36q2 ´ 4λpx2 ` y2q “ 0,

with λ “ 1 for the blue and λ “ 26 for the red. These ovals have the same focus at O “ p0, 0q and O1 “ p3, 0q,
and their polar equations are r ´ 2r1 “ ˘?

λ. They do not have the same shape, the two branches of the
blue being convex (in this case the external branch is also called oviform), and the external branch of the
red nit being convex (in this case the external branch is called cordiform). This difference of shape depends
on the different values of λ, according to a critical value c with 1 ă c ă 26: for any λ the external branch
is not convex if c ă λ ď 26, the two branches are convex if 1 ď λ ď c. So the fact that we see as a quality
(obviously visible but a priori not calculable) may be represented by a quantity c (a priori invisible but
calculable; in fact c becomes “visible” by the race of its calculations). We let the reader determine the exact
value of c. Also we let him pursue his own examination of this family of ovals: is it true or not that for a
value k of λ, with k ą 26, the two branches will contact each other? Could you determine this k? Then is
the corresponding oval a known other special curve, with an easy special construction, etc.? Of course at
this moment the important fact is that we considered one oval as a member of a family, and this suggested
and allowed discovery of new properties.

‹
So we see that in mathematics Descartes invents a method (the algebraic geometry)—i.e., he does the
mathematical gesture of junction of algebra and geometry (and in parallel junction of algebra and mechanical
tools) by his decision to show “how the operations of arithmetic are related to the operations of geometry:
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Fig. 67.3. Two ovals in the movement of a one-parameter family.

just as arithmetic consists of only four or five operations [...] so in geometry, to find required lines it is merely
necessary to add or subtract other lines [...]”; so at the level of mathematics his method insists on a unifying
coherence between two specific processes of analysis and synthesis. And inside this method, on a roundtrip
between algebra and geometry, he invents an “object” (the oval), and a tentative classification of its types. In
fact this object is a true creation because it opens new ways for activities in the area of algebraic geometry,
hence virtually containing future new gestures: studies into the infinity of algebraic curves, via equations
and/or via linkages. The pulsation between these two approaches was achieved and abridged by Kempe’s
theorem [76]. In the 19th century the link with elliptic functions was invented and discovered [77].

All of this constitutes a living historical scenery (in the sense of Section 67.4.1.4), from which one can
continue to work, to exert on mathematics. For example, we let our reader work on this:

Exercise 1. Express the rectangular equation of an oval in such a way that its “composition” by gluing of
a hyperbola and an ellipse becomes obvious.

With our present experience in mathematics, we can interpret Descartes’ work as a mathematical
expression of the analysis and synthesis in terms of decomposition and recomposition, substitution and
parametrization, into a situation or a category, and also the transformation of the situation. This is as much
a method to discover as a method to learn or to teach (see [854]), and to invent a proof.

67.2.1.3 In the School of the Mathematicians, According to John Locke

In the conception of John Locke—an attentive reader of Descartes—a mathematician is concerned with
numbers and figures, with space; he works by “varying the idea of space, and thereby making still new
compositions, by repeating his own ideas, and joining them as he pleases [...] And so he can multiply figures
ad infinitum.” [616, 2.13.5. p.151]. Mathematicians have to find proofs, what Locke called intermediate ideas
between two ideas: they succeed in inventing new configurations, and the mathematical truths so discovered
or invented lie on an a priori principle: the immutability of relations between immutable things [822, p.113].
At that point, Descartes would say that our mathematical evidences lie on the fact that “there is no malin
génie”.

Perhaps nowadays we can determine new mathematical concepts, or new mathematical structures;
anyway we want to stress this fact: any such new idea is (or has to be) a step in a proof; and a proof is a
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path or a pavement of such ideas, from one idea to another. Algebra is a beautiful mathematical creation as
a method for constructions of intermediate ideas, as expressed by Locke [616, IV-17.11, p.679]:

Because we perceive not intermediate ideas to show conclusions. Our reason is often at a stand
because it perceives not those ideas, which could serve to show the certain or probable agreement or
disagreement of any other two ideas: and in this some men’s faculties far outgo others. Until algebra,
that great instrument and instance of human sagacity, was discovered, men with amazement looked
on several of the demonstrations of ancient mathematicians, and could scarce forbear to think the
finding several of those proofs to be something more than human.

By way of a first portrait of a working mathematician at the end of Descartes’ century, we quote
from John Locke in 1690 [616, IV-12.7, p.637-638]:

The true method of advancing knowledge is by considering our abstract ideas [...]. General and
certain truths are only founded in the habitudes and relations of abstract ideas [...]. By what steps
we are to proceed in these, is to be learned in the schools of the mathematicians, who, from very
plain and easy beginnings, by gentle degrees, and a continued chain of reasonings, proceed to the
discovery and demonstration of truths that appear at first sight beyond human capacity. [...] the
admirable methods they have invented for the singling out and laying in order those intermediate
ideas that demonstratively show the equality or inequality of unapplicable quantities [...] but whether
something like this, in respect of other ideas, as well as those of magnitude, may not in time be found
out, I will not determine.

Also, Locke wrote [616, IV-12.15, p.642-644]:

Clear and distinct ideas with settled names, and the finding of those intermediate ideas which show
their agreement or disagreement, are the ways to enlarge our knowledge. But whether natural phi-
losophy is capable of certainty or not, the ways to enlarge our knowledge, as far as we are capable,
seem to me, in short, to be these two:
The first is to get and settle in our minds determined ideas of those things whereof we have general
or specific names; [...] we should put together as many simple ideas as [...] may perfectly determine
the species [...]
The other is the art of finding out those intermediate ideas which may show us the agreement or
repugnancy of other ideas which cannot be immediately compared.
15. Mathematics an instance of this. That these two [...] are the right methods of improving our
knowledge in the ideas of other modes besides those of quantity, the consideration of mathematical
knowledge will easily inform us.[...] Further, it is evident that it was not the influence of those maxims
which are taken for principles in mathematics that hath led the masters of that science into those
wonderful discoveries they have made. [...] I suppose, scarce ever come to know that the square of the
hypotenuse in a right-angled triangle is equal to the squares of the two other sides. The knowledge
that “the whole is equal to all its parts,” and “if you take equals from equals, the remainder will be
equal,” etc., helped him not, I presume, to this demonstration: and a man may, I think, pore long
enough on those axioms without ever seeing one jot the more of mathematical truths. They have been
discovered by the thoughts otherwise applied: the mind had other objects, other views before it, far
different from those maxims, when it first got the knowledge of such truths in mathematics, which
men, well enough acquainted with those received axioms, but ignorant of their method who first
made these demonstrations, can never sufficiently admire. And who knows what methods to enlarge
our knowledge in other parts of science may hereafter be invented, answering that of algebra in
mathematics, which so readily finds out the ideas of quantities to measure others by; whose equality
or proportion we could otherwise very hardly, or, perhaps, never come to know?

We gave these rather long quotations because, with respect to our interest in creativity and methods,
three important ideas are advanced by Locke, even if he was not at all a mathematician himself.
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• The first idea is that of intermediate ideas, with which proofs are composed, as long continuous sequences
of obvious facts, and possibly out of prescribed calculus.

• The second is that mathematical modeling could be possible out of the domain of quantities, etc., in
many or all areas of human knowledge.

• The third is that creativity and invention have to come from other disciplinary domains, by the thoughts
otherwise applied (here we will speak of mathematical pulsation).

Therefore we need a method strong enough to study mathematically the mathematical creativity. We
hope for a sort of extended algebra, in general applicable to the observable mathematical activity made
of pulsating analysis and synthesis, of an open construction of continuous paths in any virtual space of
mathematical manipulations.

67.2.1.4 Methods and Creativity, with Giambattista Vico

Based on our reading of Giovan Battista Vico’s book of 1708 [1085] (considered as “the second Discourse
on the method” after Descartes’), and the comments by Ennio Floris [327] in 1974, we comment on the will
for a method of invention in relation to conceptions of doubt, intuition and dialectic between analysis and
synthesis, especially in a mathematical context.

According to Floris, Vico was making a synthesis of humanism and cartesianism. On the first hand,
humanism proceeded from a vision through philology and poetry, art, imagination and ingenium; with
this “ingenium”, the human being is a maker, an inventor. On the other hand, with cartesianism, using
philosophy and critical thinking and science, the human being is a spirit. Rather than an epistemological
and encyclopedic attempt, the work of Vico is a philosophy of the history of culture, as a production of
human craft. He wants to bring man back to his own painful self-consciousness, far from the dispersion of
his sensations, in the heart of creativity. For Vico this self-consciousness is constructed by culture, and both
humanism and cartesianism are necessary there. The point is that, for Vico, creativity proceeds as well from
ingenium and making of works as from cartesianism and thinking. For Vico the analytic method of Descartes
is the inverse of the process of creation.

Sceptical doubt by sophists meant that it is radically impossible to get certainty about truth of principles
or adequacy to things; they are only opinions, as effects of language. Resistance to this sceptical doubt, had
been the nerve of philosophical quarrel for Socrates, Platon, and Aristoteles. They introduced the dialectical
doubt into argumentations, to convince opponents against their own opinions. In fact, according to Vico,
this was too weak, because external persuasion is captive of likelihood. So with Descartes, doubt became
internal in the human being, and the corresponding dialectic resides in his own mind. With this kind of
cartesian doubt—the first stone for cartesian method—imagination is completely separate from plausibility,
and evidence (i.e., positive lack of doubt) became a criterion for truth.

Now for Descartes, the method consists of doubting, distinguishing and clarifying the evidence of simple
things, as expressed in the Regulae. From the point of view of Vico, the difficulty here is that analysis prevails
over synthesis; synthesis is only possible on the condition of a priori analysis and reduction to simple elements;
analysis is an a posteriori construction. So we can say that the Descartes’ method is an analytical method,
particularly in the case of mathematics where algebra is an analytical tool for reduction of geometry to
simple things such as lines. In some sense—at least in mathematics—to doubt is to analyze, and it is not
enough to create.

For Vico, Descartes the mathematician (the geometer) is a solver of enigmas, or a constructor of riddles
and puzzles, by a method that now everybody can use, the algebrico-analytical method. And he asked if,
by including mathematics in a method, Descartes has not closed the way to new discoveries, separating the
thinker from the ingenium (e.g. non-analytical geometry) as a source of invention.

For Vico, mathematics are a production of ingenium, using a synthetical method and intuitio as under-
lying dynamic, whereas in the analytical method the dynamic is intuitus.

Vico said that to proveis to reduce to the field of thoughts, and this reduction is the characteristic
of mathematical thinking, the elements of which are creations of ingenium. The evidence comes from the
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conscience the mind has that in a deduction process it is creator of the links. So Vico concluded (see [327,
2nd part; No. 97]):

To prove is to create.

‹
For us a mathematician is an engineer, a solver of puzzles, and this is far from logic and truth: it is a question
of exactness. To prove is to exhibit a path or a link between two analyses, as in a proof of the theorem

2 ` 2 “ 2 ˆ 2,

considered as a link between two analyses of the “same” object named “4”.
This is reminiscent of Andrée Ehresmann’s Multiplicity Principle with multifold or multifaceted objects

in the theory of living systems as proposed in [295] and recently in [296] (see our Section 67.6.2.1). A very
simple case of this Multiplicity Principle is, with a, b, c, d some elements:

ta, bu Y tc, du » ta, cu Y tb, du;
this expresses two different and unmatchable cuttings of ta, b, c, du, two really different analyses of 4 as sum.
In fact this is more subtle than 2 ` 2 “ 2 ˆ 2, which is induced by a matrix (see Section 67.5.4.2); with
21, 22, 23, 24 » 2, we have this instead:

21 ` 22 “ 23 ` 24.

So to exhibit a new path at a higher level is to create, and in this perspective mathematics is a living
system.

‹
We want to make precise what a proof is by giving two examples.

Here, in Figure 67.4, we give an example of a mathematical creation of a path. This example was
exposed in a talk to psychoanalysts [429] to show them how a mathematical proof works and a priori is not
related to logic.
The problem is to find how to transform continuously the state 1 into the state 10, and the series of pictures
shows elementary steps on a path toward a solution: it is a proof. There are two stiff metallic rings and two
flexible but not elastic ropes (green and black). We see on the sequence of pictures that the movement is
possible, and how it is possible by a “collaboration of the two ropes, contrary to our first hope to succeed
by a move of one or the other separately.” We let the scrupulous reader formalize that series in a finite
series of finite instructions. As George Pólya wrote [854, p.121]: “It is an excellent intellectual exercise to try
to build a formal proof of what we have in intuition, and to see the intuition of what is formally proved.”
This suggestion is nothing else than to practice the pulsation between blind formal level and clear intuitive
understanding. In our case here, the proof shown by ten pictures is already a decomposition of the gesture
into a sequence of more obvious gestures; these obvious gestures are intuitive because we have a direct
skill with them, we know how to decompose them again into Reidmeister’s moves [885] (or more precisely
into what we call stiff-Reidmeister’s moves), i.e., how to reduce them to a formal algebraic word. The final
reduction will be to drop the supposition that all that is written is in a concrete physical space.

Our reader will compare this proof in geometry with the following in algebra, where we start with a
gesture given by a series of elementary gestures, in order to extract the explicit value of γ from the implicit
condition

?
α ` γ ˘ ?

β ` γ “ w, where we are supposing ε “ ˘1, and α, β, γ ě 0, and w ‰ 0.
We obtain γ by formulas p9q or p11q:

?
α ` γ ` ε

a
β ` γ “ w p1q

α ` γ ` β ` γ ` 2ε
apα ` γqpβ ` γq “ w2 p2q

w2 ´ pα ` γ ` β ` γq “ 2ε
apα ` γqpβ ` γq p3q
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Fig. 67.4. A sequence of elementary gestures as a proof of unknotting a situation.

w4 ´ 2w2pα ` γ ` β ` γq ` pα ` γ ` β ` γq2 “ 4pα ` γqpβ ` γq p4q
w4 ´ 2w2pα ` γ ` β ` γq ` pα ` γq2 ` pβ ` γq2 ´ 2pα ` γqpβ ` γq “ 0 p5q

w4 ´ 2w2pα ` γ ` β ` γq ` ppα ` γq ´ pβ ` γqq2 “ 0 p6q
w4 ´ 2w2pα ` β ` 2γq ` pα ´ βq2 “ 0 p7q
w4 ´ 2w2pα ` βq ` pα ´ βq2 “ 4w2γ p8q

γ “ w4 ´ 2w2pα ` βq ` pα ´ βq2
4w2

p9q

γ “
“
w2 ´ pα ` βq‰2 ´ pα ` βq2 ` pα ´ βq2

4w2
p10q

γ “
“
w2 ´ pα ` βq‰2 ´ 4αβ

4w2
p11q

This proof will be a tool to study more properties of ovals.

‹
In these two proofs we observe that: we write and we see a finite sequence of modifications in some writing,
according to admitted specific laws of transformations, and this is axiomatic (the laws of transformations
are of our own decision). We let the reader express in ordinary language the right reason for which each step
in these proofs is valuable. This “exercise” is the proof for each reader of the proof. Do it!

We produced a ruled transformation of a diagram (e.g. picture 1 or equation 1) to another (Figure
67.4, part 10 or equation (10)), and we are sure of its exactness, and this “proof” is again a diagram. And
this proof is now the description of a new authorized gesture: we have created a gesture. Is there a reason to
believe that it is truth, or even that “to be truth” makes sense? Exactness is not identical to truth, even if
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we can try to say that the proposition that a given proof is exact is a true proposition. Casually we evolute
from the register of an act of “writing something” toward an act of “speaking of a writing”. Under our eyes
we have exact constructions of mathêmata, we can see them, and we know that they are abbreviations of a
sequence of gestures.

If you stay at the level of seeing exactness you will get the real pleasure of the mathematician, appre-
ciating the ingenuity of the situation (the presence of the ingenium), and living a moment of resolution, the
surprise that something in the writing had been broken or unknotted, unravelled: something come loosed;
hence the possibility of mathematical jokes and questions (you have the knack, what is the trick?); but if
you change your mind in favor of the observation of truth of the fact, that it is exact, you can only get the
pleasure of the philosopher receiving knowledge: something is reached, you are in charge of that.

‹
In passing, we would like to show the superiority of diagrammatic writing over language. Let us consider the
following mathematical joke W as an object of meditation:

W: We have three types of mathematicians: those with ability to count, and those without.

Is it a truth proposition; is it even a proposition? If it is, what should be its truth value ? But it is easy to
represent the meaning of this joke by a mathematical diagram:

3

��
��

��
AC

�AC

Here the strange construction (the “3” in the sentence, only followed by two items AC and �AC) is no more
thought of as a mistake, but as a voluntary gap: in the diagram it is rendered by the fact that there are
three arrows, but the third is not completed by a target (this being more or less forbidden by the fact that
the two names of the first two target are complementary).

‹
A mathematical object which has been constructed in a very complex way, as the field of real numbers R,
can become “intuitive” as primary data, and in this sense a simple thing. On the other side, a simple and
intuitive thing, such as a point, could be decomposed again, becoming complex data.

We claim that real mathematical invention works as the dialectic between these two directions of think-
ing and ingenium, intuitus and intuitio, analysis and synthesis. Mathematical productions, which ultimately
are proofs (i.e., paths in various heterogenous systems of writings), appear in the living movement of this
dialectic of composition/decomposition.

Looking ahead at the next sections, let us say that of course this dialectic can be modeled in terms of
adjunctions (adjoint functors), and in terms of duality between limits and colimits in a category.

In this perspective, simplicity of objects is very relative; objects themselves are semblances. If we include
mathematics in a new method around this dialectic (as for instance categorical modeling), of course we know
that we risk closing the way to new inventions; but also we know that by doing so we are creating a particular
piece of mathematics.

67.2.2 Our Posture

67.2.2.1 Towards the True and the Being, Mathematically: On the Road Again

In René Descartes’ view, geometry is presented as an application or an illustration of the method. For us
it will be different; practices of arithmetic and geometry and modern mathematics will come first, as a
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preliminary condition of any thinking for a method. In fact, for Descartes it was perhaps as for us, and the
method came from his Regulae and his previous works on geometry.

A clear useful definition of what art is, what science is, seems to be out of reach to give. It is even
difficult to give scientificity critera. Nevertheless in the case of mathematics we propose that it is a science
or an art according to whether its knotting with logic is assumed or not, and simultaneously according to
whether we consider mathematics as an act or as a knowledge. We do not need to make an effectively strong
distinction between art and craft; both are a question of know-how (savoir faire), as opposed to science,
which lays on the question to make it known (faire savoir). At first it is as an art (and/or a craft) that
mathematics has to be considered regarding the development of its creativity. Let us nevertheless start with
the scientific side.

We agree with Alain Badiou’s view (as in [62] and [65]), where he says that mathematics is a science
going toward Truth, i.e., toward the Being in itself [62, p.384]. He specifies [62, p.395] that higher arithmetics
is necessary because it forces us to use pure thinking, as far as we are human subjects oriented toward the
truth. He also says that mathematics is the thinking of multiple in itself [61, p.121]; hence the real truths will
be assertions about organizations of multiplicities. But we consider that the job of a mathematician is not
to claim that these assertions are truths, but to construct these organizations: this is what he can create; he
is an architect, not a logician.

Our consideration of the “multiple” a priori can start with continuity or fusion as in geometrical spaces,
rather than with discrete values and distinct elements as in sets. But a minimal mathematical work is with
the pure development of the possibilities of finite combinations among multiplicities of distinct elements,
starting from “Nothing” i.e., from the empty set H: arithmetic of sets. But generally a mathematical truth
is a true rational contribution to ontology: it is an assertion in a given language, claiming the existence (or
not) of a construction with given tools of a mathematical object (or arrow) satisfying a given property,
expressed in another given language.

With its principle of analysis (or de-construction, or de-structurating) and synthesis (or structuring, or
gluing), mathematics is at the heart of any doctrine of a scientific method, such a method being considered
as the doctrine of assertions pretending to be truths (in the words of Fichte [316]); but truth is only a horizon
of mathematical activity, a possibility of qualification of its proofs. Mathematics is not a tool to discover
truths (necessarily necessary), but a method (necessarily contingent), and it is a fact that contingently (i.e.,
according to an open geometrical way, and not in virtue of a closed logical process) this method produces
truths.

But in spite of appeals to languages, mathematical truths are not equivalent to logical truths. As
“mathematical causality” is not “logical causality” [951]. In fact for us mathematical truths are closer to
the initial question of aletheia [265] than to the question of logical truths. And especially when it is about
creating mathematics, e.g., solving a problem, the point is not to follow blindly logical rules, but the personal
engagement by a clear claim for a new road we imagine. Living mathematical truths are constitutively related
to the intuition tied to our visual perception. Let us recall this thought of René Thom, namely that we believe
in logical rules because we have a geometrical interpretation of implication by the means of inclusions (of
extensions of concepts) that we see.

If from A we “deduce” B, a fact represented by “A ñ B” or by “A Ă B”, etc., or by A
fÑ B, and if

we assume A, then we can say that B holds: but very precisely the “truth” here resides in the deduction
itself, i.e., the ñ” or the “Ă”, etc., or f , and not in B. The true resides in the path, not in the target, and
when we see the path we know the truth. A deduction seen as a path is a displacement, a modification, a
variation or a change, a gesture, symbolized by arrows; mathematics is the calculus with these arrows and
their compositions.

So the conception based on ontology, insisting that a constitutive link between Being and Thinking does
exist, or more or less equivalently based on a theological claim about a constitutive dependence between God
and Truth [1051], is not a necessary hypothesis to promote mathematical activity. The mathematical creation
needs only a “surveillance” of exactness in production of gestures, and so is a thinking.
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In the categorical framework, everything (languages, constructions, tools, objects, properties) becomes
an object of a category, or, equivalently, a functor. So any mathematical claim becomes an organization of
functors, a diagram.

Our conception of a method starts with this initial position about mathematics, and the belief that
when we are doing mathematics we are creating truths, as diagrams. To do mathematics is to invent various
exact mathematical truths; sometimes these truths are really mathematically valuable, i.e., are nice and
beautiful, and then we think that we discovered something of the Truth of the Being. We invent truths and
so we discover beauties.

Then the method will indicate some style of gestures. These indications are not prescriptions, only
opened possibilities. The system of such indications can appear somewhat axiomatic, but it has in fact to
be completely opposed to a formalism.

A priori this mathematical method (of invention) is not a logical or a rational method, with a rather
pragmatic goal, but only a system of figures and computations, with an infinity of possible interpretations
in retrospect, as for a writing we have a lot of readings: meaning is always an afterthought. And justly our
main indication is the care about pulsation, the skill to take old meanings out of the writings, and then to
vest these writings with new significations.

As is the case in the art of painting, or with a method of playing piano (and then hopefully of producing
music...), here we are looking for a method of playing mathematics (and so of producing truths...). We do
not pursue any deeper analysis of outbuildings and relations between science and art, beauty and truth, no
hypothesis on what is really useful in this somewhat axiomatical writing, at the expense of philosophy: the
crucial point is that as a creator (of proofs) a mathematician is not exactly a scientist, or even an engineer,
but an artist. If it were necessary to define the philosophical position of a mathematician at work, very often
they say that all mathematicians are Platonists; frankly there we prefer to speak of anti-pragmatism.

The things that a mathematician creates are writings destined for reading, written in words, letters,
figures and numbers, with a flavor of geometry-and-algebra, that is to say with a double inclination toward
visual interpretations in terms of movements. The mathematician writes movements into the mathematical
matter made of mathematical writings. These movements are given as functions among objects and relations.
In the categorical perspective they can be formulated as diagrams, or systems of diagrams, or machines (see
Section 67.4.2.1).

For intuition, logic comes after geometry, and algebra is a kind of discrete geometry, in one-and-half
or in two dimensions. Let us recall a famous sentence by Sophie Germain, that “Algebra is but written
geometry and geometry is but figured algebra” [764, no. 1706]. In fact this relates to the ability to see: we
see figures, we say formulas, but also conversely. And the nodal point for any mathematical enterprise is
there: “voir ce que l’on dit, dire ce que l’on voit” [412, p.162]. This pulsation in some sense is absorbed into
the notion of diagram, in such a way that diagrammatic (and categorical) thinking subsumes algebra and
geometry and their interaction. In fact, any pulsation provides a progress of mathematics, as expressed by
Lagrange [764, no 1707]: “So long as algebra and geometry proceeded separately, their progress was slow and
their application limited, but when these two sciences were united, they mutually strengthened each other,
and marched together at a rapid pace toward perfection.”

This is to make up on the road again, as auto-expansion of the mathematical system of writings and
representations, as an estrangement with no worry about foundation and origin, and a priori free of logical
constraint. Such a freely and rigorously walking makes the road. Our best hope is that categorical modeling
is a method to create in this way.

67.2.2.2 Calculo, Ergo Sum: Mathêma and Doubt

Cogito ergo sum can mean: I shake some ideas, so I do exist. We suggest to strengthen that with: Calculo,
ergo sum. In mathematics, to calculate is to work something out in one’s head, planning one’s move, putting
in sight a gesture; so we do some gestures in mathematical writing; each gesture is a calculation, and each
gesture is calculated. Creation in mathematics is invention of new calculus alias new ways of surveillance of
exactness. Under this explanation, “calculo” appears as a special case of “cogito”: it is “cogito,” mindful of
exactness. This “calculo” works as well with arithmetics as with geometry.
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In Euclid’s Elements [306] two aspects of logic are in action: grammar and apagogy.
On the one hand, in mathematics logic is only a grammatical tool to correctly express links between

steps in geometrical constructions. Today, it is no longer the true “logic of the ancient philosophers” but
already a geometrical (or diagrammatical) process, and its replacement by Descartes by algebraic rules is
perfectly rightful (= exact).

On the other hand, logic is mainly a tool for de-monstration when a possibility of monstration is
causing controversy. Monstration is this type of proof that shows obviously a thing or a path from one thing
to another (what we call in fact a pure proof). But in the case where such a path does not exist, a proof
of this non-existence could be possible by a reasoning (but not a direct monstration), the famous reductio
ad absurdum (apagogy). Some people—as Badiou [63, p.249] or Szabó (quoted by Badiou)—say that there
is mathematics only when there is stricto sensu a reasoning, and more strongly when there is explicitly
reductio ad absurdum. Badiou [63, 64] does insist on that point: The knot between mathematics and logic
was introduced by Parmenide, in his creation of onto-logy, when “he found philosophy on proposing a knot
between three concepts: the Being, the Thought, the Non-Being [...] this knot is Borromean [...] and that
holds on a matêma: the reductio ad absurdum.” [63, p.9-10]

In our perspective of effective practice and creation of mathematics, we think this is too much. Yes,
it is true that reductio ad absurdum “is moving into the supposition of false” ([63, p.218]); but also direct
deduction is moving into the supposition of truth! Hence direct or reverse deduction both are moving into
the supposition of logic as the question of the alternative of false or true, and the idea of Truth. A deduction
there is not only a proof, it is a proof that something is true, according to the determination of the idea of
Truth as a fact expressed within language. The function of such a deduction is to state a truth, and this has
to be prescriptive. The prescriber is the Being. For the working mathematician, the supposition of True as
prescribed by the Being is not necessary; he needs a lesser notion of “truth”, the cartesian notion of evidence,
and the notion of exactness. Then mathematical logic is only a tool to construct new paths of exactness,
using a new mathematical space of writing in which these paths are drawn. Hence mathematical logic is a
modeling of ancient logic, in which ultimately truths are modeled by exactness.

In our view, “Truth” is just the last myth, the myth saying that from now mytho-logy is finished, and
in place of all poetical fictions we have to believe in Truth, as exemplified by production of matêmata. It is
possible to product matêmata, i.e., absolutely transmissible exact configuration. The myth of the “Truth”
says that what is exact is truth, a prescription forever. But “exact” only means obviously incontestable, now
out of any doubt; but doubt about it has not gone forever.

For those needing an ontology, Being could be the system of all relations (coherences and incoherences)
among existing proofs; and this system is living because there is doubt in it. And this is the point: it is from
this possibility of doubt about what is exact (an exact computation) that pulsation into interpretations and
into writings is possible and can generate invention (new process of calculation).

Now for those needing a Reality, we have to understand how reality is present in Euclid. Euclid is
axiomatic, but not in the modern sense according to Hilbert, for instance. In Euclid a concrete interpreta-
tion of terms (line, circle, point, triangle, square, etc.) is activated for the imagination of the reader, and
simultaneously its pertinence with respect to the truth is suspended. The relation between oral speaking
and logic is not totally canceled, its effect being represented as the ascendancy of concrete interpretations.
This ascendance that comes from orality is clearly not necessary for truth or exactness, but the “feeling of
reality” that it gives is a support for the imagination, indispensable for the invention of new exact things.
At this point, considering that concrete companion interpretations are contingent necessities for creation, we
meet again the question of the pulsation: Pulsation between abstract and concrete, but also pulsation into
the multiplicity of possible representations to use as companions in the proof, during the course of an open
calculus.

‹
An example (see [411, Chap.4, Par.31, p.46-47 ] or [415, p.116]) of a calculation with logical and recursive
components is a proof that:
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p´qμ : for any sequence s : N Ñ r0, 1s there is an extracted monotone sequence sμ “ s ˝ φ.

Let us make precise that an extraction φ : N Ñ N is defined as a strictly increasing function. To prove that
the monotone extraction p´qμ always exists for a given s, we consider the proposition:

E :“ There is a strictly increasing φ : N Ñ N, such that s ˝ φ is monotone.

In fact E “ I _ D, with

I :“ There is a strictly increasing φ : N Ñ N, such that s ˝ φ is increasing,

D :“ There is a strictly increasing φ : N Ñ N, such that s ˝ φ is decreasing.

Hence to prove E it is enough to find a proposition K with pK ñ Iq ^ p�K ñ Dq. We take

K “ @A infinite Ă N Dn P A tp P A; spnq ď sppquinfinite,
�K “ DA infinite Ă N @n P A tp P A; spnq ď sppqufinite.

Let us suppose that K is true. If A is infinite in N, we denote by σpAq the first n such that tp P A; spnq ď sppqu
is infinite, and ΣpAq “ tp P A; spσpAqq ď sppq ^ p ą σpAqu. Then we obtain φ by recursion: φp0q “ σpAq
and φpnq “ σpΣnpNqq, and s ˝ φ is increasing.

Now let us suppose that �K is true: we have an infinite part A0 in N such that for all n P A0 the
set tp P A0; spnq ď sppqu is finite. Consequently, as A is infinite, for any n P A0, the set tp P A0; spnq ą
sppq ^ p ą nu is infinite, and we denote by σpnq the first element in this set. Hence we define φ by recursion:
φp0q “ σp0q and φpnq “ σn`1p0q, and we conclude that s ˝ φ is strictly decreasing.

This proof can be analyzed as a construction of a path with logical and recursive gestures into a
convenient space that it generates, and it is a new gesture that we denote by p´qμ and name monotone
extraction. We would like to insist here on the part played by logic (mathematical logic). It is not at all as a
foundation and justification of other mathematical gestures, but it is as a super-gesture, a “logical gesture”
over the more elementary ones.

We have to be careful with what we call “logical gesture”. It does not mean a gesture in this philosophical
logic governing by its rules the propagation in the saying of the philosophical truths. It is a gesture in the so-
called mathematical logic, in which truth is modeled by exactness, and some handling precautions of writing
simulate laws of logic. In fact such a logical method is transcendent, because its principle cannot be proved by
lower level finite calculations, and it cannot be seen as a construction of a path into the lower level scenary.
But of course it requires a decision to introduce a new level to our space of proving, and in this new space,
it becomes an official possible path. Clearly it is a great gesture of invention to propose such a transcendent
tool for our gesticulations. For instance, the use of reductio ad absurdum and of negation, as a mathematical
principle for constructing a path of proof, adds a new power to monstration (and de-monstration). As here
they can be used to prove that from two objects there are no paths, or to prove that there is a path (but
without exhibiting a case).

‹
Once this gesture p´qμ is proved (i.e., is proved to be exact), we can use it for the construction of a new
gesture which is the Bolzano-Weierstrass gesture of extraction of a convergent sequence. But we have to be
careful: extraction of convergent sequence as well as extraction of monotone sequence exist, but are not at
all effective. For instance, we do not know in general if sμ is increasing or decreasing, and we are not even
able to give its first value; furthermore sμ is not unique. So sμ is only a virtuality of possibilities, a name for
a generic extraction, a letter to pursue new calculations with.

In [415, Par.4, p.118] we use this equivocal operator p´qμ to prove that there is a map B : r0, 1sN Ñ r0, 1s
such that any map f : r0, 1s Ñ r0, 1s is continuous if and only if B ˝ fN “ f ˝ B.

Such a B is named a “bout” (a end) operator. Hence continuity becomes an algebraic property stricto
sensu, and then it is more strictly a question of “calculation”. For any s it is legitimate to use with the
above property the univocal notation Bpsq or sB (rather than s8) for a number well defined associated to
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s; Bp´q is a well defined gesture of calculation, contrary to the operators p´qμ or lim (when it exists, we
write lim s “ s8).

The reader has to ruminate on the distinction between sB and s8. Let us remark that if we interpret a
sequence s as a “semi-arrow” (or a jet, as in a water jet, or a flung stone), with a source and a priori without
a target, then the operation B consists of completing any semi-arrow into an arrow (this is not reached by
the partial operation p´q8); and in fact this completion process is equivalent to the topological structure of
r0, 1s, as it determines the continuity.

‹
Turning toward itself, by a kind of a orienteering, a method for invention in mathematics has to have a
supposition on the internal subject of mathematics, on what it is about. For us it is about the effects of
the invisible entities at work on its visible calculations, as in ambiguity in the writings of multiplicities, the
definitive gap between finite and infinite, or the orientation of the gesture which traced a line.

Another formulation is: mathematics deals with continuity, as a guarantee for coherence in the succession
of its own gestures. For that matter, a mathematical gesture is a path or connection filling a gap by a
continuity datum, a comment connecting previous gestures. Hence the importance of calculations with zig-
zag, exact sequences or with our exact squares [408], all that can replace logical manipulations.

Ultimately we can say that we calculate the shapes of calculations and their connections, trying to
construct exactness exactly. This idea has to become integrated into any fruitful method.

67.2.2.3 Semblance of Object: The Dodecahedron

Progressively in the rest of this story our notions of gesture, arrow, diagram, and exactness will become
clearer. In the meantime as an aperitif we conclude this section with the example of the following view on
Euclid’s books [306].

This set of thirteen books named Euclid Elements is a very rich gesture, composed of more elementary
gestures (definitions, theorems, proofs as algorithms or programs) converging toward the contemplation of
the final object named regular dodecahedron and denoted by D. It is a composite arrow from hypothesis to
the final object; the books give a “proof” (a construction) of this object.

Nowadays with φ “ 1`?
5

2 we analytically specify D by the exact canonical coordinates of its vertices,
which are

p0,˘ 1

φ
,˘φq, p˘φ, 0,˘ 1

φ
q p˘ 1

φ
,˘φ, 0q, p˘1,˘1,˘1q,

and Leonardo da Vinci drew it as the following “object” (Figure 67.5) to see in exact perspective: After

Fig. 67.5. Leonardo drawing of dodecahedron, as an exact presentation in perspective.

Euclid, this “object”, and all the geometry as such, will be perceived through new gestures: computations
of coordinates, perspectives, dissections, modifications, movements, comparisons, symmetries, group of its
isometry, fundamental group, situations into a category of polyhedra or of digraphs, as being itself a category
as Polyhedron{D or Digraph{D. This is another story, in fact a notional living scenery in the sense of Section
67.4.1.4.
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For now we highlight the fact that our “object” D does not exist; we have only several exact presentations
thereof: Euclid’s description, the systems of coordinates of its 20 vertices, the drawing by Leonardo, etc. The
object is a semblance to stimulate gestures to present it, to prove that several exact presentations are
exactly equivalent. For us the only true existing datum is the category of comparisons between the various
presentations in various situations (= various categories) of this name, D, which is like a cartography of the
system of our gestures with D. In this conception, a meaning of a presentation is simply a morphism toward
another, as for example in Figure 67.6.

Fig. 67.6. A gesture from a presentation by coordinates to a perspective presentation.

So a complement of our mathematician’s saying: “I calculate, therefore I am”, is the mathematical
object’s saying: “you construct and compare presentations of myself, therefore I am a stimulating semblance.”

67.3 Method and Objects, Summarily Explained: II—Data

67.3.1 Simple Objects, Structures and Invariants in Mathematics

67.3.1.1 Multiplicity, Ambiguity, Alterity of Objects, Varying Elements of Objects

A mathematical discipline is a closed system of manipulations of mathematical objects and concepts, sub-
stitutions according to axioms. A discipline can be a transversal process linking two other disciplines, as
for example a theory of representations, a theory of theories, etc. For example we have Euclidean geometry,
cartesian algebra, arithmetic, algebraic topology, combinatorial design, functional analysis, etc. A concept is
a property of objects in a discipline, or a class of objects in it. For example in the theory of sets, we have
the concept or notion of finiteness, in topology the concept of compactness, etc.

A mathematical object is any written datum into a given mathematical discipline that a mathematician
can write and read, which is able to be interpreted and modified, such as numbers, figures, spaces, groups, etc.
The work of a mathematician with his objects is basically to modify them, to construct external movements
in the discipline from one object toward another one. But in fact any object is already an abbreviation of
an organization of movements at a more internal level; and any external movement between objects can be
considered as being itself an object at a higher level.

From the point of view of creativity the very right question about a given object is not if it exists
statically and substantially, but what type of mathematical actions it codifies and induces, what its underlying
dynamics is. The answer is that an object induces a comparison with others of the same type, or gestures of
its modification. In a creative attitude of mind the substantial exhibition has to be replaced by the functional
content, the potential system of gestures starting from the object.

A posteriori any “mathematical thing” T can be seen as an object of a category C, or an object of
several categories; a multiplicity (of things) is a diagram into a category, or a functor toward a category
T : ¨ ¨ ¨ Ñ C, whereas a mathematical concept K : C Ñ . . . is a functor on a category C. Hence the evaluation
of the fact that T stands to K is given by the composition

KT : ¨ ¨ ¨ Ñ C Ñ . . . .
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We consider this disposition as parallel to the analysis of thinking and perception [928]. Our concepts are
evolving by analogies, according to our mental constructions with our perceptions in our personal historical
scenery, and our perceptions are possible only because we have our concepts. Perceptions and concepts are
in permanent continuous interactions, as sensations and meanings. As Emmanuel Sander remarks, the word
“sens” in French allows us to tangibly feel this continuity. Sander and Douglas Hofstadter believe that this
interaction is carried out by analogy, and our concepts arise and grow from analogy. Our brain asks if the
last singular experiment can create a new category useful for understanding the world.

This question of “analogy” is related to the fundamental ability of humans to grasp similarities between
phenomena [283], and also to do metaphors. James Geary said: “[The metaphor is] the process of giving the
thing a name that belongs to something else. This is the mathematics of metaphor. And fortunately it’s
very simple. X = Y [Laughter] this formula works wherever a metaphor is present.” And in fact an arrow
X Ñ Y acts as a super-metaphor, because it means conflicting notions: similarity and replacement. In some
cases we have to read X Ñ Y as “X is analogous to Y ”, in other cases as “X will replace Y ”. So each time
we see or use an arrow we enter into a creative ambiguity, because we have to choose between analogy and
replacement; in fact we have to choose when we are looking for a determined meaning, but a third way is to
wait for that, and to choose after use, at the end of the play. Now that we are aware of these ambiguities,
we will use of the word “analogy” to mean “analogy” as well as “metaphor”.

By analogy (sic) we consider that mathematical thinking creates by analogy, determining things as
objects standing for concepts, and furthermore mathematical thinking creates analogies; this is the heart
of mathematical creativity. To stimulate propensity for creation of analogies, we need to have a practice of
mathematical pulsation.

Pierre Deligne insists on the fact that often it is fruitful to consider an object as an element among
others: pour comprendre quelque chose, une bonne idée est de l’insérer dans une famille d’objets [932]. For
example, the consideration of symmetry or of Galois’ ambiguity proceeds from such a general principle. An
important example is also Lamé’s approach to a surface as an element of a family of surfaces, namely as a
level surface of a coordinate system (see 67.5.1.2). So it is important to look at maps associated to objects, to
any multiplicity in which the object can be an element, to families of objects as moduli spaces or fibrations
are, or simply to any function f : E Ñ I interpreted as a family pEiqiPI “ pf´1ptiuqiPI of sets, with therefore
E “ Ť

iPI Ei. Given a type F of objects or figures, we have to observe the set of all the objects of this type
on a given support or medium E, that is to say: let us look at a given figure F as an element F P FpEq, a
representative of a concept F on E.

To consider an object C as an object of a category C, among others of the same nature, is also a sample
of the idea which Deligne stresses. Then again an object of a category can be understood by its position
among the others in the category; this is the Yoneda Lemma. The deep meaning of this lemma is what we call
“évidement” (scooping out): when an object is internally constructed, in a rather empirical and contingent
way, with some bricks and glue, then that can be forgotten and replaced by its natural universal and external
specification via its position among “its others”; then we know it up to isomorphism, and this is functional
enough. By the way the true initially constructed object disappears, and even its necessity disappears. So
category theory is a theory of purely functional objects, and an algebra of gestures.

As an example, let us consider the “informal object” R. At first it is “the set of real numbers”, given
by one precise set theoretical construction. But this fact says almost nothing, only that it is a multiplicity of
distinct elements named numbers; the construction implicitly can indicate the purpose of the object. In order
to work with R we have to know two different things. The first is that this object exists in a mathematical
world. The second is what precise operations and relations are put in it: algebraic operations, field structure,
metric, topology, manifold of various types, linear space, etc. This means that we have to know various
categories in which R is able to live as an “object”. Yoneda’s Lemma can be interpreted as saying that if we
consider R as an object of a category C, then this datum pC,Rq determines a precise operational context in
which we can use R, represented by the localisation C{R, which is also thinkable as the shape of R within C.
So the object R is ambiguous, its shape being variable with C. Furthermore the mathematical existence of
R is concretely useful through the fact that the functor F : X ÞÑ F pXq “ homCp´,Rq on Cop is represented
by R, i.e., any element x of F pXq is an arrow f toward R, i.e., a formal family X parametrized by R,
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X “ pf´1ptqtPR, for t : 1 Ñ R in C. We say “formal”, because f is not really a function or a concrete map,
but an arrow in the category C. Hence an arrow as f is in fact the convenient notion of an element of R
relative to C, or a varying element of R.

67.3.1.2 The Hexagram of Pascal

In geometry we have, as simple ingredients, points, straight lines, circle, and conics. Then more complex
objects (or structures) can be constructed or proved, as for example the “mystic hexagram” of Blaise Pascal.
The hexagram is a configuration in the sense of Theodor Reye, and so is an object of a precise category of

Fig. 67.7. Pascal hexagram for a conic: from a configuration to a construction.

configurations. But this line of thought will not be examined here.
This “mystic hexagram” is shown in Figure 67.7, in which six points a to f are taken on a conic, six

lines are drawn, ab, bc, . . . ef , fa, and the intersections

x “ cd X fa, y “ ab X de, z “ bc X ef

are considered. Then the theorem says:

x, y, z fall into a line.

In this way the hexagram expresses a property of any conic. But, using this property, we can transform
it into a function, a way to construct a conic from five given points a, b, c, d, . . . e on it. With y “ ab X de,
given any straight line δ (in red on the figure) through y, we consider

x “ cd X δ, z “ bc X δ, f “ ax X ez.

Then the hexagram says that the conic “is” the function δ ÞÑ f .
Notice that this is valid as a (not so usual) linear pointwise construction for a circle on which five points

are specified. It gives a solution to the problem: to draw points on a circle with five given points with only
a rule and a pencil.

And a new question: is it possible to draw points on a circle determined by three given points with only
a rule and a pencil ? Of course the three given points plus the two cyclic points at infinity are five points
on the circle, and therefore determine linearly all other points. But, if we want a concrete realization with
rule and pencil, we have to know how to draw a line from a finite real point to the point I or the point J .
Clearly it is not a real line! And what could we think in the case of an hyperbola when we are given the two
asymptotes and three points?
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67.3.1.3 A Formula of Frye

The first configurations are those that we see in elementary figures of geometry, and there the “numbers”
are seen as numbers of things of a given type in a given figure. And we count on fingers, it is a gesture. With
operations on these numbers we can construct new complex objects, as for example the formula of Roger
Frye given in 1988:

958004 ` 2175194 ` 4145604 “ 4208414.

We let the reader discover its meaning. Two very different facts are there: on the one hand we have to do
just some tedious verification (by hand or with the help of a computer), a “nice” curious fact; and on the
other hand it is exactly a minimal counter-example to a conjecture of Euler, the conjecture saying that the
function `

Nzt0u˘3 Q px, y, zq ÞÑ 4
a

x4 ` y4 ` z4 P R

has no values in N; in fact it has the value 420841. It contrasts with the fact that
`
Nzt0u˘2 Q px, yq ÞÑ

4
a

x4 ` y4 P R has no values in N, known since Fermat.

67.3.1.4 Finite Configurations: Example of Latin Squares of Euler

After the natural numbers themselves, one of the simplest non-trivial configurations is a sequence of n
terms made of the n integers 1, 2, . . . , n; such a sequence has a double-sided meaning (hence a pulsation in
our intuition, between fixing and move): we can consider it as a fixing or a disposition i.e., a linear order
on t1, 2, . . . , nu :“ rns, or as a move or a permutation, i.e., a bijection from t1, 2, . . . , nu to itself. Hence
a sequence of n terms “is” an object in the category of order, or also “is” an object in the category of
presentation of groups. Nowdays, orders and groups are cases of categories. Let us keep in mind that a
configuration can be considered as an object in several categories; the alternative here is a living point of
pulsation for our actions with it.

A typical mathematical problem with configurations is the following, related to the study of “sequences
of sequences” or “tableaux”.

Given an integer n, let us construct an n ˆ n “tableau” with, in each of the n2-places—namely in the
place pi, jq at the intersection of row i and column j—a symbol ki,j taken in a set of n symbols S, in such a
way that in each row there are different letters, and in each column too. This datum is named a Latin square
or a “squared” permutation (permutation “carrée”) of dimension n, or an n ˆ n-Latin square. For example

the square

3 2 1 5 4

5 4 3 2 1

2 1 5 4 3

4 3 2 1 5

1 5 4 3 2

is Latin, and furthermore it has also different symbols in each diagonal.

A Latin square of dimension n is “reduced” if the first row is p1 2 . . . nq and the first column is
p1 2 . . . nqT . By a permutation of rows and a permutation of columns any Latin square is transformable
in a unique reduced one. The first values of the number Rn of the reduced Latin square are [740]:

R1 “ 1, R2 “ 1, R3 “ 1, R4 “ 4, R5 “ 56, R6 “ 9408, R7 “ 16942080, . . .

With R the set of rows and C the set of columns, CardR “ CardC “ CardS “ n, and the Latin
square is exactly determined by a ternary relation,

T Ď R ˆ L ˆ S “ tpi, j, kq; i P R, j P L, k P Su,
with CardT “ n2, which is 3-functional, i.e., such that each coordinate of each element θ “ pi, j, kq P T is
determined by the two others. Hence k “ ki,j , i “ ij,k, j “ jk,i. So a Latin square is naturally a 3-dim object,
even if this is against its bending in its presentation as a labelled square, which is a pseudo-2-dim object.
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An n ˆn-Græco-Latin square or Eulerian square is a pair of two orthogonal Latin squares, i.e., a Latin
square pAi,jq, and another “Latin square,” i.e., a squared permutation, but now made of Greek letters pαi,jq,
these two squares being orthogonal, i.e., such that if pi, jq “ pi1, j1q then pAi,jαi,jq “ pAi1,j1 , αi1,j1 q. Also we
say that these square permutations constitute a set of two mutually orthogonal Latin squares (a MOLS).
There is a very active branch of mathematics concerned with those kinds of things, combinatorial design.

Here is an example of a 5 ˆ 5-Græco-Latin square, of which the Latin part is reduced, firstly written
with letters

Aα Bδ Cβ Dε Eγ

Bβ Cε Dγ Eα Aδ

Cγ Dα Eδ Aβ Bε

Dδ Eβ Aε Bγ Cα

Eε Aγ Bα Cδ Dβ

and then written with numbers, or using Euler’s preferred notation:

11 24 32 45 53

22 35 43 51 14

33 41 54 12 25

44 52 15 23 31

55 13 21 34 42

Of course it is impossible to construct a 2 ˆ 2-Græco-Latin square. Also it is impossible to construct a
6 ˆ 6-Græco-Latin square (problem of the 36 officers): in 1782 this was conjectured by Euler [310, Par.140],
and in 1900 a proof was published by Tarry [1036], [78]. Also Euler conjectured that there is no solution
when n “ 2 mod 4; but in 1960, Bose, Shrikhande and Parker [135] [136] proved that for any n “ 2, 6 there
is an n ˆ n-Græco-Latin square (see [1011, p.152]).

With the notations of Section 67.5.4.2, an n ˆ n-Eulerian square can be seen as a special map

λ : rns2 Ñ rns2 : pi, jq ÞÑ pk1
i,j , k

2
i,jq,

with the properties that λ is a bijection and for any u P rns and e P t1, 2u the maps

pe.λ.Ru : rns Ñ rns : pu, jq ÞÑ ke
u,j , pe.λ.Cu : rns Ñ rns : pi, uq ÞÑ kei,u,

are bijective.

67.3.1.5 Structures or Recreational Mathematics: Same Recourses for Solving

Like hundreds of other objects, the configurations of the three previous objects in Sections 67.3.1.2, 67.3.1.3,
67.3.1.4, are relatively simple “structures”, because everybody can see what they are, of what they are made,
such as juxtapositions of atoms. It is more difficult to know how they had been invented, and what they
mean.

When we stay at an elementary level, mathematical problems and configurations can be viewed as
recreational mathematics. Another example is the taquin.

We consider [405] the “fifteen’s puzzle” or “taquin”, made of fifteen differently colored squared blocks
in a square box, numbered from 1 to 15, with a hole as a sixteenth component, as in the left part of Figure
67.8. The first problem (by Sam Lloyd) is whether by moves where the blocks are not extracted and are
only sliding (= moving by successive exchanges of the hole with one of its neighbours) it is possible to reach
a state in which the only final modification is that 14 and 15 are exchanged. The situation is naturally
described by the datum of a graph—the graph L4 ˆ L4 with

L4 “ ‚ ´ ‚ ´ ‚ ´ ‚,
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1 2 3 4 
5 
9 

6 7 8 

10 11 12 
13 15 14 

Fig. 67.8. Fifteen’s puzzle or unnumbered fifteen’s puzzle? Two different fibrations to analyze.

and with a fibration T Ñ L4 ˆ L4, whose elements over pi, jq—elements of Tpi,jq—are all possible injective
configurations Δ : t1, . . . , 15u Ñ L4 ˆ L4 with values “ pi, jq. So the problem is to look at connected
components in T. The answer to the problem is “no!” [628], i.e., the two specified configuration are not in
the same connected component.

The second problem is the same, about exchanging the fourteenth and fifteenth blocks, but now the
problem is about the puzzle on the right, where numbers are no more written; and now the answer is yes!
Why? Hint: now, in this problem, the underlying graph is no longer L4 ˆ L4, but it is Z{4Z ˆ L4 ˆ L4, with
Z{4Z “ t1, q, q2, q3u, where q represents a global quarter turn of the whole square box.

In solving this problem of the “taquin”, in fact we will see that some fibration is in question, and also
[628] some problem of invariant calculations is present. Namely it is the question of an invariant, the signature
of a permutation associated to the problem. We let our reader read Lucas, and translate his observations
into questions about mathematical gestures, and then into category theory problems.

‹
Systematically mathematicians are continuing the process of successive construction, of structuration,

according to high level gestures:

Abstraction & Generalization & Specialization.

For example this means that, starting with a datum as a Latin square (or with the datum of a taquin),
we abstract by forgetting some specifications, e.g. the fact that it is presented in a square, and keeping in
mind other facts, e.g. the fact that we have permutations in the square and the fact that they are acting on
Latin squares (or on states of the taquin). We abstract by forgetting: “penser c’est oublier” [1076], and this
is an aspect of mathematical pulsation, its aspect of estrangement, as expressed in our conclusion (Section
67.7), which means that firstly if by any chance we do some combinations or substitutions, we forget some
data within the problem—at the risk wasting time—and possibly recognize the rest as being essential when
it is seen in a new context, and at last decide to choose that renewed rest to pursue our job. As in traditional
Zen archery this forgetting or oversight is an initial moment of relaxation: see [414] for an explanation of the
pulsation in relation to Zen.

With the accent on permutations, and so on elements of groups of permutations, we reach the more
abstract structure of a group. The notion of a group itself comes by abstraction from groups of permutations
as well as groups of geometrical transformations, by keeping in mind only some properties of the composition
law of these permutations or transformations. At this moment we have brought out the part played by the
structure of a group into the configuration of a Latin square. But now a group itself is a new type of
configuration, which can be studied and classified, and represented as itself. Of course in this general study
of groups, it will be permissible and useful to look at special cases, etc.

Groups, lattices, topologies, linear spaces, metric spaces, fields, rings, all these classic structures (the
“structures-mères” according to Bourbaki), and also local structures, categories and topoi, arise in a historical
process of “structuration” and are basically of the same nature as figures, formulas, configurations, designs
or diagrams. However, with a very important precision: an object or a structure, or a type of structure,
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cannot just be an arbitrary formal free definition; it has to be fruitful, or already it is itself a theorem (a
theorem of existence), or it will be quickly clear that it implies interesting facts about previously unsolved
questions.

Now, let us give an example. In a particular higher state of mathematics, namely in the mathematical
area of algebraic topology, we consider the rather intuitive idea (“intuitive” in this area, of course) that
projective modules over commutative rings are like vector bundles on compact spaces. This puzzle has two
precise formulations and proofs by Jean-Pierre Serre [969] and then Richard Swan [1028].

We consider that these Serre-Swan theorems are not really different from a puzzle like “taquin”, and
our effective recourses for solving are the same.

The only difference is that we move at different levels, with different preliminary formation, into another
“mathematical history” or personal historical scenery for mathematical activity. In both cases we have to
move writings, letters of algebra and figures of geometry, and diagrams; to introduce abbreviations and rules
of modifications,; to construct and de-construct; and to structure, by synthesis and analysis. Ultimately any
theorem says that two paths of constructions and de-constructions arrive at the same result. In recreational
mathematics or in higher mathematics in the construction of the “paths” we have the critical moment
when simultaneously we have to invent the “space” in which the path is going now, usually a space of
configurations or structures into another space used in a previous step of the path. Our tracks are the road.
So creative mathematics are possible as well at the level of recreational mathematics, as in very abstract
algebraic topology. The point is the pulsative imagination within analysis-and-synthesis; deeper creation in
mathematics is exactly invention of pulsations as methods, that is to say invention of new calculus expressing
the tension between analysis and synthesis.

67.3.1.6 Undirectness, Synthetic Thinking and Intuitions

The gestures of folding, bending, cutting, erasing, gluing, etc. are our concrete accesses to any understanding
or construction or de-construction of mathematical objects. In algebra it is known through factorizing and
expanding expressions, in geometry it is realized in the set of geometrical constructions. But it is of a much
more general scope, at any level with any model of any structure, presented by generators and relations. We
can do these gestures within the system of elements or within the system of relations, or both.

For example if we read Gaston Tarry [1036] on the problem of the 36 officers, we have to admit that his
analysis proceeds by such gestures; in this way he can construct various coordinations of the hypothetical
solution object, with various symmetries, modifications, insertions, quotients, group actions, etc., and this
allows us to count data of different types, and to conclude when we find impossible values. This is a process
of abstraction, combined with structuration, inventions of figures to observe in the given situation, as per-
mutations, paths, or what he calls magic groups (already considered by Euler under the name of “formules
directrices”). Also he reduces the analysis by classifying possible Latin squares in a solution up to isotopies
or conjugations.

The historical process of structuring by abstraction is parallel to a systematic movement of undirectness
in the development of mathematics in the 19th century.

For example, concerning the geometry of curves, from the abridged method of Gabriel Lamé to Etienne
Bobillier and Julius Plücker, and to Max Noether, followed by Emanuel Lasker and then Emmy Noether, we
start from classical problems on curves through the intersections of given curves, and we reach the invention
of Noetherian rings. For the following generations, they think geometry with, the notion of a Noetherian
ring at the beginning of their thoughts; they could forget concrete curves and Italian geometry, etc.

The same “synthetic” fact arrives with groups: whatever would be the very good motivations for groups,
once assimilated the explanations of geometries in terms of groups according to Klein, the new generations
will think directly in terms of groups.

We can perhaps consider that mathematical intuition, which is very transversal to the skill for applica-
tion of logical rules, comes from the habits of working at a given level of abstraction (with numbers, figures,
equations, polynomials, spaces, groups, rings, categories, topos, etc.), i.e., in a certain category of objects,
which becomes familiar; objects are now very complex configurations which became simple for the mind; it
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is the skill to move into a given category with such formerly old data. For instance, someone can have or not
have the intuition of the object R (as an object of a category C). Definitely we consider that mathematical
activity and mathematical intuition are absolutely relative, starting from the datum of a category as an
allegedly natural setting of a first organized intuitive world.

67.3.1.7 Categories, Sets, Groups, Lattices, Structures, out of Logical Concern

An idea suggested by several logicians or philosophers [115, 653] is the opposition between sets and categories
as a proposal for foundations. More precisely, with Jean-Yves Béziau [115] we can analyze the relations of
set theory and category theory with respect to their relation to the question of foundations. Béziau remarks
that at least we have three distinct problems: (A): axiomatic foundation of mathematics (to describe a set
of axioms from which we can deduce mathematics); (C): conceptual foundation (to describe basic concepts
and their links, in order to think mathematics); (L): logical foundation (to show that mathematics are not
contradictory). We can add a fourth case: (F): functional foundation (description of a system of mathematical
actions which are enough to develop mathematics). Roughly speaking, set theory is good for (A) and (L),
and category theory is better for (C) and (F). So the opposition of categories and sets is wrong as an
epistemological perspective. Category theory is a method of analysis of the production of mathematical
works—and this method itself is mathematical, and a mathematical theory—whereas set theory (and logic)
is possibly a ground for all mathematical developments and constructions of structures.

We have to completely dissociate the question of observation, description and control of mathematical
gestures, using categories, from the question of foundations and logic, using set theory. The control of the
size of universes is interesting for questions on existence based on set theoretical constructions.

Some mathematicians believe that categoricians are mainly interested in foundational questions, and
consequently are unable to see that groups are everywhere, that geometrical thoughts innervate good math-
ematics. In fact the notion of category unified the two geometrical notions of lattice and group.

In [1150, p.37] “category theory” and “structures” are opposed; Bernard Zarca said that the concept
of category is a rival of the concept of structure; this is a serious mistake from a historical perspective; it
is a wrong interpretation of the discussion in Bourbaki about the question of introduction of categories in
Bourbaki’s Elements. In fact, the more significative example of category are the categories of fundamental
structures (structures-mères), also because each structure-mère “is” a category. So a group is a category,
a lattice is a category, and even, indirectly, any object C of a category C becomes a category, via the
consideration of C{C. Furthermore the categorical study of a given concrete category is inspired by practices
of Universal algebra with structures (quotients, sub-structures, sums and products, free algebras).

In a decisive manner, by structuring and studying modifications of structures, the categorical point of
view participates in the estrangement or undirectness which is necessary foro invention. To work on structures
with categorical tools means to use objects, arrows, functors, etc., to represent actions and gestures in a
given area of mathematical activity, out of foundational or logical concerns. In this completely relative game,
objects and arrows are present at various levels. Arrows are present at high levels, denoting functors between
big categories of structures F : C Ñ D, as well as at lower levels, inside a given structure C, an object of a
category C, representing an equation such as ax “ b by an arrow x : a Ñ b.

A mathematical result will become the existence or the nonexistence of a precise object or an arrow or
a path or a diagram in a given category of structures, or even only the existence of a category with a given
property. So the method of research is to construct categories associated to the problem—with objects some
diagrams of structures—to determine the solution as a category with a given condition, and to examine the
“formal” universal solution (existing if we put in brackets some essential set theoretic condition of sizes), as
for example the locally free diagram of the situation [409].

This result on locally free diagrams is available in the context of mixed sketches [294], i.e., of categories
equipped with specifications of ‘virtual’ limits and colimits (which are dual processes of analysis of some
objects). Hence a mixed sketch is denoted by σ “ pCσ,Pσ, Iσq, with Cσ the underlying category, Pσ the
specification of limits (projective limits) and Iσ the specification of colimits (inductive limits), and the
category of its models or realizations in Ens is denoted by Ensσ. If h : σ2 Ñ σ1 is a morphism of sketches,



67.3 Method and Objects, Summarily Explained: II—Data 1029

the induced functor between models is Ensh : Ensσ1 Ñ Ensσ2 . Now, given h : σ2 Ñ σ1 and R : σ2 Ñ Ens, a
solution to the “problem” represented by ph,Rq will be an Ensh-free structure FhpRq on R. Such an FhpRq
is as an algebra of h-terms generated by R.

67.3.2 Complete Frameworks, Computations and Representations

67.3.2.1 Do We Need Universes as Complete Global Foundations, or Completions as Locally
Achieved Frameworks?

Set theory is not necessary to work in mathematics, but it can be a starting point. An important book in
1970 by Andrée Ehresmann [89] very clearly taught how constructions of universes are possible and useful
to aim at the creation of mathematical objects, and especially completions of previously given objects.

In the categorical perspective, as a global starting point we have today the idea of a topos, the idea
of fuzzy sets, or unifying these two, the idea of an algebraic universe. See also Section 67.6.1.4. The point
is to start with a category equipped with enough operations to construct all the structure objects we could
need. The basic operations are: the final object, the kernels, the cartesian product X ˆ Y , and the powerset
construction PpXq. Especially there we can construct existing free algebras, functional spaces, completions,
etc. The categories of models Ensσ are examples, and the Ensh-free structure FhpRq are also examples.

If X is an object and PX a certain “completion” of X, we think of PX as an algebra of terms on
X, with an “inclusion” X Ñ PX, and this is useful as a codomain of maps Y Ñ PX expressing a relation
between X and Y .

Hence these constructions of universes and completions are useful to express mathematical problems
according to the scheme:

Is it true that a given map Y Ñ PX factorizes by a map Y Ñ X ?

67.3.2.2 Calculations and Sketches of Gestures

In the common sense, the term “calculation” means concrete computations with integers and Pythagorean
tables, or with decimal numbers. So we get concrete values for statistics, estimations and measures or
evaluations, and the results are real and actual by the fact of our decision about their interpretation within
our experimentations.

In the beginning of 19th century it became common to model physical situations and problems by
functions and the optimization of an operator L and evaluation of functional operators. These evaluations are
themselves functions from FpX,V q, a functional space, toward a system of numbers W , L : FpX,V q Ñ W .
Given such an L and f P F , we have the problem of calculating Lpfq, and then the problem (of optimization)
to calculate the best f , for example the one which minimized L. All these are questions of calculation.

In fact, these calculations, with numbers or with functions, are not more concrete than algebraic formal
computations in various algebras, groups, etc., or calculations of invariants in any convenient system of
values, or even constructions of structures according to specifications. Also, a proof is a calculation, and a
geometric construction too; progressively any mathematical gesture could be taken as a case of calculation.
Without getting as far as this, we want at least emphasize that “calculations” include “structural calculation”,
calculation with structures. And we determine a calculation as a special gesture with an underlying program,
producing a value, which can be a structure as well as a number.

We have to know that a priori a given calculation is not possible to perform, because we do not have
the convenient space into which the ingredients and results can be inscribed. For instance if we work with
Q, we cannot calculate

?
2, and we need a completion P pQq, namely R. So before calculating

?
2, we have

to ‘calculate’ R, in such a way that the operation to do, x ÞÑ ?
x, becomes a map Q Ñ R.

‹
A categorical model for that idea of “calculation” is possible as the datum of a co-span Π in the category

of sketches [410]
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Π :: δ
hÑ π

jÐ ε,

in such a way that given a datum D : δ Ñ Ens, the result ΠpDq of the program Π on it is given as FhpDq.j,
the evaluation via j of the Ensh-free structure FhpDq.

All the examples of computations follow this scheme: Ordinary algebraic calculus, execution of programs
given by Herbrand schemes, representations of groups, etc.

Of course the computation of ΠpDq is not always possible, because FhpDq do not always exist. Never-
theless the locally free diagram theorem asserts that ΠpDq exist as a Proj-object into Ensε. Furthermore,
when it is theoretically possible, it can be too complicated, and we have to invent a shorter process, namely
for each object X in the underlying category of ε a final subcategory of the h-shape of jpXq. The calculus
of exact square is useful here.

Finally, even if ΠpDq do exist for any D, this operation is not necessarily “continuous”, i.e., exact in
the sense of compatibility with limits and colimits; but the analysis of this lack of exactness is possible by
cohomological techniques, thanks to the general definition given in [418].

We do consider that a datum such as Π for which the computation D ÞÑ ΠpDq works is a sketch of
gesture (see the definition of a gesture in Section 61.5), because it provides a functor (a gesture)

Modpδq ÝÑ Modpεq.

67.3.2.3 What About Applications, Implements, and Representations?

The art of mathematics becomes a scientific purpose when we are looking for applications in other sciences,
including itself, or, when starting from a technical problem, we are trying to implement a solving process.

For instance the Descartes’ invention of ovals (Section 67.2.1.2) starts in the realm of physics as a
response to an optical problem. Another example is the development of mathematical logic as an implemen-
tation of a mathematical process in parallel to the classical logic of speech according to Aristotle. Another
example is the theory of statistics as a framework to study populations, to control any democratic or financial
process, production of energy, etc. A last example is the quest for an invariant in a mathematical field.

The point is that in all these situations we are looking simultaneously for a double invention of a
mathematical function and of an interpretation thereof: the function is mathematical, pertaining to the
art of exactness; its interpretation is not, and is related to the production of an ideological datum: a law
of physics, a law of truth, a repartition function, an invariant. Here the ideological datum is the belief
that physics, or truth, or repartition, or mathematics, makes sense. In fact in enriched situations, we are
looking for a system of functions alias a structure, pretending to model a “concrete” field, such as social
life, music, or mathematical activity itself; but there again we are in a tricky situation with the question of
interpretation. As expressed in a humorous light in [99] or [437], the difficulty is that on the one hand there
are a lot mathematical inventions that can work, and on the other hand decision-makers impose that these
inventions work according to their interpretation (or opinion). The mathematical datum is then a pretext
for a (con)fusion between ontology (and truth) and hermeneutics (interpretation).

When we are doing mathematics we don’t have to feel obliged to believe in science and technology;
exactly as Beethoven doesn’t have to believe in music to do music. So we do construct functions or structures,
exactly, but we do not believe in their interpretations or their truths. Creation in mathematics exists at this
point of pulsation between the function that we are making and the interpretation we are not really believing.

Nevertheless, for our method of invention we have to realize that we need interpretations inside our
mathematical thinking. This is necessary not only as an external motivation to feed our imagination, but
internally as a target or a source for a jet of mathematical gestures. These interpretations can come from
physics, sociology, philosophy, and—last but not the least—from history of mathematics (hence in these
cases as pseudo-concrete pretext or semblance of problems) but finally these exist within pure mathematical
writing itself as what we name presentations and representations.

‹
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There are several theories of representations, such as the theory of representation of a given group,
or the theory of representation of a lattice, or the representation of a given theory (alias the theory of its
models), and more generally the theory of representation of a category C.

Given a group G, we consider the action from the left of G on itself, and that is a maximal representation
of G (A dual one is of course by right actions). Such an action is nothing else than a functor Gop Ñ Ens.

Given a pre-order set pE,ďq, or a fortiori a lattice, we look at a representation thereof as being an
order map pE,ďq Ñ pt0, 1u,ďq. The system of these representations is included in the set of functors
pE,ěq Ñ t0, 1u.

Now a group or an ordered set are two special case of a category, with two opposite interpretations
of the arrows. In the case of groups, an arrow is an invertible transformation, from one state to another,
whereas in the case of an ordered set, the arrow is essentially not invertible.

So, a long time after the junction of algebra and geometry by René Descartes we get the junction
of group theory and lattice theory by Alexander Grothendieck, with the idea of a topos. Nowdays, we
understand that junction itself is a mathematical gesture.

To begin with, we consider that a representation of a category C is a functor

Cop Ñ Ens,

and the theory of these representations is the topos EnsC
op

. If we put PC “ EnsC
op

, we can consider that
we have a completion of C in a “universe” Cat. Now the fundamental fact is the property of completion of
the “inclusion” C Ñ PC, a property known as the Yoneda Lemma. Another possibility of representation of
C is as the category DpCq of small diagrams in C, of which a completion property is known. We will use this
in Section 67.4.2.1 to provide a mathematical description of gestures.

‹
Now, with a specified theory of representations at hand, we can consider that our effort for creative math-
ematics will be supported by a two-level pulsation, with crossed effects. On the one hand, a pulsation at
the pure writing level itself, in the open space of our writings; and on the other hand a pulsation among
interpretations which are helping us pursue the process of imagination. In fact, towards our creation of a
gesture, we are moving horizontally and vertically among writings, horizontally without references to inter-
pretations, and vertically inside a given interpretation. Horizontally we take care of exactness or continuity
in the space of our writing, and vertically we are concerned with exactness or continuity in the spaces of our
interpretations.

Clearly, once the job is finished, we can present all our invented gestures in a straight and uniform way,
but this erases the very moment of pulsative invention.

67.4 Creativity in Mathematics: Gestures in Historical Contexts

67.4.1 Creativity: Phenomenology, Psychology and Skills, and Life

67.4.1.1 At the Beginning of Our Creations Are Our Imaginary Gestures

In order to make precise our understanding of the term of “creativity” in general, we start with two quota-
tions.

From Maurice Merleau-Ponty [752, p.82] we quote:

When we say that each [genuine?] work opens up an horizon of inquiry, we mean that it makes
possible what was previously unavailable without it and that it transforms the pictorial enterprise
while fulfilling it. Thus two cultural gestures can be identical only under the condition that they are
unaware of each other [...] It is therefore essential to art to develop. Art must both change and, as
Hegel says, “return to itself” and thus present itself as history.
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From Carl Rogers [915] we quote:

The creative process is defined as the “emergence in action of a novel relational process” from the
interaction of a unique organism and its material and circumstantial environment. The creative
impulse is “self-actualizing” and arises out of personal need; not all originality is creative, for it
must be manifest in the extensional world. Certain inner conditions are prerequisite: lack of rigidity,
tolerance of ambiguity, extensional orientation; “an internal locus of evaluation”, or a feeling that
the creation satisfies and expresses oneself; and the “ability to toy with elements and concepts.” For
fostering creativity, it is important to make the individual feel worthy “no matter what he does”.
The teacher must say, “I don’t like it”, rather than “It is not good”. The creative person must have
complete freedom to give symbolic expression to his creation. Several specific hypotheses are derived
from these assumptions.

‹
We consider that it is not necessary to suppose that mathematics is not the study of purely imaginary states
of things. In fact we think that reality and truth are not given by mathematics, which are rather about
multiple realities and complexities, relative truths and ambiguities. To create mathematics is to imagine an
exact and clear knowledge of these modalities of knowledge in our mind. As says Barry Mazur, “imagination
is held to be a movement” [926], and our mathematical gesture has its source in our personal historical
representation of the meaning of old mathematical gestures, alias our imagination.

So we have to reinforce our imagination by reading books presenting mathematics from the point of
view of imagination and intuition such as [522, 468, 277]. We will see that what we do when we imagine
are gestures: to visualize and to cancel, to categorize and to identify, to systematize and to generalize, to
abstract and to specialize, to articulate and to dislocate. These steps are steps in the process of discovering
or creating a proof.

‹
Now, with in our hands these two ideas of gesture and of creative impulse—or imaginative impulse, and
whatever we do out of any logical or rational control question, we have to precise what is creativity, as a
psychological disposal in the Rogers’ style, but also as a technical skill for any craftman capable of the best
with gestures—as in the orientation of Merleau-Ponty, and that specifically in mathematics; and conversely
how mathematical inventions or discoveries are related to such creativity.

When we “create” some mathematical object, then before anything else our creation “is” a gesture; to
be more exact, it is accurately the gesture of creating, the impulse at the root of the movement of creation, as
a result of which the so-called created object is produced. The mathematical gesture (to visualize, to cancel,
etc.) is a true mathematical datum; it takes place in our memory of mathematics, in our personal notional
scenery.

67.4.1.2 Gestures, Diagrams, Computations, Detours, Pulsations

As working mathematicians, our two basic types of gestures are gluing and cutting inside a system of mathe-
matical writings. These two are not necessarily interpreted in an analytical way as movements, but they can
be naturally interpreted so, and they could be noticed by arrows. In a synthetic perspective, our gestures
are diagrams, or designs, or tableaux, or figures, and can be noticed as algebraic data as well as geometric
data; we will speak here of diagrammatical data. In this way, mathematical problems become questions of
enumerations of structures of a given type, and a comparison between types of different diagrams. But the
computations could be performed at very different levels; for example we can have to count finite configu-
rations of a given shape, and also may we have to provide information about automorphism groups of very
sophisticated and high level structures.

It is interesting to emphasize the distinction between “problems”, “open problems”, and “open ques-
tion”.

A problem is a question in a given closed system K of computations (numerical, figurative or concep-
tual), such as the following: Given A and B in K, is it true that A “ B? Given a property P for data in K,
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is it true that there is an A such that P pAq? How many such A are there? Some problems, such as scholar
exercises, are not open; we know the answer. Others are open problems. Then a more open question could
be: what is the structure of the system of A in K such that P pAq? And a more open question is: for a given
A in K such that P pAq, is K the best context in which A lives? Then we have to create new closed systems
analogous to K.

Creativity in mathematics lies on the skill to move among these levels (problems, open problems, open
questions, creations of systems), to do detours, to open questions.

A basic point for our method of invention would be precisely this question of the “detour”, related
to what we call the “mathematical pulsation”. This pulsation itself depends on the possible interpretation
of our gesture, as a geometric or an algebraic gesture, or more precisely as a movement into any given
axiomatic framework, as well as into another possible one, etc. And, in an open way, these interpretations of
our gestures are conditioned by our notional living landscape or scenery. This scenery is an architecture of
concepts, and our creative work will add something to this architecture. Our main task would be the target
of this evolutive architecture, and how to pursue?

67.4.1.3 Three Pulsations Which Are Internal to Any Mathematical Commitment

When as pupils we started our first trials in algebra, a very strange point was that the same thing can have
several names. It is a very fine point in teaching mathematics, and with his student a good teacher has to be
clear [413, p.46], [745, p.639]. In fact, more accurately, there is a movement in the course of the computation
of the solution of x´2 “ 0 in the assignation of meaning of the symbol x. At the beginning, x is an unknown,
at the end x reaches the value 2, and x is 2. Furthermore we can emphasize that known numbers as 2, and
unknown as x. They both have to be manipulated in homogenous way; this was invented by François Viète,
when he decided to designate by letters known as well as unknown entities.

A second “pulsative” data is the relation of duality between algebra and geometry, as expressed by
Sophie Germain: “Algebra is but written geometry, geometry is but figured algebra”, as already quoted in
Section 67.2.2.1. This pulsation is “solved” by the consideration of diagrams.

A third pulsation is between groups and lattices, a pulsation “solved” by the notion of “category”.
We like to see a category as the dialectical synthesis of monöıds and orders, and arrows as the dialectical
synthesis of the idea of action or transformation and the idea comparison or hierarchy.

67.4.1.4 Creative Mathematics into a Peculiar Notional Living Scenery

Perhaps we have to distinguish between creativity with mathematics and creativity within mathematics
as two kinds of creativities, applied and pure; but unless we turn our eyes to automatic applications of
mathematics, by an engineer, technician or financial controller, or separate art and craft in mathematical
activity, it is difficult to think of non-creative mathematics, as it is difficult to imagine that non-creative
music exists, and more generally that any non-creative art exists.

We would like to sustain the beautiful posture of Nietzsche when he wrote to his friend Peter Gast:
“Das Leben ohne Musik ist einfach ein Irrtum” (Life without music is quite simply a mistake); and also
his main idea on mathematics as being an error, but an error necessary for life [427]; and we want to claim
ourselves:

Without creative mathematics thinking is a mistake.

So we have to make clear what we mean by “creative mathematics”.
Among several of its comments on Descartes’ cogito (the famous “I think, therefore I am”), one of

Nietzsche’s proposals is: “I live, therefore I think”. Again, this can be adventurously commented by: I
compute, so I live, and I speak, therefore I think, etc., transition relations that we can write as formal data:
I think ù I am, I speak ù I think, etc., or Z ù Y .

Anyone can construct for himself a private constellation of such Z ù Y organizing his conceptions
(or notions, or functions) of actions—that is to say: to be, to think, to live, to speak, to do mathematics, to
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compute, to construct figures, etc. to sculpt, to paint, to do music, to play piano, to sing, to write, etc., to
construct a house, to plant some tomatoes, etc.—as a mental ground space for his own creativity, i.e., the
place in which he “expands his life”, what we can name his notional living scenery.

In [427] we tried to show that the notional living scenary of Friedrich Nietzsche is a kind of evolutive
geometric space named “Nietzsche”, constituted by his health and his body, his spirit and his thoughts, his
will, his life in its entirety, his “style”. We think that the situation is not so different for any creative thinker,
and especially for a creative mathematician.

From our point of view, initial separations between mental and material, and between art and craft, are
not at all pertinent to determine creativity, and a priori creativity is above the domains of its productions.
Any creative production has to be simultaneously caught from many different points of this constellation, and
according to some Z ù Y relations. Now, again any given domain is analyzable as a system of Z 1 ù Y 1,
with Z 1 and Y 1 some objects of this domain. And again these objects (taken as domains) are presentable
as new Z2 ù Y 2, etc. At last a creative production is nothing else than a proposal of one such Z ù Y
that we call a gesture or a transit. It is creative because through the structure of its private constellation of
notions it is connected to the life of the corresponding creator. To create in mathematics is the same as to
instill our own mental life into our mathematics, into our personal scenery, transforming it into a web or an
architecture of concepts, with new proofs and understandings.

Some works on creativity produced models of a creative space, a space in which creation is expanded,
here with the idea of a living scenery, and hereafter with the part played by history, both as a part of
what can be named the space of mathematical thinking, we are near the idea of a concept space as studied
by Margaret A. Boden [123] (as quoted in [32]). She proposed that creativity results from three mental
processes: unfamiliar combinations of familiar ideas, navigations, and transformations within a structured
concept space. This will be a convenient frame for us, if we do insist on the point that the given structured
space is not really given a priori, but is in fact invented and constructed as you go along by navigation and
tranformation (cf. the idea of “camino” in Section 67.2.1.1). This “invention” goes by generation of new
signs with respect to a given meaningful universe of signs (as proposed in [32, Sec. 2]).

A category-theory model of creativity (invention and novelty) will be very natural in the case of math-
ematics, and more in the special case of category theory (!), where models of the questions of open paths
(caminos) into living sceneries or (structured) concept spaces are realizable via the Yoneda Lemma in terms
of creative subcategories, sites, shape theory, and sketches [32].

67.4.1.5 Style and Notional Sceneries in Mathematics as a Natural Language

In contrast to formalists, we consider that mathematics is a natural language, the language that mathemati-
cians speak. They “speak” and “write” mathematics within their culture, with their literature and their
history. Their creations are, in this language, similar to novels, poems and songs in any other natural lan-
guage, and to movements in dance. In all these cases, creations are not substantial objects but are functional
gestures and transits, and above all they are indirect; their first value is to be offside.

More precisely, the life in the system of mathematical specialities can be pictured through the present
notional living scenery used by the community of mathematicians, as given by the MSC (Mathematical
Subject Classification) edited by the AMS [28]. There are 97 columns, from 00xx = General to 97xx =
Mathematics education. For example, if a mathematical work is concerned with objects such as fibrations, it
is located in the area of “fibered categories”, an area spotted by 18D30; 18Dxx is “category with structure”,
18xx is “category theory; homological algebra”. We can consider that the columns of the MSC are for the
mathematician what the musical instruments and pieces of music are for the musician: the space in which
they create, creations being movements within this space.

To describe notional sceneries of mathematicians many other approaches are possible, for instance using
books on the history of mathematics, on recreational mathematics, on applications of mathematics. All this
material determines our culture and so our personal scenery in which we have to enter more, by working.

Also we can use of good introductions to mathematics which provide various styles of division into
domains of mathematics. Often the title of the book explains under what point of view the division into
domains is realized.
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For example let us look at the book of Claude-Paul Bruter [157], “Comprendre les mathématiques”. It is
a book for teaching, and a presentation of a scenery of mathematics with an anti-formalist approach, against
any algebraic virtuosity, claiming to be written from the natural point of view of geometrical deepness. Hence
here the order in the presentation of mathematical facts and tools is very specific, and different from the
order of MSC, or the order of the Bourbaki’s treatise.

The book by Mazzola, Milmeister, and Weissmann [710] is significantly entitled: “Comprehensive Math-
ematics for Computer Scientists”. In this book, an underlying idea is to provide various pure mathematical
tools for applications, from logic to splines to differential equations to category theory. So the order is different
from the order in Bourbaki or in Bruter. Hence another possibility of entrance into mathematics.

Another example is the book by Mac Lane [638], whose title is “Mathematics: Form and Function”. In
this book, the central idea is a philosophical posture: a twofold background for philosophy of mathematics:
there are form and function of mathematics, as qualities of the mathematical field, and there are form and
function within mathematics, as elements in the mathematical business; from our present point of view, this
is central to category theory.

Let us stress that in the notional scenery of a given mathematician, we can find data of very different
levels, for example information about a philosophical or epistemological possibility for a working mathemati-
cian, history of a mathematical object, technical description of a specific algorithm, theoretical scenarios
or storylines, theory, counterexamples, and solved and unsolved problems. For example he can know how
to solve a second degree equation, how a continuous function induces a morphism of toposes and how the
properties of the function is reflected within properties of the morphism, how in the history of mathematics
the law for quadratic residues had been introduced and improved, what non-Euclidian geometry is, what the
technical signification of the infinite in Cantorian mathematics is, and what its connection with philosophy
is. The creativity of a mathematician is dependent on his notional scenery and, in this space, on his style.
For example the styles of Alexander Grothendieck and of Paul Erdös are different and complementary [1150,
p.127].

67.4.1.6 Creativity with Mathematics, in Mathematics: To Prove, to Understand

The two basic elementary gestures in mathematics are: to count with numbers, to draw geometrical figures;
manipulations of numbers and figures, with our hands and eyes, paying attention to some writings and
readings. We have to word exactly what we see, and to see rigorously what we say.

These manipulations are compositions and decompositions, and the aim is to reach methods for that
to prove equality or proportionality between different compositions/decompositions.

Creativity in mathematics is concerned with invention of proofs, in order to discover new methods,
if possible new methods of invention, but at least a new interpretation or functionality for an old datum,
within mathematics or within any mathematical modeling of a science. Yehuda Rav wrote: “The essence of
mathematics resides in inventing methods, tools, strategies and concepts for solving problems which happen
to be on the current internal research agenda or suggested by some external application. But conceptual
and methodological innovations are inextricably bound to the search for and the discovery of proofs, thereby
establishing links between theories, systematizing knowledge, and spurring further developments” [881, p.6].
To create in mathematics is to invent methods for proving and for understanding; to reach these two purposes
we have to choose or to invent a “space”, to construct a path in this space, and to follow this path: “attraper
le geste et savoir continuer” (Cavaillès).

67.4.1.7 Creativity from the Double-Sided Point of View of Categories

Relating to the problem of creativity, the point of view of categories is double-sided. We can construct objects
into a given category, or construct functors between two categories.

On the one hand, category theory seems to be concurrent to set theory for a foundational setting. In this
case, the things we have to manipulate are sets with structures, or, shortly, structures. Hence our activities are
within categories of structures (sets, groups, topology, modules, etc.), and the categorical point of view is to
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describe our activities in these categories in categorical terms, i.e., in terms of universal properties of specific
diagrammatical constructions within such a given category. In this case category theory is a mathematical
theory, among other, concerned with a given type of structure, the transitivity of arrows seen as functions,
and transitive epistemology in any given categorical area.

On the other hand, categories are considered as an homogeneous principle of general explanation of
mathematics in terms of functions and forms: the mathematical modeling is reducible to analysis and syn-
thesis through functionality and research of a shape’s invariants. In this case, category theory is in fact a
mathematical explanation of mathematical activity as constructions of functors between categories. Then
category theory is “transverse” to the other mathematical theories (and especially to itself!), concerned with
the general transitive process among types of structures.

67.4.2 Determination of Mathematics as a History of Its Gestures

67.4.2.1 Gestures as Transits, Pulsation Among Diagrams, and Machines

Studying the concrete musical gesture of the hand of a pianist in the space R3, Guerino Mazzola and Moreno
Andreatta wisely defined a gesture [720, 723, 726] as follows. A gesture from Δ to X is a morphism δ : Δ Ñ ÝÑ

X
from a digraph (i.e., “oriented graph”) Δ : A Ñ V 2 to the digraph

ÝÑ
X associated to a space X, where, with

I “ r0, 1s: ÝÑ
X : AÝÑ

X
“ I@X “ XI Ñ X2 “ V 2ÝÑ

X
,

with AÝÑ
X

the space of continuous maps from r0, 1s to the space X (with the compact-open topology). The

set of gestures from Δ to X is denoted by Δ@
ÝÑ
X , and this set equipped with a convenient topology is

denoted by Δ
ÝÑ
@X. Then a hypergesture—or a gesture of gestures—is a gesture from Γ to Δ

ÝÑ
@X. To analyze

musical composition, a generalization is studied by Guerino Mazzola and Florian Thalmann under the name
of gestural diagram, which is a continuous diagram in a topological category [730].

‹
In Mazzola’s definitions above, a gesture is a special morphism, with a specific geometric analysis of its

composition. Of course a more general categorical definition for any of these morphisms is perfectly possible,
as simply is an element in a functional object Y Z , that is to say an arrow 1 Ñ Y Z , or an arrow Z Ñ Y in a
category C (closed and with terminal object), seen as a trajectory from a typical figure Z toward a backdrop
given space Y . In fact such a datum is only the path of a gesture, the gesture itself being an act: stimulating
a subject to create such a path. In fact here we can even abandon the geometric feeling expressed in the
words “trajectory”, “figure”, and “backdrop”.

For the creative act, in [425] we recall that Gilles Châtelet, with “geometric intuition” as a guide, insists
on the movement of thoughts transversal to its own development, what he considers as being on a see-saw
machine or on a rocking horse (in French: une bascule). Without geometric feeling, this bascule seems to be
a case of a pulsation.

In [425] Charles Alunni puts the accent on the question of diagrammatical thinking, in a kind of return
to Kant and his diagrams. We consider this point as being very good for the examination of creativity, better
than the submission to the “geometric intuition”. Nevertheless the “good” diagrams could be the diagrams
of Peirce, or more restrictively the diagrams of categoricians.

Now, in order to explain what a mathematical gesture is, we would like to abandon any geometrical
framework, and we have to reduce the geometry to its functional substratum, i.e., to diagrams of arrows.
Then any mathematical intervention (geometrical constructions as well as algebraic computations) will be
understandable as a game of transits, a mathematical gesture in a “moving space” of mathematics (what we
have named a notional scenery of a mathematician).

So we prefer to drop the classical geometrical thinking, and the philosophical consideration of Kant’s
diagrams. We agree with Alunni when he moves towards the views of Bachelard, and the Bachelardian’s view
of diagrams and mathematical writings, upstream to a hypothetical physical world. For the general analysis
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of mathematical invention, the image of a moving hand in R3 or a fixed space X is good, but not enough
“abstracted”; we need the idea of a “moving unachieved space” of mathematical writings (diagrams). Our
guiding idea will be the idea of a gesture as a general changing among diagrams, what before we named
a machine, and what is interpretable as a system of local actions on the objects and relations of a given
situation, and even on concepts about this situation.

‹
We have to retain two points. The first is that a gesture is given by an arrow, and the second is that the
composition of the gesture is given by a concrete analysis of this arrow using a structural decomposition or
a matrix (see Section 67.5.4.2).

What is an arrow? Physically it is the graphic symbol “ÝÑ” in the diagram

˝ ÝÑ ˝
from an object ˝ toward another object ˝ (then a categorical diagram is a system of arrows).

But what is the meaning of an arrow? It is a sign in the sense of Peirce, and a sign is an arrow (see
Section 67.5.2), and a sign is a trace of a gesture. We agree with the views of Mazzola and of Alunni that
signs are presemiotic: as Mazzola says, they give rise to sign concepts and are not signs a priori; and we can
say that an arrow represents the pointing, that is—as also quoted by Mazzola—what Tommaso Campanella
considers as the only elementary evidence in human thought.

In mathematics, an arrow ˝ ÝÑ ˝ represents a transformation or a function associating an element
of ˝ to any element of ˝, or an homomorphism between structures. In an abstract category an arrow (a
morphism) represents a transit, and even a transformation (precisely, the Yoneda Lemma for a category C is
a transformational representation of C). We use this idea of transit for our transitive epistemology in [426]
to understand the analysis of Grothendieck’s works by Fernando Zalamea [1149].

But here we can refine the explanation, and say that a transit (according to the Winnicott notion of
transitional operations) is something like a semi-arrow, i.e., an “arrow” such as

˝ ÝÑ
with a source but without any target! This idea is also underlying the reflexions on caminos (Section 80.2)
or jets. In Section 67.2.2.2 a model for this idea is given by infinite sequences within a space. In Section
67.5.2.2, with the idea of autograph and autocategory we propose another meaning for an arrow, as a tension
between two other arrows. In this case an arrow is going from a source toward a target, but these are no
longer objects.

‹
At first, the only thing that we have to take seriously is the idea of an arrow (or more precisely the idea of the
production of an arrow), which we prefer to envisage as a transit between objects [426]; then a mathematical
gesture will be an act of determination of such a transit. And a transit is creative if, according to our quoted
words of Rogers, it is an “emergence in action of a novel relational process” Z ù X, or more precisely an
arrow Z Ñ X. Eventually the emergence of a creative transit, or even of an ordinary transit, needs a subject,
namely a mathematician to provide the creative impulse, and a category as a universe in which the impulse
is expanded and constructed, diagrammatically in fact. This last point is completely in accordance with
Peirce’s viewing of mathematical work as “transformation of diagrams”, or if we insist, as diagrammatical
transformation of diagrams. So the creative production of gesture is under the condition that our thinking
pulsates between analysis and synthesis of diagrams.

There, a gesture is the written trace of an effective transit, written as a diagrammatic construction of
an arrow in a category. This is related to the construction of a gesture within the category DΓX of small
Γ -diagrams in a locally small category X , i.e., a functor

Δ Ñ DΓX
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that we call a Γ -machine from Δ to X , with Δ a locally small category.
This name of “machine” comes from the very special case of Mealy’s machines in automata theory,

with inputs from a monoid Δ and outputs in a monoid X ; here we think of a machine as a local action of Δ
on X . Here T is a category whose objects are some categories thought of as “types of shape”, Γ : T Ă Cat
is an inclusion functor, a Γ -diagram is a datum pI;F : ΓI Ñ X q, and a morphism from such a Γ -diagram
to another one pJ ;G : ΓJ Ñ X q is a datum pH, θq, with H : I Ñ J a functor, and θ : F ñ GΓ pHq a
natural transformation. These machines and categories of diagrams are studied in [403], [405], [406], [407].
A preliminary study is the notion of ébauche [402]. It has been proved that DΓX is a Γ -relative lax-co-
completion of X [406, p.403], as, in a very particular case, the powerset PpEq “ tS;S Ď Eu is a lattice
co-completion of E (the system of atoms of PpEq); so a machine is a generalization of a binary relation, and
so binary relations are gestures. Because of the lax-co-completion property, a machine generates a lax-co-
continuous 2-functor, which appears as an analytical description of a gesture:

DΓΔ Ñ DΓX .

For the moment we retain that mathematical gestures are things such as machines, or related arrows
qua distributors of Jean Bénabou and profunctors of Alexander Grothendieck. In all these cases we can
speak of relations. In the Bénabou and Grothendieck cases, the analogous of the lax-co-completion DΓX is
the co-completion given as X̂ “ EnsX

op

, the category of presheaves2 on X . In fact [407] we have canonical
comparisons (with D “ DIdCat

)

X Ñ DX Ñ CatX
op Ñ FibX Ñ CAT {X ,

and therefore a more general determination of a gesture from Δ to X can be as a functor,

Δ Ñ DX , or Δ Ñ FibX , or Δ Ñ CAT {X ,

or a special 2-functor,

DΔ Ñ DX , or FibΔ Ñ FibX , or CAT {Δ Ñ CAT {X .

A special case is examined in Section 67.3.2.2 as a “sketch of gesture”.
In this modeling, at this very high level of generality, a gesture is a transformation from one world, the

world of things or concepts over Δ, to another world, the world of things or concepts over X ; shortly we will
say that it is a transit among concepts, a conceptual transit. Here we definitely do not assume some precise
control on sizes of objects; hence we can pursue our process, introducing a general “relator” from Δ to X
as a distributor between CAT {Δ and CAT {X (a “relation” between concepts over Δ and concepts over X ),
in such a way that gestures are representable relators, a relator being itself a reserve of virtual gestures. As
Mazzola says, this was perhaps Grothendieck’s hidden approach.

At any rate, a mathematical gesture is not at all an evanescent inmost sentiment, such as an artistic
expression of a move, with a pure aesthetic content (as in the French expression: “pour la beauté du geste”).
It is the ordinary realistic gesture of a craftsman, and only because of that it is a move in the “art of
mathematics”, a concrete move of the “hand of the mathematician” in his mental creative space. We believe
that this open creative space exists, unachieved and in permanent creation. From a materialistic point of
view it is nothing else than the set of all the mathematical writings, and consequently the history of the
production of these writings.

So by a mathematical gesture, we mean something which is not at all necessarily related to logic and
to regular application of logic to the search for solutions of problems: such a logical “method” would be
rather stupid with respect to a creative target; it is just the 0-level of gestures, let say the gesture of blind
substitution or application of a given rule. The interesting point is the next levels, starting with the gesture
to choose a substitution or a rule, even the gesture of choosing a logical framework. Creativity in gesture
starts when we start to choose something freely. The idea of a “method” becomes interesting only when we

2 X̂ is denoted by X@ in the general notation system of this book.
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are looking for a method of invention, in some way a paradoxical aim: how could we discover from the present
state of our current tools any new thing? For us, the very nature of mathematics resides in the paradoxical
game of its gestures of inventions, in the history of this living game with diagrams.

So two points have to be carefully isolated, logic, and rigor, and we have not to be mistaken about
their part. Logic could be replaced by mental concentration or internal rigor in the practice inside a specified
calculus, to correctly apply substitutions, whereas the true rigor in our sense resides in the concentration in
order to find new ideas, i.e., to introduce new possibilities of substitutions and representations. A creative
process supposes a dialectic between correct substitutions under given ideas and renewing directive ideas.

Furthermore, in order to model creativity mathematically in mathematics, we have two complementary
aspects. On the one hand a posteriori we can observe a creative process as being after an intriguing event;
on the other hand, in an a priori perspective, we can observe what was arriving just before the intriguing
event, and so before the creating process. At the moment of the event, we have to situate an abrupt change
of mode between continuous attention to adequate substitution and a burst for no reason of new directive
ideas.

67.4.2.2 To Do and to Apply Mathematics: Mathematical Gestures

To examine creativity in mathematics, it would seem at first that we have to decide what entry within
mathematics is to be considered: searching, teaching, or learning. In fact our opinion here is that creativity
in mathematics appears in the inseparable triple framework of searching, teaching, and learning, and more
according to the sense of mathematics as expressed by its history. This has to be accomplished under the
dialectical tension between ‘to do mathematics’ and ‘to apply mathematics’, these two being distinct, but
each one implying the other.

On the one hand to apply mathematics means we dispose of a known area of abstract mathematics,
modeling a given real experimental situation (in physics, mechanics, visual or financial questions, organization
of systems, etc.), and that we want to obtain a solution of a problem in the situation via a solution of a
mathematical problem in the given modeling, which often is an unknown function to find. To do that we have
to solve equations or to construct the solution of a geometric problem, or we even have to invent and develop
a new set of mathematical tools, new spaces, or new types of diagrams, and to do mathematics there. So many
mathematical areas and objects were created from problems in physics or mechanics, such as mathematically
pertinent correlates of observed situations; but also sometime things go in the other direction, as observed
by Bachelard: at first we have in our modeling of a situation a significative mathematical datum, and then
we are looking for the corresponding real observable thing. In these cases mathematical gestures in question
are inventions of modelings, followed by resolution of mathematical problems.

On the other hand doing mathematics (e.g. pure mathematics) includes the frequent situation which
consists of applying an old piece of mathematics to a new mathematical situation. Descartes says: “chaque
verité que je trouuvois eftant vne reigle qui me feruoit aprés a en trouuver d’autres” [264, p.20-21] (as George
Pólya quoted in slightly different words: “each problem that I solved became a rule which served afterwards
to solve other problems” [853, p.1]).

Some philosophers such as Karl Popper consider that mathematics are tools to describe the world:
“Pure mathematics and logic, which permits of proofs, give us no information about the world, but only
develop the means of describing it” [859, p.13]. So mathematics can be “applied” to a well determined piece
of real situation, to clarify and describe it. But this is not a very convenient way to consider the link between
mathematics and the world: it is better to consider that our perception of the world is clear only if at first it
proceeds from a mathematical gesture. And in fact mathematics can be applied only to itself: mathematics
develops the means of describing itself; this is the right setting in which we can understand the possibility
of creativity in mathematics.

67.4.2.3 History as Series of Analytico-Synthetical Gestures: Doubt, Obviousness

Obviously, “history” here is absolutely not the name of the academic discipline of the same name (sic); and
the same remark is valid for epistemology, philosophy, etc.
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According to Hegel, man [the mathematician] is nothing else than the series of his acts; history [of
mathematics] is the series of [mathematical] events. The question of the sense is the question of the continuity
or structure of this series; the structure of the mathematical series is such that its purpose is to clarify the
possibilities of structuring: therefore from the beginning mathematical thinking can be applied to its own
development; this is at the center of its history, and it proves that, as Beppo Levi said: “more than anything,
mathematics is a way of thinking”. We can emphasize that mathematics is the art of thinking that works to
erase its own property of being a thought; as a thinking, it works reflexively to resolve itself (se résorber),
to reduce its thoughts to its gestures [413, p.101]. So we arrive at the idea that history of mathematics
is useful for mathematics exactly if and only if it is the history of the series of these gestures which are
the mathematical reductions of intuitive thoughts to finitely generated diagrammatic gestures, and even
to the trace of such gestures, by codifications and calculus (calculus being taken in a very large sense),
in short, reduction of intuitions to proofs. This history furnishes the real matter for future mathematics,
namely the problem of thinking why and how these gestures of reductions themselves are mathematical and
mathematically exact. Another formulation, what we call “reduction,” is a process of rational writing. A
mathematical idea is transformable into the idea of a gesture (within the mathematical world), and we have
to produce an exact writing of this gesture in such a way that any mathematician reading this writing should
be able to build a replica of the gesture.

If mathematics is an art, adapting our previous quotation of Merleau-Ponty we can say: Mathematics
must both change and, as Hegel says, “return to itself” and thus present itself as history”. The shape of this
history and its auto-move—by application of mathematics to mathematics—is the meaning of mathematics.

In fact application of mathematics to mathematics works by transformation of a solution of a problem
into a true mathematical fact, and this fact into a mathematical rule (a solving process), and this rule
into a new mathematical object, about which new questions could arise; so, according to these gestures,
mathematics enters into itself, and thereby produces its own development, something that we can a posteriori
understand as its history.

To learn the solution of an exercise, to explain how to understand mathematical things and methods,
to search for a solution of an open problem, to prove that a given sentence is true, as well as to construct
new objects or new relations, all these levels are completely mixed and inseparable, as far as creativity is
the matter at hand. Mathematical activity is the way in which this mixture is accomplished, by writing and
reading analytical and synthetical data, doing what we call a mathematical gesture. In this view we have to
construct the ‘true fictional knot’ of the history of mathematics.

Hence the history of mathematics that we need is of course a system of internally true fictional narra-
tives, about gestures of reduction alias gestures of invention.

On the one hand, to do so we need a kind of neutralization or suspension of our current knowledge, to
permit the invented and new thing to enter into our mind. For history in general, this had been expressed
in various refined ways by Paul Veyne, Henri-Irénée Marrou, and Carlo Ginsburg; and in the specific case of
the history of mathematics, by Évelyne Barbin.

We have to be able to read freshly any old paper, as contemporaries did, forgetting future uses and
successes of that given paper, doing the history à la Veyne [1084, p.18]: “s’étonner de ce qui va de soi,” as
Évelyne Barbin proposed for history of mathematics in [74], a notion that she named “dépaysement”. In this
way perhaps we will be able to bring out the inventive gesture of the author himself, forgetting the success
and errors it obtained in the future.

In the frame of general history, the word of “dépaysement” is also in Marrou [654, p.237], in a rather
different but related acception: “Historical knowledge always implies a going off oneself, a “dépaysement”,
a meeting and a discovery with others” and “history is mainly discovering of a pure alterity.” Michel de
Certeau, also thought in this direction [186], but not directly on the question of history: “La xeniteia est un
“dépaysement.” Ce mouvement consiste à partir ailleurs, comme Abraham, “sans savoir où.” It is a voluntary
exile to a foreign land, the monk being invited to leave his past life, without looking back. This is near the
idea of estrangement [573] borrowed from Michel de Montaigne, as studied by Carlo Ginsburg [368], and in
[574, 369]. As expressed in old French, one has to say “s’estranger.”
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On the other hand, “history” can be conceived as a tool for invention today of our present new knowl-
edge. Retroactively coming from the past, history becomes an explanation and a justification a posteriori
of the nature of our knowledge today. This kind of retroactive history looking for precursors is properly
“ahistorical”, and usually historians consider it as very bad. Nevertheless, working this way we obtain as-
surances on our subjects of study and our procedures. In the case of mathematics, it is the style of history
according to Bourbaki and André Weil, and it is very useful for pursuing our mathematics to encourage
our innovations [428]; we get a better understanding of our gestures, without respect for the gestures of our
masters. Gestures of masters are read not only in the line of our story of their future.

In history of mathematics, the two sides—estrangement and retroaction—respectively oriented toward
alterity (or otherness) and ego, are in “pulsation” with respect to the question of invention, in parallel with
the pulsation of doubt and obviousness. At the level of mathematical technical practices we rejoin the notion
of mathematical pulsation.

67.4.2.4 Rigor and Subjectivity, High Level Gestures

Especially two attitudes are not recommended here: systematic pure formalistic attitude and pure pragmatic
attitude, in other words, pure formal logic or pure blind application. The point is that when we are in such an
attitude we believe that the substance of this attitude is really the substantial nature of mathematics and of
mathematical activity. So the naive positivistic logician thinks that mathematics have to be founded on logic,
and the naive pragmatic scientist is sure that mathematics are oriented by applications in something that
he believes to exist, namely the real world. In fact mathematical activity, and consequently mathematical
creativity, resides in the space between these two fires.

The variation of styles—formalism or pragmatic—is fundamental, but this ‘opening of mind’ itself has
not to be absolute. From time to time we have to work inside a given algebraic system, and to discover there
new internal or low level gestures, and at other moments we have to leave a given formalism to enter another
one, changing the framework: hence we have to accomplish high level gestures.

Example 83 For a deliberately elementary example, let us imagine we are computing in the finite field with
four elements, namely, modulo 2, with 0, 1 and the roots α and ω of X2 ` X ` 1 “ 0; and let us suppose we
are looking for roots of P “ 0, with P “ X3 `X `1. Of course we can substitute values 0, 1, α, ω for X, and
we have immediately to admit that there is no solution. Here is a first level gesture, namely an evaluation.
But in a more complicated case, for instance with a ring instead of our field, direct evaluation is not possible,
and then our strategy has to be indirect, in a sequence of gestures which seem to take us away from the
question. In our example, a first higher level gesture consists of abstracting our problem, of considering
that we are working in the field of mathematical research named “finite fields theory”, represented by the
category C of these fields; and in C within the object F4, the finite field with four elements. At this moment
we forget little explicit computations with 0, 1, α, ω and the related construction of F4; we put the accent on
the position of this object in C. We continue considering an arrow which is an embedding fP of F4 into F64:

fP : F4 Ñ F64.

This gesture is external with respect to F4 but internal with respect to C. Why to do so? Because P “
X3 ` X ` 1 has three roots in F8, it has also three roots in an extension of F4 as F64, because 64 “ 22ˆ3. In
fact F64 is the gluing (pushout) of F2 Ñ F4 and F2 Ñ F8. After this gesture the initial problem is transformed
into the following one: is it true that fP is invertible? Of course not, because 4 “ 64. A posteriori this is
not very astonishing; the effective evaluation has been replaced by the effective construction of the pushout.
However this pushout is a general construction in finite fields, and the effective computation with 0, 1, α,
and ω is replaced by an instantiation of a general construction.
Later again, for more complicated cases, when it is not easy to decide whether f is invertible, we could do
a new high level gesture, considering that C itself is an object of C, a category of categories, and we can
consider as a higher level gesture a functor H from C to C1, a gesture external to C, and a gesture internal
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to C. To conclude that fP is not invertible it is enough to prove that HpfP q is not so. For example if C1 is
an abelian category A, then f is not bijective as soon as cokerHpfP q “ 0. Etc.

So we arrive at a complex gesture represented by cokerHpfP q P A. In this precise gesture, the choice
of A, H and fP are left to the mathematician; it seems to be subjective and free until we obtain a result
following this gesture, by an application of a property of cokerHpfP q to our initial problem.

The initial key of creativity is given by subjective gestures, but the confirmation of the mathematical
character of a creation proceeds from objectification of gestures, i.e., validation of gestures by ‘proofs’, from
the point of view of rigor as a common knowledge for all mathematicians.

So mathematics is the history of the activities of searching, teaching, or learning mathematics, via
various level gestures of invention, construction or resolution of mathematical problems, and mathematical
creativity lies in this knot: you search to solve problems, you teach to explain what you have found, you
learn to get new problems to search and new tools. And what you create is a solution, an explanation, a new
problem, a new tool.

67.4.2.5 Problems and Mathematical Pulsation in the Production of Forms

At first glance, a mathematical gesture is destined to solve problems. From this point of view we recommend
the reading of several important books, such as the books by Hadamard [434] or by Pólya [853, 854], explain-
ing the psychological conditions for invention in mathematics, and how to solve problems. Less known and
more elementary are the books of Boirel [129] or Gasquet [360], which insist on the “operational dynamism”
of the mathematical activity, on the “mathematical illusion” produced by scholar programs and institutional
organizations, which abandon any spirit of invention and creativity.

And precisely creativity is more visible, in a second sight, if we reveal that a mathematical gesture is also
destined to invent problems. And to invent problems we have to name, to introduce some definition: “Almost
always a conquest in mathematics does start by a nomination,” continuing with Pascal’s rule (as quoted in
[222, p.102]): “substituer la définition au défini” (“to substitute the full definition to the defined term”) [245,
p.136, 137]. Some mathematical creativity is there, in this double act of naming and substituting, pulsating
between equivocal possibilities of meanings of the name, and various possible effects of its substitutions. This
point is similar to an observation by Paul Valéry [1075, Analecta 33, p.188] quoted in [434, p.30]: “It takes
two to invent anything. The one makes up combinations; the other one chooses, recognizes what he wishes.”

The very point is that constructing a good definition or a nice substitution is not at all trivial; it could
take very long to discover and to be precise in such a final simple way. If we cannot do so, we stay at the
level of obscure computations and combinatorics, where some fact could arrive by chance... even if we don’t
know what we wish for exactly.

The aim of mathematical activity is to invent and to solve problems, and, by convenient analytico-
synthetic gestures—and these gestures, like any gestures, are equivocal—to reveal a univocal clarification in
the form of an object or a relation.

This alternative “to solve/to invent” a problem, and consequently a form (in the guise of clarification
of a problem or of a solution), is in some sense a pre-view of the mathematical pulsation, a psychological
picture of the attitude needed in order to do what we call mathematical pulsation. The pulsation is already
perceivable in the ambiguity of the idea of form: the word ‘form’ could mean a configuration, a contour or
an outline of an object, but it could also mean the law of construction of this object [245, p.139].

67.4.2.6 History as Imaginary Resource of Necessities for Mathematicians

But don’t forget to install your solution or your invention in the realm of the history of older inventions, and
with some ‘imaginary’ questions about various mathematical areas: numbers, figures, finite, infinite, geometric
constructions, equations, continuity, general geometry, groups, topology, logics, proof theory, problems in
foundations, homology, category theory, etc., etc. This “installation” is a “move to” and a “settle”; hence
your last gesture to accomplish your mathematical creation, which we call an imaginary gesture.
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The way in which you situated your thought and your work among these areas, with many more details
among your readings of master as well as of minor works, constitutes your subjective feeling of the history.
After preparatory work with logic and chance, sometimes a mathematical invention arrives, but this is
always situated by the mathematician within a personal history of mathematics, constituted as a memory of
mathematical gestures: definitions, substitutions, algorithms and constructions, writings. In his memory the
mathematician believes to have a mathematical familiarity and intuition, and his conscious thought follows
this ‘intuition’, in spite of positive closed logical limits, but with an ultimate aim to invent truth.

Always when he starts his work, a mathematician has the illusion of the existence of such a realm of
imaginary thoughts, of such a web; and this is necessary, as a minimal toolbox. But then, on the way to
solving a problem, he is able to abandon such pictures for new ones that he invents for the occasion. At such
a creative moment, the point is the link with the history, not an objective absolute history (which doesn’t
exist), but subjective knowledge of the history in his mind. On this path, and only like this, does he know
(or believes he knows) what he is doing! Otherwise he is only writing a strange sequence of letters, words
and figures.

From our point of view, mathematical creativity is possible on this condition: to be free to invent
definitions, objects and relations, and forms in a pulsative status of meanings of these data with respect to
the history of mathematics that we have in mind.

In the history of mathematics, from the point of view of a mathematician, we have two components.
On the one hand, we have a very personal fiction constructed as a progression by a personal reading of
texts of masters, with a choice of what is good to work again: in fact it is a mathematical personal history
of the apprenticeship of the given mathematician; in this vein we have the conceptions of Tœplitz and of
Weil [428]. On the other hand we have the more ‘objective’ approach using a historical perspective to get
an epistemological “dépaysement” by looking at the meaning for a contemporary [74]; in this case we could
observe the finest gestures at the very moment of invention in the text as such.

Let us notice that, for example, the AMS classification of mathematical subjects introduced in Section
67.4.1.5 is a kind of fiction or novel about the life and the organization of mathematics today: it participates
to the history of mathematics. The same remark works for other “notional sceneries”, such as the table of
matters of any good general book on mathematics, such as [710] or [638].

67.4.2.7 Fashion, Successes and Errors, Scruples

Examining mathematical inventions, someone could relate them to scientific targets determined by social
contexts in which mathematicians are living [1150]. At the very most, this social storytelling could determine
choices in fashionable themes of research, and it could explain some contingent conditions according to which
the realm of mathematics keeps growing. And then? What about the very moment of creativity? As with
artistic creation, social or pragmatic motivations are not really serious. The very moment is the will to create
new movements in our mind, to get a new mathematical understanding. To reach this target we need to
be free to try new ideas, new combinations, without any guaranty of success. The pulsative attitude starts
from this necessity. Concretely, pulsations into combinations of new free ideas are observable in the works of
mathematicians in the manner in which they mix methods and intuitions, by observation of their scruples
with a very strong worry about exactness.

Rather than in the book of Bernard Zarca [1150] or in any sociological study, we will learn much more
about mathematical creativity by reading the book of François Rostand [917], and books of quotations such as
[764], [816], [943], where working mathematicians explain their own views on mathematical activity. Among
these quotations, and especially in the book of Rostand, we can realize the importance of the question of
“scrupule”, as a counterpart of Descartes’ idea of evidence [413]. According to Kant [917, p.111], a scruple
is subjective: an argument against a belief, but with only a subjective value. In the scruple we don’t know
if the obstacle to the belief has an objective foundation. We have to seek the reason for the doubt. The
very important result of Rostand shows two things. The first one is that very often mathematicians write or
speak about their scruples, mainly about possible errors, but also about the real meaning of some success.
The second one is more important: Rostand shows that these scruples are not a kind of extra-commentary
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about their works, but they are at the very heart of the invention process of their works. They should be
read by mathematicians at the same level as the actual text.

For us, this question of scruples (and in parallel the question of evidence) is a constituting factor of
mathematical creativity, and especially with regard to the question of mathematical pulsation.

67.4.2.8 Toward Categorical Modeling

These various things having been clarified, we have to get now a deeper understanding of what mathematical
gestures are, as creations of new objects or relations, and, consequently, what objects and relations are, and
forms.

So our proposition will be that any mathematical gesture is an ‘implementation’ of the very fundamental
gesture called the mathematical pulsation, and then a convenient mathematical modeling of mathematical
activity works through the constructions of objects and relations, as could be exposed by category theory,
and as we can observe along all the history of mathematical invention, what we call categorical modeling.

67.4.3 Invention in the Art of Mathematics

67.4.3.1 The Truly Creative Mathematician Lives in the Real No-Reality World

The exploration of the so-called “reality” through numerical evaluations, finite tests, statistics, tables of
values and maps, doesn’t depend really on mathematical thinking. It is just a bad pragmatical aspect of
the exploitation of science, when, with no pertinence, mathematics are reduced to numerical computations
and evaluations, and exploited for the sake of industrial or financial purposes. In such cases, assuming
mathematical computations only works as a magic principle of validation. In this direction, no creativity is
possible, because no beauty is in question; only a pseudo-pragmatic posture is assumed. From a mathemat-
ical point of view, liberal political motivations, around studies on markets and financial supports, and the
democratic process such as those of votes and elections, are always ugly. Of course this is not the opinion of
all mathematicians.

The true pragmatics starts with the question of the “real world” as a bio-physical unknown entity, and
the correlative question of the use there of the mathematical notions.

Different of course are the situations of the theory of numbers, of algebra, of geometry. Digitalization
is a consequence of the Pythagorean quest for harmony through numbers and “pixelisation”. By such a
way nothing is understandable, nothing is of value. From this perspective we get a false conception of
mathematics and mathematical creativity, through discourses on real numbers and numerical control of the
world. But it is out of such numerical considerations that we would like to think of creativity. In relation
with approximations, to construct an effective mathematical process of decisions, serious numerical problems
have to be examined after the qualitative problems, with the general treatment of objects and relations.

Grosso modo, we assume that creativity in a domain of art depends on the ability to impose a form—
“to impose a form” is the conception of Nietzsche of what an artist has to do—by performing a system of
gestures, by writing and proposing to the senses of the audience some traces that can be read as new and
possibly interesting. A useful tool for developing creativity would be any method of invention.

Creativity is possible only in a domain of activity which is an art, at least from one point of view; and
therefore to speak of creativity in mathematics implies that mathematics is an art. Thereby of course we are
absolutely in opposition to the opinion of the famous engineer Sir Alec Issigonis: “All creative people hate
mathematics. It’s the most uncreative subject you can study.” (Quoted in The Australian 5 October 1988)
[355, p.211].

Therefore we follow the view of Paul Valéry on mathematics, as quoted and praised by Jean Dieudonné
[269, p.184-185]: “Mathematics is not the science of quantities; this is twice false: it is not a science and the
quantity is not its main subject of investigation. It is an exercise, comparable to dance. [...] mathematics are
about searching for properties of a form, and not about any particular problem [...] The eminent intellectual
fact is the independence of operations from their contents. [...] When the contents are created by the operations
themselves, i.e., when some operations are designed, isolated and combined, then we are in mathematics.”
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We borrow from W.B. Smith a rather strange formulation [355, p.237]: “Mathematics is the universal
art apodictic,” i.e., the universal art of universal and absolute necessity; for us “universal and absolute
necessity” means exactly the laws of the pure combinations of thoughts, and so mathematics is the science
of combinations, in the widest sense of the term, including algebraic computations, various calculi, as well
as geometric combinations; and ultimately it is also the art of combining these different areas.

When this science becomes an art, i.e., when we are not only solving equations in a given closed
framework, but when we invent new frameworks and new opened calculi, then we are in true mathematical
creativity. When we do mathematics we are in the process of calculating and modifying the possibility of
inventing or modifying this process: this science is an art, with a place for creativity.

Mathematics is the scientific art of (higher) combinations of areas of (lowest) combinations, that is to
say the science of invention of rational methods for the constructions of patterns in the web of our concepts.
Godfrey Harold Hardy says that “a mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs it is because they are made with ideas.” ([439, p.84], quoted in
[355, p.158-159]). Already for Plotinus “geometry is the science of intellectual entities.” [851, Fifth Ennead
IX.11]

So the mathematician invents new beautiful patterns of ‘mathematical ideas’, i.e., of mathematical
objects, relations or gestures; this is the way in which he creates. If we consider that the musician creates
new beautiful patterns of sounds and beats, then, with Sylvester, we can think of mathematics as the “music
of reason”(cf. [270], [816]), with patterns of shapes and variations.

We would like to analyze the possibility of the description of a method of invention in the case of
mathematics—considered as an art—with categorical modeling as a tool. So we are trying to break the
following paradox by Bertrand Russell: “It is a paradox in mathematics and physics that we have no good
model for teaching of models”.

Our starting point will be the belief in the possibility of natural reduction of any mathematical data,
ideas, intellectual entities, reasoning, methods, gestures, to two types of entities; objects and relations, and
the modeling of creativity will be a modeling of invention of objects and relations, and of sequences of objects
and relations, of paths in spaces of objects and relations.

Thanks to category theory, we can confirm, in the case of mathematics, the pertinence of the general
method of creativity proposed by Guerino Mazzola in the case of music [726, p.17] as a six-step process: 1.
Exhibiting the open question; 2. Identifying the semiotic context; 3. Finding the question’s critical sign or
concept in the semiotic context; 4. Identifying the concept’s walls; 5. Opening the walls and displaying its
new perspectives; 6. Evaluating the extended walls.

The Yoneda Lemma says that with @A “ homCp´,Aq for A an object of C, the Yoneda functor

YonC : C Ñ EnsC
op “ C@

is full and faithful. As stated in [32], in this context, a creative subcategory A in C is a subcategory such that
the restriction of the Yoneda functor’s values to A, given by A ÞÑ @A|A, provides

YonC|A : C Ñ EnsA
op “ A@,

which is still full and faithful.
In this context, a generic model of creativity looks as follows, (1) understand the object A in a category

C: (2) this is the category C where A has been identified, (3) this is A, (4) this is the uncontrolled behavior
of @A, (5) find an objectively creative subcategory A, (6) calculate the colimit C of a creative diagram, (7)
try to understand A via the isomorphism C

„Ñ A.

67.4.3.2 Method of Invention: Toward an Art of Functional Modeling

The expression “method of invention” is somewhat paradoxical, but perfectly rational. We borrow this
notion from the conceptions of Bacon, Descartes, Mersenne, and Galileo, according to Évelyne Barbin [80].
Of course Bacon is an empiricist, Descartes is dogmatic, and Mersenne is pragmatic; but, as expressed by
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Gusdorf [431], quoted in [80, p.11], over the methodological diversity of mental spaces we have a fundamental
unity of intention; for these authors the point is to understand the nature and to discover and invent in order
to progress. At the turn of 1620, science reached a new requirement, and beyond pure speculation; now
the question was to control nature, to invent and to master new tools for solving problems: the main tool
here would be mathematics, as a method. But, in this revolution, the nature of mathematics itself was
modified, and in this transformation more important probably was the invention of the general notion of a
curve, in direct relation to the problems of tangents, later followed by the invention of differential calculus.
Therefore mathematics explicitly became a method of invention by modeling phenomena and variations.
This was achieved with the emergence of the general notion of a function, and the specification of a function
by a differential equation (Leibnitz): for a long time, up to today, this method of functions and differential
equations remains the main mathematical motor of development and discovery in physics.

And consequently the improvement of this process of functional modeling is the main purpose of pure
mathematical research. An ultimate aim of mathematics would be to invent a method of control and devel-
opment of functional modeling: general notions of transformations, of functions, of calculus with functions,
equations and algebras of functions, and then categories of functions or morphisms, etc. This could be seen
as an infinite process of structuring systems of objects and their relations.

Then “categorical modeling” would be a good name for the effort of a particular mathematical com-
munity toward mathematical creativity with regard to the subject of functional modeling and structuring of
mathematical activity as such. The two crucial terms interlaced here in our epistemological dispositive will
be the notion of object and the notion of relation, and the question of creativity would be the question of
invention of pertinent new objects and new relations.

67.5 On the Mathematical Invention of Coordinations

With respect to our question of creativity and of pulsation in mathematical thinking, the following thought
of Valéry is quoted in [128, p.XIII]: The geometer is going into a strange space, simultaneously pre-existent
and arbitrary, necessary and constructed, invented and discovered.

We believe that the mathematician creates new combinations of ideas and so new configurations in
new spaces (i.e., new systems of modifications among some distinctions and identifications); history shows a
progressive access to our knowledge of that fact.

Furthermore, it is right that mathematicians propose new configurations, new fibrations and new spaces,
and paths in these spaces, and associated invariants in new categories; but at a point in future all that
activity has to converge back to solid results in an old traditional area, ending the “stratospheric” travel. A
magnificent case of such travel is the achieved history of Wiles’ theorem proving Fermat’s conjecture.

To understand all of that, at first we have to understand the successive effects of the development of
coordinations, alias the game of analysis/synthesis.

In this section we expose a certain notional scenery—in the sense of Section 67.4.1.4—about the emer-
gence of the notion of coordination (and subsequently of coordinatization). We follow a historical way, from
ancient Greeks to Descartes, Lamé, Ehresmann, and Grothendieck. Many variations would be possible on
this question, as it is nothing else than the adventure of the mathematical apprehension of the dialectic of
analysis and synthesis, through the invention of the modalities of space, form and function. For example,
only on the specific question of the notion of a “space” in 20th century, can one read very interesting and
advanced books such as [553] or [128].

We refer to a talk given in Thessaloniki in 2009 [423] in a semiotical atmosphere; hence the part
played by arrows is put in relief. By contrast, fibrations, pro-objects and modern approaches are almost not
evoked. In resolutions of problems and mathematical inventions, the notations (or signs) and the scopes (or
senses) become intermingled in a kind of pulsation. For teaching it is worthwhile preserving this pulsation
and working with it. This pulsation is observed here through the emergence of the idea of coordination in
some cases (cartesian rectangular or oblique coordinates, curvilinear coordinates, tripolar coordinates), and
toward modern notions of functions and fibrations. So we install a “concrete” historical meaning (filiation)
for sites and sketches, fibrations and atlases. For a hermeneutic and a semiotic analysis of this emergence
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of coordinations, we explain how significations and interpretations could be specified using arrows. Then
coordinations could be understood as relational systems of coordinates. And thinking in terms of arrows and
diagrams in the sense of the theory of categories, we emphasize that nowadays coordinations are nothing
else but specifications of projective limits, inductive limits, equational structures, sites (Grothendieck) and
sketches (Ehresmann).

67.5.1 Emergence of Coordinations

Hereafter any formula and any figure is a sign, and in order to really understand coordinations, a good
method would be to determine what signs are used, and, above all, how interactions are working between
them.

67.5.1.1 Symptom, Characteristic Equations, Linear Coordinates

In Euclid [306, p.409, Prop. II, 14] it is proved, that given a circle C of diameter BF , if we consider a point
H on C and the perpendicular projection E of H on BF , then we get (see Figure 67.9): the square on HE
is equal to the rectangle on BE,BF :

HE ˆ HE “ BE ˆ EF.

This is not yet an “equation” of the circle C, because it is neither a construction nor an assertion about any

B F 

H 

E 

C 

Fig. 67.9. Symptom of a circle, not yet an equation.

arbitrary point in the plane where the circle exists (this plane doesn’t exist here as a mathematical object,
the only real thing which is considered is the figure of the circle); the information given by our formula is a
geometric relation which is defined and true on the circle. Furthermore it works for any circle; it is a symptom
of any circle. Apollonius [39] used this symptom for a circle to produce symptoms for conics. Nowadays, we
metamorphose these symptoms into characteristic equations, namely [389]:

y2 “ xp2p ` px{aq(hyperbola), y2 “ 2px(parabola), y2 “ xp2p ´ px{aq(ellipse).
Those characteristic equations depend on an effective consideration of the plane, and in this plane on a

convenient choice of coordinate axes. They could not be written in Descartes [264], because in fact Descartes
did not really introduce the so-called “cartesian axes”. He introduced the idea of arithmetization of geometry,
by writing arithmetical relations among some lines in the figure. As a symptom, a “cartesian equation” is
formed specifically on the curve; but it is not a symptom, because now it is an arithmetical relation which is
expressed. The discovery of Descartes is a method to provide such a cartesian equation for arbitrary curves.

The next step, the introduction of the plane and of axes in the plane, and therefore the formulation of
characteristic equations, was achieved by Wallis [1104]. We could say that geometry and cartography were
unified at this moment. The rectangular coordinates are a mapping, adapted to the basic shape of a square
drawn in a plane as a reference. So, considering some given rectangular cartesian axes in a plane, it makes
sense to ask for a geometrical characterization of any second degree curves, and to prove (Wallis) that they
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are exactly conics. Leonard Euler proved that this fact is independent of the chosen rectangular axes. By
modification of axes of coordinates, we can explain to what kind of conic corresponds an equation like:

ax2 ` 2bxy ` cy2 ` ex ` fy ` g “ 0.

According to Gino Loria, the first phase of the development of analytic geometry is the period which
begins with Descartes and Fermat and ends with Lagrange and Monge. It was at this time that the method
of coordinates, outlined by the author of the Discours de la Méthode and Fermat, finally became a body
of doctrine providing for those who are studying geometry with formulas ready for use, applicable almost
automatically, whatever the position of the coordinates axes. Loria thinks that an excellent but not yet
perfect textbook on this matter is Biot’s book Essai de géométrie analytique [118].

After 1802, an important question still to be solved was the transformation of oblique cartesian coordi-
nates. The subject was studied [618] by Carnot, Livet, Français, Hachette, Lamé, Sturm, and Cauchy. Lamé
[571] is particularly interested in the subject as a tool for the analysis of crystals, and this is a special case of
what he will expand as the general theory of curvilinear coordinates invented by Gabriel Lamé in the 1830s
[572]. The rectangular cartesian coordinates were adapted to the shape of a square, and now the oblique
coordinates are adapted to the shape of a parallelogram (Figure 67.10).

Fig. 67.10. Introducing oblique coordinates, a gesture adapted to crystals.

In an oblique cartesian system of axes, the previous equation represents again an arbitrary conic,
because the transformation from any oblique coordinates towards any rectangular coordinates is linear and
bijective. But the specification of the type of conic which works in the rectangular case is no more valid
directly.

The next natural linear extension of oblique cartesian coordinates (achieved only in the 20th century)
is the idea of coordinates in a vector space E with respect to a given linear basis. If a vector space E of finite
dimension n is given, a basis in E could be described as the image of the canonical basis of Rn by a linear
isomorphism

m : Rn Ñ E,

and of course this isomorphism is determined by its inverse

p : E Ñ Rn,

which itself is determined by its components pi : E Ñ R, i “ 1...., n. Then the coordinates of an element x
of E are xi “ pipxq, i “ 1...., n, and so we write :

ppxq “ pp1pxq, p2pxq, , , pnpxqq “ px1, x2, , xnq.

67.5.1.2 Curvilinear Coordinates as Families of Surfaces or Curves

The idea of curvilinear coordinates probably originates in some Leibnitzian writing on coordination of systems
of curves. In the 18th century polar, bipolar, spherical, and cylindrical are used. Polar coordinates were used in
Descartes’ style, specifically on a given curve, by Bonaventura Cavalieri, Isaac Newton, and Jakob Bernoulli.
The use of polar coordinates as a means of fixing any point in the plane and for a systematic study of any
curve is proposed by Jakob Hermann in 1729 (see [149, p.76],[213, 462]). Newton is the originator of bipolar
coordinates, especially for the study of the ‘ellipses of the second order’ i.e., the ovals of Descartes. Newton
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observed [149, p.77] that Descartes handled ovals “in a very prolix manner”, without the application of
coordinates. If x and y are the distances of a variable point from two fixed poles, their relation for the ovals
are

a ` e

d
x ´ y “ 0,

and from this equation Newton found the tangent line. Newton noted that if d “ ˘e, the curve becomes a
conic section.

But the true general systematic approach of general curvilinear coordinates is due to Lamé, around 1830
[422]. The motivation of Lamé was the study of physical problems such as the question of the temperature
of a given body, and he claimed that the more natural approach is to use a system of coordinates adapted to
this body, with a family of level surfaces parallel or orthogonal to the body. Nowdays, we can find a return
to these ideas on level surfaces in books such as [811].

The analytical description of curvilinear coordinates is by transformations from rectangular cartesian
coordinates.

For example, in the two-dimensional case, if the body is an ellipse, then rather than rectangular or
polar coordinates it is better to use an elliptical system of coordinates (Figure 67.11) constituted of confocal
ellipses and hyperbolas:

x2

a2 cosh2 μ
` y2

a2 sinh2 μ
“ 1,

x2

a2 cos2 ν
` y2

a2 sin2 ν
“ 1.

A point P of cartesian coordinates px, yq is located at pμ, νq such that P belongs to the two corresponding

Fig. 67.11. Lamé elliptical coordinates, adapted to the shape of the Earth.

curves. The transformation from pμ, νq to px, yq is given by

mpμ, νq “ px, yq, with x “ a coshμ cos ν, y “ a sinhμ sin ν,

and conversely the elliptical coordinates are given by

ppx, yq “ eppx, yqq “ pμ, νq.

67.5.1.3 Tripolar Coordinates, from a Symptom of the Plane

Lazare Carnot [174, p.48] introduced the algebraic relation (a sum of 130 monomial terms) which is satisfied
by the ten distances between five points A,B,C,D, and E in the space. This formula is a law of the space;
it expresses the proper coordination of the space when the space is endowed with its metric structure. In
fact it is for the space something like what the symptom is for a circle; it is a metric symptom of the space:
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For A,B,C,D fixed, and the fixed quantities AD “ f,AB “ g,AC “ h,BC “ m,CD “ n,BD “ p, this
symptom expresses, for any point E, the relation which is satisfied by the variable distances AE “ l, BE “
q, CE “ r,DE “ s. So E is located by such a 4-tuple (tetrapolar coordinates):

ppEq “ tpEq “ pl, q, r, sq.
These numbers are four, they are linked by one relation, and that is appropriate due to the fact that the space
is of dimension three ; they are the coordinates of E with respect to the ground which consists of the space
endowed with its metric structure and with the four points A,B,C and D. In 1841, in its first mathematical
publication, Arthur Cayley [182] expressed the formulae of Carnot as a determinant. In the case of four
points 1, 2, 3, and 4 in the plane, the formula of Cayley is the following symbol (see also Blumenthal [126,
p.99]):

det

¨̊
˚̊̊̊
˚̋

0 122 132 142 1

212 0 232 242 1

312 322 0 342 1

412 422 432 0 1

1 1 1 1 0

‹̨‹‹‹‹‹‚“ 0.

If we consider in the plane especially three distinct points 1, 2 and 3, with equal distances 12 “ 21 “ 23 “
32 “ 31 “ 13, with value “ 1 (so 123 is an equilateral triangle), and if a point P is at distances p, q
and r of 1, 2 and 3, P is located by pp, q, rq (tripolar coordinates) agreeing with the symptom; after some
computations this becomes:

p4 ` q4 ` r4pp2q2 ` q2r2 ` r2p2q ´ pp2 ` q2 ` r2q ` 1 “ 0.

With x “ p2, y “ q2, z “ r2, this symptom could be seen as a representation of the plane as the paraboloid
in space with cartesian equation:

x2 ` y2 ` z2pxy ` yz ` zxqpx ` y ` zq ` 1 “ 0.

67.5.2 Arrows

Firstly we argue about the fact that any sign “is” an arrow. The games of these arrows provide a coordination
of the semiosis, and this is the structural part of the sense. Secondly we make precise that in the case of
mathematical discourses, the signs work as diagrams and as abbreviations. The system of signs exhibited
above to introduce coordinations could be understood in a very general acceptation in terms of arrows.

67.5.2.1 Semiotics and Hermeneutics

A basic presentation of the problematics of signs and semiotics is given by Umberto Eco [289], but see also
[703]; and a clear synthetic presentation of hermeneutics is given by Jean Grondin [393]. We would like to
stress the fact that the full sense of a discourse has two complementary and interacting components, semiotics
and hermeneutics. On the one hand, any discourse is inscribed in a language, as a phonological production
of signs, and there it has a dynamical structure. We know with Jakobson [502, p.78] that a phoneme is
a sheer differential sign: the only semiotic content of a phoneme is its difference from other phonemes. So
the structure consists of variations and dispositions of phonemes, and it is understandable through coding
processes and grammatical analysis.

Ultimately, the question of meaning or signification of a discourse is the problem of articulation and
dynamical functioning of a system of representations by signs (linguistic signs). A minimal definition of a
sign is in Eco [289, p.45] as an entity which could have a signified object. In Peirce’s view, this signified
object is the target of an arrow, the body of the arrow itself is the interpreter, and the source of the arrow
is the signifier or signifying element
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signifier
interpreterÝÑ object.

In the perspective of Savan [935] or Lizka [614], we have to treat interpretants as translations, or “trans-
latants”. Furthermore, each of the three components of a sign could be a sign again. The sense (seen as a
global holding of a complex of meanings) is nothing else than the shape of the system, the shape of the
structure, as a result of combinations of arrows of signs.

On the other hand, any discourse is dedicated to a promotion of values, and so participates in the
open construction of a social culture. The sense is a question of hermeneutics, that is to say a question of
interpretation, in the rhetorical tradition; more accurately it is a question of value in the free commerce of
interpretations [420].

In principle an interpretation pretends to provide an understanding of what truly the discourse would
like to say. So it is a question of translation and elucidation of something which is obscure or at least
incomplete. In the words of Droysen, Dilthey insists on this point: the goal of hermeneutics is to construct
a historical comprehension (Verstehen) rather than a scientific explanation (Erklären); comprehension is
delivered as another discourse which draws a kind of arrow in the culture, which is the indication of an
orientation from a given point of view. Furthermore, in Gadamer’s view, the interpretation depends on a
genuine implication of the interpreter; it is a performance, the living gesture of a human being. So, for us,
the hermeneutical sense is a kind of arrow,

initial discourse
interpretation,ÝÑ comprehension,

the body of which is the subjective act of interpretation, with target the comprehension in discourse given
by the interpretation in the realm of “parole”, and the source being the initial discourse which was to be
interpreted.

On the semiotic side the sense (or meaning) resides in a methodical new combination of some existing
arrows, and on the hermeneutic side the sense resides in the subjective elaboration of a single new arrow. Of
course we are free to envisage a given culture as a system of cultural signs (including generally some linguistic
signs), and so semiotics acts at this level of hermeneutics as well as at the linguistic level. Conversely, a sign
considered as an arrow according to the perspective of Savan and Liszka is a kind of elementary interpretation,
an element in the hermeneutic realm.

For a given discourse, we have two stakes: its meaning as a shape of an articulation of signifying
representations, its sense as a comprehensive interpretation in a culture. Furthermore, the discourse holds
these two stakes in a living interaction, through the gesture of speaking (parole). Someone does the act of
speaking the discourse, addressing the structure (of a system of phonemes) to someone which is living in
a given culture. The question of the full sense of a discourse now is the question of how in the process of
speaking (“parole”) the structure and the culture interact all together, around the given discourse. So the
emergence of interpretation is in the realm of semiosis, and structural semiosis is not separable from games
of interpretations. We propose to take care of this observation by thinking in terms of diagrams of arrows.

67.5.2.2 The Case of a Mathematical Discourse

Mutatis mutandis, we can transpose or particularize the previous remark in 67.5.2.1, valid for any discourse,
to the special case of a mathematical discourse. There the act of “speaking” is replaced by the act of “doing
mathematics”, inside the mathematical language. The production of signs is done by mathematical scriptures
of computations and figurations. The full sense is performed by confrontation of the given structure of these
scriptures (seen also as a system of mathematical representations) with the mathematical history and culture
(old theorems, theories and problems), and this provides a mathematical interpretation.

From a semiotical point of view we have in this mathematical game two intertwined levels: at a ground
level we have signs for direct scriptural mathematical representations, and at a higher level we could make
use of signs for large and complex mathematical interpretations. In this conception, any mathematical data
could be understood as an arrow

A
fÝÑ B,
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which could be read
“from the point of view of f , the object A stands for the object B”,

as well as
“f is a difference between B and A”.

This equivocation on the sense of an arrow (sometimes it means an identification, at other times it
means a distinction) is in fact essential to the lively use of arrows in mathematics. We call it the initial
pulsation of the arrow. In the sagittal world the basic problem (and tool) is that of creating arrows, by serial
or parallel compositions.

An icon of our free organization of analytic thoughts around a given arrow f is the free autograph on
f (see [424, p.140]), the beginning of which is the picture:

dddf

��

cddf

��

ddcf

��

cdcf

��

ddf ��

df

��

dcf ��

cf

��

f ��

dcdf

��

ccdf

��

dccf

��

cccf

��

cdf
��

ccf
��

It is easy to relate that picture to the binary development of real numbers, to the construction of Cantor’s
set: these mathematical objects are elements for “internal coordinations”.

67.5.2.3 Coordinations, Diagrams, Abbreviations

Mathematics is neither the science of number and space, nor the science of logic or physics, although such
subject-matters are those to which mathematics has been extensively applied, and could be decisive elements
in a personal notional scenery.

A better thesis by Cassius Keyser [531] is that mathematical thinking is postulational thinking. For
Keyser every successful adventure in postulational thinking eventuates in the establishment of a hypothetical
doctrinal function; the function is composed of propositions each of which asserts that some proposition
for me is logically implied by a set of other such forms. So, for Keyser, the mathematical questions are
those about the world of the logically possible (whereas the scientific questions are those about the actual
world). The coordinate enterprises, mathematics and science—both parts of philosophy—,together embrace
the whole knowledge-seeking activity of man (by “knowledge” is meant such knowledge as is expressible
by propositions). Their combined scope is the two-fold world of the actual and the logical possible, the
world of propositional facts and the world of propositional forms, the world whose truth is discoverable by
none but empirical thinking, wherein observation is sovereign, and the world whose truth is discoverable by
none but postulational thinking, where deduction is sovereign. So, for Keyser, the validity of mathematical
propositions is independent of the actual world; the world of existing subject-matters is logically prior to it,
and would remain unaffected were it to vanish from being.

Nevertheless this thesis is too much tied to the logical point of view on mathematics, and we would
prefer to think in terms of coordinations rather than in terms of logic. Here our claim would be:

Mathematics is the art of inventing necessary coordinations in the world of the possible.

Coordinations are nothing else than synthetico-analytical methods for any special science, e.g. for logic,
arithmetic, probability, geometry, physics, etc. Conversely, anything in a given specific science which is a
pure fact of necessary coordination is a true mathematical point. So in the history of mathematics, the
mathematical coordinations have been discovered in some scientific contexts, e.g. in arithmetic, in geometry,
in logic, in physics, etc. Arithmetic and geometry are sciences derived from the core of mathematical thinking,
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when the mathematician constructs an interpretation of his work in terms of listening or sight. Arithmetic
and geometry as sciences are already on the side of meaning and sense of mathematics: historically they are
two basic ways of interpretation of mathematics. This point applies also to logic and physics.

Much as sciences are domains of applications for mathematics, they are sources of new mathematical
ideas as far as they stimulate new practices about coordinations.

Let us observe that, with respect to Keyser’s distinction, a true working mathematician is in fact
simultaneously a pure mathematician and a scientist, because while working, computing, and deducing he
is also observing the mathematical entities, and he discovers through these observations. For him the world
of mathematical things is the actual world (the one we called norealworld—with a positive insight); his
observations are assumed as feelings with internal senses inside comprehension. In fact these observations
are also actions with a mathematical value, as far as they generate new rigorous coordinations. In some sense
the conception of Keyser is near to the conception of Charles Saunders Peirce, who defines mathematics as
“the study of hypothetical states of things”, and, according to a wording in 1870 of his father Benjamin
Peirce: “the science which draws necessary conclusions” [847, pp.227-244].

However Keyser’s description is perhaps too much logicist, and it does not meet enough the question of
poietics and invention in mathematics. In a recent paper, Daniel G. Campos [172] examines Peirce’s propo-
sitions in this direction, and he says that Peirce’s position is that the creation of mathematical hypotheses is
poietic, but it is not merely poietic, and, accordingly, hypothesis-framing is part of mathematical reasoning
that involves an element of poiesis but it is not poietic either. So Campos proposed that hypothesis-making
in mathematics stands between artistic and scientific poietic creativity with respect to imaginative freedom
from logical and actual constraints upon reasoning.

In a letter to Lady Victoria Welby-Gregory, Charles Saunders Peirce wrote: “It has never been in my
power to study anything, mathematics, ethics, metaphysics, gravitation, thermodynamics, optics, chemistry,
comparative anatomy, astronomy, psychology, phonetics, economics, the history of science, whist, men and
women, wine, metrology, except as a study of semiotic.” Peirce also treated sign theory as central to his
work on logic, as the medium for inquiry and the process of scientific discovery. So from Peirce’s perspective,
everything in the world is made of signs, of living combinations and productions of signs (the phenomenon
of semiosis).

In analyzing mathematical thinking and productions, it will be crucial to exhibit the mechanism of in-
vention of coordinations from the perspective of the semiosis, and to understand construction of coordination
through semiotic elaborations. In Peirce’s terminology a diagram is a special sign, an icon in fact, exhibiting
existing relations among parts of a state of things [193, p.36]; and in Peirce’s view the basic mathematical
action is precisely the construction and modification of diagrams. And we add: constructing or modifying
diagrams produces an arrow between diagrams; so the fundamental nature of a mathematical gesture is the
production of such an arrow.

There are diagrams with an arithmetical flavor (equational formulas) or with a geometric tendency
(geometrical figures), and the “dialectic” between these two aspects is of great importance in the development
of mathematics; in some sense the various mathematical results on this point (e.g. principles of duality)
express a special mathematical pulsation [412], [419] in the mind of the thinker when he has to choose a sense
for interpretation to direct the meaning of his thinking. For instance Cayley’s famous diagrams for groups
(as well as the diagrammatical forms of Kempe [528]) play exactly this role of a vehicle for the pulsation
between the algebraic or arithmetical (tabular) description of a group and its geometric counterpart.

This pulsation between arithmetic and geometry, with other mathematical pulsations, indicates the
moment of an inventive gesture in the realm of mathematics. The pulsation is solicited by a diagram that
we have to modify, and this is possible because a diagram always bears in itself an abbreviation [413, p.162],
i.e., an arrow which comes from a ground and is going to a functionality which provides an orientation in
mathematical knowledge.

old ground
abbreviationÝÑ new functionality.

To this hermeneutic fact corresponds at the sheer semiotical level the fact that a diagram is always incomplete
and therefore open. We speak of pulsation and abbreviation; other authors, such as Châtelet [189] and Alunni
[26], speak of a virtual dimension of any diagram as an abstract-machine, prior to any representation. We
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agree that a diagram is a static picture inciting anyone to a gesture of its modification. The mini-model of
that is precisely the initial pulsation of the arrow.

67.5.2.4 The Concrete Map as an Abstract Arrow Abridging a System of Arrows

Today everywhere in mathematics we employ maps or functions

f : E Ñ F : x ÞÑ fpxq “ y,

from a set E to a set F , such a map being the datum of a set E and a set F , and the attribution to any
x P E of an image fpxq P F .

We have to insist on the following point: stricto sensu a map is a gluing of a flow of arrows

x Ñ y,

with x P E, y P F , and y “ fpxq.
So the map f : E Ñ F is an arrow which is not so “concrete”; it is an abstract abbreviation for an

abstract system of arrows (a family of x Ñ y, plus a family of unreached elements). The idea of the pulsation
of the arrow is made more dynamic when we consider maps, which can be seen as a kind of flow in the
semiosis. For example here is pictured the map q : t1, 2, 3, 4, 5u Ñ t11, 21, 31, 41, 51u given by qp1q “ qp2q “ 11,
qp3q “ 21, qp4q “ qp5q “ 51, with two unreached elements 31 and 41 (Figure 67.12):

Fig. 67.12. A map as a flow or a family of “formal” arrows.

67.5.2.5 Functional Spaces, Algebras of Functions, Duality

In the history of mathematics, the development leading to the final picture for a function, as given above
in the previous Section 67.5.2.4, is related to inventions of curves and coordinations. Coordinations are
constructions of maps.

Maps are arrows in the category Ens of sets. The general coordination of the semiosis at the mathe-
matical level is expressible in terms of maps, or even in terms of arrows abstractly organized in categories
and diagrams. After its unification with algebra, geometry became a question of maps or transformations
of spaces. Hence a figure is thinkable as a transformation into a space from an ideal model of this figure, a
realization of an idea, as well as the gesture to put the idea into a semantical space.

We do not remember his exact words, but somewhere Borel said that even if the theory of sets would not
be so decisive with respect to the problem of foundations for mathematics, at least it allowed the development
of functional analysis. (It is impossible to overstate the importance of this fact.) Hence the basic Cantorian
construction PpEq of the powerset of a set E is the fundamental unbounded operation which, with limits and
colimits, allows the development of any mathematical construction, and mainly of functional spaces such as
F Ă BA, a space of functions from A to B. So we reach an over-level of abstraction, the state in which the
elements of a space F are functions among other spaces. Duality consists of the possibility to recover A from
F . For example if A “ Rn, B “ R and F is the space LpA,Bq of linear maps from A to B, then we get a
natural isomorphism A

„Ñ LpF,Rq. The geometry of a space X is now related to algebras of functions on it.
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67.5.3 Bodies, Implicit Surfaces, Abstract Relations

67.5.3.1 Relational Coordinations

In 1953-54, in the same vein as Peirce’s relational logic, in the framework of the calculus of binary relations
à la Peirce-Schreier and Tarski, an abstract analysis of coordination was introduced by Jacques Riguet [894],
[895], under the name of relational system of coordinates. With the above notations with projections pi from
67.5.1, let Ri be the equivalence relation (congruence) generated on E by pi, i.e.,

xRiy ô pipxq “ pipyq.
We can forget the external data pi and just consider the set E as equipped with the family pRiq of binary
relations, and so

pE, pRiqq
is a relational structure, where, with

Ri “ Xj “iRj ,

we have, for all i:
Ri X Ri “ ΔE , RiR

i “ E ˆ E.

Clearly any curvilinear coordinates could be seen as an example of a relational coordination. But this notion
allows also the consideration of decomposition of an algebraic structure as a cartesian product of other
structures of the same type [187].

In fact, a map is a special case of a binary relation between two sets, and the calculus of compositions
and inversions of maps is a part of the general calculus of relatives introduced by Peirce. Nowadays, this
calculus is understood as a work in the category of binary relations. So Riguet’s presentation is worthwhile
by itself, but could also be interpreted in the frame of the involutive category of correspondences.

67.5.3.2 Implicit Surfaces and Spaces

With 0 P K we think of a relation Γ “ F´1p0q “ tpx, yq P A ˆ B;F px, yq “ 0u from A to B, associated to a
function F : A ˆ B Ñ K, as a coordination relating A to B (F is a level function of Γ ). That works in the
special case of a function f : A Ñ B : x ÞÑ y “ fpxq, with Ff px, yq “ 0 if and only if y “ fpxq. The set of Γ
is an implicit curve, and in the case of Ff it is an explicit curve, and so a special case of a parametric curve
I Ñ A ˆ B.

We have the same definitions for three sets A,B,C, with F : A ˆ B ˆ C Ñ K, and then Γ “ F´1p0q
is an implicit surface, with F as a level function. A parametric surface is a function I ˆ J Ñ A ˆ B ˆ C.

Now, given a region R Ă A ˆ B ˆ C containing a body B, we consider three (level) functions F,G,H :
A ˆ B ˆ C Ñ K—or equivalently one function L : A ˆ B ˆ C Ñ K3—such that for any p “ px, y, zq P R
there are three unique values λ, μ, ν P K such that

F px, y, zq “ λ, Gpx, y, zq “ μ, Hpx, y, zq “ ν,

and these λ, μ, ν are the curvilinear coordinates of p related to pF,G,Hq “ L. Hence L determines an
isomorphism R „Ñ LpRq from R onto its image in K3. Furthermore if the frontier Σ of B in R is a level
surface of L, such as F´1p0q, then these curvilinear coordinates are said to be adapted to B. On Σ we get a
double system of curves induced by G and H.

The nice idea of Lamé is multifold, at first, to introduce general curvilinear coordinates, and implicitly
general surfaces, as Descartes did with general curves; and then to consider coordinates adapted to a body
B as a natural analytic presentation of this body. Hence a surface dynamically appears as an element in
a family of surfaces, even in a triple family of surfaces. And finally a surface, so naturally equipped with
a double system of curves, is really a local version of the idea of a Riemann space (as it was said by Élie
Cartan), a coherent system of local coordinates (on itself).
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67.5.4 Sketches

We go on with the consideration of diagrams in the technical sense in category theory. Of course they are
also diagrams according to Peirce, but some very special ones.

67.5.4.1 Coordinations as Categorical Diagrams

Taking seriously into account these ideas that mathematics is the art of invention of necessary coordinations
in the world of the possible, and the basic mathematical action is precisely the construction and modification
of diagrams, we claim now that we need only categorical diagrams in order to describe the functionality of
the mathematical thinking. Specifically we have to show how mathematical coordinations could be realized in
the framework of the sagittal icon or more accurately in terms of maps, and as a construction of a categorical
diagram. This will be true for any mathematical coordination, but here we will restrict our explanations to
the case of the geometric coordinations seen above.

Keeping in mind the general abstract setting on arrows initiated in 67.5.2, we have to strengthen
the part played by arrows in coordinations to extract the operational categorical content from the various
diagrams shown above (symptoms, equations, graphics). In this way coordination will be directly related
to categorical diagrams and the modern idea of a sketch. In this process we emphasize the functionality of
coordinates, losing their initial signs.

For instance our initial system of signs for elliptical coordinates (equations and graphics) can now be
replaced by a sketch, a matrix-like sketch, specifying components of an arrow p (see Figure 67.13).

67.5.4.2 Projective and Mixed Sketches

The main fundamental elementary tool in category theory is the Yoneda Lemma. We can understand it [417]
as a principle allowing us to forget how the objects and arrows were constructed, and to work only with the
fact of relative interactions between objects; we speak of a scooping-out of objects and the consideration of
the outside as the true substance of which objects are made.

So ultimately any object X in any category C “is” a system of arrows, namely the category “C over
X”, noted C{X, having as objects the arrows of target X in C, and this category C{X is thought of as the
natural form or shape of X in C. So, any object X is located by the shape of the system of links from others
to itself; this is a kind of coordinate system of X tied up to its background C.

The linear isomorphism m : Rn Ñ E (see, above, our paragraph on linear coordinates) is as a ge-
ographical map which allows us to locate points x P E by using coordinates ppxq “ X (or mpXq “ x).
It is a coordination of E, and with this datum E is more structured; so we think also of this datum as a
“structuration” of E by a decomposition law.

In fact now, for curvilinear coordinates, we can eliminate the condition that m (or p) is linear; it is
sufficient to consider an abstract set E and a bijection m : Rn Ñ E, or its inverse bijection p : E Ñ Rn or
even just a not necessarily bijective map p : E Ñ Rn.

So for the elliptical coordinates we get ppMq “ epx, yq “ pμ, νq. The datum of p is equivalent (by
composition of p with the canonical projections) to pri : Rn Ñ R, i “ 1, ...n, to the system of maps
pi “ pri.p, , i “ 1, ...n, i.e., a cone-shaped diagram with the top E related to the projective limit cone with
top Rn through a unique arrow p : E Ñ Rn factorizing the cone ppiq through ppriq:

ppiq “ ppriq.p.
Furthermore, if the emphasis is kept on the map m : Rn Ñ E, we get a dual approach to curvilinear
coordinates, as a parametrization, which could be generalized to a local datum m : U Ñ E, with an open
subset U included in Rn. The idea of a manifold now is just the datum of a coherent family pmj , Ujq of such
local parametrizations, and this idea is seizable in the notion of an inductive limit (gluing), and the idea of
a mixed sketch, with the factorizations

psjq “ p.pmjq.
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This is what we can call a matrix-like sketch, useful for analysis of any arrow p through

pi,j “ pri..p.mj .,

and hence any matrix analysis ppi,jq (Figure 67.13). The true complete sketch is more complicated. After
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Fig. 67.13. Analysis of a map by colimits and limits, i.e., by a matrix sketch.

the first projective specification, we have to continue, to make precise in detail what each projection pi is
made of, etc. In order to do that we have to add material: basic maps (such as cosx, coshx,...), compositions
of such maps, equations among these compositions, and so on. In fact here we can consider any part of
the Handbook of Mathematical Functions [3] as a sketch to be added to specify the concrete values of some
function’s symbols (arrows) in our sketch (this book is really a coordination of the system of usual functions).

The datum ppi,jq “ ppri.p.mjq is an analysis or amatrix of p, its analytical coordination in the completed
sketch. For example, the 5 ˆ 5-Latin square in Section 67.3.1.4 can be presented as follows.

Another example is the case of the coordination associated to a symptom of the plane through f :
R3 Ñ R given by fpx, y, zq “ x2 ` y2 ` z2pxy ` yz ` zxqpx ` y ` zq ` 1. A point of the plane is represented
by a over-abundant number of coordinates, but these are submitted to a constraint fpx, y, zq “ 0. So the
plane is represented as a kernel p of the map f , which is a projective limit. So we can think of the structure
as a sketch again, with a map

p : E Ñ R3.

Those descriptions were possible in fact in the 20th century, when the notion of an arbitrary map and
of the category of sets became familiar. As expressed here, the accent is put on the “universal property” of
the “projective limit”, and this did not make sense before the 1950s. This led in the 1960s to the notion of
a sketch defined by Ehresmann between 1966 and 1970 [294], in the framework of the theory of categories.
In fact a relational system of coordinates could also be presented as a sketch, with underlying category a
category of relations. So as relational systems or as morphisms toward a projective limit, and as realization
of a sketch, general curvilinear coordinates on a space, as well as over-abundant coordinations, have now to
be understood as diagrammatical structures.

Coordination is an abstract diagrammatic articulation of an object E in the framework of other objects
in the same category, an incorporation of E as a source of a sign which is an arrow p. If we compare the
part played by this coordination p and equations to the part played by p, we see that in the first case p is
external and full (under this name is subsumed a content of figures and equations), and in the second case
p is internal and scooped out (it is an element acting in an environment of figures and equations).



1058 67 Mathematical Models of Creativity

67.6 Pulsation in the Living Process of Invention Among Shapes

67.6.1 Productions: Objects and Relations, Problems, Pulsation

67.6.1.1 Historical Transfers of Meanings in the Course of Research

The mathematical invention is performed in the imaginary world of mental images of arithmetic, or of
geometry, or of algebra, or of various more precise mathematical areas (anyway a world that we do not
write down into proofs, but that we talk to ourselves about as a motive), but also at the level of transfer
between areas. The pulsation acts also at the macro-level of the choice of the area in which the problem
has to be examined. So a kind of macro-version of the pulsation is given with the notion of change of frame
by Régine Douady [275]. In these cases we need knowledge of the history of mathematics, and especially of
the different accesses to notions and areas. Also we have to notice the notion of the use of analogy, starting
from the famous letters from André Weil to his sister in 1940 [1111, p.236]. So the notion of pulsation could
be pointed up in the use of mathematical knowlege as a transfer process of data and information between
areas established by the historical development. Of course category theory begins with a challenge to treat
mathematically such transfers (in this case from topology to algebra), and in such transfers, the analysis of
the modification of gluings (naturality of cohomology).

67.6.1.2 The Fundamental Gesture of Pulsation

In Section 67.4.2.2 we claim that creativity in mathematics lies in the inseparable link between searching,
teaching, and learning. A strong confirmation of this resides in the nature of the mathematical pulsation
[412]. This pulsation is not at all reserved to the higher level of research, for a mathematical elite. It is fully
necessary in order to understand any mathematics you are trying to master, and to teach any domain of
mathematics. In this direction see analyses [81] and [591].

The mathematician uses entities which are “objects” and their “relations” among them. These entities
exist in his mind as indices, but at the very moment of the mathematical act, their existence in a real word
is not a pertinent question. Of course he imagines some history about these objects, some significations, and
a possible meaning for the mathematical text in which these entities appear; these mental images help him
orient his thoughts. These objects and relations are possible organizational schemes—or diagrams, in the
terminology of Peirce—and the mathematical work consists of modifying these diagrams, to compare them
by insertions to larger diagrams, or by contractions to smaller ones.

The reader will examine in details two cases.

Example 84 Resolution of an equation
A very deep observation by John L. Bell is the following. Along all of its history, mathematics succeeds
by changing constant data into variable ones. So in the equation 3x “ 6, the x, at first is unknown, but
potentially variable. But when we “discover” that x “ 2, then no longer is x a variable. The question is:
when, in the process of solving the equation, does the nature of x change?

Example 85 Construction of a geometrical figure
Nowadays, it is obvious that a geometric figure is drawn in a space; but it was not so obvious in the past,
and the underlying space appeared progressively by the fact that something is added to a figure when we
work on it: from where or where is now living these new data?

In these two examples the mathematician tries to orient his thinking toward a hypothetical resolutive
state of the modified scheme. The basic question is: how do we proceed to such modifications? It depends on
the knowledge of methods (in the memory of the mathematician, on his knowledge of the history of previous
works) of substitutions of signs, and/or of substitutions of significations, or of meanings. We practice analysis
in the sense of Condillac, i.e., decomposition and composition of data. At the very elementary level these
methods are systems of cutting and gluing of signs. But the very basic question is how he decides about
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the local orientation of his analysis, of the immediately next gesture in the system of his thoughts? Here is
the question of what we name mathematical pulsation, depending on the permanent possibility to de-precise
data, to render vague data precise. We provide examples of such pulsations: definitions of limits, of tangents,
of circles, of complex numbers, etc.

The moral is as follows: to solve problems, i.e., to construct or to specify new objects or relations, or
new paths, we need to be relaxed and nevertheless under constraint, as in improvisation: to think deeply in
an unknown area, always needing to risk an improvisation and therefore an error. The pulsation is the very
moment of effectivity of the ability to improvise a mathematical gesture.

67.6.1.3 Mathematics Invent Effective Transitions Between Possible-Objects

From a philosophical point of view, centered on an epistemology related to the ontological question, we can
ask if numbers exist, if circles exist, if groups exist, etc. In fact in mathematical invention they are just
tools to regulate the flow of variations as invariants. The mathematical existence of mathematical objects,
i.e., the existence from the point of view of the “mathematical life”, is a mixed fact, between functionality
and imaginary stimulation. If we consider Badiou’s view of mathematics as a pure science of possibility of
the Being through multiplicities, with a transitional ontology [60], then the theory of category would be an
adequate tool to analyze mathematical activity.

Supporting our method at the epistemological level, we would like to propose what could be named a
transitive epistemology, according to [426], introduced as a comment on [828] and [1149].

If we say that Science is the construction of rational relations among things in order to explain or
to predict apparitions of phenomena, then mathematics is the construction of mathematical objects and
mathematical relations among these objects in order to exhibit the structure of the rational thinking itself.
Mathematics is the art of unveiling the organization of the organizational thinking. Hence the fundamental
question of the dependence between physical data and mathematical objects is the question on which the
position of Gaston Bachelard is: mathematical objects arrive first, before physical data or the so-called
physical objects, or a fortiori before the possibility of a ‘real thing’, whatever we would like to say by such
a term. Because of his knowledge of links between theory of groups and geometry and relativity, Bachelard
also thinks that a mathematical object exists at first as a system of relations to assume, as a constraint in
mathematical work. For example Charles Alunni [25] explains clearly how for Gaston Bachelard the space
of relativity is only a system of relations in tensor calculus. And Bachelard wrote [57, p.8]: “la relativité
invente l’expérience, elle crée son expérience.” In [425] we explain how the positions of Bachelard on objects
and relations could be related to the idea of mathematical pulsation.

Today we will say: any mathematical thing exists as an object in a situation; any mathematical object
exists as an object of a category, i.e., as a possibility of crossing between arrows expressing various potential
actions. By functorial modifications, various objectal representations of a given thing are related.

The approach to mathematics from a set theoretical and logical point of view is only one possibility,
and a formal presentation of theories is another one. It is important for a creativity theory of mathematical
activity to understand that mathematical creation does not exclusively rest on set theory, on logic or on
positive formal practice, or on any problematics on foundations. Any creation depends on the revelation of
a new context, which is seen not as a ground, but as a relative game (see also Chapter 77 on Hesse’s Glass
Bead Game).

67.6.1.4 Diagrams: Sketches and Sites, Topoi and Algebraic Universes

The notion of sketch and of site allows us to produce any regular theory in mathematics as a kind of diagram,
and the models of such sketches or sites are again diagrams. All that can be realized internally in any topos or
algebraic universe. The crunch with topos or algebraic universes is to pay attention to the relation between
relations and functions, and to the construction of limits. So mathematical activity can be explained as
construction of movement in such a “diagrammatic world” to exhibit new objects or new functions. Some
other indications on that are given in Section 67.3.2.
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67.6.1.5 The Dialectic Resides in Mathematical Acts

The pulsation is an auto-movement of rationality. In each well-defined area of calculus the pulsation works,
possibly invisibly; but it becomes visible between the tissue of these well-closed areas. From a philosophical
point of view, we would like to explain how this notion allows us to leave a strict analytic philosophy that
is concerned with foundations and logic, and to reach dialectical or synthetic thinking of rationality. In this
direction companion ideas are in Gaston Bachelard, Gilles Châtelet, and Charles Alunni. Very interesting
also are the ideas of Fernando Zalamea [1149]. But we have no place here to develop more explanations (the
margin is too small...).

67.6.2 Creativity in the Mathematical World Seen as a Living System of Shapes, in a
Categorical Framework

In this section we tackle again the question from [32], with some new precisions of course, but we leave for
another occasion the development of higher level techniques; we stay tuned to inescapable basic facts.

67.6.2.1 Living System

A mathematical problem in the previous perspective of shape theory as in Section 67.6.2.3 is the question of
production of new data from some specified ingredients, as is the case in any evolutive system. With the help
of the theory of sketches (categories with choices of limits and colimits), evolutive systems could be modelized
as an MES (Memory Evolutive System), according to Andrée Ehresmann and Jean-Paul Vanbremeersch [295].
In fact these MESs are general enough to include as examples many different systems such as real biological
organisms or living systems, or the organization of an enterprise.

If we stay at the general level of description of living systems in relation with cohomology, we refer to our
paper on Ehresmann-Vanbremeersch theory [421]. Homology or cohomology becomes the step of invariant
evaluation of some structural situation, as is the case with curvature, signature, genus, etc.

A new interesting example is the system of globalization of the markets and financial exchanges, as
explained in the recent thesis of Baya Mansouri [650]. In this system three basic sets of entities, the States,
the Market-Exchange places, and the Enterprises, are given institutions, the existence of each one supposing
the existence of both others. Any enterprise creates new products and plans its own regeneration through
integrated strategic management; then with these two facts in hand, markets determine dynamical values,
and states control good repartitions for their people. A categorical modeling of this will be developed in a
forthcoming thesis by Georges Monti [759], essentially in the frame of MES, with the guiding line that today
mathematics are about the question of the observation and reading of its own gestures, as argued in this
section. So for Monti it is possible to model management and accounting by parallelization of its gestures
with gestures in category theory. Pushed by the constraint of the new international and European system
for accounting, IFRS, he insists on the historical evolution of mathematics from quantities to qualities to
structurating and finally to the description and calculation of gestures; this allows him to suggest a parallel
modeling of accounting onto category theory. In this case, but also in many other situations, the recourse to
any numerical valuation can be abolished within the elaboration, even if at the end we need to produce a
(local) decision (that is to say a 0 or a 1).

67.6.2.2 Axiomatic Modeling of Mathematical Creativity?

With categorical tools (topoi, sketches, limits, cohomology) stressing the question of transfers, pulsation and
gestures, we try to define an axiomatics for creativity in mathematics, in parallel with modeling of living
systems [295] and the general method of creativity [726].
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67.6.2.3 Shape Theory and Models, Cohomology, Differentials

Any mathematical problem could be presented as a question about the qualification of an object or of a
relation, more precisely as the construction of a shape of an unknown object, and a seeking for a modification
of any shape into a simpler one. So, very naturally the mathematical activity could be presented in terms of
shape theory, rather than in terms of logic and set theory, and hence as a question of emergence of quality.

The analysis of shapes, and especially the research of invariants and simplifications, in fact rests on
cohomological techniques. A very general presentation of cohomology is possible in terms of “Kan’s extension
of a Kan co-extension process”. This ensures us that any cutting/gluing processes in the creative phase of
mathematics could be taken into account by category theory.

We start with a category C, i.e., a system of “objects” and connecting “arrows”, where for consecutive
arrows we suppose being given an associative and unitary composition law. Given C, Yoneda’s Lemma says
that the knowledge of an object C P C0 is equivalent to the knowledge of @C. For objects F in C@ and A in
C we have F pCq “ C@F , and we denote by

ş
C F the category of elements of F , which is the category with

objects the pairs pC, pq where C P C0 and p P C@F , a morphism from pC, pq to pC 1, p1q being a u : C Ñ C 1
in C such that p1.u “ p. Then F is a gluing (inductive limit),

F “ limÝÑrC;pPC@F sPpş
C F q

0

@C.

Given a category C, the topos of presheaves EnsC
op

on C is denoted by C@, and its objects and arrows are
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Fig. 67.14. Visualization of a topos of presheaves.

drawn as in Figure 67.14; objects are functors such as F , G, H; morphisms are natural transformations such
as t, s, st.

Then we have an embedding hC : C Ñ C@ given by

hCpCq “ homCp´, Cq “ @C : D ÞÑ homCpD,Cq.
The beginning of Yoneda’s Lemma will be shown in Figure 67.15 with its set of formulas. Then we add that
a natural invention will be a zig-zag as in Figure 67.16: After that we can consider the question of the shape
for a given object X and a given model-functor J , as drawn in the pullback in Figure 67.17.

So the J-shape of X, that is to say J{X, can be drawn as in Figure 67.17, where X is hollowed out as
a fibration qX , where the presheaf F is re-built as a fibration sF (Ehresmann-Grothendieck construction of
the category of “elements” of F ), see Figure 67.18. Then we have an isomorphism

F pXq “ tt : hCpXq Ñ F, t naturalu “ tT : qX Ñ sF , T cartesianu.
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Fig. 67.15. The Yoneda Lemma and extension of a category to its category of presheaves.
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Fig. 67.16. A path of inventive modification of situations.

And finally we reach the notion of a stack (Figure 67.19), a stack on a scheme S being, as in the figure, a
lax functor onto hAff{S toward the 2-category of categories (with some special conditions).

Hence if in the place of the YonC “ @? : C Ñ C@ we can start with a functor J : M ÝÑ X where
M is thought of as the category of known ‘simple’ models M , and X as the category of unknown ‘complex’
objects X. Analogously to the category of elements

ş
C F , we consider the J-shape of X, which is the categoryş

M X—more classically denoted by J{X—with objects the pairs pM,pq where M P M0 and p : JpMq Ñ X,
a morphism from pM,pq to pM 1, p1q being a morphism u : M Ñ M 1 in M such that p1.Jpuq “ p. Let
qX : J{X Ñ M be the forgetful functor qXpM,pq “ M , and, if it exists, XJ the inductive limit of J.qX , and
kX,J a comparison map:

XJ “ limÝÑpJ.qXq “ limÝÑrM ;p:JpMqÑXs
JpMq, kX,J : XJ ÝÑ X.

If kX,J is not an isomorphism, then we consider that, with respect to J , X is an absolute novelty; otherwise
we say that X is a J-manifold. Given a J-manifold X and a functor H˚ : X ÝÑ V (e.g. cohomology), if the
comparaison or differential

dX “ dpH˚,JqX : limÝÑrM ;p:JpMqÝÑXs
H˚JpMq Ñ H˚

´
limÝÑrM ;p:JpMqÑXs

JpMq
¯

is not an isomorphism, then we say that the J-manifold X has an H˚-emergent property.
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Fig. 67.18. Reformulation of Yoneda Lemma at the level of shapes and fibrations.

The expression of emergence in this way is proposed in [421] and is directly inspired by [295]. The
method of inspection and extension of concept’s walls, previously described in Section 67.4.3.1, could be
rephrased and extended in terms of analysis and perturbations of shapes: the initial creativity moment
(opening the walls) consists of choosing an inclusion functor JA : A Ñ C, and then the analysis of A in

C with respect to JA is—second step of creativity—the introduction of a diagram DA : ΔA Ă ş
A A

qAÑ A
(this introduces a perturbation of the JA- shapes towards pJA.DAq-shapes) and the final step consists in
displaying extended wall perspectives according to DA, i.e., in examining if A is a pJA.DAq-manifold.

When the special case YonC “ @? : C Ñ C@ is replaced by a J : M ÝÑ X , the functor YonC|A : C Ñ A@

considered in Section 67.4.3.1 has to be replaced by the functor
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Ring = category of unitary 
commutative rings
Aff  = category of affine spaces

=
Aff SetAffop

Ringop SetRing  
kA

op

hAff

∈ =
S (ex : scheme)

hAff/S Cat

C, lax functor  (ex : S-stack)

Fig. 67.19. A short presentation of the notion of stack, as a “predicate” on the shape of a scheme.

YonX |J : X Ñ M@

given by X ÞÑ YonX |J pXq “ YonX pXqJop : M ÞÑ homX pJpMq, Xq.

67.7 Conclusion: Categorical Presentation of Pulsations

To do mathematics is to think mathematically and to calculate, and these two mental activities are under the
management by the mathematician of what we name “pulsation”, mainly at this very moment of “creative
invention”. In this chapter and other papers we have explained what is this “mathematical pulsation”. An
old writing of Paul Valéry in 1926 about the notion of “speculation” can serve to approach the pulsation
[1075, Analecta 26, p.184-185]. Valéry wrote:

Speculation do consist to use the possible, but this possible of which I am equipped—as in prevision
of variations of the environment, in order to compose them and to resist to them, in order to wait for
them—even in order to anticipate them, in this way it can enter into the actual: and this is thinking!

Calculating in an open way—when we have to invent the calculus as a new system of rules for itself—is
also such a speculation. To think and to compute are speculations; when in the speculation the “possible”
becomes bracketed and the “unnecessary possible” we are reaching the idea of pulsation.

Clearly, creativity in mathematics needs four things: At first, 90% of eventless substitutional work in
a closed well-defined known discipline. Then 9% of concentration on the impossibility of some events within
this work, and 0.9% of invention derailing this ordinary game; and finally some chance. A mathematical
model of creativity, and especially of creativity in mathematics, has to seek functionalities of substitutions,
compositions and decompositions into a definite game with given rules and the opening of the game by
modification of the rules. So a method of creation will take in charge the large thinking of analysis and
synthesis, with at least these two levels (within a given closed system, and for changing systems), which
allows an activation of mathematical pulsation as the heart of a living system.

The mathematical pulsation [412] in mathematical life arrived at a moment when an opening of math-
ematical multiplicities was existing, such as analogously the multiplicity principle is working in a memory
evolutive system [295], [296]: two objects A and B in C are discovered to be isomorphic, whereas their con-
structions are done by gluings which are not comparable. Looking to A and its construction in A, someone
can forget some ingredients, reducing A to an object in D and adding new components, obtaining B in B.
This attitude needs to leave the environment A of A, to change it to B, and so to change our frame of
thinking and computing; ultimately A and B can merge into C.

The pulsative activity is supported by a personal historical scenery or context, feeding the intuition of
the mathematician with geometrical feeling, etc. The logic is only one particular technique to get proofs; the
question of foundations is one special way to pretend to render absolute the game of mathematical truths.
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In fact mathematical activity does not need foundation or logic; it has only to be an exact construction of
paths (= proofs) in mental mathematical spaces of activity.

When we are doing mathematics on the screen of an implicit historical scenery, we are mainly taking care
of exactness, i.e., of connectivity and continuity among gestures and associated transits, as it is controllable
by computation of exact sequences or exact squares, and then by homotopy and cohomology. The possibility
that by doing so we produce truths is in fact secondary; it is not exactly a good question for our internal
active pulsation: we are looking not for truths but for paths and proofs.

This activity works by writing and reading diagrams, by transformations of diagrams, in the sense of
Peirce. The effective transformations make use of 1) the incorporation of an object Z into a family or as a
fiber of a map f : Y Ñ X, as Z “ f´1txu, 2) the analysis of an object as a gluing of better known fragments,
as a manifold, 3) the construction of spaces of figures or diagrams of a given type, and of completion of such
spaces, and 4) the change of context and reduction to invariants elsewhere.

Any “mathematical thing” does not really exist; it has to be represented by an object C in a situation,
i.e., in a category C, that determines a category C{C, such as a set E determines the powerset PpEq to which
the study of its shape is reduced—for instance C{C but possibly another. (In fact to C we have to associate
a structured category (a topos, a monöıdal category, etc.). That set of gestures is naturally modeled by
category theory, that begins with Yoneda Lemma and the consideration of shapes.
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67.8 The Hegel Group Action on a Critical Concept’s Walls

Was die Wahrheit ist, ist weder das Sein noch das Nichts,
sondern dass das Sein in Nichts und das Nichts in Sein—

nicht übergeht, sondern übergegangen ist.
Ihre Wahrheit ist also

diese Bewegung des unmittelbaren Verschwindens
des einen in dem anderen: das Werden.

Gottfried Wilhelm F. Hegel: [453, I,Kap.1,C.a]

Summary. The present section presents a mechanism to catalyze that crucial step in a creative process
where the critical concept’s “walls” (referring to the common “box” metaphor) are identified and opened.
We propose a concrete but generic body of six concepts and the action of a group of transformations of
this body, a toolbox that should offer a set of operational perspectives on the critical concept’s walls. The
conceptual body and the group action are deduced from the first paragraphs of Gottfried Wilhelm Hegel’s
Wissenschaft der Logik. On this body, a group, called the Hegel group, acts and reflects some of the relations
and operations that are hidden in Hegel’s text. We then identify two technical themes from mathematical
music theory, the Escher Theorem and the concept architecture of forms and denotators, as instances of this
Hegel action. The Hegel action is applied to understand creative processes in two classical compositions—
Beethoven’s Hammerklavier Sonata op.106, and Liszt’s Mephisto Walzer—but also to the creation of a small
model composition.

– Σ –

67.9 Introduction

In [726], we have presented a model of musical creativity and given a number of examples, reaching from
music theory to musical composition and music technology. We shall give a short description of the model’s
main components in Section 67.10.3 of this chapter. Although those examples confirm the validity of the
model, there is one single component where the model is still abstract and far from operational in terms of
concrete actions to be taken. This component can be described using the common metaphor of the “box,”
which has to be opened in the creative process. In our model, the box is realized by what we call a “critical
concept”. The decisive step is then to identify the box’s “walls” and to open them. We are fully aware that
there is a major debate on creativity. Our position in this context can best be traced from our book [726], in
particular from Chapters 17, 18, 19, and 20. The present section however focuses on a specific methodology
of acting in a creative way, not on the general debate. This section also does not claim to be a philosophical
discourse, but we make use of a philosophical approach to delineate a general method to develop creativity
in a very practical way.

This decisive step is what remains quite abstract in our previous work. The present section presents a
mechanism that is designed to catalyze that step by offering a concrete but generic body of concepts and the
action of a group of transformations of this body, a toolbox that should offer a set of operational perspectives
on the critical concept’s walls. As was already pointed out in [726], the comprehension of such a mechanism
for creativity is not a sufficient condition for effectively producing creative results, it is only meant to be a
fairly important and useful procedure for creative actions.

We are deducing the conceptual body and the group action from the first paragraphs of Gottfried
Wilhelm Hegel’s Wissenschaft der Logik [453]. This might be a logical approach since Hegel’s initial dynamics
in his logical architecture is in fact strongly related to the concept of the concept, i.e., to the basic structure
of any concept. This is plausible since his incipit of thoughts claims to be the very beginning of the action
of thinking, and in this moment the very nature of conceptualization is at stake. We shall discuss Hegel’s
text and deduce the conceptual body we are proposing, a body built from six concepts which we for good
reasons call Hegel’s body, it is denoted by B. The group that acts on B will be called the Hegel group, it is
denoted by G. We give a precise definition of these objects in Sections 67.10.1 and 67.10.2.
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But it is of course also highly problematic to deduce a mathematical structure such as a group action
from Hegel’s text since the basic situation of that incipit is far from being given a shape that could presuppose
mathematical concepts for its description. We shall see that our mathematical concept framework idoes not
require set theory, group theory and similar conceptual architectures. We simply use these concepts because
they describe in their simplicity (which doesn’t require the full mathematical formalism) what Hegel implies
in his philosophical prose. It is our claim that Hegel implicitly uses some very simple operations that our
small group G (it is a Klein four-group) comprises. We leave it to philosophers to discuss our approach in
terms of what they consider being a valid argument with regard to Hegel’s thought dynamics. We are also
aware of the still problematic state of Hegel’s text, a fact that has been discussed through the history of
philosophy to the present, see for example [495]. However, we believe that our precise setup could help us
avoid those well-known rhetorical deformations of dialectic argumentation which has often generated nothing
more than ex post circumlocution of results generated by totally different methods.

Shouldn’t we also have a look at Hegel’s writings on musical aes-

Fig. 67.20. The visual representa-
tion of a gesture whose body is a
simple musical instrument space.

thetics? This section is however not focusing on Hegel’s ideas about mu-
sic, we only use his very primordial ideas about how we start thinking.
Logically speaking, these ideas are independent of later developments in
other Hegelian works. This is Hegel’s own approach: The very beginnings
of thought are set up in his initial sentences of [453].

Among the six basic concepts in the Hegel body, namely being,
nothing, space, time, fact, and gesture, the last plays a dominant role in
what follows. Although we should not presuppose higher mathematical
concepts here, we believe that it is advantageous to recall the precise
definition of a gesture which we have given in the mathematical theory of
gestures (in music) [720, 723] (see also Chapter 61), since in the examples
of this section this definition will be used.

This section is structured as follows: In Section 67.10.2 we introduce and discuss the Hegel body B and
the Hegel group G. In Section 67.11 we discuss the Hegel group action in the mathematical model of creativity
that refers to Yoneda’s lemma in category theory. Section 68 is dedicated to a Hegelian interpretation of
the concept architecture of forms and denotators which has been a backbone of mathematical music theory
and its computerized implementation. Section 67.13 discusses the application of the Hegel group action for
the understanding of creativity in musical compositions, such as the fanfare in Ludwig van Beethoven’s
“Hammerklavier” Sonata op. 106 and the incipit of Franz Liszt’s “Mephisto Walzer”. Section 67.14 presents
a small experimental composition created using the Hegel group action. Section 67.15 shortly discusses the
question concerning addition symmetries of the Hegel body. We should stress for non-mathematicians that
a mathematical category is a different concept from a philosophical category.

67.10 The Hegel Concept Group G
In this section we first analyze Hegel’s initial thought movements in his Wissenschaft der Logik [453,
I,Kap.1,A,B,C]. This will lead to a conceptual configuration built from six components, together with a
group action, introducing what will be called the Hegel group G. Our scope here is not to interfere with
philosophical debates, but to elaborate on a group structure that can be used in practical creative contexts.
Nevertheless, we believe that the Hegel group structure could help understand some of the inherent dynamics
in Hegel’s primordial thoughts.

67.10.1 Hegel’s Initial Thought Movement in Wissenschaft der Logik

All the following German quotations are taken from the modern German version of his writings, also refer-
enced in [453, I,Kap.1,A,B,C]. The English quotations are taken from [454].

The Hegelian system of logic starts with these words:
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A. Being (Sein)

Being, pure being, without any further determination. In its indeterminate immediacy it is equal
only to itself. It is also not unequal relatively to an other; it has no diversity within itself nor any
with a reference outwards. It would not be held fast in its purity if it contained any determination or
content which could be distinguished in it or by which it could be distinguished from an other. It is
pure indeterminateness and emptiness. There is nothing to be intuited in it, if one can speak here of
intuiting; or, it is only this pure intuiting itself. Just as little is anything to be thought in it, or it is
equally only this empty thinking. Being, the indeterminate immediate, is in fact nothing, and neither
more nor less than nothing.

Sein, reines Sein,—ohne alle weitere Bestimmung. In seiner unbestimmten Unmittelbarkeit ist es nur
sich selbst gleich und auch nicht ungleich gegen Anderes, hat keine Verschiedenheit innerhalb seiner noch
nach aussen. Durch irgendeine Bestimmung oder Inhalt, der in ihm unterschieden oder wodurch es als un-
terschieden von einem Anderen gesetzt würde, würde es nicht in seiner Reinheit festgehalten. Es ist die reine
Unbestimmtheit und Leere. Es ist nichts in ihm anzuschauen, wenn von Anschauen hier gesprochen werden
kann; oder es ist nur dies reine, leere Anschauen selbst. Es ist ebensowenig etwas in ihm zu denken, oder es
ist ebenso nur dies leere Denken. Das Sein, das unbestimmte Unmittelbare ist in der Tat Nichts und nicht
mehr noch weniger als Nichts.

The pure being is pure indeterminacy and emptiness. Emptiness is a spatial category. This is confirmed
by the statement “to be thought in it”, “it”, the being. The nothingness is a spatial insight: penetrating
pure being results in recognizing emptiness, nothingness. The preposition “in” is opposed to “out”. Both
refer to a boundary of a region that we cannot understand but in a spatial way. This spatial understanding
is omnipresent in conceptual architectures, such as mathematical set theory or process theory.

Therefore, to the concept of being we have to add the concept of a generic space. Such a space cannot
be the concrete physical space, at this stage it is a germ of spatiality, nothing more. But it is a conceptual
component of being and nothingness. And it is not only a being out there, it is the action of thinking that
reifies “being”, it is neither object nor subject. These are categories to be introduced later in Hegel’s system.

B. Nothingness (Nichts)

Nothing, pure nothing: it is simply equality with itself, complete emptiness, absence of all determi-
nation and content—undifferentiatedness in itself. In so far as intuiting or thinking can be mentioned
here, it counts as a distinction whether something or nothing is intuited or thought. To intuit or think
nothing has, therefore, a meaning; both are distinguished and thus nothing is (exists) in our intuiting
or thinking; or rather it is empty intuition and thought itself, and the same empty intuition or thought
as pure being. Nothing is, therefore, the same determination, or rather absence of determination, and
thus altogether the same as, pure being.

Nichts, das reine Nichts; es ist einfache Gleichheit mit sich selbst, vollkommene Leerheit, Bestimmungs-
und Inhaltslosigkeit; Ununterschiedenheit in ihm selbst.—Insofern Anschauen oder Denken hier erwähnt wer-
den kann, so gilt es als ein Unterschied, ob etwas oder nichts angeschaut oder gedacht wird. Nichts Anschau-
en oder Denken hat also eine Bedeutung; beide werden unterschieden, so ist (existiert) Nichts in unserem
Anschauen oder Denken; oder vielmehr ist es das leere Anschauen und Denken selbst und dasselbe leere
Anschauen oder Denken als das reine Sein.—Nichts ist somit dieselbe Bestimmung oder vielmehr Bestim-
mungslosigkeit und damit überhaupt dasselbe, was das reine Sein ist.

The concept of nothingness initiates being complete emptiness, again a spatial component of nothing-
ness, shared with being. Being was emptiness when penetrated in the thinking movement, whereas nothing-
ness is emptiness from the beginning. The conception, “Anschauen oder Denken”, or “intuition of thought”,
determines it and therefore generates its being, the empty thought of nothingness generates its being. Noth-
ingness is a being, and in fact, because it is emptiness, it is the pure being where Hegel started his discourse.
What is important here is that both, being and nothingness, are created from each other by a movement of
thoughts. Reification of each one happens through a movement of thought. This will be made explicit in the
following paragraph in Hegel’s text:
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C. Becoming (Werden)

Pure Being and pure nothing are, therefore, the same. What is the truth is neither being nor
nothing, but that being—does not pass over but has passed over—into nothing, and nothing into being.
But it is equally true that they are not undistinguished from each other, that, on the contrary, they
are not the same, that they are absolutely distinct, and yet that they are unseparated and inseparable
and that each immediately vanishes in its opposite. Their truth is therefore, this movement of the
immediate vanishing of the one into the other: becoming, a movement in which both are distinguished,
but by a difference which has equally immediately resolved itself.

Das reine Sein und das reine Nichts ist also dasselbe. Was die Wahrheit ist, ist weder das Sein noch das
Nichts, sondern dass das Sein in Nichts und das Nichts in Sein—nicht übergeht, sondern übergegangen ist.
Aber ebensosehr ist die Wahrheit nicht ihre Ununterschiedenheit, sondern dass sie nicht dasselbe, dass sie
absolut unterschieden, aber ebenso ungetrennt und untrennbar sind und unmittelbar jedes in seinem Gegenteil
verschwindet. Ihre Wahrheit ist also diese Bewegung des unmittelbaren Verschwindens des einen in dem
anderen: das Werden; eine Bewegung, worin beide unterschieden sind, aber durch einen Unterschied, der
sich ebenso unmittelbar aufgelöst hat.

Hegel starts with a seemingly contradictory statement: Being and Nothingness are the same. And in
fact, he contradicts this statement some lines later, saying that “they are not the same”. This contradiction
can be resolved if we view Hegel’s statements as assertions of aspects of being and nothingness, not of their
full “truth”. We might use a geometric metaphor to illustrate this understanding. If one is positioned on
a Möbius strip, it is true that it has two sides, the one where one stands, and the opposite one. But one
knows that a Möbius strip has only one side. The opposite side is just a part of the front side. This apparent
contradiction is resolved when one realizes that the other side is a local statement, while the sameness of the
two sides is a global statement: One may walk from the first to the second local side on a global trajectory.

In this sense, sameness of being and nothingness is a global statement, while their difference is a local
one. Being and nothingness are two local aspects of the same global concept. Hegel offers a clear method to
perform the trajectory between being and nothingness: It is the movement that was already alluded to in
the previous paragraphs when Hegel described the movement between being and nothingness in the thinking
action. Now, he makes this movement explicit: “Their truth is therefore, this movement of the immediate
vanishing of the one into the other: becoming.” With this, to the basic concepts of being, nothingness, and
space, Hegel adds the next one: becoming. It is however a delicate conceptualization since it is that movement
of thought that has no subject or object yet; it is pure action. We therefore propose renaming this concept
and calling it “gesture”, a basic action that is not yet embedded in the dichotomy of object/subject.

In might seem that we have introduced the concept of a gesture in an arbitrary way. Let us make clear
why this impression is wrong. The rationale for our conceptual choice was not to change Hegel’s terminology,
but first of all to solve the apparent (onto)logical contradiction between Being and Nothingness. Our discourse
has in fact solved the contradiction by the introduction of a new concept (gesture) as described above. And
it has done so without leaving classical logic in favor of some more exotic logics, such as intuitionistic, fuzzy
or paraconsistent variants. Let us also remark that gestures are generically useful in artistic utterance, but
see Sections 67.13.3, 67.13.4, and 67.14.

The text is moreover also specific about an aspect that every action seems to embody: time. Hegel
writes “but that being does not pass over but has passed over”. This reveals a time category where present
and past are distinguished. Thus, we have to add the concept of time to the space concept in Hegel’s setup.
Finally, the statement of “being passed over” specifies a further conceptual aspect, namely that after the
gestural action is established, there is a resulting fact, the transition of being into nothingness, and vice
versa.

Summarizing, we have collected a sixfold conceptual anatomy, grouped into three pairs of corresponding
concepts: Being/Nothingness (S{N for German Sein/Nichts), Space/Time (R{Z for German Raum/Zeit),
and Gesture/Fact (G{F for German Geste/Faktum). These six conceptual “elementary particles” are shown
in as vertices of an octahedron in Figure 67.21; we shall call them fermions in an allusion to elementary
particle physics, where fermions are the particles that represent matter—as opposed to forces, which are
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represented by particles that are called bosons. We are using the famous Borromean rings in this represen-
tation to indicate that these six elementary concepts are not independent from each other. They build an
irreducible body of concepts, which we call the Hegel body, and denote as a set (by abuse of language, since
mathematical formalisms should not matter yet) by B “ tS,N,R,Z,G, F u.

Fig. 67.21. Hegel’s concept architecture, the Hegel body B “ tS,N,R, Z,G, F u, and the G group action, where the
rotational axes answer the questions: how, what, where?

67.10.2 The Implicit Group Structure

The evident symmetry of the Hegel body B is not by case, and it is not our invention, but results from
Hegel’s approach as discussed above. In fact, the crucial movement between S and N is defined by the
gestural becoming, G, that transforms S into N and vice versa. In this movement, there is also the result of
facticity, F , that terminates the movement and puts it into its temporal past tense. This transformation may
be interpreted as a symmetry of B, namely the 180˝ rotation around the axis spanned by G and F , which
we denote by G@F . In Figure 67.21, this axis corresponds to the question “HOW?”; its rotational action
answers the question of how S is transformed into N and vice versa, namely by the gestural action. Using
our physical metaphor, the pair G@F plays the role of a boson, a force particle that moves S into N and
vice versa. This interpretation is remarkable since it gives to pairs of fermions the role of bosons. In other
words: The Hegel body B is simultaneously a body of material and of forces. The fermions are moved by
bosons, and the bosons are generated by pairs of fermions. This is a philosophically essential proposition as
it suspends the question of what is more elementary: movement or moved things, this is another justification
of the Borromean ring visualization.

But let us first complete the transformational setup defined by the bosonic actions: We have three
actions, each defined by a bosonic pair of fermions,
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• the 180˝ rotation G@F around the axis G—F , yielding the permutation pSNqpRZq
• the 180˝ rotation R@Z around the axis R—Z, yielding the permutation pSNqpGF q
• the 180˝ rotation S@N around the axis S—N , yielding the permutation pRZqpGF q

Together with the identity Id (all of B remains fixed), this defines a group

G “ tId,G@F,R@Z, S@Nu
of permutations of B. It is evident that this commutative group verifies x2 “ Id for all x, and x ¨ y “ z for
any two different x, y ‰ Id, where z is the third non-identity. For example, G@F ¨R@Z “ S@N . This group
is isomorphic to the Klein four-group K4, but we stress the equal roles of all three generators. This group of
permutations is called the Hegel group. The orbits of the group’s action are exactly the bosonic pairs.

The group structure extends the semantics of the original Hegel context, where only the action of G@F
on S,N are explicitly thematized. Let us therefore interpret the complete action

G ˆ B Ñ B.

1. G@F : S ú N
This is Hegel’s original movement of becoming, which he later specifies into ceasing-to-be S ù N and
coming-to-be N ù S.

2. G@F : R ú Z
The gestural operation maps time to space via the time-parametrization of a gesture (see also the
mathematical theory of gestures [720] or Section 61.6.1). The fact as a result of a gesture recreates
the time that has produced the spatial points. Let us recall here a significant statement by the great
mathematician Henri Poincaré in [852]: Localiser un objet, cela veut dire simplement se représenter
les mouvements qu’il faut faire pour l’atteindre;(...) il ne s’agit pas de représenter les movements eux-
mêmes dans l’espace, mais uniquement de se représenter les sensations musculaires qui accompagnent
ces movements et qui ne supposent pas la préexistence de la notion d’espace.

3. R@Z : G ú F
The time as a generator of spatial points (points as results of the pricking gesture) is embodied in the
gestural movement that creates its factual results. Conversely, facts qua spatial localizations are only
thought of as endpoints of a time line of a gestural movement.

4. R@Z : S ú N
Being as a thinking activity in time is annihilated to nothing when fixed in to spatial points. Conversely,
points when rethought as results of the pointing action recover their temporal origin.

5. S@N : G ú F
A gesture, when taken as a being, is transformed into its resulting fact which is the nothingness that
terminates the gesture. Conversely, a fact as a nothingness, when thought of as a result of an action,
recovers its generating gesture.

6. S@N : R ú Z
Time, as the movement of being (recall Hegel’s becoming), when frozen to nothingness, generates spatial
points, endpoints. Conversely, if a point in its nothingness (it has no inner substance, so to speak) is
rethought of what it brings to be, its being recreates time where the point was moved to its present
location. It seems adequate to recall here Gurnemanz’s lesson to Parsifal: Du siehst, mein Sohn, zum
Raum wird hier die Zeit.

It is evident that all these operations relate to each other, and this is essential; they are not independent
concepts, but define the irreducibility of the Borromean architecture and, in fact, of the Hegelian setup.

Example 86 Before we investigate more in depth the implications of this group action with regard to the
creativity process, it may be useful to give a first elementary musical example of the G action. Let us look at
the primitive action that a musician has to perform to produce a sound, hitting a key on the piano, singing
a note, or blowing a tone on a trumpet. Such an action has three parts: The initial gesture moving out
from the nothingness of silence to the sound production, then the sound as a product, as a being that has a
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factual reality, and third the termination of the sound production, the exiting gesture taking back the fact to
nothingness. This is exactly what the operation R@Z “ pSNqpGF q does, it permutes nothingness and being
as well as gesture and fact. The operation R@Z first maps N ù S and G ù F , creating the factual being
of the sound. Then, applied in the other direction, it takes back S ù N and F ù G, this corresponds to
the formula pR@Zq2 “ Id. The orbit of R@Z is what the creation of a sound realizes in terms of Hegelian
action.

67.10.3 The Conceptual Box Structure

The box structure of the Hegel body B is shown in Figure 67.22. The box (a cube) is the dual of the
octahedron defined by the six conceptual components of B. Each component corresponds to a wall of the
box. This is a perfect visualization of the principles of the creative process which we have discussed in [726].
Let us give a very short summary of such a process:

1. Exhibiting the open question
2. Identifying the semiotic context
3. Finding the question’s critical sign or concept in the semiotic context
4. Identifying the concept’s walls
5. Opening the walls
6. Displaying extended wall perspectives
7. Evaluating the extended walls

The metaphor of a concept’s walls is now perfectly realized

Fig. 67.22. The dual of Hegel’s concept
octahedron is a cube, whose six walls are
associated with Hegel’s basic concepts.

by the box of Hegel’s body, which we may call Hegel’s box. This
coincidence is what we shall take as the starting point of our ap-
proach to creativity, namely that the critical action of identifying
a concept’s walls is made concrete by Hegel’s box. This means that
we claim that the Hegel action G ˆ B Ñ B enables a machinery
that helps identify a concept’s walls.

To realize this plan we however have to understand why the
action GˆB Ñ B is a tool that could help understand and eventu-
ally soften a critical concept’s walls. The first observation to this
end is that in Hegel’s approach, when discussing being and noth-
ingness, he deals with a conceptual architecture that is extremely
elementary. In his words, it is about emptiness, about the very be-
ginning of conceptual thinking. This means that what he proposes,
and what we have drawn from his idea, is a conceptual framework
that is not yet loaded with any specific architectural details; it is

the empty canvas of conceptual construction that we see in Hegel’s text. This is the rationale that motivates
us to use this conceptual canvas to investigate any critical concept in a creative process’s crucial step of wall
identification.

This means that using the Hegel action in the analysis of a critical concept, one might be able to identify
its walls. What we called walls in the theory of creativity [726] are the concept’s properties, characteristics,
and specificities that circumscribe it in a more or less explicit form. In other words, what defines its inner
structure, but also what delimits it from other concepts, what it is not. Therefore, using the very basics of a
concept’s conception (yes, this is circular, but this is essential in the beginning of conceptual organization),
one should get supporting machinery dealing with the identification process of walls.

In what follows we will investigate the Hegel action from two perspectives: First, we reconsider the
mathematical model of creativity as described in [726, 19.2] and [32]. Second, we analyze the architecture of
forms and denotators, which have played a major role in the conceptual framework of mathematical music
theory.



67.12 The Hegel Body B in the Concept Architecture of Forms and Denotators 1073

67.11 The G Action on the Yoneda Model of Creativity

Recall that in category theory, Yoneda’s idea was to define a functor Y onC : C Ñ C@, where C@ is the
category of set-valued presheaves over the category C, by assigning to each object A of C a presheaf @A :
Copp Ñ Ens defined by @ApXq “ X@Ap“ CpX,Aqq and for each morphism f : A Ñ B in C a natural
transformation @f : @A Ñ @B given by @fpXq : X@A Ñ X@B : g ÞÑ f ˝ g. Yoneda’s Lemma says that
Natp@A,F q „Ñ F pAq “: A@F , for every object A of C and every functor F in C@. This means in particular
for F “ @B that A and B are isomorphic if and only if their functors @A and @B are so. We may therefore
replace the category C by its Yoneda-image in C@.

Although Yoneda’s Lemma enables the replacement of a given category C by its Yoneda-image in
C@, the functor @A must be evaluated on the entire category C to yield the necessary information for its
identity. The creative moment comes in here: could we not find a subcategory A Ă C such that the functor
Y on|A : C Ñ A@ : A ÞÑ @A|Aopp is still fully faithful? We call such a subcategory creative, and it is a major
task in category theory to find creative categories which are as small as possible. One may even hope to find
what we call an objectively creative subcategory for a given object A in C, namely a creative subcategory A
such that for this given object A in C there is a creative diagram DA in A whose colimit C is isomorphic
to A. Intuitively, a colimit of a diagram of spaces is obtained by gluing them along common subspaces; it
is a generalized union operator. Taking a colimit is a natural condition since the functor @A defines a big
diagram whose arrows are the triples pf : X Ñ Y, x P X@A, y P Y@Aq with y ˝ f “ x. The colimit object C
of such a diagram would ideally replace the functor @A by a unique isomorphism from C to A.

In the context of the Yoneda Lemma with its creative subcategories, the generic model of creativity
described in 67.10.3 looks as follows:

1. Exhibiting the open question: understand the object A
2. Identifying the semiotic context: this is the category C where A has been identified
3. Finding the question’s critical sign or concept in the semiotic context: this is A
4. Identifying the concept’s walls: this is the uncontrolled behavior of @A
5. Opening the walls: find an objectively creative subcategory A
6. Displaying extended wall perspectives: calculate the colimit C of a creative diagram
7. Evaluating the extended walls: try to understand A via the isomorphism C

„Ñ A

Here is the correspondence between the Yoneda setup of creativity and the Hegel body: The pairing
of G{F corresponds to the pairing object functor @X/X. The object is a fact, an abstract point in the
category C. The corresponding functor @X enriches the factual object by the entire system of arrows that
are gestural pointers to X. The bosonic action R@Z maps F to G, i.e., X to @X. Moreover, it maps S to
N in the sense that it switches from the object’s identity, its simple being S, to its nothingness, its negation
in the category’s outside: all other objects that become the domains of the functor’s arrows to X. On the
other hand, the movement from @X to the colimit C takes the gestural aspect back to its factual reduction,
to an object C. Finally, the negation N comes back to S as a negation of the negation, the object C that
re-instantiates X from its negational functor.

67.12 The Hegel Body B in the Concept Architecture of Forms and Denotators

Before we discuss the form and denotator concept architecture it is important to trace back this framework
to the epistemological roots which define it as an application of the semiotic concept architecture set up
by D’Alembert and Diderot in their Encyclopédie, see [48, 238] and Section 6.1. In their approach, an
encyclopedia must comprise three characteristics: unity, completeness, and discoursivity. This means that it
must realize a philosophical principle of unified presentation of knowledge. It must represent all knowledge
(what we expect from a dictionary), and it must enable a discourse, a relational setup to compare its
instances, the latter being given by the lexicographic ordering in a dictionary. This triple characteristic was
interpreted in our form and denotator architecture by the following three characteristics: Unity was realized
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by the principle that concepts refer to other concepts, a recursive typology. Completeness was realized by a
complete set of types of references. Discoursivity was realized by linear order and recombination of concepts.

Given these principles, a denotator is a conceptual instance in a space, called form. We refer you to
Chapter 6 for details and just recall the relevant features here. A denotator has coordinates, i.e., denotators to
which it refers, much as its form has coordinator forms to which it also refers. This is the recursive principle. It
is the gestural aspect of this architecture. Moreover, the spatial aspect is covered by the referential typology:
in topos theory, it comprises the three basic space types of limit, colimit, and powerset. Time is realized
in the trajectory of gestures you have to perform to reach a denotator’s recursive ingredients. Facticity is
obtained when you reach the leaves of the denotator’s (and the form’s) recursive tree. Being is realized by the
denotator’s entire instance, while nothingness is realized by the linear ordering within the denotator system:
the relation to what a denotator (or form) is not, what comes before and what comes after that instance.

This makes evident that the denotator and form concept architecture, which is the most general existing
approach to precise conceptualization, and which has been implemented in music software with great success
(see [739]), complies perfectly with the Hegel body B. It is an open question to understand the Hegel action
G in this situation. However, the exchange of time and space could be realized using the equivalence of
breadth-first and depth-first search in forms that are built from iterated limits.

67.13 The Usage of G for the Dynamics of Creativity

The usage of the Hegel action for the dynamics of creativity is a multiple one. On the one hand, we can
conceive it as a diagnostic tool without its necessarily acting as a generator of creative extensions. On the
other hand, it can be thought of as a machine (though not a dead algorithm) that enables creative extensions.
We want to discuss these two directions which, of course, are not exclusive: a good diagnosis can induce a
creative extension, and the extensional spectrum can reveal quite a bit about the “patient’s” health.

67.13.1 Two Preliminary Examples

Example 87 Let us give a first example of a diagnostic functionality of the Hegel action: Einstein’s invention
of a multiple time concept. Within our creative process scheme as displayed in Section 67.10.3, the critical
concept is physical “time”, time in the semiotic context of physics—not the primordial time concept which
is part of the Hegel body. Let us take this concept as it was given before Einstein’s in(ter)vention. When we
inspect the walls of S and of N , it turns out that this concept is a singleton. It has no other copies out there,
i.e., its non-being N is empty. In terms of grammar it is a singular being. Taking time and throwing it out
to N by the transformation G@F yields nothingness. This diagnosis generates the question “Why only one
time?” Is there a physical reason for supporting this singularity of the concept? And Einstein’s answer was
that physical time could exist in a multiplicity of times, one for every inertial system, and that the gesture
of throwing one such time instances to its nothingness in another inertial system would be realized through
the famous Lorentz transformation.

Example 88 A second diagnostic example is the invention of the 3M Post-It, a creative process that has
been analyzed in detail in [726, Ch.4]. Here the critical concept is “adhesive”; its inventor, 3M chemist Dr.
Spencer Silver, had created a substance that did not glue as required, but only “half of it”. This time the
gestural wall will be inspected: What are the concept’s components (recall the referential characteristic of
concepts discussed in Section 68, as suggested by D’Alembert and Diderot)? One of them is that an adhesive
must glue. This gluing concept’s architecture in turn has a way of being that in its becoming has no further
reference: it is a final fact, i.e., either gluing or not gluing, tertium non datur. This was exactly the point
of the diagnosis that Dr. Silver learned from his friend Arthur Fry: There is no deeper reason to terminate
the concept’s reference tree on that final “glue” as opposed to “not glue”. Gluing by 50% was introduced
as a deeper conceptual reference: gluing with a percentage. The commercial success of this new adhesive
proved that this creative conceptual extension was the right thing to do. In terms of denotator theory, the
conceptual component of gluing that was given as a Boolean value was replaced by a real number value.
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Evidently, the present state of the art is far from what one could call an expert system. But this is
not surprising since the full meaning of the Hegel action must be elaborated on with respect to a variety of
semiotical contexts for creative processes. However, it seems evident that a number of core questions around
a concept can be built to open conceptual walls more easily.

67.13.2 The Challenge: Creating a Spectrum of Conceptual Extensions

In [726], creativity has been described as a process that takes place in a specific semiotic context. And the
result of such a process is viewed as an extension of the given semiotic body. Creativity adds expression,
signification and content. It is not a formal combinatorial game. Such an extension entails several critical
aspects:

1. It need not be a successful extension. For example, adding a color to mathematical symbols would very
probably not solve any mathematical problem. Therefore the semiotic extension might be useless for
the time being, but, in the long run, it might turn out to be a good move. This means that creativity
should also be judged from the global perspective of the evolution of a semiotic system. This resembles
biological evolution, where a local change might show its advantage or disadvantage only after a longer
period of further evolution.

2. The conceptual extension, following the Hegel action, say, need not be unique. Opening walls might create
an entire “spectrum” of conceptual extensions which need not contradict each other. For example, the
recent extension of counterpoint theory as described in [16] contains a variety of conceptual extensions
of what are consonances and dissonances within the 12-chromatic pitch class system, but simultaneously
extends to microtonal pitch systems.

3. Applying the Hegel action to a critical concept C is a manifold endeavor. For every one X of the
six walls, one may create a conceptual extension CpXq. If one applies several extensions in a certain
order, CpX1, X2, . . . Xnq, say, it is probably not true that another extension following a permuted order,
CpXπp1q, Xπp2q, . . . Xπpnqq, would yield the same result.

Despite these general questions we should present a more concrete example of a conceptual spectrum created
following the Hegel action. Our example relates to the operation S@N “ pRZqpGF q. In mathematical gesture
theory, as initiated in [720, 723], one considers hypergestures, i.e., gestures h : Γ Ñ Δ

ÝÑ
@X starting at the

digraph Γ (their skeleton) and targeting the topological category Δ
ÝÑ
@X of all gestures of skeleton Δ which

target the topological category X. The Escher Theorem (see Section 62.1.2) then states that we have an
isomorphism of topological categories Escher : Γ

ÝÑ
@Δ

ÝÑ
@X

„Ñ Δ
ÝÑ
@Γ

ÝÑ
@X. This means that we may exchange

the roles of the two skeleta Γ and Δ. In other words: the gesture h which maps curve parameters to gestures
qua points in Δ

ÝÑ
@X can be reinterpreted as a gesture where the points now become gestures and vice versa.

This is exactly what the symmetry S@N does: It exchanges G and F . And it also exchanges R and Z,
which in the Escher setup makes sense since the space of gestural facts in Δ

ÝÑ
@X is transformed into the

time parametrization of gestures of Δ
ÝÑ
@Γ

ÝÑ
@X. The Escher procedure therefore enables us to reinterpret

gestures within concepts in permuted ways, and thereby create new meanings. For example, a hypergesture
defined by a line of circles can be reinterpreted as a hypergesture defined by a circle of lines. This can yield a
completely new understanding of a given concept. In music theory, first species counterpoint can be viewed
as a circle that connects (within the pitch class circle) the line of the cantus firmus to the line of discantus.
But the Escher permutation of roles would view this counterpoint as a time line of intervals, and therefore
as a completely different interpretation of what counterpoint means.

The Escher Theorem is an extremely explicit key to the Hegel action using the S@N operation. It
would be interesting to search for Escher-like theorems which relate to the other two Hegel actions.

67.13.3 Escher’s Theorem for Beethoven’s Fanfare in the “Hammerklavier” Sonata op. 106

We want to illustrate the creative movement as it can be interpreted using the above Escher technique as an
expression of the S@N operation with a concrete example: the initial fanfare of Beethoven’s Hammerklavier
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Sonata op. 106, see Figure 62.11. The fanfare’s rhythmical structure and its gestural interpretation have
been discussed in Section 62.4.5.

The creative action takes place when Beethoven’s construction exchanges the gestural and the factual
roles, following the methodology described above; but see also Figure 67.23. The factual A Ñ B becomes the
gestural part in ρ1, whereas the gestural movements A Ñ ρpAq and B Ñ ρpBq become the factual parts. This
is the Escher isomorphism, applied to ρ, i.e., ρ1 “ Escherpρq. A simple topological deformation generates the
second hypergesture σ. Observe that this latter hypergesture cannot be generated by direct deformation of
ρ since it has a different orientation.

Fig. 67.23. The initial rhythmical hypergesture ρ of the fanfare is transformed into the hypergesture ρ1 via the
Escher isomorphism, and then deformed into the target hypergesture σ of the fanfare.

The Hegelian action underlying Beethoven’s hypergesture exchanges the roles of duration and onset
in the sense that a repetition of a halting gesture becomes the halting of a repetition gesture. This truly
Escherian flipping movement gives the fanfare its full power. Although this example is a microscopic structure,
it proves that creativity can have its germinal force in elementary compositional structures.

67.13.4 The Rotation S@N as a Driving Creative Force in the Incipit of Liszt’s Mephisto
Walzer No.1

An example of the rotation S@N “ pRZqpGF q can be found in the structure of the Mephisto Waltzer
No.1 by Franz Liszt. The beginning of this composition presents a gesture of harmonic enrichment by the
addition of fifths that attributes a harmonic role to the initial musical figure (a repeated tone E introduced
by an acciaccatura D7). The pedal note, E, is followed by a sequence of concatenated fifths in an accelerated
rhythm that highlights this process. Moreover, a second compositional gesture transforms the first theme
into a second one, an intensely used sequence that develops within the score.

In this composition, rhythmical and harmonic movements are linked in an inseparable way. In the first
bar we have the silence, a kind of mental preparation of the initial gesture. In the Hegel group interpretation,
this silence could be viewed as nothingness before being. Nothingness becomes then an integral part of the
artistic work.

The initial gesture consists of an ostinato rhythm γ “ D7 ´ E ´ E ´ E, where the last two E notes are
played as an echo of the initial one, see Figure 67.24. The rhythm is presented firstly in the extended form
γ0 “ D7 ´ E ´ E ´ E ´ E ´ E ´ E. In measures 4-5 we have the reduced sequence γ “ D7 ´ E ´ E ´ E,
obtained from γ0 by an operator of horizontal reduction, h : γ0 ÞÑ hpγ0q “ γ. The following measures, 6, 10,
and 12, present the ostinato γ0, together with its second half γ1 “ E ´E ´E (a second horizontal reduction
γ1 “ E ´ E ´ E “ h1pγ0q) on a superposition of fifths: B,F 7, C7. This kind of harmonic extension results
from an operator of vertical completion of the fifth sequence. Measure by measure, we have a concatenation
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Fig. 67.24. A piano roll representation of measures 2-28 of Liszt’s Mephisto Walzer No.1. Measures 1 and 29 are
omitted since they are both tacet and surround the music by a nothingness of silence.

of sequences γ0, γ, and γ1. The factual harmonic fifth sequence in the pitch class space Z12 is deployed as a
time gesture by the ostinato rhythm. Therefore the first part of the creative process consists of an extension
of the initial gesture in time, contextualizing the harmonic environment in the gesture γ. This realizes the
Hegel transformation S@N “ pFGqpRZq.

Let us shortly discuss the harmonic display here. Recall that diatonic scales 



 
 







   

Fig. 67.25. The ghost
note C in measure 28.

are defined using six consecutive fifths. This harmonic structure is a spatial one in
the space Z12 of pitch classes. Although a sequence of fifths has already a temporal
potentiality, the analyzed movement is still spatial (e.g. T 7pEq “ A, where T 7pxq “
x`7 is the fifth transposition). In our case, the measures 2-14 show a first ascending
fifth sequence E´B´F 7´C7, followed by a second descending sequence A´D´G,
yielding a complete total of G ´ D ´ A ´ E ´ B ´ F 7 ´ C7 that defines D-major.
Liszt has succeeded in defining the harmonic basis of D-major in a rhythmically
triggered gesture. In measure 18, the chord with dynamics “f marcato” is composed

as a symmetrical part around E, i.e., D´A´E ´B ´F 7. The couple E ´E is then the inferior and superior
limit of this chord. This again confirms the inversion symmetry of D-major around E.

Following the key signature (three 7), the pedal note E could appear as the dominant of A-major.
However, this is not the case, since A-major does not appear until measure 111. In measures 2-27, E plays
the role of the second degree of D-major. Then, in turn, in measure 28 D appears as the second degree of
C-major; in fact, almost unexpectedly appears a C in measure 28 that is confirmed in the following measures
30-34. The B of the left hand (measure 27) moves towards C (measure 28) as a leading tone. This movement
suggests the effect of a “ghost note” on the superior melodic line: D Ñ C, see Figure 67.25. Summarizing,
after the long preparation of E Ñ D as II Ñ I in D-major, we have another interpretation (this time
virtual) of II Ñ I as D Ñ C. Tone E has still a relevant role for C-major, being the symmetric pitch of the
tonic with respect to the C-major inversion symmetry around D, and it continues to act as a pedal in the
reprise of the initial gesture (measure 35).

In measures 17-18, the rhythmical and harmonic developments are completed by a melodic creation.
It is the birth of a melodic motive δ “ D ´ A ´ E ´ A (with an initial rest rhythm, and a sequence of
quaver-quaver-crochet-quaver). In Figure 67.24 the notes of δ and their rarefaction are highlighted by red
lines. Measures 20-26 present a progressive rarefaction of this fragment. Gesture δ will be then modified by
transposition and variation of intervals in measures 93-94, generating δ1, see Figure 67.26. In measure 97 we
will have a fusion of the head of γ (D7 ´ E) and the tail of δ1. This hybrid is followed by a new sequence of
fifths, where E is effectively the dominant of A. A new version of δ, named δ2, affirms clearly the tonality of
A-major.
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Fig. 67.26. In the Mephisto Waltzer by Franz Liszt, the first gesture γ, is progressively repeated and translated in
superposed fifths. The main theme, δ, comes from these fifths played this time melodically. A transition gesture with
the head of γ and the tail of δ leads to δ1 and then to δ2, the varied theme in A-major.

Finally, in measure 29 we have the silence, symmetrically with the silence in measure 1. It is a gesture
from the nothing to the being, and back to the nothing of silence, full of potentiality and tension. Rarefaction
of tones corresponds to a dilation of rhythmical figures.

Summarizing, in the incipit of Mephisto Walzer, two creative gestures are evident:

1. rhythmic-harmonic deployment of γ0 and its two parts γ, γ1 in the circle of fifths of D-major,
2. birth of δ through a deforming gesture of γ within its repositioning on the circle of fifths (rhyth-

mic/harmonic variation).

Thus, the rhythmic structure unfolds through time the spatial relations of harmony. The factuality
of abstract points is unfolded in a gestural transformation in time, realizing the Hegelian creative action
S@N “ pRZqpGF q. The rhythm is the generative force of the transformations R Ñ Z, F Ñ G. The action
of deforming γ into δ is a movement generated by the rhythm and by the mapping of the circle of fifths into
time.

67.14 An Experimental Composition

Let us try to compose a little musical piece using the Hegel model. It will be obtained, via S@N transfor-
mations, as a little melody from an elementary gesture, see Figure 67.27.

The creativity model that we have defined can potentially describe all mechanisms of artwork produc-
tion. In the previous examples, the interest of analyzing pages of Beethoven and Liszt was given by the
evidence of the construction principle. In these examples is not only evident the artistic “fact” but also
the path of its creation. Mephisto Waltzer does not start with the fifths already superposed and with the
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Fig. 67.27. The little composition The Hegel Song has been composed starting form an elementary gesture and its
variations constructed via the rotation S@N “ pRZqpGF q. This composition shows that fundamental compositional
processes, variation and thematic development, can be easily obtained using the Hegel action.

δ theme that dominates, but Liszt prepared the entry of the main theme, revealing the very mechanism of
construction.

One could observe that, sometimes, the artist can produce an artwork without making all steps explicit:
It is the case of “sudden inspiration.” This case also complies with our creativity model since inspiration
could be correlated to a time compression of steps within the Hegel scheme. These steps, even reduced to
instants, must be defined.

A score contains a musical fact. Musicians’ educated hands can realize such a fact via appropriate
gestures. Playing fingers are like a dancer, who moves from one point to another: Dance is not characterized
by the targeted points, but by the trajectory to reach them. Recall Poincaré’s citation in Section 67.10.2.
Gestures define the dynamics to reach these points. The choice of time and space (meter/tempo and keys),
explicit in the musical score, contains all the required information to allow the hands’ movements. Then, if
we want to create a different musical fact, we may deform the used gesture, i.e., connecting it through a
hypergestural line to a new gesture. A way to deform a gesture is by changing meter/tempo (Z) and notes
(R). Time is the driving force, while notes are the ‘target’ and thus the factual endpoints of any gesture. If
a gesture terminates in an endpoint, the following gesture—that germinates from the preceding one at this
endpoint—is connected to it via a hypergesture relation.

In our example of a little composition, realized using the Hegel group scheme, we will use meter/tempo
and pitch indications to allow the pianist to create and annihilate the small beings commonly called “mu-
sical phrases.” It is true that a lot of music is written with meter/tempo and pitch; however, in this case
we intentionally start from a primitive gesture, named γ, without any precise meter/tempo indication, to
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represent the zero level of the pianist’s action. A sequence of rotations around the S—N axis will generate
the permutations pRZq and pGF q, and we will obtain a little melody.

In the case of a pianist—as already mentioned in the discussion of Liszt’s Mephisto Walzer, where two
notes are hit in the beginning—the primitive gesture here, γ, is a simple hitting of a key with one finger.
This maps the spatial fact of a note symbol to a gesture in time. Repeating the same note means doubling
this elementary gesture: 2γ. This repetition expresses time in a simple movement with a new characteristic
of the note gesture as opposed to the timeless note symbol: γ can be positioned at different times. Some
repetitions of γ and 2γ yield nγ. Until now, there is no quantification of time, and the gesture is localized on
the same key. This unarticulated sequence of gestures must be connected and modified in order to generate
a meaningful musical composition. Connected structures in music are realized via connected gestures. The
same gesture, if repeated at regular intervals (time Z, in a 2/4 meter in our example) and shifted at particular
points (space R), leads us to some musical facts, different but related by a common origin. This yields the
step nγ ÞÑ nγptq; pitch space is deployed along time.

Until now, we have only couple of quavers; by doubling gestures we obtain a group of four notes,
γ2. In order to enrich the musical discourse, we can deform this simple scheme of four repeated notes. A
different choice of spatial endpoints, an R transformation, deforming the hand gesture form, modifies the
ribattuto notes into a more articulated sequence; thus R : γ2 ÞÑ γ̃2. For example, the sequence G,G,G,G
becomes C7, B,D,B. Such sequences are typical for Bach’s keyboard compositions; perhaps its simplicity
and universality derives from these simple deformations of primitive gestures.

In Figure 67.27, γ3 is obtained from γ̃2 by time modification 4{4 ÞÑ 3{4, and γ̃3´ from γ̃3 by the
suppression of the second note of each couple, realized by a ‘jumping’ hand gesture. Transition t from γ̃3´
to γ4 is again a change of meter, 3{4 ÞÑ 3{8. Transition from γ4 to γ4` is a transformation of time (rests)
to space, filling up empty time. Transition from γ4` to γ̃4` is a spatial contour preserving deformation.
Tansition γ̃4` to γ5 is a third change of meter, 3{8 ÞÑ 6{8. Finally, we will then use a Z transformation
of γ̃5 to modify some group of three quavers into a pointed crochet (γ15). In the new sequence we have a
little cantabile melody. The transformations applied are a Hegelian-gestural equivalent of variational and
developing strategies used by composers. In this way we have just completed a little musical clockwork, The
Hegel Song as displayed in Figure 67.28.

67.15 Still More Symmetries? Future Developments

Reviewing the Hegel group G, one might be tempted to extend it to the full symmetry group of the Hegel
body B, i.e., the automorphism group of this tetrahedron. There are two types of such automorphisms:

(1) Movements, elements of the special orthogonal group SOp3,Rq of 3D space, such as the 120˝ rotation
around the axis through the centers of the triangles R,G, S and Z,F,N , see Figure 67.29.

(2) Automorphisms in the orthogonal group Op3,Rq with determinant ´1, such as the inversion

´Id “ pGF qpRZqpSNq
which exchanges all our conceptual pairs. Why should one reject the first-case automorphisms that are not
in G? One reason could be that they have no fixpoints, or, in other words: They are not bosonic actions
generated by a selection of fermions, such as R@Z. A reason for avoiding automorphisms with determinant
´1 (the case (2) above) could be that a change of orientation of the Hegel body B could be forbidden because
human conceptualization is fundamentally using orientation, whatever that could mean in this embryonal
state of mind.

We are not aware of any philosophical interpretation of additional symmetries, but the intrinsic geom-
etry of B might create new aspects that could not have been conceived without this geometric rendering.
Together with the problem of proving Escher-type theorems for pSNq and pRZq, this is a subject of future
investigations.
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Fig. 67.28. The experimental composition The Hegel Song, created by Maria Mannone. Black: γ3´, red: γ4, blue:
γ4`, green: contour preserving deformation, yellow: metrical change 3{8 ÞÑ 6{8.
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Fig. 67.29. Additional symmetries of the Hegel body might be considered, but at present, no philosophical inter-
pretation is given.



Part XVII

Concept Architectures and Software for Gesture Theory



68

Forms and Denotators over Topological Categories

Summary. This chapter introduces the concept architecture of forms and denotators for gesture theory. It
also discusses a Galois theory of concepts in the case of denotators over the category Mod@.

– Σ –

68.1 The General Topos—Theoretical Framework

Summary. We discuss some basic properties of the category TopCat of small topological categories.

– Σ –

68.1.1 The category TopCat of Small Topological Categories

The category of (small) topological categories TopCat is the category IntpTopq of categories internal to
Top (See Section J.4.2). The category Top of topological spaces is a full subcategory of TopCat if we take
the morphism set of a topological space X to be X2 with the product topology.

Lemma 54 If C “ pC0, C1q is a topological category with object set C0 and morphism set C1, then C0 can
be identified with its image epC0q Ă C1 with its induced topology.

Clearly, open sets in C1 induce open sets in the image epC0q. Conversely, if U Ă epC0q is open for
the topology on C0, then its inverse image d´1pUq (d is the domain map) is open in C1 and we have
d´1pUq X epC0q “ U . Therefore every open in epC0q stems from an open set in C1.

Proposition 67 If C “ pC0, C1q is a topological category and X is a topological space, then there is a
bijection

TopCatpC,Xq „Ñ ToppC0, Xq : f ÞÑ f |C0,

where to the left we identify X with its topological category.

Clearly, this map is an injection since the knowledge of the object map determines the morphism map
as the morphism sets on X are singletons. Let us show that it is also surjective. Take a continuous map
g : C0 Ñ X and an open set U Ă X2. Then its inverse image V “ pg2q´1pUq Ă C2

0 is open. But its inverse
image in C1 is the open set pd, cq´1pV q, where pd, cq : C1 Ñ C2

0 is the continuous map defined by the domain
and codomain maps d, c.

Proposition 68 The category TopCat is finitely complete and cocomplete.
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We restrict our proof to completeness since the dual statement follows the same lines of proof. We use the
criterion from Appendix Section G.2.2, Proposition 111 and show that TopCat has products and equalizers.
If C “ pC0, C1q, D “ pD0, D1q are topological categories, their product category, together with the product
topologies, defines a product in TopCat. Let a, b : C Ñ D be two morphisms, i.e., continuous functors. This
means that we have the following commutative diagram (with the left and right vertical maps, respectively)
for both, the morphism and object maps a “ pa0, a1q, b “ pb0, b1q:

C0

a0

��
b0

��

eC �� C1

a1

��
b1

��
D0 eD

�� D1

But the two equalizers Δpa0, b0q, Δpa1, b1q qua topological spaces also define a topological category, as one
easily verifies.

This implies that the category C© of continuous presheaves over a category C, i.e., F : Copp Ñ TopCat
(not only Ens-valued, but TopCat-valued) is also finitely complete and cocomplete, the limits and colimits
being taken pointwise, as known from set-valued presheaves.

68.2 Forms and Denotators

Summary. Forms and denotators for topological categories, to be used for gesture theory, are introduced.

– Σ –

Forms and denotators for topological categories and gestural spaces can be defined much as they have
been defined for module categories. However, there is an important difference, namely the fact that the

category of gestural presheaves
ÝÝÝÝÝÑ
TopCat

©
is not a topos, it is finitely complete and cocomplete, but there is

no subobject classifier.1

Instead of Ω, the power type needs to take the set-theoretical powerset functor 2F , which evaluates to
a topological space with the indiscrete topology. According to Proposition 67, any natural transformation
G Ñ 2F is possible if the object map is defined set-theoretically since every such map is automatically
continuous with the indiscrete topology on 2F .

Also, the “gesturally representable” functors @X are continuous presheaves that evaluate at objects
pΣ,Aq in Digraph ˆ TopCat to Σ

ÝÑ
@AX, see Section 62.7.

Definition 119 A gestural form or G-form
F is a quatruple F “ pNF, TF,CF, IF q where

(i) NF is a string of ASCII characters; it is called the name of F and denoted by NpF q.
(ii) TF is one of the symbols

1. G-Simple,
2. G-Power,
3. G-Limit,
4. G-Colimit;
it is called the type of F and denoted by T pF q.

(iii) CF is one of the following objects according to the previous symbols:
A. For G-Simple, CF is a topological category X,
B. for G-Power, CF is a gestural form,
C. for G-Limit and G-Colimit, CF is a diagram D of gestural forms;

1 The usual construction of Ω in topos theory only identifies full topological subcategories if the sieve functor is
given the indiscrete topology.
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it is called the coordinator of F and denoted by CpF q. The diagram D is a diagram of continuous functors
FunpFiq, as defined in (iv), for a family pFiqi of gestural forms.

(iv) IF is a monomorphism of functors IF : Fu � X in
ÝÝÝÝÝÑ
TopCat

©
, with this data:

1. For G-Simple, X “ @X,
2. for G-Power, X “ 2FunpCF q,
3. for G-Limit, X “ limpDq,
4. for G-Colimit, X “ colimpDq;
it is called the identifier of F and denoted by IpF q, whereas its domain Fu is called the space (functor)
of F and denoted by FunpF q. The codomain of the identifier is called the frame space of the form.

To denote a gestural form F , we inherit the notation of the module-theoretic setup and add the identifier
below the arrow:

Name ÝÑ
Identifier

TypepCoordinatorq. (68.1)

The definition of a gestural denotator is completely analogous to the definition of a classical denotator,
see Section 6.3.1.

68.3 Mathematics of Objects, Structures, and Concepts

Summary. This section deals with the large scale change of mathematical objectives that shape the devel-
opment of theoretical frameworks.

– Σ –

We start with the classical focus on selected mathematical objects, such as integers in number theory,
special symmetry groups in Galois theory, complex numbers in analysis and algebra, or elliptic functions in
complex analysis. This focus was dominant until—roughly—the second decade of the 20th century, when the
interest in types of structures became the focus of mathematicians such as Emmy Noether or Emil Artin.

One may see the invention of category theory by Eilenberg and Mac Lane and the Bourbaki enterprise
as the climax of this structural style of mathematical research. Category theory was created following the
insight that many concrete objects share structural principles that would yield theorems on structures qua
meta-objects of the mathematical reality.

Grothendieck had completely incorporated this style in his advances in functorial algebraic geometry.
However, with his approach to the Weil conjectures, and then more radically in his proposal of a motivic
unification of cohomology theories, the topic had changed from structural catechism to the question concern-
ing the right concepts to solve a type of problem, or, in the case of motives, even the question of conceptual
unification of structurally related theories. This was no longer a structural problematic but a conceptual one:
The search for good structures, not the application of structurally determined entities.

68.4 Galois Theory of Concepts

Summary. This section deals with those background strategies which have profiled this book’s overall
concern. It relates to what [519] qualifies as the mathematical knowledge by reason from concept construction.
Our approach to this constructivist perspective shares the nature of Galois theory: to understand new
concepts as extensions of given concept frameworks via specific ‘equations’ and their Galois groups. The
“formal ontology” of our approach is described in the language of form semiotics over given topoi, see
Section G.5.3.

– Σ –
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68.4.1 Introduction

The switch from the original title “Geometrie der Töne” of [682] to the title “The Topos of Music” of
[714] is not only due to the topos-theoretic generalization of the structural setup of mathematical music
theory; it more radically testifies to a change of methodological principles. The former book was meant as a
mathematical description of spaces, models, and theorems about musical objects and facts.

Here, modules, categories and geometric spaces were just a language to restate musical subjects in
precise terms of prefigured mathematics. In this framework, the construction of conceptual entities was not
a theme per se, but a prescientific activity as is standard in other applications of mathematics to determined
fields of knowledge, such as physics, economics, or psychology.

The progressive infiltration of what they now call mathematical music theory (à défaut de mieux, but
what in fact is much more than just a special type of music theory, namely a geometric logic of concepts,
theory, and performance) by conceptual construction issues was induced by the programming work in the
context of the RUBATO� project from 1992 to 2002 as conducted by the author in collaboration with Oliver
Zahorka, Thomas Noll, Jörg Garbers, Stefan Göller, Stefan Müller, and Gérard Milmeister. This research
taught us that music needs universal concept architectures. We learned this on the level of object-oriented
programming, but such engineering procedure is everything less than a proof, and this is why the theoretical
counterpart in [714] (see Part II) had to be developed to build the mathematical formalism backing those
programming activities.

In this chapter, we describe the presently most complete version of this mathematical formalism. It
has two main components: the first of them is a basis of mathematical objects which we take for granted
from classical mathematical theory. To guarantee all necessary structural and logical constructions required
in musical conceptualization, this basis must be a topos E . Typically, this topos is the topos Ens of sets, or
the topos Mod@ of presheaves over the category Mod of modules and diaffine maps. The latter category is
sufficiently powerful to englobe all usually envisaged structures in mathematical music theory and is therefore
central to the exposition in this book. However, performance theory in its generalization to gestural dynamics
needs topoi that are related to differentiable structures. Therefore the limitation to a single topos is neither
preconized from practice nor mandatory in theory.

The second component provides us with the mechanism for concept construction. This mechanism
is a recursive one in the sense that already construed concepts are used to build new ones by virtue of
universal tools, such as limits, colimits, and power objects. It is not clear whether other than topos-theoretic
“universal” constructions are required for future developments. We admit however a fundamental extension
of classical recursion: Our recursive construction process includes circular concepts, i.e., the objects X being
under construction are defined by use of universal tools when applied to—among others—these same objects
X.

Although in such a context existence theorems are crucial, we do not stress the mathematical aspect.
Rather it is our concern to communicate the fundamentally philosophical relevance of this methodology.
Kant characterizes the mathematical method by its constructivist nature: A concept must be understood
from its construction and not by pure philosophical meditation [519, A713-B741]. This construction is of
a significant nature: A new concept is defined as a solution of a defining ‘equation’. Here, equation means
that we have to solve functional correspondences between determined domains of concepts, coupled with
equations of topos-theoretic nature: limits, colimits, and power objects.

The point is that such solutions do not exist within the given concept domains; they generate proper
conceptual extensions, such as the extension of the real numbers to the complex numbers, stemming from
a solution of the equation X2 ` 1 “ 0, which over the reals is impossible. We have learned to handle such
extensions as plain solution spaces, i.e., algebraic field extensions. But they are in fact conceptual extensions
which were brought to life under hard existential struggles. We claim that any fundamental mathematical
progress is due to conceptual extensions which enable solutions of hitherto unsolvable ‘equations’. Recall that
one of the more recent dramatic events in this development was Deligne’s solution of the Weil conjectures
in view of the generalized concept of a topological space as proposed and developed by Grothendieck.

We contend that conceptual extensions are precisely what Grothendieck in his autobiographic Récoltes
et semailles [398] alludes to when explaining his method of smoothening and eventually dissolving the hard
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surface of a coconut in tepid water under the sun’s patient warmth. What happens is that a manifest
identity—the coconut’s firm shape—is being dissolved under the osmose of its negation, not under the brute
force destruction of its identity. Let us look at what is outside the coconut, let us confront its epidermis with
what is beyond the object’s boundary, and we shall understand what is within the coconut. In his Logic [453,
2. Chapter, A.b)], Hegel, citing Spinoza, states that all determination is by an affirmative negation, and that
something is a negation of negation. It is obvious that the solution of Grothendieck’s coconut problem is
precisely this insight: Something is the dissolution of its conceptual epidermis, the solution of its conceptual
negation (what is impossible within a given concept?) in the negation of what it excludes. To put it in French,
it is all about “dévissage de l’identité”.

It may seem that such philosophical far-out mysteries are not what formal and effective science is
about, but this is erroneous: Once we have understood the conceptual epidermis, the boundary of a concept’s
power, we can transcend it and offer solutions to the present conceptual limitations, solutions which help
overcome the inherent limitations. Recall that Galois’ solution of old questions—such as the trisection of an
angle by use of ruler and compass—is in fact the result of a thorough analysis of the conditions for such a
solution, showing that any solution space has properties not shared with a specific ruler- and compass-aided
construction method.

In other words, Galois shows that any conceptual extension by ruler and compass must contradict the
targeted extension by trisection. To our mind it is not by chance that Grothendieck’s more recent research
(his unpublished manuscript La Longue Marche à travers la Théorie de Galois, written in 1981) is about
‘great Galois unification theories’ (unifying Galois and fundamental groups, but see [947] for more details).

The following technical sections should be viewed in this light in order to understand why we so strongly
insist on conceptual extensions and on the related Galois theory.

68.4.2 Form Semiotics

We refer to Appendix Section G.5.3 regarding the development and musicological motivation for the structure
of a form semiotic. Here, we want to give a slightly more elegant definition of a form semiotic. To this end,
we suppose being given a topos E with subobject classifier Ω, together with a subcategory R such that the
Yoneda map @? : E Ñ E@ into the topos of presheaves over E yields a fully faithful functor @? : E Ñ R@ if
the presheaves are restricted to R. Recall that this is the case, for example, for any presheaf topos E “ C@

over a category C, together with its full subcategory @C of represented C-objects @X “ Homp?, Xq (this is
Yoneda’s Lemma), or for the topos E “ Ens, together with any singleton subcategory R “ SingpSq defined
by any singleton S “ tsu. For reasons stemming from the context of mathematical music theory introduced
in [714], we call such a subcategory an address subcategory of E , and its objects are called addresses. Denote
by MonopEq the subcategory of monomorphisms of E , where it is understood that objects in a category are
identified with their identity morphisms. We further need a set T “ tSimple,Limit,Colimit,Poweru of
four type symbols; the meaning of this set will become clear in the following definition. Finally, given a set Y ,
we need the set DiapY {Eq of finite diagrams : D Ñ E , where D is a diagram scheme (a quiver, see Appendix
Section C.2.2), the vertexes d, e, f, . . . being elements of Y , where for each pair e, f of vertexes, the arrows
i : e Ñ f are identified by positive natural numbers i “ 1, 2, 3, . . ., i.e., an arrow is a triple pe, f, iq. Finally,
we denote by Dia˚pY {Eq the disjoint union E \ DiapY {Eq. By abuse of language, we call the elements of E ,
when embedded in Dia˚pY {Eq, trivial diagrams (in fact, in previous definitions of form semiotics, we used a
special denotator to graph trivial diagrams, and the present formalism is just a more direct restatement of
that artifical setup).

Definition 120 Given the type set T , a topos E, an address subcategory R, a set D, the elements of which
are called denotators, and a set F , the elements of which are called forms, a form semiotic is the data of a
type map T : F Ñ T , a diagram map : F Ñ Dia˚pF{Eq, an identifier map Id : F Ñ E, a coordinate map
C : D Ñ E, a denotator name map DN : D Ñ D, a form name map FN : F Ñ D, and a denotator form
map DF : D Ñ F . These data are required to have the following properties:
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(i) A form F is uniquely determined by its name fn “ FNpF q, its identifier id “ IdpF q, its type t “ T pF q,
and its diagram d “ pF q. We therefore also denote a form F by the DenoteX2 symbol fn : id.tpdq and
also write F „ fn : id.tpdq to indicate that F is determined by its four images.

(ii) A form’s identifier IdpF q is supposed to be in MonopEq; we call the domain dompIdpF qq the form’s space
and denote it by spacepF q, whereas the codomain codompIdpF qq is called the form’s frame (space) and
is denoted by framepF q.

(iii) The domain dompCpDqq of the coordinate CpDq of a denotator D is supposed to be an address a “ ApDq
within R; a is called the denotator’s address.

(iv) The coordinate codomain codompCpDqq of a denotator D is the space of the denotator’s form F pDq. The
image IdpF pDqq ˝ CpDq is also called the frame coordinate of D.

(v) A denotator D is uniquely determined by its name dn “ DNpDq, its form f “ DF pDq, and its coordinate
c “ CpDq, with address a. We therefore also write down a denotator by its DenoteX symbol dn : a@fpcq
and also write D „ dn : a@fpcq to indicate that D is determined by these data. Logically, the address
is superfluous since it is already contained in the coordinate; the stress of this important information is
however advantageous for immediate recognition.

(vi) If a form’s type is simple, i.e., T pF q “ Simple, then its diagram pF q is an address A. This address
equals the frame space framepF q of F .

(vii) If T pF q “ Power, then pF q is a diagram with one vertex form G, pF q has no arrows, we have pF qpGq “
spacepGq, and framepF q “ ΩspacepGq.

(viii) If T pF q “ Limit, then for all vertexes Gι of pF q, we have pF qpGιq “ spacepGιq, and framepF q “
limpF q.

(ix) If T pF q “ Colimit, then for all vertexes Gι of pF q, we have pF qpGιq “ spacepGιq, and framepF q “
colimpF q.
Let us give some comments on this definition with respect to the previous approaches as documented

in [714] and in the present book, of course.

Remark 24 In reasonable programming contexts, it is assumed that the names of forms are keys, i.e., that
the application FN is injective. In this case, a diagram can also be considered with vertexes being form
names instead of forms. The denotator names are also denotators now, instead of being elementary character
strings. This approach is a substantial enrichment compared to the usually string-oriented naming technique,
as described, for example, in [942]. This generalization enables us to work with global and more complex
name spaces. In particular, this enables us to assume that like form names, denotator names are also keys,
i.e., that DN is injective. And it opens the path to more structured name space concepts by use of forms
which are specially designed for name management.

For example, if E “ Mod@ and R “ @Mod, we may consider the monoid Z-algebra ZxUNICODEy
over the set UNICODE of Unicode symbols and its represented presheaf @ZxUNICODEy address object.
Then we have the form NF „ fn : Id.SimplepDgq, where Dg “ @ZxUNICODEy, Id is the identity on
Dg, and fn „ fn : 0@FNpCq, the coordinate C : Z Ñ ZxUNICODEy : 0 ÞÑ “NameForm2 representing
the corresponding natural transformation @Z Ñ @ZxUNICODEy. Observe that the denotator fn is its
proper name denotator. To this initial naming tool, we may add any name denotator n „ n : 0@NF pC : 0 ÞÑ
Anynameq with n ‰ fn, and Anyname P ZxUNICODEy, for example Anyname “ “3.V iolin`4.P iano2. On
this construction level, we have a single form, and a number of denotators for this form, each of them being
zero-addressed, and its own name denotator, i.e., it essentially identifies to its coordinate value Anyname.

Remark 25 In former setups for form semiotics, we had included the type “Synonymy” in order to allow
plain changes of form names. This feature is easily realized by use of type Limit, and a one-point diagram,
similarly to the diagram used for Power type. Therefore one is dispensed from this type.

2 DenoteX is an ASCII-based denotation language for denotators. An EBNF specification of DenoteX is available
from http://www.ifi.unizh.ch/mml/musicmedia/downloads.php4.

http://www.ifi.unizh.ch/mml/musicmedia/downloads.php4
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Remark 26 There is a subtlety in the diagram definition which one should observe. In a sloppy language
it is possible to have diagrams of objects in a category such that one and the same object appears in more
than a single vertex. This is correct since diagram schemes are charged with the “indexing” job. Here,
we do not have arbitrary diagram schemes, their vertexes must stem from the form set F . This is not an
impoverishment of mathematical expressivity, it is just the strict duty to use nothing except what is given
in the form semiotic in order to comprise all features without being forced to invent new names and symbols
on the flight.

Once such a system is implemented in a programming environment, such discipline pays. Therefore, in
order to place the same form on different vertexes, one has to produce a number of isomorphic copies, i.e.,
synonymous forms (in the above sense) with the same spaces. Or else, we may enrich the form names in
order to be able to define as many forms as needed via rich name spaces. In practice, we do however often
refer to “copies of a given form” without specifying these naming accents.

Remark 27 In practice, lists are very useful. There is no list type in our setup, but one may easily mimic
it as follows. We are working in the presheaf topos Mod@ and its address category @Mod, where we often
identify modules with their representable functors, if no confusion is likely. Suppose that we want to have a
list length n “ 0, 1, 2, 3, . . . P N, the denotators of which have the form F . This is achieved by a form LnpF q
of limit type and a discrete diagram without arrows, consisting of n copies of F . This enables us to introduce
a list form for all list lengths up to N , say. We take the colimit of all the forms LnpF q, n “ 0, 1, 2, 3, . . . N .

A more elegant way without using an indetermined number of cofactors for our list form works as
follows: Consider the form

ListpF q : Id.ColimitpItempF q, T erminalq,
where ItempF q : Id.LimitpF,ListpF qq and where Terminal : Id.SimplepZq. Here we denote the vertex
forms for limits and colimits if we deal with discrete diagram schemes. The form Terminal is made for
terminating the list entries and writing down the list’s length. This however is not a complete definition
since we do not know whether such a form exists! This definition is circular, and the existence of the
corresponding presheaves must be proven. This is in fact true (see Section G.2.2), but the proof uses more
than finite completeness.

Despite the missing list type, the given types can be used to define more general list forms in the sense
that general index sets can be used. To this end, let I be an index set, together with a linear ordering relation
ă. Call a subset J Ă I an initial interval iff there is either x P I such that J “ tι|ι ă xu or J “ I. Suppose
further that F is a given form over Mod@,@Mod, and that we want to define a form ListpI, F q such that
its elements at address module A are precisely the “lists” plιqJ , i.e., the sequences of A@spacepF q-elements
for initial intervals J of I. To this end, consider the family rιs : Id.Simplep@0q of simple forms with the
zero module 0 over the zero ring as a trivial diagram, Id “ Id@0, and name keys rιs over NameForm. Let
XpI, 0q : rιs ÞÑ @0, ι P I, be the (generally infinite, but our topos is complete, not only finitely complete)
diagram of these simple forms. Consider the ‘pure list’ form rIs : Id.ColimitpXpI, 0qq, Id being the identity
on the frame space colimXpI, 0q. Observe that for any address module A, we have A@colimXpI, 0q „Ñ I
since 0 is final in Mod. We then define the auxiliary form G : Id.LimitprIs, F q and finally set

ListpI, F q : Id.PowerpGq,
with the identifier Id : spacepListpI, F qq Ñ 2spacepGq Ă ΩspacepGq the subpresheaf whose value at address A is
the set of subsets L Ă A@spacepGq „Ñ I ˆ A@spacepF q such that the first projection pr1 : A@spacepGq Ñ I
is injective on L, and pr1pLq is an initial interval of I. Moreover, this construction yields the lexicographic
linear ordering relation among lists if F bears a linear ordering, see Section 6.8 for orderings on denotators.

The subject of a circular form definition is a first example of the Galois problem in defining concepts:
We are given a determined stage of a form semiotic and would like to add new forms by specific properties,
as for example the above list property. Besides this existence problem, we also would like to know how many
solutions we may expect, and whether they have an influence on the denotators which will live in these new
forms.
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68.4.3 The Category of Form Semiotics

Evidently, the problem of successive extensions of form semiotics must be accessed by use of a tool for
comparing form semiotics: We need to know when a semiotic is an extension of a given form semiotic, what
an isomorphism between form semiotics is, and so forth. In other words, we have to introduce morphisms
between form semiotics. We shall therefore elaborate on the categorical aspect which has been sketched in
Section G.5.3.1. The type set T being fixed once for all (in our context), a form semiotic Sem is given by
four objects, E ,R,F ,D, and seven maps, T, , Id,DN,FN,DF . We write

Sem “ pE ,R,F ,D;T, , Id,DN,FN,DF q
for these data. For the following definition we consider the subset DiaspF{Eq of Dia˚pF{Eq consisting of E
and of those diagrams : D Ñ E such that for every vertex form F P D, we have pF q “ spacepF q. The maps
and Id may then be given the codomain DiaspF{Eq instead of Dia˚pF{Eq.
Definition 121 Given two form semiotics

Sem1 “ pE1,R1,F1,D1;T1,1 , Id1, DN1, FN1, DF1q
Sem2 “ pE2,R2,F2,D2;T2,2 , Id2, DN2, FN2, DF2q,

a morphism f : Sem1 Ñ Sem2 is a triple of maps f “ pfF , fD, fEq with the following properties:

(i) We have two set maps fF : F1 Ñ F2, fD : D1 Ñ D2 and a logical3 morphism of topoi fE : E1 Ñ E2 which
preserves addresses.

(ii) They commute with all seven maps of the respective forms, more precisely: t1 “ t2 ˝ fF , DN2 ˝ fD “
fD˝DN1, DF2˝fD “ fF˝DF1, FN2˝fF “ fD˝FN1. The morphism f induces a map fs : DiaspF1{E1q Ñ
DiaspF2{E2q, to be defined below, such that Id2 ˝ fF “ fs ˝ Id1 and 2 ˝ fF “ fs˝1.
Here is the definition of the critical map fs. Whenever no confusion is likely, we omit the indexes

F ,D, E of f . On the topoi E1, E2, it is the given logical morphism. On diagrams, we have this construction:
Let X : S Ñ E1 be diagram in DiaspF1{E1q. We define a diagram fspXq “ X 1 : S1 Ñ E2. Its quiver S1 has
these data: The vertex set is the image S1 “ fpSq. For a given vertex couple A,B P S1 the arrow are all arrows
pU, V, iq in S such that fpUq “ A, fpV q “ B. We enumerate these arrows by natural indexes j “ 1, 2, 3, . . .
and denote these indexes4 by j “ jpU, V, iq. With this, the new diagram X 1 sends an arrow j “ jpU, V, iq
to the morphism fpXpiqq : spacepAq Ñ spacepBq. This follows from the axiom Id2 ˝ fF “ fs ˝ Id1, and
therefore, form spaces and frames commute with f , i.e., for any form F , we have fspIdpF q : spacepF q Ñ
framepF qq “ IdpfpF qq : spacepfpF qq Ñ framepfpF qq.

Now, if F is simple, the diagram and frame maps coincide, and diagram commutation with fs means
commutation of frames. If F is of limit type, the conservation of the limit framepF q “ limpF q under the
logical f means precisely framepfpF qq “ lim fsppF qq; analogously for colimit and powerset type. Of course,
a number of conditions upon a morphism f are intertwined, but this is not the place to discuss a minimal
set of conditions. More important is the following fact:

Sorite 12 Given three form semiotics, Sem1, Sem2, Sem3, and two morphisms, f “ pfF , fD, fEq : Sem1 Ñ
Sem2, g “ pgF , gD, gEq : Sem2 Ñ Sem3, the factorwise composition g ˝ f : Sem1 Ñ Sem3 is a morphism
of form semiotics. This composition is associative, and the identity is such a morphism. Call ForSem the
category of form semiotics with these morphism data.

In Section G.5.3.2, the category ForSem is used to propose global form semiotics by the usual gluing
procedure. Here, we are interested rather in the local extension problem.

3 It preserves finite limits, exponentials, and subobject classifiers, see [639, p.170]; to be clear, we also require here
that it preserve colimits.

4 This indexing function is however only defined up to permutations, but in this theory, quivers are only considered
modulo permutations of the arrow numbers for given vertex couples, as limits and colimits are invariant under
these permutations.
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68.4.4 Galois Correspondence of Form Semiotics

Given a topos E , together with an address category R, we denote by HpE ,Rq the empty form semiotic with
F “ D “ H. An automorphism of HpE ,Rq is just an (automatically logical) automorphism of E which
preserves addresses, i.e, induces an automorphism on the subcategory of addresses, denote by AutpE ,Rq the
group of these automorphisms. Let Φ be a subgroup of AutpE ,Rq. Given a form semiotic S over E ,R, call
AutΦpSq the group of automorphisms of a semiotic S over Φ, i.e., the automorphisms which have elements
of Φ as underlying topos morphisms. In particular, for the trivial group Φ “ IdE , we write AutEpSq and call
this the group of automorphisms of S over E . For any subsemiotic R of S over E , we consider the subgroup
GalEpS{Rq Ă AutEpSq consisting of those automorphisms which leave R pointwise fixed. Conversely, given a
subgroup H Ă AutEpSq, there is a unique maximal subsemiotic SempHq of S over E , which is left pointwise
fixed under H, much in the same way as there is a maximal subfield of a field which is left pointwise fixed
under a given group of automorphisms of the given field. This defines a Galois correspondence

SubEpSq Gal��
Sem

SubpAutEpSqq

between the set SubEpSq of subsemiotics of S over E and the set SubpAutEpSqq of subgroups of AutEpSq.
Example 89 Suppose that we are given a form semiotic S over Mod@,@Mod with form set FS denotator
set DS with the above defined name form NF with name value “NameForm2. Suppose further that we are
given a fixed diagram X P DiaspFS{Mod@q. We may define two new forms, U „ PN : Id.LimitpXq, U 1 „
PN 1 : Id.LimitpXq, as follows: The identifiers are the identities on the frames. The names are by definition
two different zero-addressed denotators, PN „ PN 1 : 0Z@NameFormpcq, PN 1 „ PN : 0Z@NameFormpcq,
of the given name form NF , represented by its name value. These denotators are their mutual name deno-
tators. As to the coordinates c, c1, we consider two situations:

In the first, we set c “ c1 : 0Z Ñ ZxUNICODEy, which means that the only difference of names resides
in the declaration that PN ‰ PN 1. Therefore, the form semiotic SpU,U 1;PN,PN 1q defined as the extension
of S by the two new forms and the new names evidently has the automorphism f over S which exchanges
forms and names, i.e., fpUq “ U 1, fpU 1q “ U, fpPNq “ PN 1, fpPN 1q “ PN . This situation means that we
have a purely conceptual automorphism in GalEpSpU,U 1;PN,PN 1q{Sq without touching any topos-theoretic
‘basic’ data.

The second situation is the same for everything except that c ‰ c1 : 0Z Ñ ZxUNICODEy. In this case,
suppose that the values cp0q, c1p0q differ from the given name values in S. Then we consider the following
construction of an automorphism in any category C as follows: Suppose that we are given an automorphism φ
of an object A of C. By definition, the automorphism rφs : C „Ñ C leaves all objects fixed. On the morphisms,
we have four cases:

• HompA,Aq is left pointwise fixed.
• For X ‰ A, we have HompX,Aq „Ñ HompX,Aq : g ÞÑ φ ˝ g, whereas
• HompA,Xq „Ñ HompA,Xq : g ÞÑ g ˝ φ´1.
• For X,Y ‰ A, HompX,Y q is left pointwise fixed.

We now apply this construction to C “ Mod@, A “ @ZxUNICODEy and φ “ @Zxuy, u P
SpxUNICODEyq, the symmetric group of words over UNICODE. Using the transposition f , this defines
an automorphism in AutAutpMod@,@ModqpSpU,U 1;PN,PN 1qq.
Example 90 Suppose again that we are given a form semiotic S with form set FS denotator set DS ,
over Mod@,@Mod, and with the above defined name form NF with name value “NameForm2. Given
an identity morphism Id : S

„Ñ S in Mod@, we introduce two forms, NFi : Id.LimitpXiq, i “ 1, 2, with
diagrams X1 : NF2 ÞÑ S,X2 : NF1 ÞÑ S and different name denotators NF1 „ NF2 : 0Z@NameFormpc :
0 ÞÑ wq, NF2 „ NF1 : 0Z@NameFormpc : 0 ÞÑ wq having the same name coordinate c. Then the exchange
of forms and corresponding names NFi defines an element of GalMod@pSpNF1, NF2q{Sq. Here, we have used
the circular definition of forms by mutual reference.
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Proposition 69 Every finite group is isomorphic to an automorphism group of type AutGpSq for a form
semiotic S over Mod@,@Mod, and G Ă AutpMod@,@Modq.

It suffices in fact to consider any group G Ă SpxUNICODEyq of word permutations and to construct
name denotators with name values that are permuted under G over the form “NameForm”, which are their
proper names.

Problem 2 The main problem of this Galois theory is to investigate the relation between conceptual con-
structions of forms and denotators and their associated automorphism groups and the existence problem of
such concepts. This problem is evidently related to the underlying topoi and address categories. In view of
this latter constraint, the question is also about how far concept constructions are a function of these topoi
or else of a generic character, i.e., independent of the given topoi.

The problem is likewise manageable for regular extensions, i.e., for a set of forms and denotators, the
names and diagrams of which depend on an already existing form semiotic, whereas for circular, i.e., non-
regular, extensions, very little is known. For example, as already mentioned above, one has some results
concerning the existence of specific presheaves, see Proposition 115 in Section G.2.2.1. Concerning existence
problems involving circularity, we suggest you review what Paul Finsler introduced in [321] and what Peter
Aczel calls Hyperset Theory [5, 87, 813], together with associated techniques for the solution of set equations
with circularity conditions as presented in [813].
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The Rubato Composer Architecture

Summary. In this chapter, we give a short presentation of the RUBATO� Composer software environment.
It is the basis for the subsequent chapters about the BigBang rubette.

– Σ –

Fig. 69.1. The software architecture of RUBATO� Composer.

As opposed to initial rubette concepts for RUBATO�, rubettes can now be managed in a totally flexible way,
the classification into composition, performance, analysis, and math rubettes is obsolete. The only persistent
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essential architectural element in the collaboration of rubettes is that they communicate by an exchange of
denotators. A detailed discussion of this new environment is documented in Gérard Milmeister’s book [739].

69.1 The Software Architecture

The software architecture of RUBATO� Composer is shown in Figure 69.1.

Fig. 69.2. A network of rubettes in RUBATO� Composer.

This architecture has four layers: Layer I includes basic Java classes, such as MIDI classes for MIDI
management, XML classes for saving and loading RUBATO� files, and Swing classes for the graphical
user interface management. Layer II is dedicated to all mathematical classes, dealing with modules, module
elements, and module morphisms. Layer III implements the classes which describe denotators and forms,
and layer IV implements rubettes as well as the GUI for their interaction, which is called the network GUI.
The network GUI is shown in Figure 69.2.

While earlier RUBATO� versions had a limited display and interaction of rubettes, RUBATO� Com-
poser displays a GUI where any existing rubette, shown to the right of the network surface in Figure 69.2,
can be activated by dragging it into the network surface. Rubettes can be added to RUBATO� Composer
at any time in a rubette plugin directory.
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Once a number of rubettes are instantiated in the network surface, they can be connected to build a
functional network of such components. Every rubette has a number of input and output ports. The user
may connect any output port to a number of input ports of other rubettes. To guarantee a reasonable
functionality, only one connection can terminate at an input port. Special rubettes are available which load
or save MIDI files.

69.2 The Rubette World

At present, dozens of rubettes are available. They are mainly designed for compositional purposes, including
generalized counterpoint tools according to our counterpoint theory from Part VII, a software which is
discussed in detail in [16]. A new version of the HarmoRUBETTE is also avaliable (see Section 69.2.2), and
in particular Florian Thalmann’s BigBang rubette that is discussed in the following chapters. Unfortunately,
a MeloRUBETTE is not available yet, and the powerful PerformanceRUBETTE is also a desideratum at this
time. See www.rubato.org to see all presently available implementations and additional documentation.

A rubette has, besides its input and output ports, the option to display properties, which access the
processual parameters, as well as a view dialog for visual display and interaction, see Figure 69.3. Some
rubettes are described in Chapter 71.

Fig. 69.3. The functionality of a rubette.

69.2.1 Rubettes for Counterpoint

The contrapuntal composition method for all of the six strong dichotomy classes has been implemented by
Julien Junod in the RUBATO� Composer software; see Figure 69.4 It shows a simple network for random
counterpoint generation. The details are described in [16]. Junod’s seven rubettes allow for the generation
of counterpoint compositions in any one of the six strong dichotomy classes. In the network shown in Figure
69.4, the BoolyWorldRUBETTE selects the strong dichotomy, the MidiFileInRUBETTE (#1) provides the
cantus firmus, the BollyCarloRUBETTE creates a random counterpoint, the DeCounterpointiserRUBETTE
creates the discantus and cantus firmus components of the internal calculation forms, and the VoiceMerg-
erRUBETTE puts the two voices together. The two MidiFileInRUBETTEs (#7, #8) input additional note
parameters for the cantus firmus and discantus, respectively.

http://www.rubato.org
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Fig. 69.4. A simple network for random counterpoint generation.

69.2.2 Rubettes for Harmony

A series of rubettes on the Java-based RUBATO� Composer environment for harmonic analysis has been
implemented by Ruhan Alpaydin, see [23] for details. Essentially, this implementation splits the original Har-
moRUBETTE’s functionality into functional components; see Figure 69.5 for the corresponding network. The
ChordSequencerRUBETTE creates the sequence of chords of the score given from the MidiFileInRUBETTE,
the HarmonicWeightRUBETTE calculates the harmonic weights in the Riemann matrix, and the Harmonic-
pathRUBETTE calculates a harmonic path, everything following the general method as described in Section
41.3. However, some analytical parameters can be set more generally, as explained in [23]. The calculation
of note weights has not been implemented yet.

Fig. 69.5. Alpaydin’s network for harmonic analysis.
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69.2.3 MetroRubettes

Ruhan Alpaydin has also implemented an attractive MetroRubette on the Java-based RUBATO� Composer
environment. Besides the metrical weight graph, one may select any set of maximal local meters and view
their positions in the given score; see Figure 69.6.

Fig. 69.6. Alpaydin’s interface for metrical analysis, showing a maximal local meter together with the score and the
metrical weight graph.
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The BigBang Rubette and the Ontological Dimension of
Embodiment

The BigBang rubette is a gestural music visualization and composition tool that was developed with the
goal to reduce the distances between the user, the mathematical framework, and the musical result. In its
early stages, described for instance in [1043, 1045], it enabled defining, manipulating, and transforming Score
denotators using an intuitive visual and gestural interface. Later on, it was generalized for transformation-
theoretical paradigms based on the ontological dimension of embodiment, consisting of facts, processes, and
gestures, and the communication between these levels [1042].

BigBang is a regular Rubato Composer rubette, as introduced in the previous chapter, with a variable
number of view windows using which users can easily create denotators by drawing on the screen, visualize
them from arbitrary perspectives, and transform them in a gestural way. On a higher level, they can interact
with a visualization of their compositional or improvisational process, and even gesturalize the entire process
in various ways. BigBang simply has one input and one output and now accepts almost any type of denotator
as an input, to be visualized and interacted with. Figure 70.1 shows the rubette, incorporated in a Rubato
Composer network, and one of the rubette’s view windows including the so-called facts and graph views.

Fig. 70.1. A network including the BigBang rubette and its view next to it.
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All this is made possible through an architecture based on the three levels of embodiment. The facts
view, the large area on the right, visualizes the musical objects or facts, which are simply denotators in their
coordinate space. It allows for different views of these objects, configurable using the grid of checkboxes on
the right. The smaller area on the left, the process view, visualizes the graph of the creation process of the
music, in a similar way to graphs in transformational theory. Each arrow corresponds to an operation or
transformation, while each node corresponds to a state of the composition. The graph can also be interacted
with and used as a compositional or improvisational tool itself. Finally, the gestures, topic of this volume,
are visualized in the facts view, whenever the represented musical objects are interacted with. Any operation
or transformation performed in BigBang is immediately and continuously sonified and visualized and can be
reconstructed at any later stage.

Apart from this functionality, BigBang behaves just like any other rubette: whenever the user presses
on Rubato Composer ’s run button, BigBang accepts a denotator, either adding it to the one already present
or replacing it (depending on the user’s settings), and sends its previous denotator to the next rubettes in
the network. The rubette can be duplicated, which copies the graph in the process view along with any
denotators created as part of the process. This way, users can include a BigBang with a defined process in
other parts of the network, or other networks, and feed them with different inputs, while the process remains
the same. Finally, as any rubette, BigBang can be saved along with the network, which again saves processes
and corresponding facts.

Before we get to the most relevant aspect of BigBang in the context of this book, the gestures, we will
introduce the fundamental concepts underlying the software, without which its high-level gestural capabilities
would not be possible. The following chapters are structured according to the three levels of embodiment.
Chapter 71 will deal with the facts view, explain how arbitrary musical objects can be visualized, how
they can be sonified, and how they are represented within BigBang. Chapter 72 is devoted to processes
and explains what operations and transformations are available, how they can be applied, and how they
are represented in BigBang ’s process view. Finally, in Chapter 73, we will explain how the user’s gestures
are formalized, i.e. mapped onto transformations and operations, and how the resulting processes can be
gesturalized again, so that users can see and hear their composition’s evolution in a continuously animated
way. These chapters deal mainly with conceptual matters. A more detailed description of the architecture
and implementation can be found in [1042].
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Facts: Denotators and Their Visualization and Sonification

The facts, or objects, that the rubette BigBang in RUBATO� Composer deals with are denotators, which
can be considered points in the spaces defined by their forms, as introduced in Chapter 6. So far, we have
only seen a small portion of the variety of forms that can be defined in RUBATO� Composer. However,
any conceivable musical or non-musical object can be expressed with forms and denotators, many of them
just with the category of modules Mod@. The most recent version of BigBang was made compatible with
as many forms as possible, even ones that the users may spontaneously choose to define at runtime. In order
to handle this as smoothly as possible, we had to find a suitable way of representing denotators within the
rubette, which we call BigBangObjects.1 In this chapter, we describe how this works.

71.1 Some Earlier Visualizations of Denotators

In order to understand the evolution of BigBang ’s visualization system it will be helpful to look at some earlier
attempts at visualizing denotators. Several dissertations were based on an implementation of denotators and
forms. Stefan Göller’s had visualization as its main focus and Gérard Milmeister’s included a number of
smaller visualization tools.

71.1.1 Göller’s PrimaVista Browser

The goal of Göller’s dissertation was to visualize denotators “in an active manner: visualization as nav-
igation” [372, p.55]. The result was the sophisticated PrimaVista Browser, implemented in Java3D, that
featured a three-dimensional visualization in which users could browse denotators in first-person perspec-
tive. PrimaVista could be customized in many ways using a virtual device, the Di, shown in Figure 71.1
[372, p.107].

PrimaVista was capable of representing any type of zero-addressed Mod@ denotator as a point or a set
of points in R3 while preserving both order and distance of the original data structure as well as possible.
Limit and Colimit denotators of any dimensionality and their nested subdenotators were folded in a two-
step process, first into Rn then into R3. Thereby, for any denotator d the mapping Fold : F pdq Ñ R3 had to
be injective. The first step of this process mapped the values of the Simple denotators found in the given
denotator hierarchy, regardless of their domain, into Rn by injecting or projecting each of the individual
values into R. A matrix defined which denotator dimensions were mapped into which of the n dimensions of
the real codomain space, allowing for both multiple mappings and merging mappings. A so-called greeking
procedure made sure that only denotator values up to a certain level of hierarchical depth were taken into
account, which enabled dealing with circular structures. The second step of the process consisted in folding

1 Every object that literally exists as a Java object in BigBang ’s code will be written in verbatim font here, even if
we just define them conceptually here.
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Fig. 71.1. The Di of Göller’s PrimaVista browser.

the obtained Rn vectors into R3 by privileging specified dimensions and folding the remaining ones to the
mantissa, the decimal digits after the comma.

Göller discussed adventurous ways of visualization, replacing the points in R3 with complex three-
dimensional objects the parts of which he called satellites, not to be confused with satellites as they
are defined in this context,2 each of them representing additional characteristics of the represented de-
notators. Each of Göller’s satellites is characterized by the following variable visual parameters: po-
sition px, y, zq, rotation vector prx, ry, rz, αq, scale psx, sy, szq, color pred, green, blueq, texture, sound
ppitch, loudness, instrument, sysexq [372, p.77]. The most complex object finally implemented is the Pinoc-
chio satellite shown in Figure 71.2. Göller even suggests some satellites may be moving in time to represent
parameters such as frequency. This feature was, however, finally not implemented. Another feature not im-
plemented was a generalization of the musical score, where each satellite is associated with sounds that would
be played when intersected with a plane, or more generally an algebraic variety, moving in time [372, p.84-5].
Finally, Göller discusses the concept of so-called cockpits, where an object’s subsatellites become actuators in
the form of levers, buttons, or knobs, through which users can change the underlying denotator [372, p.95].
Again, this was not implemented within the scope of his thesis. In addition to this, Göller envisioned ways
of transforming and manipulating objects that are similar to the ones of the BigBang rubette [372, p.123f].

There are several issues with Göller’s approach, some of which explain the difficulties that arose when
trying to implement the ideas. First, the folded spaces pose problems of ambiguity in visualization and
especially transformation. If one dimension of R3 represents several denotator dimensions at the same time
and the user starts transforming the denotator, it is not intuitively deducible from the visible movement how
the denotator values are affected. Representation is often ambiguous, where differences in dimensions folded
to the mantissa become only subtly visible and often visually indistinguishable from a simple projection.

2 See Sections 71.2 and 71.3, where satellites are defined as elements of sub-powersets of a denotator. Also, in Göller’s
work, there are only two levels: the main satellite and its subsatellites.
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Fig. 71.2. A denotator visualized in PrimaVista using Pinocchios (satellites) of varying size and differently positioned
extremities (subsatellites).

Second, several simplifications of the denotator concept were made to enable representation within this model.
Göller does not, for instance, consider higher-dimensional Simple forms, such as ones using modules based
on R2 or C. Third, he mainly visualizes denotators on the topmost level, thereby assuming that it consists
of a Power [372, p.63]. The BigBang rubette offers solutions to several of these problems, as discussed later.

71.1.2 Milmeister’s ScorePlay and Select2D Rubettes

Even though the focus of Milmeister’s work lay in building the basic mathematical framework as well as the
interface of RUBATO� Composer, some of his rubettes offer visualizations of denotators of both general
and specific nature. The ScorePlay rubette limits itself to Score denotators and represents them in piano
roll notation. It simply visualizes a Score and enables users to play it back at a variable tempo and using
different built-in MIDI instruments. It does not allow for any interaction with the represented notes.

The Select2D rubette represents any incoming Power or List denotator as points projected to a
customizable two-dimensional coordinate system, the axes of which can be freely associated with any Simple
denotator somewhere in the denotator hierarchy. Users can then select any number of these points by defining
polygons around them (Figure 71.3). The rubette then outputs the subdenotators associated with these points
as one runs the network.

Milmeister’s rubettes provide several improvements over Göller’s software while being more limited
in other ways. ScorePlay only accepts denotators of one form and visualizes them rigidly. However, its
visualization is minimal and based on a standard immediately understandable by the user, which Göller’s
might not always be. Select2D, in addition to Power denotators, also accepts List denotators, which were
only introduced in Milmeister’s work [739, p.105]. Furthermore, it is able to represent more types of Simple
denotators than Göller’s, more precisely ones containing free modules over any number ring except for
C. Nevertheless, higher-dimensional Simple coordinates and product rings can again not be represented.
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Fig. 71.3. The Select2D rubette showing a Score denotator on the Onsetˆ Pitch plane.

Furthermore, the rubette’s visualization capabilities do not exceed the representation of points projected to
a two-dimensional coordinate system.

71.2 An Early Score-Based Version of BigBang

Initially, the BigBang rubette was designed for a small set of score-related denotators. The first version
allowed users to handle Scores and MacroScores and was developed before in the context of an independent
research project at the University of Minnesota [1043].MacroScore is a conceptual extension of the form Score
which we casually defined earlier. It brings hierarchical relationships to Notes by imitating the set-theoretical
concept of subsets.3 The form is defined in a circular way, as follows:

MacroScore : .PowerpNodeq,
Node : .LimitpNote,MacroScoreq,
Note : .LimitpOnset, P itch, Loudness,Duration, V oiceq

Each Node associates thus a Note with a set of again Nodes, each of which again contains a Note and a set,
and so on. In short, with this construction, each Note of a MacroScore has a set of so-called satellites on a
lower hierarchical level. We could go on infinitely, but in order to stop at some point, we give some of the
Nodes empty sets, thus no satellites. The idea behind this form is that in music, we not only often group
objects together and wish to treat them as a unity, but also establish hierarchies between them. A trill, for

3 This complies with Graeser’s notion of counterpoint as “a set of sets of sets of notes”, cited in Section 13.1.
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instance, consists of a main note, enhanced by some ornamental subnotes.4 A simplified trill denotator could
be defined as follows:

shakeWithTurn : @MacroScorepmainNodeq,
mainNode : @NodepmainNote, ornamentalNotesq,
mainNote : @Notep. . .q,
ornamentalNotes : @MacroScorep

upNode,midNode, upNode,midNode, lowNode,midNodeq,
upNode : @NodepupNote, emptySetq,
upNote : @Notep. . .q,
emptySet : @MacroScorepq,
. . .

What is crucial to the notion of satellites is that their values are defined relatively to the ones of their anchor.
So if for instance the mainNote defined above has Pitch 60 and its satellite upNote P itch 61, the latter in
fact obtains a Pitch of 1. If another had Pitch 58 it would be defined as ´2. This way, if we transform the
anchor, all its satellites keep their relative positions to it.

Later on, another form was added to BigBang ’s vocabulary, SoundScore, which combines frequency
modulation synthesis with the MacroScore concept. Each note, in addition to having satellites, can have
modulators which modulate its frequency and change its timbre [1045]. Again, modulators have a relative
position to their carrier and would be transformed with it. The form is defined as follows:

SoundScore : .PowerpSoundNodeq,
SoundNode : .LimitpSoundNote, SoundScoreq,
SoundNote : .LimitpOnset, P itch, Loudness,Duration, V oice,Modulatorsq,
Modulators : .PowerpSoundNoteq

Denotators of these forms are all based on the same five-dimensional space spanned by the Simple
forms Onset, Pitch, Loudness, Duration, and Voice and can thus be visualized the same way. The early
BigBang rubette did this using a generalized piano roll representation, as we will explain later on.5 In sum,
all of the objects the early BigBang rubette dealt with were essentially notes.

71.2.1 The Early BigBang Rubette’s View Configurations

The visualization principle of the BigBang rubette [1043, p.4-5] combines elements of both Göller’s and
Milmeister’s models, but focuses on a minimalist appearance aiming towards simplicity and clarity. It gener-
alizes the piano roll notation also used in the ScorePlay rubette (see Section 71.1.2). Notes are represented
by rectangles on a two-dimensional plane, just as in a piano roll. However, already in early versions of Big-
Bang, the visual elements of the piano roll were separated from their original function so that they could
be arbitrarily assigned to the symbolic dimensions of the represented score denotator. This is reminiscent of
the ways Göller’s subsatellites could be assigned to any folded denotator dimensions (Section 71.1.1) or of
the spacial representation of Milmeister’s Select2D rubette (Section 71.1.2). A similar method of visualizing
was also available in presto�’s local views (see Section 50).

In order to do this we defined a set of six visual parameters

N “ tX-Position, Y -Position,Width,Height,Opacity, Coloru
4 In a similar way, Schenkerian analysis describes background harmonic progressions enhanced by ornamental fore-
ground progressions, which could be represented with MacroScores as well. However, we may find forms that are
better suited, as will be discussed below.

5 Piano roll is a standard in music software.
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corresponding to the visual properties of piano roll rectangles, along with a set of six note parameters

M 1 “ tOnset, P itch, Loudness,Duration, V oice, SatelliteLevelu,
which corresponds to the Simple denotator in Scores with the exception of SatelliteLevel, which was used
to capture the hierarchical level of satellite notes in MacroScores and SoundScores. We then defined a view
configuration to be a functional graph V Ă N ˆ M 1. This ensures that each screen parameter n P N is
associated with at most one musical parameter V pnq that defines its value, as well as that V does not need
to include all n P N . View parameters not covered by V obtain a default value that can be defined by the
user. The traditional piano roll notation could be produced by selecting the following pairing (shown in
Figure 71.4):

V1 “ tpX-Position,Onsetq, pY -Position, P itchq, pWidth,Durationqu.

Fig. 71.4. The early BigBang rubette showing a Score in piano roll notation.

An enhanced version of the piano roll that often appears in software products also uses opacity and
color:

V2 “ tpX-Position,Onsetq, pY -Position, P itchq, pOpacity, Loudnessq,
pWidth,Durationq, pColor, V oicequ.

The possibility of arbitrary pairings, however, also enables more adventurous but possibly also inter-
esting view configurations, such as the following (Figure 71.5):

V3 “ tpX-Position,Onsetq, pY -Position, Loudnessq, pWidth, P itchq,
pColor,Onsetq, pHeight, Loudnessqu.

Experimenting with such view configurations may be especially valuable for analysis and may lead to
a different understanding of given musical data sets.
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Fig. 71.5. The early BigBang rubette visualizing a Score in a more experimental way.

Every view parameter can be customized at runtime. Depending on the represented note parameter, it
can be useful to ensure that a screen parameter’s value does not exceed a specific value range. For example
it may look more clear when the rectangle’s heights are limited in a way that their areas do not intersect,
just as with piano roll notation. Thus, for each n P N , we optionally define minn and maxn, the minimal
and maximal screen values. We then have two options to define the way note parameters are mapped to the
screen parameters.

1. If we choose the conversion to be relative, the minimal and maximal values of the given note parameters
minm,maxm,m P M 1, are determined for the actual score, and then mapped proportionally so that the
note with minm is represented by minn and the note with maxm by maxn. For this, we use the formula

vn “ vm ´ minm

maxm ´ minm
pmaxn ´ minnq ` minn,

where vn is the screen value for the note value vm.
2. On the other hand, absolute mapping means that every value with vm ă minn or vm ą maxn is mapped

to a new value, while all other values stay the same, i.e., vn “ vm. For absolute mapping, we have two
choices. In limited mapping, the values that surpass the limits are given the minn and maxn values,
respectively. The following formula is used:

vn “

$’’’&’’’%
minn, if vm ă minn

maxn, if vm ą maxn

vm otherwise.

For cyclical mapping, we use the formula
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vn “

$’’’&’’’%
pvm mod pmaxn ´ minnqq ` minn,

if vm ă minn or vm ą maxn

vm otherwise.

This mapping type can be useful for the color screen parameter for example, where it is reasonable to
cycle through the color circle repeatedly to visualize a specific note parameter interval, such as an octave
in pitch, or a temporal unit, as shown in Figure 71.5, where color visualizes a time interval of length 24,
i.e., six 4/4 measures.
With absolute mapping it is possible to leave either or both of the Limits as undefined. Accordingly,
we assume minn “ ´8 or maxn “ 8. Of course, if none of the limits are defined, the visible screen
parameters correspond exactly with the original note parameters.

At runtime, the view window’s current pairings could be selected using a matrix of checkboxes with a
column for each screen parameter and a row for each note parameter, see Figure 71.5.

Satellite relations can be displayed in two ways. First, the note parameter SatelliteLevel, mentioned
above, can be assigned to any arbitrary visual parameter. This way, anchor notes are associated with integer
value 0, first-level satellites with 1, and so on. On the other hand, satellite relations may also be displayed
as lines between the centers of two note objects so that every note has lines leading to each of its direct
satellites, as shown in Figure 71.6.6 As mentioned above, since all anchors and satellites in MacroScore and
SoundScore denotators are notes, they can be represented in the same space.

Fig. 71.6. The early BigBang rubette showing a MacroScore with two levels of satellites.

6 This is a notion of satellites significantly different from Göller’s (Section 71.1.1). While Goeller uses the term to
denote movable parts of objects and represents them as denotators, but here we use it to speak of circular denotator
structures (also see Note 2).
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71.2.2 Navigating Denotators

Users can navigate this two-dimensional space not only by changing their view of the space by choosing
different note parameters for the x and y view parameters, but also by changing their viewpoint by scrolling
the surface and zooming in and out without limitations. This is similar to Göller’s PrimaVista, but using two
instead of three dimensions. However, users can also open several of these views simultaneously and choose
different perspectives on the composition. This is especially valuable when performing transformations in
one view while observing how the composition is affected from the other perspective.

71.2.3 Sonifying Score-Based Denotators

In early BigBang, denotators could not only be visualized but also sonified. Even though this may be done
using another, specialized rubette such as ScorePlay, we decided to include this functionality within BigBang.
The main reason for this was the gestural interaction concept, where immediate auditive feedback is key, in
order to evoke a sense of continuity of motion. Users have to be able to judge musical structures by ear while
they are creating them, and the use of an external rubette would have slowed down the process. A second
reason was that many of the possible musical structures in early BigBang were micro-tonal, for which MIDI
feedback, as implemented in ScorePlay, is unsuited since it is strictly chromatic.7 The extension of BigBang
for SoundScores was another reason, for now timbre was part of the musical objects and had to be judged
while it was defined.

Since all the structures dealt with in early BigBang were Score-based denotators, sonification was
rather straightforward. All the objects that had to be played were Notes that existed in the same space.
They were simply played back in time, giving the user control over tempo. The microtonal and frequency
modulation structures of SoundScores made it necessary for a synthesizer to be used. For each note, a
synthesizer object, a so-called JSynNote footnoteJSyn is the name of the synthesizer framework we decided
to use, as will be explained later on. was created by converting symbolic time, pitch, and loudness into the
physical parameters time, frequency, and amplitude.

Outside BigBang, MacroScores usually have to be converted into Scores in order to be played back, a
process called flatten (see next chapter). In early BigBang, this happened in the background, since it would
have significantly slowed down the composition process. Satellites were simply converted into additional
JSynNotes accordingly. Modulators in SoundScores, however, became modulators of JSynNotes. There
were two options for playing back modulators: either their temporal parameters were ignored and they
simply played whenever their carrier was playing, or they only modulated their carrier according to their
own onset and duration. In the latter case, users had to make sure the anchor notes were playing at the
same time as their modulators, but they also had the chance to create temporally varying configurations of
modulators for a single note.

71.3 BigBangObjects and Visualization of Arbitrary Mod@ Denotators

Despite its customizability, the view concept of the early BigBang rubette was first designed to represent
Score, MacroScore, and SoundScore denotators, which are all based on the same musical space: (Power
of...) Power of Limit. There, the view concept has proven its viability, compared to other concepts such
as the ones discussed above. Now how can this concept be generalized so that BigBang can accept any
denotator?

In this section we describe how we can do this for a major part of the spaces available in Milmeister’s
version of RUBATO� Composer, which are all based on elements of the topos Mod@ over the category
of modules, as described earlier.8 The number of denotator types capable of being represented by the new

7 The use of pitch bend is an option for monophonic material, but limited as soon as several notes have to be bent
in different ways.

8 This procedure is also described in [1048, p.3], as well as briefly in [1047].
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BigBang rubette is significantly higher than the two comparable modules PrimaVista and Select2D. Nev-
ertheless, for the time being we restrict ourselves to 0-addressed denotators and focus on number-based
modules. We exclude both modules based on polynomial rings and ones based on string rings, since their
visualization may differ markedly and will be left to future projects.

71.3.1 A Look at Potential Visual Characteristics of Form Types

As a starting point we need to reflect on the role of the five form types Simple, Limit, Colimit, Power, and
List and the way they can best be visualized. Each of these types implies another visual quality that may
be combined with the others. These qualities in early BigBang Scores were shown as clusters of rectangles
(Power) within a coordinate system (Limit) of five axes (Simple), which could in turn be variably shown
as any of six visual dimensions (x-position, y-position, width, height, color, opacity). Three of the five form
types are involved here. The Simples in a Note are based on free modules on a number ring and can thus
easily be represented by one number axis or one of the other visual properties. However, Rubato Composer
allows for many more types of Simples, each of which must be considered here.

71.3.1.1 Simple Denotators

Simple denotators are crucial to a system of visualization, since they are the only denotators that stand
for a specific numerical value in a space. Basically, every form that will be used in a practical way should
contain Simples. This despite the fact that it is possible to conceive more pathological forms, such as the
circular form that describes sets as sets of sets:

Set : .PowerpSetq.
Such forms will be of little use in our context, since anything to be represented and especially transformed
needs to contain specific numerical values. We can thus declare a first rule here:

Rule 1 In our system denotators will only be represented if they contain at least one Simple denotator
somewhere in their structure.

With the system, Simple denotators over the following modules can be represented:

Free Modules over Number Rings

The most straightforward type of modules are the free modules based on number rings such as Z,Q,R, or
C. Elements of the first three are typically represented along an axis, whereas ones of the last on a two-
dimensional Cartesian system. For modules Zn,Qn,Rn, and Cn an n-dimensional or 2n-dimensional system
of real axes will be appropriate.

Furthermore, as shown in Section 71.2.1, as long as all values of a specific denotator are known and finite,
dimensions of free modules over number rings can equally be represented by other visual parameters, such
as an object’s width, height, color, etc. Elements of the free module over C, for instance, could convincingly
be represented as width and height of objects.

Quotient Modules

For free modules over quotient modules such as Zm “ Z{mZ, Qm “ Q{mZ, Rm “ R{mZ, and Cm “ C{mZ

we choose a manner of representation that corresponds to the one introduced in the previous section, where
values are simply projected on a one- or two-dimensional coordinate system. However, instead of being
potentially infinite, the axes maximally show the numbers of the interval r0,mr, which makes zooming out
beyond this point impossible. This works in an analogous way for other view parameters that do not allow
cyclical representation, such as width, height, and opacity. Of the defined visual parameters, only color allows
for cyclical representation, in analogy to the color circle. Again, for Zn

m,Qn
m,Rn

m, and Cn
m, the system can

be extended to be n-dimensional or 2n-dimensional.
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Modules over Product Rings and Direct Sums of Modules over Quotient Modules

Representation is straightforward for direct sums of any of the quotient modules discussed so far. Each of
the factors is independently associated with one of the view parameters. For example, for Z ˆ R7 we might
choose to represent the Z part with the x-axis and the R7 part with color.

Remark: More general modules which are not derived from direct sums of such quotient modules are
not yet dealt with.

71.3.1.2 Limit Denotators

The fact that Limits are products or conjunctions makes them always representable in the conjoined space,
i.e., the cartesian product of the spaces of their factors. The most simple case is a Limit of Simple denotators,
just as with our common Score denotators. Notes can be represented in Onset ˆ Pitch ˆ Loudness ˆ
Duration ˆ V oice. This is even possible if the same subspaces appear in several times. For instance, if we
define a form

Dyad : .LimitpPitch, P itchq,
its denotators are representable in the space Pitch ˆ Pitch. This also works in cases where the factors of a
Limit are not directly Simple.

71.3.1.3 Colimit Denotators

Colimits, disjunctions or coproducts, are again representable in the product space of their cofactors, even if
they then typically do not have defined values in all of the product’s dimensions. For “missing” dimensions,
we set standard values, so that the denotators are represented on a hyperplane in the entire product space.
The case where cofactors share common subspaces is especially interesting, since these subspaces will always
be populated.

An example will clarify this: we assume a form EulerScore which consists of EulerNotes and Rests,
which share the Simple forms Onset and Duration. The product space of all cofactor spaces is Onset ˆ
EulerP itch ˆ Loudness ˆ Duration. While EulerNotes fill the entire space, Rests are simply represented
on the Onset ˆ Duration plane. Thus, even though EulerNotes and Rests are actually separated by a
coproduct, both can be shown in the same space.

71.3.1.4 Power and List Denotators

Power and List forms define sets and ordered sets of distinct objects on any hierarchical level. In practice we
typically encounter them on the topmost level as for instance with all the forms supported by early BigBang,
Score, MacroScore, and SoundScore. However, it is also conceivable that they occur only at lower levels,
as in Mariana Montiel’s more detailed score form, which is defined as [760]

Score1 : .LimitpBibInfo, Signatures, Tempi, Lines,GeneralNotes,

GroupArticulations,Dynamicsq.
There, Powers appear in almost all the coordinator forms, but not at the top level. In this case we can for
instance see all BarLine or Slur denotators that appear on lower levels as indirect satellites of our main
Score1.

Power denotators can always be represented as a set of points in the space of their coordinate. An
EulerScore, for instance, can be shown as a cloud of objects in the EulerNoteOrRest space described above.
List denotators can be shown the same way, however, at the expense of the order of their elements, for it
may contradict the spatial organization. In any case, Power and List forms are in fact the main constructs
that define the discrimination of distinct visual objects. Wherever they occur, we have the opportunity to
define as many elements as we would like.
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71.3.2 From a General View Concept to BigBang Objects

From these characteristics we can imply that all we need to have for a representation of any denotators is a
conjunction of the Simple spaces and a visualization of clouds of objects within them. These objects can be
represented in just the same way as the ones in the generalized piano roll described above, as multidimensional
rectangles. Whenever a denotator enters BigBang, the visualization space is reset based on its form, and users
have the possibility to select any form space and start drawing objects, as will be described below.

We arrive at the core part of our generalization. In short, the representation of any arbitrary denotator
relies on the fundamental difference between the various types of compound forms, Limit, Colimit, and
Power. We propose a novel system of classification that generalizes the previous notion of anchors and
satellites, based on occurrences of Power denotators. For this, we maintain the following rules:

Rule 2 The general visualization space consists of the cartesian product of all Simple form spaces appearing
anywhere in the anatomy of the given form. For instance, if we obtain a MacroScore denotator of any
hierarchical depth, this is Onset ˆ Pitch ˆ Loudness ˆ Duration ˆ V oice.

Rule 3 Any Simple form X the module of which has dimension n ą 1 is broken up into its one-dimensional
factors X1, . . . , Xn. The visual axes are named after the dimension they represent, i.e. Xn, or X if n “ 1.

Rule 4 If the same Simple form occurs several times in a Limit, it is taken to occur several times in the
product as well. For instance, the product space of Dyad is PitchˆPitch. However, if the same Simple
form occurs at different positions in a Colimit, this is not the case. For instance, Colimit of Pitch and
Pitch results in the space Pitch. This renders the space more simple, but we also lose some information.
This loss can be regained thanks to an additional spatial dimension, cofactor index, as described under
Rule 7.

Rule 5 Power or List denotators anywhere in the anatomy define an instantiation of distinct visual objects
represented in the conjoined space. Objects at a deeper level, i.e., contained in a subordinate Power or
List, are considered satellites of the higher-level object and their relationship is visually represented by
a connecting line. For example, SoundScore objects formerly considered modulators are now visually no
different from regular satellites.

Rule 6 Given a view configuration, the only displayed objects are denotators that contain at least one
Simple form currently associated with one of the visual axes. However, if an object is a satellite and one
of the Simple forms associated with the axes occurs anywhere in its parental hierarchy, it is represented
at exactly that value.

Rule 7 If there is an occurrence of either Colimits or satellites, additional dimensions are added to the ones
defined in Rules 1-3. For Colimit we add cofactor index, and for satellites sibling index and satellite
level.9 These dimensions are calculated for each object and can be visualized in the same manner as
the other ones. For instance, associating satellite level with y-position facilitates the selection of all
denotators at distinct positions of the satellite hierarchy.

We call the objects defined by these rules BigBangObjects. They are not only visual entities, but they
are the entities that the BigBang rubette deals with in every respect. All operations and transformations
available in BigBang are applied to sets of BigBangObjects, as we will see in the next chapter. The con-
sequence is that we simplify the structure of forms and denotators significantly, so that if we, for instance,
are handling denotators of a form defined as Limit of Limit of Limit and so on, we can treat it as a single
object. New objects are broken up only if there are Powers or Lists in the hierarchy. We can thus for
instance claim that in BigBang we assume that

LimitpA,LimitpB,LimitpC,Dqqq “ LimitpA,B,C,Dq.

71.3.2.1 Implications for Satellites

One of the main innovations of these definitions is a new notion of the concept of satellites. Previously,
the term was uniquely used to describe Notes in a MacroScore that are hierarchically dependent on other

9 Already present in the early BigBang, as seen in Section 71.2.1.
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Notes. For instance, the analogous construction of Modulators in SoundScores was not referred to in this
way; neither was the relationship represented the same way as satellites are [1045]. Following Rule 5 above,
Modulators are now equally considered satellites and represented in precisely the same way. Another new
aspect of this is that now satellites do not technically have to have a shared space with their anchor. For
instance, if we define

HarmonicSpectrum : .LimitpPitch,Overtonesq,
Overtones : .PowerpOvertoneq,
Overtone : .LimitpOvertoneIndex, Loudnessq,
OvertoneIndex : .SimplepZq,

Overtones do not have a Pitch themselves, but merely a Loudness. Because of Rule 6, however, if we choose
to see Loudness ˆ Pitch as the axes of a view configuration, the Overtones are represented above their
anchor. An example visualization of this form will be shown below.

Above, we discussed how satellites and modulators were defined relatively to their anchors (Sec-
tion 71.2). This can also be generalized for the new notion of satellites. We add another rule:

Rule 8 Given a Simple form F , every denotator di : @F in a satellite BigBangObject, i being its index
in case the satellite contains several denotators of form F , is defined in a relative way to di@F in its
anchor, if there is such a denotator.

For instance, if we define

MacroDyad : .PowerpDyadNodeq,
DyadNode : .LimitpDyad,MacroDyadq,

the first Pitch in each satellite Dyad is defined relatively to the first Pitch in its anchor, and the second Pitch
in each satellite relatively to the second Pitch in the anchor. On the other hand, in a HarmonicSpectrum
none of the satellites share Simple denotators with their anchor and are thus defined absolutely.

71.3.3 New Visual Dimensions

The facts view of the new BigBang maintains all the features of the early BigBang and can still be navigated
the same way as described in Section 71.2.2. However, the newest version allows independent zooming in and
out horizontally and vertically, when the shift or alt keys are pressed. It also features some additional view
parameters. There is now an option to use, instead of hue (Color) values, RGB values for color, in a similar
way as that in PrimaVista. This adds more visual variety at the expense of the cyclical nature of hue, and is
especially beneficial when working with data types other than musical ones, such as images. The new view
parameters vector thus looks as follows:

N 1 “ tX-Position, Y -Position,Width,Height, Alpha,Red,Green,Blueu.
In the future, more visual characteristics can easily be added, such as varying shapes, texture, or a third
dimension.

The former note parameters, in turn, now called denotator parameters, include SiblingNumber and
ColimitIndex where appropriate and vary according to the input or chosen form. The former identifies
the index of a denotator in its Power or List, whereas the latter refers to an index based on all possible
combinations of Colimit coordinates. For instance, for an object form

ColimitpColimitpX0, X1q,ColimitpX2, X3, X4q, X5q,
where X0, ..., X5 are any other forms not containing Colimits, we get six possible configurations: an object
containing X0 gets index 0, one containing X1 gets 1, and so on.
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For EulerScore denotators, for instance, the entire denotator parameters look as follows:

MEulerScore “ tOnset, EulerP itch1, EulerP itch2, EulerP itch3,

Loudness,Duration, ColimitIndexu.
The three-dimensional space of EulerP itch is broken up into its three constituent dimensions, and
ColimitIndex is added, with two potential values: 0 for EulerNoteOrRests containing an EulerNote,
1 for EulerNoteOrRests with a Rest.

71.4 The Sonification of BigBangObjects

As seen above in Section 71.2.3, in the early BigBang rubette, sonification was relatively straightforward,
since all objects that had to be dealt with existed in the same five-dimensional space. For the new BigBang,
this concept had to be generalized as well. For users to be able to sonify a multitude of denotators, even
ones they define themselves, the sonification system had to become more modular.

Our solution generalizes the JSynNotes described above into JSynObjects, which can contain any
number of a set of standard musical parameters. Each BigBangObject is converted into a JSynObject, by
searching for occurrences of these musical parameters anywhere in their anatomy. Any parameters neces-
sary for a sounding result subsequently obtain a standard value. For instance, if we play back a Simple
denotator Pitch, a JSynObject is created with a standard Loudness, Onset, and Duration, so that it is
audible. Especially Onset and Duration are relevant in this case. The standard values assigned for temporal
parameters are chosen such that the object plays continuously for as long as the denotator is being played.
This is particularly interesting when the denotator is transformed, which results in continuously sounding
microtonal sweeping.

JSynObjects can also have multiple pitches, in order to work with denotators such as Dyad, as defined
in Section 71.3.1.2, or other user-defined types that might describe chords, and so on. Some of the recognized
simple forms so far are all note parameters (Onset, Pitch, Loudness,Duration, V oice), as well as BeatClass,
ChromaticP itch, PitchClass, TriadQuality, OvertoneIndex, Rate, Pan, and OperationName. Rate re-
places Onset by defining the rate at which a JSynObject is repeatedly played, OperationName distinguishes
between frequency modulation, ring modulation, and additive synthesis, and TriadQuality adds an appro-
priate triad above each Pitch in the object, assuming that they are root notes. Some of the other forms are
discussed below, along with examples of the visualization of their denotators.

Another recent addition is the option of having everything played back through MIDI, either with
Java’s internal MIDI player, or by sending live MIDI data to any other application or device, via IAC
bus or MIDI interface. MIDI is event-based and thus problematic for playing continuous objects without
temporal parameters. There are two solutions to this problem implemented so far. Either, objects are repeated
continuously at a specified rate, or a note-off event is only sent when an object is replaced by another. In
the latter case, note ons are only sent again once a denotator is transformed.

In order to play back the composition in BigBang, users can press the play button in the lower toolbar.
If the denotator has a temporal existence, i.e., it contains Onsets, it can be looped, where the player
automatically determines the loop size to be the entire composition. In addition to this, any musical denotator
in BigBang can be played back by using an external MIDI controller such as a keyboard controller. Each MIDI
key of such a controller triggers one performance of the denotator, i.e., a one-shot temporal playback, a loop,
or a continuous playback, depending on the denotator. Middle C (60) corresponds to the visible denotator,
while all other keys trigger transposed versions, e.g. a half step up for 61, etc. This is especially practical
when designing sounds, i.e., denotators without Onset or Duration, such as the HarmonicSpectrum form
defined above. This way, users can design sounds and immediately play the keyboard with them, just as with
a regular synthesizer.

For the future, this system of sonification could be extended in order to work in a similar way to
view configurations. For now, whenever a new Simple form is introduced that should be sonified in a
novel way, the system has to be adjusted accordingly. With a free association of any Simple form with a



71.5 Examples of Forms and the Visualization of Their Denotators 1117

sonic parameter, just as is done for the visual system, users can experiment with spontaneously performing
parameter exchanges, or with sonifying non-musical forms.

71.5 Examples of Forms and the Visualization of Their Denotators

In this chapter, we have discussed what the objects on BigBang ’s factual level are and how they are visualized
and sonified. It is now time to give some specific examples of forms that can potentially be defined and show
how their denotators are visualized. Sonification will have to be left to the readers to try themselves. Anything
we feed the new BigBang rubette will be analyzed and visualized as described above. Users may also select
a form within BigBang upon which the facts view is cleared and they may simply start drawing denotators,
as will be described in the next chapter.

We will start with some simple constructs from set theory, move to tonal constructs, and finally give
some examples from computer music and sound design.

71.5.1 Some Set-Theoretical Structures

The most basic construct to be represented is necessarily a single Simple denotator. For instance, if we
input a Pitch, the space is merely one-dimensional, but it can be represented in various visual dimensions
simultaneously. Figure 71.7 shows the pitch middleC : @Pitchp60q – C4 is MIDI pitch 60 – being represented
in every possible visual dimension in RBGmode,10 however reasonable this may be. X, y, width, height, alpha,
red, green, and blue, all represent the value 60, depending on the minm,maxm defined (see Section 71.2.1).

Fig. 71.7. The new BigBang rubette visualizing a Pitch denotator in every visual dimension.

10 Explained in Section 71.3.3.
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For a Power of a Simple, we get a cloud of values. Figure 71.8 shows an example of

PitchSet : .PowerpChromaticP itchq,
ChromaticP itch : .SimplepZq.

Fig. 71.8. A PitchSet simultaneously visualized using several visual characteristics.

Note that ChromaticP itch differs from Pitch in that it only allows for integer values, which models
the Western equal-tempered chromatic pitch space. In the figure, ChromaticP itch is shown on both axes,
color, width and height. This way, we can define all sorts of datatypes commonly used in music theory or
sound synthesis and visualize and sonify them. If we wanted, for instance, to compose with pitch classes
instead of pitches, we could define

PitchClassSet : .PowerpPitchClassq,
P itchClass : .SimplepZ12q.

If we wish to work with pitch-class trichords, a common construct in set theory, we can define

Trichords : .PowerpTrichordq,
T richord : .LimitpPitchClass, P itchClass, P itchClassq.

P itchSets and PitchClassSets can also be realized as ordered sets. We simply need to replace Power
with List, e.g.

OrderedP itchSet : .ListpPitchq.
In order to compose with PitchClasses the same way we can compose with Scores, i.e., create temporal
structures, we can define

PitchClassScore : .PowerpPitchClassNoteq,
P itchClassNote : .LimitpOnset, P itchClass, Loudness,Duration, V oiceq,

which is then visualized as shown in Figure 71.9.
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Fig. 71.9. A PitchClassScore drawn with ascending and descending lines to show the cyclicality of the space.

71.5.2 Tonal and Transformational Theory

The next few examples imitate spaces and constructs from transformational theory and traditional music
theory.11 For a model of triads, as they are often used in transformational theory, we define

Triad : .PowerpPitch, TriadQualityq,
T riadQuality : .SimplepZ4q,

where Quality stands for one of the four standard qualities in tonal music: diminished, minor, major, and
augmented.

More generally, a simplified notion of chord progressions can be implemented as follows:

Progression : .ListpChordq,
Chord : .LimitpOnset, P itchSet, Loudness,Durationq,

assuming that all members of a chord have the same temporal and dynamic qualities. In so doing, the pitches
of a chord are actually satellites and thus also visualized this way, as can be seen in Figure 71.10. From there,
we can also define hierarchical chord progressions the same way as we did above for Score or Dyad. For
instance, we can define

MacroProgression : .ListpChordNodeq,
ChordNode : .LimitpChord,MacroProgressionq.

This way, each chord can have ornamental progressions, just as we know it from Schenkerian theory. If a
main progression is transposed, its ornamental progressions, defined in a relative way to them, are transposed
with it. The next chapter will clarify what this means.

Figure 71.11 shows an example of the depiction of Colimits. It shows a denotator of a form similar to
EulerScore, but with regular Pitch and an additional V oice parameter, thus simply using regular Notes
and Rests. In the image we see that all the rests are depicted at Pitch 0, since they do not contain a Pitch.
If we chose to depict the denotator on the Onset ˆ Duration plane, the rests would also be shown in two
dimensions.

A final example illustrates a way we can introduce rhythmical relationships other than using Onset. If
we write

11 Some of them were described in [1048].
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Fig. 71.10. A Progression where pitches adopt the visual characteristics of their anchor chord.

Fig. 71.11. A GeneralScore with some Notes and Rests shown on the Onsetˆ Pitch plane.

Texture : .PowerpRepeatedNoteq,
RepeatedNote : .LimitpPitch, Loudness,Rate,Durationq,
Rate : .SimplepRq

we obtain a set of notes that are repeated at a certain rate, altogether forming a characteristic Texture.
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71.5.3 Synthesizers and Sound Design

Finally, here are some examples of forms that allow for more sound- and timbre-oriented structures. Some
of the forms shown in Section 71.5.1 could be considered to be sound-based forms as they may be seen as
somewhat related to additive synthesis, but we can go much farther than that.12

For instance, we can define

Spectrum : .PowerpPartialq,
Partial : .LimitpLoudness, P itchq.

This models a constantly sounding cluster based on only two dimensions. Since it is not using ChromaticP itch
but Pitch, the cluster can include any microtonal pitches. Figure 71.12 shows an example of a Spectrum.
If we, however, wanted to define a spectrum that only allows for harmonic overtones, this form would not
be well suited, as we would have to meticulously arrange each individual pitch so that it sits at a multiple
of a base frequency. Instead, we could simply use the form already introduced above, HarmonicSpectrum
(Section 71.3.2.1). Figure 71.13 shows an example denotator of a set of harmonic spectra, defined as

HarmonicSpectra : .PowerpHarmonicSpectrumq.
Since satellites (Overtones) and anchors (HarmonicSpectrum) do not share Simple dimensions, they can
only be visualized if one Simple of each is selected as an axis parameter, here Pitch ˆ OvertoneIndex.
However, as we will see in the next chapter, they can both be transformed in arbitrary ways on such a plane.
These are examples of the simplest way of working with additive synthesis in BigBang. All oscillators are
expected to be based on the same wave form and a phase parameter is left out for simplicity. This is also
the case for the following examples.

Fig. 71.12. A Spectrum shown on Loudnessˆ Pitch.

12 Some of these constructions were described in [1047].
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Fig. 71.13. A constellation of eight HarmonicSpectra with different fundamental Pitches and Overtones.

Even though the previous form leads to more structured and visually appealing results, we limited
ourselves to purely harmonic sounds, since all Overtones are assumed to be based on the same base frequency
Pitch. To make it more interesting, we can decide to unite the sound possibilities of SoundSpectrum with
the visual and structural advantages of HarmonicSpectrum by giving each Overtone its own Pitch. The
following definition does the trick:

DetunableSpectrum : .LimitpPitch,Overtonesq,
Overtones : .PowerpOvertoneq,
Overtone : .LimitpPitch,OvertoneIndex, Loudnessq.

Since values reoccurring in satellites are defined in a relative way to the corresponding ones of their anchor, we
get the opportunity to define deviations in frequency from the harmonic overtone, rather than the frequencies
themselves. A displacement of a satellite on the Pitch axis with respect to its anchor enables us to detune
them. Figure 71.14 shows an instance of such a DetunableSpectrum.

The three forms above are just a few examples of an infinite number of possible forms. Slight variants
of the above forms can lead to significant differences in the way sounds can be designed. For instance,
generating complex sounds with the above forms can be tedious as there are many ways to control the
individual structural parts. A well-known method to achieve more complex sounds with much fewer elements
(oscillators) is frequency modulation, which can be defined as follows in a recursive way:

FMSet : .PowerpFMNodeq,
FMNode : .LimitpPartial, FMSetq,

with Partial as defined above. Examples as complex as the one shown in Figure 71.15 can be created this
way. Frequency modulation, typically considered highly unintuitive in terms of the relationship of structure
and sound [199], can be better understood with a visual representation such as this one. All carriers and mod-
ulators are shown respective to their frequency and amplitude and can be transformed simultaneously and
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Fig. 71.14. An instance of a DetunableSpectrum, where the fundamentals of the Overtones are slightly detuned.

parallelly, which has great advantages for sound design compared to old-fashioned skeuomorphic synthesizers
and applications.

In order to include other synthesis models, we can define

GenericSound : .LimitpOscillator, Satellites,Operationq,
Oscillator : .LimitpLoudness, P itch,Waveformq,
Satellites : .ListpGenericSoundq,
Operation : .SimplepZ3q,
Waveform : .SimplepZ4q,

where Operation represents the three synthesis operations for additive synthesis, ring modulation, and
frequency modulation. For each anchor/satellite relationship, we can choose a different operation. Each
Oscillator also has its own Waveform, here a selection of four varying ones, for instance sine, triangle,
square, and sawtooth.13 Sounds designed this way can immediately be played with by using a keyboard
controller, as seen in Section 71.4.

Finally, we can also combine multiple forms into higher-level forms that contain several objects. For
instance, a Limit of SoundSpectrum and Score allows us to create compositions containing both constantly
sounding pitches and notes with Onsets and Durations. We simply need to define

SpectrumAndScore : .LimitpSpectrum, Scoreq.
Figure 71.16 shows an example of such a composition. This way, any number of synthesis methods and
musical formats can be combined to higher-level forms and can be used simultaneously in BigBang.

These examples show how much structural variety we can create by just using a small given set of
Simple forms, and how their visualization can help us understand the structures. All of them can directly

13 A slightly different GenericSound form is described in [1048].
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Fig. 71.15. An FMSet containing five carriers all having the same modulator arrangement, but transposed in Pitch
and Loudness.

be sonified, even while we are building the denotators. Most importantly, such forms can be defined at runtime
in Rubato Composer and they can immediately be used in BigBang. In addition to musical data types, as in
the examples here, one can define forms describing any kind of fact. For example, we programmed rubettes
that read image files (ImageFileIn), translate them into forms, and make them available to transformation
in BigBang, before being exported again or converted into musical objects by other rubettes.

In the next chapter we will discuss how such objects, once their form is defined, can be created,
manipulated, and transformed in BigBang. For this, we need to examine how the BigBang rubette implements
the level of processes.
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Fig. 71.16. A composition based on a Limit of a SoundSpectrum (Pitches at Onset 0) and a Score (Pitches with
Onsets).



72

Processes: BigBang’s Operation Graph

The main idea behind the BigBang rubette is to give composers and improvisers a way to use the software
RUBATO� Composer in a way that is more intuitively understandable, more spontaneous, and more focused
on audible results than on the mathematical underpinnings. After discussing the types of facts available
in BigBang we need to examine how we can create them and what we can do with them. From earlier in
this book we now know that both of these activities, making and manipulating, are instances of processes.
BigBang keeps track of these processes in a more sophisticated way than other musical software, especially
ones dedicated to symbolic structures.

RUBATO� Composer itself already allows users to create processes by building networks of rubettes.
Why does BigBang need its own processes? There are several significant differences between the processes
of RUBATO� Composer and other systems such as Max/MSP and the ones of BigBang.

1. BigBang ’s visualization of processes is the dual graph of the rubette networks in RUBATO� Composer.
Its focus on transformations as arrows is closer to the way we imagine processes, as seen in the first part
of this book. RUBATO� Composer’s representation of denotators traveling through connecting lines
imitates the physical reality of electric signals traveling through cables and has hardly anything to do
with our imagination and representation of the mathematical constructs, e.g. diagrams of morphisms in
category theory, or transformational graphs.

2. BigBang emphasizes spontaneity and a quick work process. Rather than representing a definite compo-
sition process, its processes represent experimental stages, are easily mutable, and allow for the creation
of alternatives.

3. Its processes focus on a simple vocabulary of operations and transformations that can be combined to
create larger structures in a transparent way.

4. The processes in BigBang are always directly connected to facts, and the user has the chance to ob-
serve and interact with both, facts and processes, simultaneously while composing or improvising. In
RUBATO� Composer, facts remain hidden for large parts of the process.

5. BigBang focuses on processes that can be directly connected to gestures. For many features of
RUBATO� Composer this would be difficult to do.

6. Most importantly, its processes represent the workings of the rubette itself. Users can use it just the
way they use Macro Rubettes,1 which encapsulate entire RUBATO� Composer networks within them.
For instance, they can define a compositional process in BigBang, duplicate the rubette, and use it in
multiple contexts by adjusting the process as needed. Thereby they can even decide to send denotators
of any other form and see what the rubette yields.

Despite these differences, there is a chance that someday RUBATO� Composer may be extended to adopt
some of BigBang ’s principles, so that they can be used on a higher level and in a greater variety of ways.

Underlying the representation of processes in BigBang is a notion of a composition or improvisation
as a dynamic rather than static entity. Rather than seeing the composition as a definite fact, we see it as a

1 See [739, p.237].

1127
G. Mazzola et al., The Topos of Music III: Gestures, Computational Music Science, 
https://doi.org/10.1007/978-3-319-64481-3_17 

© Springer International Publishing AG, part of Springer Nature 2017 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-64481-3_17&domain=pdf
https://doi.org/10.1007/978-3-319-64481-3_17
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conjunction of a set of musical input objects along with a processual graph into which these objects are fed,
similar in this respect to transformational theory. Figure 72.1 shows a diagram of this scheme.2 This way,
the only existing facts are the initial facts, such as input denotators, and everything else can be produced by
the transformations in the graph. Any stage of the composition process, i.e., any node of the process graph,
can be dynamically generated using the factualizing procedure first introduced in Chapter 71. Internally,
denotators are never saved at every step of the composition, but always generated dynamically.

p q

o

o

p q

Fig. 72.1. A factual notion of a composition, above, versus a dynamic notion, below.

In this chapter, we will first introduce the available operations and transformations and describe what
they do. Then we will describe how factualizing works in BigBang. Finally, we will discuss the way processes
are visualized and how users can interact with the visualizations.

72.1 Temporal BigBangObjects, Object Selection, and Layers

Before performing an action, we need to be able to decide which objects are going to be affected by the action
we wish to perform. In BigBang, users can make selections in the facts view by drawing rectangles around
objects. During this process, they can arbitrarily change their perspective. For instance, it may be tedious to
select all visible second-level satellites in a complex MacroScore composition. By selecting SatelliteLevel
as one of the visible axes, the composition will be shown as a number of levels (Figure 72.2). The user can
then simply draw a rectangle around the objects shown on level two to select all satellites there.

Whenever the user performs an operation, it will be applied to all selected objects. When selecting all
objects, the operation or transformation will be applied to as many objects as were selected, even if the
input of the rubette changes. For instance, suppose we input a piece with twelve notes into BigBang, select
all of them, and then transform them. If we then input another composition with many more notes, the
transformation will be applied only to the twelve first notes of the new composition.

72.1.1 Selecting None and Lewin’s Transformation Graphs

If none of the objects are selected, an operation or transformation will always be applied to all objects
present at the respective state, however many there may be. This has a major advantage, besides speeding

2 These concepts were first discussed in [1046, 730].
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Fig. 72.2. A MacroScore with its second level of satellites being selected. Note that the y-axis is SatelliteLevel to
facilitate the selection. The x-position and colors of the objects hint at their chaotic arrangement on the OnsetˆPitch
plane.

up the compositional process of users who like to work with the full set of musical objects. Users may often
be in the situation where they know the actions they would like to perform without being sure what the
objects are that they will be working with, especially if they plan on using BigBang as a rubette in different
contexts, as described under Point 6 above. In this case, they may decide to not select any objects, which
means that whatever they send the BigBang rubette, however many notes or sounds, the operations they
defined will be applied to them. This way, they can experiment by applying the same process to as many
different inputs as they like.

This establishes an interesting connection to Lewin’s theories. In his distinction between networks and
graphs, the nodes of the former are associated with specific objects, while the nodes of the latter are not. Big-
Bang precisely models the latter. We can design transformation graphs without having a specific application
in mind, and then subsequently make them into networks when we send BigBang specific denotators.

72.1.2 The Temporal Existence of BigBangObjects

One of the major problems faced when implementing BigBang emerged from the problem of object selection.
The idea of selecting something with a specific identity, and possibly even assigning it some characteristics
such as visibility or audibility as described below, and moreover expecting that it remains selected even when
transformed, is hardly compatible with mathematical language. We have already discussed some aspects of
this problem in the beginning of this discussion of BigBang with respect to functions and the anti-cartesian
notion of transformation. What we saw there is that a function, mathematically speaking, does not really
“move” its argument into the value, but rather associates a value, a new, different object, to the argument.

When dealing with computer software such as the BigBang rubette, we expect an entirely different
behavior. When we select something, transform it, and continuously observe it during the transforma-
tion, we assume it to still be selected at any stage of the transformation, and thus the selected objects
to maintain the same identity. However, since denotators are mathematical objects, this is not evident.
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RUBATO� Composer’s mathematical framework is implemented such that the transformed objects have a
different identity from the original ones, which complies with the so-called functional programming paradigm.
In other words, denotators changed by morphisms or other operations such as insertion of factors, changing of
values, and so on, usually yield new denotators rather than a modified original object, as would be expected
in object-oriented programming. This is indeed justifiable in view of the workings of RUBATO� Composer
and in view of denotators as mathematical structures. For instance, suppose a denotator was sent through
several rubettes sequentially and the same denotator traveled through the whole system and was altered
by each rubette. If the network was executed repeatedly, the denotator would be changed repeatedly, which
does not comply with RUBATO� Composer’s principles. The functional paradigm is, not surprisingly, en-
tirely incompatible with our notion transformations and gestures described in the first part of this book. In
BigBang, transformed or manipulated objects should not yield new object identities, but change the ones we
chose to transform. In other words, the value of an operation or transformation should be identified with its
argument.

In order to get this functionality within BigBang, we need a representation of objects that observes what
is going on mathematically and also keeps track of which object became which. This is another task that
BigBangObjects can take care of. In the previous chapter we introduced BigBangObjects as simplifications
of denotators that enable us to represent them visually. In addition to this, during the entire composition
process, BigBangObjects keep track of where their corresponding denotators are. However, denotators are
never saved within BigBang, but dynamically generated based on the input denotators and the operation
graph as seen in the introduction to this chapter, and they frequently change. Thus, instead of remem-
bering specific denotators or values, BigBangObjects remember a sequence of paths as their history – in
the RUBATO� Composer framework, both forms and denotators are referred to by paths, for the topmost
denotator identifying the object, at any state of the composition. Since every BigBangObject is either the
top-level object or an element of a Power or List, this path usually ends with an index in a Power or List.3

Figure 72.3 shows how this works.

Fig. 72.3. A table illustrating how BigBangObjects keep track of their location. Each column is a state of a simple
composition process with an FMSet. The rows are what each of the objects save: a path for each of the states the
object exists at, pointing to the denotators corresponding to the objects (FMNodes) are at, at the respective state.
Note that all paths are assigned according to the x-axis here (Loudness in FMSet). A MacroScore with its second
level of satellites being selected. Note that the y-axis is SatelliteLevel to facilitate the selection. The x-position and
colors of the objects hint at their chaotic arrangement on the Onsetˆ Pitch plane.

3 In RUBATO� Composer, Powers are sorted automatically and every one of their elements can thus be referred to
by a definite index.
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72.1.3 BigBang Layers

But BigBangObjects can do more. Composers often think in groups of musical objects, representing different
voices, logical parts, or recording tracks. One of the characteristics of BigBang ’s facts view is that it does not
distinguish between such tracks in a spatial way. This leads to a significant gain in space. However, because
of this, working in different parts can become tedious. However, with just the facts view, if users wanted to
process several parts individually, they would have to repeatedly select each individual group of objects. In
order to simplify this, we introduced so-called layers, which correspond to tracks in sequencers, except for
that they are not strictly tied to specific voices or instruments.

In early BigBang, layers were realized on the level of forms. All SoundNotes had an additional Simple
denotator Layer, which represented the index of the layer on which the note was present. SoundNotes could
be moved from layer to layer either by being transformed or with a specific menu function, and layers could
be made invisible, and inactive, which rendered the notes unselectable [1045]. This way of implementation
had two disadvantages. First, the layers would only work for forms that contained the Layer Simple form.
MacroScores and Scores could thus not be represented on layers. Second, the Layer form was of no use
outside of BigBang, which hardly justified its appearance on the level of forms.

For the new generalized BigBang we had to find another solution. Layers were one of the main reasons
for the introduction of BigBangObjects as temporal structures that were described in the previous section.
We decided that each BigBangObject can be part of as many so-called BigBangLayers as needed. Users
can add new layers, move objects to specific layers, or add them to additional ones. Each BigBangLayer can
be made inactive (unselectable), invisible, and/or inaudible, which affects all of its objects. If an object is
audible on at least one layer, it is audible. The same is true for visibility, and activeness. Figure 72.4 shows
an example of an FMSet with active, inactive, inaudible, and selected layers.

Fig. 72.4. An FMSet distributed on three layers, represented by the rectangluar areas at the top. Layer 0 is inactive
and inaudible (its Partials in the facts view are greyed out), layer 1 is active and selected (its Partials are darkened),
and layer 2 is active, but not selected (normal bright color).



1132 72 Processes: BigBang’s Operation Graph

72.2 Operations and Transformations in BigBang

This section introduces all activities that are part of the graph represented in BigBang ’s process view. In
BigBang, we distinguish between two types of processes, operations and transformations.4 Operations are all
activities that affect BigBang ’s denotators, such as creating denotators, adding satellites, deleting denotators,
etc. Transformations are special operations that include all activities that can be formulated as morphisms
in the category of modules Mod@. Almost all operations and transformations are defined relatively to the
x/y coordinates currently selected. This way, every dimension of the visible denotators can be manipulated.
Since the way of interaction with BigBang is gestural for most of the operations, the next chapter, which
deals with gestures, will explain how this works.

Almost all operations, except for the ones that add objects to the composition, are applied to a selection
of BigBangObjects and keep references to these objects, rather than to denotator paths, as they did in earlier
BigBang. This has major advantages in case operations are modified, removed, or inserted, as will be discussed
in Section 72.3.

72.2.1 Non-transformational Operations

We do not consider all activities available in BigBang as part of the compositional or improvisation process.
Only activities that change the denotator and the musical structure represented by the rubette are included
in BigBang ’s operation graph. For example, when the musician decides to select notes, and move them from
layer to layer, or pushes the play button, denotators are left unchanged. This section considers all operations
that are not transformations.

72.2.1.1 AddObjects and DeleteObjects

The most basic operation is AddObjects, which is typically triggered when the user draws objects onto
the screen or defines them using an interface, such as by recording with a MIDI keyboard or by defining
points with the Leap Motion controller. All added objects are BigBangObjects and always comply with the
form selected in BigBang. If the form defines several objects, on different satellite levels, users can choose
which ones to add. In HarmonicSpectra (Section 71.5.3), for instance, they can choose between adding
HarmonicSpectrum (elements of the top Power) or Overtone (elements of Overtones). Note that the
latter cannot be added unless there is at least one HarmonicSpectrum already present.

Furthermore, objects can contain many Colimits, as seen in Section 71.3.3. For each of those Colimits,
users need to choose which Colimit coordinate they would like to add. For instance in an EulerScore they
can choose between adding EulerNoteOrRests with an EulerNote or ones with a Rest.

For circular structures, uses can add objects to any satellite level, at most to one level higher than the
maximum level present. For instance, in case of a SoundScore with just one note, they can choose to either
create SoundNodes (satellites) on levels 0 or 1, or create SoundNotes (modulators) on level 1.

If there is no Power or List in the selected form, only one object can be added. Whenever users keep
performing AddObjects, the former object is replaced. This happens for instance when the selected form is
Pitch or Note.

Adding objects usually happens with respect to the selected x/y parameters. All denotator parameters
not assigned to the x- or y-axes are given standard value, which can be defined by the user, in the column
to the right of the view parameters checkbox grid. For instance, when drawing Notes on the Onset ˆ Pitch
plane, we can first decide that all V oices are 0, then continue drawing with voice 1, etc.

The DeleteObjects operation simply removes all objects currently selected.

4 Even though Lewin made the same distinction, our notion of operations greatly differs from what Lewin defined
them to be. Rather than being more specific—bijective transformations—they are more general and denote the
entire set of activities available in BigBang that change the contained denotators.
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72.2.1.2 InputComposition

Instead of adding denotators in any of the above ways, users can also input denotators by means of the
rubette’s input, which creates an InputComposition operation. For this, they need to connect the rubette
to another rubette that outputs a denotator, for instance MidiFileIn, and run the RUBATO� Composer
network. If there is already a denotator in BigBang, the incoming one is of the same form, and the top-level
denotator is a Power or a List, the elements of the incoming denotator are added to the denotator already
present. Otherwise, the entire denotator is replaced. For instance, users can add as many other Scores to
a Score as they wish, which leads to a large union, in exactly the same way as can be done with the Set
rubette. If they do not wish to do that, but replace the Score already present, they have to select and modify
the InputComposition operation, as will be described in Section 72.3.2.

72.2.1.3 BuildSatellites and Flatten

When users want to build hierarchical structures, they can simply add objects by drawing on a higher satellite
level, as seen above. However, they can also use the BuildSatellites operation, usually triggered through
a pop-up menu, with which they can add objects that are already present in the composition as satellites to
other objects, if the form contains Powers with the same coordinate form, at several places. This way, for
example, with an FMSet denotator with several top-level Partials, users can add some of these Partials
as modulators to another one of the Partials.

The opposite operation is called Flatten [715]. It adds all selected satellites to the Power or List that
contain their respective anchors, e.g. it changes first-level FMSet modulators into simple additive oscillators.

72.2.1.4 Shaping

Shaping allows users to change the values of the visible objects. It is based on two given denotator values
u, v, for instance Onset, P itch, and a number of real number pairs pu1, v1q, . . . , pun, vnq P R2. For each
BigBangObject in the composition, if its u value is close to any un, its v value is assigned vn. In practice,
this is used in BigBang ’s shaping mode, where users can click-and-drag as in drawing mode on the x/y plane,
and every object that is close to the x value is assigned the y value of the current drawing location.5 This
can be helpful especially with mouse drawing, where users are limited to drawing in two dimensions. After
drawing on one plane (AddObjects), they can switch into shaping mode and define more dimensions the
same way. Figure 72.5 shows a Score composition that was drawn on the Onset ˆ Pitch plane, before being
shaped in the Onset ˆ Loudness plane, where for each Onset, a new Loudness was assigned. These varying
Loudnesses are now represented with hue color values, red being both the loudest and quietest, green being
mp and blue mf .

72.2.1.5 Wallpaper Operations

Wallpapers were introduced as generalizations of Presto Ornaments [1041]. In simplified terms, for a wallpa-
per we need a motif m of coordinates of Powers or Lists, a grid of morphisms f1, . . . , fn and corresponding
ranges r1, . . . , rn with rk “ prmin

k , rmax
k q P Z2 and rmin

k ď rmax
k . The first wallpaper dimension then results

from the repeated application of f1p. . . f1pmqq and creating the union of all copies. 1`rmax
1 ´rmin

1 determines
the number of copies of m we get. If rmin

1 ď 0 ď rmax
1 , m itself is included. The next dimension, if there is

one, is then produced by f2, r2, applying f2 to all copies of m resulting from the first dimension, then f3, r3
to all results of f2, r2 and so on.6 Figure 72.6 shows an instance of a two-dimensional wallpaper in early
BigBang.

In BigBang, the morphisms of a wallpaper are limited to its transformations, i.e., affine morphisms,
to be defined in Section 72.2.2. However, BigBang adds a functionality that the Wallpaper rubette was not

5 An early version of this mode was introduced in [1045].
6 For more details, see [1041, p.33f].
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Fig. 72.5. A composition drawn in Onsetˆ Pitch with a shaped third dimension represented by color.

Fig. 72.6. A two-dimensional wallpaper in early BigBang.

capable of. The motif is no longer the entire composition, as for the Wallpaper rubette, but the selection the
user has made. This way, elements on any level of the denotator anatomy can simultaneously participate in
a wallpaper. For instance, we can generate a regular structure of FMSet denotators including both, carriers
and modulators. Each mapped modulator is added to its original carrier.

Also, each dimension of the wallpaper can be composed of several two-dimensional BigBang transfor-
mations, each of them performed on arbitrary x/y planes. This way, when working with a Score, a single
dimension can for instance consist of a translation on the Onset ˆ Pitch plane, followed by a shearing on
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the Onset ˆ Loudness plane, which results in each copy of the motif being transposed in pitch, time, and
loudness.

Two operations regulate the creation of wallpapers in the new BigBang, AddWallpaperDimension
and EndWallpaper. Whenever AddWallpaperDimension is performed for the first time, all objects that are
selected at the time are taken to be the motif, and all following transformations constitute the first dimension
of a wallpaper. Each additional performance of AddWallpaperDimension adds another dimension, again
constituted by all following transformations, while being based on the same motif. Finally, EndWallpaper
ends the wallpaper and goes back to normal transformation mode.

72.2.1.6 Alteration

The last operation available in the current version of BigBang is Alteration and corresponds to the func-
tionality of the Alteration rubette, a generalization of part of Presto OrnaMagic [1041, p.36f]. In BigBang,
alteration consists in deforming a set of objects O1 gradually towards another set of objects O2. In BigBang,
as with wallpaper motifs, both of these compositions can be selected using the selection tool and do not
have to include the entire denotator. Again, compared to the Alteration rubette, where both inputs have to
be Power denotators the direct elements of which are altered, in BigBang the sets of objects can include
objects on different anatomical levels of the composition. For every object in oi P O1, alteration finds the
nearest object in oj P O2, based on spatial distance, and moves the values of oi towards the ones of oj by a
given degree. These degrees work as follows: for a degree of 0% the object oi stays unchanged whereas for
100%, oi becomes oj .

Alteration can be performed simultaneously for as many of the denotator parameters as the user would
like. For instance, if we merely alter Pitch in a Score, we get the tonal alteration familiar from music theory.
If we alter just Onset, we get a generalized version of quantizing, familiar from sequencer systems. However,
if we alter every Simple denotator in Score, we get intermediary compositions between O1 and O2. In the
new BigBang, users can define two alteration degrees dg1, dg2 that act according to the denotator parameter
currently associated with the x-axis. For instance, if we alter a Score while looking at the OnsetˆPitch plane,
dg1 defines the degree by which the object with the earliest Onset is altered, while dg2 designates the degree
for the object with the latest Onset. If we switch to Pitch ˆ Onset, dg1 concerns the object with the lowest
Pitch and dg2 the one with the highest. All degrees for the intermediary objects are interpolated linearly.
Figure 72.7 shows an example from early BigBang where a Score is altered with dg1 “ 0%, dg2 “ 100%.

Fig. 72.7. A Score alteration in early BigBang. (a)

shows the unaltered Score

Fig. 72.8. A Score alteration in early BigBang. (b)

Pitch and Duration are altered with dg1 “ 0% and

dg2 “ 100%
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72.2.2 Transformations

In the context of RUBATO� Composer, transformations are directly based on morphisms between denotators,
as we defined them above. BigBang allows for five different kinds of geometric transformations on the visible
x/y plane, Translation, Rotation, Scaling (= dilation), Shearing, and Reflection, which take advantage
of a lemma that says that any multi-dimensional affine transformation can be described as a concatenation
of such two-dimensional geometrical transformations. These transformations are typically applied with a
gestural interface, as will be described in detail in the next chapter. For example, when using a multi-touch
interface, users can directly define an AffineTransformation based on combined dilation, rotation, and
translation with two fingers, or all five transformations with three fingers [1044].

Regularly, transformations replace the selected objects with transformed versions. However, users also
have a choice to perform so-called copy-and-transform, a generalized version of copy-and-paste, which adds
the transformed objects to the given Power denotator, while keeping the originals. Translation with copy-
and-transform yields classical copy-and-paste. Figure 72.9 shows a composition made with several copy-and-
transforms.

Fig. 72.9. A small composition made with copy-and-translate (bottom left), copy-and-rotate (top left), copy-and-
scale (top right), and copy-and-reflect (bottom right).

In contrast to earlier versions, in the new BigBang rubette all transformations can be applied to any
selection of BigBangObjects, on whatever anatomical level of the denotator they are, as seen above with
wallpapers and alterations. This makes it possible for anchors and satellites to be transformed simultaneously,
which leads to interesting results. Since satellites are designed to keep their relative position to their anchor
when the anchor is transformed, a simultaneous transformation of anchors and satellites leads to satellites
transforming doubly, once along with their anchor and once themselves.

Futhermore, even different objects in a Colimit can be transformed together in shared dimensions. For
instance, in an EulerScore composition, we can transform Notes and Rests simultaneously if either Onset
or Duration is (or both are) associated with the x- and y-axes.

Since the view parameters can be freely assigned in BigBang, objects also need to be able to be
transformed when only one of their parameters is associated with one of the visual axes. If this is the case,
objects are represented on the respective axis and the transformation, defined in two dimensions, acts on
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the objects as though they were located in two-dimensional space. However, the results remain projections
on the axis at any time.

72.2.2.1 Transformation in Arbitrary Spaces

Even though what the new BigBang rubette does in terms of operations and transformations may appear
straightforward, from a theoretical point of view it is trickier than expected. In this section, we will briefly
illuminate one of the solutions we found in order to deal with the potentially infinite number of object types
that BigBang can handle.

Most importantly, the transformative system needed to be adjusted in order to transform more general
types of Simple denotators, and not just Note parameters. For this, we could build on a procedure that
allows for mapping denotators by arbitrary morphisms that Florian Thalmann defined in his master’s thesis
and used in the context of the Wallpaper, Alteration, and Morphing rubettes [1041, p.32f]. Here we describe
the necessary extensions and generalizations.

In the original procedure, the goal was to map a Power denotator d by a morphism f , even if the mod-
ules of its Simple denotators do not match the domain of f . This was done by inserting auxiliary injection,
projection, and casting morphisms on both sides of f in order to adapt it to the chosen Simple morphisms.

We assume f : V Ñ W to be any kind of affine or non-affine morphism where V and W are products of
arbitrary modules V “ V1 ˆ . . . Vs and W “ W1 ˆ . . .Wt. In the original procedure we tacitly assumed these
modules to be one-dimensional free modules over the number rings Z,Q,R or C. With the new extended
repertoire of denotators, including Limit, Colimit, and Power denotators based on Simple denotators
on more-dimensional free modules as well as modules based on product rings, we needed to make some
adjustments.

Assuming that we would like to map values of a given denotator d : A@F , where F is any form
containing Simple forms, we again define two sequences, G. “ pG1, . . . Gsq and H. “ pH1, . . . Htq, their
cardinality corresponding to domain dimension s and codomain dimension t of f . However, as opposed to
the earlier procedure, their elements Gj and Hk are not Simple forms but either component modules of
one- or more-dimensional free modules over a certain ring, or factors of direct sum modules or modules
over a product ring. More formally, Gj , Hk P RF , where RF is the set of all module components or factors
throughout the denotator tree. There are significant differences between the set SF introduced earlier [1041,
p.31] and RF . Not only does RF contain modules and not simple forms, but it may also contain several
instances of the same type of component module or factor module, unless it is contained at the same position
in a different instance of the same Simple form. There is thus no function analogue to SApS, dq involved.

Due to the fact that we now allow more-dimensional Simple denotators, we also need more auxiliary
morphisms. In addition to ij , pk, gj and hk in the earlier procedure [1041, p.33], we define two additional
sequences of projection and injection morphisms, pm and in, which leaves us with the following collection of
morphisms:

• the initial projection morphisms p1, . . . ps with pj : MGj Ñ Gj ,
• the initial casting morphisms g1, . . . gs with gj : Gj Ñ Vj ,
• the initial injection morphisms i1, . . . is with ij : Vj Ñ V with ijpvq “ v1 “ p0, . . . v, . . . 0q, where v is at

the jth position of v1,
• the final projection morphisms p1, . . . pt with pk : W Ñ Wk with pkpwq “ wk for w “ pw1, . . . wtq,
• the final casting morphisms h1, . . . ht with hk : Wk Ñ Hk, and
• the final injection morphisms i1, . . . it with pk : Hk Ñ MHk

.

In these definitions, MGj and MHk
stand for the modules of which the Gj and Hk are components or factors.

They of course do not have to be pairwise different, since several of the elements of G. and H. might be
different components or factors of the same modules.

We then define a φ1
f analogously to φf [1041, p.33]:

φ1
f pd, pGjqq “ fpi1 ˝ g1 ˝ p1 ˝ A@MGj pdq ` . . . is ˝ gs ˝ ps ˝ A@MGj pdqq.
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Finally, we define

mapf pdq as a copy of d,

where every module MHk
is replaced by the sum of ik ˝ hk ˝ pk ˝ φ1

f pd, pGjqq,
and the injected projection of every component or factor Mi of MHk

with Mi ‰ Hk.

72.3 BigBang’s Process View

When they are performed, all of the operations and transformations described above are added to BigBang ’s
process view. In this section, we discuss how processes are visualized and how users can interact with them.

72.3.1 Visualization of Processes

As seen above, the process view shows a directed graph, which we call this graph operation graph, since it
contains all operations performed, including transformations, and since its node values are not defined in an
absolute way and thus resemble Lewinian transformation graphs rather than networks (see Section 72.1.1).

Whenever a new BigBang rubette is created or the user decides to start over by selecting a new form
to work with, the operation graph is reset, which means that it merely consists of one node, labelled 0.
For every operation performed, the graph obtains a new arrow, labelled with the operation, and a new
node, representing the so-called CompositionState after the execution of the operation. Composition states
are identified with unique increasing numbers, the highest of them representing the state last added. As
long as the user merely interacts with the facts view, the graph grows as a linear sequence of arrows and
nodes. Figure 72.10 shows such a simple linear graph including an AddObjects operation followed by all five
geometric transformations.

Fig. 72.10. A BigBang operation graph showing a linear composition process.
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72.3.2 Selecting States and Modifying Operations

Users can interact with the graph by selecting its nodes, which immediately updates BigBang’s composition
to the one at the corresponding state, in both the facts view and the sonification. This way, the users can
compare and contrast different states of their composition process, and evaluate them. Every time a state is
selected, the shortest path between state 0 and the selected state is calculated and the corresponding facts
are dynamically generated, which corresponds to the factualizing procedure described in Chapter 71.

When an operation is selected, the corresponding screen tool—a schematic representation of the oper-
ation as described in the next chapter—is shown, and users have the opportunity to modify the operation.
Any state can be selected during this procedure and the consequences of the modification are shown for that
state. This enables composers to change past decisions in their composition process, while observing their
present composition, much in the fashion of Boulezian analyse créatrice, where composers use an analytical
process to find other compositions in the neighborhood of theirs.7

Transformations are modified by dynamically changing the transformational parameters, e.g. the rota-
tion angle or center for a Rotation, or the scale factors of a Scaling, which will be described in Section 73.1.4.
Operations can have more distinct consequences. For instance, with modifying AddObjects, users can entirely
replace the objects they were working with. The same composition process following the selected operation
will then be applied to the new objects. The same applies to InputComposition. If the user selects such
an operation before running the RUBATO� Composer network, the operation’s composition is replaced. If
no such operation is selected, a new InputComposition operation is created at the end of the graph or the
selected composition state.

This is where the definition of operations with none of the objects selected becomes interesting, as
described in Section 72.1.1. If a user replaces the entire input of BigBang, the entire composition process
will be applied to all objects, no matter how many of them there are.

Now what happens when operations are modified that later operations depend on? If, for instance, we
modify a Rotation by a 180 degrees, all concerned objects’ denotator paths may change, since they are based
on lexicographical sorting, especially in Power. In early BigBang, this would have led to major problems,
since all operations were directly based on denotator path references. In the current version, as mentioned
in Section 72.2, operations keep references to BigBangObjects instead, which dramatically simplifies the
case. In the case of the modified rotation, all paths the BigBangObjects refer to are changed. All operations
following the rotation can then dynamically obtain the actual paths from the objects when updating the
denotator, i.e., during factualization.

72.3.3 Alternative and Parallel Processes

In addition to the linear processes described in Section 72.3.1, there are currently two more process types,
alternative and parallel processes.

If users select a state other than the latest composition state and perform an operation, the operation
is added to the graph by building a fork at the selected state, building an alternative process. This way,
users can experiment by building processes that share an initial part, but then continue individually. Such
alternative composition states can again be selected and are immediately visualized and sonified accordingly.
Figure 72.11 shows such a graph generating two alternative wallpapers starting from the same input material.

Parallel processes are created when an operation is selected in the graph. Then, any new operation
performed is added as a parallel arrow to the selected operation, starting and ending at the same states.
This is the only way operations are added to the graph without adding a new composition state. Logically,
parallel operations are no different from sequential operations at the current time. They are executed in
their order of addition, since conflicting situations might arise with a parallel execution, especially with
non-commutative transformations. However, as we will see in the next chapter, they differ from sequential
operations in the way they are gesturalized (Section 73.2). Furthermore, they can be a good choice for
composers to group their operations in order to get fewer composition states, if they are composing on a

7 The notion of neighborhoods was introduced in [718], based on analyse créatrice in [140].



1140 72 Processes: BigBang’s Operation Graph

Fig. 72.11. An operation graph with two alternative processes.

meta-level (see Section 74.2). Figure 72.12 shows a graph including three parallel geometric transformations,
followed by a parallel reflection and alteration.

Fig. 72.12. An operation graph with parallel processes.

Currently, parallel operations can only be added as directly parallel to one operation. In the future,
however, there will be the possibility to create higher-level operations that are executed simultaneously
with several lower-level operations. This is especially attractive for gesturalization, where higher-level opera-
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tions would be animated much slower than lower-level operations. Internally, BigBang already supports the
definition of such processes.

72.3.4 Structurally Modifying the Graph

So far we described ways in which operations can be added to the graph simply by performing them. There
are additional ways in which users can interact with BigBang’s operation graph.

72.3.4.1 Removing Operations

At any stage of the composition process, users can decide to remove an operation in the graph using a
popup menu. When an operation is removed, all other operations are still executed and applied to the same
selection of BigBangObjects. However, there is a chance that the concerned BigBangObjects are not there
anymore, if the removed operation is for instance an AddObjects operation. This is why all operations are
always applied to all of their objects there, while all others are ignored.

Removing operations is an especially attractive solution to a problem that early BigBang had with
its undo/redo system. Since its architecture was facts-based, as shown in the top half of Figure 72.1, non-
invertible transformations such as projections were impossible to be undone. With the new, process-based
BigBang, any type of operation can be undone without problems.

72.3.4.2 Inserting Operations

Users can also insert an operation at any state, by simply deciding where to insert and by selecting objects
and executing an operation as usual. This replaces the selected state node by two nodes, and connects them
with an arrow representing the new operation.

72.3.4.3 Splitting Operations

Any operation can be split into two operations by indicating a ratio between 0 and 1 at which the operation
should be split. This can be done using a slider, as described in the next chapter. Thereby, the operation
arrow is replaced by two arrows and an intermediary node. For instance, if Rotation is split with angle α at
ratio 0.4, this results in two subsequent Rotations with the same center, the first with 0.4α and the second
with 0.6α.

72.3.5 Undo/Redo

BigBang ’s operation graph represents the composition or improvisation process. The possibility of interacting
with it in the above ways may be seen as a replacement of traditional undo/redo functionality in software.
However, on top of this, BigBang has a regular undo/redo system that works on the level of graph interaction.
It allows users to undo and redo any activity of adding operations to and removing them from the graph.
This is important for an even faster and more flexible way of interaction. For instance, if users decide to
remove an operation early in the process and dislike the effect, they can bring it back using a standard key
combination.
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Gestures: Gestural Interaction and Gesturalization

We have so far seen that the BigBang rubette allows users to visualize and sonify facts, and create and
manipulate them using processes. In the previous chapter, we also discussed that the only structures that
BigBang represents internally are processes, only one of which refers to facts in the form of denotators
(InputComposition). All other facts are generated dynamically, whenever an operation is added or modified.
In order to offer an intuitive way of interacting with the software, we need yet another level: gestures.

BigBang builds on the gestural principles described in Section 61. There are two ways in which gestures
come into play with BigBang, the ones that are performed by the user when applying operations, and the
ones that are recreated from processes. With the former, anything composers and improvisers do within
BigBang is immediately audible and most operations can be performed in continuous ways, using continuous
physical controllers such as a mouse, a multi-touch surface, or a Leap Motion controller. All operations are
accessible through a minimal amount of actions or gestures, designed to be understandable to any user, even
ones without a mathematical background.

Nevertheless, what BigBang saves are not the gestures as such, but their processual abstractions. From
the point of view of computer science, this is an infinitely more economical solution than saving every
temporal state of a gesture. The latter would be possible to implement with current computers, but it is
not yet conceivable in terms of denotators and will thus be left to further projects.1 Thus, the second way
gestures are available in BigBang is by turning processes back into gestures, in the form of an animated
composition history that can again be used for compositional purposes.

All this corresponds to the communication scheme between the levels of embodiment introduced in
Chapter 71. The two types of gestures correspond to the inputs of the formalizing procedure and the out-
puts of the gesturalizing procedure. In this chapter, we explain how both formalizing and gesturalizing is
implemented in BigBang.

First, an overview of gestural possibilities will be helpful. Table 73.1 lists all operations currently
available in BigBang and shows whether or not their definition occurs in a gestural way (first type of
gesture) and whether or not they are gesturalizable (second type of gesture). While several of the operations
are not defined in a gestural way, most of them are gesturalizable. All transformations are both defined
gesturally and gesturalizable. The two last columns will be discussed in Section 73.1.4.

73.1 Formalizing: From Gestures to Operations

In this section, we discuss the ways gestures are used to define operations, more precisely how controller
gestures are mapped into appropriate operations and transformations. We thereby move from the most simple
supported gestural interface to more complex ones. The standard gestural controller is the computer mouse.
It was a design principle that almost everything in BigBang can be done in a satisfying way using a mouse.

1 In order to do this properly within RUBATO� Composer, we have to extend its vocabulary to include constructs
in the category of topological spaces, as used in the definition of gestures (see Section 61).
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operation defined gesturally gesturalizable modifiable range (in R)

AddObjects yes yes yes [0,1]

DeleteObjects no yes yes [0,1]

InputComposition no yes yes [0,1]

BuildSatellites no yes yes [0,1]

Flatten no yes yes [0,1]

Shaping yes yes yes [0,1]

AddWallpaperDimension no no yes [0,2]

EndWallpaper no no no no

Alteration yes yes yes [0,1]

Translation yes yes yes [0,2]

Rotation yes yes yes [0,2]

Scaling yes yes yes [0,2]

Shearing yes yes yes [0,2]

Reflection yes yes yes [0,2]

AffineTransformation yes yes yes [0,2]

Table 73.1. BigBang ’s operations and their gestural capabilities.

Other currently supported interfaces include multi-touch surfaces, the Leap Motion controller, and various
MIDI controllers. Gestural devices vary significantly in the dimensionality of their topological space, the
number of recognized parameters in this space, as well as the potential interdependency of the parameters
based on physical limitations.

In our case, the mouse recognizes one point in R2, multi-touch a number of points in R2 (maximally 10
per user), and the Leap Motion twelve points and twelve vectors in R3. What do gestures look like in these
spaces? For the mouse, for instance, we can define a simple click-and-drag gesture g :Ò� f where Ò is the
arrow digraph with Ò“ ‚ Ñ ‚ and f : I Ñ R2. Since we will always deal with single click-and-drag gestures
below, we will simply identify the gestures by defining f .

73.1.1 Modes, Gestural Operations, and the Mouse

Complying with our principles for operation-based gestural systems, we decided the mouse operations in
BigBang would be atomic gestures with as few clicks and movements as possible, so that they can be quickly
applied, in an improvisational and potentially virtuosic way [1043, p.3]. Most gestural operations can be
defined with a click-and-drag gesture. In order to distinguish the different operations from each other we
did not implement a recognition system, but defined a number of Modes in which the program can be, one
for all gestural operations (see Table 73.1), plus one each for AddWallpaperDimension and EndWallpaper.2

These modes are accessible through buttons in the top toolbar, but will soon be made accessible through
keyboard shortcuts when using a mouse, or even a MIDI foot controller when working with two-handed
gestural interfaces,3 in order to keep the hands focused on gestures. Most modes for gestural operations have
a corresponding DisplayTool, which represents the ongoing operation in a schematic way as a reference for
the user. Figure 73.1 shows the tool displayed in Shearing mode, which consists of a grey square representing
the original state and a clear parallelogram representing the sheared version of the square.

2 There are also modes for non-operational activity, e.g. Navigation mode and Selection mode.
3 As suggested in [1049].
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Fig. 73.1. The shearing DisplayTool shown while a copy-and-shear is performed.

73.1.1.1 Gestural Transformations

The most interesting case of gestural control is transformations. In this section, we describe in a mathematical
way in which the user gestures are transformed into gestures on the canonical topological space of affine4

morphisms in Aff2pRq, and finally how we obtain the transformation morphism m that will be applied to
the denotators represented by the selected objects.

All transformations in BigBang are currently two-dimensional affine transformations, which can be
expressed as

y “ Ax ` b, with A “
˜
a11 a12

a21 a22

¸
and b “

˜
b1

b2

¸
.

For every mouse gesture, we find a gesture in Aff2pRq by a gesture morphism or throw morphism, which
we defined earlier as a pair pu, vq with u : Γ Ñ Δ and v : X Ñ Y such that h ˝ u “ ÝÑv ˝ g (Sections 61.5
and 74.2). Since on both sides we deal with the digraph with two edges and an arrow—this is what a
simple click-and-drag gesture corresponds to—and thus Γ “ Δ, we can assume that upγq “ γ is the identity
morphism on digraphs. All we thus need to do is define a v : R2 Ñ Aff2pRq for each transformation type.

In BigBang, each point of a click-and-drag mouse gesture is simply describable by two coefficients,
λx, λy, which represent motion along the x- and y-axes of the currently selected view configuration (see
Section 71.2.1). Thus, λx, λy can stand for any of the denotator parameters. For simplicity, we assume here
that the scales of the two axes directly correspond to the scales of the denotator parameters. In practice,
however, depending on the currently selected zoom level, we need an additional conversion algorithm.

All transformations also depend on location, except for translation in our case. For this, users define an
additional center point c “ pcx, cyq. Unless indicated otherwise, the center is automatically defined by the
initial click of the click-and-drag gesture. In order to execute an affine transformation relative to a center,
we first need to translate by ´c, then apply Ax ` b and finally translate back by c. This can be packed into
a simple constant. If we assume y “ Ax ` b, then

4 Aff2pRq denotes the affine endomorphism set R2@R2.
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yc “ y ` p1 ´ Aqc.
In the following discussion, we will omit this from the formulas for simplicity and only define Ax ` b, even
though c is always considered in BigBang.5

Translation

The most simple case is translation, where we can simply map the mouse space to the linear coefficient b.
For this we define

vT pλx, λyq “
˜
1 0

0 1

¸
x `

˜
λx

λy

¸
.

Rotation

Rotation is the only transformation that needs more than a click-and-drag gesture. First, users need to select
a center around which to rotate, by simply clicking anywhere in the facts view. The center affects the rotation
as seen above. Then a click-and-drag gesture decides the rotation angle. Here, we need more than λx, λy.
Two points px1, x2q and py1, y2q are the starting and current dragging or ending points of the click-and-drag
gesture. We map as follows:

vRopx1, x2, y1, y2q “
˜
cosφ ´ sinφ

sinφ cosφ

¸
x,

where φ is the angle around the center c determined by the angle between the straight line from c to px1, x2q
and the one from c to py1, y2q.
Scaling

For scaling, the initial click of the click-and-drag motion defines the center. λx, λy, defined by the dragging
distance, determine the so-called scale factors:

vScpλx, λyq “
˜
λx 0

0 λy

¸
x.

If the shift key is pressed, we set λy “ λx to allow for equal scaling in both dimensions.

Shearing

Shearing works as the scaling does, where λx, λy define the shearing factors, where λx shears horizontally
and λy vertically. We get the following formula:

vShpλx, λyq “
˜

1 λx

λy 1

¸
x.

Purely horizontal or vertical shearing can be performed by pressing the shift key during the click-and-drag
gesture. If λx ě λy, we set λy “ 0, else λx “ 0.

5 For instance, for a scaling by λx, λy around c (see below) with

A “
˜
λx 0

0 λy

¸
and b “ 0

we obtain

p1 ´Aqc “
˜
1 ´ λx 0

0 1 ´ λy

¸
c “

˜
p1 ´ λxqcx
p1 ´ λyqcy

¸
and thus

vSc “
˜
λx 0

0 λy

¸
`

˜
p1 ´ λxqcx
p1 ´ λyqcy

¸
.
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Reflection

Reflection is slightly more complex. The click-and-drag gesture determines the reflection axis rather than
the positions of objects and reflected images, which could be done as well. We thus obtain

vRepλx, λyq “
¨̋

λ2
x´λ2

y

λ2
x`λ2

y

2λxλy

λ2
x`λ2

y

2λxλy

λ2
x`λ2

y

λ2
y´λ2

x

λ2
x`λ2

y

‚̨x.

Reflection is the only transformation that cannot be performed in a purely gestural way. We will see
below that it can be easily gesturalized by interpolating through a projection on the axis. Here, however,
we had to find a different solution. As soon as the initial click and a slight dragging motion is performed,
the objects are abruptly reflected. However, as the user continues dragging, the axis is adjusted in a gestural
way until a satisfying result is found.

Transformations in Wallpapers

The initial/final operations that frame the execution of a wallpaper are not gestural. AddWallpaperDimension
simply decides that all following transformations, until EndWallpaper occurs, will be part of the wallpaper,
and the two operations are executed by a simple click on the corresponding mode buttons. However, the
way a wallpaper grows is always gestural, since the user applies regular transformations, executed as just
described. For instance, if after an AddWallpaperDimension operation we start translating, we gesturally
perform as many subsequent translations as determined by the range of the wallpaper dimension. Every
transformation we perform afterwards has a similarly gestural effect.

73.1.1.2 Other Gestural Operations

In addition to the transformations just described, there are also other operations that can be considered
gestural.

Drawing

For drawing with the mouse, which happens with the same click-and-drag gesture as above and triggers
AddObjects, we can define a gesture morphism that, instead of going into the topology of affine transfor-
mations, directly reaches a topological space defined by the two denotator parameters associated with the
x/y view parameters. For instance, if we draw EulerNotes on the Onset ˆ EulerP itch1 plane (see Sec-
tion 71.3.3), we can create a gesture morphism with u as above and v : R2 Ñ QˆZ, if Onset is defined over
Q and EulerP itch over Z.

For each λx, λy, if we assume again a correspondence of view and denotator parameters as in Sec-
tion 73.1.1.1, drawing defines an object with x/y parameters λx, λy. In reality, even though such a gesture
morphism defines an infinite number of objects, only a finite number are created due the discrete nature of
mouse movements (pixel by pixel) in combination with a purposeful time constraint that limits the number
of objects drawn each second. However, by zooming in the facts view, objects can be created as closely
together as necessary.

In sum, drawing could be considered the most gestural of all operations, since, for objects in Powers
or Lists, BigBang does not only remember the last state, as it is true for transformations, but creates and
remembers all objects in order reached along the path. We will see later on that this has implications for
gesturalizing, since we do not have to reconstruct a gesture but can in fact use this trace for gesturalizing.
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Shaping

Shaping works in a similar way to drawing, in terms of how it can be defined gesturally. The image space of
the topological part v of the gesture morphism is also two-dimensional. However, while the second dimension
is also the denotator space associated with the y-axis parameter, the first dimension is a discrete space
defined by the set of all present values of the denotator parameter associated with the x-axis space.

Nevertheless, shaping remembers all shaping locations as elements of R2, which makes one shaping
gesture applicable to any denotator, if for instance the input composition changes, or more objects are
inserted at an earlier stage of the process.

Alteration

When performing an alteration, users have gestural control over the alteration degrees dg1, dg2 (see Sec-
tion 72.2.1.6) over two sliders in the top toolbar, which can be considered one-dimensional gestural con-
trollers. Initially, both degrees are 0, which means that we see and hear the unchanged composition. Then,
as soon as the sliders are moved, the composition O1 moves continuously towards O2.

The configuration with two sliders makes it impossible with the mouse to control both degrees at the
same time. However, this could be solved in the future using other controllers or a two-dimensional “slide
field” instead of sliders, as in many sequencing softwares.

73.1.1.3 Non-gestural Operations

Several operations are not defined in a gestural way. Deleting, building satellites, and flattening are all
based on a selection of objects and happen at once, as described earlier on, upon a menu or keyboard
command. For all of these, gestural versions are conceivable, but only partially implemented. For instance,
deleting is possible in a gestural way when selecting an AddObjects operation and holding the shift key
while clicking-and-dragging. This way, users can undraw notes previously drawn. In a similar way, instead
of adding satellites, users can draw satellites simply by entering drawing mode and selecting the satellite
level on which they would like to draw (described in Section 72.2.1.1). Despite their limited gesturality, these
operations are all gesturalizable, as we will explain below.

The two framing wallpaper operations, as seen above, are the only operations that are neither gestural
nor gesturalizable. They are simply discrete events with structural consequences for denotators and thus also
need to be part of the process graph.

73.1.2 Affine Transformations and Multi-touch

When using controllers other than the mouse, users also have the chance to directly define more general
affine transformations. Such transformations combine all geometrical ones defined above. Before discussing
how this works, we will briefly summarize how commonly used transformational multi-touch gestures work.

Multi-touch devices typically support the three gestural types drag, pinch, and twist, shown in Fig-
ure 73.4, which are all executed using two fingers and which correspond to the geometrical transformations
translation, scaling, and rotation. Drag works the same way as the mouse gesture defined above, with the
difference that λx, λy are determined by the average position of the two fingers. In contrast, the gestural
space of the other two gestures is not directly determined by finger position, but by a certain relationship
between the two fingers used. For pinch, the distance between the two fingers determines a gesture on a
one-dimensional topological space, and for twist it is the angle at which the fingers are placed that defines
the topological space. Both gestures could thus be independently expressed as g : I Ñ R.

Since these three parameters are all defined independently they can be used simultaneously. We can
thus define a four-dimensional gesture g1 : I Ñ R4 the components of which are λx, λy, λp and λt for x- and
y-position, pinch, and twist, with which we can simultaneously translate, scale, and rotate.

In an earlier paper, we generalized these gestures for two-dimensional affine transformations by adding
a third finger [1044]. We defined three fingers fi “ ppsi , pei q with finger indices i “ 1, 2, 3 with starting point
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f 1

Fig. 73.2. The three most

common two-dimensional

multi-touch gestures: (a) drag.
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f 2

Fig. 73.3. The three most

common two-dimensional

multi-touch gestures: (b) pinch.

f 2

f 1

Fig. 73.4. The three most

common two-dimensional

multi-touch gestures: (c) twist.

psi and intermediary or ending point pei , along with four vectors vj “ pj2 ´ pj1, w
j “ pj3 ´ pj1 with j “ s, e.

Figure 73.5 visualizes these components. We also define the di “ pei ´ psi and v̂j “ vj

|vj | . We then obtain the

following gestural transformation parameters:

• For two fingers, the translation component is defined by d1`d2

2 ,

• the scaling component is ve

vs , and

• the rotation component is arccos p ve

|ve| ¨ vs

|vs| q.
• In addition to the above parameters, we obtain the shearing parameter, which is the projection length

|pd3 ¨ v̂eqv̂e|, and
• the reflection component defined by the projection length of |pd3¨ûeqûe|, where ûe is a vector perpendicular

to ve.

f 2

f 1

f 3v
sv

e

w
e

w
s

Fig. 73.5. The components resulting from a three-finger gesture.

With this, all geometrical transformations available in BigBang can be performed simultaneously. How-
ever, if we just wish to perform a reflection, we can hold fingers f1 and f2 steady at a distance, which can be
seen as the reflection axis, and then move the third finger in a motion perpendicular to this axis (Figure 73.7
(a)). For a shearing, f3 should move in parallel to the f1-f2-axis (Figure 73.7 (b)).

If we forget about the components just defined, we can move the three fingers around freely and perform
any conceivable two-dimensional affine transformation, of course limited by physical constraints.

73.1.3 Dynamic Motives, Sound Synthesis, and Leap Motion

The most complex controller currently supported by BigBang is the Leap Motion controller. It can be used
for precisely the same things as multi-touch, including two-dimensional affine transformations [1049, p.4].
BigBang thereby recognizes up to three fingers, projects them onto the plane perpendicular to the user’s
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f 3

f 1 f 2

Fig. 73.6. The two three-finger gestures for (a)

shearing.

f 1 f 2

f 3

Fig. 73.7. The two three-finger gestures for (b) re-

flection.

viewing direction (perpendicular to the z-axis at z “ 0), and uses a procedure similar to the ones described
in the previous section to perform two-dimensional affine transformations.

However, here we will be concerned with another functionality, in order to show the gestural possibilities
of BigBang. Leap Motion can also be used to draw objects. In contrast to the procedure described above,
where each gestural position generates an object, there is also the possibility to create and replace objects.
When using the Leap Motion we treat each fingertip as a denotator and map the (x,y,z) location of each
finger using a linear scaling into the coordinate system represented as currently displayed by the BigBang
rubette. Whenever the fingers move around the corresponding denotators are adjusted, which provides an
immediate visual and auditive feedback. From there, we have the option to capture the currently defined
denotators and keep adding new ones using the same method. If we use all three dimensions of the Leap
Motion space, capturing is only possible with an external trigger (such as a MIDI trigger). To avoid the use
of an external trigger the user can decide to use only two dimensions for drawing (preferably x ˆ y) and the
third dimension for capturing, whenever a certain threshold, e.g. the plane perpendicular to the z-axis at
z “ 0, is crossed.

Figure 73.8 shows a situation where the modulators of a carrier in an FMSet are defined using Leap
Motion. Their arrangement directly corresponds to the fingertips in space, as can be verified visually. Com-
pared to drawing with a mouse or another device, this method has significant advantages. The user can
quickly compose complex musical structures while being able to smoothly preview each step until satisfied.
Furthermore, the user can also easily edit musical objects added earlier in the process in the same continuous
way, which has many musical applications. The high precision of the Leap Motion makes this method just
as accurate as using a mouse or trackpad.

One of the most useful musical applications of this way of generating objects is to go back to editing
the AddObjects operation, in the manner described in Section 72.3.2, after several transformations have
been performed. This way, users can gesturally redefine the motif that was transformed, and the entire
following composition process is immediately applied to every gesturally changed state of the motif. This
is especially interesting when the transformations consist in copying-and-transforming, which can yield an
entire composition created from the same motif. Even more powerful is the use of the wallpapers to transform
a motif, where the motif can virtually be grabbed by the user and moved around, upon which the entire
wallpaper moves accordingly. Figure 73.9 shows an example of such a wallpaper, where the motif has a
recognizable hand shape defined by the user.

Instead of defining motifs in a composition or improvisation, users can also design sounds when choosing
appropriate forms. For instance, while playing the keyboard, the positions of the fingers over the Leap Motion
controller can be directly mapped to carrier oscillators or frequency modulators, as shown in Figure 73.8, and
each hand movement changes their parameters. Furthermore, in a similar way, the user can create sounds
and transform them gesturally in any of the geometrical transformation modes. This way, instead of changing
simple parameters in a linear way as with commonly available synthesizer interfaces, multiple parameters
can be changed in a complex way, for instance by manipulating both frequency and amplitude of hundreds
of oscillators around a defined sound center.
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Fig. 73.8. An FMSet denotator consisting of a carrier and five modulators defined by the fingertips of the user.

Depending on form and transformation choice, users have almost infinite possibilities of dynamically
mapping their gestural parameters to musical parameters. While translations map one-to-one, the other
transformations have the potential to map a simple gesture to several parameters.

73.1.4 Recording, Modifying Operations and MIDI Controllers

Finally, here is a fourth way of controlling BigBang in a gestural way. Several types of MIDI controllers were
made available, including keyboard controllers, mixing controllers, and combined ones. Keyboard controllers
can be used to record MIDI notes into BigBang, by converting them not only into Score denotators but
into any denotators containing Loudness (from velocity), Pitch, or temporal Simple forms, in a similarly
versatile way to that of the playback function discussed in Section 71.5.3. For instance, when working with
a Spectrum, the temporal parameters of the MIDI input are ignored, while Onset/Pitch objects are added
in a way similar to that of drawing mode.

While the above does not conform with the conditions for gestural control (note on/off events cannot
be considered continuous), there are other uses of MIDI that are more gestural. The knobs and sliders on
many devices send control changes that are gestural, even in a discrete space (g : I Ñ Z). Currently, such
control changes are mapped to the modification of operations and transformations. All knobs and sliders
are assigned to the operations in the order in which they were added to the graph. For instance, the 16
knobs of the E-MU Xboard are assigned to the 16 first operations, regardless of whether they occur in linear,
alternative, or parallel processes. Since for each controller the control change assignments may vary, they all
have to be configured individually.

For each control change, the sent values, integers in r0, 127s, are mapped to real numbers within r0, 2s,
where 0 corresponds to the identity, 1 to the original operation, and 2 to double the operation. The latter
value is then used to replace the operation’s values or morphism by a new one found at the corresponding
point on the gesture. How this is done will be discussed in detail in the next section. For now, an example
will suffice: if the modified operation is a rotation by 45˝, MIDI value 31 will be mapped to 0.5, and will
thus modify the angle to 22.5˝, whereas 127 Ñ 2 will lead to 90˝. Almost all operations can be modified this
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Fig. 73.9. A wallpaper with a motif defined by the fingers of a hand.

way. However, only some, including all transformations, can be extended to double their amount. Table 73.1
shows which operations can be modified and lists all the ranges.

73.2 Gesturalizing and the Real BigBang: Animated Composition History

When we started designing the BigBang rubette, we chose BigBang as the working name for the prototype,
because of the innumerable possibilities it brings to RUBATO� Composer. Meanwhile, this name has gained
an initially unexpected and highly appropriate new meaning. The operation graph recounts the evolution of
a sounding universe, which shows many parallels to the evolution of our physical universe. An initial group
of musical objects expands and multiplies by being copied and transformed into a highly complex musical
structure based on rules of symmetries. The ultimate functionality in BigBang is a gestural animation of
this evolution, from the initial compositional actions to the actual state. In this section, we describe how
this second type of gesture can be created.

As seen above, BigBang saves processes rather than gestures. From these processes, we can not only
generate facts, but also turn the processes back into gestures. The construct of a gesture ensures continuous
and unidirectional motion in its topological space, by anchoring it in the interval I. Animating a gesture
is thus straightforward: we just need to gradually interpolate on I, which gives us a sequence of points in
the topological space, be it affine transformations (Aff2pRq) or any other structure. However, how do we
get gestures from processes, which consist of merely a point in the corresponding topological space? We will
start by answering this for transformations, and then move on to operations.

73.2.1 Gesturalizing Transformations

We saw that what BigBang keeps from the gestures performed by the user when transforming are merely
the ending points in the topological space, the final morphisms. However, it also remembers which type of
transformation the user was executing, which is helpful for reconstructing a standard gesture. As above, in
the following definitions we ignore center c. In reality, we keep c constant during the entire gesture.
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73.2.1.1 Translation

In Section 73.1.1.1, we saw that translations merely consist in the b-part of Ax ` b. Thus, for a given
translation

x `
˜
b1

b2

¸
,

all we need to do to create a gesture is define g : I Ñ Aff2pRq as follows:

gpiq “ x `
˜
ib1

ib2

¸
,

for i P I.

73.2.1.2 Rotation

For rotations, we interpolate on the angle φ and calculate the appropriate element of Aff2pRq as above. We
thus define

gpiq “
˜
cos iφ ´ sin iφ

sin iφ cos iφ

¸
x.

73.2.1.3 Scaling

For a scaling ˜
a11 0

0 a22

¸
x

we define

gpiq “
˜
1 ` ipa11 ´ 1q 0

0 1 ` ipa22 ´ 1q

¸
x.

73.2.1.4 Shearing

For a shearing ˜
1 a12

a21 1

¸
x

accordingly

gpiq “
˜

1 ia12

ia21 1

¸
x.

73.2.1.5 Reflection

Finally, we interpolate a reflection ˜
a11 a12

a21 a22

¸
x

by traveling through a projection on the reflection axis by doing the following:

gpiq “
˜
ia11 ` p1 ´ iq ia12

ia21 ia22 ` p1 ´ iq

¸
x.
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73.2.1.6 Affine Transformations

The procedure for reflections also works for any affine transformation, since we interpolate between the
identity matrix and any arbitrary matrix. What is missing in this formula is the b part, which we can deal
with as discussed in the translation section. Thus:

gpiq “
˜
ia11 ` p1 ´ iq ia12

ia21 ia22 ` p1 ´ iq

¸
x `

˜
ib1

ib2

¸
.

However, the problem with this is that somewhere on the way, we might encounter singular projections that
may not be musically optimal. In a former paper, we suggested the use of Bruhat standardized transforma-
tions in order to decompose affine transformations into their geometrical parts, and finally gesturalize on
these obtained parts, which leads to more satisfying musical results [730].

73.2.1.7 Gesturalizing Beyond the Transformation

As mentioned in Section 73.1.4, transformations cannot only be gesturalized in the interval r0, 1s but even
beyond it. The i P I in the formulas in this section can simply be replaced by an r P R, for which we get an
extended gesture of infinite length. If we keep r P r0, 2s, we get what we described above, and we can obtain
exaggerated versions of the transformations, of up to double the amount.

73.2.2 Gesturalizing Other Operations

Almost all other operations can be gesturalized as well (see Table 73.1). We thereby distinguish be-
tween so-called ObjectBasedOperations that operate on a single set of objects. They include AddObjects,
DeleteObjects, InputComposition, BuildSatellites, Flatten, and Shaping. For these operations, we
interpolate on the number of objects the operation manipulates. We define a function o : I Ñ r0, ns, n being
the number of objects, and opiq “ in. For instance, if a BuildSatellites operation adds 30 objects as
satellites of any anchors, for i “ 0.2 it only adds the first six objects. For operations that remember the
order of their objects, such as AddObjects, the objects are manipulated in order. This leads to an accurate
reconstruction of a drawing gesture, as described above.

Two other operations can be gesturalized in a different way, even though during gesturalization
AddWallpaperDimension is ignored, since a wallpaper only evolves through its transformations. However,
AddWallpaperDimension can be modified in the way described in Section 73.1.4. Then, r0, 2s is simply used
to adjust the upper range rmax of the wallpaper dimension, i.e., o1piq “ i ˚ rmax becomes the modified up-
per range. Finally, for Alteration, gesturalization affects the two alteration degrees dg1 and dg2. Thereby,
o2piq “ pidg1, idg2q is the modified pair of alteration degrees.

73.2.3 Using Gesturalization as a Compositional Tool

In BigBang, pressing on the Gesturalize button in the upper part of the process view initiates a gesturalization
of the shortest path that connects composition state 0 and the currently selected state in the operation graph,
or the last added state if no state is selected. Each gesturalizable operation along the way is gesturalized
until the current state is reached. Users can specify an arbitrary duration for each operation. At each point
in time, the current state is visualized and sonified as described above. Parallel operations are gesturalized
simultaneously, despite their logical succession.

Even though gesturalizing can be used to reconstruct the composition process, it can become part
of the composition itself. For instance, composers can design continuously evolving textures, by defining
continuously sounding objects such as FMSets, transforming them in various ways, and finally creating a
temporal structure by selecting various durations for the transformations. This way, the gesturalized structure
becomes the actual composition.
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This can also be done in a more improvisational way, by using a slider at the top of the process view.
The space of the slider represents the entire gesturalization and by moving the slider back and forth, users
can continuously travel back and forth in the compositional evolution, while hearing the respective temporal
states.



74

Musical Examples

The new BigBang rubette offers many possibilities of creating music, due to the great variety of forms that
can be defined. We already presented some simple ideas of forms in Section 71.5. In this section, we introduce
some of innumerable slightly larger musical examples created in the course of writing the code of BigBang
and the corresponding thesis. These examples illustrate a variety of composition techniques and types of
musical results possible with BigBang. All examples are available for listening on SoundCloud, and some of
the more performative ones can be found on YouTube, at the addresses indicated below.

74.1 Some Example Compositions

This section explores some of the compositional possibilities of BigBang, i.e., preparing music outside of
musical time that can later be played back, recorded, or performed. More spontaneous and real-time methods
of creating music with BigBang will be discussed in the next section.

74.1.1 Transforming an Existing Composition

Form Score
Graph four states, three sequential operations
Techniques inputing a composition, transforming, modifying
Output BigBang synth with sine wave oscillators, slightly post-processed
Link http://www.soundcloud.com/bigbangrubette/k003

Instead of creating denotators from scratch, there are many ways in which existing compositions can
be used to create strikingly different musical results. This example is part of a series of variations based on
Sonatas by Domenico Scarlatti, all of them using composition procedures that are as simple as possible. Here,
we input Scarlatti’s K003 into BigBang via a MidiFileIn rubette, thus in Score form; then we stretched
and compressed it in time and pitch, respectively (ScalingTransformation), and finally transposed it down
several octaves (TranslationTransformation). The resulting graph therefore consists of three sequential
operations (see Figure 74.1). Using the option of modifying transformations, we found the range we envi-
sioned, resulting in a pulsating bass sound emerging from the beating based on the close frequencies after
the pitch compression. The clicking noise, resulting from a chosen short attack time of the BigBang synthe-
sizer, preserves the rhythmical qualities of the Scarlatti. The visualization of the final result (Figure 74.1)
was partially created due to aesthetic decisions. However, it shows the composition on the Onset ˆ Pitch
plane, where the close Pitch range is visible (the vertical middle of the blocks), around MIDI pitch 24, which
corresponds to C1 or approximately 32 Hz.
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Fig. 74.1. A transformation of Scarlatti’s Sonata K003 resulting in a pulsating bass sound.

74.1.2 Gesturalizating and Looping with a Simple Graph

Form Score
Graph two states, two parallel operations
Techniques looping, gesturalizing
Output MIDI to Ableton Live, Guitar-Jazz preset
Link http://www.soundcloud.com/bigbangrubette/k002

Another piece part of the Scarlatti series, this example uses BigBang ’s gesturalizing function. Its graph
consists of merely two states, between which we find two parallel operations. Again, the original (K002 ) enters
through aMidiFileIn rubette, resulting in an InputCompositionOperation. Then, by selecting the operation
and performing a counterclockwise rotation by 180 degrees, we add a parallel RotationTransformation,
which results in a minimal graph with two states and two operations (Figure 74.2). When gesturalized,
these two operations occur simultaneously (see Section 72.3.3), so that the composition simultaneously
grows note by note, and gradually rotates. During gesturalization, the composition is played back in loop
mode, where in this case, the loop grows longer and longer, and outputs through MIDI directly to Ableton
Live, where it is played back by a guitar sound. In order to find a musical result, we experimented with
operation duration and tempo, settling on a gesturalization time of 200 seconds at a pace around two to three
times as fast as the tempo the sonata is often played at. The resulting piece has a strong improvisational
and gestural quality, where the motivic content is gradually developed and grows larger and larger. A
contrapuntal effect reminiscent of group improvisation emerges due to the variety of pitch ranges produced
by the counterclockwise rotation, which are well captured by the lower end of the guitar sound. In the end,
the musical material converges towards the retrograde inversion of the Scarlatti, modulating increasingly
slowly, and culminating in a congenial closure. Figure 74.2 shows the piece shortly after midway through the
gesturalization.

http://www.soundcloud.com/bigbangrubette/k002
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Fig. 74.2. A growing and rotating Scarlatti K002 during gesturalization.

74.1.3 Drawing UPIC-like Motives and Transforming

Form PanScore
Graph long sequential graph
Techniques drawing, shaping, copy-and-transforming
Output BigBang synth with sine wave oscillators, post-processed
Link http://www.soundcloud.com/bigbangrubette/upic

In comparison with Xenakis’s UPIC system [652], BigBang has several advantages, the two most
important of which are that composers can work with arbitrary musical object types, and that they can
transform these objects. This example makes use of the latter, while keeping a similar data type as was
used with Xenakis’s system, Score, however, an enhanced version that allows for stereo panning, which we
called PanScore. The example is based on a drawn structure with ramifications similar to, for instance,
parts of Xenakis’s Mycenae Alpha. Since drawing can only occur in two dimensions at a time, we used
shearing transformations as well as the shaping operation to process the drawn structure in dimensions
other than Onset and Pitch, here mainly Pan. Then, we multiplied the initial motive and partial motives
by using various copy-and-transform operations (Section 72.2.2), a simple and intuitive way of ensuring
motivic unity in a piece. Figure 74.3 shows the score on the UPIC-typical Onset ˆ Pitch plane. Figure 74.4
shows the results of the shaping and shearing on the Onset ˆ Pan plane, with the same color distribution
as in Figure 74.3. Note that the images do not contain the original graph, which was of linear nature and
almost confusingly long, for the first result was saved (using the Register and Source rubettes) and worked
on in several sessions. However, the original graph was of a linear nature. The result is a microtonal spectral
composition that reiterates the initial motive in increasingly contracted and cut out versions, evolving from
a single voice to about 45. The result was post-processed in Ableton Live, with some reverb, equalizing, and
compression.

http://www.soundcloud.com/bigbangrubette/upic
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Fig. 74.3. The Onsetˆ Pitch plane of the UPIC -like composition.

74.1.4 Drawing Time-Slices

Form PanScore
Graph just a drawing operation
Technique drawing, changing preset values
Output BigBang synthesizer with triangle waves, post-processed
Link http://www.soundcloud.com/bigbangrubette/slices

This example illustrates another technique of drawing in several dimensions. Instead of switching to
other planes and shaping and transforming drawn motives, as described in the previous example, it is also
possible to determine the values in the dimensions absent from the x/y plane by entering standard values into
the boxes to the right of each denotator value row in the view parameters table (right-hand side of BigBang
interface). In this case, we drew a PanScore on the Pan ˆ Pitch plane, while manually entering Onsets
and Durations. This way, starting with Onset “ 0 and Duration “ 2, we were able to draw overlapping
slices of the same duration, by increasing Onset step by step, and by drawing increasingly many PanNotes
in approximate concentric circles. For the second part of the piece, we drew single longer pitches, all of them
at Onset “ 12, first with Duration “ 12, then decreasing the duration step by step, which resulted in a
gradual disappearing of the pitches of the final chord. The piece is played back using triangle wave oscillators
and mastered in Live. Figure 74.5 shows the drawing plane, whereas Figure 74.6 shows the resulting slices
in a temporal representation, the colors being kept the same for both representations, in order to show the
respective missing spatial dimension.

74.1.5 Converting Forms, Tricks for Gesturalizing

Form Texture
Graph several sequential and parallel operations
Technique reforming, identities, immediate operations, gesturalizing, selecting states
Output MIDI to Ableton Live, string ensemble

http://www.soundcloud.com/bigbangrubette/slices
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Fig. 74.4. The Onsetˆ Pan plane of the UPIC -like composition.

Link http://www.soundcloud.com/bigbangrubette/textures

This example is slightly more complex. It uses a network with three rubettes. The Texturalize rubette
converts a Score into a Texture (introduced in Section 71.5.2) based on analytical values. It gathers all
pitches present in the Score and for each Pitch p, remembers the number of occurrences op, the average
duration dp, as well as the average loudness lp. The output of the Texturalize rubette is then a Texture with
a RepeatedNote for each p, with a Rate based on op, a Duration based on dp. and a Loudness based on
lp. The Texture can thus be seen as a scrambled but regularized version of the input piece, with the same
average tone material, resembling the textures of the American Minimalists.

The current example makes use of a Texture based on a part of a live performance of Frédéric Chopin’s
Ballade Op. 23 in G minor, at the indication agitato and then sempre più mosso. The fact that it is a live
performance leads to a great variety of durations and dynamic values, as opposed to the notated score, which
is particularly interesting when converted into a Texture. Figure 74.7 shows the facts at the initial stage
(composition state 1).

The first part of the example, played by a string ensemble, is based on a gesturalization of various
transformations of the original texture, which results in slowly changing rates, durations, loudnesses, and
pitches of the texture’s notes. In addition to the evolving parts, we also wanted to include parts where the
current texture is resting. Currently, the trick to do this is to insert an identity transformation, for instance,
a translation by 0, as in the example, and assign the transformation a gesturalization duration. Another
trick is used in the beginning of the piece, where we did not want the texture to gradually build up when
gesturalized. For this, we assigned the InputCompositionOperation a duration of 0.

The entire trajectory of the first part reaches three stable states, one at the original texture, one at a
lower, quieter, and more legato retrograde inversion of the original, and one at a variation that is louder,
faster, staccato, and that consists of an extended pitch space. These variations of the original texture come
about using parallel transformations, which are equally gesturalized, with the effect of two gradual textural
changes between the three static parts. The first transition consists of a translation down in loudness, a
rotation by 180 degrees on the loudness/pitch plane, and a scaling in duration in order to make the notes

http://www.soundcloud.com/bigbangrubette/textures
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Fig. 74.5. The Panˆ Pitch plane on which drawing took place.

longer. The second transition consists of a translation up in loudness, a scaling and a translation on the
rate/duration plane, and a scaling on the loudness/pitch plane in order to expand both dynamic range and
pitch range. At the end of the first part, the piece jumps back to the original texture, which was done
manually by selecting composition state 1.

The second part of the piece, realized by pizzicato strings, makes use of a technique that rather fits into
the part on improvisation and performance with BigBang. Using the same graph, we recorded the strings
playing while we jumped from composition state to composition state, using the number keys of the computer
keyboards. This way, the strings freely jump back and forth between the three textural states and remain
static for various amounts of time.

74.1.6 Gesturalizing a Spectrum

Form Spectrum
Graph many sequential and parallel transformations
Technique drawing, selecting and transforming groups of objects
Output BigBang synthesizer with sine waves, post-processed with ring modulation
Links http://www.soundcloud.com/bigbangrubette/spectrum4

http://youtu.be/JlIpjOlKYUc

Gesturalization was illustrated in the examples in Sections 74.1.2 and 74.1.5. However, the two forms
used there, Score and Texture, define denotators with a distinct temporal existence, through the Simple
forms Onset, Duration, and Rate. As described in Section 71.4, if none of these forms are present, the musical
objects sound constantly when played back. This is especially interesting when they are gesturalized, which
results in microtonal glissandi. In this example, we used the Spectrum form to create a slowly evolving
spectral texture. The gestural result starts out by gradually adding Partials, in the order we defined them.
After that, the Partials are transformed either sequentially or in parallel, in pairs or as a whole, resulting
from differently timed transformations based on various selections of Partials. Figure 74.8 shows a moment
during one of the sequential scalings of a pair.

http://youtu.be/JlIpjOlKYUc
http://www.soundcloud.com/bigbangrubette/spectrum4
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Fig. 74.6. The resulting slices seen on the Onsetˆ Pitch plane.

74.1.7 Using Wallpapers to Create Rhythmical Structures

Form Score
Graph a wallpaper with a few sequential transformations
Technique creating regular structures using wallpapers
Output MIDI to GarageBand
Links http://www.soundcloud.com/bigbangrubette/wallpapers

One of the main uses of ornamental structures made with the OrnaMagic module in the presto�

software, following Mazzola, was the creation of regular drum patterns. Mazzola’s Synthesis composition
[681] makes wide uses of transformationally reiterating drum patterns created this way. With BigBang, such
structures can be created in a much less tedious way, as this small example shows. Two short random drum
motives are created using the Melody rubette, input into BigBang, and iteratively transformed with two
different wallpapers, as shown in Figure 74.9. This way, we obtain slowly altering drum patterns, the first
one translated, sheared, and scaled, and the second one translated and scaled.

74.2 Improvisation and Performance with BigBang

Even though many of the aspects of the compositional examples seen so far were created in spontaneous
ways, we now turn to a discussion of more momentary ways of creating music with BigBang. Several aspects
of the requirements for gestural control are ideal for more performative and improvisatory ways of making
music. For instance, the fact that at all times, when working with BigBang, there is immediate auditory and
visual feedback inspires musicians to experiment and spontaneously react to the outcome of their actions.
Also, the support of various physical interfaces enables users to handle BigBang like an instrument.

http://www.soundcloud.com/bigbangrubette/wallpapers
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Fig. 74.7. The facts view shows the Texture at state 1, with rate and duration represented by height and width,
respectively. The process view shows the graph generating the entire composition.

74.2.1 Improvising by Selecting States and Modifying Transformations

Form Spectrum
Graph sequential and alternative transformations
Technique selecting states with number keys, modifying transformations with MIDI controller knobs
Output BigBang synth with sine waves, postprocessed
Link http://www.soundcloud.com/bigbangrubette/selections

The first example simply consists of a drawn widely panned Spectrum with a predefined transformation
graph containing alternative paths. As seen at the end of the previous section, the number keys on the
computer keyboard can be used to directly select states in rapid succession. In this example we did this
to add a rhythmic quality, and we also used the knobs on a MIDI keyboard to spontaneously modify the
transformations. The result is a changing spectral texture, each moment of which is based on a similar sound
structure. Figure 74.11 shows state 5 of the process, from where the two alternative transformations fork off.

74.2.2 Playing Sounds with a MIDI Keyboard and Modifying Them

Form FMSet
Graph a simple succession of transformations
Technique MIDI keyboard triggering and modifying
Output BigBang synth with different wave forms into Ableton Live
Link http://www.soundcloud.com/bigbangrubette/designs

The harmonic material in the previous example is inherent in the constellation of the Spectrum and its trans-
formations. However, with BigBang it is also possible to regard its current contents as sonic material with
which harmonic structures can be built by interaction with a MIDI keyboard, as described in Section 73.1.3.
This example illustrates how BigBang can be used for sound design, by defining a few FMSet structures

http://www.soundcloud.com/bigbangrubette/designs
http://www.soundcloud.com/bigbangrubette/selections
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Fig. 74.8. The Spectrum during gesturalization. For a video, see the link above.

Fig. 74.9. The two wallpaper patterns in this

example.

Fig. 74.10. The two wallpaper patterns in this

example.

and modifying them. All sounds except the drum sounds were created in BigBang and played back using
a MIDI keyboard, where each key plays a chromatic transposition of the current sound. Using the control
change knobs of the keyboard, we modified the sounds while playing, which resulted in the various sweeping
sounds in this example. An example of such an FM sound structure was shown in Figure 71.15.

74.2.3 Playing a MIDI Grand Piano with Leap Motion

Form Spectrum
Graph just an AddObjectsOperation

Technique drawing with Leap Motion
Output MIDI to a Steinway Grand Piano with the PianoDisc system
Link http://youtu.be/ytGcKfhzF2Q

http://youtu.be/ytGcKfhzF2Q
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Fig. 74.11. The Spectrum and process that form the basis of this brief improvisation.

In this example we used the Leap Motion controller newly made available to BigBang [1049]. Specifically,
we use the capability to add objects using Leap Motion in drawing mode, which quickly and dynamically
adds and replaces the objects when the fingers move, described in detail in Section 73.1.3. We decided to use
a Spectrum form played back with MIDI as quickly repeated notes instead of keeping keys pressed, which
allows for fast rhythms and quick dynamic changes. In order to simulate the space of the piano keys – higher
pitches to the right – and to have precise control over dynamics, we simply assigned Pitch to the x-axis view
parameter, and Loudness to the y-axis, as shown in Figure 74.12. This results in a theremin-like dynamic
setting, where the greater the distance of the hands from the Leap Motion controller, the louder the Partials
of the Spectrum. The piece is fully improvised and starts out with monophonic melodic gestures played with
one finger of the right hand, moving to a contrapuntal part with one finger of each hand. Later, we add
more and more fingers to each hand, sometimes playing in parallel, sometimes independently, culminating
in a part with increasingly energetic and fast gestures, and at an increasing distance from the Leap Motion,
culminating in a loud and choppy part of thrown gestures.

74.2.4 Playing a MIDI Grand Piano with the Ableton Push

Form Spectrum
Graph four sequential transformations
Technique aftertouch dynamics, manual gesturalizing using the Ableton Push
Output MIDI to a Steinway Grand Piano with the PianoDisc system
Link http://youtu.be/n2Pi281XZP4

As opposed to the previous example, the simple setup of which enabled maximal freedom of determining
the structure of the piece and its tonal material spontaneously, this example shows how it is also possible
to improvise with some deliberately prepared material. The piece uses the same form, Spectrum, with
the same rate of MIDI note repetition, but it also includes a simple graph that predefines intervallic and
transformative gestural material. The transformed entity is a four-note motive of purely harmonic nature,

http://youtu.be/n2Pi281XZP4
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Fig. 74.12. Two piano hands drawn with Leap Motion on the Pitchˆ Loudness plane.

due to the Spectrum’s atemporal quality. Figure 74.13 shows the initial motive and the graph. First, the
motive is rotated by about 180 degrees, then scaled, mainly in pitch (about 4.5 times larger), then rotated
counterclockwise by slightly less than 90 degrees, and finally scaled to an intervallic and dynamic unison.

After defining the simple graph, we decided to perform the piece using the dynamic capabilities of the
Ableton Push controller. The Push offers pads sending note on/off messages, which we mapped to played
back versions of the four-note motive, in a similar way to that in which the sounds were triggered by the
MIDI keyboard in the example in Section 74.2.2. More importantly, the Push’s pads send out highly precise
monophonic aftertouch control changes, which we used to control the dynamics of the played back motives.
Furthermore, we mapped the Push’s large touch strip to the BigBang ’s manual gesturalizing slider, which
allowed me to freely move back and forth through the various transformed versions of the motive, both
continuously by sliding and discretely by tapping the strip, which jumps to the corresponding position of
the gesturalization (this way users can not only select the composition states represented by the nodes of
the graph, but any other intermediary state!). In the beginning of the improvisation, we gradually add more
pitches by gesturalizing the AddObjectsOperation; then we spontaneously move through different states of
the motive’s transformational path, reacting to the temporary constellations by playing them in different
ways on the pads. In the end, the motive disappears in a unison produced by the ultimate scaling.

74.2.5 Improvising with 12-Tone Rows

Form Score
Graph a sequential transformation graph with a few identities
Technique gesturalizing and looping, aftertouch dynamics with the Ableton Push
Output MIDI to a Steinway with PianoDisc
Link http://youtu.be/n1RQimytD2A

This last example uses a similar setup as the previous one, playing the MIDI Grand with the Push.
However, it is even more deliberately prepared, using automatic gesturalization, and links to the second

http://youtu.be/n1RQimytD2A
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Fig. 74.13. The initial motive and the simple sequential graph.

musical example presented here (Section 74.1.2) in its use of the Score form in combination with looping
while the graph is being gesturalized. Here, the base material is a simple twelve-tone row, generated by
another rubette we recently created, the NTone rubette, which generates rows of N equidistant tones,
microtonal if necessary, within a specific interval of I semitones (here, N “ 12 and I “ 12). The twelve-
tone row is then transformed in simple ways (Figure 74.14 shows the original row and the graph). It is
first compressed (scaled) in Onset, which results in a faster version, then expanded in Onset, leading to
a staccato version. At this point, we inserted an identity scaling in order to achieve a static moment in
gesturalization, as suggested in Section 74.1.6. After that, the row gradually assumes its retrograde inversion
form by being rotated by 180 degrees, again stays static, is inverted by a reflection, again stays static, and
finally disappears in a single pitch (scaling to 0 in both onset and pitch). In the performed version, again
each pad of the Push triggers a transposed version of the twelve-tone row, again dynamically modulated by
aftertouch. In this case, we could fully focus on playing the Push, since gesturalization was predetermined
and happened automatically.
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Fig. 74.14. The sequential graph with the initial state selected, showing the original twelve-tone row.



Part XVIII

The Multiverse Perspective



75

Gesture Theory and String Theory

Summary. This chapter introduces the creative relationship between mathematical gesture theory and
physical string theory.

– Σ –

So far, we have discussed the mathematical theory of gestures, a formalized approach to the well-known
phenomenon of gestural dynamics in music (and other arts). This theory was developed starting in 2002 by
one of the authors (Mazzola), and a first version of the new formalism was published in a joint paper with
Moreno Andreatta [720] in 2007. The philosophy of that approach is that instead of considering point-like
notes (points in mathematical modules of musical parameters), one would envisage systems of curves as
elementary objects in music. These objects could be a description of physical movements of human limbs
(fingers, hands, arms, the tongue, etc.) or more abstract movements such as a melodic line in a musical
parameter space, or a curve within a space of spectral sound parameters.

This shift of musical conceptualization also meant in Grothendieck’s spirit a shift from categorical
points, i.e., elements of A@F for a module A and a functor F , to a different type of points, namely elements
of Γ@

ÝÑ
X , i.e., Grothendieck points in the category of digraphs with values in spatial digraphs

ÝÑ
X . These

points are special Grothendieck points, but at the same time generate a different optic: the spaces of curves
are a priori of a continuous nature, and gestures are therefore a priori focusing on systems of continuous
curves. In musical gesture theory, we could therefore state that the most elementary objects, the “atomic”
points, are continuous curves. Grothendieck’s shift from ordinary points to points with general addresses now
is turned around to a situation where the relativity of such addresses is replaced by a thoroughly continuous
perspective. There is nothing more elementary than continuous curves. Recall that since Euclid, a point is
“what has no parts”. In musical gesture theory, curves and their gestural combinations are exactly those
indecomposable conceptual atoms.

We stress this philosophical fact because such a shift of the concept of an atomic entity also happened
with the physical string theory that is being developed since 1960 (after a complex prehistory going back
the first two decades of the 20th century). Here, point-like elementary particles are replaced by strings, i.e.,
curves that move in space-time. Similarly to musical gestures, strings are atomic concepts, they have no
proper parts qua physical objects. This is also the reason why this evidently parallel setup for music was
recognized from the beginning and mentioned in [720]: musical gesture theory was conceived as a musical
string theory, see also Chapter 61.2.

Physical string theory has been (dis)qualified as being ugly, and there were complaints that not enough
effort had been made to develop other theories. In the musical realm, there is some parallelism to that, less
in the sense that musical gesture theory is considered as being ugly, but in that it is without doubt far
too complex when compared to traditional mathematics in music theory. One now has to shift away from
elementary algebra and combinatorics to topology, topos theory, algebraic topology, homology theory and
other far out mysteries. Yes, musical gesture theory is ugly in the sense of overwhelming complexity. It is
clear that gestures are important in musical practice, above all to performers, but it is not less clear that a
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mathematical theory of such dynamic configurations is beyond the given competence of music theorists. If
musical set theory or its evolution to transformational theory is taken as a reference theory, gesture theory
appears as a veritable “diabolus in musica”.

It might be by case that music and physics are sharing this new paradigm of “string atoms”, but it is
without doubt that in both contexts this approach yields a number of fundamental insights that no other
existent theory can provide. This parallelism is very probably also a manifestation of Hegel’s “Weltgeist”,
the simultaneous awaking of a consciousness in different localities of fundamental human knowledge.



76

Physical and Musical Multiverses

Summary. We shortly discuss the question of unicity in music and physics, a question that in physics has
been virulent since the advent of string theory, but which in music has been relevant since the approach to
music via individual compositions at the end of the Middle Ages.

– Σ –

The present state of theoretical physics is dominated by string theory (see also our discussion of this theory
in Chapter 75 and Appendix K.2). It is however not a valid theory, it only provides us with presently the
best ideas of how gravitation and quantum physics could be reconciled.

One of the irritating consequences of string theory is that it

Fig. 76.1. The creation of a multiverse.

provides us not with one string “landscape” of this universe (i.e.
solution of its equations), but with a quantity of the range of 10450.
This is quite difficult for the theory as such, but it also opens up
questions that are deeper: Are we living on a single universe? If
not, in what sense can a variety of universes exist? What is the
overall framework of such a variety? What would it mean that
they exist “simultaneously” since the would have their own space-
time each? Can a multiplicity of solutions of string theory define a
higher universal reality? And for whom? Although physicists spec-
ulate on such varieties, it is in any case a big question how human
mathematical constructions of string theory might describe mul-
tiple universes. The question is about the ‘transuniversal’ validity
of mathematics, about a transcendental reality that might cover the reality of 10450 Universes.

Such a multiplicity of realities however questions any naive unicity claims after the abolishment of
geocentricity, chronocentricity, and ratiocentricity. Can deocentricity still be defended? It can, but the price
is high. How could we humans remain so exquisitely important as inhabitants of one out of 10450 cosmic
landscapes? The SETI (Search for ExtraTerrestrial Intelligence) enterprise would turn out to be a very local
affair.

The confrontation of music and physics that is mediated via gestural paradigms does not thematize
only multiverses in physics, but also in music. When introducing gestures to music, every concept of the tra-
ditional theory melts into a manifold of gestural vibrations. To begin with, classical music theory is softened
to enable many transformations that were unthinkable without gestures. Tonal modulation theory now can
be developed between tonalities of completely different isomorphism classes, see Chapter 80. Counterpoint
can now be thought with an infinity of consonant and dissonant intervals, see Chapter VII. And gestural
performance theory (finally!) offers a melting pot of operators of an infinity of different performance strate-
gies that emerge from the world-sheet paradigm, the hypergestural connectivity of symbolic and physical
performance gestures, see Chapter 78.

In music, gestures seem to produce and connect many worlds of music, they seem to offer a commu-
nicative basis to a genuine multiplicity of thinking and making music. For example, in the documentary
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movie Teak Leaves at the Temples that was produced in 2006 in Indonesia, featuring Mazzola’s free jazz
trio (Mazzola on piano, Heinz Geisser on percussion, Sirone Norris Jones on bass) and many Indonesian
ensembles, gestures for the musical language were essential and helpful in the intercultural communication
with local Indonesian musicians.

But there is more to say about multiverses in music. Music in its practice and theory seems to be
genuinely driven by multiplicities, ambiguities, and manifolds of thoughts and feelings, sometimes as a sign
of ill-defined conceptualization (“inversion”, “cadence”, and “tonality” do have multiple meanings). But there
is a substantial aspect that transcends plain deficiency, it is a basic existential style. Music is not the simply
indeterminate, but the multiply determined.1 This style cannot be described and understood in the language
of discrete thought units such as is represented by abstract algebra and category theory alone. It is the
elastic conceptual tools of algebraic topology, topological categories, differential and algebraic geometry, and
corresponding homology theories that can cover these exigencies of fundamental continuity. It is important
here to cite Fernando Zalamea’s statement about contemporary mathematics (between 1950 and 2000) in
[1149, p. 271-272]: “Multiplicity everywhere underlies contemporary transit, and the objects of mathematics
basically become webs and processes.” Of course, we would add: “and gestures,” the innermost position in
the dimension of embodiment. And it is equally important to stress that multiplicity with an inner logical
coherence need not result in a juxtaposition of independent and isolated items, as is beautifully illustrated
by the Möbius band with its intriguing but consistent multiplicity of local and only local orientations.

1 In the Preface of Mazzola’s book Geometrie der Töne [682], he wrote: “Musik erweist sich in diesem Unternehmen
als das im Vieldeutigen Bestimmte und darin als Gegenstand, welcher den Paradigman heutiger Mathematik in
natürlicher Weise entspricht.”



77

Hesse’s Melting Beads: A Multiverse Game with Strings and
Gestures

Summary. A critical review of Hermann Hesse’s idea of a Glass Bead Game in the light of recent devel-
opments in mathematics, music theory, and theoretical physics is presented. The common denominator of
these new dynamics is the shift from Wittgenstein’s world of rigid facts to an ocean of elastic gestures.
In such a soft architecture of knowledge production, the ultimate principle of uniqueness as conceived in
the idea of a singular universe breaks down to a multiverse, a multiplicity of worlds that terminates the
historical breakdowns of uniqueness principles from geocentricity (Copernicus) to anthropocentricity (Dar-
win), chronocentricity (Einstein), and ratiocentricity (computers). We discuss contributions from eminent
mathematicians Alexander Grothendieck and Yuri Manin, theoretical physicist Edward Witten, music the-
orist David Lewin, and philosophers Tommaso Campanella, Paul Valéry, Gilles Châtelet, Jean Cavaillès,
and Charles Alunni. We complement their positions with our own contributions to topos-theoretical concept
architectures and theories in gestural music theory, and offer realizations, both by means of gestural composi-
tion software and with examples from contemporary free jazz. The chapter concludes with a reconsideration
of the game concept as a synthesis of artistic and scientific activity in the light of gestural fluidity.

– Σ –

77.1 Review of Hesse’s Glass Bead Game

Hermann Hesse published his novel Das Glasperlenspiel in 1943 in Zurich [463] and was accordingly awarded
the Nobel Prize in Literature in 1946. Hesse comments on the novel’s substance [463]: “It (the glass bead
game) represented a symbolic form of seeking for perfection, an approach to that Mind which beyond all
images and multiplicities is one within itself—in other words, to God.”

A precise description of this glass bead game does not exist. But a passage [464] describes to some
degree what the game is about: “Under the shifting hegemony of now this, now that science or art, the game
of games had developed into a kind of universal language through which the players could express values
and set these in relation to one another. Throughout its history the game was closely allied with music, and
usually proceeded according to musical or mathematical rules. One theme, two themes, or three themes were
stated, elaborated, varied, and underwent a development quite similar to that of the theme in a Bach fugue
or a concerto movement. A game, for example, might start from a given astronomical configuration, or from
the actual theme of a Bach fugue, or from a sentence out of Leibnitz or the Upanishads, and from this theme,
depending on the intentions and talents of the player, it could either further explore and elaborate the initial
motif or else enrich its expressiveness by allusions to kindred concepts. Beginners learned how to establish
parallels, by means of the game’s symbols, between a piece of classical music and the formula for some law
of nature. Experts and masters of the game freely move the initial theme into unlimited combinations.”

The combination of mathematics and music was inspired by the work of music theorist Hans Kayser
(1891-1964), who also lived in Switzerland when Hesse was designing his novel, and whose work is a Neo-
Pythagorean mathematical theory of music [526].
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77.2 Frozen Glass Beads of Facticity

Hesse’s approach is clearly interdisciplinary. The technical character of the game, although not explicated
in detail, is a combinatorial one. This follows from Hesse’s enthusiasm for the famous Chinese I Ching, that
yarrow stalk oracle and cosmology which results from the 64 “ 26 combinations of six broken or unbroken
lines (represented by yarrow stalks). This combinatorial cosmology gives the user a corresponding number of
cosmological treads. It is not creative, but strictly selective. Hesse’s combinatorial perspective is also evident
from his enthusiasm for Gottfried Wilhelm Leibnitz’s calculus of logic, that idea of a perfect language where
its conversations would be reduced to an exchange of formal logical formulas [287].

This approach to reality as a combinatorial setup that can be controlled by formal logical calculus is the
ontology we know from Ludwig Wittgenstein’s Tractatus Logico-Philosophicus [1138], whose first sentence
reads: “Die Welt ist alles, was der Fall ist.” (“The world is everything that is the case.”) This point of view
is utterly reductionist. What is the case means: what has been made and is there now. Once for ever? And
who made it, and how, this does not matter. It is a perspective on existence as a collection of frozen objects.
Take it or leave it, but you are only the user, much as in the Medieval cosmology where humans could just
observe God’s world without any option of active intervention. A recent book [1120] confirms this view,
describing a computer program which implements those combinatorial options in the spirit of I Ching and
Leibniz. Hesse in fact also stresses that his glass bead game is a search for God, that hidden universal spirit
which connects all those diversities at the phenomenal surface.

In this style, Hesse’s Glass Bead Game idea has been realized through my own work in mathematical
music theory in 1985 [670]. It is however not a Neo-Pythagorean theory, but relies on modern mathematics
(such as module theory, category theory, and algebraic topology). We want to give a short overview of such
work to make evident its power, but also the fundamental limitation of the combinatorial method.

In our approach, we started from Beethoven’s famous Hammerklavier Sonata Op. 106. We applied
mathematical models of tonal modulation and paradigmatic classification of melodies (the latter in the spirit
of Jean-Jacques Nattiez [782]) to a thorough analysis of Beethoven’s harmonic and motivic construction.
In the vein of Hesse’s sketch of the game, we derived a mathematical formula that would describe his
musical operations. This formula is the symmetry group SympC7´7q of the diminished seventh chord C7´7 “
tc7, e, g, a7u. For the composition of a new sonata, we then exchanged this chord for an equally famous
combination of pitches, the augmented triad C7` “ tc7, f, au, and then used its symmetry group SympC7`q
to construe all modulations and the motivic germs of the new sonata, which means that we threw back
the mathematical formula to the musical realm. The resulting sonata L’essence du bleu has been published,
including a CD recording [708]. The result could look like a real product of creativity. But it is simply
a restatement of Beethoven’s thoughts (viewed through the microscope of our mathematical analysis) with
changes of corresponding structures, mutatis mutandis. We don’t qualify this type of game as a truly creative
one. There is no box, whose walls are being opened to an unknown space outside, rather are we opening a
door of one box (music) to the neighboring box (mathematics).

In what follows we shall explain how and in which domains of creative knowledge production Hesse’s
glass bead game can be morphed into a less passive, factual, and rigid activity.

77.3 The Revolution of Functors

A first conceptual revolution occurred in the new mathematics that was introduced by Samuel Eilenberg
and Saunders Mac Lane with their theory of categories in 1945 [637]. They analyzed the basic objects of
mathematics, namely points, those objects that have no parts according to the classical approach by Euclid:
punctus est cuius pars nulla est. For categories, points were replaced by new elementary objects: arrows.
Category theorists considered points as a result of a pointer action, punctus is the result or head of an
arrow that pricks its target. The new concept of an arrow has three parts: its head and its tail, which are
connected by a shaft that symbolizes a pricking movement from tail to head. This seemingly harmless change
introduced the point of departure of a conceptual movement, not only its pricked result.
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With this dramatic change, the subject, the point of departure of an arrow, was introduced and thereby
the inclusion of the point of view or “address” from which the target point was addressed. In Alexander
Grothendieck’s (1928-2014) algebraic geometry [395], this paradigmatic revolution introduced a completely
new conceptualization, a kind of relativity theory in geometry. This theory eventually led to the solution of
hard problems, such as the Weil and Fermat conjectures, by Pierre Deligne (1974) and Andrew Wiles (1995),
respectively.

Fig. 77.1. Yoneda’s Lemma replaces Whatness by Suchness.

The big program was therefore to understand algebraic geometry as a science of relative points. The
strongest general argument for this revolution was a simple, but powerful lemma, a result introduced by
the Japanese computer scientist Nobuo Yoneda in 1954. He could prove that a space X can be completely
described by its functor, i.e., by the system of all arrows f : A Ñ X where the address A runs over all possible
choices. This functor, which we denote by @X, replaces the space X as such by its system of variable arrows.
More precisely, the lemma states that two spaces X and Y are isomorphic if and only if their functors @X
and @Y are isomorphic as functors, see Section G.2.

This result allows mathematicians to replace spaces (and in fact any objects of general categories) by
their functors. In other words, the spaces qua objects with their intrinsic identity are replaced by their functors
which are systems of relative behavioral perspectives from variable addresses. In philosophical terms: the
whatness of X is replaced by the suchness of the functorial entities @X. Mathematics is no longer interested
in the abstract identities X but only in their behavioral systems, the functors @X, see Figure 77.1.

This revolution generated a new paradigm of conceptual manipulation: Abstract spaces became only
relevant via their behavior under specific, but arbitrarily variable addresses. This implies that now, a mathe-
matical object was conceived as a distributed behavior, its identity was now reified as a collaborative system
of addressed perspectives. With respect to Hesse’s original God-oriented approach, we now see that divine
whatness being replaced by a “God functor” which is realized in its not necessarily representable howness
that our collaboration experiences in a distributed identity.

In mathematical music theory, we have composed a piece, which is in fact a recomposition of Pierre
Boulez’s structures pour deux pianos I, following the functorial methodology [726] and applying Boulez’s
idea of a creative analysis. Our analysis of Boulez’s original composition followed György Ligeti’s analysis
[611] which we reinterpreted as being a functorial procedure. Of course, Boulez did not know category theory
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when he composed that piece, but in the light of Yoneda’s Lemma, his compositional strategy was in perfect
congruence with modern functorial methods. We then implemented our functorial analysis in the rubato
composer software and were able to recompose new variants of that piece by canonical address changes
[726]. It is not an exaggeration to understand Boulez’s structures as the historically first genuinely functorial
composition.

77.4 Gestures in Philosophy and Science

Despite the distributed identity of functorial mathematics, its collaborative style was still unsatisfactory and
mechanical. Let us explain why. In the functorial system @X of a space X, we are given the set A@X of
arrows f : A Ñ X for every address A. The communication from A@X to B@X for two addresses A,B is
defined from a morphism m : B Ñ A by composition of arrows, m@X : A@X Ñ B@X : f Ñ f ˝ m. The set
map m@X is however an abstract function in the sense of logician Gottlob Frege, who introduced the modern
function concept of mathematics. The arrow between sets m@X : A@X Ñ B@X is only intuitive, there is
no movement from elements f P A@X to elements f ˝m P B@X. Fregean functions are “teleportations”, the
arguments f “disappear” and “reappear” as values f ˝m. The French mathematician and philosopher Gilles
Châtelet has criticized this Fregean tromperie [189, 190]: “The function gives only the form of the transit from
one external term to another external term, whereas the act exhausts itself in its result.” A function is similar
to an industrial plant: Input — Black Box — Output. The great mathematician Henri Poincaré accordingly
stated [852]: “Localiser un objet en un point quelconque signifie se représenter le mouvement (c’est-à-dire les
sensations musculaires qui les accompagnent et qui n’ont aucun caractère géométrique) qu’il faut faire pour
l’atteindre.” He was aware that the gestural origin of geometry is beyond formally mathematical mechanisms
known at his time.

Let us make clear the radical abstraction from movements in mathematical formulas. Take a rotation in
the real three-space. This movement of the space’s point around an axis is represented by a 3ˆ3 matrix M in
linear algebra. But the matrix M does not show any information about the axis or the rotation’s angle. You
have to work quite hard to exhibit such an axis from M . The catchword is eigenvalues and corresponding
eigenvectors (that could play the role of rotational axes), and the rotation’s angle—if an eigenvector of a
rotation can be found at all—is still another problem to be solved by linear algebra. In other words: The
mathematical representation of movements by matrices is a radical abstraction, a compactification of a
movement in a formula, a kind of Fregean prison, where the original movement has been encapsulated. If we
were to relate music to mathematics we could state here that they relate formulas to gestures, but in opposite
directions: While mathematics compactifies gestures to formulas, music unfolds formulas to gestures.

Let us now focus on the gestural ontology which has been hidden to this date even in contemporary
functorial mathematics. For an excellent treatise on the history of gestures in European philosophy, we refer
to Jean-Claude Schmitt’s La raison des gestes dans l’Occident médiéval [946], see also Section 57.2. He has
given the most complete and important contribution to a history of the concept, philosophy, social and
religious roles of gestures during the early centuries of our modern Western culture. Recall that he exhibits
the first (and still one of the best) definition of a gesture, given by Paris-based theologist Hugues de Saint-
Victor (1096-1141) [946, p. 177]: “Gestus est motus et figuratio membrorum corporis, ad omnem agendi et
habendi modum.”1 Observe that in Saint-Victor’s definition, the specification ad omnem agendi et habendi
modum is not semiotic, but merely describes the generic modality of action and being.

A gesture is a presemiotic concept, it does not automatically mean a thing. The pointer gesture is
presemiotic also since Saussurean structuralist semiotics is built upon the pointer from signifiant to signifié.
A pointer is not a sign, but a prequisite to any semiotic concept architecture.

In the 20th century, gesture philosophy was above all developed by French philosophers, linguists, and
mathematicians. Their works also differ from the Anglo-Saxon linguistic philosophy of gestures that has been
developed by Adam Kendon and David McNeill [530, 741], see also Section 57.7. They focus on gestures

1 “Gesture is the movement and figuration of the body’s limbs with an aim, but also according to the measure and
modality proper to the achievement of all action and attitude.”
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that are co-present in linguistic utterances, and from this perspective, their concept of a gesture is strictly
semiotic: gestures are special signs that support the building of linguistic syntagms and contents. And they
are always related to the body’s actions; no more abstract concept of a gesture, such as a gesture in a musical
melody or a thought gesture, is addressed. We don’t follow this rather restrictive conceptual line in more
detail and refer you to Section 57.7.

The French tradition of gesture philosophy is characterized by the thesis that gestures constitute a
proper ontology that is independent of, and typically precedes, semiotic systems, it is presemiotic.

Ahead of his time, French mathematician and philosopher Jean Cavaillès in 1938 stated a core property
of gestures that bypasses any semiotic basis [181, p. 178]: “Understanding is catching the gesture and being
able to continue.”

Cavaillès’ dancing thought (also shaped in Pierre Boulez’s reflection on gesture in music [141]) was
in fact stated with respect to mathematical theories, and as such it was one of the very first principles of
gestural embodiment in mathematics, an idea now quite fashionable through the work of George Lakoff and
Rafael Núñez [570] but also anticipated in Châtelet’s observation [189] that the Fregean concept of a function
in mathematics is a dramatic (and questionable) abstraction.

Gestures—except when “tamed” by social codes—are not signs in a semiotic environment. They are
not a realization of Ferdinand de Saussure’s classical signification process.

Summarizing, we learn that gestures are in general understood as pertaining to a proper ontology that
is not subordinate to semiotic lines of thought. In particular, the dominant French diagrammatic philosophy
exhibits a sharp dichotomy between “wild” and “tamed” gestures, the former being independent or antecedent
of semiotic realms, while the latter serving semiotic purposes as special types of signs. Conceptual creativity
is exhibited in the layer of wild gestures. The communicative characteristic of (wild) gestures stresses their
“howness” as opposed to their substantial “whatness”. Gestures are understood in their behavior, not in
their absolute being (such as Kant’s Ding an sich).

It is astonishing that despite the sensational success of Grothendieck’s “mathematical relativity theory”,
there has been some work in the direction of replacing abstract Fregean functions and their formalism in
category theory by gestural concepts. In Categorical Gestures [723], Mazzola started an investigation of the
possibility of enriching Yoneda’s Lemma by gestures, and the ultimate goal would be to replace the present
abstract foundational entities of mathematics, such as sets or arrows, by gestures.

In a extraordinary interview with the Notices of the American Mathematical Society [642], the prominent
mathematician Yuri Manin states his vision of future foundations of mathematics: “Instead of sets, clouds
or discrete elements, we envisage some sort of vague spaces, which can be very severely deformed, mapped
one to another, and all that while the specific space is not important, but only the space up to deformation.
If we really want to return to discrete objects, we see continuous components, the pieces whose form or
even dimension does not matter. (...) I am pretty strongly convinced that there is an ongoing reversal in
the collective consciousness of mathematicians: the right hemispherical and homotopical picture of the world
becomes the basic intuition, and if you want to get the discrete set, then you pass to the set of connected
components of a space defined only up to homotopy. (...) That is, the Cantor points become continuous
components, or attractors, and so on almost from the start. Cantor’s problems of the infinite recede to the
background: from the very start, our images are so infinite that if you want to make something finite out of
them, you must divide them by another infinity. (...) I see in this an analogy with the rebuilding of pragmatic
foundations in terms of a category theory and homotopic topology.”

77.5 Gesture Theory in Music

In music philosophy, music theory, and performance research, gestures have been playing a role of conceptual
enrichment for a long time, but a full-fledged theory of musical gestures has still been delayed, probably also
because of the difficulty of an epistemologically valid conceptualization of gestures. Let us give a summary
of some important gestural perspectives in the science and art of music. See also Chapter 60.

Already in Eduard Hanslick’s determination of musical content as “tönend bewegte Formen” [438], not
just forms, but forms that are moved in a sounding manner, or moved in sound for short, the formal aspect,
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the formula, of a cadence, for example, is not sufficient to generate content. The form(ula) needs to be moved,
it is deployed in a gestural dynamics. And Hanslick illustrates his idea with the kaleidoscope, a dynamical
arrangement of forms that receive their aesthetical value in a self-referential internal relationship.

In the 20th century, German music theorist Wolfgang Graeser applied the mathematical theory of
symmetry groups to restructure Bach’s Art of Fugue, but while observing dancers who interpreted Bach’s
Goldberg Variations, switched from abstract symmetries to what he called “Körpersinn”, the sense of em-
bodiment in music [388]. His book project on this topic could not be accomplished as Graeser felt totally
lonesome with such advanced ideas and committed suicide in 1928 at the age of 22.

In the theory of musical performance, Theodor Wiesengrund Adorno in 1946 wrote an essay about
performance which gave strong arguments for the gestural essence in performance [8]. He followed Paul
Valéry’s famous dictum: “C’est l’exécution du poème qui est le poème.” In this essay Adorno argues that
“the idea of performance pertains to music as such and isn’t an accidental attribute”, and here is his analysis
of the gestural basis of performance: “Correspondingly the task of the interpreter would be to consider the
notes until they are transformed into original manuscripts under the insistent eye of the observer; however
not as images of the author’s emotion—they are also such, but only accidentally—but as the seismographic
curves, which the body has left to the music in its gestural vibrations.” Adorno argues for what I had called
“the score as a repertory of frozen gestures.” He does not argue for the emotional message of gestures, rather,
he argues for their nature as “vibrating” bodily utterances. At first sight, this may look overly materialistic
and far from the symbolic meaning of musical creation, but Adorno insinuates a spiritual component in the
gestural dynamics. This perspective is in fact supported by the very history of score notation. Originally,
scores encoded the gestural hints in the graphemes of Medieval neumes. These graphemes then successively
morphed to the present notation, which has abstracted neumatic threads to discrete point symbols.

Adorno’s student, Renate Wieland, and her fellow scholar Jürgen Uhde make the teacher’s approach
more explicit and apply it to the their system of piano performance [1067]. She makes clear that gestures
are abstractions from concrete actions, however they remain geometric entities in some more generic space.
Wieland also argues that the emotional connotation in music originally is e-motion, out-movement, and so
the gestural transmutation is not an artificial construct, but the restatement of the original phenomenon.

The crucial but still underestimated role of gestures in performance has been described in a beautifully
clear way by American composer and music critic Roger Sessions [972].

On the level of music performance in technology, Manfred Clynes with his sentograph and Johan
Sundberg and McAngus Todd with their performance software and gesture-driven concepts of the final
retard in music state in particular that “the performance and perception of tempo/musical dynamics is
based on an internal sense of motion.” Similar approaches to cognitive models of gestures in music are
shared by Marcelo Wanderley, Claude Cadoz, and Marc Leman [168, 371], see also Section 60.5.

Coming from a different position, namely music theory, the great American music theorist David Lewin
introduced in 1987 the gestural perspective in his seminal book [605]. Well, nearly, since the theory and
the textual representation are more complex. Lewin’s book describes what is now called “transformational
theory”, later adapted by his student Henry Klumpenhouwer to become K-nets. Such networks replace an
‘amorphous’ set of tone objects by a diagram, where the tone objects are placed at the diagram’s vertices,
while the diagram’s arrows designate (affine) transformations mapping tone objects into each other.

Lewin argues against what he calls the “cartesian thinking”, which observes musical objects as res
extensae. Opposed to this passive attitude, Lewin suggests that transformations between musical points
(such as pitch classes, for example) are the new path to pursue. Lewin’s formalism and his wording are
different; however, they show what Lewin is targeting: at a gestural theory of music. It would be very
interesting to investigate Lewin’s text with that subtext of gestural thinking in mind, since he repeatedly
uses this metaphor in a speaking way.

We should also recall that Cecil Taylor, the monstre sacré of free jazz piano, describes his approach to
creative improvisation with these words: “I try to imitate on the piano the leaps in space a dancer makes.”
This is a completely gestural concept, and Taylor comments (in a documentary DVD “All the Notes” by
Christopher Felver) on score reading that deciphering those symbols takes away most of the energy that is
needed for creativity.
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Summarizing, we recognize that there are numerous approaches to music and performance theory that
stress the primordial role of gestures in their conception as presemiotic components of a deeper understanding
of music.

Let us now give a short overview of the mathematical theory of gestures which we have developed
since 2002. It is a theory of expressions that point in a complex way to gestures, those exotic “animals of
human communication” that we try to understand in their dynamical behavior. It is in no way an attempt
to turn gestures as such into signs. In this section, mathematical prerequisites are required, and a reference
to introductory texts [720] is recommended. This approach is inspired by Saint Victor’s definition, but it
gives it a formal shape that enables the development of an interesting concept architecture and the proof
of powerful theorems. This theory was developed as a theory of musical gestures to capture many of the
problems that have been mentioned above. However, this mathematical formalism is also applicable to more
general contexts of gestural utterance, such as dance and painting.

To begin with, we propose a semiotic setup that attempts to generate a precise formalism of gestural
structures. Observe that we do not attempt to recast gestures as signs, but as entities that may be expressed
as mathematical structures. In terms of Hjelmslev semiotics, this amounts to establishing a gesture semiotic
GestSem that has an expressive level ExpGestSemq, which realizes a mathematical theory of gestures,
i.e., a classical system ExpGestSemq “ MathGest within the semiotic of mathematics that offers a set of
“expressions” or “forms” that point to gestures, the content level CtpGestSemq “ Gestures of gestures
proper. The signification level SgpGestSemq is not restricted to any particular gesture, meaning that we
may set SgpGestSemq “ GestSem. This means that the semiotics of gestures is its own signification level,
that its expressive level is a mathematical theory of gestural forms, and that gestures remain disclosed from
metatheoretical specifications, gestures are not signs. We now give a definition of the pointer gesture.

A simple sign in GestSem would be the pointer P . We could set ExpP q :ÒÑ CpIq, the map which
sends the digraph Ò (with one arrow that connects two different points) to the identity curve Id : I Ñ I;
we would define CtpP q “ the gesture of pointing, and finally let SgpP q “ P , the autoreference. One could
then also declare the middle signification level in Hjelmslev’s model to be identified with GestSem, thereby
replacing the simple pointer by any gestural structure.

77.6 A Remark on Gestural Creativity

Musical creativity has always been a mysterious business since it is not only creativity as such, but moreover
remains largely disclosed from verbalization. Music is created in a non-verbal process. But if we look at
creativity in general, it is largely presemiotic since it deals with opening boxes, transcending given languages
and formal environments. Creativity is a semiotic generator [726, Chapter 22.3.2]. Therefore, the gestural
layer is quite canonical as a candidate for understanding and performing musical creativity.

In Flow, Gesture, and Spaces in Free Jazz [721], we have described musical creativity in jazz, especially
in free jazz, using these ideas. It is about making the rules (in the sense of Alunni), negotiating them in
a gestural interplay, and establishing a distributed identity as a rotational movement around the axis of a
distributed identity. This is what Ornette Coleman meant when asking for making the music, and not the
background, in the liner notes of his famous LP Free Jazz. He wanted to step away from the reproduction
of others’ ideas, and to make music without copying an already given template. That’s why Cecil Taylor
imitates a dancer’s leaps in his creative piano universe, he would not want to imitate given forms. It’s his
dancing thoughts that he aims at.

77.7 Gestures and Strings

See also Chapter 75. The softening of creative knowledge production in a gestural approach softens not only
the conceptual framework, it also softens the ddisciplinary barriers. Soft knowledge cannot be limited by
traditional disciplinary walls. Such a transgression of disciplinary limits is in fact observed in our theory
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of hypergestures, especially for the example of counterpoint, see Section 61.14.1. The Escher Theorem 38
enables an exchange of roles in hypergestural combinations. External gestural skeleta can be exchanged with
internal skeleta. A loop of lines can be transformed into a line of loops. This gestural insight is in fact also
observed in physical string theory, where in S-duality, strings can be reinterpreted as branes, and gauge
particles as bosons, see Appendix Section K.2 and [440].

This string-theoretic connection has been realized in a third application of mathematical gesture theory
in music that relates to the investigation of the complex transitional process between reading a score in its
symbolic realm and performing it in physical reality [648]. The model here represents the score data as
symbolic gestures and the performed events as physical gestures, and then connects these two components
by a hypergesture that is constructed following the Lagrangian formalism from physical string theory. This
model enables a detailed analysis of the artistic potential that shapes the connection between symbolic and
physical gestural utterance.

77.8 Playing the Multiversed Game in a Pre-semiotic Ontology

If we collect and summarize the dramatic changes in the basic conditions of Hesse’s Glass Bead Game, we
can state that it has these new features:

• It is played by a distributed identity of collaborators.
• It is not following given rules but creates them on the spot and according to an interplay of equivalent

partners, in a presemiotic layer.
• The collaborative interplay is made by gestural exchanges, by a comprehension that does not follow

templates, but is built upon the repercussion of gestural dynamics.

The conceptual framework is successful in its creation of a rotational energy around the axis of a distributed
identity. Success is possible and addressed, but it does not result from given criteria; it is established in a
distributed harmony without the time-space invariance of traditional laws. These characteristics redefine the
glass bead game of “melting glass beads” with the following consequences:

• The gestural ontology is not auxiliary or preliminary to a factual layer of reality. It has its own persistent
reality that does not serve what might become the case later on.

• The incessant gestural remaking of rules and concepts eliminates the world’s unicity, completing the
historical suspensions of geocentricity (Copernicus), anthropocentricity (Darwin), chronocentricity (Ein-
stein), and ratiocentricity (Turing), and adding the suspension of factocentricity.

• Creativity is no longer delegated to arcane divinities. It has also become a radically human endeavor.
Creation is no longer limited to God’s initial Big Bang.

• The transdisciplinary parallel between music and physics (see also Chapter 76) shows these parallelisms:
– Hypergestures — Strings,
– Escher Theorem — Duality,
– Works (typically 1037 72-element motives) — Universes (10450 string theory landscapes),
– Communication via gesture interaction — Interaction via exchange of bosonic strings.
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Euler-Lagrange Equations for Hypergestures

Summary. This chapter deals with a model from mathematical physics of string theory that describes the
transition from symbolic reality to physical reality of musical gestures. We demonstrate, using multidimen-
sional Fourier theory and Green functions, that the physical gesture can be viewed as a function of a potential
and the symbolic gesture. The role of this potential is however not fully understood to date, but the idea is
that it should encompass artistic rationales, together with physical components.

– Σ –

78.1 The Problem in Performance Theory with the Physical Nambu-Goto
Lagrangian

Refer to Appendix K.2 for the Nambu-Goto action for strings in physics. In the mathematical theory of
gestures, string world-sheets correspond to hypergestures h in Ò ÝÑ

@ Ò ÝÑ
@X, where X is the four-dimensional

space-time with its Minkowski metric. The Nambu-Goto action is based on the surface Aphq formula of the
world-sheet of h, together with the factor ´T0

c that guarantees the energyˆtime dimension of the action.
In the musical situation, we have a number of characteristic differences from physics. To begin with, the

reparametrization invariance that is given by the surface formula is not required in music. A gesture is not
defined modulo reparametrization, but essentially relies on the chosen parametrization. Reparametrization
is a topic dealt with in hypergesture theory, where (generalized) homotopy covers this transformational
relation. Second, the musical world-sheet has to connect the symbolic gestures that are defined by the score’s
symbols to the physical gestures in performance. This creates a major problem for the naive physical approach
since the symbolic gesture would allow for infinite velocity. This obstruction requires a different approach to
velocity, more precisely, to time. The third problem is that the Lagrangian density is a function of a scalar T0

which represents the mass density in physics. But it is not evident that this quantity should also be a scalar
in the musical situation. It could be that the inertia in the musical world-sheet is a function of the direction,
which would enforce a vectorial T0. Let us now discuss an approach to a musical Lagrangian action.

To begin with, we are given a musical world-sheet M : I2 Ñ Rp. : px, yq ÞÑ Mpx, yq “ pspx, yq, tpx, yqq
that maps the two sheet parameters x, y to a point in a parameter space Rp. defined by a sequence p. “
p1, p2, . . . pk of physical and cognitive/symbolic time parameters. We may think of a very elementary situation
of a single mass point (one finger movement). The first k ´ 1 parameters designate space coordinates of
performance, such as the key position on a piano, level above the instrumental interface, etc., whereas the
last parameter is the physical time of the performer’s movement. We have denoted the space values by spx, yq,
whereas the time value is denoted by tpx, yq. For the space needed for a hand’s gestures, refer to Section
78.2.3.

To simulate Lagrangian density Lpx, yq, we need to simulate kinetic energy first. The naive approach to
velocity is ds

dt “ Bxsdx
dt ` Bysdy

dt , where
dx
dt ,

dy
dt don’t exist and must be replaced by 1

Bxt
, 1

Byt
, respectively, i.e.,
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ds
dt “ BxsBxt

` Bys
Byt

. To simplify the discussion, let us suppose for a moment that the two summands are orthogonal

in the given metric of the spatial component. Then the energy density would be Epx, yq “ μ
2 p| BxsBxt

|2`| Bys
Byt

|2q “
μ
2 p |Bxs|2

Bxt2
` |Bys|2

Byt2
q. The big problem here is that the denominators Bxt2, Byt2 could vanish, and in fact Byt will

vanish for x “ 0, the initial symbolic gesture, if infinite velocity is required by symbolic data. See also Figure
78.1.

Fig. 78.1. The musical world-sheet hypergesture from a symbolic (back) to a physical (front) gesture.

A first solution to this problem could be to require not the vanishing of denominators Bxt2, Byt2 only,
but the vanishing of inertia μ, too, and this in a vectorial sense, i.e., introducing a vector μ “ pμx, μyq such

that we have Epx, yq “ 1
2 pμx

|Bxs|2
Bxt2

` μy
|Bys|2
Byt2

q, but with finite limit values μx

Bxt2
,

μy

Byt2
. Although this solution

yields a reasonable Epx, yq, the way back to reasonable values of tpx, yq is problematic as it requires a delicate
analysis of the vectorial inertia μ “ pμx, μyq.

A more elegant, and philosophically and physically more reasonable, solution would be to question the
concept of time. In physics, it is known that complex instead of real time can help solve singularity problems
of the Big Bang model. Such an approach would mean defining a time function tpx, yq with complex values:
tpx, yq “ trpx, yq`itipx, yq, trpx, yq a real value that the physical performance needs, and tipx, yq an imaginary
value. This means that we now have a world-sheet M : I2 Ñ Cp., where in particular the last time coordinate
is complex. We have discussed imaginary time in several previous publications (e.g. [725, 4.12] and [726, 22.3])
in the context of the problem of artistic presence, where physical duration of the “now” vanishes, whereas
the cognitive time expands to comprise all the artistic dynamics. It is therefore natural to think of imaginary
time in performance, and to reify this parameter in a mathematically concrete way in the world-sheet model
of gestural performance.

78.1.1 Complex Time and Descartes’ Dualistic Ontology

This is just a small addendum to a possible ontological enrichment which complex time in its cognitive pres-
ence could entail. Viewing the classical space-time with complex time, it is represented as a five-dimensional
real vector space ST “ C‘R3 that is a sum of the four-dimensional “real” space-time RST “ R‘R3 and the
“imaginary” space-time IST “ iR‘R3 that intersect in the space component R3. Descartes, in his Principia
philosophiae [263] describes the three substances of being: res extensa, res cogitans, and God. The human
existence is comprised of res extensa and res cogitans, the latter being strongly associated with consciousness,
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and their mysterious interaction. It is not clear where this interaction should happen (Descartes’ idea of the
pineal gland being the crossing locus is too naive). And this dualism also poses the problem of the causality
of such interaction. In view of our complex time approach, we would at least have the following elements of
a potential solution: The total space-time ST is a sum ST “ RST ` IST of two 4-dimensional subspaces
that intersect in the “spatial” space: RST X IST “ R3, see also Figure 78.2.

Fig. 78.2. Descartes’ duality in a space-time with complex time.

The total dynamics is an affair of ST , but it has two 4-dimensional components, the classical “real”
physical RST space-time, and the new “imaginary” IST space-time. If we identify the dynamics of res
extensae with RST and the dynamics of res cogitantes with IST , we envisage two ontologies with different
and independent time dimensions, but which are connected spatially on RST X IST , which is a spatial
ontology that could be metaphorically (and nothing more!) associated with the space of the pineal glans.

This approach in principle opens the possibility of an extended physical dynamics that could include
causal or other interactions between RST and IST . These different spaces would no longer be disjoint geo-
metrically and causally. We are however not aware of any physical theory that would describe the interactions
in ST that exceed those in RST—except the cosmological approach to the Big Bang singularity by Stephen
Hawking, where no hypothesis is made that would include human cognitive dynamics.1 In the following
discourse, we shall describe an explicit transitional space from imaginary to real time, and thereby from IST
to RST with intermediate stages in ST that are both, real and imaginary, much as general complex numbers
have non-vanishing real and imaginary coordinates. At this point, we do not have a thorough understanding
of these intermediate stages of musical reality.

78.2 Lagrangian Density for Complex Time

For the above reasons, we would have to restate the formula with a “complex” velocity, i.e., Epx, yq “
1
2 pμx

|Bxs|2
|Bxt|2 ` μy

|Bys|2
|Byt|2 q. The advantage of such an approach is that now both Bxt and Byt needn’t vanish

although the real part of these complex numbers might vanish. Imposing the existence of a lower bound
q ą 0 such that q ď |Bxt| and q ď |Byt|, we get rid of the singularity problem of infinite speed, in fact, this
condition means that both velocities, 1

|Bxt| and 1
|Byt| , are limited from above by 1

q . Such a condition is well

known in physics, namely as the limit by the speed of light, only that here we work in a time reality that
comprises the speed of thoughts, too, not only the speed of moving fingers. We now propose a Lagrangian
density defined by

1 Hawking didn’t answer repeated emails by one of the authors (Mazzola) concerning a possible cognitive reality of
imaginary time.
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Lpx, yq “ μ

2
p |Bxs|2

|Bxt|2 ` |Bys|2
|Byt|2 q ´ Upspx, yqq,

where Upspx, yqq is a potential, but not only the usual physical potential (the gravitational field). It will also
comprise still unknown artistically defined potential contributions.

We shall see below that the above limitation of |Bxt|, |Byt| to a stronger condition, namely that map
t : px, yq “ x ` iy ÞÑ trpx, yq ` itipx, yq, is complex analytic (see Appendix J.5), hence conformal, also a
standard situation in string theory [1159, 22.4]. Under this condition, using the canonical sesquilinear form

x, y on Cn, we first have ds
dt “ BxsBxt

` Bys
Byt

“ 1
|t1|2 pBxsBxt ` BysBytq. Then, taking into account that the space

coordinates are supposed to be real numbers,

xds
dt

,
ds

dt
y “ 1

|t1|4 pxBxsBxt ` BysByt, BxsBxt ` BysBytyq “
1

|t1|2 p|Bxs|2 ` |Bys|2q ` 1

|t1|4 pxBxs, BysypBxtByt ` BytBxtqq.

But since Bxt “ ´iByt because t is analytic, BxtByt ` BytBxt “ 0, and the above hypothesis of orthogonality
of Bxs and Bys is absorbed by the analyticity hypothesis.

78.2.1 The Lagrangian Action for Performance

The Lagrangian action is S “ ş
y

ş
x
Lpx, yq, and we have to calculate the spatial2 variation δS, defined from

a variation Mδpx, yq “ Mpx, yq ` δM “ pspx, yq, tpx, yqq ` pδs, 0q, to obtain the Euler-Lagrange equations.
We focus on the kinetic energy part, the potential variation is as usual. With the scalar product x, y we have

μ
2

|Bxps`δsq|2
|Bxpt`δtq|2 “

μ

2

|Bxs|2 ` |Bxδs|2 ` 2xBxs, Bxδsy
|Bxt|2 “ (mod quadratic order in δq

μ

2

|Bxs|2
|Bxt|2 ` μ

xBxs, Bxδsy
|Bxt|2 .

Using the derivative Bxpx Bxs|Bxt|2 , δsyq “ xBxp Bxs|Bxt|2 q, δsy ` x Bxs|Bxt|2 , Bxδsy, the variation becomes

μpBxpx Bxs
|Bxt|2 , δsyq ` Bypx Bys

|Byt|2 , δsyq ´ xBxp Bxs
|Bxt|2 q, δsy ´ xByp Bys

|Byt|2 q, δsyq,

and since variation of s vanishes at the endpoints, and using the fundamental lemma of the calculus of
variations (see Appendix J.9), we get the Euler-Lagrange equation

´∇U “ μpBxp Bxs
|Bxt|2 q ` Byp Bys

|Byt|2 qq,

i.e.,

´∇U “ μp B2
xs

|Bxt|2 ´ 2
xBxt, B2

xtyR
|Bxt|4 Bxs ` B2

ys

|Byt|2 ´ 2
xByt, B2

ytyR
|Byt|4 Bysq,

with x, yR being the real part of x, y, which is the usual real scalar product in R2. Using the usual derivative
symbols in physics, 9s “ Bys, :s “ B2

ys, s
1 “ Bxs, s2 “ B2

xs, etc., we get

2 This choice is made in view of the hypothesis that tpx, yq is complex analytic, a condition that would be violated
by general variations.
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´∇U “ μp s2

|t1|2 ´ 2
xt1, t2yR

|t1|4 s1 ` :s
| 9t|2 ´ 2

x 9t, :tyR
| 9t|4 9sq.

This complex formula can be simplified with the following assumption, namely that t1 KR t2. This is
equivalent to the condition that |t1|2 is only a function of y. The orthogonality t1 KR t2 is a special case of the
condition that for an analytical function g, we have g KR g1, and this means that g1{g is imaginary. But this
is evidently equivalent to the differential equation 0 “ Bxp|g|2q. And this means that |g|2 is only a function
of y. Applying this result to g “ t1, our claim follows.

In a first approximation, we neglect the term 9s and discuss the simplified Euler-Lagrange equation
´∇U |t1|2 “ μps2 ` :sq. Now, given a differentiable map f : Rn Ñ Rn, we have the kth Jacobian Jkpfq, which
is the n ˆ n-matrix whose entries are the partial derivatives Bk

xj
fi on row i and column j. Let Δ “ p1, 1q be

the diagonal vector in R2. Then the simplified Euler-Lagrange equation is

´∇U |t1|2 “ μJ2sΔ,

a remarkable formula since the Jacobian and the diagonal vector also appear in the definition of the perfor-
mance vector fields in performance theory for symbolic and physical events, see Chapter 33. Evidently, we
could reintroduce the vectorial Δμ “ pμx, μyq and write the Euler-Lagrange formula as

´∇U |t1|2 “ J2sΔμ.

Let us focus on the Euler-Lagrange equation with a scalar density μ. It is in fact a Poisson equation
(see Appendix J.10) in each spatial factor: ´1

μ BsiU |t1|2 “ Δsi for spatial coordinate si, Δ now being the

Laplace operator B2
x ` B2

y, or, in vectorial writing,

´|t1|2
μ

∇U “ Δs.

Supposing that ∇U is given as a function of x, y, the solution sipx, yq for each spatial coordinate si of
this Poisson equation uses Green’s function G (see Appendix J.10) and is an integral of the form (everything
in space vectors)

s “ P p |t1|2
μ

∇Uq ` SpBsq

where Bs “ řp´1qisi is the homological boundary of the singular cube s, and P, S are linear functions.

The quotient |t1|2
μ looks like a factor for temporal versus material density. In this formalism, the component

s0pyq “ sp0, yq is fixed: it is the given symbolic gesture defined by the score. The component s1pyq “ sp1, yq
is the physical gesture of the performer. It must comply with physical laws and can be calculated separately.
Components s2pxq “ spx, 0q, s3pxq “ spx, 1q are not given a priori, except for their start and end points. The
potential U is not given either a priori. The artistic program is therefore to investigate the variety of curves
s2, s3 and of the potential U in terms of artistic determinants.

It is worthwhile to add a short remark on the possible causal relations that occur during the transition
from imaginary time (the vertical line state of x “ 0 in Figure 78.3) to real time (the horizontal line state
of x “ 1 in Figure 78.3). A specific moment in the evolution of the pianist’s gesture is given by the value
of y. The initial moment is for y “ 0, the final one is for y “ 1. The evolution at time y “ s is traced
along the quarter circle apsq connecting the imaginary vertical time line and the real horizontal time line,
see Figure 78.4. We recognize that a gestural moment apsq cannot be changed in a real time τ ą t after
apsq’s intersection with the real time axis at t. In particular, the initial moment cannot be changed after the
initial real time. The only moments that admit a change at time t are those apσq which intersect the real
time line after t, they are shown as open intermediate states at time t in Figure 78.4. However, these open
states have been shaped quite a lot until real time t (the part of apσq to the left of the vertical line at real
time t). Therefore only the part of apσq to the right of t can be used to terminate the shaping of apσq. This
fact generates a kind of causality in the shaping process of the pianist’s hypergesture.
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Fig. 78.3. A time map for the function tpx, yq described in the text.

Fig. 78.4. The causal relations during the hypergestural evolution in complex time.

78.2.2 The World-Sheet of Complex Time

The previous discussion is built on the hypothesis that t1 K 9t is the derivative of analytic tpx, yq. This means
that the Jacobian

Jtpx, yq “
˜

Bxt1 Byt1
Bxt2 Byt2

¸
“ pt1, 9tq

has orthogonal columns. See Figure 78.3 for a time function

tpx, yq “ ´0.2624i ` 1

3.8104
e

1
2πip1´xq` πy

2 ,

3.8104 « eπ{2 ´ 1, 0.2624i « e
1
2πi{peπ{2 ´ 1q,

mapping the unit imaginary time interval at x “ 0 to the unit real time interval at x “ 1. The vector field
defined by the y-derivative 9t is shown in Figure 78.5.

This situation is completely analogous to the one encountered for the calculation of performance from
performance vector fields, see Section 33.2.2. The time function tpx, yq can described by the function Jtpx, yq
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Fig. 78.5. The y-derivative 9t.

and adequate initial conditions. The (complex) time performance field here is generated by the inverse
Jacobian, acting on the diagonal vector Δ (known from performance theory),

tצ
px,yq “ Jtpx, yq´1Δ,

while the initial time performance defines the values of t on selected initial arguments; see Figure 78.6 for
an example of such a time performance vector field for the above time function tpx, yq.

Fig. 78.6. A time performance vector field.

This figure illustrates a typical situation for the initial symbolic gesture, i.e., x “ 0. Here, the field
is diagonal, meaning that the vertical partial derivative Byt1 for real time t1 vanishes, in other words, the
physical velocity would be infinity. But the vertical partial derivative Byt2 of imaginary time has positive
length, time only elapses in the mental direction, which is a natural requirement in the initial symbolic
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position of our world-sheet. At the terminal position, for x “ 1, the mental time stands still while the
physical time takes over the control of the movement, the performance field is rotated by 90o.

The terminology of “initial” vs. “terminal” for values x “ 0 vs. x “ 1 is slightly misleading since there
is no causal background for these terms. It is not clear whether the symbolic reality is pushing into a physical
one, or whether the movement is a finality towards physics. Both could be happening. This becomes even
more evident if we view the passage in the opposite direction, x : 1 Ñ 0. This could happen if an improviser
is creating a score from played music, in fact a common approach.

In view of the complexity of this time performance field, it is an open question whether the world-sheet
should/could be defined by a Lagrangian action in the sense of an economy of thoughts in creativity.

Fig. 78.7. The spatial coordinates of a hand.

78.2.3 The Space for a Hand’s Gestures

The hand’s dynamic has two aspects, a spatial and a temporal one. Refer to Figure 61.2 for the spatial
aspect. As shown in Figure 78.7, a hand’s position is defined by four angles per finger, a vector b P R3 for
the position of the carpus center, two real numbers for the orientation of the carpus plane, and one real
number for the rotational position of the carpus plane around the normal vector through the center of the
carpus plane, a total of 26 real numbers. Denote this position by s P R26. We may also assume that for every
position, a small open neighborhood is also a set of possible (however small) variations, which means that
the spatial information of the hand’s dynamic is a connected open set W Ă R26. Is W simply connected?

78.2.4 The World-Sheet for a Simple Case

We have calculated the solution of the world-sheet for a simple movement of one finger: push the key, lift
the finger, keep it up, go down again on that key, keep it on the key. The symbolic gesture is the linear edgy
curve to the left in Figure 78.15, the physical gesture is the smooth curve to the right. The potential is taken
as a test case function ∇Upspx, yqq “ px ` 4y ´ 12qe´πy{6, and μ “ 1. In this case we have considered equal
time intervals for each part of the splines, as we will describe in Section 78.2.5. We have also calculated the
world-sheet for more complex potentials, as shown in Figure 78.9.

78.2.5 The Elementary Gesture of a Pianist

The elementary gesture of the pianist is the movement of a finger that presses a key. In general, elementary
gestures in music are conceptually similar, following the general idea of arsis—thesis, passing through the
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Fig. 78.8. The world-sheet for a simple up-down movement of one finger.

Fig. 78.9. The world-sheet for a simple up-down movement of one finger with a more complex potential.

attack gesture of a conductor [791], or the breath with inspiration-exhalation of singers. It is the general idea
of a preparation by an ascending movement, and the accomplishment of a gesture by a descending movement.
The completion of gesture is signaled by a third part, again an ascending movement, that prepares for a new
gesture, in a chain of gestures—the simplest hypergesture.

Here we focus on the formal description of the elementary piano gesture, representing velocity by spline
interpolation to describe variable velocity. Initially the finger—which we schematize as a massive point—is at
rest on a pressed key. It then accelerates moving up, moves at constant speed for a time interval, decelerates,
then reaches a distance from the keyboard (arsis movement) where it is at rest. It then starts to move again,
with identical motion, but in opposite direction, until the key is completely pressed.

We choose cubic polynomial splines. For each part of the movement we use three different interpolations:
cubic, constant velocity, and cubic again. If we consider the cubic polynomial vptq “ at3 ` bt2 ` ct ` d, to
find the first spline, representing the increasing velocity from zero to the maximal value, we have to solve
the following system of equations:

• velocity zero at time t0 ñ at30 ` bt20 ` ct0 ` d “ 0
• acceleration zero at time t0 ñ 3at20 ` 2bt0 ` c “ 0
• maximal velocity at t1 ñ W “ at31 ` bt21 ` ct1 ` d
• zero acceleration at t1 ñ 0 “ 3at21 ` 2bt1 ` c.

The absolute value of acceleration is maximal at the center of the first and the third spline. Solving the system

we obtain v1ypt0, t1, t,W q “ pt´t0q2p2t`t0´3t1qW
pt0´t1q3 . Proceeding in an analogous way, we obtain the velocity for

the first part of the motion, a massive point that starts from the key and reaches height H:
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v1ypt0, t1, t,W q “ pt´ t0q2p2t` t0 ´ 3t1qW
pt0 ´ t1q3 if t0 ă t ă t1,

v2ypt,W q “ W if t1 ă t ă t2,

v3ypt2, t3, t,W q “ ´ pt´ t3q2p2t´ 3t2 ` t3qW
pt2 ´ t3q3 if t2 ă t ă t3.

To complete the vertical gesture with the thesis part, we also consider the descending motion:

v4ypt3, t4, t,W q “ ´ pt´ t3q2p2t` t3 ´ 3t4qW
pt3 ´ t4q3 if t3 ă t ă t4,

v5ypt4, t5, t,W q “ ´W if t4 ă t ă t5,

v6ypt5, t6, t,W q “ pt´ t6q2p2t` t6 ´ 3t5qW
pt5 ´ t6q3 if t5 ă t ă t6,

where W is the maximal vertical velocity. The complete graph of velocity is shown in Figure 78.10.

1 2 3 4 5 6
t
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�0.5

0.5

1.0
vy

Fig. 78.10. Vertical velocity of piano primitive gesture, in the raising and lowering part.

Artistic parameters are related to these results. For example, acceleration is related to force via the
well-known F “ ma, and force determines the loudness of the sound. The maximum values of acceleration
have a superior physical limit given by the following equation (with t1 “ t0`t1

2 ):

d

dt

“
v1ypt0, t1, t,W q‰

t1 “ d

dt

„ pt´ t0q2p2t` t0 ´ 3t1qW
pt0 ´ t1q3

j
t1

“ 3

2

W

pt0 ´ t1q ď F

m
.

Summarizing, even in this simple case, we have the variety of parameters:

t0, t1, . . . t6, W, H, m.

The vertical displacement is obtained by integration of the previous speed functions,

AscendingPositionrt0, t1, t2, t3, t,W,H0s “ H0 `
If t ă t1, ppt´ t0q3 pt` t0 ´ 2t1qW

2pt0 ´ t1q3 ,

If t ă t2,´pt0W q{2 ` pt1W q{2 ` pt´ t1qW,
If t ă t3,´pt0W q{2 ` pt1W q{2 ` p´t1 ` t2qW´

1

2pt2 ´ t3q3 pt´ t2qpt3 ´ t32 ´ tt2pt2 ´ 4t3q`
4t22t3 ´ 6t2t

2
3 ` 2t33 ´ t2pt2 ` 2t3qqW,

and by the following ones for the descending movement (Hf is the highest vertical position):
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DescendingPositionrt0, t1, t2, t3, t4, t5, t6, t,W,H0, Hf s “ Hf `
If t ă t4,´pt´ t3q3 pt` t3 ´ 2t4qW

2pt3 ´ t4q3 ,

If t ă t5, pt3W q{2 ´ pt4W q{2 ´ pt´ t4qW,
If t ă t6, pt3W q{2 ´ pt4W q{2 ´ p´t4 ` t5qW`

1

2pt5 ´ t6q3 pt´ t5qpt3 ´ t35 ´ tt5pt5 ´ 4t6q`
4t25t6 ´ 6t5t

2
6 ` 2t36 ´ t2pt5 ` 2t6qqW.

We then define the complete function Moto (in Mathematica) for the vertical movement depending on time
(Figure 78.11).

Moto[t0_,t1_,t2_,t3_,t4_,t5_,t5_,W_,H0_,Hf_] :=

If[t < t3, AscendingPosition[t0,t1,t2,t3,t,W,H0],

If[t < t6,

DescendingPosition[t0,t1,t2,t3,t4,t5,t6,t,W,H0,Hf]]].

We make the following choice of parameters: t0 “ 0, t1 “ 1, t2 “ 2, t3 “

1 2 3 4 5 6
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y

Fig. 78.11. Vertical move-
ment of piano elementary
gesture, in the raising and
lowering part.

3, t4 “ 4, t5 “ 5, t6 “ 6,W “ 1, H0 “ 0, Hf “ 2, and therefore a “ 6, b “ 6
for the rectangular domain of Poisson equation. With this parameter choice we
obtain the right curve on Figure 78.15.

The complete graph is obtained, as said above, solving the Poisson equa-
tion with a test potential. By variation of these parameters, we can describe a
huge amount of piano touches. These concepts are useful for understanding not
only general ideas about music performance, but in particular can be used to
avoid vagaries in performance didactics.

78.2.6 The Overarching Framework Between Note Performance and
Gesture Performance

In this section, we want to recapitulate the overarching performance framework where gestural world-sheets
are embedded. To begin with, the symbolic gesture s0 in the homological boundary Bs is supposed to be
fixed, also projecting to the symbolic note score psymbol.ps0q “ σ0, a local composition in the traditional
space REHLD... of symbolic parameters. The note performance map ℘ : REHLD... Ñ Rehld... into the space
of physical note parameters is also supposed to be given according to the rationales that control this con-
struction, see also Chapter 44.7. This determines the note-level performance σ1 “ ℘pσ0q, and we suppose
that a physical gestural performance s1 in Bs yields a note-level performance pphys.ps1q “ σ that lies in a
small open neighborhood Opσ1q of σ1. In other words, s1 P OW :“ p´1

phys.pOpσ1qq XW , where W Ă Rp is the
open subset of physical gesture parameters defined by the geometrically possible positions, as presented for
a pianist’s hand in Section 78.2.3.

We suppose for the moment that for each selection s1 P OW , the two boundary gestures s2, s3 are
calculated by a given formula. This means that, using the solution s of the Poisson equation ´1

μ ∇U |t1|2 “ Δs,

the action S “ ş
y

ş
x
Lpx, yq is determined by the choice of potential U and of a physical gesture s1, see Figure

78.12.
The action surface SpU, s1q now opens the discussion framework for the effective selection of U and s1.

It seems reasonable to look for couples pU, s1q with locally minimal SpU, s1q, as shown in Figure 78.12, since
we want the total energy to perform a physical gesture to be (locally) minimal. On the other hand, we also
want the potential U to be not only physically, but also aesthetically meaningful. This condition is the main
open question for the time being. Musically speaking, it means that we have an entire manifold of physical
hand gestures (the points in OW ) that may realize given physical note scores (the points in Opσ1q), but we
also want the energy strategy to shape the world-sheet hypergesture from symbolic s0 to physical s1 to be
taken into account, i.e., the kind of transformational effort from thinking to making this piece of music.
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Fig. 78.12. Local action minima.

Here is what we are hoping for: The surface SpU, s1q is a candidate for exhibiting more precise relations
between potentials U and physical gestures s1. Ideally, one should be able to find a functional subset F of
that surface, i.e., a subset whose projection to the U ´ s1 plane defines a function U ÞÑ s1pUq, and thereby
generates a causally interpretable relation of a cause U to its effect s1, see Figure 78.13. But even a non-
functional graph as a projection would be advantageous for a better understanding of how potentials can
“cause” physical gestures.

Fig. 78.13. Functional graphs of local action minima.

78.2.7 Examples of Functional Relations Between Potential and Physical Gesture

For the technical reason of explicit calculations, we shall use for the solutions of Poisson equations that
describe the Euler-Lagrange equations in Section 78.2.1 the more general rectangular boundaries a, b instead
of the 1, 1 that were used in Appendix J.10. We shall use here the time function tpx, yq defined in Section
78.2.2, and its derivative module

|t1|2 “ 0.17e
πy
b . (78.1)

To simplify calculations, we shall also set the density μ “ 1. In our context, the potential Φ in the Poisson

equation Δs ` Φ “ 0 of Appendix J.10 is realized by the gradient expression |t1|2
μ ∇U “ |t1|2∇U . We further
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suppose that the gradient of U is given as a direct function of x, y, which is a special requirement since a
priori U is only given as a function of space spx, yq.

78.2.7.1 Solving the Poisson Equation for Rectangular Boundary conditions

First, suppose the potential is zero. The solution is the sum of four integrals of type shown in Equation J.2,
each corresponding to the values of w on one of the four sides of the domain rectangle. We suppose here that
w vanishes on the two horizontal sides y “ 0, y “ b. Denote s0pyq “ sp0, yq, s1pyq “ sp1, yq.

Then we have to calculate these two integrals, I1 for the side x “ 0, and I2 for the opposite side x “ a.
Setting qm “ mπ

b , and we have

I1 “ 2

b

8ÿ
m“0

sinpqmyq sinhrqmpa ´ xqs
sinhpqmaq

ż b

0

s0pηq sinpqmηqdη (78.2)

I2 “ 2

b

8ÿ
m“0

sinpqmyq sinhrqmxs
sinhpqmaq

ż b

0

s1pηq sinpqmηqdη. (78.3)

The integral here, for s0, evaluates toż b

0

s0pηq sinpqmηqdη “
ż b

0

Symbolicrt, 0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 2s sinpqmηqdη

where η stands for symbolic time, and the function Symbolic (used for calculations with Mathematica)
describes the symbolic gesture, a hat function shown in Figure 78.19. The second integral, for s1, calculates
the physical gesture, where η now is the real time component,ż b

0

s1pηq sinpqmηqdη “
ż b

0

Motor0, 1, 2, 3, 3, 4, 5, 6, t, 1, 0, 2s sinpqmηqdη.

The function Moto (used for calculations with Mathematica) was defined in Section 78.2.5 and is shown in
Figure 78.11.

Let’s now introduce the potential. The general world-sheet solution with potentials, according to Ap-
pendix J.10, is the sum of the solution with zero potential and specified solutions on the boundary and the
solution with zero boundary values and general potential,

spx, yq “ pI1 ` I2 ` Part1 ` Part2q, (78.4)

where Part1 is the integral for y ď η ď b, and Part2 is the integral for 0 ď η ď y:

Part1 “ 8
8ÿ

m“0

Qpm,x, yq
ż a

0

dξ

ż b

y

dη sin

ˆ
mπξ

a

˙
sinh

”mπ
a

pb´ ηq
ı
∇Upξ, ηq|t1|2

Part2 “ 8
8ÿ

m“0

Qpm,x, b´ yq
ż a

0

dξ

ż y

0

dη sin

ˆ
mπξ

a

˙
sinh

”mπ
a
η

ı
∇Upξ, ηq|t1|2,

setting Qpm,x, yq “ sinppmxq
m sinhppmbq sinhppmyq.

As discussed previously, we will not consider the zero term in Fourier series because the denominator
of the Green function vanishes.

78.2.7.2 Three Examples of Potentials

The simplest choice for the gradient is inspired by the inverse of |t1|2, i.e., ∇U “ e´πy{b. In this trivial case,
the effect of the gradient is just a little deformation due to the constant factor 0.17 from formula 78.1, see
Figure 78.14. Next, we take a simple potential, whose gradient is given by
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Fig. 78.14. World-sheet (10 terms in the Fourier series) for the very simple potential, inverse of |t1|2.

Fig. 78.15. World-sheet for a simple potential as defined in Equation 78.5.

∇Upspx, yqq “ px ` py ´ 3q4qe´πy
6 . (78.5)

In this case we have a visible deformation of the shape of the world-sheet, see Figure 78.15.
The third example is a less simple gradient formula:

∇Upspx, yqq “ 0.6
“p´y ´ 1q3 ` py ` 5q2‰

sinpx6qe´πy
b e

´x
6 . (78.6)

The shape of the world-sheet is shown in Figure 78.16. The conceptual interpretation of this case and of the
previous one will be given in Section 78.2.14. However, we can immediately think of the different shape of
the graph as a measure of the ‘artistic effort’ to reach a physical realization of the symbolic gesture.

78.2.7.3 Examples of Lagrangian Action

Given the solution of the Euler-Lagrange equation, we are able to find the effective expression of the potential.
In fact, we have

Upspx, yqq “
ż x

0

dξ∇Upspξ, yqq Bξspξ, yq `
ż y

0

dη∇Upspx, ηqq Bηspx, ηq. (78.7)

For concrete calculations, we use the gradient of the potential e´πy{b given in Section 78.2.7.2, for technical
reasons due to the size of calculation. The result is shown in Figure 78.17.
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Fig. 78.16. World-sheet (100 points Fourier series) for the gradient ∇Upspx, yqq given in Equation 78.6.

Fig. 78.17. Visualization of a potential, shown both in rectangular domain (left) and in deformed rectangular
domain (right). The potential is obtained from the gradient discussed in Section 78.2.7.2 and from the world-sheet
with 10-point Fourier series.

Following our discussion in Section 78.2, the Lagrangian is defined as

Lpx, yq “ μ

2

ˆ |Bxs|2
|Bxt|2 ` |Bys|2

|Byt|2
˙

´ Upspx, yqq, (78.8)

where s “ spx, yq is the world-sheet space defined in Equation 78.4, and Upspx, yqq is the potential defined
in Equation 78.7. The Lagrangian density is visualized in Figure 78.18.

Here, |Bxtpx, yq|2 “ 0.17eπy{b and |Bytpx, yq|2 “ 0.17eπy{b. With the same choice of a simple gradient as
explained in Section 78.2.7.2, we obtain the graph of Figure 78.19. Observe that in the left part of Figure
78.19, two high points in the Lagrangian correspond to the points with “infinite” real velocity for the symbolic
gesture, as shown in the right part of Figure 78.19.

The action is defined as the integral of the Lagrangian with respect to the world-sheet’s parameters
x, y, where y parametrizes complex time.

S “
ż
x

ż
y

Lpx, yq. (78.9)

As we are fixing the initial score data, i.e., the symbolic gesture s0, as well as the zero gestures for y “ 0
and y “ b, the action is a function of the physical gesture s1 and the potential U . We want to investigate
whether these two variables, s1, U , are related in a functional way. To this end, we have restricted our
domain of analysis to some specific gestures and potentials. In particular, we have analyzed physical gestures
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Fig. 78.18. The Lagrangian density from the potential discussed in Section 78.2.7.2, shown in both rectangular (left)
and deformed rectangular (right) domains.

Fig. 78.19. Left: detail of higher points in the symbolic gesture of the Lagrangian density. Right: the correspondence
with time points 2 and 4 with “infinite real velocity” in symbolic gesture time.

corresponding to matrix-like strategies of “diagonal” and “co-diagonal” vertical velocities, as shown in Figure
78.20. The chosen labels are 00, 11, 22 for diagonal and 20, 11, 02 for co-diagonal elements.

Fig. 78.20. A choice of diagonal and co-diagonal vertical velocities for physical gestures, and the labels of the
corresponding gestures. From 0 Ñ 2, there are also increasing intervals of zero velocity between positive and negative
parts. In particular, in the calculation of gestures of the co-diagonal, the maximal velocity has been modified, in
order to have the same integral for each part, and keep the starting and ending points of gestures at the position of
a pressed key.

While considering points in the co-diagonal, we took care of changing the maximal velocity to have the
same integral for the positive and negative parts. In fact, we require that the motion of the pianist’s finger
start from 0, the level of pressed key, and return to zero, again the pressed key. Regarding the potentials,
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Fig. 78.21. Action for diagonal and co-diagonal physical gestures s1, with close choices of the (gradient of potential)
U .

we started from the simplest case described in Section 78.2.7.2, i.e., the gradient of the potential equals

to e´ πy
b , and we moved to close functions, more precisely: e´ 3.57y

b , e´ 4y
b , e´ 4.5y

b , e´ 5y
b , indicated using the

labels 0, ... 4, respectively. Of course, to evaluate the Lagrangian and the action it was necessary to calculate
the explicit expression of potentials as described in formula 78.7. With a little abuse of notation, we used
the labels 0, . . . 4 to directly indicate the potentials, and not their gradients. The elements 00, 11, 22, 20, 02
have been evaluated for each expression of the potential.

The results are shown in Figure 78.21, where the surface has been obtained using a polynomial inter-
polation of third order.

Fig. 78.22. Functionality of diagonal (left) and co-diagonal (right) elements of the action.
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From the chosen parameters, it appears that, for diagonal elements:

• fixed U, for increasing indices of s1 the action is raising,
• fixed s1, for increasing indices of U the action is decreasing;

and for co-diagonal elements:

• fixed U, for increasing indices of s1 the action is decreasing,
• fixed s1, for increasing indices of U the action is decreasing.

Fig. 78.23. Comparison between the functionality of diagonal and co-diagonal elements of the action.

Figures 78.22 and 78.23 show the functionality of the action for diagonal and co-diagonal elements
separately and together. The duality between diagonal and co-diagonal corresponds to the situation of
symmetry versus non-symmetry between the complementary movements of arsis and thesis. It is a crucial
problem for all musical performances. The first strategy allows an immediate communication, from conductor
to performer, and from a performer to another performer, due to the predictability of the gesture. The
second strategy generates an effect of surprise, supplying additional content to the artistic communication.
A situation of non-symmetry can also be found in the connection point between two completely different
gestures. Now the challenge is to describe artistic varieties by the characterization of functional action
strategies.

78.2.8 Calculus of Variations for the Physical Gesture

The question of a functional relation between potential U and physical spatial gesture s1pyq “ sp1, yq can
also be approached using a double variational argument. We have used the variational principle to calculate
a (local) minimum of the action S “ ş

y

ş
x
Lpx, yq. But this was performed with fixed boundary curves: the

symbolic gesture s0, the physical gesture s1, and the two x-parametrized curves at y “ 0, 1. Fixing these
curves as well as the symbolic gesture, we have an action that is minimized for every given physical curve
s1. Let us write it as Sps1q. Now, this function is minimal for given s1, but its value is not minimal if we are
allowed to vary s1. We could therefore calculate the vanishing variation δSps1q “ 0 when varying s1. This
gives us a physical gesture s1 where Sps1q is (locally) minimal. This generates a functional relation U ÞÑ s1.
As we have the explicit formulae for the solution spx, yq for every fixed boundary condition from Appendix
J.10, we can effectively calculate the variation δSps1q “ 0.
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Remark 28 At present, we don’t know whether this double variational calculus yields the same result as
a variational calculus where we don’t fix the physical gesture, but only three other boundary curves, and
the look for vanishing variation of variable physical gesture. Clearly, the double variational method yields
a solution that is weaker than the direct method. It could be equal if we can decompose every variation
(with non-fixed physical gesture) into a double variation that first fixes the physical gesture and then adds
its variation.

78.2.9 A First Solution. World-Sheet Potentials Determine a Pianist’s Gesture: Calculus of
Variations and Fourier Analysis

Let us first recall the context of the calculations we want to perform to prove a functional relation between
potential U and symbolic and physical gesture. The Lagrangian density is defined by

Lpx, yq “ μ

2|t1|2 p|Bxs|2 ` |Bys|2q ´ Upx, yq.
with a “material” density μ and a potential U . Here the time function t is supposed to be complex analytic:
The argument px, yq is viewed as a complex number x`iy, and t1px, yq “ Bxtpx, yq. In the following discussion
we shall simplify the formalism setting μ “ 1 and fixing the time derivative to |t1|2 “ 0.17eπy, a formula that
is derived from the complex analytic function

tpx, yq “ ´0.2624i ` 1

3.8104
e

1
2πip1´xq` πy

2 ,

3.8104 « eπ{2 ´ 1, 0.2624i « e
1
2πi{peπ{2 ´ 1q,

mapping the unit imaginary time interval at x “ 0 to the unit real time interval at x “ 1.
The variational calculus, when applied to the Lagrangian action

S “
ż
y

ż
x

Lpx, yq,

yields the Euler-Lagrange equation, which we simplify in a first approximation as described in Section 78.2.1
to a Poisson equation:

´|t1|2
μ

∇U “ Δs.

Using the calculus of Green functions [768], it was possible to provide solutions of the space function s. This
worked by fixing the values of s on the world-sheet’s boundary that has four parts3: the symbolic gesture4

s0 P Ò ÝÑ
@MC for x “ 0, the physical gesture s1 P Ò ÝÑ

@MC for x “ 1, the initial transition line for y “ 0,
and the final transition line for y “ 1. These last two straight lines s2, s4 are completely determined by the
initial and final values of s0, s1. Therefore the space function s is determined by the potential U , and the
time function t, the symbolic and physical gestures.

The space function s has the following form:

spx, yq “ I1px, yq ` I2px, yq ` P1px, yq ` P2px, yq.

Here, setting qm :“ mπ and, for m “ 0, sinpq0yq
sinhpq0q :“ 1,

I1 “ 2
8ÿ

m“0

sinpqmyq sinhrqmp1 ´ xqs
sinhpqmq

ż 1

0

s0pqmηqdη

3 Recall that MC “ W ˆ C, where W is the spatial domain of the hand described in Section 78.2.3.
4 We write rns for the line digraph with n ` 1 vertices 0, 1, . . . n and one arrow from vertex i to vertex i ` 1 for
i “ 0, 1, . . . n´ 1. The arrow digraph a special case: Ò“ r1s.
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is a function of the symbolic gesture s0 only (neither of s1, nor of U). Further,

I2 “ 2
8ÿ

m“0

sinpqmyq sinhpqmxq
sinhpqmq

ż 1

0

s1pqmηqdη

is a function of the physical gesture s1 only (neither of s0, nor of U). The contributions P1, P2 relate to the
potential (but not to s0, s1):

P1 “ 8
8ÿ

m“0

sinpqmxq
m sinhpqmq sinhpqmyq

ż 1

0

dξ

ż 1

y

dη sin pmπξq sinh rmπp1 ´ ηqs∇Upξ, ηq0.17eπη

P2 “ 8
8ÿ

m“0

sinpqmxq
m sinhpqmq sinhrqmp1 ´ yqs

ż 1

0

dξ

ż y

0

dη sin pmπξq sinhpmπηq∇Upξ, ηq0.17eπη

In this approach there is no information about how the three variables s0, s1, U relate to each other; s0
and s1 are two gestures that until now could be exchanged in the given formalism. In the present model of
creative performance they are, however, characterized, depending on the degree of smoothness, as less—at
the limit of performative impossibility—for the symbolic gesture and more for the physical gesture. It would
be desirable to understand how—if at all—the physical gesture could be in a functional relation to the
symbolic gesture and the potential.

Here, the potential is thought to be an artistic operator, similar to the performance operators in classical
performance theory 44.7. Artistically, the situation is quite substantial. Composers, while writing a score,
that is s0, think of future performance and the characteristics of the performers’ gestures s1. They take into
account what can be called an artistic potential, both of performers and of composers. In common language,
what is called the quid of artistic creative performance, that blend of expressivity, precision, character,
passion, and originality, could be identified with a hidden and “ineffable” potential U . It might be ineffable,
but it is not un-calculable.

We start from the very general Poisson equation, without imposing any constraint on smoothness of
gestures. Our approach is structured as follows.

• We first use the solution spx, yq of the above Euler-Lagrange equation, but now we calculate the action
S with this function and view it as a function of s1 with fixed parameters s0, U . As such, we calculate its
variation δs1S “ 0 when varying s1. This means that after having calculated s using the Euler-Lagrange
equation—that is a consequence of the variational calculus for s—we now vary the physical gesture and
get a second type of Euler-Lagrange equation.

• Next, we analyze this second Euler-Lagrange equation, which in fact, using a Fourier coefficient argument,
turns out to be an infinite sequence C˚pmq “ 0 of equations for m “ 0, 1, 2, . . .

• Thirdly, the equations C˚pmq “ 0 are interpreted as an infinite system of linear equations with a non-
singular transformation matrix (we work with Schauder bases in functional analysis [921]). The solution
of this system turns out to be the system of Fourier coefficients of s1 with respect to a non-standard
basis, in other words, the function s1 can be calculated from s0 and U .

The complexity of this solution is however not an obstruction for the explicit calculus of s1, it is
completely explicit (no existential obscurities using the axiom of choice arise). As such, it opens up a new
field of operator research for gestural performance.

The following sections are organized as follows: We first calculate everything with vanishing potential,
U “ 0. Using this calculus, we then redo everything with a general potential. This is advantageous since
many formulae are more transparent when split into zero potential and non-zero potential expressions.

78.2.10 The Calculus with Vanishing Potential

In this section, we set U “ 0, and therefore P1 “ P2 “ 0. We let α “ 1
2¨0.17 , α

1 “ 0.17 ¨ 8π and abbreviate
Qp “ qp

sinhpqpq , with Q0 “ 1. Observe that Qp “ Q´p.
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78.2.10.1 The Variational Calculus on s1

With the above formula for the Lagrangian, we have

L “ α
A2 ` B2

eπy
with

A “ BxI1 ` BxI2,
B “ ByI1 ` ByI2,

BxI1 “ ´2
8ÿ

m“0

sinpqmyq coshpqmp1 ´ xqqQm

ż 1

0

s0 sinpqmηqdη,

BxI2 “ 2
8ÿ

m“0

sinpqmyq coshpqmxqQm

ż 1

0

s1 sinpqmηqdη.

Therefore

A “ 2
8ÿ

m“0

sinpqmyqQm

ˆ
coshpqmxq

ż 1

0

s1 sinpqmηqdη ´ coshrqmp1 ´ xqs
ż 1

0

s0 sinpqmηqdη
˙
,

B “ 2
8ÿ

m“0

cospqmyqQm

ˆ
sinhpqmxq

ż 1

0

s1 sinpqmηqdη ` sinhrqmp1 ´ xqs
ż 1

0

s0 sinpqmηqdη
˙
.

We now vary the physical gesture, replacing s1 by s1 ` εW , and deriving Spεq “ Sps0, s1 ` εW q with
respect to ε at ε “ 0:

δS “ d

dε
Spεq|ε“0 “ d

dε

ż
x,y

Lpεq|ε“0 “
ż
x,y

d

dε
Lpεq|ε“0.

The derivative of the Lagrangian is

d

dε
Lpεq “ α

2AdA
dε ` 2B dB

dε

eπy
“ 2α

eπy

ˆ
A
dA

dε
` B

dB

dε

˙
with

d

dε
A “ 2

8ÿ
m“0

sinpqmyqQm coshpqmxq
ż 1

0

W sinpqmηqdη,

d

dε
B “ 2

8ÿ
m“0

cospqmyqQm sinhpqmxq
ż 1

0

W sinpqmηqdη.

Then

d

dε
Lpεq|ε“0 “ 2α

eπy
2

8ÿ
m“0

rA sinpqmyq coshpqmxq `B cospqmyq sinhpqmxqsQm

ż 1

0

W sinpqmηqdη.

This entails

0 “ δS “
ż
x

ż
y

dεLpεq|ε“0

“ 4α
8ÿ

m“0

ż
x

ż
y

Qm

eπy
rA sinpqmyq coshpqmxq `B cospqmyq sinhpqmxqs

ż 1

0

W sinpqmηqdη

“ 4α
8ÿ

m“0

ż 1

0

W sinpqmηqdη
ż
x

ż
y

Qm

eπy
rA sinpqmyq coshpqmxq `B cospqmyq sinhpqmxqs

“ 4α
8ÿ

m“0

Cpmq
ż 1

0

W sinpqmηqdη

“ 4α

ż 1

0

W

˜ 8ÿ
m“0

Cpmq sinpqmηq
¸
dη,



1206 78 Euler-Lagrange Equations for Hypergestures

where we set

Cpmq “ Qm

ż
x

ż
y

1

eπy
rA sinpqmyq coshpqmxq ` B cospqmyq sinhpqmxqs .

But by the fundamental lemma of variational calculus, this entails

8ÿ
m“0

Cpmq sinpqmηq “ 0

for all η P r0, 1s. This terminates the first step of our calculations.

78.2.10.2 The Fourier Calculus

This last infinite sum is the Fourier representation of a function of frequency 1
2 . But we only know that the

function vanishes for r0, 1s, half the period. This is half the information to conclude that all Cpmq “ 0. If
we now require that Cp2n ` 1q “ 0 for all n, the equation is the Fourier representation of a function with
frequency 1. Therefore, by Fourier’s theorem, we have Cp2nq “ 0 for all n. This means that we have

0 “
ż
x

ż
y

1

eπy
rA sinpqmyq coshpqmxq ` B cospqmyq sinhpqmxqs for all m,

which terminates the second step in our analysis.
Let us now analyze the vanishing condition for the Cpmq. Writing them explicitly yields these equations

for m “ 0, 1, 2, . . .:

0 “
8ÿ

p“0

Qp

ż
x

ż
y

1

eπy
tsinpqpyq sinpqmyq coshpqmxqr1sx,p ` cospqpyq cospqmyq sinhpqmxqr2sx,pu ,

where

r1sx,p “ coshpqpxq
ż 1

0

s1 sinpqpηqdη ´ coshrqpp1 ´ xqs
ż 1

0

s0 sinpqpηqdη

and

r2sx,p “ sinhpqpxq
ż 1

0

s1 sinpqpηqdη ` sinhrqpp1 ´ xqs
ż 1

0

s0 sinpqpηqdη.

Next, we use the goniometric formula

sinpaq sinpbq “ 1{2rsinpa ` π{2 ´ bq ` sinpa ´ π{2 ` bqs
to derive

sinpqpyq sinpqmyq “ 1

2
pcospqp´myq ´ cospqp`myqq,

cospqpyq cospqmyq “ 1

2
pcospqp´myq ` cospqp`myqq.

Inserting this in the above formula we get

0 “
8ÿ

p“0

Qp

2

ż
x

ż
y

1

eπy
tpcospqp´myq coshpqmxq ´ cospqp`myq coshpqmxqqr1sx,p

`pcospqp´myq sinhpqmxq ` cospqp`myq sinhpqmxqqr2sx,yu.
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This is rewritten as

0 “
8ÿ

p“0

Qp

2

ż
x

ż
y

1

eπy
rcospqp´myqRx,m,p ` cospqp`myqSx,m,ps ,

with

Rx,m,p “ coshpqmxqr1sx,p ` sinhpqmxqr2sx,p,
Sm,p,x “ ´ coshpqmxqr1sx,p ` sinhpqmxqr2sx,p,

which yields

0 “
8ÿ

p“0

Qp

2

„ż
y

cospqp´myq
eπy

ż
x

Rx,m,p `
ż
y

cospqp`myq
eπy

ż
x

Sx,m,p

j
.

We have ż 1

0

dy
cospqp˘myq

eπy
“ e´πpeπ ´ 1q

πp1 ` pm ¯ pq2q ,

and setting L “ e´πpeπ´1q
π , we get

0 “
8ÿ

p“0

Qp

2
L

ˆ
1

1 ` pm ´ pq2
ż
x

Rx,m,p ` 1

1 ` pm ` pq2
ż
x

Sx,m,p

˙
.

To calculate the integral of Rx,m,p, we have

Rx,m,p “ coshpqmxqr1sx,p ` sinhpqmxqr2sx,p
“ coshpqmxq

ˆ
coshpqpxq

ż 1

0

s1 sinpqpηqdη ´ coshrqpp1 ´ xqs
ż 1

0

s0 sinpqpηqdη
˙

`

sinhpqmxq
ˆ
sinhpqpxq

ż 1

0

s1 sinpqpηqdη ` sinhrqpp1 ´ xqs
ż 1

0

s0 sinpqpηqdη
˙

“ coshpqmxq coshpqpxq
ż 1

0

s1 sinpqpηqdη ´ coshrqpp1 ´ xqs coshpqmxq
ż 1

0

s0 sinpqpηqdη `

sinhpqmxq sinhpqpxq
ż 1

0

s1 sinpqpηqdη ` sinhrqpp1 ´ xqs sinhpqmxq
ż 1

0

s0 sinpqpηqdη

“ pcoshpqmxq coshpqpxq ` sinhpqmxq sinhpqpxqq
ż 1

0

s1 sinpqpηqdη `

p´ coshrqpp1 ´ xqs coshpqmxq ` sinhrqpp1 ´ xqs sinhpqmxqq
ż 1

0

s0 sinpqpηqdη.

Therefore

m “ p “ 0 implies

ż
x

Rx,m,p “ 0,

m “ p ą 0 implies

ż
x

Rx,m,p “ 1

Q2m

ż 1

0

s1 sinpqpηq ´ 1

Qm

ż 1

0

s0 sinpqpηq,

m ‰ p, m ` p ą 0 implies

ż
x

Rx,m,p “ 1

Qp`m

ż 1

0

s1 sinpqpηq ´
ˆ

1

qp ¨ Qm
` 1

qm ¨ Qp

˙ ż 1

0

s0 sinpqpηq.

To calculate the integral of Sx,m,p, we have
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Sx,m,p “ ´ coshpqmxqr1sx,p ` sinhpqmxqr2sx,p
“ ´ coshpqmxq

ˆ
coshpqpxq

ż 1

0

s1 sinpqpηqdη ´ coshrqpp1 ´ xqs
ż 1

0

s0 sinpqpηqdη
˙

`

sinhpqmxq
ˆ
sinhpqpxq

ż 1

0

s1 sinpqpηqdη ` sinhrqpp1 ´ xqs
ż 1

0

s0 sinpqpηqdη
˙

“ coshpqmxq coshpqpxq
ż 1

0

s1 sinpqpηqdη ´ coshrqpp1 ´ xqs coshpqmxq
ż 1

0

s0 sinpqpηqdη `

sinhpqmxq sinhpqpxq
ż 1

0

s1 sinpqpηqdη ` sinhrqpp1 ´ xqs sinhpqmxq
ż 1

0

s0 sinpqpηqdη

“ p´ coshpqmxq coshpqpxq ` sinhpqmxq sinhpqpxqq
ż 1

0

s1 sinpqpηqdη `

pcoshrqpp1 ´ xqs coshpqmxq ` sinhpqmxq sinhrqpp1 ´ xqsq
ż 1

0

s0 sinpqpηqdη.

Therefore

m “ p implies

ż
x

Sx,m,p “ ´
ż 1

0

s1 sinpqpηq ` coshpqmq
ż 1

0

s0 sinpqpηq,
and

m ‰ p implies

ż
x

Sx,m,p “ ´ 1

Qm´p

ż 1

0

s1 sinpqpηq `
ˆ

1

q´p ¨ Qm
` 1

qm ¨ Q´p

˙ ż 1

0

s0 sinpqpηq.

78.2.10.3 The Non-singular Matrix

This calculation yields the equation
0 “

ÿ
p

QpZm,p

with

Zm,p “ 1

1 ` pm ´ pq2
ż
x

Rx,m,p ` 1

1 ` pm ` pq2
ż
x

Sx,m,p.

For m “ p “ 0 we have Z0,0 “ 0. For m “ p ą 0, we have

Zm,m “
ˆ

1

Q2m
´ 1

1 ` 4m2

˙ ż 1

0

s1 sinpqmηq `
ˆ ´1

Qm
` coshpqmq

1 ` 4m2

˙ ż 1

0

s0 sinpqmηq

“ Em,m

ż 1

0

s1 sinpqmηq ` Fm,m

ż 1

0

s0 sinpqmηq,

where Em,m “ 1
Q2m

´ 1
1`4m2 and Fm,m “ coshpqmq

1`4m2 ´ 1
Qm

. For m ‰ p, we have

Zm,p “ Em,p

ż 1

0

s1 sinpqpηq ` Fm,p

ż 1

0

s0 sinpqpηq,

with

Em,p “ 1

1 ` pm ´ pq2
1

Qm`p
´ 1

1 ` pm ` pq2
1

Qm´p

and

Fm,p “ 1

1 ` pm ` pq2
ˆ

1

q´p ¨ Qm
` 1

qm ¨ Q´p

˙
´ 1

1 ` pm ´ pq2
ˆ

1

qp ¨ Qm
` 1

qm ¨ Qp

˙
.

We therefore have for every m this linear equation in the variables Xp “ Qp

ş1
0
s1 sinpqpηq:



78.2 Lagrangian Density for Complex Time 1209

0 “
8ÿ

p“1

Qp

ˆ
Em,p

ż 1

0

s1 sinpqpηq ` Fm,p

ż 1

0

s0 sinpqpηq
˙

. (78.10)

In order to solve this equation, one needs to verify that the matrix EN “ pEm,pq1ďm,pďN is non-singular as
N Ñ 8. We have not verified this as a mathematical theorem, but the evaluation of DetpEN q yields a curve
that does not vanish for 1 ď N ď 100, as shown in Figure 78.24.

Fig. 78.24. The logarithm of the determinant DetpEN q for the values 1 ď N ď 100.

78.2.10.4 A Second Fourier Calculus

The non-singularity of the matrix EN implies that we can calculate the unknown values Xp “ Qp

ş
s1 sinpqpηq

and therefore the integrals
ş1
0
s1 sinpqpηq “ ş1

0
s1 sinpπpηq for all p “ 1, 2, . . . These integrals are akin to the

function’s s1 Fourier coefficients, i.e., we have
ş1
0
s1 sinpπpηq “ ş1

0
s1 sinp2πrηq for even p “ 2r and frequency

ν “ 1. These numbers are half of what we need, the other half would be the integrals
ş1
0
s1 cosp2πrηq. This

information is what must be contributed by the odd integrals
ş1
0
s1 sinpπp2r ` 1qηq. We have not succeeded

in proving that the odd multiples sinpπp2r ` 1qηq together with the even ones sinp2πrηq form a complete
Schauder base. We would have to prove that replacing the cosine functions cosp2πrηq by the odd multiple
functions sinpπp2r`1qηq defines a base together with the even multiples sinp2πrηq. However, we have checked
a number of numerical data on the determinants of cosine representations of the odd multiples, and found
that these determinants don’t vanish. We conjecture that we indeed have a Schauder basis.

Proposition 4. Assuming that our Schauder basis conjecture holds, the physical gesture s1 is determined by
the argument(s) s0 (and U) in the case of a vanishing potential U “ 0.

78.2.11 The Calculus with General Potential

We now stop over to the situation of a general potential. Recall from the introduction that the space function
is spx, yq “ I1px, yq ` I2px, yq ` P1px, yq ` P2px, yq, the potential being an argument only in the last two
formulae P1, P2 that are also made explicit in the introduction.
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78.2.11.1 The Variational Calculus of s1 with Potential

To calculate the Lagrangian

Lpx, yq “ μ

2|t1|2 p|Bxs|2 ` |Bys|2q ´ Upx, yq
we need the partial derivatives

A˚ “ A ` A1, A1 “ BxP1 ` BxP2,

B˚ “ B ` B1, B1 “ ByP1 ` ByP2

with the quantities A,B being defined in Section 78.2.10.1. We have

BxP1 “ 8
ÿ
m

cospqmxq
sinhpqmq π sinhpqmyq

ż 1

0

dξ

ż 1

y

dη sin pqmξq sinh rqmp1 ´ ηqs∇Upξ, ηq0.17eπη

BxP2 “ 8
ÿ
m

cospqmxq
sinhpqmq π sinhrqmp1 ´ yqs

ż 1

0

dξ

ż y

0

dη sin pqmξq sinhpqmηq∇Upξ, ηq0.17eπη

ByP1 “ 8
ÿ
m

sinpqmxq
sinhpqmqπ coshpqmyq

ż 1

0

dξ

ż 1

y

dη sin pqmξq sinh rqmp1 ´ ηqs∇Upξ, ηq0.17eπη ´

8
ÿ
m

sinpqmxq
m sinhpqmq sinhpqmyq

ż 1

0

dξ sinpqmξq sinhrqmp1 ´ yqs∇Upξ, yq0.17eπy

ByP2 “ 8
ÿ
m

sinpqmxq
m sinhpqmq sinhrqmp1 ´ yqs

ż 1

0

dξ sinpqmξq sinhpqmyq∇Upξ, yq0.17eπy ´

8
ÿ
m

sinpqmxq
sinhpqmqπ cosrqmp1 ´ yqs

ż 1

0

dξ

ż y

0

dη sin pqmξq sinh pqmηq∇Upξ, ηq0.17eπη.

Let us calculate the term A˚ “ A ` A1, where A “ Aps0, s1q, A1 “ A1pUq, and B˚ “ B ` B1, where
B “ Bps0, s1q, B1 “ B1pUq. Setting α1 “ 0.17 ¨ 8π, we have

A˚ “ A`
α1

8ÿ
m“0

„
cospqmxq
sinhpqmq sinhpqmyq

ż 1

0

dξ

ż 1

y

dη sin pqmξq sinh rqmp1 ´ ηqs∇Upξ, ηqeπη `

cospqmxq
sinhpqmq sinhrqmp1 ´ yqs

ż 1

0

dξ

ż y

0

dη sinpqmξq sinhpqmηq∇Upξ, ηqeπη

j
B˚ “ B `

α1
8ÿ

m“0

„
sinpqmxq
sinhpqmq coshpqmyq

ż 1

0

dξ

ż 1

y

dη sin pqmξq sinh rqmp1 ´ ηqs∇Upξ, ηqeπη ´

1

π

ˆ
sinpqmxq
m sinhpqmq sinhpqmyq

ż 1

0

dξ sinpqmξq sinhrqmp1 ´ yqs∇Upξ, yqeπy

˙
´

sinpqmxq
sinhpqmq cosrqmp1 ´ yqs

ż 1

0

dξ

ż y

0

dη sin pqmξq sinhpqmηq∇Upξ, ηqeπη `
1

π

ˆ
sinpqmxq
m sinhpqmq sinhrqmp1 ´ yqs

ż 1

0

dξ sinpqmξq sinhpqmyq∇Upξ, yqeπy

˙j
.

We then consider the derivative

dLpεq
dε

“ α
2A˚ dA˚

dε ` 2B˚ dB˚
dε

eπy
,

where obviously dA˚
dε “ dA

dε and dB˚
dε “ dB

dε . Therefore we have
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dLps0, s1 ` εW,Uq
dε

“
α

eπy

„
2pAps0, s1 ` εW q `A1pUqqdAps0, s1 ` εW q

dε
` 2pBps0, s1 ` εW q `B1pUqqdBps0, s1 ` εW q

dε

j
.

This yields the derivative at ε “ 0,

dLpεq
dε

|ε“0 “
4α

eπy

«
pA`A1q

8ÿ
m“0

sinpqmyqQm coshpqmxq
ż 1

0

W sinpqmηqdη`

pB `B1q
8ÿ

m“0

cospqmyqQm sinhpqmxq
ż 1

0

W sinpqmηqdη
ff
.

Then the variation of the action is 0 “ δS “ ş
x

ş
y

dLpεq
dε |ε“0, whence by the fundamental lemma of

variational calculus, we have

0 “
8ÿ

m“0

sinpqmηq
ż
x

ż
y

Qm

eπy
`pA ` A1qpsinpqmyq coshpqmxqq ` pB ` B1qpcospqmyq sinhpqmxqq˘

for all η. By the argument that views the factors of sinpqmηq as Fourier coefficients, we again have a system
of equations for all m:

0 “ C˚pmq “ Cpmq `
ż
x

ż
y

Qm

eπy
pA1 sinpqmyq coshpqmxq ` B1 cospqmyq sinhpqmxqq

with the Cpmq as defined earlier in Section 78.2.10.1. The second summand

C 1pmq “
ż
x

ż
y

Qm

eπy
pA1 sinpqmyq coshpqmxq ` B1 cospqmyq sinhpqmxqq

is only a function of the potential U and of m. The symbolic and physical gestures s0, s1 don’t appear here.
This implies that all the calculations that were made for the zero potential to separate s1 as a function of s0
are still valid, however now with a functionality that includes U , too. This is easily checked when reviewing
the calculations in Section 78.2.10.2. Therefore we have—modulo the above conjecture—this result:

Theorem 7. Assuming that our Schauder base conjecture holds, the physical gesture s1 is determined by the
arguments s0 and U for any potential U .

In view of the above explicit calculations, this functional relation can be made more precise. If we
represent the gestures s0, s1 as functions on r0, 1s by their Fourier coefficients

arps1q “
ż 1

0

s1 sinp2πrηq, brps1q
ż 1

0

s1 cosp2πrηq

and

urps0q “
ż 1

0

s0 sinp2πrηq, vrps1q
ż 1

0

s0 cosp2πrηq
as vectors F1 “ F ps1q “ par, brqr, F0 “ F ps0q “ pur, vrqr, then, using Equation 78.10, we have an equation

EpF1q “ KpF0q ` Cp∇Uq
with non-singular linear operators E,K on the subspace T Ă RN of convergent series, and a linear operator
C on vector fields with values in T . Writing it as
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F1 “ E´1KpF0q ` E´1Cp∇Uq “ MpF0q ` Dp∇Uq
for invertible operator M and linear operator D, we may think of the physical gesture F1 as being generated
from an already given intermediate physical gesture F 1

1, where

F 1
1 “ MpF0q ` Dp∇U 1q,

and then replace F0 by
M´1pF 1

1q ´ M´1Dp∇U 1q,
whence

F1 “ MpF0q ` Dp∇Uq “ MM´1pF 1
1q ´ MM´1Dp∇U 1q ` Dp∇Uq “ F 1

1 ´ Dp∇pU ´ U 1qq “ F 1
1 ` Dp∇fq,

where f is a potential difference function representing the passage from F 1
1 to F1. This setup enables us

to view the hypergestural world-sheet process as being driven by a performance operator on gestures, and
specifically driven by gradients of potential functions.

78.2.12 Solution of the Differential Equation Using 2D Fourier Series

The above method used the Poisson differential equation as a simplified approach, however with a general
potential. In this section, we want to discuss solutions of the general equation

´∇U “ μ

ˆ
Δs

|t1|2 ´ 2
x 9t, :tyR

| 9t|4 9s
˙

with a determined time function

tpx, yq “ ´0.2624i ` 1

3.8104
e

1
2πip1´xq` πy

2 ,

3.8104 « eπ{2 ´ 1, 0.2624i « e
1
2πi{peπ{2 ´ 1q.

With this function, the above differential equation becomes

´∇U |t1|2
μ

“ Δs ´ πBys.

The temporal derivative in our example is |t1|2 “ π2

4ˆ3.81042 e
πy « 0.1699eπy. We now proceed to a solution

of this equation using 2D Fourier series. To ease notation, we set |t1|2 “ 1
r e

´by, i.e., r “ 1{0.1699, b “ ´π,

´∇Upx,yq
μ “ V px, yq and V ˚px, yq “ V px, yq1

r e
´by, whence V px, yq “ V ˚px, yqreby. We also need a better

symbol for the world-sheet function for the following formulae. We set spx, yq “ sheetpx, yq. With these
notations, we get the differential equation

V ˚ “ Δsheet ´ πBysheet.
We now represent functions on the unit square I2 by functions that are 2-periodic in both coordinates x, y,
i.e., frequency is 1{2 in both directions. This is necessary in order to get any functions on I2. The Fourier
representation of such a 2-periodic function fpx, yq is

fpx, yq “
8ÿ

n,mě0

`
f cc
n,m cospπnxq cospπmyq ` f cs

n,m cospπnxq sinpπmyq`

fsc
n,m sinpπnxq cospπmyq ` fss

n,m sinpπnxq sinpπmyqq.
This means that we represent f by the system f ..

.. “ pf cc
n,m, f cs

n,m, fsc
n,m, fss

n,mqn,m of its coefficients.
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We have two systems of coefficients: the system V ..
.. for the potential V , and the system V ˚..

.. for the
product V ˚ of V with the time function derivative |t1|2 “ 1

r e
´by. All our calculations will use V ˚..

.. , following
the above differential equation. This is very useful because we may then have constant coefficients for Δsheet
and Bysheet. This simplifies calculations considerably. We however need to control the relation between V ˚..

..

and the original potential system V ..
.. . It turns out that this relation is a linear isomorphism. More precisely,

suppose we are given the system V ˚..
.. , then, we can take the Fourier representation of V ˚:

V ˚px, yq “
8ÿ

n,mě0

`
V ˚cc

n,m cospπnxq cospπmyq ` V ˚cs
n,m cospπnxq sinpπmyq`

V ˚sc
n,m sinpπnxq cospπmyq ` V ˚ss

n,m sinpπnxq sinpπmyqq,
and get V by

V px, yq “
8ÿ

n,mě0

`
rebyV ˚cc

n,m cospπnxq cospπmyq ` rebyV ˚cs
n,m cospπnxq sinpπmyq`

rebyV ˚sc
n,m sinpπnxq cospπmyq ` rebyV ˚ss

n,m sinpπnxq sinpπmyqq.
The Fourier coefficients of V then are sums of integrals of typeż 2

x“0

ż 2

y“0

reby
“
V ˚cc

n,m cospπnxq cospπmyq cospπrxq cospπsyq ` V ˚cs
n,m cospπnxq sinpπmyq cospπrxq cospπsyq`

V ˚sc
n,m sinpπnxq cospπmyq cospπrxq cospπsyq ` V ˚ss

n,m sinpπnxq sinpπmyq cospπrxq cospπsyq‰
or similar formulae replacing cos by sin, etc. This evidently implies that we have a linear isomorphism
L :V˚..

..
„ÑV..

...
Let us now investigate the solutions—in terms of Fourier coefficients—of our differential equation V ˚ “

Δsheet ´ πBysheet. Comparison of Fourier coefficients yields the following.
For a pair n,m, we consider the four-dimensional spaces V ˚..

n,m and sheet..n,m of coefficients of V ˚ and
sheet of index n,m. Then we have a linear map Dn,m : sheet..n,m Ñ V ˚..

n,m, where

Dn,m “
˜
En,m 0

0 En,m

¸

is a matrix with 2 ˆ 2 blocks

En,m “ π2

˜
´pn2 ` m2q ´m

m ´pn2 ` m2q

¸
of determinant dpn,mq “ π4ppn2 `m2q2 `m2q, that vanishes only for n “ m “ 0. The map Dn,m determines
the relations of coefficients, i.e., for any n,m we must have vn,m “ Dn,mpsheetn,mq for coeffient quadruples
vn,m P V ˚..

n,m and sheetn,m P sheet..n,m.
For n “ m “ 0 this means that coefficients v0,0 “ 0 for the potential V ˚, and that sheet0,0 are arbitrary

for the world-sheet sheet. For any other indices n,m, the four-dimensional coefficient spaces correspond under
the isomorphism Dn,m. Also observe that the two-dimensional summands V ˚c.

n,m and sheetc.n,m correspond
under the isomorphism En,m; same for V ˚s.

n,m and sheets.n,m.
This result is however not what we want, because we also want the symbolic and physical gestures

Symbolicpyq, Physicalpyq to be the boundary values of sheet for x “ 0, x “ 1, respectively. This means that
we require

Symbolicpyq “ sheetp0, yq “
ÿ
m

«˜ÿ
n

sheetcsn,m

¸
sinpπmyq `

˜ÿ
n

sheetccn,m

¸
cospπmyq

ff
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and

Physicalpyq “ sheetp1, yq “
ÿ
m

«˜ÿ
n

p´1qnsheetcsn,m
¸
sinpπmyq `

˜ÿ
n

p´1qnsheetccn,m
¸
cospπmyq

ff
.

This means in particular, that these conditions are only imposed upon the two-dimensional spaces V ˚c.
n,m

and sheetc.n,m, the other summands are free.
Let us give the 2-periodic Fourier representations of symbolic and physical gestures:

Symbolicpyq “
ÿ
m

σm sinpπmyq ` τm cospπmyq,

Physicalpyq “
ÿ
m

σm̊ sinpπmyq ` τm̊ cospπmyq.

This entails the equations

σm “
ÿ
n

sheetcsn,m, σm̊ “
ÿ
n

p´1qnsheetcsn,m, τm “
ÿ
n

sheetccn,m, τm̊ “
ÿ
n

p´1qnsheetccn,m.

Let us see what these equations imply for possible V ˚ coefficients. Let us start with m “ 0. Then we
have

σ0 “
ÿ
n

sheetcsn,0, σ0̊ “
ÿ
n

p´1qnsheetcsn,0, τ0 “
ÿ
n

sheetccn,0, τ0̊ “
ÿ
n

p´1qnsheetccn,0.

We know that sheetcs0,0, sheet
cc
0,0 are arbitrary. Moreover, we have sheetcsn,0 “ ´1

π2n2V
˚cs
n,0 and sheetccn,0 “

´1
π2n2V

˚cc
n,0 for n ‰ 0.

Let us now calculate the coefficient for a Fourier approximation for m “ 0 and until n “ N . The above
formulae entail the matrix equations

˜
σ0

σ0̊

¸
“ sheetcs0,0

˜
1

1

¸
` M0

¨̊
˚̊̊̊
˚̋

V ˚cs
1,0

V ˚cs
2,0

V ˚cs
3,0

. . .

V ˚cs
N,0

‹̨‹‹‹‹‹‚
with the matrix

M0 “ ´1

π2

˜
1
12

1
22

1
32 . . . 1

N2

´1
12

p´1q2
22

p´1q3
32 . . . p´1qN`1

N2

¸

that has rank 2. This means that the subspace of vectors

¨̊
˚̊̊̊
˚̋

V ˚cs
1,0

V ˚cs
2,0

V ˚cs
3,0

. . .

V ˚cs
N,0

‹̨‹‹‹‹‹‚ that yield

˜
σ0

σ0̊

¸
is the coset Sing `

KerpM0q of a single solution Sing of the above equation and the pN ´2q-dimensional kernel of M0. Together
with the condition V ˚cs

0,0 “ 0, we have an pN ´ 3q-dimensional coset V pσ0, σ0̊ , s
cs
0,0q Ă pV ˚cs

n,0qnďN that
describes all potential V ˚ solutions for Fourier coefficients σ0, σ0̊ and world-sheet value sheetcs0,0. The same
result—mutatis mutandis—holds for the coefficients of the cosine part of the symbolic and physical gestures:
V pτ0, τ0̊ , sheetcc0,0q Ă pV ˚cc

n,0qnďN .
For m ą 0 and n ď N , we have the equation
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˜
σm

σm̊

¸
“ Mm

¨̊
˚̊̊̊
˚̊̊̊
˚̊̊̊
˚̊̊̊
˚̋̊

V ˚cs
0,m

V ˚cs
1,m

V ˚cs
2,m

. . .

V ˚cs
N,m

V ˚cc
0,m

V ˚cc
1,m

V ˚cc
2,m

. . .

V ˚cc
N,m

‹̨‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚
with upn,mq “ ´pn2 ` m2q and the rank 2 matrix

Mm “ 1

π2

˜
up0,mq
dp0,mq

up1,mq
dp1,mq

up2,mq
dp2,mq . . . upN,mq

dpN,mq
0

dp0,mq
´1

dp1,mq
´2

dp2,mq . . . ´N
dpN,mq

up0,mq
dp0,mq

p´1q1up1,mq
dp1,mq

p´1q2up2,mq
dp2,mq . . . p´1qNupN,mq

dpN,mq
0

dp0,mq
p´1q21
dp1,mq

p´1q32
dp2,mq . . . p´1qN`1N

dpN,mq

¸

deduced by inversion of the matrix En,m. This data defines a 2-codimensional coset

V pσm, σm̊q Ă pV ˚cs
n,mqnďN ‘ pV ˚cc

n,mqnďN .

The same holds—mutatis mutandis—for the cosine coefficients:

V pτm, τm̊q Ă pV ˚cs
n,mqnďN ‘ pV ˚cc

n,mqnďN .

We therefore have a complete set of conditions for the potential V ˚ to verify the symbolic and physical
boundary conditions.

78.2.12.1 Functional Dependence of the Physical Gesture

It is now easy to describe the functional dependence of the physical gesture for given potential V ˚ and
symbolic gesture Symbolicpyq.

Let us discuss this topic for the generic case m ą 0 and the sinusoidal components σm, σm̊. If the
physical coefficients σm are given; this means that we have a linear form equation

σm “ 1

π2

´
up0,mq
dp0,mq

up1,mq
dp1,mq

up2,mq
dp2,mq . . . upN,mq

dpN,mq
0

dp0,mq
1

dp1,mq
2

dp2,mq . . . N
dpN,mq

¯

¨̊
˚̊̊̊
˚̊̊̊
˚̊̊̊
˚̊̊̊
˚̋̊

V ˚cs
0,m

V ˚cs
1,m

V ˚cs
2,m

. . .

V ˚cs
N,m

V ˚cc
0,m

V ˚cc
1,m

V ˚cc
2,m

. . .

V ˚cc
N,m

‹̨‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚
that defines a one-codimensional coset Cpσmq Ă pV ˚cs

n,mqnďN ‘ pV ˚cc
n,mqnďN . Within this coset of the po-

tential’s parameters, the value of σm̊ is given by the linear form
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σm̊ “ 1

π2

´
up0,mq
dp0,mq

p´1q1up1,mq
dp1,mq

p´1q2up2,mq
dp2,mq . . . p´1qNupN,mq

dpN,mq
0

dp0,mq
p´1q11
dp1,mq

p´1q22
dp2,mq . . . p´1qNN

dpN,mq
¯

¨̊
˚̊̊̊
˚̊̊̊
˚̊̊̊
˚̊̊̊
˚̋̊

V ˚cs
0,m

V ˚cs
1,m

V ˚cs
2,m

. . .

V ˚cs
N,m

V ˚cc
0,m

V ˚cc
1,m

V ˚cc
2,m

. . .

V ˚cc
N,m

‹̨‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

This functional relation has as arguments all vectors in the one-codimensional coset

Cpσmq Ă pV ˚cs
n,mqnďN ‘ pV ˚cc

n,mqnďN

defined above by σm.

78.2.13 Parallels Between Performance Operators for Scores and for Gestures

It is important now to investigate the possible relationship between performance operators for scores and for
gestures. Recall from Figure 61.4 on page 913 that we relate the score performance to gestural performance
by a commutative diagram that involves the projections of symbolic and physical gestures to score symbols
and sound events, respectively. In this setup, we recall an important type of performance operator, described
under the title of “basis operators” in [714, Section 39.7.1].

Basis operators describe the transition in the stemmatic unfolding of score performance from a given
“mother” performance vector field 0צ to a “daughter” field 1צ using a weight function Λ (typically derived
from harmonic, rhythmical, or melodic analysis). It has the formal shape

1צ “ 0צ ´ L0צ
Λ.iV Dir,

where Dir is a linear endomorphism of the underlying parameter space and iV is the embedding of V in the
total space of .0צ In view of the fact that the Lie derivative of weight Λ is in fact a linear operator on the
gradient ∇Λ, we recognize that the gestural (relative) operator F1 “ F 1

1 ` Dp∇fq is formally similar to the
basis operator. Both involve the previous performance (field 0צ or gesture F 1

1, respectively) and an additive
correction by a linear operator on the weight function’s gradient:

1צ “ 0צ ´ L0צ
Λ.iV Dir,

F1 “ F 1
1 ` Dp∇fq.

We should add that evidently the 2D Fourier analysis of the solution of the general elliptic differential
equation also yields the same type of functional dependence: The physical gesture is a linear function of the
gradient of the potential.

It remains to be shown that the two weight or potential functions can be related to each other to yield
corresponding transition modes on both levels of the commutative diagram of Figure 61.4.

78.2.13.1 Some Detailed Calculations Regarding the Variational Calculus of s1 with Potential

Describe in detail the contribution Cp∇Uq, and then also the formulae for a more general time function |t1|2.
The contribution Cp∇Uq is determined by the quantity C 1pmq that depends only on the potential’s gradient,
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not on the symbolic and physical gestures. Here is what it looks like, but recall that this is the formula with
our special time function |t1|2 “ 0.17eπy:

C 1pmq “ α1

2

ÿ
p

Qp

qp

`
Hm̀,pI1 ` Hḿ,p pI2 ` I3q˘

,

where

Hm̀,p “
ż 1

0

dx cosppπxq coshpmπxq “ p coshpmπq sinppπq ` m cosppπq sinhpmπq
πpm2 ` p2q

Hḿ,p “
ż 1

0

dx sinppπxq sinhpmπxq “ m coshpmπq sinppπq ´ p cosppπq sinhpmπq
πpm2 ` p2q

and

I1 “
ż 1

0

dy
sinpmπyq

eπy

ˆ
sinhpπpyq

ż 1

0

dξ

ż 1

y

dη sinppπξq sinhrπpp1 ´ ηqs∇Upξ, ηqeπη`

sinhrπpp1 ´ yqs
ż 1

0

dξ

ż y

0

dη sinppπξq sinhpπpηq∇Upξ, ηqeπη
˙

I2 “
ż 1

0

dy
cospmπyq

eπy

ˆ
coshpπpyq

ż 1

0

dξ

ż 1

y

dη sinppπξq sinhrπpp1 ´ ηqs∇Upξ, ηqeπη´

coshrπpp1 ´ yqs
ż 1

0

dξ

ż y

0

dη sinppπξq sinhpπpηq∇Upξ, ηqeπη
˙

I3 “ 1

π

ż 1

0

dy
cospmπyq

eπy

ˆ
sinhpπpyq

ż 1

0

dξ sinppπξqp´ sinhrπpp1 ´ yqsq∇Upξ, yqeπy`

sinhrπpp1 ´ yqs
ż 1

0

dξ sinppπξq sinhpπpyq∇Upξ, yqeπy
˙

.

When we use a general time function |t1px, yq|2, the coefficients of Equation 78.10 and its generalization
for non-vanishing potential have the following shape. The coefficients Qp ¨ Em,p become

I1
m,p “

ż
x

ż
y

coshpqpxq coshpqmxq
|t1px, yq|2 sinpqpyq sinpqmyq `

ż
x

ż
y

sinhpqpxq sinhpqmxq
|t1px, yq|2 cospqpyq cospqmyq,

while the coefficients Qp ¨ Fm,p become

I2
m,p “

ż
x

ż
y

coshrqpp1 ´ xqs coshpqmxq
|t1px, yq|2 sinpqpyq sinpqmyq `

ż
x

ż
y

sinhrqpp1 ´ xqs sinhpqmxq
|t1px, yq|2 cospqpyq cospqmyq,

and the coefficients C 1pmq become

C1pmq “
8ÿ

p“0

ˆż
x

ż
y

´
G1 px,yq
p,m ` G5 px,yq

p,m

¯ ż 1

0

dξ sinpqpξq
ż 1

y

dη sinhrqpp1 ´ ηqs∇Upξ, ηq|t1pξ, ηq|2`
ż
x

ż
y

´
G3 px,yq
p,m ` G6 px,yq

p,m

¯ ż 1

0

dξ sinpqpξq
ż y

0

dη sinhpqpηq∇Upξ, ηq|t1pξ, ηq|2`ż
x

ż
y

G2 px,yq
p,m

ż 1

0

dξ sinpqpξq sinhrqpp1 ´ yqs∇Upξ, yq|t1pξ, yq|2`ż
x

ż
y

G4 px,yq
p,m

ż 1

0

dξ sinpqpξq sinhpqpyq∇Upξ, yq|t1pξ, yq|2
˙

,
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where the integrands Gi “ Gi px,yq
p,m , for i “ 1, ...6, are, respectively:

G1 px,yq
p,m “ α˚ cospqpxq coshpqmxq sinhpqpyq sinpqmyq|t1px, yq|´2,

G2 px,yq
p,m “ ´ 1

qp
α˚ sinpqpxq sinhpqmxq sinhpqpyq sinpqmyq|t1px, yq|´2,

G3 px,yq
p,m “ α˚ cospqpxq coshpqmxq sinhrqpp1 ´ yqs sinpqmyq|t1px, yq|´2,

G4 px,yq
p,m “ 1

qp
α˚ sinpqpxq sinhpqmxq sinhrqpp1 ´ yqs cospqmyq|t1px, yq|´2,

G5 px,yq
p,m “ α˚ sinpqpxq sinhpqmxq coshpqpyq cospqmyq|t1px, yq|´2,

G6 px,yq
p,m “ ´α˚ sinpqpxq sinhpqmxq coshrqpp1 ´ yqs cospqmyq|t1px, yq|´2.

78.2.14 Complex Time and the Artistic Effort

Intuitively, more complicated choices for the gradient in Equations 78.5 and 78.6 suggest to us the idea of
different levels of artistic difficulty. What can be described as difficult in art? It’s the possibility of converting
thought into physical realization. The movements of the hand of a pianist or of the paint-brush of a painter
or the choice of the words for a writer are some examples.

Composers follow an inverse mechanism. If s/he first improvises, s/he starts

Fig. 78.25. Dante
Alighieri.

from his or her thought (imaginary time) to realize a performance (physical time)
and later to write a score (again imaginary time). The score will be used by
other musicians to play the music that the composer has written (imaginary Ñ
physical time). If the composer writes music without playing it, s/he makes an
internal transition inside the imaginary component. The writing of a score is an
intermediate step before the physical realization. Otherwise, the thought of a
composer can already be seen as a collection of physical gestures, that are frozen
in a score (imaginary time). Writing a score actually means writing a collection
of signs that will be used by the performer as an indication of what variety of

gestures move in. The score is a way of fixing on a sheet of paper an indication of movement. The goal to
reach, by the composer, is in fact not the realization of a score, but the final performance of his or her music.
That is the main difference between music composition and drawing or sculpture: the score is not the final
step, but an intermediate one.

When there is a musician who plays his or her music and another who writes his or her notes under
dictation, we return to symbolic reality, and thus to the imaginary component, and the circle is completed.

Sometimes the transition imaginary Ñ real time is difficult or even impossible. It is the case of a
musician who cannot play the piano because s/he does not know the technique, or because a particular
composition is too difficult to play, and so on.

78.2.15 Opening the Aesthetic Question that Is Quantified in Lagrange Potentials

Regarding the artistic fight with a deaf material, let us recall Dante’s saying in his Divine Comedy [242,
Paradiso, I Canto, vv. 127 - 132] that

Vero è che, come forma non s’accorda / molte fiate a l’intenzion de l’arte,
perch’a risponder la materia è sorda, / cos̀ı da questo corso si diparte
talor la creatura, c’ha podere / di piegar, cos̀ı pinta, in altra parte;

(It is true that, as form resists / many times the intention of the artist,
because its matter in response is deaf, / so it moves away from this path

sometimes the creature with bending power / from innate attitude, in another way;)
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To approach this struggle in a more quantitative and precise way, we have demonstrated that the
complex time approach yields a dynamical framework where the least Lagrange action can be solved by
Poisson equation methods using Green functions for the corresponding Euler-Lagrange equations.

This is a satisfactory result. However, it is nothing but a necessary initial study to approach the following
types of musical problems:

• How can potentials be defined from the aesthetic point of view?
• What is the variety of physical gestures for given symbolic gestures and potentials?
• How can the minimal action be understood as an effort of thinking in the making of musical creativity?
• What are the neurophysiological correlates of our model, e.g. with regard to a possible role of mirror

neurons for gestural processing?

78.2.16 A Musical Composition by Maria Mannone Realized Using These Ideas

The analysis of piano gestures can be used also to compose new musical compositions. It is possible to start
from improvisation and later to freeze the gestures into symbolic indications. It is also possible to start
from a simple symbolic gesture, such as the up-down one already considered, choosing some cases from the
physical-related gestural variety, and using them as themes for gestural variations. This idea has been used to
compose the original piano piece Three Musical Gestures, built upon a progressive deformation and extension
of primitive gestures with different values of initial parameters.

The piece is divided into three movements, with a total of twelve variations. The three parts are titled
Staccato leggero, Legato and Staccato violento, respectively.

78.2.16.1 First Movement

The first movement, Staccato leggero, is composed by six variations. It starts with only gestures without any
movement, and then (variation 1, m. 1-15) has isolated staccato single notes or chords, see Figure 78.26. The
idea is taken from Asian music, where the single-gesture movement is clearly defined. However, the repetition
of single-gesture movements constitutes a sequence, and a sequence is the basic idea for Western music. If
single-movement can be visualized as a circle, and a sequence as an arrow, the composition arrow-circle gives
us the structure of a complete musical thought.

In the second variation (m. 17-29) the repetition of a single note is followed by the repetition of a pair
of notes, the kernel of any melodic sequence. Upon this basis is built a melody, played by the right hand,
that ends with a suspension (see Figure 78.26, m. 28-29).

Variation 3 (m. 31-43) starts with a more classic pattern, with slurs between two notes, where the
second one is staccato, see Figure 78.26.

More rhythmical variety is introduced in variation 4 (m. 44-64), see Figure 78.27.
The hands’ movement is becoming wider and faster, see Figure 78.28. In this variation, the rhythmical

and melodic variety is introduced as a consequence of progressive gestures deformations.
The sequence staccato-staccato-legato-staccato is the starting point of variation 5 (m. 66-79), more

tonal in the beginning, see Figure 78.29.
A cluster-like sequence in measure 80 introduces variation 6 (m. 80-91), where a pentatonic scale on the

black keys of the piano is used. The last fragment is isolated and repeated when other clusters (obtained as
enrichment of the notes of the last fragments) abruptly interrupt the sequence, ending the first movement,
see Figure 78.31.

78.2.16.2 Second Movement

The second movement starts again with isolated gestures in variation 7 (m. 92-110): complex chords cluster
where the notes are progressively released, leaving only a fifth, see Figure 78.32.

The interval of fifth is used as theme also in variation 8 (m. 112-123), a legato sequence of fifths, see
Figure 78.33.
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Fig. 78.26. Score of Three Musical Gestures, including variations 1 (m. 1-15), 2 (m. 17-29), and the beginning of 3
(m. 31-34, out of m.31-43).

Variation 9 (m. 124-129), more dissonant, presents a group of isolated chords, always played with a
very legato technique, see Figure 78.34.

Variation 10 (m. 131-148) presents a simple arpeggiato in 6/8 tempo, see Figure 78.35. The sequence
ends with a progressive rarefaction of the arpeggiation, and the repetition of more and more short fragments
thereof. However, the unit is given not only by the pitches but also by the required gesture, always strongly
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Fig. 78.27. Beginning of variation 4 (m. 44-53).

Fig. 78.28. Fragment of variation 4 (m. 56-61).

legato. The performer can repeat these soft movements—as though caressing the piano—also at the end of
the movement.

78.2.16.3 Third Movement

A completely different piano gesture is needed at the beginning of the third movement, Staccato violento,
with variation 11 (m. 150-160), see Figure 78.36. There is also here a single note as starting point, but the
indication of staccato, jointly with fortissimo and Agitato tempo, requires a completely different approach to
the keyboard. Also the choice of the register (mostly lower in the keyboard, contra-posed with the higher notes
of Legato movement), jointly with a faster and heavier gesture, contributes to creating stronger resonances
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Fig. 78.29. Beginning of variation 5 (m. 66-67, out of m. 66-79).

Fig. 78.30. Beginning of variation 6 (m. 80-85, out of 80-91).

Fig. 78.31. End of variation 6 (m. 86-91).

in the piano. Now the movement is faster and the touch stronger and even metallic at some points. Musical
phrases are short and always abruptly interrupted. The sound will be loud and powerful.

Variation 12 (m. 162-180) (see Figure 78.36) has the character of an improvisation, with an alternating
of fast and improvised fortissimo movements and dramatical variation of intensity in tremolos. The final
gesture (see Figure 78.37) must be the largest and most evident of the entire piece.
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Fig. 78.32. Beginning of variation 7 (m. 92-99, out of 92-110).

Fig. 78.33. Beginning of variation 8 (m. 112-115, out of 112-123).

Fig. 78.34. Variation 9 (m. 124-129).

78.3 Global Performance Hypergestures

The following section deals with global hypergestures in performance. The general setup of global gestures
is described in Section 66.5. Refer to that text before delving into the mathematical discussion of our topic
in Section 78.4.2.

78.3.1 The Musical Situation: An Intuitive Introduction

To get off the ground, we first consider some elementary movements of the pianist’s hand. However, this is
an excessive simplification of physical reality of musical performance for two main reasons: First, because we
will impose restricted conditions on gestures; second, because in general even simple gestures are not isolated
but musically (and therefore gesturally!) connected to other gestures within a wider context.

Isolated “micro-gestures” are actually the first object of study and training of musicians. When musi-
cians are practicing a piece of music, they can start by isolating a difficult gesture, repeating and correcting
it until its quality is satisfactory for performance. Successively, they do the same exercise but now connecting
well the micro-gestures among each other. Looking at a musical score, it is usually straightforward to exhibit
the splice points between any two adjacent simple micro-gestures.

A complete musical performance is thus realized as a superposition of a number of “local” micro-gestures
to create “global” gestures. In our theory of world-sheets of performance hypergestures, gluing together two
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Fig. 78.35. Ending of variation 10 (m. 140-148, out of 131-148).

different (hyper)gestures means gluing together their corresponding local world-sheets to obtain a global
world-sheet. The conditions that allow this union will be explained later.

To understand why the superposition of gestures is a topic of crucial importance for musical perfor-
mance, we want to consider some simple examples of musical patterns for keyboard, see Figure 78.38.

In the examples from (a) to (e) of Figure 78.38, the blue square highlights the first gesture, and the
yellow square the second one. The common part is indicated by their intersection (light green).

In example (a) the first gesture is given by the repetition of the vertical movement of a finger on the A
key, alternated with the rests. The second gesture is a variation of the first one, where the pattern of rest-note
has been substituted by rest-note-note-note, with an articulation in the group of three notes. The first note
of the group is played with a vertical movement on the keyboard following the rest; thus the connection with
the previous and simplest movement is evident.

Example (b) shows a very common combination of a repeated gesture consisting in the alternation of
fingers on two notes, in a musical trillo, and its resolution, with the same rhythm, but with other notes (and
fingers) involved. When pianists practice trills, they have to use the same speed for the embellishment and
for its resolution, in a continuous deformation of the gesture.

Example (c) contains the superposition of a melodic pattern and a fragment of descending scale. A
melodic pattern is also present in example (d), where the movement for playing the last two notes is rhyth-
mically deformed from a dotted quaver and a sixteenth to two quavers, and later to a triplet with the
repetition of the first note.

The last example (e) starts with a fragment of descending scale with the rhythm of a triplet, and
continues with the repetition of the last triplet alternated with its melodic variation.

The global character of these examples means that we have to play two micro-gestures, but not in-
dependently; they are interlocked by a common sub-gesture, which implies that they have to be played
under the condition that yields the same gesture on their common restriction. The performance of the two
micro-gestures would be different if played independently.

78.4 Categorical Gestures and Global Performance Hypergestures

78.4.1 Categorical Gestures: The Case of Potentials

We used a potential function U : M Ñ R which, solving the Euler-Lagrange equation, yielded the hyper-
gesture in its world-sheet function st : I2 Ñ MC. The arguments for st are, as recalled in the introduction,
the potential U together with the symbolic and physical gestures. We keep the time function aside for this
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Fig. 78.36. Variation 11 (m. 150-160) and beginning of variation 12 (m. 162-163, out of 162-180).

Fig. 78.37. Ending of variation 12 (m. 176-180, out of 162-180).

example. If we denote by A “ C8pM,Rq and B “ pÒ ÝÑ
@AMCq2 the topological (space) categories whose

points are for A the functions U : M Ñ R and for B the pairs pws :ÒÑ MC, wp :ÒÑ MCq, we can view this
information as a specification of the potential U , the symbolic gesture ws, and the physical gesture wp needed

to specify the world-sheet hypergesture st. This means that we may view a hypergesture h PÒ ÝÑ
@A

ÝÑ
@BMC

as follows: for every argument px, Uq P I ˆ A, we have a gesture gU pxq PÒ ÝÑ
@BMC, which in turn means

that we have a point gαpxqβpyq P MC for every y P I, α P A, and β P B. We therefore have a function
value gU,ws,wppx, yq P MC, which is exactly what we need to have a world-sheet as a function of the three
parameters U,ws, wp.
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Fig. 78.38. Five examples of simple global phenomena occurring while practicing elementary piano gestures. Each
example shows two parts (shown in a blue and a yellow rectangle) of the total gesture, intersecting in a common
subgesture (shown as a green rectangle).

78.4.2 The Mathematics of Global Performance Hypergestures

In the previous discussion of performance world-sheets, we have always been focusing on hypergestures
h PÒ ÝÑ

@ Ò ÝÑ
@X, where X is the four-dimensional space-time. This is the elementary case of most simple

skeleta (twice Ò), one (with parameter y) for the space-time gesture, the other (with parameter x) for the
“logical” unfolding of a gesture. But the most frequent situation will not be as simple as this, and the most
evident generalization is to consider a more general space-time-related skeleton Σ (Sigma for space-time),
and then hypergestures with the logical unfolding Ò digraph, i.e., h PÒ ÝÑ

@Σ
ÝÑ
@X. The simplest generalization

is obtained by dividing the original Ò into a linear sequence Òn of concatenated arrows as, for example, in the
one-finger movement down on the key, remaining there for the note’s duration, and then moving up again.
But ramifications may also occur for more complex hand gestures.

A second generalization regards the logical unfolding Ò digraph. Why should this one become more
complex? This question regards the nature of the logical unfolding. Is it possible to have a more complex
unfolding? After all, the initial symbolic gesture has to end up in a single physical one. Yes, but it is not
mandatory to realize this transition in a single-arrow gesture. The logical unfolding might very well be a
concatenation of a number of partial unfoldings, referring to the linear sequence skeleton Òn in the sense
that only the initial and final gestures are symbolic or physical, but a number of intermediate stations are
conceived, where the musician has not fully thought about the performative transformation. This might
then also take place in purely imaginary time and only switch to physical time in the last arrow of Òn. But
it might also happen that the final physical gesture is the convergent result of a number of simultaneous
initial symbolic gestures, or even a number of intermediate ramified gestures that have been created starting
from a single symbolic initial gesture. We therefore have to envisage world-sheets defined by hypergestures
h P Λ

ÝÑ
@Σ

ÝÑ
@X (Λ for “Logical”).

The global hypergesture topic refers to the space-time skeleton Σ. It means that we are given a covering
ΣI of Σ by a set I “ tΣι Ă Σu of non-empty sub-digraphs of Σ. We work in the Escher-Theorem-transformed
hypergesture space Σ

ÝÑ
@Λ

ÝÑ
@X, and correspondingly in the hypergesture spaces Σι

ÝÑ
@Λ

ÝÑ
@X. The global setup

is defined by a family hι P Σι
ÝÑ
@Λ

ÝÑ
@X and isomorphisms φι,κ : hι|Σι XΣκ

„Ñ hκ|Σι XΣκ for every pair ι ‰ κ
of indices with Σι X Σκ ‰ H.

This general configuration initiates a number of critical questions.
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Fig. 78.39. Two partial hypergestures differ in their intersection.

Question 1. To begin with, we now have to face the construction of world-sheets for charts hι, defined
on general skeleta Σι, and not just simple arrows Ò. This means that the Lagrange formalism will no longer
work for the simple square domain I2 as before. We are however in the happy situation of having defined
integrals for more general hypergestures than simple products of Ò’s (cubic chains), see Chapter 64. The
action integral calculation for this situation is however not trivial anymore.

Question 2. Suppose that one succeeds in calculating an Euler-Lagrange equation for each chart hι;
this is not what we really need since the variational calculus cannot be executed for each chart independently
of the others. We have to perform a global variational calculus in the sense that the restrictions of variations
to intersections hι|Σι XΣκ, hκ|Σι XΣκ must correspond under the given transfer isomorphisms φι,κ. Figure
78.39 shows that the world-sheets for two partial hypergestures differ in their intersection and also from the
restriction of the total hypergesture to these parts.

Question 3. If we have to perform local variational calculi on charts, the given potentials, densities,
and time world-sheets must also be global data, i.e., global potentials, densities, and time world-sheets.

Question 4. The definition of global potentials and densities is clear, but the concept of a global time-
sheet is less trivial. It is not even clear what a local time world-sheet should be for a non-trivial skeleton
Σι. It could be a gluing of conformal mappings on each arrow along their common lines (in the simple case
of a Ò-type logical unfolding), as shown in Figure 78.40 for the gluing of three local conformal time sheets
for a “Y”-shaped skeleton. The passage from local to global time-sheets is not problematic here since no
Lagrange action calculations are necessary for time. But, of course, the Poisson equations in the global case
refer to norms of |t1|2 of time derivatives.

78.5 World-Sheet Hypergestures for General Skeleta

In this section, we want to present a simple but characteristic musical example that involves more general
skeleta for hypergestures to describe the transition from symbolic to physical reality in piano performance.
We start with a simple original composition by one of the authors (Mannone) as shown in Figure 78.41. It
is remarkable that this compositional fragment was created for the sake of our mathematical discourse, but
this discourse turned out to be also a useful tool for musical creativity.
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Fig. 78.40. Gluing three conformal time world-sheets for a “Y”-shaped space-time skeleton.

Fig. 78.41. An original score showing the ramification of a symbolic gesture for right and left hands.

The score shows a single voice in measures 1 and 2, and then splits into a right and left hand branch.
This can be formalized using the disjoint union ΓL,R “ r2sL \ r2sR of two copies of the digraph5 r2s “ ‚0 Ñ
‚1 Ñ ‚2, one for the right, one for the left hand. The middle vertex 1 is the end of the second note and
the beginning of the third. This gesture gL,R : ΓL,R Ñ ÝÑ

MC has its values in the space-time MC of full hand
parameters in time. So its curves are two groups of left and right hand curves, each one being articulated in
the middle by vertex 1 values. To simplify the discussion, we want to consider the coordinates of the left and
right indexes. This yields a projection pIndex : MC Ñ MIndex,C. And the index coordinates are now identical
until the second note of the third measure. This is formally described by the following commutative diagram,
where ΓL`R “ r2sL \r1s r2sR is the “Y”-shaped digraph obtained by gluing r2sL with r2sR along the initial
segment r1s “ ‚0 Ñ ‚1; we write t : ΓL,R Ñ ΓL`R for the associated projection. The gesture gL`R of left
and right index movements is obtained through this projection.

ΓL,R

t

��

gL,R �� ÝÑ
MC

pIndex

��
ΓL`R gL`R

�� ÝÝÝÝÝÝÑ
MIndex,C

5 We write rns for the line digraph with n ` 1 vertices 0, 1, . . . n and arrows from vertex i to vertex i ` 1 for
i “ 0, 1, . . . n ´ 1. The arrow digraph a special case: Ò“ r1s.
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Fig. 78.42. The score’s ramification using a gesture with skeleton ΓL,R.

The symbolic gesture gL`R may now be deformed into a physical gesture by a hypergesture gL`Rp?q :ÒÝÑ
@AΓL`R

ÝÑ
@BMIndex,C, where gL`Rp0q is the initial symbolic and gL`Rp1q is the final physical gesture, and

where the parameter sets A and B are the potential and the symbolic and physical gestures, as in our
previous discussion. Figure 78.43 shows this situation.

Fig. 78.43. The score’s ramification using a gesture with skeleton ΓL`R.
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The generalization of skeleta can also occur in the second digraph, which was only a simple line graph Ò
to this point. Musically speaking, it may happen that the development of a physical gesture in performance
takes different directions after an initial unique unfolding, until system time x “ 1{2, say. Figure 78.44 shows
such a splitting in performance. This means that we now have the world-sheet of “Y” shape as shown in

Fig. 78.44. The score’s performance ramification using a hypergesture with skeleton ΓL`R.

Figure 78.43 being split into a two-branch shape. This situation is shown in Figure 78.45.

Fig. 78.45. The score’s world-sheet ramification with skeleton ΓL`R.
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78.6 A Global Variational Principle for the Lagrange Formalism

The globalization of gestures is not only a formalism for the kinetic aspect of hypergestures, it also deals
with the Euler-Lagrange equations that describe corresponding world-sheets. And these equations involve
the “system parameters” of potential, initial symbolic, and final physical gestures, as described above. When
globalizing gestures, this also means globalizing these system parameters. Let us have a look at the potentials
for global gestures.

In the previous notations, if ΓG is a global gesture and Gι, Gκ are two charts, the hypergesture gι : Gι ÑÝÑ
ΣI must coincide with the hypergesture gκ : Gκ Ñ ÝÑ

ΣI on the intersection Gι X Gκ (modulo automorphisms
of ΣI). This imposes a condition upon the family pUιqι of local potentials, since they cannot be independent

from each other. They must induce the same solution of the Euler-Lagrange equation ´|t1|2
μ ∇U “ Δs on

the intersections, i.e., ∇Uι “ ∇Uκ for intersecting charts. We may interpret this condition in terms of Čech
cohomology. To this end, consider the space A “ C8pM,Rq as above in Section 78.4.1. Define the following
real vector spaces as cochain spaces: C0 “ A, C1 “ À

ι A, and C2 “ À
ι,κ non-empty intersections X pMq, where

X pMq is the space of C8 vector fields over M , and Ci “ 0 in all other cases. Define

B0 : C0 Ñ C1 : U ÞÑ pUι “ Uqι,
B1 : C1 Ñ C2 : pUιqι ÞÑ p∇pUι ´ Uκqqι,κ,
Bi “ 0 in all other cases.

With this setup, the compatibility condition for a family pUιq of local potentials means that pUιq P Z1pC˚q,
i.e., pUιq must be a cocycle of this Čech cohomology. If we have such a cocycle of local potentials, we may solve
the Euler-Lagrange equations on each chart following the variational calculus for local Lagrangian densities.
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Gesture Homology for Counterpoint

Summary. The purpose of this chapter is to review our contrapuntal model such that the group-theoretical
contrapuntal symmetries are reinterpreted in the framework of topology, where continuity can be addressed.
In particular, we shall interpret the set of intervals as being a topological category. We shall then develop a
theory of hypergestures in such a category and investigate the first singular homology group associated with
hypergestures. It will turn out that the above conditions defining contrapuntal symmetries can be restated
in terms of topology and its associated homology of hypergestures.

– Σ –

79.1 Summary of Mathematical Theory of Counterpoint: What It Is About and
What Is Missing

Let us first summarize what our mathematical model of counterpoint is about and why we believe it needs
to be reinterpreted in terms of algebraic topology. A detailed description of the model, including proofs, can
be found in Part VII. The mathematical model of counterpoint relates to the classical Fuxian canon with
its rules, and it deals with the first species1: describing which consonant intervals are allowed to succeed
which consonant intervals. Our model does not refer to psychological rationales and also not to acoustical
arguments; neither would explain those rules. This is well known, since, for example, the fourth is dissonant
in the first species, a fact which contradicts the acoustical theories of consonances. Our model yields a set
of interval successor rules that is very similar to the Fux rules. In particular, the forbidden parallels of fifths
result from this model and are not a consequence of psychological arguments.

The rules of admitted successors of a given consonant interval are deduced by the following setup. We
first model intervals as dual numbers ξ “ a`εk P Z12rεs, where k P K “ t0, 3, 4, 7, 8, 9u is a consonant interval
quantity in the ring Z12 of pitch classes. We denote by Krεs the set of consonant intervals (consonances),
while Drεs is the set of dissonant intervals (dissonances), where D “ Z12zK is the set of dissonant interval
quantities. Given a consonance ξ, we select contrapuntal symmetries g in G “ ÝÑ

GLpZ12rεsq, the group of affine
automorphisms of Z12rεs. These are by definition those automorphisms such that

1. ξ P gpDrεsq,
2. g ˝ AKξ “ AKξ ˝ g,
3. gpKrεsq X Krεs is a maximal set with the first two properties.

In this definition, AKξ is the unique affine automorphism AKξ which leaves the intervals at cantus
firmus pitch class a of ξ invariant (see Section 30.2.2), and recall that AK2

ξ “ Id. The idea is that following
classical ideas about contrapuntal motion (see [924]), the tension between successive intervals is to move
between consonances and dissonances. Since this is impossible, we simulate this desired motion as a transition

1 In his doctoral thesis [15], Octavio A. Agust́ın-Aquino extended this model to second species counterpoint.
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from deformed dissonances to deformed consonances, where the deformation is given by the dichotomy
gpKrεsq{gpDrεsq, i.e., the interval ξ is a deformed dissonance that is succeeded by a deformed consonance.
The second requirement in the above rules means that the autocomplementarity AKξ is also one of the
deformed dichotomy. The maximality requirement means that we want to reach every possible deformed
consonance with a maximal set of choices.

This model however suffers from the same conceptual deficiency as David Lewin’s famous statement
in [605] about the “characteristic gesture” when “getting from s to t”. There is no gesture whatsoever in
his theory, the continuous gestural movement from s to t is a fiction. Lewin’s transformations are strictly
algebraic, no continuous curves connecting s to t are defined. In our model we recognize a similar deceptive
intuition, namely when we speak about those deformed interval sets. The concept of a deformation suggests
a continuous movement that successively morphs an interval set into a deformed result. In our setup, similar
to Lewin’s, we only have symmetries, transformations which don’t share any continuous character.

The scope of this chapter is to review our contrapuntal model such that the group-theoretical con-
trapuntal symmetries are reinterpreted in the framework of topology, where continuity can be addressed.
In particular, we shall interpret the set of intervals as being a topological category. We shall then develop
a theory of hypergestures in such a category and investigate the first singular homology group associated
with hypergestures as developed in [635]. It will turn out that the above conditions defining contrapuntal
symmetries can be restated in terms of topology and its associated homology of hypergestures.

What is the meaning of this result for music theory? It is comparable to the meaning of a result that
would enable us to consider Lewin’s transformations as gestures, not only metaphorically speaking, but as
real gestures in a topological space. Such a result—and ours is of this type—opens up a topological music
theory, a theory that understands music-theoretical rules as consequences of a topological concept framework
that invokes homology of hypergestures. We believe that this initializes a considerable paradigmatic shift
in music-theoretical thinking. But it also initializes thoughts about a more intimate relationship between
thinking and making music, the latter being strongly connected to gestural embodiment.

79.2 Hypergestural Singular Homology

This chapter does not deal with general hypergestural singular homology, but we focus on the classical context
of cubic singular homology [635], meaning that the gestures are all curves f : ∇ Ñ K, i.e., continuous functors
on the simplex category ∇, with values in a topological category K. The simplex category ∇ is essentially
the unit line, enriched with the morphism pairs px, yq, x ď y, see also Section 62.1.1. Viewed as a categorical
gesture [723], such a curve is the representation of the gestural skeleton Ò as a curve f in the body of the
category K.

Cubic homology is based upon categories Ò @ Ò @ . . . Ò ÝÑ
@K of n-fold hypergestures inK for the sequence

Ò, . . . Ò of n copies of the one-arrow digraph Ò (two vertices, t (tail) and h (head), and one connecting arrow
a from t to h). The difference from classical cubic homology is that here we look at curves which are also
functors, not only continuous. The basic tool of hypergesture homology is Escher’s Theorem 2, Section 62.1.2,
which states that we have an isomorphism of topological categories Γ1Γ2 . . . Γk

ÝÑ
@K

„Ñ Γπp1qΓπp2q . . . Γπpkq
ÝÑ
@K

for any sequence of digraphs Γ1, Γ2, . . . Γk and any permutation π P Sk in the symmetric group Sk. The
Escher Theorem is used to define the homological boundary operator Bnz of an n-chain z, which in the
case of cubic homology by definition is an R-linear combination of hypergestures in the n-fold hypergesture
category Òn ÝÑ

@K “Ò @ Ò @ . . . Ò ÝÑ
@K, R being a commutative unitary ring. This operator goes from

the free R-module CnpR,Kq of n-chains to Cn´1pR,Kq, with the starting space C0pR,Kq being the free
R-module over the objects of K, and CnpR,Kq “ 0 for negative n. Since one proves that B2 “ 0, one
has ImpBn`1q “ Bn Ă KerpBnq “ Zn, and the (cubic) homology module HnpR,Kq “ Zn{Bn is defined.
Elements of Zn are called cycles, elements of Bn are called boundaries. Refer to Chapter 63 for technical
details of the general hypergestural setup.

For the general theory of hypergestures, the yoga of homology is that it formally represents a relationship
between neighboring layers of hypergestures over a given topological category. In this chapter we shall study



79.3 A Classical Example of a Topological Category from Counterpoint 1237

H1pR,Kq for any ring R and for topological categories K related to continuous actions of topological groups
on topological spaces.

79.3 A Classical Example of a Topological Category from Counterpoint

We consider a special topological groupoid GX for a continuous left action G ˆ X Ñ X of a topological
group G on a topological space X. The groupoid GX is defined as follows. It has as objects elements of X,
and as morphisms the triples pf, x, yq P GˆX ˆX such that fpxq “ y. The topology on GX is induced from
the product topology on G ˆ X ˆ X. A first immediate example from musical set theory is the indiscrete
topological spaces X “ Z12, G “ TZ12 ¸ Zˆ, the pitch classes on which the full affine group acts.

The following example is our test category since it relates intimately to counterpoint theory. The
topological space is the space X “ Z12rεs of contrapuntal intervals of pitch classes. The topology is defined
as follows. We select a consonant interval ξ “ a ` εk and consider the unique affine automorphism AKξ

of X which leaves the intervals at cantus firmus pitch class a of ξ invariant (Section 30.2.2), and recall
that AK2

ξ “ Id. The Kuratowski closure operator of our topology (see also Section H.1) is defined by

Y “ Y YAKξpY q. This means that closed subsets Y Ă X are the AKξ-invariant subsets. This also implies that
Y Ă X is open iff it is closed. In particular, if η P X is an interval, its closure is the subset η “ tη,AKξpηqu.
We call this topology the AKξ-topology. It has no closed points, and the set Krεs “ ta ` εb|a P Z12, b P Ku
(K “ t0, 3, 4, 7, 8, 9u is the set of consonant interval quantities) of all consonant intervals is dense.

The topological group in this example is G “ ÝÑ
GLpZ12rεs, AKξq, the group of AKξ-topology continuous

affine automorphisms of Z12rεs. The following lemma shows what it means for an affine automorphism
g : Z12rεs „Ñ Z12rεs to be AKξ-continuous.

Lemma 55 An affine automorphism g : Z12rεs „Ñ Z12rεs is AKξ-continuous iff it commutes with AKξ.

Proof. If g commutes with AKξ, then, if Y Ă X is AKξ-invariant, we have g´1pY q “ g´1pAKξpY qq “
AKξpg´1pY qq since g commutes with AKξ iff g´1 does so. Therefore g is continuous. Conversely, if g is
continuous, taking the open set η, we get g´1pηq “ tg´1pηq, g´1pAKξpηqqu, which has two elements and is
open, meaning that it has the shape τ . Now, if g´1pηq “ τ , then g´1pAKξpηqq “ AKξpτq “ AKξpg´1pηqq and
g´1 commutes with AKξ, so also g commutes with AKξ. Else, if g´1pηq “ AKξpτq and g´1pAKξpηqq “ τ ,
then AKξpg´1pηqq “ τ “ g´1pAKξpηqq, and commutation is again true, QED.

This elementary topological fact is interesting since the commutation condition is exactly what is
required for a so-called contrapuntal symmetry, see Definition 95 in Section 31.1. This supports the hope
that counterpoint theory could be restated in terms of topology or even in terms of algebraic topology and
singular homological algebra.

We now take the group G “ ÝÑ
GLpZ12rεs, AKξq with the compact-open topology. Since Z12rεs is lo-

cally compact (it is even finite), the composition of continuous automorphisms is continuous, and we get a
topological group. Moreover, we have the following.

Lemma 56 With the above notations, the canonical group action m : G ˆ X Ñ X is continuous.

Proof. It suffices to show that m´1pηq is open for the smallest open sets η. But m´1pηq “ tpg, ζq|gpζq P
ηu. In the compact-open topology of G, we have the open sets rζ, ηs “ tg|gpζq P ηu since ζ is the unique
element of the compact singleton tζu. This means that m´1pηq “ tpg, ζq|g P rζ, ηsu. But we evidently also
have rζ, ηs “ rAKξpζq, ηs; therefore, m´1pηq “ Ť

ζPX rζ, ηs ˆ ζ, an open set in the product topology, QED.
This terminates the construction of the topological category

GX “ÝÑ
GLpZ12rεs,AKξq Z12rεs

of contrapuntal intervals. In what follows, we shall also consider full subcategories Z of this GX. The
essential difference is that in those cases it will not be so that any group action g.η on an object η of Z will
automatically yield another object in Z. For some such subcategories we can nonetheless prove that they
are in fact also groupoids GX. Here is the lemma that enables this special situation:
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Lemma 57 With the above notations, if η P Z12rεs is an interval, then the full subcategory on the open set
η is a groupoid defined by the group Gpηq generated by the automorphisms that define morphisms of η.

Proof. The automorphisms of η are generated by 1) AKξ 2) Autpηq. But since AKξ and morphisms

on
ÝÑ
GLpZ12rεs,AKξqZ12rεs commute by Lemma 56, Gpηq consists of Autpηq and of the products Autpηq ˝ AKξ,

QED.
In the context of continuous groupoids, the following lemma is useful and often used without special

mention:

Lemma 58 If f : ∇ Ñ C is a curve, then for 0 ă λ ď 1 the concatenation curve fλ “ Idfp1q ¨λ f ,
defined by fλpμq “ fpμ{λq for μ ď λ and fλpμq “ fp1q for μ ą λ with the evident transition morphisms,
admits a morphism of curves f Ñ fλ. We also have a morphism λf Ñ f for the opposite concatenation

λf “ f ¨λ Idfp0q, defined by the analogous construction. These morphisms between curves are isomorphisms
if f is a curve of isomorphisms (all morphisms of the functor are isomorphisms).

Proof. We define a morphism of curves q : f
„Ñ gλ as follows. For μ ď λ, we map fpμq Ñ gλpμq “ fpμ{λq

by the morphism given from f . For μ ą λ, we map fpμq Ñ gλpμq “ fp1q by the given morphism from f . The
proof of the second statement works in complete analogy, and if f is a curve of isomorphisms, evidently, the
curve morphisms are both isomorphisms, QED.

A general remark on continuous curves f : ∇ Ñ GX is important for the above topological category of
contrapuntal intervals. If fp0q “ η, then the whole image fp∇q must be in the full subcategory induced on
η since the inverse image f´1pηq is a non-empty closed and open subset of ∇, which can only be all of ∇.

79.3.1 Generators of H1pGXq for a Groupoid GX Defined by a Group Action

We want to describe a set of generators (over any ring R) of the first homology module H1pGXq deduced

from the standard (i.e., cubic) hypergesture configuration ÒÒ ÝÑ
@

G
X. Here are two standard cycle types in

Z1pGXq:

Definition 122 • Loop curves Looppx, fq “ x f�� are defined by loops f starting and ending at objects x.
• Pairs of different curves f ‰ g from x to y ‰ x with opposite signs define these parallel cycles:

Parapx, y, f, gq “ x
f ��

´g
�� y .

We shall prove the following theorem from a sequence of lemmata and corollaries:

Theorem 43 For the standard hypergesture configuration ÒÒ ÝÑ
@

G
X of a continuous groupoid GX, the ho-

mology module H1pGXq is generated by loop curve cycles in Z1pGXq.

Lemma 59 For any three curves g, h, k : ∇ Ñ GX in this configuration

z w

x

g

��

h
�� y

k

��

there exists a hypergesture t PÒÒ ÝÑ
@

G
X such that Bt “ g ´ h ´ k ` l, with z

l �� w as a fourth curve.
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Proof. The construction of t goes in two steps. First, we construct a hypergesture t1 PÒÒ ÝÑ
@

G
X with

t1p0q “ g and t1p1q “ Idy, such that its Escher-corresponding hypergesture starts at h and ends in a gesture

m from z to y. Then we define a second hypergesture t2 PÒÒ ÝÑ
@

G
X with t2p0q “ Idz and t2p1q “ k, whose

Escher-corresponding hypergesture starts at m and ends at l, a gesture from z to w as required by our
theorem. Concatenating t1 with t2 yields a hypergesture that starts at g and ends at k, and whose Escher-
corresponding hypergesture starts at h and ends at l. This defines the desired hypergesture t. Hypergesture
t1 has the gesture t1pλq “ λghpλq at curve parameter λ P I, where τgpμq “ gpτ ` p1 ´ τqμq is the partial

gesture of g from τ to 1. And t2 has gesture kλ
mpλq at curve parameter λ P I, where kτ is the partial gesture

of k starting at 0 and ending at τ . The gesture morphisms tipλ, μq : tipλq Ñ tipμq, i “ 1, 2, for λ ď μ are
evident.

Corollary 28 Every curve x
g �� y in GX can be reversed modulo loops, i.e., there is a curve y

h �� x
such that g “ ´h ` Bt ` 2Looppx, Idxq.

Proof. Attaching two copies of Looppx, Idxq to g at x generates the configuration

y x

x

g

��

Idx

�� x

Idx

��

which solves our problem in view of Lemma 59.
This corollary enables us to reverse any curve direction and to focus on cycles with any curve directions

we like.

Corollary 29 In the category GX, for any two cycles Looppx, fq, Parapx, y, g, kq, there is a loop Looppy, lq
such that

Looppx, fq ´ Looppy, lq ” Parapx, y, g, kq pmod B1q
In particular, any parallel cycle is equivalent to a difference of two loops modulo B1.

Lemma 60 In GX, modulo parallel arrow cycles Parapx, y, f, gq, every cycle in Z1 is equivalent to a cycle
without multiple arrows.

Proof. If we have two curves c, d between points x, y, Corollary 28 enables us to suppose the curves
have same direction. Then, if these curves come up with multiplicities γ, δ, we can subtract the γ-fold of the
parallel cycle Parapx, y, c, dq from the given cycle and only curve d remains with scalar δ ` γ, QED.

And here is the proof of Theorem 43. Modulo loops, we may suppose that a given cycle z P Z1 has no
multiple arrows or loops. Take a longest closed path p within z. Taking a sequence of three curves in p, we
may suppose that they have the directions described in Lemma 59. If the factor of the middle curve is λ, we
may subtract from p the boundary λBt for the t generated in Lemma 59. This yields a new closed path p1
which is shorter than p. It is evident that the curve introduced by Bt does not yield new paths having the
length of p. This means that now p1 has fewer longest closed paths. We may continue this procedure until in
the resulting cycle z1 no closed paths of length more than 2 are left, applying Lemma 60 if necessary. Finally,
following Corollary 29, the parallel cycles can be replaced by differences of loops, QED.

If we take the set of all loop cycles Looppx, fq, they are evidently linearly independent. But are there
relations among such loops modulo B1? The next proposition describes relations among loop cycles modulo
B1.
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Lemma 61 Let CpKq be the set of curve-connected components2 of a topological category K, and let
pxcqcPCpKq be a family of objects, one from each component c P CpKq. Then for K “ GX, every cycle
z P Z1 can be represented modulo B1 by a linear combination of loop cycles Looppxc, fq.

Proof. We know from Lemma 60 that z is represented by a linear combination of loop cycles Looppxz, fzq.
Suppose that xz is in the connected component c containing xc. Now, choose a curve xz

l �� xc . Then
there is a hypergesture t defined by the configuration

xc

Looppxc,fq�� xc

xz

l

��

Looppxz,fzq
�� xz

l

��

according to Lemma 59 such that we have Bt “ Looppxc, fq ´ Looppxz, fzq, and therefore Looppxc, fq repre-
sents Looppxz, fzq on xc, QED.

Lemma 62 With the above notations, every loop cycle Looppxc, fq at xc is equivalent to the constant identity
cycle Idc “ Looppxc, Idxc

q, which implies that

H1pGXq “ à
cPCpGXq

R.Idc̊ ,

Idc̊ being the class of Idc.

Proof. If we repeat the construction of a hypergesture t PÒÒ ÝÑ
@

G
X from Lemma 43 with any loop cycle

h at x and the identity loop cycle, we get this diagram

x x

x

h

��

h
�� x

Idc

��

and the constructed top horizontal gesture is also h, i.e., Bt “ h´Idc. Since there are no morphisms between
different components, the sum is direct, QED.

79.4 The Meaning of H1 for Counterpoint

The next step concerns the calculation of homology according to curve connected components CpKq of
topological categories. Evidently, since there are no curves connecting different components, the homology
module H1pKq is the direct sum of the homology modules H1pcq of components c P CpKq. In our contrapuntal
example of Section 79.3 above, the components are those minimal open two-element sets η “ tη,AKξpηqu.
Each curve must live in one of these minimal open sets. But these sets bear the indiscrete topology. So the full
subcategories Z “ η they induce are exactly of the type we assumed in the preceding results. Calculations of
homology can therefore be performed on each of these small subcategories. We may take the representatives
η P Krεs, the set of consonant intervals, and we then get the homology

H1pÝÑ
GLpZ12rεs,AKξqZ12rεsq “ à

ηPKrεs
H1pηq.

The last step consists in showing that the classes Idc̊ don’t vanish. And we may also suppose that we
are working in a fixed curve component, call it Wc.

2 Observe that curves are special topological paths in that they must be functors, but not all paths need to be
functorial.
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Lemma 63 With the notation of Lemma 62, every class Idc̊ is non-vanishing modulo B1.

Proof. We have to show that an equation Idc “ řk
i“1 λiBti is impossible. We may wlog suppose that

all hypergestures ti are defined at object c; otherwise define a continuous functor e : Wc Ñ Endpcq by
conjugation. Take a morphism fz : z Ñ c for each object z of Wc and map a morphism t : z Ñ z1 to
eptq “ fw ˝ t ˝ f´1

z . As homology commutes with continuous functors, the original equation is conserved,
replacing the hypergestures ti by hypergestures in Endpcq. Every boundary Bti is of shape Bti “ ai`bi´ci´di
for curves in C1. So we have the equation Idc “ řk

i“1 λipai `bi ´ci ´diq. But the elements ai, bi, ci, di are all
in the canonical basis of C1. Therefore we may define a linear map f sending all ai, bi, ci, di different from Idc
to a curve y ‰ Idc and leaving Idc fixed. If no y ‰ Idc exists, then the boundaries vanish, which contradicts
our equation. It is immediate that the f -image of such a boundary is either ˘pIdc ´ yq or ˘2pIdc ´ yq. But
no linear combination of such elements can be Idc. Therefore Idc does not vanish modulo B1, QED.

We finally get this description of the first homology module:

Theorem 44 For a topological category GX that is defined as the groupoid of a group action, the first
homology module of is the direct sum

H1pGXq “ à
cPCpZq

R.Idc̊

of one-dimensional summands R.Idc˚. We therefore have rkpH1pGXqq “ cardpCpGXqq.

Corollary 30 We have

H1pÝÑ
GLpZ12rεs,AKξqZ12rεsq „Ñ RKrεs,

and for a contrapuntal symmetry g,

dimRpH1pgpKrεsq X Krεsqq “ cardpgpKrεsq X Krεsq.
In mathematical counterpoint theory, Part VII, the intersection gpKrεsq X Krεs is the set of conso-

nances that must be maximized as a candidate of target intervals starting from the consonance ξ R gpKrεsq.
According to Corollary 30, this maximality is also the maximality of the first homology module of that inter-
section’s closure gpKrεsq X Krεs. Therefore the set-theoretical maximality in fact carries over to a maximality
of a linear dimension of a homology module. This is what we have been looking at.

79.5 Concluding Comments

This result is the consequence of a tricky puzzle between the translation of the commutativity condition for
contrapuntal symmetries into a topological statement (they are continuous) and the possibility of reducing
homology cycles modulo boundaries such that dimensions are boiled down to a single one per curve compo-
nent. Oberve that despite the small number, two, of elements in such a component η, it contains infinitely
many curves. It is therefore not trivial to learn that all of these curves contribute to one and only one
homology module dimension.

The crucial point in replacing the maximal set cardinality condition of the previous model by a maximal
homology dimension condition lies in the fact that such a dimension is defined even if the underlying set
is infinite. This means that this topological approach enables such counterpoint models even if the sets of
consonances are infinite. The maximality only relates to the dimension of a module, not its set-theoretical
cardinality. This situation may occur when stepping to the colimit of infinite microtonal towers [15], where
we are dealing with infinite interval sets.
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Modulation Theory and Lie Brackets of Vector Fields

Summary. In a recent book [16], we have opened the discussion of a hypergestural restatement of math-
ematical counterpoint theory. The present chapter aims at a discussion in the same vein of the classical
mathematical modulation theory [682, 670]. The present approach to modulation theory is based on the
idea that degrees in the start tonality are interpreted as gestures that move to degrees (qua gestures) of the
target tonality by means of hypergestures. This means that the symmetries relating tonalities in the classical
setup are replaced by hypergestures that connect gesturally interpreted degrees. The present hypergestural
model solves the problem, but it opens more questions than it answers in the sense that the construction of
hypergestures that replace the classical inversion symmetries is by no means unique.

– Σ –

80.1 Introduction

The present chapter aims at a gesturally driven discussion of the classical mathematical modulation the-
ory [682, 670]. Following that approach, it can be proved that tonal modulation as described by Arnold
Schönberg1 [948] can be modeled using symmetries S between scales underlying the involved tonalities.
For example, to modulate from C-major to F -major, Schönberg proposes the three modulation degrees
IIF , IVF , V IIF . These degrees also come out from the mathematical model, where the C scale is mapped
to the F scale using the inversion symmetry S “ T 9. ´ 1 “ Ue{f between e and f . The mathematical model
yields exactly Schönberg’s modulation degrees in all cases where he describes a direct modulation, namely
for fourth and fifth circle distances 1,2,3,4.

The present approach is based on the idea that degrees in the start tonality are interpreted as gestures
that move to degrees (qua gestures) of the target tonality by means of hypergestures. This means that the
symmetries relating tonalities in the classical setup are replaced by hypergestures that connect gesturally
interpreted degrees.

The present hypergestural model solves the problem, but it opens more questions than it answers in the
sense that the construction of hypergestures that replace the classical inversion symmetries is by no means
unique. We are still in search of a theory that might generate natural “minimal action” hypergestures in the
sense of Hamilton’s variational principle in mechanics. In fact, the classical modulation model was driven by
the idea of elementary fermion particles in physics, interacting via bosons that materialize interaction forces.
The hypergestural restatement would view symmetry-corresponding degrees X,SpXq as musical fermions
connected via a boson hypergesture h : X Ñ SpXq. More precisely, the homological boundary Bh “ pSpXq ´
X,´h˝

1q has the first component SpXq ´ X as the difference of the involved fermions, whereas the second
component ´h˝

1 is the boson deduced from the face operator ?˝ acting on the Escher-inverted h1 of h, but

1 There are two Arnolds here: the original Austrian Schönberg, and the Americanized Schoenberg. Harmony was
written by Schönberg.
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see [727] for details. An intuitive illustration in Figure 80.1 shows this situation, where X is given as a
pitch class gesture C Ñ B,B Ñ A,C Ñ A; SpXq is given by the gesture C˚ Ñ B˚, B˚ Ñ A˚, C˚ Ñ A˚,;
and the hypergesture h deforms X to SpXq along the lines from A to A˚ etc., whereas the Escher-inverted
perspective h1 consists of the hypergesture deforming the line C Ñ C˚ to A Ñ A˚, the line C Ñ C˚ to
B Ñ B˚, and the line B Ñ B˚ to A Ñ A˚.

Fig. 80.1. For a pitch class gesture X, with curves C Ñ B,B Ñ A,C Ñ A, the target gesture SpXq is given by the
gesture C˚ Ñ B˚, B˚ Ñ A˚, C˚ Ñ A˚, and the hypergesture h deforms X to SpXq along the lines from A to A˚,
B to B˚, C to C˚.

The general procedure will be as follows: We first model gestures and hypergestures in the topological
space R2, where the usual pitch class set Z12 is embedded on a circle. We then look at triadic degrees X
of pitch class points, which are represented as gestures of lines connecting these points. Next, we construct
vector fields on R2 whose integral curves give rise to hypergesture curves that deform the gestural degrees.
Then we discuss cadences of such triadic degrees and their behavior under hypergestural deformation. We
shall prove that for a specific choice of such vector fields, the inversion symmetries used in the classical model
map pitch classes x into pitch classes living in the same integral curve as x. Next we consider the trajectories
of the curves of the Escher-inverted perspective and calculate energy integrals of such curves. Under the
condition of non-vanishing energy, we can then exhibit the admitted degrees. These integrals refer to Stokes’
theorem, and we therefore need to think about Stokes’ theorem for hypergestures. Its statement and proof
are found in the concluding sections of this paper and might be of more general interest.

80.1.1 Short Recapitulation of the Classical Model’s Structure

The classical model is described in Section 27.1, we only give a short and not exhaustive recapitulation
thereof here. For a modulation from major tonality X to major tonality Y , the triadic modulation degrees
(in the sense of Schönberg) in Y are calculated by means of a modulation quantum Q, which is a set of pitch
classes. Its intersection Y X Q is, by construction, the union of the modulation degrees. This modulation
quantum is defined by a number of properties:

1. Q has an inner symmetry that transforms X to Y .
2. For a given cadential set J of Y , all degrees of J are subsets of Q.
3. The intersection QXY is rigid, i.e., it has no nontrivial inner symmetries (in the group of transpositions

and inversions).
4. The quantum Q is minimal with the first two properties.

The motivation of such a quantum is that, by (i), it “materializes” a symmetry qua “force” that transforms
X to Y , that, by (ii), it is rich enough to determine Y by a cadence, and that, by (iii), the symmetry of Q
that transforms X to Y is uniquely determined by Q; and (iv) is a Hamilton principle: we want Q to be
minimal with the first two properties. Observe that this setup does not guarantee the existence of modulation
quanta. The modulation Theorem 30, in Section 27.1.4, for 12-tempered tuning guarantees the existence of
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such quanta. This theorem is also valid for just tuning, see Section 27.1.7, but in the present chapter we
focus on 12-tempered tonalities.

80.2 Hypergestures Between Triadic Degrees That Are Parallel to Vector Fields

As said above, we embed the set Z12 of pitch classes in a circle as a part of the real plane R2. A triadic
degree, and more generally any pitch class set X, is enriched by a system of differentiable curves lpx, yq
from x to y (or vice versa), one for every unordered pair x, y of different points in X; the selected direction
is irrelevant (why will be seen later); the corresponding gesture is denoted by

ÝÑ
X . An example is shown in

Figure 80.1 for the set X “ tA,B,Cu. If such a gesture has skeleton Σ, it is an element of Σ
ÝÑ
@R2. We shall

consider hypergestures h PÒ ÝÑ
@Σ

ÝÑ
@R2 that connect two pitch class set gestures (of same skeleton)

ÝÑ
X,

ÝÑ
Y ,

i.e.,
ÝÑ
X “ hp0q,ÝÑ

Y “ hp1q. We shall now look at vector fields X on R2 that are smooth enough to have
integral curves, fields that are locally Lipschitz, to be precise. For every point x P R2, there is a uniquely
defined maximal integral curve

ş
x
X : Dpxq Ñ R2, defined on the open domain Dpxq Ă R, starting at x, i.e.,ş

x
X p0q “ x, and T pş

x
X qpλq “ X pş

x
X pλqq for all parameters λ P Dpxq of

ş
x
X .

Definition 123 Given a hypergesture h P Ò ÝÑ
@Σ

ÝÑ
@R2 connecting

ÝÑ
X “ hp0q to

ÝÑ
Y “ hp1q, we say that it is

parallel to a vector field X if for every point x in X, there is a function f : I Ñ Dpxq of the unit interval
I “ r0, 1s into the domain Dpxq such that the Ò-gesture h1pxq of h1 starting at x has values h1pxqpλq “ş
x
X pfpλqq for all λ P I.

The terminology is justified for such a differentiable function f since its tangent function Tf evaluates to vec-
tors parallel to the vector field’s vectors. The following lemma enables us to construct parallel hypergestures
from curves on vertices of a pitch class set X.

Lemma 64 Given a vector field X , a pitch class set X with a gesture
ÝÑ
X in Σ

ÝÑ
@R2, and a pitch class set

Y such that for every point x P X, there is a curve fx : I Ñ Dpxq such that
ş
x
X pfp1qq “: ypxq defines a

bijection X
„Ñ Y , then there is a hypergesture h P Ò ÝÑ

@Σ
ÝÑ
@R2 connecting

ÝÑ
X with a gesture

ÝÑ
Y that is parallel

to X .

The critical point here is the question whether we can find vector fields that connect degrees X,Y that
are symmetric images of each other, i.e., Y “ SpXq for a symmetry S connecting two tonalities, by parallel
hypergestures.

80.3 Lie Brackets Generate Vector Fields That Connect Symmetry-Related
Degrees

In this section we define vector fields associated with pairs of tonalities and which fulfill the conditions
explained above. Although such vector fields can be defined for quite general situations of tonality pairings,
we want to restrict our attention to the pairing of two tonalities that are one fourth apart from each other,
and we may choose the concrete situation of C-major and F -major. For each such tonality T , which we
identify with its scale for this special discussion, we define a vector field XT that is motivated by the unique
inner symmetry ST of T . For T “ C this is the inversion SC “ Ud; for T “ F , it is SF “ Ug. To have a
simple representation of symmetries and fields, we choose a labeling of the pitch classes in Z12 such that
0 “ d, 1 “ d#, 2 “ e, 3 “ f, 4 “ f#, 5 “ g, 6 “ g#, 7 “ a, 8 “ a#, 9 “ b, 10 “ c, 11 “ c#. With this notation,
and 0 being on top, and 3 to the right of the circular representation (as with normal time visualisation),
the symmetry SC is the reflection at the vertical diameter through the pitch class circle. We now represent
this reflection as a movement in horizontal direction from left to right, thinking of a 180˝-rotation in R3.
This can be represented by a vector field XCpx, yq “ pcospyq cospxq, 0q. Similarly, for tonality F , we define
its vector field XF as being the clockwise rotation of XC by 5π{6. More generally, if R is a nonsingular linear
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transformation of R2, we construct a vector field XR from X by XRpxq :“ RpXpR´1pxqq. Then we have
Y “ XR if R is the clockwise rotation by 5π{6. Figure 80.2 shows these fields in a graphic generated by
Mathematica software.

Fig. 80.2. Field X is XC (left), field Y is XF (right).

The next step is mathematically well defined, but we actually don’t know why it works. To generate the
field which will eventually guide the hypergestural lines, we consider the Lie bracket rXC ,XF s of the fields
associated with the inner symmetries SC , SF . They are defined using the fact that vector fields are in one-
to-one correspondence with derivations on functions, and then using the fact that the commutator of such
derivations is again a derivation. Lie brackets are very important in mathematical physics, and in particular
in Lagrangian and Hamiltonian mechanics. See [2] for the calculus of Lie brackets and its application to
mechanics. Here is the explicit formula for this Lie bracket:

rXC ,XF spx, yq “
p´p1{2q?

3 cospp?
3xq{2 ` y{2q cospyq cospx{2 ´ p?

3yq{2q sinpxq ´
1{2 cospxq cospp?

3xq{2 ` y{2q cospx{2 ´ p?
3yq{2q sinpyq `

cospxq cospyqp3{4 cospx{2 ´ p?
3yq{2q sinpp?

3xq{2 ` y{2q `
1{4?

3 cospp?
3xq{2 ` y{2q sinpx{2 ´ p?

3yq{2qq,
cospxq cospyqp1{4?

3 cospx{2 ´ p?
3yq{2q sinpp?

3xq{2 ` y{2q `
1{4 cospp?

3xq{2 ` y{2q sinpx{2 ´ p?
3yq{2qqq

The integral curve display of this field is shown in Figure 80.3. This field has two remarkable properties
which we want to list as a proposition:

Proposition 70 With the above notations, the Lie bracket field rXC ,XF s has the following properties:

1. The twelve pitch class points are contained in three closed integral curves: Cb through tb, a#u, Cc through
tc, c#, d, d#, f#, g, g#, au, and Ce through te, fu.

2. The curves Cb, Cc and Ce are symmetrical with respect to the modulator symmetry Ue{f that maps C to
F in the sense that every pitch class p in its integral curve Cb, Cc or Ce is mapped to the Ue{f ppq that is
contained in the same integral curve.

3. If R is the 180˝-rotation in R2, we have rXR
C ,XR

F s “ rXC ,XF sR “ rXC ,XF s.
4. If R “ Ue{f then XF “ ´XR

C , and we have ´rXC ,XF sR “ rXC ,XF s. The latter is also true if R is the
reflection orthogonal to Ue{f . These formulas mean intuitively that the two reflection axes that are visible
in the left part of Figure 80.3 transform the Lie bracket field into its negative.
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Fig. 80.3. The global display of the integral curves of the Lie bracket field rXC ,XF s (left), and (right) the three
closed integral curves comprising all twelve pitch classes, and this in such a way that the modulator transformation
Ue{f from C to F maps pitch classes into pitch classes within the same integral curves.

Recall that if JpXq denotes the Jacobian of a vector field X on R2, then rX,Y s “ JpY qX ´ JpXqY .
Property (iii) is evident since for the 180˝-rotation R, XR “ ´X and Y R “ ´Y , whence rXR, Y Rs “
r´X,´Y s “ rX,Y s. The equation rXC ,XF sR “ rXC ,XF s follows immediately from the Jacobian formula.
The last property in (iv) follows from (iii) and the first part of (iv). To prove it, we need two easy auxiliary
results about Lie brackets. The first result relates to the Jacobian of a vector field XT pxq :“ XpT pxqq
deduced from a non-singular linear transformation T on R2. We have JpXT qpxq “ JpXqpT pxqqT . Using this
result, if R is a linear involution (R2 “ Id), then we have rX,´XRs “ ´rX,´XRsR. Property (iv) now
follows from this last result since in our case, XF “ ´XR

C for R “ Ue{f . Property (ii) follows from property
(i) and property (iv). Property (i) of the Lie bracket field is not evident. We don’t know why the twelve pitch
classes are grouped in just three integral curves that are invariant under Ue{f . We have no mathematical
proof of this proposition in the sense that we were not able to calculate symbolically (with explicit formulas)
those three symbolic integral curves Cb, Cc, Ce and to prove that the subsets of pitch classes are precisely
contained in those curves. Also, Mathematica did not yield a solution using its DSolve function; our result
is obtained using the numerical integration function NDSolve, QED.

Using this proposition, we can now find hypergestures h, parallel to rXC ,XF s that map degrees of
C-major or more general pitch class sets to symmetry-connected degrees or pitch class sets, respectively, in
F -major. In fact, referring to the notations of Lemma 64, given a pitch class set X in C, we can find by
Proposition 70 a curve fx : I Ñ Dpxq for every x P X, such that

ş
x

rXC ,XF spfp1qq “ Spxq defines a bijection
with the symmetric pitch class set Y “ SpXq. Therefore, by Lemma 64, there is a hypergesture h, parallel
to rXC ,XF s, that maps X to SpXq.

80.4 Selecting Parallel Hypergestures That Are Admissible for Modulation

The next step consists of the selection of “good” hypergestures for the intended modulation. To this end, we
look at the hypergestures hx,y obtained from the above parallel hypergestures h when restricting them to the

single curves lpx, yq in ÝÑ
X , deformed under hx,y to curves lpSpxq, Spyqq that define ÝÝÝÑ

SpXq. Such a deformation
hypergesture consists of a (smooth) curve of curves hx,ypλq, λ P I, whose endpoints xλ, yλ are all moving
within one of the three integral curves Cb, Cc and Ce, and hx,yp0q “ lpx, yq, hx,yp1q “ lpSpxq, Spyqq; see
Figure 80.4 for an example; starting at a curve from lpc, eq and ending at curve lpSpcq “ a, Speq “ fq, the
intermediate curves hx,ypλq all move along the integral curves Cc, Ce with their endpoints.

Definition 124 With the above notation, such a hypergesture hx,y from curve lpx, yq to curve lpSpxq, Spyqq
is called non-singular if for every parameter λ P I, the gesture hx,ypλq is not a loop.
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Fig. 80.4. Starting at a curve from lpc, eq and ending at curve lpSpcq “ a, Speq “ fq, the intermediate curves hx,ypλq
move along the integral curves Cc, Ce with their endpoints.

Although this definition looks only geometric, it has an interpretation in terms of the energy function.
Suppose that Epx, yq is a differentiable potential function on R2. Then we may consider the usual line
integral

ş
hx,ypλq dE, expressing the work to move from hx,ypλqp0q to hx,ypλqp1q under the given potential

E. If we suppose that Stokes theorem can be proved for hypergestures, we have
ş
hx,ypλq dE “ ş

Bhx,ypλq E “
Ephx,ypλqp1qq ´ Ephx,ypλqp0qq. This latter vanishes if the curve hx,ypλq is a loop. The converse is not true,
but we can enforce the converse if we find enough potentials such that the vanishing of the integral for
all these potentials implies that the curve is a loop. In fact, in our situation it is possible to find two
simple potentials, ECpx, yq “ x and its clock-wise rotation by 5π{6, EF px, yq (similarly to the vector field
construction). Evidently, hx,ypλq is a loop if and only if dpλq :“ pş

hx,ypλq dECq2 ` pş
hx,ypλq dEF q2 “ 0. This

will be our condition for an admissible (parallel) hypergesture h from pitch class set X to SpXq, namely that
all of its curve sub-hypergestures hx,y, x ‰ y, are non-singular. The Stokes theorem can in fact be proved for
hypergestures; we refer you to Chapter 64 for a thorough discussion of a hypergestural Stokes theorem.

In the classical modulation model, one looks at all minimal cadential sets of triadic degrees, see Section
26.2.1. Here they are:

J1 “ tII, IIIu, J2 “ tII, V u, J3 “ tIII, IV u, J4 “ tIV, V u, J5 “ tV IIu.
One then considers the S-transformed cadential sets. These involve all degrees, II, III, IV, V and V II (in
both scales, C and F , since S switches IIC to VF , IIIC to IVF , IVC to IIIF , VC to IIF , and V IIC to
V IIF ). We have this proposition:

Proposition 71 For every triadic degree

XC “ IC , IIC , IIIC , IVC , VC , V IC , V IIC ,

there is a non-singular parallel hypergesture hXC
from

ÝÑ
XC to

ÝÝÝÝÑ
SpXCq for the Lie bracket field rXC ,XF s.

The proof of this proposition is an easy verification. Therefore each triadic degree can be connected hyper-
gesturally to its symmetric counterpart. However, if we look at the cadential sets and the pitch class sets
they define by union of their degrees, such as YpJ1q :“ IIC Y IIIC , such a connection is no more possible
in general for corresponding gestures. Here are the obstructions, and Figure 80.5 visualizes the singular
situation for the hypergestural movement:

• For J1 “ tIIC , IIICu, the hypergesture h has a singular part for the curve lpa, gq (a P IIC , g P IIIC)
that maps to lpc, dq.
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• For J2 “ tIIC , VCu, the hypergesture h has a singular part for the curve lpa, gq (a P IIC , g P VC) that
maps to lpc, dq.

• For J3 “ tIIIC , IVCu, the hypergesture h has a singular part for the curve lpa, gq (a P IVC , g P IIIC)
that maps to lpc, dq.

• For J4 “ tIVC , VCu, the hypergesture h has a singular part for the curve lpa, gq (a P IVC , g P VC) that
maps to lpc, dq.

Fig. 80.5. The hypergesture from curve ha,gp0q “ lpa, gq to curve ha,gp1q “ lpd, cq enforces an intermediate singular
loop position.

Therefore the only admissible hypergestural transformation is that from
ÝÝÝÑ
V IIC to

ÝÝÝÑ
V IIF . This is the

selection we find using the present hypergestural arguments. Then, going back to the construction of the
modulation quantum in the classical model, we have to look at the intersection F X pV IIC Y V IIF q “
F X tb, d, f, e, g, a#u “ td, f, e, g, a#u “ IIF Y IVF Y V IIF , and the latter is exactly the set of modulation
degrees described in the classical model and by Schönberg.

This model also works for the fifth circle modulation from C to G. It is an easy exercise to go through all
steps for this movement, and we get the classical modulation degrees IIIG, VG and V IIG as in the classical
case.

80.5 The Other Direct Modulations

For other modulation types to more distant fourth circle tonalities, from C to E5, say, we propose the
following hypergestural construction. We factor the movement into fourth circle steps, e.g. C to F , then F
to B5, then B5 to E5, then E5 to A5. The corresponding integral curves through the twelve pitch classes are
shown in Figure 80.6.

But this is not factorizing the modulation steps, i.e., we only factor the hypergestural curves and then
exhibit those hypergestures which have non-singular steps. Figure 80.7 shows such a factorization for the
hypergesture moving e to d in a modulation C Ñ B5. The first part of the curve moves e to f on the
closed integral curve Ce, the second part of the curve moves f to d on Fc. We shall realize this model for all
fourth circle relations C Ñ B5, C Ñ E5, C Ñ A5 (and of course for the corresponding fifth circle relations
C Ñ D,C Ñ A,C Ñ E). The result will again yield the same modulation degrees as with the classical
model.

The precise setup for modulations C Ñ B5, C Ñ E5, C Ñ A5 is that we look for sequences of admissible
parallel hypergestures. Denote by SC , SF , SB5 , SE5 the four inversions mapping C Ñ F, F Ñ B5, B5 Ñ
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Fig. 80.6. The four closed integral curves for fourth circle modulations starting from C,F,B5, E5.

Fig. 80.7. The hypergestural curve from e to d factors through f on two integral curves, Ce and Fc, while a direct
movement is not possible for any of these closed integral curves.

E5, E5 Ñ A5. For example, for C Ñ E5, and for a set X of pitch classes in C, we look for a sequence
of admissible parallel hypergestures hC , hF and hB5 where hC connects X to SCpXq, hF connects SCpXq
to SF pSCpXqq, and hB5 connects SF pSCpXqq to SB5 pSF pSCpXqqq, the last being the target set in E5. The
concatenation h “ hB5 ˝hF ˝hC of these three hypergestures is what we call an admissible parallel hypergesture

connecting a gesture
ÝÑ
X to

ÝÝÝÝÝÝÝÝÝÝÝÝÑ
SB5 pSF pSCpXqqq.

Let us make an example to understand the special character of such concatenations. We again look at
the above concatenation h “ hB5 ˝ hF ˝ hC , and we start with a pitch class set X “ VC . We are looking for
three admissible parallel hypergestures hB5 , hF and hC that connect VC to IIE5 “ SB5 pSF pSCpVCqqq. Figure
80.8 shows that this is possible. The only non-trivial step is the first hypergesture; we have shown to the left
the non-singularity of this hypergesture.

With this approach we now look at cadence sets J1, . . . J5 in C which (more precisely, as above: the
unions of their members, e.g. YpJ1q “ IICYIIIC , etc.) can be connected by admissible parallel hypergestures
to corresponding cadence sets in the target tonality. If such hypergestures between cadence set Jk in C and
cadence set J 1

l in the target tonality exist, we proceed as before: We take the union pYpJkqq Y pYpJ 1
lqq and

check whether their intersection T XpYpJkqqYpYpJ 1
lqq with the target tonality T is rigid. The difference with

the classical algorithm is that we don’t check for minimality anymore. This condition has been taken care
of by the distinguished hypergestural connection described by the integral curves of the Lie bracket vector
fields. Minimality seems to be taken care of by the hypergestural transformation. The result is this:
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Fig. 80.8. The concatenation of three admissible parallel hypergestures, connecting VC “ tg, b, du to IIE5 “
tf, g#, cu.

Proposition 72 With the above procedure, when applied to all fourth and fifth circle modulations for up to
four circles, the resulting modulation steps coincide with the steps calculated in the classical model (coinciding
with Schönberg’s steps).

The proof (which we omit here) is lengthy, but easy; one has to go through all possible admissible parallel
hypergestures and then calculate the modulation steps as described above.
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Hypergestures for Performance Stemmata

Summary. In the context of performance stemmata, different hypergestures correspond to different strate-
gies of deformation from mother to daughter performances. We discuss and classify types of such strategies
using topological obstructions in terms of singular hypergesture homology. This gives hypergesture homology
a nice interpretation in terms of human performance practice.

– Σ –

81.1 Motivation, Terminology, and Previous Results

In Part VIII, a general theory of musical performances was developed as a background for the performance
rubette of the software RUBATO� [689], also described in Part X. According to this approach, musical
performance can be understood as a process of unfolding a primary “mother” performance into a tree
of “daughter” performances according to a successively refined shaping of intermediate performances and
applying performance operators that are typically specified according to given weight functions derived from
rhythmical, motivic or harmonic analyses (other analyses not being excluded, these three types merely reflect
the status quo of software implementation). It is straightforward that this evolutionary performance tree,
termed stemma, is in fact a local network in the sense of [716] and [728], the transition processes playing the
role of morphisms in local networks.

Although performance theory models the processual level of performative genealogy, it is not sufficiently
explicit for the unfolding of performance when rehearsed by a musician. The transition from one level
of sophistication to the next daughter level is a discrete “beaming” action without intermediate stages.
Unfortunately, all research dealing with performance models is, to our knowledge, limited to this processual
methodology. This is also the reason why our references are quite limited: there is nothing that we would
be able to refer to when leaving this processual approach. But refer to Gerhard Widmer’s overview of some
important approaches to performance theory [1119]. Humans do not rehearse in this way, they tend to
approximate a refined performance by successive, continuous deformation of a mother performance to a new
daughter performance. In [728, 2.3.1] a topological approach to such a continuous deformation has been set
up in terms of categorical gesture theory. In this paper that approach is made more concrete with regard
to the specific performance operators involved in stemmatic deployment. It has been shown in Section 39.7
that an important class of performance operators involves the Lie derivative Lצw of weight function w with
respect to a performance vector field1צ. We shall describe the performance hypergestures related to such
operators.

1 The beautiful Hebrew letter ,צ “tsadeh”, was introduced by Mazzola in 1992 for performance vector fields, moti-
vated by the German “Tempo-Stimmungs-Feld”, performance vector fields for tempo and tuning. The abbreviation
“TS” for such fields later (in [714]) muted to the somewhat artificial notation Ts because Hebrew letters were not
available to the author. As this problem is solved now, we are able to use it and to put the old symbol to retirement.
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In this context, different hypergestures correspond to different strategies of deformation from mother
to daughter performances. We discuss and classify types of such strategies using topological obstructions in
terms of singular hypergesture homology. This gives hypergesture homology a nice interpretation in terms
of human performance practice.

To provide the reader with a more down-to-earth access to the mathematically and conceptually complex
approach exposed in this paper, we shall present and discuss a concrete example in Section 81.5 after having
worked through the theoretical setup.

81.1.1 Performance Stemmata and Performance Gestures of Locally Compact Points

Before we investigate the gestural aspects of stemmatic deployment, we want to recall the setup of stemma
theory of performance as exposed in detail in Chapter 38. A performance stemma (LPS, also called local
performance score in Section 35.4) is the formal description of a diagram LPS : S Ñ PerCell over a
tree digraph S (the stemma tree) whose values at vertices s in S are cellular hierarchies hs, i.e., functors
hs : Hs Ñ PerCell on a space category Hs with values in the category PerCell of performance cells. The

arrows o : t Ñ s of S are then mapped to functions LPSpoq : ht ho� hs that map mother hierarchies ht to
daughter hierarhices hs applying performance operators ho, i.e., hophtq “ hs.

Let us recall these terms. The category PerCell has performance cells as objects. A performance
cell is a 5-tuple C “ pK,R,צ, I, ℘Iq consisting of a local composition K Ă RX. « Rn, the cell’s kernel,
where X. “ X1X2 . . . Xn is a sequence of n real-valued musical parameters; a frame R, i.e., a cube R “
ra1, b1sˆ. . . ran, bns Ă RX. , containingK; a locally Lipschitz-continuous performance vector field צ : R Ñ TR,
where TR denotes the tangent bundle of R; an initial set I Ă R such that for every element k P K, the
maximal integral curve ipkq of צ through k cuts I, and an initial performance ℘I : I Ñ PS, with codomain
a corresponding physical parameter space PS over Rn, such that for any point k P K and any two points
a “ ipkqpαq, b “ ipkqpβq in I, we have ℘Ipbq ´ ℘Ipaq “ pα ´ βq.Δ, where Δ “ p1, . . . 1q is the diagonal
vector in the Rn underlying PS. Such a cell defines a well-defined performance map ℘ : K Ñ PS by
℘pkq “ ℘Iplq ´ α.Δ, if ipkq hits l P I at curve parameter α.

A morphism p : C1 Ñ C2 in PerCell is a standard coordinate projection of underlying real spaces
p : Rn1 Ñ Rn2 such that ppK1q Ă K2 and ppR1q Ă R2, p induces a morphism of vector fields 1צ Ñ ,2צ and
every point of ppI1q can be reached via integral curves of 2צ from the initial set I2. This concept guarantees
that the performance maps commute, i.e., p ˝ ℘1 “ ℘2 ˝ p. A hierarchy is a morphism h : H Ñ PerCell
starting from a space category H, whose objects are a set of symbolic musical parameter spaces U “ RX. ,
such as, for example, U “ REHLD, where E is onset, H pitch, L loudness, and D duration. The category
must be a lattice, i.e., it is closed under finite unions and intersections of the sets defining the parameter
sequences, and have a maximal element ToppHq (the top space of H). For U “ RX., V “ RY. the morphisms
U Ñ V are those space couples with partial sequences Y. Ă X..

For example, the default piano hierarchy has spaces

REHLD,REHL,REHD,RELD,REH ,REL,RHL,RED,RE ,RH ,RL.

Typically, D is not an independent parameter since duration is a function of onset. The fundamental, i.e.,
minimal, spaces RE ,RH and RL of this hierarchy are performed via one-dimensional tempo, intonation,
and intensity vector fields, respectively. The hierarchy functor h must map a space U “ RX. from H to a
performance cell hpUq which has its kernel in U , and the projections defined by the morphisms U Ñ V must
define performance cell morphisms.

In [728] we have given the example of performance stemmata as an illustration of gestures of locally
compact points, see also Section 65.3.1. Our locally compact topological categories were C “ FrameX.

of n-dimensional frames defined over the parameter sequences X. of length n. These were interpreted in
the sense that all dimensions of this space refer to a musical parameter given by a fixed choice X. of n
parameters. The category FrameX. has the inclusions of frames as morphisms, and its topology is defined
by the Euclidean metric of the representation of frames as points in R2n. We look at a particular presheaf
FX. : FrameoppX. Ñ Top of C1 vector fields, i.e., if c is a n-dimensional frame for X., then FX.pcq “ tv : c Ñ
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Tc|v is a C1 vector fieldu, morphisms being transformed to restrictions of vector fields. Since c is compact,
the metric pv, wq “ maxcpdpvpxq, wpxqq for the Euclidean distance d on vectors in Rn defines a locally
compact topological space, i.e.,

FX. : FrameoppX. Ñ LCTop,

where LCTop denotes the topological category of locally compact Hausdorff topological spaces. This presheaf
FX. will play a crucial role in the construction of hypergestures of locally compact points over FrameX. as
described in [728]. The role of FX. is to control the stemmatic unfolding of performance vector fields ,צ
appearing in performance cells of hierarchies of performance stemmata LPS, under the action of specific

performance operators LPSpoq : hs ho� ht. The example in [728] focused on frames and performance fields,
although we have to consider entire performance cells in stemma theory. We want however to focus on the two
components frame and performance field, and suppose that the other components are automatically defined

according to a standard algorithm. We now focus on the spatial hierarchy hs : Hs Ñ şlc
EndpF q associating

with selected spaces U over parameter sequence X. of Hs performance vector fields spUqצ : cU Ñ TcU in
cU@FX. .

The target category of the spatial hierarchy hs was defined in [728], but for the sake of not torturing
the reader with those generalities about topological categories, we want to give a short-hand definition ofşlc
EndpF q here. The integral sign is used in category theory to designate categories of points. In our case,

we are looking at the topological category FrameX. of frames in a space specified by the sequence X. of
parameter names, as introduced above. When talking about points in FrameX., one addresses contravariant
functors (presheaves) F : FrameopX. Ñ LCTop which are continuous for the underlying topologies of these
topological categories. Since our functor F evaluates to sets of C1 vector fields on frames, it is a candidate
for such a presheaf.

In this context, a point is an element x P F pcq for a frame object c. Using Yoneda’s Lemma, stating
that F pcq „Ñ Natp@c, F q, we may identify such a point by the associated natural transformation x : @c Ñ F .
The category of such points (all for one and the same F , all for the frames in FrameX.) has these morphisms
from point v1 : @c1 Ñ F to point v2 : @c2 Ñ F . They are pairs pα : c1 Ñ c2, φ : F Ñ F q such that the
diagram

@c1
v1ÝÝÝÝÑ F

α

§§đ §§đφ

@c2
v2ÝÝÝÝÑ F

commutes. Here, φ is an endomorphism of F on tangent bundles. This data defines the category
şlc
EndpF q.

The index EndpF q refers to the endomorphisms φ of F , while the exponent lc refers to the locally compact
target spaces, a condition for obtaining a topological category, as mentioned above. It is shown in [728] that

such a category
şlc
EndpF q is in fact a topological category.

81.2 Gestures with Lie Operators in Stemma Theory

In [728] performance operators were described that relate to the situation described in the above commutative
diagram; see also Section 65.3.1. This diagram is precisely what we have explained at the end of the preceding

section as being a morphism in the category
şlc
EndpF q. This means that the α-restricted field v1 over c1 is

given by φ´1 ˝ v2 ˝ α “ v1.
Here we want to make this concrete and look for gestures and hypergestures related to such operators.

We start on a cellular hierarchy h : H Ñ PerCell which is supposed to be constructed in a previous
performance process. Our operator will be of Lie type, a so-called basis specialization operator (see Section
39.7.1). Lie type operators seem to play a crucial role in performance theory. This operator acts on a
performance field Wצ defined on a space W of H. We suppose that W “ U ‘V , where U is in H (but V not
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necessarily in H). For example, in the default piano hierarchy, we could take U “ RE , V “ RD,W “ RED,
where RD is not in the piano hierarchy.

This operator uses an analytical weight, i.e., a C2 function Λ : cU Ñ R. Such functions are available
from musical analysis; in the RUBATO� software they are provided by analytical rubettes, see Chapter 41.
Denote by FnpcU q the real vector space of Cn-functions on cU . Performance theory is not limited to given
weights, but also uses linear combinations to shape performance fields. For example, the one-dimensional
tempo field may be shaped using a weighted sum 0.3Λ1 ` 0.7Λ2 of a melodic weight Λ1 and a harmonic
weight Λ2, meaning that we are working in the vector space RΛ. Ă FnpcU q generated by a family Λ. of
analytical weights.

The Lie-type basis specialization operator we are using here also uses an affine “directional” endomor-
phism Dir : V Ñ V and is defined by the formula

W,Λ,Dirצ “ Wצ ´ LצU
Λ.iV Dir

where Uצ is the performance field on U , acting on Λ as a derivation via its Lie representation, and iV : V Ñ W
is the embedding map. Since U and V share no common parameters, pצW,Λ,DirqU “ Uצ . The operator only
changes vector field components in V . It is immediate that this operator is continuous and linear in Wצ and
additive in Λ in the sense that

W,Λ1`Λ2,Dirצ “ pצW,Λ1,DirqΛ2,Dir.

Since W,0,Dirצ “ Wצ , this means that W,´Λ,Dirצ results from the inverse operator to ;W,Λ,Dirצ the operator
is an automorphism of the tangent bundle as required in our general setup. This means that W,Λ,Dirצ

corresponds to the inverse φ´1
Λ,Dir of the operator

φΛ,DirpצW q “ W,´Λ,Dirצ “ Wצ ` LצU
Λ.iV Dir.

We therefore have a special case of the general setup: The daughter field is generated by the frame restriction
c1 Ă c2 and the weight Λ together with the directional endomorphism via the basis specialization operator.
These facts allow for gestural constructions as follows: If γ : I Ñ F2pcU q is a continuous curve of C2-weights,
starting at γp0q “ 0 and ending at γp1q “ Λ, then γ˚ptq “ W,γptq,Dirצ deforms the mother field Wצ to the
daughter field .W,Λ,Dirצ

81.3 Connecting Stemmatic Gestures for Weights and Performance Fields

We now want to construct gestures of stemmata defined by basis specialization operators. The stemma starts
at a given hierarchy h : H Ñ PerCell as above, using the space configuration W “ U ‘ V for hierarchy
spaces U,W . The stemma starts on the frame cW and is defined on a digraph of subframes of cW as follows:

Calling cW “ c0, we start with a sequence c00, . . . c0k0
Ă c0 of mutually disjoint subframes. In perfor-

mance theory this procedure defines a split of the composition into relevant, mutually disjoint, subcomposi-
tions, for example into left hand and right hand parts, and then into four periods of left or right hand in an
AABA form, and then for each period into one subframe for each measure, etc. For each such subframe c0i
we repeat the construction by a sequence c0i0, . . . c0ik0i

Ă c0i of mutually disjoint subframes, etc. This defines
a stemmatic tree digraph cS of frames and subframes, where we write ct Ñ cs if cs is a direct subframe of ct
in our construction (s, t denote sequences of indices used to define the tree).

Given cS , we take a finite sequence Λs
. “ Λs

1, Λ
s
2 . . . Λ

s
ls

of analytical weights for each vertex frame cs,
except the top frame c0. The role of such a sequence is to create a daughter performance on cs from the
performance on the stemmatic predecessor ct of cs. This setup is classical in the sense that the initial weight
is 0 while the final one is

ř
i Λ

s
i . Accordingly the initial (mother) performance field (over W ) is ,tצ the

field inherited from ct and restricted to the subframe ct, and the final (daughter) field is ,tצ
ř

i Λ
t
i,Dir, for a

directional endomorphism Dir, which we suppose is chosen once, forever to ease the discourse here.
This setup is however not a gestural one since no continuous curves from mother to daughter per-

formance are defined. To this end, we define a domain of parameters that are available for a continuous
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deformation in gestural curves. For each pair ct Ñ cs, we take the cube I ls and allow for weights of form
Λspxq “ ř

i xiΛ
s
i for x P I ls . We further allow for continuous deformation of frames for ξ P I, defining ctpξq

to be the frame of parameter ξ on the straight line from ct to cs in their representation in R2n, n “ dimpW q.
This defines an ls ` 1-dimensional parameter space ppsq “ I ls`1, the first ls dimensions being assigned
to parameter sequences x for weights and one parameter ξ for inter-frame positions. We always start at
px, ξq “ po, oq P ppsq and terminate at px, ξq “ pΔ, 1q P ppsq, Δ “ p1, 1, . . . 1q. We do however always, for all
intermediate performances between ct and cs, restrict the kernels Kt to the kernel Ks defined by the final
restriction cs Ă ct.

To generate gestures, we first introduce a topological space of parameters, the parameter stemma. It is
the colimit PS “ colim ppsq of the topological spaces ppsq which are glued together as follows: If ct Ñ cs is
an arrow of cS , then pΔ, 1q P pptq is identified with p0, 0q P ppsq. We intuitively replace each arrow ct Ñ cs
in cS by the cube ppsq, see Figure 81.1.

Fig. 81.1. Left: a stemmatic digraph cS ; right: a parameter stemma space PS for cS . Observe that it is not necessary
to have growing dimensions of the parameter cubes when stepping down from the mother performance. In fact, it
could happen that an early stage needs more weights than a later one. For example, the final performance operator
might only work very delicately on some local shaping of loudness as a function of a single rhythmical weight, whereas
an initial shaping might use melodic, harmonic and rhythmical weights at once.

Next we turn PS into a topological category. Its objects are the points of PS , and the morphisms p Ñ q
are those pairs pp, qq such that if p is in cube pptq then q is in a cube ppsq of a vertex s equal to or following
t in the stemmatic tree. Suppose we have chosen a family of weights Λs

. for each vertex s ‰ 0 of the stemma,
call this choice ΛS . We have a topological functorż

ΛS : PS Ñ
ż lc

EndpF q

defined as follows. Suppose that a point p “ px, ξq P PS is in the cube ppsq. It is then connected to the
tree’s source c0 by a unique path c0 Ñ c1 Ñ . . . ct Ñ cs, where ct is the predecessor of cs. Then we set
ΛSppq “ x.Λs

. ` řt
i“1 ΔΛi

. with the notation x.Λs
. “ ř

i xiΛ
s
i . We then setż

ΛSppq “ W,ΛSppq,Dirצ

together with its intermediate frame ctpξq between ct and cs defined by ξ. Formally speaking, this is the
point

ş
ΛSppq : @ctpξq Ñ F . If p Ñ q is a morphism in PS , the associated morphismż

ΛSppq Ñ
ż

ΛSpqq
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is the basis specialization operator associated with the difference of weights ΛSpqq ´ ΛSppq.
We are in principle interested in gestures in

şlc
EndpF q, but there are

Fig. 81.2. A parameter
stemma gesture composed
of curves connecting initial
and final points for weight
operators.

several reasons for defining such gestures via the functor
ş
ΛS . To begin

with, our performance operators are defined using linear combinations of
previously calculated analytical weights, therefore the coefficients of such
linear combinations are a natural data set. Second, calculating homology

of hypergestures in
şlc
EndpF q is difficult since the Lie derivative can produce

uncontrollable functions due to the local gradients of weights with respect
to the local vectors of Uצ . Even though the map

ş
ΛS can be generically

injective, it will not be open.

81.4 Homology of Weight Parameter Stemmata

For these reasons we shall discuss the integer homology H˚pPS ,Zq of hypergestures in PS rather than

H˚pşlc
EndpF q,Zq. The natural homomorphism

H˚p
ż

ΛSq : H˚pPS ,Zq Ñ H˚p
ż lc

EndpF q
,Zq

associated with
ş
ΛS however connects simpler homology over the parameter stemma with more difficult

homology of locally compact points.
We investigate gestures that represent a stemmatic unfolding from the

Fig. 81.3. Two gestures in the
same parameter stemma.

primary mother performance to the ramifications of the tree’s leaf daughters.
Such a gesture has the shape of a digraph morphism g : cS Ñ ÝÑ

PS , where
ÝÑ
PS

denotes the digraph of curves in the topological category PS [723], but with
the boundary condition that the vertices of cS map to the gluing points in PS ;
more precisely, if f : ct Ñ cs is an arrow in cS , then gpfq : ∇ Ñ PS is a curve
in ppsq starting at 0 and terminating at Δ, see Figure 81.2. Each such curve
represents a deformation path from a mother to a daughter performance, and
this is—musically speaking—a continuous trajectory of the local rehearsal
process. If we consider two such gestures g1, g2 : cS Ñ ÝÑ

PS , as shown in Figure
81.3, the question arises whether they are essentially the same procedure or
not. A natural condition for such an equivalence would be that they are
homotopic, i.e., initial and final values of a hypergesture h PÒ ÝÑ

@cS
ÝÑ
@PS .

To understand this notation, recall that the Δ
ÝÑ
@K denotes the topological category of gestures on a

digraph Δ with values in a topological category K. Therefore, Ò ÝÑ
@cS

ÝÑ
@PS denotes the topological category

of gestures on digraph Ò with values in the category cS
ÝÑ
@PS of gestures on the digraph cS with values in

PS . In other words, we are looking for gestures that have their vertex values in common and are equivalent
modulo boundaries of hypergestures. The former condition of course implies that their difference is a 1-cycle
of singular homology.

This means that we are not interested in all hypergestures in this singular homology, but only in the
subspaces generated by the above ones having their vertex values in common. The formal setup is therefore
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as follows. Let us look at the singular chain spaces involved in this homology. In the generalized homology
theory for hypergestures (Chapter 63) we have the following boundary homomorphism diagram:

Z Ò ÝÑ
@cS

ÝÑ
@PS

B2� ZcS
ÝÑ
@PS ‘ Z Ò ÝÑ

@PS
B1� ZPS

with
B2pgq “ g˝

0 ´ g˝
1 “ pgp1q ´ gp0q,´g˝

1q
on a hypergesture g PÒ ÝÑ

@cS
ÝÑ
@PS where g˝

0 P ZcS
ÝÑ
@PS ,´g˝

1 P Z Ò ÝÑ
@PS , and with

B1ph, kq “ h˝ ` k˝ “ h˝ ` kp1q ´ kp0q.
on a pair of gestures h P cS

ÝÑ
@PS , k PÒ ÝÑ

@PS . Here ?
˝ is the face operator. It generalizes by a recursive formula

the classical face operator to arbitrary digraphs. For example, if cS is the digraph shown to the left Figure
81.1, then the face operator yields

g˝ “ 5401944gr1s ` 55044pgr2s ` gr3s ` gr4s ` gr5sq ´
80142pgr6s ` gr7s ` gr8s ` gr9s ` gr10s ` gr11s ` gr12s ` gr13sq.

In the following discussion, we want to specialize the homological setup to gestures and hypergestures
that are of interest in the performance shaping. We are looking at gestures h P cS

ÝÑ
@PS with fixed values

on the vertices of cS , i.e., h|VcS “ ξ, meaning that for all vertices v of cS , hpvq is the gluing point in PS

corresponding to v. Denote by ZcS
ÝÑ
@ ξPS the subgroup of chains generated by such gestures in ZcS

ÝÑ
@PS .

Similarly, we restrict the second chain space Z Ò ÝÑ
@cS

ÝÑ
@PS to the subspace Z Ò ÝÑ

@cS
ÝÑ
@ ξPS , and we have the

restricted boundary map

Z Ò ÝÑ
@cS

ÝÑ
@ ξPS

B2� ZcS
ÝÑ
@ ξPS ‘ Z Ò ÝÑ

@PS
B1� ZPS .

The Escher Theorem that is needed in the definition of boundary maps here establishes an isomorphism of
topological categories,

Ò ÝÑ
@cS

ÝÑ
@ ξPS

„Ñ cS
ÝÑ
@ ξ˚ Ò ÝÑ

@PS ,

where ξ˚ is the gesture derived from ξ by replacing its values by constant loops.
Let us now calculate the homology in this context, more precisely the homology group H1̊ pcSq generated

by the cycles of differences h1 ´ h2 of gestures h1, h2 P cS
ÝÑ
@ ξPS . Call Z1̊ the group of cycles (subgroup of

Z1) generated by these differences. We have to calculate the boundary image group B1̊ stemming from the

second chain group Z Ò ÝÑ
@cS

ÝÑ
@ ξPS , and then its intersection with Z1̊ to derive H1̊ pcSq.

If g PÒ ÝÑ
@cS

ÝÑ
@ ξPS , then we have B2pgq “ pgp1q ´ gp0q,´g˝

1q “ pgp1q ´ gp0q, ηq, where η is constant since
it only depends on ξ. Moreover, one easily sees that p0, ηq “ B2pξ˚q. Therefore the B2-boundaries of gestures
are linear combinations of p0, ηq, the boundary of ξ˚, and the differences ph1 ´ h2, 0q of gestures that are
related to each other by a homotopy given by a hypergesture. Let us now define a basis of the space Z1̊

which takes care of such homotopy: Partition the set of all h P cS
ÝÑ
@ ξPS into homotopy classes Ci, i P J ` 1.

Choose one representative hi for every homotopy class i. Take this family of generators: for every class i take
all h P i, h ‰ hi, and then the family of differences ph ´ hi, 0qh. Then choose one representative h0 of any
class 0 and also take the family of differences phi ´ h0, 0qi, i ‰ 0. Finally, take the vector p0, ηq. Then Z1̊ is
generated by these families. The reason for this choice is that the two families are linearly independent B1
cycles, and any difference ph´h1, 0q is contained in the free group they generate. In fact, if h is in homotopy
class i, h1 in class j, then h´h1 “ ph´hiq ` phi ´h0q ´ phj ´h0q ´ ph1 ´hjq. This implies that all boundaries
are in the subgroup generated by the families ph ´ hi, 0qh and by p0, ηq. Therefore the homology group
H1̊ pcSq “ Z1̊ {pB1̊ X Z1̊ q is free of rank J , proving the formula:

H1̊ pcSq „Ñ Z‘J

Let us terminate this homological calculation by exhibiting the number J of homotopy classes in the
stemmatic tree. Recall that we musically wanted to identify equivalent strategies of rehearsals related to
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the given stemma. For every arrow f : ct Ñ cs in cS , we are given a cube ppsq of weight parameters. We
are selecting curves in these cubes, reaching from 0 to the diagonal vector Δ “ p1, . . . 1q introduced above.
The musical obstructions in such a cube could come from certain forbidden weight parameter combinations.
For example, it could be impossible or not desired to play an intermediate weight combination of a melodic
weight Λ1 and a rhythmical weight Λ2 with weight parameters 0.3 and 0.4 for these weights, respectively.
Then we would have a hole in the plane I2 defined by these two weights, and therefore not all curves would
be homotopic. Suppose that for each ppsq, some obstructions are defined and generate a subspace p˚psq with
πpsq homotopy classes of curves from 0 to Δ. Then the total number of homotopy classes of the parameter
stemma space is πS “ ś

s πpsq and rkpH1̊ pcSqq “ πS ´ 1. In other words:

H1̊ pcSq „Ñ Z‘πS .

81.5 A Concrete Example

The mathematical and conceptual complexity of the previous calculations and reflexions should be illustrated
by a concrete example in order to enable the reader to realize the connections of this theory to practical
aspects of performance.

We choose the composition Träumerei T , the seventh piece in Robert Schumann’s op. 15, Kinderszenen.
It consists of four eight-measure periods T “ A,A1, B,A2 (including the repetition A1 of the first period A).
Each period is split into two four-measure phrases: A “ A1, A2, A

1 “ A1
1, A

1
2, B “ B1, B2, A

2 “ A2
1, A

2
2. We

shall use a stemmatic digraph cS that corresponds to this ramification. It is the same digraph we used to
exemplify the general theory in Figure 81.1, with this correspondence of nodes: T “ 1, A “ 2, A1 “ 3, B “
4, A2 “ 5, A1 “ 6, A2 “ 10, A1

1 “ 7, A1
2 “ 11, B1 “ 8, B2 “ 12, A2

1 “ 9, A2
2 “ 13. We shall focus on the

parameter sequence X. “ E,D, with parameter spaces W “ RED, U “ RE , V “ RD, where W and U are
in the default piano hierarchy, whereas V is not. This means that our performance shaping in this example
deals with tempo (relating to TempopEq “ Eצ at onset E) and articulation (relating to the D-component
of the tempo-articulation field ;E,Dצ pay attention, there is no independent articulation performance field
Dצ since articulation is a function of onset in our setup).

The frames on our parameter space are the objects of the frame category FrameE,D. We have thirteen
frames c1, c2, . . . c13, corresponding to the parameter rectangles in RED defined by the parts T,A1, . . . , A

2
2,

with their inclusion morphism, respectively, as follows: c2, c3, c4, c5 Ñ c1, c6, c10 Ñ c2, c7, c11 Ñ c3, c8, c12 Ñ
c4, c9, c13 Ñ c5.

Next we suppose that the preliminary analytical work has provided us with three weights: a rhythmical
weight ΛrpEq, a melodic weight ΛmpEq, and a harmonic weight ΛhpEq, each weight being a C1 function of
onset E only. This is what the RUBATO� software effectively calculates, see Chapter 41. As is standard in
performance theory, it may happen that we don’t apply the given weights, but derived ones to be able to
express what the performative shaping addresses. Let us suppose for example that the four periods c2, c3, c4, c5
are shaped in their tempi using weights derived from rhythmical and melodic weights. Suppose we want to
shape the mother tempo Eצ on the four periods ci, i “ 2, 3, 4, 5, by a factor γpEq “ ΛrpEq `ΛmpEq, yielding
four daughter tempi γpEqצE |ci , i “ 2, 3, 4, 5, on c2, c3, c4, c5. In order to achieve this deformation of tempo
by use of the Lie operator, we take the new weight function ΛpEq “ ş

1´γ
E , and we take the directional

morphism Dir “ IdE . Then we get the desired formula γpEqצE “ Eצ ´ LצE
Λ.IdE .

Suppose now that we have shaped the performance cells for the four periods according to the above
(or some other) Lie operator approach. Let us then look at the shaping procedure of one of the leaves of the
stemma digraph cS to see the homological situation more concretely. We know from harmonic analysis (see
for example Alban Berg’s famous analysis [112]) that the first phrase B1 of the B period involves modulatory
movements from F major to G minor, B5 major, and D minor, back to F major. We therefore want to shape
articulation (as said above: the duration component of the field (EDצ using information pertaining to the
melody weight Λm as well to the harmonic weight Λh. We start at the performance field c4צ

ED given on the B
period. At the end of a gesture g leading from the B period (on c4) to the B1 phrase (on c8), we have the B1

performance field c8צ
ED “ c4צ

ED ´Lצc4
ED

pΛm `ΛhqiDIdD (the directional morphism being taken as identity to
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make things simpler). According to our general setup, this gesture is parametrized by a gesture in the cube
I3 for three parameters: ξ for the shrinking of c4 to c8, and λ, μ for the mixed combination λΛm ` μΛh.

The critical object is the gesture g that moves from p0, 0, 0q in

Fig. 81.4. Three gestures in homotopi-
cally inequivalent positions with respect to
two parametric holes.

the cube to the Δ “ p1, 1, 1q value of our three parameters ξ, λ, μ,
i.e., gp0q “ p0, 0, 0q, gp1q “ Δ. Refer to Figure 81.4 for the follow-
ing discussion. The movement of a gesture g has a meaning for
the performer, which is that he/she starts from the performance
that is defined at value p0, 0, 0q, i.e., the period’s previous perfor-
mance, and now steps to the refined performance of B1, using the
two weights, melodic and harmonic, to reshape articulation. In a
naive approach, one would guess that whatever the pianist does in
this creation is essentially the same; the process is to just intro-
duce successively articulations that are shaped by mixed melodic
and harmonic weights. But when the pianist tries to play accord-
ing to those weights, it may happen that he/she cannot play any
linear combination λΛm ` μΛh. In Figure 81.4, we have inserted
two holes in the cube, where there are regions of λ, μ parameter
combinations, which cannot be played. Why not? Because it may
be impossible for the pianist to articulate according to a strong
melodic contribution versus a weak harmonic one, or vice versa, a
strong harmonic combined with a weak melodic contribution. In

other words, the pianist may only be capable of moving from p0, 0, 0q to Δ on a curve that does not include
such unbalanced contributions of the two weights. In Figure 81.4, we have drawn three gestures, g1, g2, g3,
where the first and third are impossible since they move through regions of unbalanced contributions, g1
below the left hole, or g3 above the right hole. Only the second curve g2 is sufficiently balanced to be playable
by the pianist. But this is a situation of homotopy: The two holes define three homotopy classes, each being
represented by one of the three gestures g1, g2, g3. The contribution to the homology group rank of this cube
is dual: There are three classes of continuous transgressions targeting at a defined performance of phrase B1,
but we have only one good gesture homotopy class, the two others are bad ones.

81.6 A Final Comment

Singular homology of hypergestures offers a first precise classification of types of rehearsal strategies in
musical performances if they are built upon stemmatic deployment using Lie-type performance operators.
Although this looks quite abstract, the gestural expressivity could be discussed in a rigorous manner without
being detached from practical consequences. The homotopy concept within spaces of weight parameters is a
rather intuitive account of rehearsal strategies.
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Composing and Analyzing with the Performing Body

Summary. In this chapter, we tackle both analysis and composition as reciprocal processes to investigate the
performer’s body. We argue that performers, more specifically, the performers’ bodily gestures, are key to the
critical understanding and the creation of music. This chapter contains three parts: first, we will investigate
the concept of embodied musical gestures through a range of inter-disciplinary scholars, ultimately defining a
concept that is useful and fruitful in discussing performance. In the second part, we will use Toru Takemitsu’s
Rain Tree Sketch II for Piano (1994) as a testing ground for analyzing with the performative body as the
starting point. And lastly, we will discuss how composing with performative gestures in my composition
Sheng (2016) for piano, audience’s smartphones, and fixed audio playback elicits the cross-modal, inter-
sensory nature of embodied musical gestures.

Indeed, the concept of embodied musical gesture has the potential to dissolve the artificial fractures
between the activities of thinking, creating, and doing. Analyzing and composing with the performing body
do away with this mind-body split, offering refreshing and generative insights that do justice to the physical
nature of music making.

– Σ –

Theorists are thinkers, composers are creators, performers are doers. Over-simplified as they are, these
designations nevertheless sum up our perception of each of these musical sub-disciplines in singular descrip-
tors. Each of these three distinctive roles in the practice and study of classical music has its own exclusive
preoccupations: theorists write about music, composers create it, and performers concretize it in real time.
However, a silent power differential lurks in the background that renders the task of performers—the doers—
as less serious, even less intelligent. Composers generate original works as scores that are played by perform-
ers and analyzed by theorists; theorists produce writings that provide insights that inspire new composi-
tional aesthetics and performative interpretations. Meanwhile, the majority of the output of performers—
performances—is a lot more ephemeral, vanishing only hours into thin air after it begins. Partially as a
consequence of these differences in output formats, composers and theorists are regarded to be at the fore-
front of creative and critical enquiry respectively; in contrast, the contribution of performers in pushing the
envelope of musical innovation does not seem to be quite on par.

Traditionally, performers in this tripartite relationship are seen to be purely at the receiving end: they
simply play the composers’ works, assisted by theorists who hold up illuminating torches that shine forth
meaning. While an analyst may rely on recordings of performances to get an impression of her work at hand
and a composer may ask for a performer’s feedback on the playability of her piece, performers themselves
play a secondary role in conceiving of music. Indeed, performers are merely doers; they are laborers whose
work is primarily done through their practical, physical skills.

Yet, to think that performers cannot contribute to analytical and creative enquiry is to entirely miss
the point of music making. Without performers, a score may as well be an abstract piece of art. Without
enlivening music through the arms, hands, fingers, and mouths of performers, theorists can only hope to
conjure up sounds in their heads. Performers, with their skilled bodies, should be at the front and center
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of analysis and creation. Theorists and composers must move away from conceiving of their tasks as mind-
focused in order to address the performative, bodily connection that has traditionally been missing.

Surely, since Susan Cusick famously decried the “mind/body problem” in music theory and musicology
in the 1990s, the field of performance-related musical analysis has slowly gained momentum [227]. Take,
for instance, Judith Lochhead and George Fisher’s article “Analyzing from the Body,” which inspired the
title of this chapter, where they approach two contrasting works for clarinet and piano by Joan Tower
and Johannes Brahms from a performative perspective [323]. Or Elizabeth Le Guin’s analysis of Baroque
composer Luigi Boccherini’s cello sonatas from the point of view of herself as a performer, which offers fresh,
groundbreaking insights into the understanding of this body of work, under-appreciated precisely because of
the inadequacies of traditional analyses [592]. Conversely, a movement of contemporary composers is focusing
on the compositional potentiality of the performer’s bodily gestures by giving explicit, often unusual bodily
instructions. Celeste Oram’s Toccata/Bruise (2016) for piano and Mark Applebaum’s Aphasia (2010) for an
actor performing in sign language are two such examples where deliberate, instructive performative gestures
foreground the corporeality of the performer on stage.

In this chapter, we tackle both analysis and composition as reciprocal processes to investigate the
performer’s body. We argue that performers, more specifically, the performers’ bodily gestures, are key to the
critical understanding and the creation of music. This chapter contains three parts: first, we will investigate
the concept of embodied musical gestures through a range of inter-disciplinary scholars, ultimately defining a
concept that is useful and fruitful in discussing performance. In the second part, we will use Toru Takemitsu’s
Rain Tree Sketch II for Piano (1994) as a testing ground for analyzing with the performative body as the
starting point. And lastly, we will discuss how composing with performative gestures in my composition
Sheng (2016) for piano, audience’s smartphones, and fixed audio playback elicits the cross-modal, inter-
sensory nature of embodied musical gestures.

Indeed, the concept of embodied musical gesture has the potential to dissolve the artificial fractures
between the activities of thinking, creating, and doing. Analyzing and composing with the performing body
do away with this mind-body split, offering refreshing and generative insights that do justice to the physical
nature of music making.

82.1 Gesture: A Sign or a Totality?

To begin with, the embodied musical gesture is a musical event (a figure, a phrase, or a contiguous group
of sounds) that necessarily has a bodily correlate. As a concept, the embodied musical gesture has recently
drawn a body of inter-disciplinary scholars together in addressing music in two fundamentally novel ways: as
an experience that is not just sonic but full-bodied, and as a discipline that cannot be adequately understood
through a purely mental-cognitive perspective.1 In other words, the musical experience is both inter-sensory
and corporeal. This pique in interest in how the whole body is implicated in musical meaning coincides with
the ever-growing field of neuro-physiological research in how humans perceive the world. One such example
of the intersection between scientific and music studies is the use of mirror neuron research by musicologist
Arnie Cox in [218, pp.45-59] to defend the “mimetic hypothesis.” Cox theorizes that because of mirror neuron
action, audiences understand music not only in terms of thoughts and emotions, but also through various
levels of sympathetic resonances in the body while witnessing (or imagining) the corporeal performer.

This idea of the embodied gesture is not new; in fact, it resounds with the foundational thoughts
of Maurice Merleau-Ponty seventy odd years ago, in his seminal Phenomenology of Perception [749] in
1945. Merleau-Ponty’s belief that “motility [is] basic intentionality”—that intentions as heard originate
from intentions as movement—was ground-breaking for its time [749, p.154]. Shunning the well-established
cartesian split between the body and mind that had dominated philosophical thinking for centuries, Merleau-
Ponty picked up these two segregated halves to complete the human person again: he regards the body, rather

1 I distinguish the “mental-cognitive” approach from that of just a cognitive one, since the latter would imply the
involvement of the body, given recent research in the field of embodied cognition.
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than merely the disembodied mind, as central to how humans understand the world.2 Through explicit or
implicit bodily actions, not mere mental activity, meaning is created. In addition to rejecting the cartesian
mind-body split, Merleau-Ponty also argues that bodily experiences of the world are not subdivided into
sensory components such as sight, touch, hearing, and so forth. Rather, a “thing” is experienced as an “inter-
sensory entity,” where all our senses communicate with one another. In [749, p.166], Merleau-Ponty writes
(emphasis mine):

And in so far as my hand knows hardness and softness, and my gaze knows the moon’s light, it
is as a certain way of linking up with the phenomenon and communicating with it. Hardness and
softness, roughness and smoothness, moonlight and sunlight, present themselves in our recollection,
not preeminently as sensory contents but as a certain kinds of symbiosis, certain ways the outside
has of invading us and certain ways we have of meeting this invasion, and memory here merely frees
the framework of the perception from the place where it originates.

Merleau-Ponty conceives of perception as a rich, inter-connected sensorium of the body. In light of this,
the experience of music does not merely involve hearing but also, for instance, feeling the thick texture of
a fully orchestrated chord, sensing the highs and lows of range, seeing the bright tone color of the flute, or
soaking up the warmth of a clarinet’s chalumeau register. The language with which we speak of music already
points towards this inter-sensory experience. Such an experience is not merely metaphorical but real, just
as our memories of height, temperature, sight, and touch become enmeshed in the “symbiosis” of a fully
corporeal experience.

To follow this line of thinking, in recent decades, related notions of embodied musical gestures have been
explored in different contexts, from David Lidov’s semiotics of gestures to Robert S. Hatten’s work on tropes
in Beethoven’s music [446, 610]. In their examination of musical gesture, musicologists and theorists have
traditionally embraced a semiotic approach. While David Lidov’s system of gestures is based on Peircian
semiotics such as sinsigns (singular gestures) and legisigns (repeated, recognizable gestures), Hatten uses
topics that signify extra-musical meaning to create emergent tropes with new meanings. Useful as these are,
a purely semiotic approach to gestures faces some limitations.

By its very nature, this “signification model” splits the musical experience into the body and its affects—
resurrecting Cusick’s mind-body dilemma. The body performs a gesture, the mind then interprets this as a
sign invested with meaning. However, as Cox points out in his mimetic hypothesis, mirror neuron research
suggests that we understand music at an even more elementary, neuro-muscular level [218]. It decentralizes
the experience of music away from the central mind and semiotic interpretations, and moves it to more
peripheral, sympathetic resonances with the performer’s hands, arms, vocal apparatus, and torso.

Recent scholarship on music and emotion raises an even more fundamental problem with the signification
model. Lawrence Zbikowski’s “Music, Emotion and Analysis” [1153] suggests that music and musical gestures
do not consist of the specific, categorized emotions on which much of current gesture analysis is based.
Rather, gestures consist of generic feelings that are emotively uncategorized. This implies that, under the
signification model, gestures signify emotions to listeners only upon explicit suggestions and contextualization
(for example, in the title of the work, concert program notes, assumed knowledge about the composer and
style, etc.). While the semiotic approach yields fruitful insights into contextualized meanings, in studying
these gesture-emotive signifiers within explicitly embedded contexts, are we ignoring these more elementary,
generic, and uncategorized feelings?

In an effort to address this conundrum I have turned to the more recent domain of performance studies.
In Agency and Embodiment, Carrie Noland [795, pp.66-77] provides valuable insights into these uncategorized
feelings through a close study of Bill Viola’s memorable video installation, The Quintet of the Astonished. In
the making of this video, Viola directed five actors to perform a sequence of emotions in direct succession.
He then slowed the video to the point where the micro-facial expressions, twitches, and contortions of the
faces between stereotypical emotive expressions were foregrounded.

2 Maurice Merleau-Ponty, regarded as the founder of embodiment philosophy, sees the bodily experience as the
starting point of human knowledge and understanding, see [750].
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Noland characterizes these uncategorized facial expressions and gesticulations that are in between emo-
tive states as gesture “deviances.” Not categorically emotive, these gestural deviances go between emotive
states; that is, they still contain in them some affective information that cannot be easily codified. By drawing
on the agency of embodied beings within culture through a Merleau-Pontyian point of view, she concludes
that cultural change stems precisely from our kinesthetic awareness of these gestural deviances. Instead of a
model of humans as repetitious robots who perform perpetually the same stereotypical gestures, she favors
the kinesthetic awareness of these interstitial, uncodified gestural deviances that enables the forging of new
meanings.

Noland [795, p.75] refers to these uncategorized feelings or gesticulations as “vitality affects,” a term
borrowed from child psychologist Daniel Stern in direct contrast to codified, emotive “categorical affects.”
Vitality affects are primal (“vital” to life) and pertain to the pre-emotive kinetic and energetic qualities of
touch, movement, and sound. In child development theory, as a child grows in a social environment, some of
these vitality affects are instilled with meaning and thus become categorical affects. But for adults, Noland
argues that by being kinesthetically aware of vitality affects, they can push their way into the culturally
inscribed sphere.

Noland’s vitality affects have groundbreaking implications on the field of music analysis. Her insistence
that new meanings are created by their kinesthetic awareness of vitality effects implies that the responsibility
of analysis now lies with those who are able to reflect upon and become aware of these vitality effects in the
body. In other words, Noland’s argument can be reinterpreted in a musical context as a call for a bodily-
based approach to analysis. Those who are most qualified to undertake this task, who have the most intimate
bodily knowledge of a piece of music, are exactly those who are traditionally left out of the field of analytical
enquiry: the performers. In the analysis below, I will thus take this viewpoint of the performer with privileged
information: analyzing from my self-awareness of performative gestures the feelings of tension, relaxation,
direction, and the quality of movements, as a starting point to investigate Takemitsu’s Rain Tree Sketch II.

The study of the vitality effects through a performer’s kinesthetic awareness is even more crucial in
understanding contemporary music. While the signification model could be effective in studying old works
such as those of Beethoven and Brahms, that cannot be said of new music. Contemporary composers are at
the forefront of forging new meanings that are uncodified, and are often difficult to situate within a clear
context from which a signification model needs to be based. A performance-based analysis of Rain Tree
Sketch II below reveals structural information that can only be manifested through such an intimate bodily
knowledge of the work.

82.2 A Gesture-Based Structural Reading in Rain Tree Sketch II by Toru
Takemitsu

Written in 1992, Toru Takemitsu’s Rain Tree Sketch II—dedicated to his beloved teacher Olivier Messiaen—
counts as his final piano composition. The title alludes to the short stories of Takemitsu’s friend and poet
Kenzaburo Oe about the rain tree, a miraculous ancient tree that stores rainwater in its many leaves and
releases droplets well after a storm has passed. Takemitsu draws his musical and aesthetic inspiration from
both his Western music training and his Japanese heritage. This is most apparent in his collection of writings
about the relationship of his compositional aesthetic to Japanese philosophy and his works that combine
Western and traditional Japanese instruments [1032].

Like much of Takemitsu’s piano music, Rain Tree Sketch II contains many stops and starts; three or
four measures of sound are often followed by a measure of rests throughout the piece. As such, the sound
and the in-between stillness are embodied by the performer with a predictable alternating bodily sequence:
after a configuration of movement finishes, the body is held in poise, after which another configuration of
movements begins again.

As a frequent performer of his music, I would describe Takemitsu’s music, in particular Rain Tree
Sketch II, as physical, more so than it is “intellectual” (like Babbitt) or “abstract” (like Webern). That is,
the success of a piece of music hinges most crucially on how well I execute choreographed movements. For
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instance, I argue that finishing a gesture by holding my body absolutely still in the rests before commencing
the next gesture is just as important (or even more so) as playing all the right notes. While other composers’
music might involve plenty of intellectual reflection, interpretation, and physical trial and error in order
to make the piece “work” as a whole, Rain Tree Sketch II seems to lend itself to a “structural playing.”
The structure and the progression towards the piece’s climax seem to simply play themselves out during a
performance.

Consequently, I will take the performative body as a starting point to investigate two structurally
important moments in the piece, the “peak” and the “climax” (explained below). Specifically, I will consider
these two moments from the point of view of performative gestures. By a performative gesture, I mean a
choreography of movements that has an intentional start and end. I will consider how these performative
gestures interact with certain recurring motifs in the piece to sculpt the peak and the climax.

Fig. 82.1. Formal sections and structural processes in Rain Tree Sketch II.

In an ABA-Coda form that could be described as a free-ternary form, the piece features two structural
processes (Figure 82.1). Figure 1 shows these two structural processes in relation to the formal ternary
sections of the piece. As Figure 82.1 shows, Process I spans the “A” section of the ternary form, while
Process II starts at the “B” section and lasts until the end of the piece.

These two processes each have a high point: a local “peak” (measure 23) in Process I and a global
“climax” (measure 49) of the piece in Process II. In the performance of the piece, I feel a distinction between
these two high points: whereas the peak is a tensing up of the whole body that feels unresolved and fleeting,
the climax is accompanied by a deeply peaceful feeling with a sense of visceral unwinding. The embodiment
of these structural points can be further explored by taking a closer look at two particular motifs in the piece
and how they are gesturally manifested.

82.2.1 Process I: Synergy of Mirroring and Parallel Gestures

A note of clarification before we proceed: a motif is defined by two or three pitches that recur recognizably
throughout the piece. While a motif is defined by pitch and rhythm, it goes through different transformations
including changes in texture, tempo, dynamics, etc. Consequently, motifs are played differently, that is, they
elicit different gestures.

One such motif that recurs saliently throughout the piece is motif i, defined by the A5´D6´C#6 figure
that first appears (measure 1), which supplies the principal material for Process I (Figure 82.2, circled). In
its first appearances (measures 1 and 2 at pitch; transposed in measures 4-5), motif i, with its upward then
downward pitch pattern, affords a subtle circular gesture in the right hand.

However, the different periodicities across the four vertical layers restrict the hands to relatively bound
positions; there is a certain sense of physical conflict between the layers. To play the top layer, my right
hand is naturally inclined to rest and recoil on the keybed at the end of motif i. However, the slurred pairs
below it do not permit me to do this; my right hand must keep undulating up and down for three times per
measure. In conflict with the right hand, which is already on a delicate fulcrum trying to compromise two
independent layers, the left hand is performing acrobatics of its own. The repeating C#5´B54´F#4 figure
calls for a natural circling-in wrist motion that repeats two times per measure; however, this circling motion
is executed not without effort. Tucked into this circular motion, I must fit the irregular, longer notes of D4
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and E4 below them. All to be executed in a soft dynamic with a “celestially light” touch, the beginning’s
embodiment is one of fastidious hand balance, full of compromises and tension within its limited, carefully
negotiated circular motion.

Fig. 82.2. Rain Tree Sketch II, measures 1-7, motif i circled. Copyright 1992 by Schott Music Co. Ltd., Tokyo, All
Rights Reserved, Used by permission of European American Music Distributors Company, sole U.S. and Canadian
agent for Schott Music Co. Ltd., Tokyo.

This balancing act thankfully does not last for long: after a bar of stillness in measure 8, motif i changes
registration and is treated chordally in two hands (Figure 82.3). Motif i appears in this guise for the rest of
Process I. While the two hands were working against each other in different periodicities in the beginning,
here, the hands work together with the same articulation, where a slurred pair is followed by a tenuto-accent
in both hands. Moreover, while the right hand moves up from A4 to D5 and then down to the C#5 to play
motif i, the left hand does the exact mirror image, moving down from B53 to accommodate the fifth finger
on the D3, then finally up to the F#3 on the third finger. Thus, the two hands make a mirroring, circling-in
gesture. This is a highly relaxing and satisfying motion which exploits the symmetry of the hands. In contrast
to the bounded and careful hand undulations of the first seven measures, in measures 9 and 12, the hands
are liberated to perform a mirroring circular gesture that releases the tension from the beginning. The tenuto
accent on the third chord allows me to relax and lean immediately into the keybed, transferring my arm
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weight into the keys. In addition, while the first seven measures are in the upper part of the keyboard that
destabilizes the torso, here I can relax not only my arms but also my whole trunk, as I play in the part of
the keyboard that is straight in front of me. Motif i thus becomes a circling-in, mirroring, weightful, and
relaxed gesture of the two hands and whole upper body.

Fig. 82.3. Measure 9, motif i circled. Copyright as in Figure 82.2.

In contrast to motif i’s transformation into a mirroring, circular gesture, motif ii emerges soon after:
motif ii first appears in measure 15 (Figure 82.4). This motif, the figure comprising of C#5 ´ A5 ´ G#6
sixteenth notes in the right hand and A3 ´ D4 ´ F4 in the left, recurs time and time again as a kind
of afterthought, almost always appearing after a longer gesture and leading to a measure of rests (other
appearances include measures 21, 24, 28, and 33 in Process I).

Fig. 82.4. Measure 15, motif ii. Copyright as in Figure 82.2.

Motif ii balances out the mirroring circular gesture of motif i of measure 9: both hands move in a similar
parallel motion upwards. Instead of motif i’s end that is a weightful relaxation into the keybed, motif ii drifts
upwards weightlessly with a diminuendo molto, ending up with arms in the air above the keyboard. However,
the weightlessness betrays the effort in the body: while motif i relaxes, the off-centered end position of the
arms to the far right of the keyboard in motif ii requires much effort in the shoulder and upper arm region
to maintain its poise in the following measure of stillness (measure 16). Figure 82.5 summarizes the shapes
and qualities of movement in the gestural renditions of motifs i and ii, in measures 9 and 15 respectively.

Given these two gestures with contrasting bodily tensions and relaxations, shapes, and relations to
gravity, we now approach our first moment of enquiry: the peak in measure 23. While the two gestures are
played out in succession up until this point, immediately before the peak in measure 22, these two archetypal
gestures are synthesized (Figure 82.6). In the two slurred pairs of chords in measure 22, the hands play in
contrary motion outwards in a mirror gesture, a trait of motif i. This mirror motion is emphasized by
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crescendi, as if lunging outwards towards the distal part of the hands. However, on a macroscopic level, the
arms are moving upwards in parallel motion, characteristically belonging to motif ii. The combination of
the mirror and parallel upward gestures lacks certain traits of the original motifs though; while the mirror
gesture was also circular in motif i, this is not the case here, as we only hear the first two notes of motif i
(A5 ´ D5 in the top voice in the first beat of measure 22 instead of A4 ´ D5 ´ C#5). The torso tension is
also more akin to that of motif ii; the body moves upwards towards the far right of the keyboard and stays
off-center for motif ii’s afterthought gesture in measure 24. Thus, in Process I, we experience a move towards
some kind of synergy between contrasting gestures. However, this attempt to combine the two gestures feels
incomplete; the body is unresolved by holding onto motif ii’s prior tension, yearning for a counter-balance
to the preponderance of right-sided tension.

Fig. 82.5. Bodily attributes of motif i’s and motif ii’s gestures.

Fig. 82.6. Measures 22-24, peak. Copyright as in Figure 82.2.

82.2.2 Process II: Towards Relaxation, Balance, and Weightfulness

Process II starts the journey towards its own high point, the piece’s climax, with a renewed bodily com-
portment, beginning in measure 35 (Figure 82.7). From the outset, the performer faces a different gestural
strategy. In Process I, the hands work in tandem in both the mirroring, circular gesture of motif i and the
parallel upward gesture of motif ii. That is, the hands simultaneously scoop outwards in a contrary motion,
or travel up the keyboard in similar motion at the same time. At the start of Process II, the hands do
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cooperate, but are also independent of each other: they play in canon, moving in a parallel, but staggered
motion (Figure 82.7). This interdependence of the hands gives the body a fresh approach, as if calling for a
cooperation that also respects the individuality of the two hands.

Fig. 82.7. Measures 35-37. Copyright as in Figure 82.2.

However, this fresh, gestural innovation does not come without a price; throughout Process II, a higher
demand of energy is placed on the performer’s body. While in Process I, gestures are mostly flanked by
pedaled, still resonances indicated as full measures of rests, in Process II, there is no such respite, with one
gesture moving straight to another. Here, the performer is allowed only a meagre few seconds of recovery in
the long held notes at the end of each gesture (for instance, in measure 36 of Figure 82.7), before moving
onto the next gesture. The effortful gestures and transitional still recoveries create a macrocosmic rhythm
undergirding the piece that is akin to throbbing. This throbbing rhythm between movement and stillness is
slow in Process I, with a long recovery time after almost every gesture. In contrast, Process II witnesses a
quickening of this rhythm, with less and less recovery time until the gestures are juxtaposed one after the
other as they head toward the climax in measure 48. The effortful gestures and recovering stillnesses thus
supply within the piece a general buildup of an embodied rhythmic energy towards the climax.

This arduousness in quickly shifting from one gesture to the next in Process II is coupled with yet
another bodily demand: an involvement of the body that is not just hands and arms, but the full body. The
lead-up to the climax entails a rocking gesture that moves the bodily engagement from the distal regions—
the fingers—toward the central torso (Figure 82.8). In measure 39 the F4´D4´F4 figure moves in a quick
to-and-fro rocking gesture. The fast sixteenth-note movements within a small space of whispery dynamics
ensure that the articulations are limited largely to the fingers. However, the answering phrase in measures
45-46 slows down to eighths and dotted eighths, allowing the arm to initiate its rocking motion. Finally,
the next measure engages the whole torso: the catapulting from the accented chord up (G#4 in the top
voice of the right hand) to a high register launches the entire torso toward the right end of the keyboard,
lifting up the chest. Following quickly, the rapid movement from the high register back down to the weighty
middle-register chords materializes in a sudden, quick jerk back to the left, including downward abdominal
force. In quick, successive movements the body rocks to the right and up and then to the left and down.
The spatiality of the music (the registers of the piano) and the weight of the gestures produce two distinct
dimensions (right/left and up/down).

The lead-up to the climax engages progressively more and more of the body: from the distal, to the
intermediate, to the central. This increase in physical energy and expansion of bodily involvement prepares
the performer for an outward spatial expansion in the climax in measures 48-49 (Figure 82.9). Here, a
fragment of motif ii—a D4´F4 melodic fragment from the left hand—is treated chordally, in the middle of
the keyboard. Instead of being parallel, upward moving, and light (see Figure 82.5), it is now treated with
motif i’s quality: contrary (mirroring) in motion as the two hands move to emphasize both of the fifth fingers,
heavy with an accent. Pitch-wise, we hear motif ii, but in physicality, it adopts all of motif i’s qualities. The
bodily tension also assumes that of motif i; I can both relax into the keys with my arms as well as sit with a
stable trunk, playing at the center of the keyboard. This gestural adoption of motif i’s qualities by motif ii’s
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Fig. 82.8. Rocking motion, from distal to central. Copyright as in Figure 82.2.

pitches is tweaked with several improvements. Firstly, while motif i is played with a circling inwards motion,
here, right after playing motif ii, the arms shoot out symmetrically towards the extremes of the keyboard
in measure 49. Thus, instead of contracting inwards as in motif i, the arms expand, and expand generously.
Secondly, in contrast to the off-centeredness of the torso at the peak in Process I, the symmetry with which
the arms move out at the climax assumes a centering balance. Bodily expansion and gestural synergy thus
need not be compromised by bodily tension; instead they can be accompanied by relaxation, balance, and
weight.

The gestural transformations of motifs i and ii thus drive the two processes towards their respective high
points. While both of these moments share a similar attempt to merge two contrasting motifs, the kinesthetic
feeling or physical experience cannot be more contrasting. A performative, gesture-based analysis reveals the
bringing together of differences in two different ways: through bodily tension and upward striving in Process
I, and through balance and bodily expansion in Process II, the latter being by far the more satisfying of
the two. What can be said about this structural experience of Rain Tree Sketch II in terms of Takemitsu’s
compositional aesthetic?

Indeed, the idea of merging opposing qualities resonates with Takemitsu’s own philosophy of reconcili-
ation, as expressed in his collection of writings, Confronting Silence [1032, p.81]:

That rich world of sound around me... those are the sounds that I should have the courage to let live
within my music. To reconcile those diverse, sometimes contradictory, sounds around us, that is the
exercise we need in order to walk that magical and miraculous road we call life.

The climactic reconciliation of opposing gestural qualities in Rain Tree Sketch II emerges not through
negation or domination but rather through unification within an expanded body. This kind of harmonious
reconciliation resonates with Takemitsu’s peaceful attitude toward the contradictions inherent in human
beings and nature, in music from East and West—where one element does not dominate another but both
live together in a state of “naturalness.” [1032, pp.59-67] The interdependence of opposites—light and heavy,
circular and parallel, balanced and off-centered—is played out also in terms of the fundamental bodily
opposition between left and right in the parallel, staggered motion at the very start of process II. This
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Fig. 82.9. Measures 48-49. Copyright as in Figure 82.2.

parallel, staggered motion is heard again immediately after the climax in measures 51 and 54, reminding us
of the opposite but complementary nature of the hands (Figure 82.10).

Fig. 82.10. Measure 51. Copyright as in Figure 82.2.

At the very last two measures, this parallel, staggered motion is stretched out even further, such that the
left hand’s energy seems to extend to the right hand, in one continuous flow (Figure 82.11). The completion
of the piece with this unified gesture certainly gives testament to these philosophical concerns that advocate
for unity achieved by bringing together complementary opposites.
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Fig. 82.11. Measures 75-6. Copyright as in Figure 82.2.

In this brief analysis of how a performer’s body is engaged both as a whole and as arm-based gestures,
the structure of the piece—the crucial moments and their kinesthetic experiences—is unveiled in ways that
traditional, even semiotic-based analyses could never achieve.

These kinesthetic feelings can be viewed in light of Takemitsu’s compositional aesthetic, giving way to a
nuanced and culturally sensitive interpretation. From a reverse perspective, embodied performative gestures
can also be the focus of compositional procedures. While composers traditionally pay painstaking attention
to the translation of sounds onto scores, a gesture-oriented approach refocuses musical creation to attend
directly to the act of performance

82.3 The Last Leg of a Bodily Journey

As a composer, I have explored embodied gestures through another medium, one that is perhaps not as
rigorous as analysis but is nonetheless illuminating and generative. Sheng is my composition involving piano,
audience’s smartphones, and fixed audio playback that grew out of this very research into performance-based
gestural analysis. It only counts as one piece of a larger, more ambitious multi-work project: a collaboration
of music, art, and technology called “Synaesthesia Playground” with fourteen other creators. In the rest
of this chapter, I will be discussing how the compositional process of Sheng shines light on the physical-
affective-sonic makeup of an embodied musical gesture, as well as its cross-modal and shared, inter-corporeal
nature.

Before we launch into a discussion of Sheng, some background about “Synaesthesia Playground” is
in order. In this project, I led an interdisciplinary team of six composers, two visual artists, five software
developers, and two fashion designers to create six multimedia works for a piano recital (performed by me).
As suggested by the project’s title, the theme of inter-sensoriality is explored. The idea of inter-sensoriality
stems from the Merleau-Pontyian concept of perception as a “symbiosis” of the senses as discussed in Section
82.1, and more specifically, the notion that the musical experience involves the full body and an intermingling
of the senses. The multimedia component in “Synaesthesia Playground” is thus not a superfluous addition to
the sound, but a crucial and integrative aspect that highlights the synergistic nature of musical perception.
More specifically, there are two major visual installations in the project. These two installations examine
the concept of the body and the dichotomy between its interiority and exteriority. The first installation is a
video projection by Celeste Oram and Takefumi Ide that is cast onto the body of the piano, reimagining the
piano as a living organism with a “skin” (Figure 82.12). Figure 82.12 shows a still of the video projection
for the very first piece of the recital, Toccata and Bruise by Celeste Oram. This video projection is featured
throughout the entire first half of the recital, unifying the works with a connected visual element. In contrast,
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Fig. 82.12. “Epidermis of the piano” in Oram’s Toccata and Bruise.

the installation in the second half of the recital is not on the body of the piano, but on that of the pianist
(Figure 82.13).

Fig. 82.13. Bio Lux by Nagasawa, Hui, in Arnold Batt-Rawden’s Love Spiral.
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As Figure 82.13 shows, this is a luminescent performance attire made of optical fibers, called Bio
Lux by Nobuho Nagasawa, Bopha Hul and Troy Arnold. Changing colors and pulsating to my heartbeat,
breathing, and movements, the attire renders the inner workings of my body visible, virtually flipping my
viscera inside-out. Thus, the skin or “epidermis of the piano” is featured in the first half of the recital while
the “viscera of the pianist” is made visible in the second half. These two visual installations that explore the
dichotomy between the exteriority of the piano and the interiority of the pianist define the general thematic
movement of the two halves, as seen in the recital program (Figures 82.14 and 82.15). As Figures 82.14

Fig. 82.14. “Synaesthesia Playground” recital program (first half).

and 82.15 reveal, each half of the recital comprises of three musical works. Altogether, the six works form
an overarching recital narrative: that of a journey from the exterior of the body to the interior. Each work
deals with a particular bodily experience and leads to the next; together, they create a gradual movement
inwards until reaching the very interior viscera of the body. However, this bodily journey is not solely one of
my own, where the audience is merely a passive onlooker. Rather, from the point of view of Cox’s “mimetic
hypothesis,” as I perform, the audience resonates with me such that this bodily journey is experienced first
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hand by all who witness the recital. Seen from this perspective, I literally take the audience on a journey
inside their own bodies.

Fig. 82.15. “Synaesthesia Playground” recital program (second half).

A closer look at the program in Figures 82.14 and 82.15 shows that the first half of the recital, “epidermis
of the piano,” is a movement from the very superficialities of the body—the sense of touch—through the
vocal apparatus, to the inner spiritual core. Skin, voice, and core: these bodily experiences are encapsulated
respectively in the three works: Toccata and Bruise by Celeste Oram, Iyalāmai by Anne Sophie Andersen,
and Missa de Glossa by Sidney Boquiren. After this active, inward-moving journey, the second half of
the recital, “viscera of the pianist,” dwells in the interior viscera for a while. The first two pieces feature
the intimate physiology of the performer’s body: in Love Spiral by Andrew Batt-Rawden, I play to the
continuously changing tempo set by my own heartbeat (detected by an Arduino pulse sensor), while in Lux
Venit, the music and live sound playback responds to my breathing (detected by a microphone). These two
pieces thus explore the organic inner workings of the body. However, after this inward journey, the recital
narrative finally shoots outwards towards an interactive, collective experience. The last piece, Sheng, ties all
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the elements of the journey together, exploring interiority and exteriority simultaneously with the concept
of inter-corporeality through performer-audience interactions.

82.3.1 Sheng for Piano, Smartphones, and Fixed Playback

Sheng is a collective structured improvisation involving the audience’s mobile phones as makeshift instru-
ments, with one guiding improviser (me) at the front. At its heart is a vision to extend performative gestures
to the audience not only as bodily resonance with the performer but as active, shared participation. Sheng is
the Chinese word for “life”; specifically in this composition, it refers to three life-giving elemental aspects—
metal, water, and air—that are universally shared, according to traditional Chinese philosophy. The piece
is divided into three sections of almost identical names—Metal, Underwater, and Air—that contain vastly
different soundscapes on the fixed playback. Throughout the three sections, the audience (whom I will refer
to as participants) and the pianist play sounds that pertain to the elemental aspect of each section. While
the piece is mostly improvisational, both the pianist and the participants do have some rules to follow. The
pianist improvises to broad guidelines: Metal concentrates on extended techniques on the metallic strings of
the piano, Underwater foregrounds pulsating pitches (“wobbles” that come and go), and Air sees ascending
pitch structures that reach up to the top four prepared pitches on the piano. Throughout the performance,
the pianist is asked to respond to the sounds of the participants, and the colors and pulsations of Bio Lux
(preprogrammed to the fixed audio playback). She also has control over when a section changes to the next
via an interface panel. The participants, in contrast, receive instructions on their smartphones in real-time,
which ask them to play various gestures in relations to other participants, the pianist, and their own bodily
comportments.3

Fig. 82.16. Layout of audience quadrant divisions in Sheng.

Among the inter-connected elements of the piece’s set up—the pianist wearing Bio Lux, the participants
with their smartphones, and the audio playback—I will focus the discussion here on the participants, since

3 A video of a performance of Sheng in the premiere of Synaesthesia Playground at Stony Brook University can be
found here: https://www.youtube.com/watch?v=tL6i9NRFBHM

https://www.youtube.com/watch?v=tL6i9NRFBHM
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embodied gestures are most creatively explored through composing and performing with smartphone ges-
tures. Before launching into the discussion, however, the spatial logistics and technical infrastructure of the
piece need to be addressed. Spatially, the audience is divided into four quadrants in relation to the piano—
left upper, right upper, left lower, and right lower—as shown in Figure 82.16. These four quadrants are
given color labels (blue, red, yellow, and green) for convenience. Before the performance begins, participants
are asked to join the local area network with their smartphones and identify the quadrant in which they
are located on their devices. This division allows the participants in the four quadrants to receive different
instructions on their phones, which specify when and how to perform various physical gestures with their
smartphones (shake them, slash them, tickle the screen, etc.) in order to play sounds. An example of this
is in Figure 82.17, which shows a screen capture of a particular instruction. Here, the participant is asked
to be aware of his internal body (swallowing saliva) in order to perform a gesture, upon which a “popping”
sound will be played. These on-screen instructions change every couple of minutes or so, thus functioning as
a kind of “score” for the audience.

82.3.2 Cross-modality of Gestures

One might ask, why use gestures when one can simply play a sound via a button on the smartphone?
Composing with smartphone gestures in Sheng is a way to explore the connection between sound and
movement. In programming gestures to map to certain sounds on the smartphone, I have converted a task-
oriented, everyday tool to become an interim, makeshift musical instrument. The design of this makeshift
instrument is in the mapping between a gesture with a particular sound. While on the piano (or any standard
instrument), gesture-sound mappings are mostly fixed (for instance, one can only play a middle C in so
many ways), as a composer/instrument designer for the smartphone, I can create countless and arbitrary
mappings. However, not all mappings are equal; the design task of mapping a gesture to a sound involves
careful consideration of cross-modal bodily experiences to construct an intuitive match between the physical,
affective, and the sonic. In other words, the intuitive complementation of certain gesture-sound mappings
depends on how a particular movement is usually felt, executed, seen, heard, or experienced in everyday life
by the target audience/user. The question of complementarity of a gesture-sound mapping, in fact, already
has an informal designation in computer game-speak. A game has “juice” if it has inter-sensory (audio,
haptic, etc.) elements that make on-screen events realistic, exciting or interactive; for instance, an explosion
may correspond with a shake in the controller, or a “woop” sound with a jump by an on-screen character.
In Sheng, the compositional process consequently involves constantly drawing on my own bodily experiences
of how a physical motion might feel and sound. For instance, a metallic, slashing sound is programmed to a
diagonal, downward fast motion, while a shivering, fluttering sound is programmed to a shaking motion in
the first section Metal. In contrast, the minimal tapping motion in Figure 82.17 is connected to an internal
swallowing motion. This instruction appears in the second section, Underwater, in which the fixed audio
playback creates a watery, submerged impression.4 The participant’s swallow is connected to the “popping”
sound that suggests an underwater air bubble or an ear-pop, immersing him in the submerged experience
through his own body. The process of creating effective gesture-sound mappings thus draws on the bodily
history of an audience through cross-modal references.

82.3.3 Learning the Smartphone Instrument

With newly programmed sound-gesture mappings on their phones, the audience is in a sense learning a new
instrument as the piece progresses. To investigate the implications of learning the smartphone-as-musical-
instrument, one could benefit from a closer look at the process of instrumental skill acquisition. Acquiring
instrumental skills involves training a specific set of physical movements that successfully produce sounds for
which one is intently listening. These sounds are linked to certain experiences such as affects, emotions, and
imaginative cross-modal analogies (one only needs to listen to any work by Impressionist composer Claude
Debussy to sense the connection between his pieces’ evocative titles and sound-worlds). In other words, to

4 This section could be found 21302 into the video.
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Fig. 82.17. Smartphone screen capture for a particular instruction in Sheng.

learn an instrument is to acquire a set of physical-affective-sonic connections that pertain to the peculiarities
of the instrument. Obviously, these connections may vary between individuals because of differences in body
types; nevertheless, learned pedagogical traditions ensure some commonalities among those who play the
same instrument. For instance, for pianists, legato and warm tones are associated with flexible wrists and
supple fingers, while loud and violent passages are associated with a steadying of the whole torso, which
forms the solid basis for forceful and quick changes in the arms. Furthermore, style plays a big factor in
determining this multi-facted connection: the light legato touch demanded in an early classical work such
as a Mozart slow movement tends to be different from a richer legato touch in, say, a Brahms Intermezzo.
Thus, to learn an instrument is to acquire a habitus, a specific set of bodily techniques in which are ingrained
physical-affective-sonic connections influenced by stylistic assumptions and tendencies.

In Sheng, the learning of the smartphone-as-musical-instrument does not start from scratch as it would
with a standard instrument; rather it is disruptive of its already prescribed usage. This prescribed usage is
task-driven and heavily dependent on the visual sense: just think of the hand-eye—or finger-eye—association
needed while one scrolls through her Twitter feed with a flick of her finger, eyes darting up and down to catch
all the nuggets of information. Information retrieval through the coordination between finger-based gestures
and the visual sense, whether the information is communicative through chat apps or knowledge-based
through web browsers, is at the heart of mobile device usage. Even when the information to be retrieved is
sonic (for example, songs on a streaming audio app such as Spotify or Pandora), the finger-based gestures are
connected to the visual information displayed on the screen, and are performed before the sonic information
is given; once the song starts to play, one can easily close the lid of the device, sit back or do unrelated tasks.

In Sheng, I am disrupting the participants’ learned finger-eye associations and information-driven stylis-
tic use of the smartphone. Instead, one could say that a new “style,” or a new attitude, for the smartphone’s
usage is created, one that is sonically focused and creative. While another stylistic use might be that of video
games (disruptive of information-oriented usage but nevertheless mainly visual), here in Sheng, the smart-
phone is used as a musical instrument in an immersive, interactive concert setting. The gestures in Sheng
are not only finger-based but also involve arm and upper body motions. During the performance, physical-
affective-sonic connections are thus inscribed onto the participant’s body such that her smartphone becomes



82.3 The Last Leg of a Bodily Journey 1281

full, intuitive extension of her bodily being. In other words, learning the smartphone-as-musical-instrument
involves suspending its mundane, everyday associations to use it in a creative, full-bodied, affective, sonically
oriented, and interactive way.

82.3.4 Kinesthetic Awareness and Modes of Listening

Fig. 82.18. Example of instructions (right) and audience dynamics (left) in first section, Metal.

To exploit this concept of the smartphone as instrument, the instructions I have devised exploit two
crucial abilities required to learn any instrument: kinesthetic awareness and flexible listening. When one
learns an instrument such as the piano, she needs to feel kinesthetically the muscle tone of her arms, the
pressure on her fingers, and the curvature of her palms in order to finesse her movements to achieve desired
sounds. Without such an internal monitoring of one’s bodily movements, muscle tensions, movements, and
postures, it would be impossible to improve and master her instrument. In tandem with this kinesthetic
awareness, learning an instrument requires a heightened and flexible sense of hearing; the student listens for
different aspects of sound, including dynamics, length of notes, timbre, etc. at different times. At a particular
moment the player may need to listen microscopically for a pitch decay, yet at another time one may need
to listen macroscopically to the sound of the instrument in the ringing acoustics of a concert hall. In Sheng,
I have exploited these notions of inward-looking kinesthesia and outwardly directed modes of listening by
prompting the members of the audience to kinesthetically feel their own bodies and listen in different ways.
Moreover, I have extended the concept of listening to include not only one’s own sound production but also
that of other participants (Figures 82.18- 82.20). The screen captures of instructions in the three different
sections of the piece in Figures 82.18 to 82.20 show this exploration of feeling inwardly and listening outwardly
and interactively. Contrasting kinds of listening are required of the four quadrants in the first section, Metal
(Figure 82.18 right): while the red quadrant participants listen for “fluttering,” (performed by the blue
quadrant), the blue quadrant participants feel their own internal bodies (heartbeats). Both the green and
yellow quadrants participants are prompted by instructions to listen to the whole sound in a macroscopic
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Fig. 82.19. Example of instructions (right) and audience dynamics (left) in second section, Underwater.

Fig. 82.20. Example of instructions (right) and audience dynamics (left) in third section, Air.

kind of listening. Thus, a social dynamic situation is created, where different participants respond, listen, feel,
and act differently under the influence of different dispositions prompted by the instructions. The dynamics
of the four quadrants are illustrated in the left portion of Figure 18, where the arrows indicate the direction
of attention. As these arrows illustrate, the four quadrants are directed to listen inwardly (blue), interactively
(red), and macroscopically (green and yellow).
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Contrastingly, in the second section, Underwater (Figure 82.19), the four quadrants are asked to kines-
thetically pay attention or “listen” inwards to their own bodies in a hyper-sensitive manner, much akin to
when one is submerged underwater and can hear the sound of her own breath and swallowing. As the left
portion of Figure 82.19 shows, the dynamics of all quadrants are solipsistic and introverted, in contrast to the
active interaction between the participants in the first section. And in the final section, Air (Figure 82.20),
the four quadrants are asked to listen to each other with a domino effect, much as in an aerial formation of a
flock of birds, where one follows another in succession. The blue quadrant participants listen to and look at
the pianist for their cue, red listens to blue, green listens to red, and yellow listens to green. At the very end of
the piece, I play softer and softer sounds until the gestures become silent, as if I am ghosting the keys. Here,
the blue quadrant’s participants rely on their visual sense in order to play their gesture. As demonstrated
in these three examples, all the instructions are tailored to elicit the duality of interiority and exteriority
through internal kinesthesia and external listening, all the while adding an extra layer, asking participants
to listen and respond to each other’s sounds and gestures in an inter-corporeal engagement. The disposition
suggested by the instruction, along with the gesture and its sound, constitutes the embodied musical gesture;
the participants learn the gestures through an inter-sensorial enmeshment of feeling, listening, seeing and
moving, all the while collectively engaging an inter-corporeal experience that is unique to their own bodies
and their relationship to the other present bodies in the concert hall.

82.4 Conclusion: Foregrounding the Performer’s Body

In the above two case studies, we encounter that which has been traditionally left by the wayside in the acts
of analysis and composition: the performative body. Both, analytical and creative enquiries into Takemitsu’s
Rain Tree Sketch II and my composition Sheng respectively demonstrate that the musical experience is never
divorced from the body that feels, moves, and resonates with those of others. It would be stating the obvious
to say that without the body, music can neither be sounded nor experienced; yet traditionally analysts and
composers disregard its importance by hiding it behind the score. In Rain Tree Sketch II, a performance-
based analysis that takes the performer’s body as a starting point reveals structural significances that cannot
be derived from a score-based approach. It reveals that musical and bodily intentions are, in fact, inseparably
unified. Although Rain Tree Sketch II is used as one particular test case for such a gestural approach, the
efficacy of this methodology—analyzing from the performer’s body—is neither limited to this piece nor
to Takemitsu’s music. Performance-based analysis is slowly and steadily gaining traction in mainstream
musicology to counter the surfeit of analyses that seem entirely divorced from the act of performance, and
consequently, from the experience of listening.

As a reciprocal process to analysis, the compositional process in Sheng is used as a mode of enquiry
into the embodied musical gesture—its physical-affective-sonic constituency, cross-modal nature, and inter-
corporeal potentiality. The preconceived idea of the composer who dreams up sound palettes and imagines
sonic worlds and abstract structures is challenged by placing the performer’s body at the front and center of
the act of composition. Through the smartphone, I disrupt its functional usage and finger-visual association to
convert it into a creative, full-bodied musical instrument. By placing performative gestures at the forefront, I
draw on the cross-modality of gestures to create an intuitive and satisfying performance experience. Through
their participation, the members of theaudience themselves are invited to explore different modes of listening
and the concepts inter-corporeal resonances and inter-sensoriality. Composing with the performer’s body as
the focus of creative enquiry can lead to new physical-affective-sonic connections and provocative insights
into instrument design with gesture technologies.

As the field of computer science enters an era when intuitive gesture technologies are at their peak,
so must composers be at the frontiers to forge new gestural meanings and extend our artistic, corporeal
experiences that are relevant to this age.
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Gestural Analysis and Classification of a Conductor’s Movements

Summary. Gestures can be studied as the connection of discrete points by continuous paths. In the gesture of
the orchestral conductor, the points connected by the gestural path correspond to metric movements of time
represented in space. Here, we will study the gestures of the conductor referring to some concept of homotopy
theory. The basic metric gesture is a regular and symmetric spanning of the space between points. Musical
interpretation modifies the form of these regular gestures, changing their time, velocity, energy, amplitude
and directionality. Thus, the most important information for performance contained in the orchestral score
can be described by gestures. The conductor can also, through his gesture, add elements not explicitly
contained in the score. The conductor’s gestures anticipate and continuously prepare the gestures of each
musician in the orchestra in a hierarchical structure that corresponds to the structure of the score: from the
general form to the articulation of each single note. In the first part of this chapter, we will discuss a case
of study. In the second part, we will give some mathematical hints for a precise description of conducting
gestures. In the third part, we will see an example of technology applied to conducting.

– Σ –

83.1 Gestures and Communication in Orchestral Conducting: A Case Study

To formally understand how music, from the pencil of composer to the brain of listener, can transmit its
message, it is necessary to utilize methods from different branches of science: physics, mathematics, psychol-
ogy, linguistics. Using concepts from all these disciplines we are able to construct the musical ontology : signs
(expression, signification, content), realities (symbolic, psychologic, physical) and communication (poiesis,
neutral level, aesthesis). Moreover, the concept of gesture, recently formalized [720], is a decisive connecting
instrument between such analytical categories. In particular, orchestral conducting involves an intermediary
step, the communication between conductor and musicians, which requires both specialized and common
gestures. Here we present a case study, where the dimensions of signs and realities are used to analyze the
gestural approach of Sergiu Celibidache during a rehearsal of Fauré’s Requiem.

Something is ineffable—impossible to speak about—until one finds the appropriate words. Making a
simple syllogism, if the appropriate words to describe nature are mathematical formulas, and the human
being is a part of nature, then mathematical formalism can be applied to every human production and
activity. Even science can describe art, and even art is present in science in the form of contemplation of
beauty. In fact, the same word, theory, very common in scientific vocabulary, derives from Greek θεωρέω,
from ὁράω, to see, and θέα (θέαμα), sight (spectacle). It is not the case that many artists have a double
background, in science and in art. For example, the conductor Sergiu Celibidache, of which we will examine
a rehearsal as a case study, was mathematician and musician. Among arts, we find that scientific concepts
and computational tools have already been successfully applied in the field of music, for both analytic and
creative purposes.
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Musical ontology is given by three different layers, each of them having three components, see Chapter
2 for details.

• sign: expression, signification, content;
• realities: symbolic, psychological, physical;
• communication: poiesis, neutral level, aesthesis.

The communication strategy requires paths between points in this ontological scheme. The motor-entity
that permits displacements among these points is the gesture. Gestures, present in all human activity (and
not only human!), have been recently formalized [720], see Section 61.5. Playing music is effectively like
emulating the movements of a dancer: he or she touches the stage in discrete points (the notes), when he
or she moves continuously (gestures). The three-dimensional ontology has in fact been extended by a fourth
dimension: embodiment, comprising gestures, too, see Section 57.1. Human gestures can be divided into two
fundamental categories:

• specific gestures in specialized context: culturally invariant, known only by specialists in the field belonging
to different cultural environments,

• gesture as support of oral communication, culturally dependent, known by all persons in a cultural
environment; this kind of gesture implies a risk of misunderstandings among persons belonging to different
cultures.

Orchestral conducting is a specific field of musical performance in which the two types of gestures
are both present [150]. Conducting gestures are not directly finalized to the production of sound, but they
suggest to orchestral musicians how to play, i.e., which gestures to perform. They are therefore kind of
‘meta-gestures’. Although for many people orchestral conducting is still the kingdom either of ineffability or
of uselessness, there are several treatises that explain the basilar techniques of this art [791, 941].

Let us analyze a specific case of study, represented by a chorus rehearsal [183] of the Requiem in D
Minor op. 48 by Gabriel Fauré [311], conducted by Sergiu Celibidache, at the head of a semi-professional
chorus, and the London Symphony Orchestra, recorded in 1983. This work is accessible via YouTube. The
presence of music and text implies a double layer of meaning: musical content (not directly word-related)
and textual content (precise reference to images and abstract concepts). In particular, the text refers to a
mass for dead peoples’ souls in a Catholic rite, but its fundamental concept is extensible to every human
being: a person who is asking for forgiveness with remorses and guilt in the sadness of his last hour of life.
For this reason, the interest of the text and its interaction with musical realities is not only related to the
ambit of a specific rite, but covers a more general aspect of human life.

83.1.1 Problematics and Solving Methods

Here we will present some typical problematics of the work of the conductor, and the solutions found in
this case of study. Generalizations will be discussed in the following section. In our case of study, the most
relevant part is played by a chorus. Two layers are evident: the meaning of the text sung by chorus that—in
this case—inspires the structure of the music, and the layer of the music itself. In some passages there are
however some minor conflicts between them, and the conductor has to solve these problems case by case. We
start with the primitive singing-gesture: breath. When performing the passage of Figure 83.1, Celibidache

Pi

p

e- Je su- Do mi- ne,- do na- e is- re qui- em,- do na- e is-


dolce e tranquille

  
                      

Fig. 83.1. The beginning of the Soprano solo part in Pie Jesu. This and the following examples are excerpts from
Requiem by G. Fauré.
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says to the solo singer who was making a hurried—then wrong—take of breath: You don’t have to be afraid
of the conductor. The breath, your breath is a part of expression! It is the dimension of your internal affective
world. It is not a matter of being in time, because YOU create the time! Then, he suggests making a change
in the written score: Don’t sing as it is written, it is a crime! referring to a more aesthetical anticipation
of the consonant ‘n’ in the word ‘donna’. Effectively, the mechanism of voice is not visible and external like
the production of sound, for example by string instruments. The vocal chords are hidden, and the learning
of vocal technique is still related to a complex ensemble of feelings and images. It is a field that needs more
formalization and comprehension, see Chapter 86. Since the production of sounds by singers is strongly
related to their visual and gestural imagination, the indications given by the conductor are strongly related
to this field, too. Moreover, to augment the fascination of this field, there is a correspondence between two
topoi : The pair inspiration-expiration and the pair raise-beat in symbolic scores, such as arsis-thesis in Greek
prosody (Figure 83.3), that finds a natural realization in the primitive gesture of a conductor (Figure 83.2),
as explained in [643]. Moreover, it is not the case that Celibidache was interested in Oriental spirituality and
meditation, where breath and control of gestures plays a central role [184].

Do mi- nus- De us- - -

        

Fig. 83.2. and the corresponding arsis—thesis in

breath: inspiration and expiration.

Fig. 83.3. The beat and the raise, a primitive ges-

ture in conducting

In Sanctus, measure 32, the tenors are requested not to accent the third syllable of Gloria, following
both the accent of the word and a soft sense of diminuendo in the legato phrase. Differently, in a later phrase,
i.e., in measure 35, the shape of the melody would require an accent on the last part of the word (Osanna).
In this case Celibidache proposes a compromise between the contrasting requirements of text and music.
There is another change in measure 41 for sopranos: the last syllable of the word excelsis that has not to be
emphasized; however it corresponds musically to a tonic accent: the first one in the measure. Referring to
the repeated structure of Osanna in the score, the conductor uses the metaphor of ‘taking in himself’, in his
own arms, to suggest the idea of catching the last sound, producing a diminuendo and a soft staccato. This
particular gesture will be analyzed later in more detail, since it represents a point of connection between
the world of specialized gestures used in conducting and the world of non-specialized gestures used by all
persons in the same cultural context to express feelings. Celibidache explains that, for example, the text
Libera me domine is not an imposition; it is rather a supplication. The concept of ‘supplication’ has to
be translated into gesture and then into music (see our discusson of transmodal interpretations of gestural
morphisms in Section 83.2). Listeners will recreate, in their minds, the original gesture of begging, then
the abstract concept, and, finally, the corresponding mystical idea. To represent his intentions to musicians,
the conductor uses also facial expressions: a diminuendo until silence is represented using whispering lips.
A typically expressive role belongs to the left hand that does not in general express tempo indication in
conducting. In a Requiem passage, Celibidache puts his left hand on his chest to underline a specific passage,
a kind of gesture more similar to the non-specialized ones from daily life. The orchestra will not react to this
gesture in the same way as to an other one. It is a more precise gesture that remarks the emerging of a loud
theme or voice. One other gesture, with the open left hand, underlines the pianissimo in the tutti passage
in the score.

According to Celibidache, the essence of creativity is a primitive and direct act. The reference to
gesture, both in composition and in performance, is evident. What is the creative act in music? Of course,
the composer creates. But the performer has also to give life to scores, unfreezing its gestures. In the specific
case of Celibidache, according to a chorister, he is a genius, because he recreated the piece, instead of limiting
himself to reinterpreting it. And, as the conductor himself says during an interview, we have to find out
what is not written in the score, and then, quoting Gustav Mahler: In the score there is everything but the
essential. Besides offering fascinating words, Mahler’s statement reaches the central problem in performance.
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In the score are indicated the points to reach, the notes, but not the essential instructions, how to play these
notes, how to reach these points, i.e., which gestures to use. Musicians know specific gestures, but the role of
the conductor is fundamental to making homogeneous in a central way the different personal interpretations
and points of view. In the next section, we will discuss this problem from the general perspective of the
musical ontology.

83.1.2 Results, Consequences, Applications

Performers start from the symbolic content of a score (its expression) to produce, using gestures, the physical
phenomena that can convey a specific content to the listener. In our geometric frame of Figure 57.1, we start
from expression/symbolic to reach content/psychological via the intermediate passage of content/physical
[643]. It is a kind of transformation from gestures to musical facts, such as a rotation in the complex
plane from the mental reality to the physical reality, see Section 59.2. The music via physical parameters
sometimes has a dramatic effect on the psychological frame that can be described as an allez-retour from
physical reality to psychological reality back to physical reality of the human body—a mechanism similar
to the one present in psychosomatic diseases. The orchestral conductor’s gestures realize an intermediary
passage between expression/symbolic and content/physical, rather than expression/physical. As previously
stated, the conductor uses specific gestures but also gestures derived from common experience shared by non-
specialized persons in daily communication. Physical metaphors, visualized by hand or induced by words,
suggest musical gestures that will produce in the listener the same content. Following the reference to the
text of Requiem, the soul of the dead man is accepted in paradise as a ‘hug’ in heaven from spirits and
angels. It is the case of the hug suggested by the conductor when singers in chorus sing the Osanna. Physical
reality is, at the same time, an instrument to convey psychological content, but it is also the destination of
the content. When music is artistically composed (good poiesis) and artistically played, its effect can affect
also the physical side. Moreover, we talk of the Stendhal syndrome when the emotion provoked by a musical
or visual artwork of extraordinary beauty causes tachycardia, dizziness, confusion, and, in some cases, even
hallucinations or loss of consciousness.

What is, then, the role of a conductor? Of course, not only to give the same tempo for all musicians.
He has to help orchestral musicians find the correct gesture to better express the content of a score, i.e.,
to transform symbolic reality into physical parameters that can produce a psychological effect on listeners.
In order to accomplish this mission, the conductor utilizes, first of all, hand-arm gestures, and, next, verbal
expressions. Verbal expressions often contain references to unexpressed gestures. If, for example, the conduc-
tor says “Here the soul of the man is received by angels in heaven,” the underlying (gestural) image is an
ensemble of angels with their arms toward the human, in a kind of ‘welcome’. The ‘welcome’ is a concept
understandable also by persons who do not believe in angels: it is a universal idea shared by all humans.
However, also in cases not so strongly relied to visual situations, words can refer to gestures. If the conductor
says “Here the altos have to stay behind tenors,” he is implying a kind of spatial visualization of sound
layers. It is not, of course, requiring them a change in the positions of the bodies of the singers; it is instead
required to lower the loudness of voices of altos, to emphasize, in that specific time interval, the contribution
of tenors. If we represent the symbolic content of a score by a simplified graph with only intensity, pitch and
time (as noted using Maelzel’s Metronome), the requirement of modifying intensity of a layer can be realized
using a gesture that puts one layer behind, and displaces the other one to a frontal position. Therefore, in the
conductor’s activity, the words talk about gestures, and the hands, too, talk about gestures using gestures.
The process of fruition of the artwork is a kind of signification between expression and content. What is
the meaning of a Requiem? What is the meaning of this specific requiem we are talking about? Celibidache
seems to be very conscious of this fact: For a soul to reach peace. But also musicians have to reach a sense of
‘peace’ during musical performance to communicate this feeling to listeners. It is interesting to note that the
chorus is constituted by semi-professional singers, people who “come there only for the pleasure of making
music.”
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83.1.3 Some Remarks

We have considered a collection of solutions proposed by a conductor to explain how to translate into real
music the content of a score, also solving occasional conflicts between requirements of the text’s meaning and
musical structure. We have then tried to induce general relations among categories in the frame of musical
ontology, described in Section 57.1, and graphically synthesized in Figure 57.2. We found that the starting
point for performers, i.e., the score, corresponds to the symbolic reality and the semiotic expression. In order
to reach the final state, i.e., the communication of the artwork to listeners, the intermediary steps are physical
reality, and semiotic content. The physical reality affects the psychological reality, and sometimes, as in the
aforementioned case of the Stendhal syndrome, affects again the physical reality in a sort of internal resonance.
The mechanism that permits the evolution between two consecutive steps, constructing a path in the musical
ontology’s graphic visualization, is the gesture. Our method of analysis is in principle applicable to all music
examples, also in non-Western contexts. The most striking result is that everything in art concerning feelings
and emotions can be explained using precise terms, since gestures have been mathematically defined [720],
and physical, physiological and psychological realities are described by science.

83.2 Hints for a Mathematical Description

The mathematical formalism developed in Chapter 78 can be applied also in the case of conducting. Here,
the symbolic gesture is represented by the basic metric gesture, and the physical gesture by the real motion
of the right hand of conductor. For each metric indication, there is an infinite variety of possible ways to
realize the physical gesture, in the same way as we have seen for the pianist’s hand movements.

Basic metrical structures for unary, binary, ternary, ternary in one movement, and tempo constitute the
symbolic gesture. The number of movements in a measure is the number of points in the gesture’s skeleton.
If we think of a 2-dimensional skeleton, we can have a more clear idea of the starting point for conductor.

What is a symbolic gesture for the left hand? The left hand needs a separate description, because its
role is not univocal. In general it carries the expressive content of the score and gives attack to performers.
Expressive content of the score (accelerando, ritardando, crescendo, way of attack of instruments) also de-
termines the deformation of the basic metric gesture. When the two hands move together they emphasize
gesture. However, the risk of a mirror movement of right and left hands is accurately avoided by many
professional conductors. Motions of both hands have been studied numerically, see Section 83.3.

Categories of unary, binary and ternary movements can be seen as homotopy categories. All deforma-
tions (i.e., physical realizations of symbolic metric indications) are homotopic to each other. When analyzing
5-, 6- and 7-metrical movements, and also compound meters, gestures can always be described as combina-
tions of elements of these categories.

While referring to homotopy, we can build connections between conducting gestures and the gestures
of other musicians (see also Figure 83.6), as well between music and other fields. In fact, if we define the
category of gestures, whose morphisms are the morphisms between gestures, we can compare gestures from
music (gestures of the orchestral players and of the conductor), between music and image (gestures of drawing
and the motion of the bow or of the fingertip), and between music and emotion (the caressing gesture and
gentle piano touch). However, we will not deal here with the complex topic of semiotics. We can call this
concept gestural similarity, and it will be the subject of future research. These processes can be described in
the diagram of Figure 83.5, if we identify

ÝÑ
X with music,

ÝÑ
Y with painting, and

ÝÑ
f with the change from the

first to the second.
As suggested by global gesture theory (see Section 66.5), conducting gestures can also be constructed

by gluing together simple gestures. Conducting didactics concentrates attention, during students’ training,
in such elementary movements, first in abstract examples, then in fragments of real scores, and finally in
the context of complete orchestral pages. For details about the Russian conducting school of Ilya Musin, see
[791].

More precisely, the conducting gesture can be defined in the following way. Let us consider the basic
metric gesture CIm (2-dimensional space, 1-dimensional symbolic time), with weights (parameters depending
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Fig. 83.4. The symbolic gesture is represented by the basic metric gesture (left), and the physical gesture (right) by
the real motion of the right hand of conductor. They are connected by a world-sheet hypergesture.

on the content of the score). Let us also consider a performance operator P having these weights as arguments.
The conducting physical gesture CPh is given by P ˆ CIm “ CPh.

Moreover, we can observe that the full score, read by the conductor, is mathematically given by the
colimit of fibers of the entire ensemble of pitches-durations-intensities, where each fiber corresponds to a
set of these values labeled as violin, cello, flute, and so on. The opposite motion, from the full score to the
separate parts, is in fact given by these fibers. It corresponds to the graphical appearance of an orchestral
score, where the notes are distributed in groups for each instrument.

To end this section, we show in Figure 83.6 the coexistence of performance theory of notes, of gestures,
and of conducting gestures.

83.3 Data Analysis

How is it possible to formally collect and analyze data of conducting gestures? The project PHENICX
[380] answers this question. They have developed a technology of kinetic devices applied to the conductor’s
body, see Figure 83.7. They track the motion of articulations, and allow a precise description of gestures.
This technique permits many different formal analyses. For example, movements of trained and not-trained
musicians and conductors have been analyzed to describe the instinctive component for the conducting
gesture [931]. The basis of this analysis is the schematization of the conductor’s body using the position
of torso and distances of points from its coordinates, normalized depending on the conductor’s height. The



83.3 Data Analysis 1291

Fig. 83.5. We can build gestural relations between painting and music, in the formalism of category theory. Let
g : Δ Ñ ÝÑ

X be a musical gesture and h : Σ Ñ ÝÑ
Y a painting gesture, connected by a morphism f between X and Y

(
ÝÑ
f :

ÝÑ
X Ñ ÝÑ

Y ). The diagram must be commutative, which means fg “ ht. As two examples, we have on the bottom
the painting gesture by Jackson Pollock and on the top the piano gesture by Cecil Taylor.

Fig. 83.6. The mechanism of conducting, between performance theory of notes, gestures, and conducting gestures.

empirically derived equations given in [931] are the following:

xtor
j “ pxj ´ xtorsoq

h

1

1.8
, ytorj “ pyj ´ ytorsoq

h

1

1.8
, ztorj “ pzj ´ ztorsoq

h

1

1.4
, (83.1)

where h2 “ pxtorso ´ xheadq2 ` pytorso ´ yheadq2 ` pztorso ´ zheadq2.
A particularly interesting example is the analysis of beat via gestural conducting tracking [931]. In

this way, it is possible to understand the entity of deformation, along the time dimension, of intervals from
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basic metric gesture to real physical movement. In [931], the influence of the beat positions on conductors
gestures has been quantitatively studied. There is a variety of gestures to anticipate the incoming beat, and
their musical importance for communication to orchestral musicians is dramatic. It has been shown that
acceleration along the trajectory is a potentially good candidate for beat extraction [621]. For every frame
in which a musical composition has been previously divided, acceleration values have been calculated for all
joints of the conductors’ arms, by computing the second derivative via a second order polynomial fitting.
Beat annotation has been accompanied by error distribution of the beat predictions.

Similarly to our study developed in Chapter 78, a preliminary study can focus just on the vertical
dimension y, with elementary vertical up-down movements. In the case of conducting, as shown by observation
on 3-dimensional models and stressed in [931], the most important information for beat is given by motion
on the y axis. In fact, beat is often signaled by maximum upward-downward acceleration along the y axis.

Fig. 83.7. The tracking device Kinect for conductor gestures, experimented within the context of the PHENICX
project [380].

83.4 Conclusion

The Italian conducting school, whose important names include the well-known Arturo Toscanini, is very
gestural-based. Franco Ferrara, famous for recordings of film music scores (such as Nino Rota’s), and known
to many conductors for his teaching activity at Accademia Musicale Chigiana di Siena, had a clear conception
of gesture.

Franco Ferrara loved to “transfer into gesture all his musical thought, formed through an attentive
reading of the score. This transfer operation is realized by modifying metric gestures (see Section 83.2).
Mechanical gestures of 4{4, 3{4, 6{8 and so on, must be adapted to musical idea.” [173] Bruno Aprea, former
student of Ferrara, used to explain conducting with the same words. This is the idea at the basis of the Italian
conducting school, but also applied by Herbert von Karajan in Austria. In general, the French conducting
school presents a more developed idea of concertazione. In the Italian school, conductors are used to rarely
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stopping the orchestra, except in correspondence of passages containing elements that cannot be represented
by the gesture [173]. Ferrara also used to sing to the orchestra: “If you sing, the orchestra will play in a good
way.” Also voice, in fact, contains hidden gestural indications, see Chapter 86.

It is interesting to know that Franco Ferrara after a stroke was not able to move his right arm. He
conducted with his left arm and with his eyes. Metric and expressive content were so concentrated in his left
hand. His students remember that his gesture, even after the stroke, was clear, effective, powerful. In fact,
sometimes, observing the solutions found by persons with some physiological difficulties allows “normal”
persons to improve their work. The two most important things in conducting are listening (to both mental
and physical sound) and gesture. Absolute pitch always helps in fine-comprehension of orchestral sounds and
mistakes. Sight helps establish a stronger communication with musicians, to better check their behavior, and,
also, to quickly look at the score. However, can people conduct without looking at the orchestra? Yes, they
can. It is the case with the young pianist Marco Orsini, blind from birth. He’s able to conduct an orchestra
through a perfect score memorizing (a practice followed by many professional conductors), and a precise
study and control of gestures. For completeness, the first blind conductor is the Italian-Argentine Gabriel
Francisco Bergogna. Another blind conductor is Luigi Mariani.

83.5 Addendum

We should not conclude this chapter without a hint at a recent Swiss publication: “DirigentenBilder—
Musikalische Gesten — verkörperte Musik” [1012], which we cannot critically review here for time reasons,
but it must be mentioned. The reason is that this book’s approach is somewhat complemetary to the above.
It refers to a number of scholars and musicians who mostly use the German language, with a few exceptions
using other languages.

The first instance is a citation by Igor Stravinsky, where he complains that conductors are replacing the
audible by the visual, and thereby also replacing the composer’s central role by a kind of visual co-composer.
Carl Dahlhaus completes this negative judgment by a positive point of view, attributing to the conductor
the role of an aesthetic identifier, governor (“Statthalter” in German). He observes that this identifier is
not transporting any semantic content, but simply a visual equivalent to the dynamics of sound. Dahlhaus
identifies the conductor’s gestures as a presemiotic phenomenon. In the writings of Friedrich von Hausegger
the unity of visual and auditive utterance is only realized for a singer, and the instrumentalist has a split
situation that the conductor must reconcile; he talks about1 the “Orchester, als dessen Verkörperung der
Dirigent erscheint.” It is interesting that Helmuth Plessner’s anthropology of music stresses the presemiotic
character of the conductor’s role: Pure music does not represent anything, tells us nothing, does not illustrate
or symbolize anything. It only excites a psychological echo without any semantic charge. The psychologists
Ernst Kurth and Alexander Truslit also stress the gestural character of music, which then is made accessible
through the conductor’s movements. Truslit even argues that the passage from neumes to modern notation
is a step backwards to a less expressive notation. Compare Chapter 86 for such matters.

1 Orchestra whose embodiment appears to be the conductor.
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Reviewing Flow, Gesture, and Spaces in Free Jazz

Summary. Reviewing the production of the video Imaginary Time, we claim that the time that is created in
free improvisation (let us take the purest type of improvisation here to deal with the unmixed phenomenon)
is categorically different from score-generated time.

– Σ –

84.1 Improvisation: Defining Time

Improvisation is traditionally understood from its etymological meaning: playing “all’improvviso”, in an
unpredictable and unforeseen manner. It is a spontaneous production in the sense of a negative definition:
improvisation as a negation of order, system, or rule-based behavior. This has been seen to be not only
artistically invalid, it is also the opposite of what improvisers know.

But there is more than the concept of improvisation that we could summarize as an art that produces a
flow which is generated by gestural communication in a collaborative space, an insight which we have gained
in our free jazz book [721]. The difference with non-improvised music is not only produced by the absence
of a written score; it is not merely an inner score (Siron’s “partition intérieure” [979]) which controls the
musical output much like an external material score. This approach to improvisation is driven by the same
idea, namely that music, if it has an artistic quality, must be the result of a mental reflection, of a thought
process similar to a mathematical result that is the output of a hidden formula.

The difference is in fact not only persistent on the poietic side, it is also an aesthesic difference: One
cannot listen to improvised music as if it were the rendition of a predefined inner or outer score. When
listening to written music, be it a well-known traditional composition from the first Viennese tradition or a
complex New Music creation, such as György Ligeti’s or Unsuk Chin’s piano etudes, there is a categorical
difference with a free jazz composition by, say, Cecil Taylor or John Coltrane. The difference is not in the
complexity or character of these compositional structures, they could even be of comparable type. The
difference is the creation of a radically different musical reality. The existential character of these musics
is different, no score could have generated such a music. We claim that the time that is created in free
improvisation (let us take the purest type of improvisation here to deal with the unmixed phenomenon) is
categorically different from score-generated time.

84.2 Flow, Gestures, Imaginary Time and Spaces in the Music Movie
Imaginary Time

The video Imaginary Time [361] was recorded at the famous jazz club Yokohama Airegin in Yokohama,
Japan on the occasion of two concerts, on December 25 and 26, 2014. Our trio, Heinz Geisser (Switzerland)
and Shiro Onuma (Japan) on drums and percussion, Guerino Mazzola (United States) on grand piano, had
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collaborated since 2010, Geisser and Mazzola had collaborated since 1995, and Geisser with Onuma since
2005. Figure 84.1 shows the trio in action.

Fig. 84.1. The trio Geisser-Mazzola-Onuma in action at the Yokohama Airegin jazz club.

The video has been described in a short PR text as follows:

Imaginary Time presents pianist Guerino Mazzola and drummers Heinz Geisser and Shiro Onuma
performing 85 minutes of passionate e-motive music in swirling, telepathically attuned interplay.
This film is suitable for all audiences: aficionados, experts, and children hungry for the vibrant vision
of future music.
In Imaginary Time what you hear is what you see, a deep connectivity of musical and gestural
expression, exquisitely recorded by a Japanese team of audio and video technicians, and edited by a
first class music film professional in Europe.
This work is unique: performed, directed, and produced by creative virtuosi burning to transform
musical imaginary time into fully enjoyable sensual reality.

The video’s pieces are

1. Alter Space (14:33) (0:0:49-0:15:22)
2. Round About Midnight (4:00) (0:15:35-0:19:35)
3. One for Wang (15:40) (0:20:04-0:35:44)
4. Giant’s Steps (15:12) (0:36:33-0:51:45)
5. Kanreki Onuma Gambare (17:00) (0:52:50-1:09:50)
6. ¡Ornette! (7:50) (1:10:35-1:18:25)
7. Suzuki’s Delight (5:19) (1:18:40-1:23:59)

All compositions are by the trio, except the second, Round About Midnight, which is by Thelonious Monk.
The fourth piece was also designed by Mazzola following a mathematical analysis of Coltrane’s Giant Steps
[731, Chapter 22]. In the following sections, we want to describe the characteristics of this music which in
its style is derived from free jazz, but includes many other sources, cultural and scientific in nature.
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84.2.1 The Compositional Character of the Pieces

As a general remark, we should make clear that no plan or compositional template was given in advance or
fixed before a piece was played. Of course, everybody knew Monk’s Round About Midnight, but even there,
no structure was fixed, no repetition of choruses, or whatever scheme. The piece Giant’s Steps had been
designed by Mazzola, but not in the sense of a lead sheet structure. He had only invented a set of groups of
chord changes or melodic units, but no syntax and even less a sequence of soli or similar musical roles.

That the music nevertheless sounds very much as if it had been composed is the result of two reasons:
To begin with, the members of the trio have a huge repertory of structures and styles that have been
accumulated through around four decades. It might suffice to hear or interpret a small extract of a known
composition or rhythm or style to lead the trio in a corresponding direction. For example, at the end of
Kanreki Onuma Gambare, the pianist cites the end of Duke Ellington’s and Juan Tizol’s Caravan, and
everybody knows immediately that this initiates the composition’s terminal sounds. Or in ¡Ornette!, at time
1:17:28, the pianist starts a stride piano accompaniment with the left hand, a rhythmical figure that is
immediately resonating in the drummers’ beats. And in Giant’s Steps, at time 0:38:20, Geisser had initiated
a very delicate sound with his tiny bells, and thereby inspired Mazzola to make a short citation of Silent
Night, just passing by and very soon leaving this reference (after a short, speeded-up repetition) for other
sounds.

The second reason is that this music is the opposite of spontaneous or “all improviso”, unprevisible. It
is organized in what we now call imaginary time, a mental reality that is well-known to performing artists
of all sorts. This layer of consciousness shapes the physical reality of performance, but it does so in a logical
and knowledge-based way, virtually knowing everything in no physical time.

These two reasons add up to a performance that resembles the rendition of a composed musical creation.

Fig. 84.2. The strong agreement of the three musicians on large forms is manifested by their gestural expressions
right after the piece’s end.
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84.2.2 Large Forms

The compositional character of this music is manifest in the shaping of large forms, too. The majority of
the video’s compositions are quite long, around 15 minutes in duration, except for the last piece, which was
conceived as an encore. When one looks at the large sections of these pieces, they show prominent presence
of even classical sections, such as the sonata form. For example, in ¡Ornette!, it starts with an exposition,
then adds a development with a strong rhythmical dominance driven by the drummers’ dense interplay, then
comes back in a recapitulation that includes the above mentioned stride piano reference, and then terminates
with a short slow coda.

Fig. 84.3. Shiro Onuma’s precise hit on the cymbal.

A strong sign of large formal organization is the magic of the pieces’ ends. It never happens that some
musician(s) is (are) terminating while others are still playing. It even happens as a rule that the trio’s
members stop in a well-organized musical way, and seemingly without any preconceived ending phase. All
of a sudden, the piece ends in a logic that transcends communicative preparatory actions. One more proof
of the imaginary time where creative logic is performed. The strong agreement of the three musicians is
manifest by their gestural expressions right after the piece’s end, as shown in Figure 84.2.

84.2.3 Precision of Attacks

The strong control of unfolding time is evident from the precision in time which is required to comply with
this musical dynamics. Figure 84.3 shows Onuma’s hit on the cymbal which must be performed in the interval
of a 50th of a second to be correct.

The musicians are always aware of such small time intervals, not only for the percussive performance of
the drummers, but also for the pianist’s fast attacks due to his special interaction of left and right hand, as
shown in Figure 84.4. The left hand is below the right one and is periodically hit by the right one, causing
the left hand to move like a spring very fast between keys and the right hand’s palm. The frequency of this
periodic movement is around 20 Hz.



84.2 Flow, Gestures, Imaginary Time and Spaces in the Music Movie Imaginary Time 1299

Fig. 84.4. The fast pianist’s sound production is due to the gestural interaction of his hands.

84.2.4 Co-presence of Different Time Layers

The imaginary time presence is also effective in the simulateous perception and reification of different time
layers. This music is very percussive in the sense that there is not only one big beat to be followed, but
there are several, typically three, four or more beat pulsations that coexist. The musicians do not choose to
play only one of them but several layers simultaneously. Focusing their rhythmical attention on one, then
on another layer, according to the music’s momentous configuration. This effect is evidently related to the
flow, which generates a suspension of time in favor of gestural utterances per se, not as a slave of clocks.

Fig. 84.5. Geisser in extreme flow, catching a cymbal that was flying away after having been thrown onto the snare
drum.
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84.2.5 The Reality of Imaginary Time

Imaginary time might at first look like a mathematical artifact, but it is a musical reality of first order. This
has been evidenced in the previous Sections 84.2.1, 84.2.2, 84.2.3, and 84.2.4. This reality cannot be proved
entirely, but the individual experiences of musicians and their shared knowledge confirm this fact.

84.2.6 Measuring Flow

Flow usually cannot be measured as it is a kind of qualia. Nevertheless, the video proves in many instances
that the musicians are in a flow state where they act in a thoroughly controlled way within very short time
intervals, as shown, for example for Geisser’s action (Figure 84.5) when catching a cymbal that wants to slip
away. This is performed within a very short time, a 50th of a second, and Geisser maintains his absolute
control over the rhythmical structure he is creating.

84.2.7 Explicit Perception of Gestures

Gestures can be observed during the entire concert. But sometimes they appear in a pure form, i.e., not
producing any musical sounds through instrumental interaction, but simply as moving hands in the air in
the sense of an understanding of resonance according to Cavaillès: catching the gesture and continuing. Here,
in Figure 84.6, the pianist catches Onuma’s percussive gestures and continues with his hands in order to
prepare his own intervention.

Fig. 84.6. Mazzola drawing hand gestures in the air as a resonance to Onuma’s drum play.
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Gesture and Vocalization

Summary. The curves traced by a drummer’s sticks, the various characteristic hand shapes adapted for
various note clusters on a piano, the various ways that elbow and shoulder joints can support strokes on
a violin all have sonic consequences. Indeed, if the previous chapters have taught us anything, it is that
musicking is inherently (rather than incidentally) gestural. But there may yet be a lingering suspicion in
some readers’ minds (particularly those who are accustomed only to playing from notation) that the graceful
arc of a pianist’s hand is less like a dancer twirling across the stage and more like a blacksmith hammering
a piece of metal into a horseshoe. The skeptical claim would be that gesture is a necessary practical step in
the production of a finished, pre-figured sonic product, and no more.

We feel the preceding chapters have provided ample evidence against this claim. But, even granting
its hypothetical possibility, how would it account for the extensive gestural movement of vocalists? Though
it is certainly possible to willfully sing while sitting still, most of us nonetheless move our hands and arms
as we sing (in addition to the elaborate internal motion of the laryngeal cartilages, the diaphragm, the
tongue). Indeed, in many traditions, it is difficult not to. Yemenite cantors, Hindustani and Carnatic vocalists,
flamenco singers, gospel soloists, and many other singers all move in elaborate ways as part of elaborate
vocalization. This chapter will address this motion-unified action of the hands and the voice.

– Σ –

85.1 Vocal Gesture

Of course, the gesture that concerns us is of a very specific kind. We are not interested in every little muscular
twitch that occurs during singing. Singers, like anyone else, straighten their clothing, sip coffee, adjust their
posture, etc. We also, for the purposes of this book, specifically exclude encoding messages gesturally (the
semantic level of gestures in Genevieve Calbris’s terms; emblems in Adam Kendon’s strict sense [530, 529])—
pointing upward at the sound technician to get more voice in the monitors, nodding at an accompanist to
encourage him to take a solo, drawing the index finger across the throat to cut it off. (We acknoweldge, of
course, important ethnographic insights that accrue from attending to such signs [201], [525], etc.) We also
exclude (without denigrating or dismissing) the elaborate, disciplined, conventional gestures of expression
that often accompany theatrical singing—slowly extending the hand toward a distant beloved, tearing at
one’s hair, holding both hands over the heart [987]. These gestures certainly accomplish things in the broad-
est sense, and have their own elaborate rhetorical and kinesic structure—but they are easily detachable from
vocalization, and even taught explicitly by vocal coaches; thus they are not spontaneously tied up in the
production of melody in the sense we care about. We also are not considering the formalized and elaborate
movements of dance. While singers do often dance while singing, there are several significant differences,
though prior to the country’s independence, Indian courtesans—among others—cultivated elaborate tradi-
tions of singing and dancing simultaneously. Dance ordinarily does not reflect melodic form the way that
vocalization and song gesture do. Dancers (while occasionally sounding with their feet) dance to melody that
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is produced by others, coordinated through a combination of choreography and improvisation. Vocalists, on
the other hand, move and vocalize in a single coordinated action, and the two serve as vehicles for a single
improvisational practice. Finally, and most importantly, dancers submit to years of training dedicated to the
cultivation of disciplined movement. In contrast, singers’ gestures are mostly implicit and unintentional.

Fig. 85.1. Inclusions and exclusions.

We are specifically interested in movement that is inherently melodic, that is so closely co-timed with
vocalization so as to form a single action. This we call melodic gesture. As Clayton [201] points out, these
gestures are not “sound-producing” in the way that the arc of a mallet on a xylophone is. But, as we will see,
hand movement and vocalization are somehow part of a single process, no more separable in practice than
the tongue and the soft palette in articulating a dipthong. This is so much the case that gesture is hard to
separate from sound, hard to thematize analytically. Gesture seems to be a natural, transparent background
to vocalizing—in the most fundamental phenomenological sense, invisible.

As it turns out, this is equally true of speech vocalization. As gesture is rarely foregrounded analytically,
it is often taken to be a secondary phenomenon, a mere ornament on the more essential substance of words-
as-signs. And yet, the shapes we trace in the air in conversation are neither entirely arbitrary nor entirely
determined by our speech. Gesture studies as a discipline has largely concerned itself with the exquisitely
timed co-performance of speech and gesture, and in so doing it suggests a way beyond the usual boundaries
of classical linguistics: beyond a system of discrete signs and lexical meanings.

Rendering gestures analytically thinkable does not produce evidence that gestures are interesting in and
of themselves, or an argument for the universal beauty or goodness or meaningfulness of gestures. Indeed,
attention to gesture has just as often led critics to conclude that it is an impediment to certain ethical goals
of music. (For a consideration of questions of descriptive ethics, aesthetics, and politics with regard to song
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gestures, see [872] and [1110].) But attending to gesture as an integral part of vocalization can teach us a
great deal. Seeing vocal performance as inherently gestural takes us beyond the apparent primacy of discrete
notes and words as the key material of vocal action: toward the open-ended, creative, relational play of space,
accomplishment, and self-fashioning.

85.2 Vocal and Manual Motion

The first thing to notice is that the motion of the hand and the motion of the voice are exquisitely co-timed.
The hand does not follow the voice, nor does the voice follow the hand; they move as one, united toward a
single purpose, like the shoulder and elbow joints of a tennis player.

This does not mean, however, that the shared goal of the voice or the hand is articulating notes. While
this may sometimes be the case, it is most eminently not the case in spontaneous flows of improvised melody
geared toward larger melodic sweeps. What follows is an excerpt from a performance by Mariah Carey, an
exquisitely trained pop singer renowned for her melismatic improvisation. The excerpt here serves as a kind
of cadenza at the end of the song Vision of Love, performed live on Good Morning America on July 20,
1990. The full performance is available on YouTube. The part analyzed here begins at 3:25.

We have split this four-second-long phrase into eight subphrases, labeled A-H (Figure 85.2). Subphrases
A-G are nearly identical vocal gestures, swooping from a fifth scale degree (graced from below by a sharp
four) up to a flat seven (articulated twice quickly, in the manner of a quick vibrato, but perceptible as a
single note). Subphrase H jumps up to the high tonic and descends via a minor pentatonic run to the low
tonic, looping around on 4.

Fig. 85.2. Pitch vs. time trace of a cadenza.

While phrases A-G are sung vocally, the hand, loosely open with the palm facing forward, traces circling
loops in the air along the vertical plane (situated just in front of the body like a plane of glass.) Figure 85.3
shows one such circle articulated by the hand, encoded in an undulating line that shows pitch movement
on the vertical axis. The alternating black and grey tones indicate movement away from the body (black)
and toward the body (grey). All seven circles follow this schema, though their microtimings of course vary.
Phrase H, not pictured in Figure 85.2, follows an undulating course from high to low, more or less along with
the pitch of the voice. Thus far, we might quite reasonably suspect that the hand is merely mapping pitch
height onto the vertical axis. Certainly, phrase H would seem to confirm this, as the hand traces a looping
descent from high to low. And in phrase A, the first manual zenith is linked with the first vocal zenith on
7b.

But as we look at the rest of the phrases, in Figure 85.4, it quickly becomes clear that the hand is
not merely encoding pitch; at times, the hand descends when the voice ascends, and vice versa. Once the
singer slips into a gestural groove (in phrases B-F), the manual zeniths fall into alignment with 5s in the
voice, and the vocal loop up to the 7b is affiliated instead with manual descent from the zenith to the nadir.
These gentle turns are not anchored to discrete points in space measured in centimeters along the y-axis
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Fig. 85.3. Looping gesture.

or points in time measured in milliseconds along the t-axis. They rather have the temporality of a dancer
twirling against the meter, a magician’s flourish, a comedian indicating a particular texture of insomniac
loopiness with a rotating finger in space. The melodic activity here (in both hand and voice) is not sequential
repetition (i.e., not a repeatedly linear moving from point to point in what turn out to be identical phrases)
but falling into a groove: a continuous rotation around a stable point. Spinning itself (rather than a sequence
of absolute spatial positions of the flesh at particular time-points) is at the heart of this musical moment.

It is thus most parsimonious to analyze this segment as consisting not of twenty-odd notes or seven
phrases, but of two melodic spaces: the looping space and the space of descending from the high tonic. These
spaces, I will argue later, are not cartesian or Euclidean spaces, but spaces of potential bodily action, akin
to the hypergestures discussed in Section 61.6.

Fig. 85.4. Gestural and vocal analysis of looping segment.

85.3 Gait

On the way there, we will have recourse to an analogy with a familiar kinesthetic activity: walking. While
we certainly may analyze walking strictly in terms of destination (as an illuminated line, for example, on
Google Maps) the analytic loss would be great: we would miss much that is at the heart of walking. What
would we make of strolling, strutting, flânerie, passeggiata [783]? What would we make of the very different
lived experiences of trotting and galloping? Just so, to think of vocal gesture only terms of its notic content
would ignore much of what is at the heart of vocal action.
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A similar sense of melodic motion as a gait emerges from Katsman’s study of Yemenite Torah recitation.
Here, the consistent set of normative gestures used in teaching and recitation have no clear relationship to
the ascent or descent of pitch. Instead, the gestures are linked to the melodic progress of the voice along the
path of the text: they indicate walking, stopping, continuity, and breaking. The voice, text, and body become
intimately linked, so that “the verse becomes a living, acting body” ([525, p.5]) rather than a sequence of
words or pitches.

85.4 Hindustani Vocal Music

In the remainder of the chapter, we will focus largely on examples drawn from singers of North Indian raga
music, the topic of Musicking Bodies: Gesture and Voice in Hindustani Music [872]. As most readers will
no doubt be unfamiliar with raga music, the following background is intended to provide an orientation.
But, like all orientations, it renders certain things especially visible: in this case, movement. Most accounts
of Hindustani music fundamentals proceed by explicating grammatical structures. In principle, grammatical
rules such as there are two possible species of third scale degree, or phrases in Raga Hameer skip the fifth scale
degree in ascent or phrases in Bageshri don’t end in dangling fifth scale degrees are understood to describe
eternal structures that determine proper musical utterances, independent of their instantiation in bodies and
voices. All of this is very useful—for teaching, for notation, for understanding the discursive history of music
theory. But in contrast, the following account (largely a summary of [872]) puts bodily action and discipline
at the heart of Hindustani music practice.

Of the several dozen vibrant song traditions in South Asia, traditions of raga music stand out for the
great centrality of spontaneous melodic elaboration. No two performances of a raga, even when drawing on
the same compositional material, consist of even remotely the same sequence of melodic moves; 80 to 90% of
a performance is spontaneously generated according to the needs of the moment. This is part of why seeing
a great Hindustani vocalist sing is viscerally thrilling even for newcomers to the tradition. The grace, power,
flexibility, melodic imagination, and sheer speed in his disciplined vocal rendering is a display of spontaneous
mastery akin to watching Michael Jordan playing basketball or Yip Man performing Chi Sao or Baryshnikov
dancing. This may be why awestruck writers from V. H. Deshpande to Alain Danielou have tended to depict
Hindustani musicians as inspired geniuses, effortlessly drawing on some transcendent source.

But undergirding this breathtaking kinetic freedom are years of grueling, extended, boringly repetitive
training. To a romantic eye, spontaneity and mechanical repetition may seem to be at odds. But, as we
have seen in Section 59.4 and in [721], the “freedom” of improvisation traffics in the passing on of gesture,
and the awesome swoops and arcs of a master do not come from nowhere. One part of training consists of
sitting with a great master, doing as as he, imbibing his musical disposition as an eaglet learns to hunt—
this imbibing even, at times, resembles a kind of inspiration. But the great bulk of training consists of
thousands of solitary hours grinding through drills: singing phrases, scales, and compositions over and over
again. Even in the warm, nostalgic glow of childhood memories, adult musicians recall these interminable
drills as tedious, bothersome [785]. But this highly unromantic training, carried out at the expense of what
one wants to do, makes possible the magnificent kinesthetic-melodic grace and freedom evident in a master.
Repetition generates durable habits of singing in tune, gliding smoothly between notes, generating clear
timbre, and—most of all—graceful melodic motion.

A phrase such as 7134577655343, repeated hundreds of times, teaches a great deal about melodic motion
quite apart from its notic content. It is not simply that one inductively determines the rule “skip 2 and 6
in ascent” and is ready to carry on; nor is it simply that one perfects the particular phrase and “has” it
forever after. The repetitive drilling trains one to fall into a melodic groove, flowing along steadily at a wide
range of speeds—simple on paper, but a far from trivial task in practice. But it allows building more specific
melodic habits: to find one’s footing along 77655 as a reliable path for descending motion to the 5, to feel
71345 as a reliable path for ascending to the 5, to feel 343 as a point of repose. One practices beyond the
point of “perfection,” or simply being able to sing note sequences accurately, to the point of being able to
move effortlessly in the space of a raga [785]. A trained singer, after all, needn’t think of every note that s/he
sings any more than Pele would need to count the steps he takes before kicking a soccer ball. The capacity
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to sing freely in broad, graceful, tuneful melodic sweeps—rather than note by punctilious note—is a crucial
sign of mastery in Hindustani music.

85.5 Notic Models and Kinetic Models

Singers are nonetheless perfectly capable of generating what I call notic models of melody: breaking their mu-
sical utterances into notes, constituting melody as a sequence of atomic units (as I did above: 7134577655343,
for example.) This task is made easier by a strong, reliable tonal center, reinforced by a continuously sounded
tonic drone, and a conventional system of note names in which 1 and 5 are never modified by accidentals.1

Notic models are remarkably useful, providing a basis for remembering compositions, correcting mistakes,
and analyzing scalar content.

But singers just as often analyze vocal action as motion—drawing on what I call kinetic models. Partic-
ularly at the level of large-scale melodic action, melody is constituted as motion: for example, we commonly
hear of aroh (ascent), avaroh (descent), vakr (crooked) and sapat (straight) motion, harkat (subtle movements
with no net motion), and sukoon (stillness). Kinetic models provide a robust way of understanding vocal
action that complements a note-centric model.

But, coming to Hindustani music after 18 years of training in notic analysis, these kinetic models at first
struck me as fanciful. Isn’t kinetics just a sloppy, idiosyncratic way of describing the fundamental objective
givens of melody, the atomic building blocks that we rigorously designate by note names? In the first place,
there is nothing acoustically objective about thinking of melody as discrete stopping points. The voice, after
all, is always moving. Consider the following pitch trace of a phrase in Raga Alhaiya Bilwal, sung by Ulhas
Kashalkar, see Figure 85.5.

Though the note names given on the diagram represent a conventional analysis, they certainly are not
given or obvious from the acoustic signal. Surely, there are broad correlations between pitch height and note
name. But there are no straight horizontal lines in the pitch trace that would indicate perfect stillness of the
vocal apparatus, or the unchanging thingness that we imagine when we hear notes. (It is this thingness that
allows us to speak of a “fifth,” for example, as a thing we hear.) The “notes” that arise correspond roughly
to the peaks of continuous curves; even if we thought that notes had absolute pitches, each pitch would only
be sounded for an infintessimal second (as, geometrically speaking, the moon is only full for an infintessimal
fragment of clock-time.)

In the second phrase (from the same performance), we see that even prolonged tones are in motion,
acoustically speaking. The sustained third scale degree which closes the phrase arises phenomenologically as
a steady, unchanging pitch, a thing, exquisitely in tune. Its acoustic signal, however, is constantly in motion.

This is not a sign of a vocal shortcoming. Nor is our perception of notes a failure to apprehend what
really is going on. This is simply the way vocal action and vocal perception work. Notic analysis is not a
description of acoustical reality—it is an act of phenomenological constitution after the fact. The melodic
utterance is hearable as notes only through a disciplined constitutive process (honed not through reading and
examination, but by training the throat and ear with the repetitive vocal practice regimens noted above).

Nor is the sense that melody is in motion objectively given in the signal. (It certainly may be given in
the movement of the vocal muscles and the hands, but we defer that until later.) The sense that melodies
rise and fall, sweep and swell, pause and rush forward, is familiar even to listeners who haven’t been trained
to hear notes. Indeed, thinking in discrete notes can be a distraction from learning the fine kinesic details of
rendering phrases.

The Hindi word commonly translated as “note” in cases like these, svara, is analytically ambiguous.
In one sense, it can indeed refer to the seven atomic scale degrees, like solfege (sa re ga ma pa dha ni), but
in another it refers to the voice that is already set into motion [757]. Were we looking for a parsimonious

1 Though intonation is a fascinating and contentious field of debate (see [596], [498], [872]), for our purposes it is
most parsimonious to accept the consensus of most theorists of raga and consider the gamut to consist of seven
svaras, chosen from twelve possibilities roughly equivalent to the semitones on a piano.
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Fig. 85.5. Pitch trace, Ulhas Kashalkar, Alhaiya Bilawal.

description of the acoustic symbol, we would find it not in notes, but in this aspect of svara: swaying, sliding,
bobbing, undulating.

Once we accept the kinetic model as no more or less fanciful than the notic model, it is no longer
surprising that the hands, arms, head, and torso move along with the voice. The voice meanders slowly
upward, and the hands trace a meandering path. The phrase repeats, this time with more elaboration, and
the hands trace spirals on their ascent. Then, shooting straight upward, in a “straight run” (sapat taan) to
the high major second, the hands grab and stretch an elastic substance suddenly available in front of the
body, holding it steady as the high note rings out still and plain, letting go of it as I resolve to the high tonic.
It is almost impossible not to move when one is improvising something new, furthest from what one has
committed to memory; movement is less pronounced when singing a composition plainly that one already
knows well.

Shifting our focus from melody-as-notes to melody-as-motion makes song gesture slightly less myste-
rious. However, before proceeding to analyze concrete examples of song gesture, we must first of all avoid
two theoretical pitfalls in making sense of the relationship between the motion of the hand and the motion
of the voice.

It is tempting, in fact, to think that the movement of the hands somehow encodes the movement of
pitch up and down. As we will see, things turn out to be quite a bit more interesting.

85.6 The Realist Pitfall

Since the gestures of singers (unlike the gestures of drummers) do not, in themselves, produce sound, it
is easy to imagine that they are mere depictions of sound. Drawing on the theoretical resources offered by
classical mechanics, we might imagine that singing really just consists of air vibrations produced by the vocal
mechanism. And so, when we see the voice and the hand ascend together, we might, from a realist point of
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Fig. 85.6. Pitch trace of prolonged 3. Note the continuous, irregular acoustical movement even in a note that sounds
steady.

view, imagine that the movement of the hand is merely a metaphoric depiction of what the sound is doing.
Nothing in these vibrations, a realist might say, is actually exhibiting net motion—this is precisely why they
are vibrations and not translations. Thus, even to speak of a melody “rising,” “falling,” “slowing down,” or
“circling around a note” is to indulge in a fanciful but misleading metaphor, however convincing it may seem.
Such a metaphor, we might think, is merely a handy way to come to grips with the inherent slipperiness
of sound, like speaking of “building” trust (as though it were an edifice) or prescribing a vacation as an
“antidote” for heartbreak (as though one had been poisoned). From such a realist point of view, then, the
ascending movement of the hand at best encodes the real, given acoustical essence of the ascending melodic
fragment.

The sequence CFEG is a series of pitches with a net increase in frequency:
120 160 150 180
In this realist view, the sense that 180 Hz is “higher pitched” than 120 Hz is merely a metaphoric

mapping of vibrational frequency onto the y-axis. As Lawrence Zbikowski has demonstrated, this particular
mapping is widespread but by no means universal [1152, p.63]. Just as practices of love may be implicitly
framed by metaphors of war, hunting, or travel, so too may changes in frequency may be implicitly under-
stood as motion, ascent, or descent. The strictly realist view holds that these metaphors are mere fanciful
ornamentation superimposed on what is truly the case out there in the real world.

But the graphic representation of pitch versus time can also be misleading. We do not hear motion
quite like this, and, it turns out, we certainly do not move like this.

85.7 The Subjectivist Pitfall

[The claim to] unmediated experience signals a danger that is worse, if anything can be, than naive realism:
its polar opposite, naive subjectivism.

Brian Massumi
Since the gestures of a singer do not make any sound, and are not beholden to any grammar, it is easy

to imagine that they are utterly free expressions of personal fancy. In this view, the gestures of the hand
express arbitrary imaginings of the singer’s mind, going wherever and whenever they please. In this view,
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Fig. 85.7. Gestures accompanying two different articulations of a x-4-3-5 ascent.

gesture is a physical expression of a pure subjectivity free of purpose, free of responsibility, free of others.
The mirror image of radical realism, then, is a radical subjectivism in which the only thing that exists is
unmediated experience. Indeed, this idea of gestural freedom is closely akin to the idea of “free” jazz as mere
honking, its merely doing as one pleases at the expense of an audience.

It is partially for this reason that many Indian music critics raised on gramophone recordings in the
age of small, private gatherings were astonished, once large public concerts became common, to find that
their favorite singers moved while they sang. They had grown accustomed to listening to records as a pursuit
of detached, spiritual joys, and were uniformly disheartened by the physicality of singers on stage. They
decried the “violent and spasmodic movements” of singers (Bailur in [872, p.30]), who moved conspicuously,
as though the body were expected to remain as still as a phonograph speaker.

But musical gestures do not come from nowhere. They are “logical”, and they traffic between bodies.
Though not derived algorithmically from a sound product, they are neither willful nor arbitrary.

Surely, we do not (as the realist might think) simply depict vocal action with our hands. Nor do we (as
the subjectivist might think) simply flap our hands around at will.

Improvisation in khyal unfolds within modal and metric frameworks (raga and tala, respectively). A
quick summary follows. Talas are metrical cycles marked by strokes on a tabla or other drum, and provide
a measured, periodic place of return for melodic elaboration. Ragas are complex modal entities that are
less specific than individual songs, but more specific than scales. While allowing for infinite possibilities for
improvisation, they indicate sets of notes, guidelines for their arrangement in phrases, and, most importantly,
characteristic ways of moving between them. These melodic features are often associated with specific emo-
tional states, and in some cases to times of the day or seasons. Ragas are also often spoken of as a space
in which melodic action takes place ([872]). Khyal improvisation, then—like extemporaneous speech—takes
place within structures even as it requires the creation of novel material at the moment of performance. For
a body-centered take on raga and tala, see [872]; for a more conventional grammatical account, see [67].
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One important context for this motion is the space in which melody moves. Both gesture and vocal-
ization navigate through the specialized topographies of ragas. As melodic motives are developed over time,
they solidify into features of a raga landscape, in both gesture and vocalization.

... and can also take on the status of virtual objects and materials, which are manipulated gesturally.
Gripping, turning, pulling, and releasing these virtual objects are important modes of engagement with
melodic ideas. A phenomenology of melodic performance emerges from these observations that includes
motion, participation in flow, and manipulation of objects as an extension of the musicking body. This body
includes the mechanics of vocal production and gesture as well as the virtual world of melody: both flesh
and form.

[...]
We caution against this interpretation. In fact song gesture neither represents sound nor is purely

arbitrary. Gestures beget “dynasties of gestures.”
[...]
In Figures 85.8 and 85.9, we see two consecutive phrases (marked here as A and B) in a performance

of Raga Rageshri by Amir Khan. This is an interesting, but hardly unique, counterexample to the oft-cited
claim that the height of the hand is a map of pitch height. Indeed, the hand tends to be lower in space as the
pitch rises, and vice versa. Nonetheless, it would seem at first glance as though pitch height is nonetheless
being mapped linearly onto cartesian space. The first part of phrase A seems to fit this logic: the distance
along an axis stretching diagonally downward from the chest to the ground in front of the singer’s body
seems to correspond to pitch height. This correlation is not robust across all of the melodic action, however.
In particular, the crucial closing cadences in each phrase do not map onto a single axis.

Fig. 85.8. Amir Khan, Rageshri, Phrase 1.

The situation becomes clearer if we attend to the shapes of the hands. Amir Khan, after all, is not
randomly scuttling about along a single dimension of pitch. He is building a melodic world and gracefully
exploring its architecture, playing with energetic tension and release. In subphrase A, he flirts with the
common cadential formula in Rageshri: 3421. He begins with a tense handshape on the 3: the wrist joint
flexes, deviates ulnarly, and grips a virtual object rigidly. We expect the release of this tension on the tonic:
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Fig. 85.9. Amir Khan, Rageshri, Phrase 2.

we imaginatively protend the joint unflexing, undeviating, and relaxing. But instead of ending on the tonic,
the melodic gesture (both hand and voice) continues right on through to perch on the flat-7 for a moment, as
the wrist—instead of relaxing—extends in the opposite direction. On the return to the 1, he again overshoots,
landing on the 2 (with a more relaxed version of the first handshape, with more moderate flexion, deviation,
and grip) before coming to partial rest on the 1. The 1 at the end of subphrase A is not a completion of the
macrogesture, however. The wrist maintains a moderate extension, the handshape retains a slight, relaxed
cupped grip, and the arm draws upward in preparation for subphrase B.

The 2 at the beginning of subphrase B has a nearly identical handshape to the 2 at the end of subphrase
A: with moderate flexion, moderate ulnar deviation, moderate grip. But this time instead of the simple
return to the tonic, there is a dramatic, continuous swoop down and up, touching the flat-7 (with maximum
wrist extension and an open palm) before reaching the 4 (with one last flexion/deviation/grip handshape)
Throughout, the play of melodic tension and release is marked as much manually as it is vocally.

Hierarchies of kinesic units, marked by various degrees of rest, correspond roughly to hierarchies of
vocal phrasing. Phrasal hierarchies of gesture can be seen in rest positions ranging from fully engaged hands
(shaping air, accelerating, manipulating virtual objects) to fully disengaged hands (buttoning shirt, resting
in lap, drinking tea).

85.8 Speech Gesture

Now that we have a way of thinking through the gestural achievements of melody, we can turn to the other
major kind of vocal activity: speech. Though speech is often construed as a way of getting a message across,
there is of course much more happening.

Even commonsense descriptions of this unified vocal-gestural action often draw on semiotic metaphors
(“body language,” “speaking with the hands,” etc.); the relation between hand and voice reveal that much
more is going on than the mere transmission of signals.

The analysis of speech performance is fraught with theoretical pitfalls.
For one thing, because speech is so easily analyzed as words (and because we think that words are, first

and foremost, signs) we are likely to assume that the sole purpose of speech is to convey information. To
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be sure, there are moments when we do speak primarily to convey information: a stranger asks us if this is
Broadway, and we say “yes.” A grandmother asks her granddaughter how old she is, and she says “three.”
In these odd, remarkable moments of information exchange, certain specialized gestural actions would work
just as well—we could just as well nod and smile at the stranger; the child could just as well hold up three
fingers. Such gestures are called emblems—quotable gestures, gestures that do their job by virtue of having,
in principle, a pure, unambiguous semiotic content.

But most speech is not like this. Day-to-day exchanges mostly consist of formulaic greetings, subtle
insults, attempts to impress each other, flirtation, one-upmanship, persuasion, requests, promises, scoldings,
consolation. We call the meeting to order, we silence someone who is speaking out of turn, we encourage our
timid colleague to speak up. We speak, that is, largely to achieve things.

When we shake hands with an old friend (or kiss his cheeks, or embrace, or merely make eye contact), and
ask how he has been (Shu akhbarak? Kaise ho yaar? What’s up?) we are not simply soliciting information—
we are building rapport, strengthening bonds, inviting him into a shared interpersonal world of mutual care.
When we are introduced to a new colleague and ask where he grew up, we are not only (or even primarily)
gathering facts about thim—we are looking for some shared connection that will bring us closer together (I
visited Damascus before the war!) or give us insight into his situation (as a refugee who has likely learned
English in the last month or two, even this party may seem overwhelming.)

In Section 57.7, we focused on the ways in which the leading lights of the Anglo-Saxon tradition (Goff-
man [374], McNeill [741] and Kendon [529]) have appeared to treat speech gesture as semiotic, communicative
action. But this tradition also treats speech-and-gesture as pragmatic and existential—as a kind of action
that achieves things (Kendon [530, p.257, 351], and passim McNeill [741, p.19,100], and passim Goffman [374,
p.34]) and calls into existence embodied, active modes of being-in-the-world; as McNeill says [741, p.99], “a
gesture is not a representation, or is not only such: it is a form of being.”

How long can we go on like this, trading unambiguous bits of information until one of these utterances
becomes an issue of concern, before we begin celebrating, contesting, sympathizing? If an entire conversation
consisted of a sequence of simple representations such as this, it would seem very odd to us indeed.

It is by now fairly common to speak about the “language of music” (in reference to the grammatical
structures underlying note combinations) or the “music of language” (in reference to prosody). But the
similarities between speech gesture and song gesture suggest that the improvisation of melody and speech
may have more in common than is revealed in the structural and prosodic features of notes and words.
Improvisation in khyal is guided by flexible frameworks such as raga and tala that operate like grammatical
structures, and in this sense, even the vocal improvisation that occurs in the course of performance is akin
to improvised speech. Of course, singing is not, in the classical linguistic sense, language.

But then again, neither is speaking. The performance of speech (the melodic and rhythmic gestures of
the voice, the disciplined postures of the back and neck, the subtle play of the hands and arms) is not language
(i.e., langue) in the classical linguistic sense. But nor do we suggest that vocal performance is exactly parole,
a supplement to langue that merely embodies pre-existing syntactical structures, or prosodic ornamentation
that merely lends emphasis or contextual specificity to a foundational, core, essential sequence of words. As
we have seen, the spontaneous co-performance of gesture and vocalization need not be directed toward the
communication of words or notes at all; but it is always directed instead toward conjuring and inhabiting
gaits, worlds, ways of being—ways, in short, of chanting the world ([750, p.218]).

The “world” we chant is not typically the size of a planet. As the preceding examples have shown, the
kinesthetic horizon of a gestural world tends to be roughly on the scale of a human body; the aural horizon
tends to be roughly on the scale of a room. And yet the ethical, political, and spiritual horizons opened
by inhabiting these gestural worlds may stretch well beyond our everyday life of eating, walking, waking,
dreaming, and driving: well beyond ourselves.
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Elements of a Future Vocal Gesture Theory

Summary. Gesture Theory has been first developed using the pianist’s gesture as paradigm. However, the
analytical techniques and the results found can be applied to other musical situations, once symbolic and
physical gestures have been identified. For this reason it is possible to develop a gesture theory of voice.
Voice teachers explain vocal technique also via gestures and references to imaginary movements of the voice
through the resonant cavities of the body: we can think, as just a first example, of the passage from the di
petto register to di testa register. For voice, there really are some inner movements, of larynx, vocal folds,
tongue, as well of the diaphragm. Thinking of imaginary movements, the singer effectively changes the real
shape of his or her phonatory system, obtaining the desired effect. These movements, connecting (imaginary
once, and then embodied) points, are gestures. In fact, there are gestures that help one sing, but the singing is
itself a gestural activity. Moreover, we can adapt to the modern gestural math-musical formalism a powerful
instrument of the past, the neumes. The neumatic notation is the ancient way to notate the shape of the voice
singing Gregorian melodies. This system successively evolved into a precise notation of pitches via points
(square notes) in a four-line staff, and finally evolved to today’s notation of (round) notes in the five-line
staff. Explicit reference to gestures are also used in textbooks about the didactics of the Gregorian chant.
We end the chapter with the proposal of a new neumatic notation for voice didactics and composition that
can complete the information given by the musical score.

– Σ –

86.1 Why a Theory of Vocal Gestures?

The first reference to voice inside the gesture theory was a question of a reviewer: Interesting ideas and work,
but what about the cases when gestures are not evident, even hidden, as for singing performance?1

Looking through the existing references of a so-called vocal gesture, it is possible to find, on one side,
a reference to significant symbols about the association between a grapheme and a sound generated by
the human voice, and on the other side, a not-well-defined general concept that would be an attempt, by
voice specialists and singers and teachers, to define the ensemble of physical movements and positions of the
phonatory system that allow the production and the control of the singing voice.

It therefore seems that the definition of ‘vocal gesture’ is first of all an exigency to avoid the vagaries of
verbal expression in describing the singing activity, connecting what singers think and do when translating
into sounds the information contained in the score. This is also the general philosophy of gesture theory.
One of the main problems of singing is that the same mental images that help some singers to correctly use
their phonatory system don’t work for others. Vice versa, following other scholars [333], a knowledge just
restricted to physiology could seduce the singers to a non-natural use or an over-stressing of their muscles.
The use of abstract images reminds one of non-physiological gestures (more poetically than mathematically

1 In Ancient Greek, voice is φωνή, translated as both voice and sound.
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we can call them imaginary gestures) in real time, as opposed to real physiological gestures. The use of the
first, combined with the knowledge of what really happens in their bodies, allows singers to have a deeper
consciousness and mastery of their technique.

86.1.1 Studying the Voice Without the Singer?

Study of the voice is not limited to the analysis of the final result, the sound. As for all music, there cannot
be music without sounds, but sounds are not all music. Moreover, the case of the singing voice is unique in
the sense that the performer and the instrument are the same; it is an excellent case of musical embodiment.
However, there are entire branches of research on the quality of the voice, also without singers, as the
reconstruction of the voice via acoustical synthesis, as done at IRCAM in the context of the CHANT project
[913]. Our approach is the opposite, because we are interested in the human gesture that produces the sound.

86.1.2 Parts of the Phonatory System and Their Functions

What are the parts of the human phonatory system, and how are they involved in motion?
According to [333] the human phonatory system is divided into three main parts with three main

functions. First, the motor that sustains the sound production, second, the system that produces the sound,
and third, the filter that acts on the sound, by enriching it with harmonics and amplifying it with resonances.

The first part, the motor of the entire process, is the diaphragm, that acts as a bellow. The diaphragm,
shown in Figure 86.3, is a muscle constituted of three superposed folds. It is traversed by the aorta, by
the superior vena cava and by the esophagus. It is connected to the central nervous system mainly by the
vagus and frenic nerves.2 When the diaphragm moves downward, the chest cavity expands, compressing
the visceral organs. As the chest expands, the lungs are filled with air. When the diaphragm returns to its
equilibrium position by moving upward, the lungs are compressed, letting the air flow out. The motion of
the diaphragm can be described via parameters, such as the speed and the acceleration of the ascending
motion, that influence the length and the energy of the vocal emission.

The second part is about the sound that is produced inside the larynx (see Figures 86.1 and 86.2).
The larynx is an ensemble of cartilages (linked to the hyoid bone) and muscles that act on them. While the
proper sound emission is produced at the level of the (true) vocal folds (we also have two false vocal folds) as
a consequence of the repeated opening-closing, the entire motion of the larynx modifies some parameters of
the vocal folds, influencing the produced sound. There are three main cartilages in the larynx, called thyroid,
cricoid, and arythenoid.

A characteristic rotation of the larynx with respect to the trachea, called laryngeal rocking, affects the
length and the thickness of the vocal folds. If we ask a singer to sing a C and then its upper octave, he/she
will feel a movement upward of the larynx while singing the octave. This idea suggested a first, intuitive
definition of vocal hypergesture, where we have a macro-gesture of the larynx containing micro-gestures of
opening-closing of the vocal folds. Another fundamental gesture is, of course, the movement of diaphragm.
In Section 86.1.6 we will however give a more precise and formally useful definition of vocal hypergesture
using spectra. The vocal cords (often called folds for their layered structure), that open blowing up for the air
pressure from the diaphragm, hurt regularly each other during the phonation, causing waves of rarefaction
and compression of the air above them. These are the acoustical waves that will then be filtered by the
resonant cavities (laryngopharynx, oropharynx, nasopharynx), the space immediately above the folds, to the
external space.

Third part: The harmonic quality of the voice also depends on the characteristics of these resonant
spaces. A great part of the difficulties in singing is due to the impossibility, for a singer, to directly control the
inner gestures involved. There are several studies about the biomechanics of voice [558, 1055, 1056]; however
we will not deal here with this approach, trying instead to create the basis for a general mathematical model
to be inscribed in the frame of performance gesture theory.

2 It is interesting to note that the Greek word φρήν is also used to indicate the mind as a physiological entity (we
can think of words such as phrenology, and schizophrenia).
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86.1.3 Imaginary Gestures in Real Time?

I’m giving here a small collection of some of the imaginary gestures that singers think of in order to shape
in a desired way their phonatory system3 [348]:

• Head voice. What is it? When singers think to make the sound on the head it means that the sound
emission, for high pitches, has vibrations that can be perceived in the crane. As it is explained in [348],
what really happens is that the cricothyroid muscle little by little starts to work, thickening the vocal
folds, and the vibratory perceptions are directed toward the crane.

• Chest voice. The opposite happens for the chest voice, when the perception of vibration is at the level of
the ribs. Also according to [348], the vocal muscle shortens the vocal folds, augmenting their thickness.
The resulting vibrations are mainly directed toward the ribs.

• Sostegno. When singers try to sustain the breathing and the voice, they contract abdomen muscles
to facilitate the upward motion of the diaphragm (as we will see, they return toward the equilibrium
position). In this way, the singers can better control the pressure under glottis at each time of the
exhalation. The final effect is of keeping constant the sound emission with a homogeneous intensity for
the entire musical phrase.

• Affondo. What does it mean? By lowering the larynx to augment the space above vocal folds and with
hypertonic lips, the voice is darkened.

• Falsetto. It is a kind of ‘false’ voice, much higher than normal. Cricothyroid muscle and larynx elevation
have the effect of making more rigid and longer the vocal folds that vibrate only at their free border,
with a shortened time of contact.

• “You should put metal in the voice” means: make the sound more brilliant and shrill. How? The truth
is that it is necessary to find the good point of the resonators with the diaphragm pressure and the
intervocalic sound.

86.1.4 Space of Voice Parameters Gestures

What are vocal gestures? To identify candidates for vocal gestures and hypergestures, it is necessary to study
the physiology and the inner voluntary movements of the phonatory system. The first vocal gesture—a ‘pre’-
gesture—is the breathing. Breathing does not imply the phonation, but the phonation is impossible without
breathing. We will define now the space of vocal gestures, the set of variables that contributes to the output
parameters of sound emission and vowel specialization. The space of vocal gestures is defined by:

• air pressure from the lungs, also determined by the movements of the diaphragm (Figure 86.3),
• amount of air,
• vocal folds,

– mutual position of the vocal folds as open or closed on their plane, angle of opening,
– density, length,

• larynx: angle with respect to the trachea, detail of cartilages of larynx,
• time,
• filters: resonant cavities,
• vocal formants.

Candidates for vocal gestures can be envisaged in the movements of vocal folds, larynx and diaphragm.
Although we don’t move the vocal cords directly, we move the muscles that put them into vibration. We
can define geometric parameters for the degrees of freedom associated to these gestures. We mainly have
two angles, φ and θ, between the vocal cords,4 and between larynx and trachea (see Figure 86.2), as well
the length ρ of the vocal cords. In fact, the movement of the larynx implies their stretching. See Figure 86.1
for the details of muscles that act on vocal folds. Geometrically, the system can be described via modified

3 Thanks to Salvatore Sutera, tenor, voice professor and writer, for the little collection and the reading suggestions.
4 We should mention that we have four vocal folds, two true and two so-called false.
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spherical coordinates—with a little change in the coordinate φ for the orientation. The diaphragm gesture,
permitting the breathing, can be schematized as a vertical movement. It will be described later in more
detail.

As previously mentioned, by taking these parameters as a domain, we can define a function that,
as output, gives us the usual musical parameters such as pitch and loudness, for example, as well other
parameters, linked to the vowel specialization. In fact, it is possible to sing different notes by using the same
vowel. In the same way, it is also possible to change the vowel while singing the same note, this is a well-known
exercise for vocal performers. The specialization into a vowel or into another one is given by the different
vocal formants; it means, a harmonic of a note augmented by a resonance [507]. Formants are objects of deep
study [175]. We can describe gestures of vocal folds as points in a high-dimensional space. Lines connecting
them can be the movements of the larynx, as well the legatura given by the same breathing: more than one
or two notes performed during the same exhalation. In this way, we obtain vocal hypergestures.

Fig. 86.1. Section of the human head showing the larynx. 1: hyoid bone; 2: vocal folds; 3: thyroid cartilage; 4: cricoid
cartilage. Details with muscles of vocal folds. 5: vocal ligament; 6: vocalis muscle; 7: thyro-arytenoid muscle; 8: cricoid
cartilage; 9: arytenoid cartilage; 10: thyroid cartilage. The phonation is produced by the movement (the gesture!) that
alternately brings together and moves apart the vocal folds between themselves. Drawings by Maria Mannone. The
parts of the human body responsible for the phonation are the vocal cords (sometimes called vocal folds due to their
layered structure), moved by muscles. Vocal cords are part of the larynx, constituted by cartilages and muscles. The
motion of the larynx stretches the vocal cords, changing their length and shape and changing the pitch. Moreover, to
sustain high notes, a singer needs much more breathing: in this way, the change of breathing contributes in changing
the sound emission.

86.1.5 About the Importance of Breathing and of Laryngeal Movements

It is true that, to change note or octave, the singers use gestures of the larynx. The idea is that, due to the
rocking of the larynx, that is due to laryngeal tilt, the vocal folds are stretched and the sound is higher.
However, it is also important, and even more for very high notes, to increase the amount of breath. And,
because the breathing is itself a gesture, it is interesting and more complete to see their combinations. The
increase of a necessary amount of air to reach high pitches reminds us of the technique employed for higher
octaves on the flute.
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Fig. 86.2. Detail of larynx cartilages. Left, position of the larynx in the human neck. Details of the larynx: 1: hyoid
bone; 2: thyroid cartilage; 3: arytenoid cartilage; 4: vocal folds; 5: cricoid cartilage; 6: trachea. Middle: angle θ of the
larynx with respect to the trachea; and right: angle φ between the two vocal folds. It reminds us of spherical polar
coordinates. A third coordinate ρ can be envisaged in the length of the vocal folds. Drawings by Maria Mannone.

In the specific case of singers, breathing is the necessary condition for the sound emission. For other
performers, such as pianists, breathing is not directly related to the sound emission, but it is useful to control
it, to ameliorate several parameters, such as the phrasing and the quality of touch. These parameters are
influenced by the breathing in a sort of gestural analogy. Moreover, we can cite the case of musicians of a
chamber music ensemble, who have to ‘breathe together’ in order to give coherence to the piece, coordinating
the gestures, handling time. In orchestra there can be the same phenomenon, but in a much more complex
way, due to the number of musicians, the complexity of music, and the unifying role of the conductor, in
what we can poetically call ‘leading the breathing.’ This fundamental gesture is relevant also in the case of
improvisation, because it can strongly determine the structure of the music as such.

We can geometrically describe the gesture of breathing from the point of view of the diaphragm:
movement downward, enlargement of abdomen cavity, inspiration; movement upward, narrowing of abdomen
cavity, exhalation. This gesture can also be combined with the movement of the larynx.

Regarding the larynx there is an interesting anecdote: Lowering of larynx permits a more brilliant sound
but shortens the career of a singer. It is the case of Corelli, as opposed to the technique, without systematic
lowering of larynx, used by Domingo, that allowed him an extraordinarily long career. These examples
emphasize the practical application of these ideas also in voice didactics. There are several physiological and
physical studies about the influence of laryngeal movements on vocal emission, see [1055, 1056] as references.

86.1.6 Mathematical Description of Vocal Gestures

Let A be the space of parameters related to larynx, diaphragm, and upper resonators of the head, as well as
lip position—important for the vowel specialization of the sound. We focus on the parameters that depend
on the technique of the singer, and so, on his/her voluntary and more or less direct choices. We won’t take
here into account the parameters that depend on the physiology of each person—we are going to consider
them as fixed. Let X be the space of spectral values in R2, expressed in Hz and dB.

We can define an A-parametrized gesture as a continuous function from the cartesian product of the
parameter space ∇ with the category A (∇ “ r0, 1s as a topological category, see Section 62.1) with values
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Fig. 86.3. On the left, the position of the muscle diaphragm among the ribs; on the right, the detail of the diaphragm,
constituted by three crossing muscular folds, as the closer other parts of the human body. 1: esophagus, 2: inferior
vena cava; 3: one of the muscular tissue; 4: ribs; 5: aorta; 6: anamostosis between azygos vein and vena cava; 7: right
ascendent lombar vena; 8: inferior vena cava; 9: cisterna chyli; 10: spine. Drawings by Maria Mannone.

in the topological space X, that is, ∇ ˆ A Ñ X, see Section 62.6. According to what is called the currying
theorem in informatics, that states, for a category C, that

CpX ˆ Y, ZqÑ̃CpX,ZY q,
where ZY are the curves from Y to Z, we can write that

q : ∇ ˆ A Ñ X „ q : A Ñ ∇@X,

for the gesture q PÒ @AX, where Ò indicates a simple skeleton given by an arrow between two points. This
second way of writing this, q : A Ñ ∇@X, means that for every a P A we have a gesture qpaq given by
qpaq : r0, 1s Ñ X, the curves from 0 to 1 mapped into the topological space X.

We define q as a spectral gesture, because X, as said before, is the space of spectra.
We can also define an instrumental gesture vA, and we will see why. If we start from a skeleton Δ with,

for example, two points connected by one arrow, we can map it into a curve in A that connects two points of
A, i. e., two different configurations of A-parameters. We can indicate this gesture as an element of Δ

ÝÑ
@A,

where the
ÝÑ
@ indicates the topological category of all gestures from Δ in A.

There isn’t any time information until now. We can add the time information by using the cartesian
product A ˆ T :

v P Δ
ÝÑ
@pA ˆ T qÑ̃Δ

ÝÑ
@A ˆ Δ

ÝÑ
@T.

Time TÑ̃R can be the physical time, if we are considering the final, real, vocal performance, as well the
symbolic time, as happens for the singer who thinks of the positions and the parameter choices before singing.
We can also symbolize by T complex time, comprehending both contributions. In the previous formula for
v, we distinguish the parameter-dependent contribution vA from the time-dependent contribution vT , given
by Δ

ÝÑ
@A and Δ

ÝÑ
@T , respectively.

Now it is possible to put together the two gestures, the spectral one, q, and the instrumental-per-time
one, v. In fact, q induces maps
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q̃ : Δ
ÝÑ
@A ˆ Δ

ÝÑ
@T Ñ Δ

ÝÑ
@p∇@Xq ˆ Δ

ÝÑ
@T, (86.1)

where we used q : A Ñ ∇ÝÑ
@X, and the identity with respect to the time contribution. Conceptually, we are

parametrizing points in space-time, getting configurations of curves, developed in the product A ˆ T .
To rewrite the mapping of Equation 86.1 in a more homogeneous way, we shall consider the embedding

of time-points into time-curves. In fact, if we consider points as particular curves, we can write the injection

T �Ò ÝÑ
@T.

Thus,
Δ

ÝÑ
@T Ñ Δ

ÝÑ
@ Ò ÝÑ

@T,

and we can compose the instrumental gesture with the spectral one:

q̃ : Δ
ÝÑ
@A ˆ Δ

ÝÑ
@T Ñ Δ

ÝÑ
@p∇@Xq ˆ Δ

ÝÑ
@ Ò ÝÑ

@TÑ̃Δ@̃ Ò ÝÑ
@pX ˆ T q,

and q̃pvq P Δ
ÝÑ
@ Ò ÝÑ

@pX ˆ T q. In this last passage we used

∇@XÑ̃ Ò ÝÑ
@X.

Returning to our problem, we finally get a hypergesture because there is a sequence of gestures
(parametrized) into time. In the last writing,

Δ
ÝÑ
@ Ò ÝÑ

@pX ˆ T q,
there is no reference to A, which has been ‘absorbed’ inside the formalism. This fact corresponds to the
reality of voice production: if we just listen to or watch a singer, we are not able to directly understand what
is the parameter choice effectuated by the performer.

In fact, for the voice, at each instant of time we have a spectral gesture: gpαq for a choice α of parameters.
A change in physiological parameters involves a passage gpα1q Ñ gpα2q, as shown in Figure 86.4. This
passage can be interpreted as a hypergesture. Its skeleton Σ can represent the temporal connection between
two instantaneous spectral gestures, corresponding to two parameters α1 and α2 in A, respectively. The
corresponding space of hypergesture is denoted by Σ@Δ@pA@Xq.

86.1.6.1 Why Such a Formalism?

Intuitively, we could talk about three main voice gestures: those of the diaphragm, of the larynx, and of the
vocal folds—inside the larynx. However, instead of analyzing the motion of these parts in terms of gestures,
we characterized them as parameters inside the category A, used to defined the A-parametrized vocal spectral
gestures. Why?

The motion of the diaphragm determines the pressure of the air that can be defined as a parameter.
Vocal folds have some parameters independent of the larynx, and some others depending on it, such as the
stretch that provokes a modification of the pitch. Geometrically, we have two angles, one between larynx
and trachea, and the other between the two vocal folds, see Figure 86.2. The angle between the vocal folds
actually varies regularly from 0 to φ and again to 0, and so on, during the sound emission. If we describe
this motion in an onset-angle graph, we get a curve. We could describe this motion as a gesture. In the same
way, we can describe the motion of the larynx as a gesture. To describe an octave-variation in singing, for
example, we need two gestures, the one of the vocal folds, and the one of the larynx, as shown in Figure
86.5. In this way we could define a hypergesture, as in the classic example of the tube of circles, where we
need two parameters: one for the point in the ‘external’ curve indicating a specific horizontal circle, and the
other one to identify a point on that circle, see Figure 61.9.

However, this representation is not convenient. The final scope of this mathematical modeling is to
connect the choice of physiological parameters to the final vocal result. If we deal with an onset-angle
representation for the vocal folds-motion curve, we introduce a new parameter, the time of this regular
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motion, and moreover it is not clear where the curve ends. As an application of the currying theorem, we
can see the problem from another perspective, the one of parameters. Given a choice of parameters, we get
a spectral gesture, and so on as described. While dealing with parametrized gestures instead of gestures, we
simplify the problem. Parametrized gestures are ‘a kind of’ hypergestures, but they are not real gestures,
because the contributions can be added as cartesian products.

The details of vocal folds’ gestures, as well those of the larynx, are difficult to control, but we can
simplify the problem by using Fourier transformation and transforming these gestures into other ones, with
the spectrum. With this formalism, we include all information in a complete and exhaustive way, and we
finally get the sound result in terms of a spectrum. A last step is necessary to complete the theory. Voice
production can in fact be specialized to different vowels. To reduce the complexity of this topic, we can think
of a formant curve as being applied to the spectral curve. The formant curve acts as a filter, shaping the
spectral curve into a specific vowel. The final result, a voice sound with a vowel specialization, is obtained
as the product of these two curves.

86.1.6.2 Other Comments on Vocal Hypergestures

Let’s consider a simple skeleton Ò. For every choice of parameter α inside the topological category A, as
will be precisely discussed in the Appendix, there is an α-labeled curve cptq “ pα, tq in the space A ˆ ∇.
It means that each skeleton Ò is α-labeled. And this curve will be mapped into a curve in X, yielding a
spectrum. For every choice of parameter, we get a spectrum. If there is a transformation from α to α1, there
is a change of parameters, which leads to a change of spectra. Because we are here considering spectral
gestures, the gesture that transforms a spectrum into another one is a spectral hypergesture. One could
ask for an example of Ò. The skeleton is just an oriented graph, not already a gesture; it is just part of the
definition of gesture. All the physiological parameters are inside the category A. However, to give a first
empirical idea, not mathematically precise, we can consider Ò as, for example, the motion of the diaphragm
during exhalation, moving toward its equilibrium position. The motion of the diaphragm with a certain
choice of laryngeal parameters will lead to a spectrum. Another choice of parameters will lead to another
one. However, this is formally not precise because the motion of the diaphragm, described with its speed
and acceleration, is part of the parameters’ collection, and, as previously said, Ò is just an oriented graph,
not yet a gesture.

In every case, it is true that the voice first singing with a certain laryngeal configuration and then
switching to another configuration is making a spectral hypergesture. See Figure 86.4 for the mechanism of
construction. Another hypergesture can be realized when the laryngeal configuration is the same, but the
parameter of the diaphragm’s pressure is different: it is the case of a singer first singing a piano and then a
forte. The crescendo, for example, is another case of hypergesture, because it implies a change of parameters
of breathing. Because spectra are curves, the connection between them is given by a surface. Thus, the vocal
hypergesture can be described as a surface connecting two or more spectral gestures.

This process can also be described in general terms as reparametrization. Although in physics the
invariance for reparametrization is a frequent situation, here there isn’t in general any invariance, because
the final spectra will be different for different choices of physiological parameters. However, there can also be
very similar spectra for different choices of parameters. It is the case when, for example, a voice student tries
to imitate a particular sound, while forcing his phonatory system in a not-comfortable way, with an incorrect
technique. This case is similar to the one of a pianist who is playing without the necessary muscular relaxation.
After a while, these musicians can incur in muscular pain and, if the mistakes are reiterated, damage.

86.1.6.3 Branching

Melodic branching has been described in Chapter 78. Also in the case of voice it is possible to have melodic
branching. It is the very rare case of Mongolian throat singers, able to produce multi-sound emissions at the
same time.
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Fig. 86.4. Top: for a choice of laryngeal parameters we get a spectrum (loudness L in dB and frequency f in Hz);
bottom: two different spectra that correspond to two different parametrizations. The first curve can be transformed
into the second one via a surface. The third axis is labeled as the time, to represent the case when a spectrum follows
the other temporally. The graphs of the spectra have been realized with Audacity software, while singing two notes
in two different registers.

86.1.7 Gestures Thought by Singers

Singers, while teaching vocal techniques or singing themselves, are used to thinking of imaginary movements
of the voice. These movements help the realization of real physical gestures. There is a sort of morphism
between gestures in real time but in imaginary space, and gestures in real time and real space, mainly
corresponding to the motion of vocal folds, larynx, and diaphragm.

86.1.7.1 Cultures of the Voice: An Example from Ethnomusicology

In the case of classically trained singers, a sustained tuned sound corresponds to a regular opening-closing of
the vocal folds. The singing technique has, as its scope, the most projecting, loud or soft, and vibrato sound
by a motion of the entire surface, without forcing any part of the vocal system. If we look at the shape of
vocal folds of singers from other cultures, we can see that, in some cases, the vocal folds are forced to reach
an ‘unnatural’ shape, by a progressive and dedicated training. Some singers of these cultures compare these
changes in the natural shape of vocal folds to the callouses of violinists’, harpists’ and guitarists’ fingers, as
an example from traditional Korean Han singing. In recent time, more and more Koreans have been looking
for a smoother bel canto style, toward what they call a clean voice, particularly in the context of Christian
Lutheran singing. See [442] for more details.

86.1.7.2 Gregorian Chant and Gauls

The research of vocal qualities such as smoothness is a recurring theme. It is interesting to read the description
by John the Deacon (9th century) of Gaul singers approaching the Gregorian chant (see Chapter VIII of
[1106]): These men from across the Alps seem unable to tone down to the supple delicacy of the Gregorian
melodies, those stupendous noises which burst from their crude throats like claps of thunder. Also in this
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Fig. 86.5. A very first example of a vocal hypergesture (in Section 86.1.6 I give a more complete and mathematically
manageable definition of a vocal hypergesture). The vocal folds open and close while the larynx is moving up and
down. It can be used to realize a primitive melody with an octave: each note is a gesture (a repeated gesture) of vocal
folds, and the jump of octave is a gesture of the larynx. As explained in the text, singers don’t control directly the
motion of vocal folds, but they control muscles that activate such movement. We use the score notation to recall the
octave-movement gesture. Drawing by Maria Mannone.

case, the tendency toward a beautiful voice is seen as part of the liturgy: in fact, Pope Pius X wished to pray
in beauty. It reminds us of Saint Augustine: Who sings prays twice.

This last example is also an introduction for the following topic. We will briefly describe a technique
from the past that can be used as resource for the future.

86.2 A Powerful Tool from the Past for the Mathematical/Physical Theory of
the Future: The Neumes of Gregorian Chant

Gregorian chant is the basis of Western music and Western music notation. We can recall, for example, the
birth of the first harmony from counterpoint, when different chants were superposed, producing different
simultaneous combinations of sounds that required new rules. We will examine here some characteristics of
the training for Gregorian-chant singers, strongly related to the concept of gesture, and its ancient notation
that is also derived from (vocal) gestures.

The first Christian liturgical music, the Gregorian chant with Latin texts from holy writings, was
developed in the early Middle Ages and influenced by the Greek modes. It is a form of initially unaccompanied
monophonic chant. The Western musical notational system is derived from Gregorian chant, whose origins,
as we will see, stem from gestures. In 4th- and 5th-century Europe, there was no musical notation for
melodies. Cantors in monasteries learned them by heart. Later, some signs called neumes (from the Greek
word for sign) were added to words written in manuscripts. Initially, these neumes were positioned above
syllables of the text, without any reference to a precise pitch, see Figure 86.10. Successively, neumes have
been introduced in a four-line musical staff. the ancestor of our modern five-line staff. The use of a stave
established the passage from non-diastematic to diastematic notation, where the precise pitch is shown by
the vertical position on the musical stave [731].

A first attempt at a definition of new neumes is given in Figure 86.8.
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Fig. 86.6. Transition from imaginary time of a vocal score to real time of vocal performance.

Fig. 86.7. Vocal folds. Left: in more detail, 1: epiglottis, 2: tubercle of epiglottis, 3: vocal folds, 4: trachea. Center:
schematic representation of vocal folds while producing a lower sound, Right: the same scheme for a higher sound;
see [347] for details. Drawings by Maria Mannone.

86.2.1 Gestures in Gregorian Chant Didactics

Here, we will describe some hints from a method of Gregorian chant dedicated to children [1106]. In this text,
gestures of the entire body and of the voice have a fundamental role in learning this specific vocal technique
and singing style.

86.2.2 Concept of Rhythm and Time

The connection between symbolic and physical gestures appears evident from the description of the approach
to rhythm: it cannot be merely mental. Rhythm is movement, and is acquired largely through the muscle sense.
The idea of smooth (vocal) gestures, a result of the gestural theory operators acting on non-smooth curves
of symbolic gestures, is clearly present: ...a perfect legato, as on a stringed instrument, and never to sing
as though by blows as on a piano, putting the accent on the percussive character of piano playing (not of
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Fig. 86.8. One point: gesture of vocal folds. Curve: gesture up-down of the larynx connecting the points. We can
define hypergesture also as including the gesture of breathing with the movements of diaphragm muscle, particularly
relevant to reach very high notes that require an increased amount of breathing.

Fig. 86.9. Vocal folds of a classic trained bel canto singer (left), compared with respect to the vocal folds of a
folkloristic Han Korean singer (right), from the book [442].

gestures). The goal of such a musical education is to develop a smooth voice, with a flexible and almost free
(but not absent) rhythm. The steps to reach the mastery of the new rhythm comprehend gestural exercises
to feel the movement as alternation of lift and weight, and the drawing of curves to reveal defect in the voice
melody. There is, in fact, a kind of aesthetics of movement, it means, aesthetics of gestures: according to St.
Augustine, the rhythm is the science of beautiful movements.

The first chapter of the treatise [1106] deals with the accent, corresponding to a slight raising of the
melody of speech. The graphic tool used to indicate this movement is the wave shown in Figure 86.11 (a),
where the first part signals the arsis, the second one the thesis.5 It is also a notation for the hand: this
kind of movement suggests the vocal reaction as shown in Figure 86.11 (b); the onset-pitch notation would

5 We recall that the terms arsis and thesis, that come from Greek, are used to indicate the part of the movement of
‘get off the ground’ and of ‘the down-beat’. They first appear in the Greek prosody. For the importance of arsis
and thesis as musical paradigms, see Chapter 83 about conducting.
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Fig. 86.10. An example of neumatic notation.

be used for the corresponding concept. This graph is close to the pick-up gesture in orchestral conducting,
traditionally represented as shown in Figure 86.11 (c) and corresponding to the physical in 86.11 (d).

In Figure 86.11 (a), the smoothness on the apex is a clear signal for the required smoothness of the voice.
The conductor’s gesture is the mirrored version of other gestures: musicians looking at the conductor see a
movement from the left to the right, i.e., in the ‘natural’ way. What is the arsis—thesis in vocal physiology?
A first correspondence can be envisaged in the gesture of phonation. But let’s proceed with this technique
description.

In conducting, all the information for the pick-up is contained in its preparation; in the same way, as
explained in [1106], the energy for both arsis and thesis is inside the arsis’ gesture. We suggest a comparison
with the throwing a ball over the head. The ball rises, and then falls back. The impulse is given by the initial
gesture of throwing. The suggested image is then slightly modified: the Gregorian chant should ‘drop’ more
lightly than a snowflake.

Fig. 86.11. (a) The wave shown in [1106] to represent arsis and thesis with the voice shown by a hand’s gesture; (b)
the corresponding vocal gesture; (c) the similar way to traditionally indicate the pick-up in orchestral conducting,
and (d) its effect in onset-position graph.
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We have the first example of a hypergesture in this context when they describe an arsis carrying more
than one note (the production of a single note is a gesture, and the arsis is a gesture).

Let’s talk now about time and rhythm. Gregorian chant is not measured music, because there is no
division into measures. However, it does not mean that there is no rhythm: there are groupings of notes in
sequences of two or three, but these groupings depend on the words or the shape of the melody itself, not
on an ‘external’ time. After a short description of what we can call secondary arsis, realized in two different
ways (see Figure 86.12), the author finally distinguishes between time and rhythm. He writes:

When we speak of rhythm we mean the great waves of sound that rise and fall. [...] When we speak
of time we mean something different, something smaller which seems to pulsate within the rhythmic
wave, just as our hearts pulsate in our bodies. Our hearts go on beating quietly, evenly, even when
our bodies move to the rise and fall of the greater motions of rhythm.

and again:

We should feel clearly [...] this steady, large, flowing movement of the rhythm, and then deep down,
below the surface, the time moving, pulsating, inside the rhythm.

(a) (b)

Fig. 86.12. Reproduction from [1106]; examples of nested arsis and thesis.

The concept of rhythmical pulsation is present also in other music worlds: classic symphony and jazz,
for example. In the first case, it can be considered as a ‘discrete’ pulse, while in the second case the ‘points’
of pulsation are so short and so close that we can think of continuity. As an example of the first case, in
the Symphony no. 40 by Wolfgang Amadeus Mozart (Figure 86.13), below the well-known melody there
is the ‘motor’ of violas, that gives the vital pulse to the entire theme. The more or less hidden tempo can
be modified, for example when a fermata is occurring. If we imagine the tempo as an elastic straight line
(measure), the parameters of a fermata intervene as little weights that modify the shape of the line. In a
two-dimensional example, we can also think of an elastic carpet, deformed by the gravitational field of some
parameters. This is a common image used in popularization of space-time description in theoretical physics.
The concept of weight comes from the performance theory (see Section 39.1), where the fermata is just an
example.

In [1106] are described:

• the simple rhythm, when a rhythmic wave contains just one arsis and one thesis and not more,
• the simplex time, when, in each rhythmical wave, there is one note for an arsis and one note for a thesis,
• the complex time, when there is more than one note for an arsis, and more than one note for a thesis.

In Gregorian chant, the commonly used groupings are of two and four (duplex and triplex groups). As a
final remark, it is recommended not marking ‘loudly’ the grouping of notes: let the duplex and triplex time
groups exist in our mind only. The dimension of a mental, inner reality is implied, with its imaginary time,
and it affects the flow of musical events inside the physical time.
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Fig. 86.13. First page of Symphony no. 40 by Wolfgang Amadeus Mozart. The well-known melody played by violins
is sustained by the pulse of violas (Leipzig: Breitkopf & Härtel, 1880. Plate W.A.M. 550).

86.2.2.1 The Chironomic Game

What in [1106] is called chironomic game is a compositive exercise where the teacher makes a hand gesture,
and the students have to think about a melody that can fit the proposed gesture. This concept has striking
similarities with the compositions inspired by gestures, recently proposed [649].

86.2.2.2 Voice in Imaginary Time, Silence in Physical Time?

It is suggested, before a certain exercise, to make a silent rhythmic wave. In this way, the student is thinking
the melody, but not yet singing it (Figures 86.14, 86.15). The melody is still symbolic—completely imaginary,
before its physical realization with the phonation. It can be called a gesture of silence, similar to the orchestral
music in the first part of the pick-up—the attack!

86.2.3 The Neumes

The word neume originates from Greek pneuma (Greek letters), which means ‘breathing.’ Here we have a
list of neumes, the square notation derived from them, and their evolution into modern musical notation
[731].

We have these transitions:
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Fig. 86.14. An image from [1106], representing the transition from the gestural indication for a firstly thought sound
to a really sung one, for Gregorian chant learners. This passage reminds us to the transition from symbolic to physical
gesture, and from imaginary to real time.

Fig. 86.15. The transition from symbolic to physical gesture, and from imaginary to real time.

1. from acute accent to virga
2. from grave accent to punctum (with the stem)
3. from circumflex accent to clivis
4. from anti-circumflex accent to pes or podatus.

Some of the Gregorian musical figures are the following (Figure 86.16):

• Punctum quadratum (simplest symbol, just a square note; see the first line of Figure 86.16, without stem)
• Punctum inclinatum (lozenge, used in a group of descending notes; see second line of Figure 86.16)
• Virga (like punctum quadratum, but with a stem)
• Scandicus, three ascending notes
• Quilisma (the modern mordente)
• The torculus is obtained as combination of three neumes, porrectus, climacus, and scandicus.

All of these musical figures have the same duration, and they are usually transcribed in modern notation
using eighth notes. By combining these figures, it is possible to obtain more complex neumes. For example,
by combining two ascending or descending notes, we respectively obtain the pes and the clivis, or the
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torculus/porrectus by using three notes. What is the origin of neumes? The neumes reproduced the ascending-
descending movements used by the choral conductor to represent variations of the shape of the melody. These
hand movements that indicate the shape of the melody constitute the cheironomic movements, from the Greek
χέιρ, hand, and νόμος, law (in the sense of ‘custom’). Due to its origin, we can state that the Western musical
notation is derived from gestural indications. There is a transition from a continuous shape, characteristic of
gestures, as we shall see in the following sections, to a discrete set, characteristic of the notes in the symbolic
score. We argue that the idea of freezing gestures into simple signs is exactly what a composer does when
he or she is writing a new score. Mathematically, that corresponds to a procedure of discretization.

Figure 86.16 [731] shows the derivation of some modern musical figures and combinations of figures
from neumes first, and square notation then. Figure 86.17 shows an example of both neumatic and square
notation.

Fig. 86.16. The transition from neumes to square notation to modern musical notation.

86.3 Connecting Physiology, Gestures and Notation. Toward New Neumes?

86.3.0.1 A New Score

It is also possible to compose music starting on a vocal gesture. A fun example of such a piece is shown
in the short original score of Figure 86.18. It contains the variation of loudness during the emission of a
sound with the same pitch (from pp to f and back to ff), a continuous variation of pitch (glissando), and a
discrete variation of pitch—a scale fragment, a variation on ascending three-note fragment, some staccato
notes, and again a continuous sequence. The variation of loudness during the emission of the same note
implies an augmented pressure of the diaphragm, keeping the same position of vocal folds. If the singer is
also singing the same vowel, also the position of the mouth is kept unchanged. About the continuous change
of pitch, short sequences of glissando in the form of gradual slides from one note to another closer one are
frequently used in bel canto practice, although not written: they are examples of portamento. Continuous
musical movements correspond to continuous movements of the larynx, as opposed to step-like notes as in
the scale degrees. Highly staccato notes are usually made with blowing-like movements of the diaphragm.
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Fig. 86.17. An example of both neumatic and square notation.
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Fig. 86.18. Short original music fragments made by thinking of vocal gestures. Different notations are here used: From
the top to the bottom, the vocal melody obtained with software Praat for vocal sound analysis; the musical 5-line staff,
the Gregorian neumes—that don’t take into account the pitches; synthetic physiological description accompanied by
lines for glissando and ‘stairs’ for discrete scales; and, finally, schematic illustrations for such movements.

86.3.1 New Neumes

Symbolic and physical gestures, once defined as mathematical curves, can be included into the formalism
of gesture theory as boundary conditions for the Poisson equation (see Section 78.2.1). The first candidates
for symbolic and physical gestures are represented in Figure 86.8. The vibrato needs a separate description.
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For example, it could be indicated via a couple of parameters, one for the speed, and the other for the pitch
difference between higher and lower notes that constitute its boundary.

In fact, by our defining points in the space of vocal gestures, these points and the lines connecting them
assume the character of new neumes, as gestural and hypergestural entities. In this way, an instrument from
the past can give us the key for formally understanding the mathematics of vocal gestures, extending the
gesture theory to the difficult case of inner gestures used in singing.
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Université Paris VI, Paris 1998
14. Agust́ın-Aquino O A: Counterpoint in 2k-tone equal temperament. Journal of Mathematics and Music, Vol 3,

nr. 3, pp. 153-164, 2009
15. Agust́ın-Aquino O: Extensiones Microtonales de Contrapunto. PhD Thesis, Facultad de Ciencias, UNAM,

Mexico City, 2012
16. Agustin-Aquino, O A, J Junod, G Mazzola: Computational Counterpoint Worlds. Springer Series Computa-

tional Music Science, Heidelberg 2014
17. Akmajian A et al.: Linguistics. MIT Press, Cambridge MA 1995
18. Alain: Alain Citation on Almada’s painting in the Gulbenkian Foundation Center. Lisbon 1968
19. Albert R S and M A Runco: A History of Research on Creativity. In: R J Sternberg (Ed.): Handbook of

Creativity. Cambridge University Press, New York 1999
20. Aleinikov A G: On Creative Pedagogy. Higher Education Bulletin, 12, 29-34, 1989
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62. Badiou A: La République de Platon. Pluriel, 2012
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64. Badiou A: Le Séminaire – Heidegger. L’être 3 - Figure du retrait. 1986-1987. Fayard, 2015
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Hirzel, Leipzig 1936
69. Baker J, Beach D, Bernard J: Music Theory in Concept and Practice. Eastman Studies in Music, University

of Rochester Press, 1997
70. Bakhtin M: Toward a Philosophy of the Act. Translated by Vadim Liapunov. University of Texas Press, Austin

1993
71. Balzano G: The group-theoretic description of 12-fold and microtonal pitch systems. CMJ, 4, 66-84, 1980
72. Bandemer H and Gottwald H: Fuzzy Sets, Fuzzy Logic, Fuzzy Methods. Wiley, New York et al. 1995
73. Banter H: Akkord-Lexikon. Schott, Mainz 1982
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Les travaux combinatoires entre 1870 et 1914 et leur actualité, Guéret, 30 Sept. - 2 Oct. 2015
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147. Bourbaki N: Eléments de Mathématique, Topologie Générale, Ch.1-4. Hermann, Paris 1971
148. Bourbaki N: Foundations of mathematics for the working mathematician. Journal of Symbolic Logic, 14, pp.

1-8, 1949
149. Boyer C B: Newton as an Originator of Polar Coordinates. American Mathematical Monthly 56: 73-78, 1949
150. Braem P B and T Braem. A Pilot Study of the Expressive Gestures Used by Classical Orchestra Conductors.

In: Emmorey K and H Lane (Eds.): The signs of Language Revisited. Lawrence Erlbaum Associates, 2000
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412. Guitart R: La pulsation mathématique. L’Harmattan, Paris, 1999
413. Guitart R: évidence et étrangeté. PUF, Paris, 2000
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mathématiques et philosophie”, ENS, Paris 18 juin 2007

418. Guitart R: An anabelian definition of abelian homology. Cahiers Top Géo Diff Cat, XXXXVIII, 4, pp. 261-269,
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570. Lakoff G and R Núñez: Where mathematics comes from: How the embodied mind brings mathematics into

being. Basic Books, New York 2000
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592. Le Guin E: Boccherini’s Body. University of California Press, Berkeley and Los Angeles 2006
593. Leman M: Schema Theory. Springer, Berlin et al. 1996
594. Lerdahl F: Timbral Hierarchies. Contemporary Music Review, vol.2, no.1, 1987
595. Lerdahl F: Cognitive Constraints on Compositional Systems. In: ed. J Sloboda (Ed.): Generative Processes in

Music. Oxford University Press, Oxford 1988. Reprinted in Contemporary Music Review 6, no. 2 (1992):97-121
596. Levy M: Intonation in North Indian Music. Biblia Impex, 1982
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Critical Studies in Improvisation/Études critiques en improvisation 6.2. 2010
http://www.criticalimprov.com/article/view/1268

624. Lubet A: Music, Disability, and Society. Temple University Press, Philadelphia 2011
625. Lubet A: Social Confluence and Citizenship: A View from the Intersection of Music and Disability. In:

Hirschmann N J, and B Linker (Eds.): Civil Disabilities: Citizenship, Membership, and Belonging. Univer-
sity of Pennsylvania Press, Philadelphia 2015

http://www.criticalimprov.com/article/view/1268


R.18 References

626. Lubet A: Oscar Peterson’s piano prostheses: Strategies of performance and publicity in the post-stroke phase
of his career. Jazz Research Journal, 7(2), pp. 151-182, 2015

627. Lubet A: A Case of the Blues (misc). Unpublished, 2014
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631. Lussy M: Traité de l’expression musicale. Paris 1874
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675. Mazzola G: Der Kontrapunkt und die K/D-Dichotomie. Manuscript, University of Zürich 1987
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715. Mazzola G, G Milmeister, K Morsy, F Thalmann: Functors for music: The Rubato Composer System. In:

Digital Art Weeks Proceedings, ETH Zürich, 2006
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In: Barbin E et J-P Cléro (éds): Les mathématiques et l’expérience : ce qu’en ont dit les philosophes et les
mathématiciens, p. 95-114, Hermann, Paris 2015

823. Parncutt R: The Perception of Pulse in Musical Rhythm. In: Gabrielsson A (Ed.): Action and Perception in
Rhythm and Music. Royal Swedish Adademy of Music, No.55

824. Parncutt R: Recording Piano Fingering in Live Performance. In: Enders B, Knolle N (Eds.): KlangArt-Kongress
1995, Rasch, Osnabrück 1998

825. Parncutt R et al.: Interdependence of Right and Left Hands in Sight-read, Written, and Rehearsed Fingerings.
Proc. Euro. Sco. Cog. Sci. Music, Uppsala 1997

826. Parncutt R: Modeling Piano Performance: Physics and Cognition of a Virtual Pianist. In: ICMA (Ed.): Pro-
ceedings of the ICMC 97, San Francisco 1997
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Mathildenhöhe, Darmstadt, 1986
867. Puckette M and Lippe C: Score Following in Practice. In: ICMA (Ed.): Proceedings of the ICMC 92, San

Francisco 1992
868. Pulkki V et al.: DSP Approach to Multichannel Audio Mixing. In: ICMA (Ed.): Proceedings of the ICMC 96,

San Francisco 1996
869. Puttke M: Learning to Dance Means Learning to Think! In: Bläsing B, Puttke M, Schack Th. (Eds.): The
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gen and Zürich 1996
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mann’s “Träumerei”. J. Acoustic Soc. Am. 92, 1992
887. Repp B: e-mail communication of tempo data. Haskins Laboratories, New Haven, June 2, 1995
888. Repp B: Patterns of note onset asynchronies in expressive piano performance. J. Acoustic Soc. Am. 100, 1996
889. Repp B: Pedal Timing and Tempo in Expressive Piano Performance: A Preliminary Investigation. Psychology

of Music 24, 1996
890. Repp B: The Art of Inaccuracy: Why Pianists’ Errors Are Difficult to Hear. Music Perception, 14, 2 1997
891. Repp B: Expressive Timing in a Debussy Prélude: A Comparison of Student and Expert Pianists. Musicae

Scientiae 1, 1997

http://www.edge.org/3rd.culture/ramachandran/ramachandranp6.html
http://eqworld.ipmnet.ru


References R.25

892. Reti R: The Thematic Process in Music (1951). Greenwood Press, Westport, 2nd ed. 1978
893. Reti R, commented by Kopfermann M: Schumanns Kinderszenen: quasi Thema mit Variationen. In: Musik-

Konzepte Sonderband Robert Schumann II, edition text + kritik, München 1982
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899. Riemann B: Über die Hypothesen, welche der Geometrie zugrunde liegen (1854). Gött. Abh. No.13 (published
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1032. Takemitsu T: Confronting Silence. Fallen Leaf Press, Berkeley 1995
1033. Takhtajan L A: Quantum Mechanics for Mathematicians. American Mathematical Society, Providence 2008
1034. Teschl G: Mathematical Methods in Quantum Mechanics. American Mathematical Society, Providence 2009
1035. Tanaka A: Interaction, Experience, and the Future of Music. In: O’Hara K and B Brown (Eds.): Consuming

Music Together. Springer, Dordrecht 2006
1036. Tarry G: Le problème des 36 officiers. AFAS, Compt 1900–1901
1037. Tatarkiewicz W: A History of Six Ideas: An Essay in Aesthetics. Polish Scientific Publishers, Warszawa 1980
1038. Taylor Y and H Barker: What’s It Like to Be Blind? Faking It. fakingit.typepad.com 2007
1039. Taylor C: Burning Poles. VHS, Mystic Fire 1991
1040. Taylor C: Silent Tongues. Freedom 1974
1041. Thalmann F: Musical composition with Grid Diagrams of Transformations. Master’s Thesis, University of

Bern, Bern 2007
1042. Thalmann F: Gestural Composition with Arbitrary Musical Objects and Dynamic Transformation Networks.

PhD thesis, University of Minnesota, 2014
1043. Thalmann F and G Mazzola: The Bigbang Rubette: Gestural music composition with Rubato Composer.

In: Proceedings of the International Computer Music Conference, International Computer Music Association,
Belfast 2008

1044. Thalmann F and G Mazzola: Affine musical transformations using multi-touch gestures. Ninad, 24:58–69, 2010
1045. Thalmann F and G Mazzola: Gestural shaping and transformation in a universal space of structure and sound.

In: Proceedings of the International Computer Music Conference, International Computer Music Association,
New York City 2010

1046. Thalmann F and G Mazzola: Poietical music scores: Facts, processes, and gestures. In: Proceedings of the
Second International Symposium on Music and Sonic Art, MuSA, Baden-Baden 2011

1047. Thalmann F and G Mazzola: Using the creative process for sound design based on generic sound forms. In:
MUME 2013 proceedings, AAAI Press, Boston 2013

1048. Thalmann F and G Mazzola: Visualization and transformation in general musical and music-theoretical spaces.
In: Proceedings of the Music Encoding Conference 2013, MEI, Mainz 2013

1049. Tormoen D, F Thalmann, G Mazzola: The composing hand: Musical creation with leap motion and the Bigbang
Rubette. In: Proceedings of 14th International Conference on New Interfaces for Musical Expression (NIME),
London 2014
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X‹, 1397
Xcycpgq

. , 1382
X6, 459
Xr

n, 175
Xadd, 725
Y�Z, 946
YAff, 1414
YComRings, 1414
Y ear, 342
Y oneda, 982
ZpRq, 1385
Zpharmoq, 725
Zpmetricq, 725
ZNF , 210
Zn, 966
rC{CpXqs, 518
rC|CpXqs, 518
rKq, 231
rKs, 193
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rL : Ks, 1460
rMq, 402
rM1{ns, 206
rRs, 335
rSs, 1422
rX,A;Y,BsX1 , 1474
rn
i

s, 311
rXC ,XF s, 1246
ra, bs, 457
rb, p, gs, 267
rf s, 943
rl|x|ks, 110
rss, 1373
rxq, 402
rxs, 1454
rxys, 444
&, 1432
An, 1415ÝÑ
? , 944ÝÑ
F , 942ÝÑ
X , 914, 1457ÝÑ
@, 916, 941ÝÑ
f , 914, 1458
Ab, 1411
Aff, 1412
‖f‖1, 1450
‖f‖2, 1450
‖f‖8, 1450
‖x‖1, 1450
‖x‖2, 1450
‖x‖8, 1450
‖ ‖, 1450
@M , 1397, 1422
@, 53, 1396
@red

R M , 1401
@R, 1396
@locX, 280
C, 1385
Cm, 1112
CHR, 44
CatMan, 993
Colimit, 1437
ComGlobA, 285
ComLoClassgen,M

n`1,EndpBq, 170
ComLoClassgen,lf,sp

n`1,0R
, 177

ComLoClassgenn`1,OR
, 173

ComLoClassn`1,0R , 177
ComLoc, 979
ComLocA, 142
ComLocemb

A , 143
ComLocgenA , 143
ComLocinA , 143
ComMod, 1412
ComRings, 1411
ComRings@, 1415
ΔRg, 386

ΔnΓ pGIq, 294
Δ, 565, 628, 1432
Δ-formula, 926
ΔpGIq, 989
Δd, 1461
Δn, 173, 293
Δq, 1476
ΔGI , 294
Δi,j , 1403
Den, 331
Denpx, yq, 331
DenColimit, 331
DenLimit, 331
DenPower, 331
DenSimple, 331
DenSyn, 331
Den8, 335
Den8{sig, 338
d○, 975
Digraph, 914, 938, 1457
FlatLocNetpCq, 981
Fψ, 928
Formula, 926
ForSem, 1440
ΓBf , 291
ΓΛn

f , 291
Γ , 290, 1364, 1412
Γ -machine, 1038
Γ pGIq, 288
Γ pU,F q, 1412
Γ pf ι{IdAq, 290
Γ pmyFMObjectq, 73
Γ

ÝÑ
@K, 941

Γ
ÝÑ
@X, 937

Γ
ÝÑ
@AΣ

I , 998
Γ œ C, 984
Γ˚, 1457
ΓGÝÑ

@AΣ
I , 998

Γw, 239
Γt, k386
Γt, 385
ΓtpM, jq, 309
ΓDir, 660
ΓRedIndia,c, 387
Γt,n, 385
Gesture, 937
GesturepF q, 942
GesturepKq, 941
μGlob, 352
GlobalDigraph, 996
Grp, 1411, 1421
Graph, 1458
H, 1385
Heyting, 930
LCTop, 1255
Λ Ó, 628
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Λ Ò, 628
Λ Ù, 628
ΛsT , 1468
Λ8, 628
LieR, 1408
Limit, 1437
LinMod, 1421
LinModR, 1421
Loc, 136
LocEndpAq, 141
Loc@A, 137

μLoc, 352
LocNet, 981
LocNetpCq, 981
LocRgSpaces, 1411
MR, 1420
Mm,npRq, 1392
Mod@, 961, 979, 1397
Mod, 1397, 1411, 1421
ModR, 1397, 1421
Mon, 1411, 1421
N, 1371, 1420

μObGlob, 352
ObLoc, 132, 979

μObLoc, 352
ObLocEndpAq, 141
ObLoc@A, 137
Ω ∝ μ, 633
Ω, 598, 628, 720, 1428, 1459
Ωppq, 483
ΩSh, 1431
ΩX

ω , 723
Φ, 1432
Π, 610, 1435
Π1pXq, 920
Πw, 191
Power, 1437
Ψ , 610
Q, 61, 62, 1371, 1385
Qm, 1112
R, 44, 61, 1371, 1385
RΔ, 926
Rm, 1112
RrQs, 61
RadicalDigraph, 926
ñ, 1342, 1433
eR, 83
Rings, 1411, 1421
BCpA,W q, 1453
BP, 588
BpA,W q, 1452
C1 ˆ C2|K, 587
GlDifft, 557
Glob, 275
LocDifft, 552
ObGlob, 275

Tant
R, 552

Schémas, 1414
Ens, 1054
Ensσ, 1028
EnsU , 1420
ΣIMi, 1391
Simpl, 1445
SinLoc, 141
SinLocEndpAq, 141
SinLoc@A, 141
Sob, 1414
SpaceDigraph, 914
Simple, 1437

denotator, 1112
Syn, 1437
TopCat, 939, 961, 1085ÝÝÝÝÝÑ
TopCat

©
, 962, 1086

TON, 447, 448, 483, 485
Tphq, 337
TI , 335
TA

I , 335
Tex, 334
TexigpDenqphq, 337
TexigpDenqI , 334
Top2, 1474
Top, 993, 1085, 1421, 1444
©, 939
UNICODE, 1090
Υ , 1435
VAL, 447, 448, 483, 485
VALmode, 483
VALtype, 483
Ξ, 1432, 1435
ΞD, 419
ΞK , 419
,צ 568, 1254
Z, 44, 1371, 1385
Zm, 1112
Zn, 1381, 1386
Z2, 60
Z4

71, 784
tצ

px,yq, 1191
,Λ,Dirצ 656
Λ,Uצ , 659
,Λצ 656
,exצ 591
α, 524
α`, 508, 567
α´, 508
α`, 108
α´, 108
X̄, 402
z̄, 1385
β, 524
βpxq, 291Ş
V , 1372
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Ť
V , 1372À
I Mi, 1392Ź‘k L, 975

K, 336, 1433
b, 1400
‚, 804
X, 283
?̌@A, 137
Š, 101
χ, 418, 419
χpY q, 1375
χ‹, 418
χσ, 1428, 1459š

I Mi, 1375
δY , 264
δx, 1481
δ, 524, 610
δpX{Y q, 520
δpY |Xq, 520
δrX|Y s, 520
δ@A, 294
δij , 1392
9f{IdA, 295
9s, 295
H, 146, 1371
HR, 1397
Dx, 1436
DxP px, yq, 346
@x, 1436
@xP px, yq, 346
D, 1412
H, 593
MusGen, 133
M, 1436
M ( αrxs, 1436
M0, 459, 952
M1, 459
M2, 459
SM , 1378
T, 399
T{Ges, 399
Tsp

Toroid, 403
Tsp

Toroid{Ges, 403
Tμ{Ges, 399
Tμ, 399, 400
Tμ{Ges, 400
Tt,P,d, 397
Tt,P,d{Gest, 398
W, 598
glpLq, 1408
glpn,Rq, 1408
h, 590, 628
h|U , 590
slpLq, 1408
slpn,Rq, 1408
γ, 610

γiptq, 911, 915ÝÑ
GLpn, pq, 1382
?̂, 56, 131
b̂, 721
f̂ , 131, 1344
´ą, 1432

P, 1371ş
C F , 1061ş
c
ω, 975ş

C
F , 1424ş

x
f , 1454

ι, 628
ιj , 1375, 1392
κ, 454
κpxq, 1412
κJ , 455
κRelDyn, 642
κorb, 460
xSye, 1376
xSy, 423, 1376
xSy, 1422
|——
CL

α, 1434

D, 1021
L4, 1026
T2, 966
globfact, 992
Framen, 983
FrameX., 1254
Sel, 989
B, 1067, 1070, 1443
Bn, 1488
Cr, 1451
C�, 946
Cτ , 982
CIm, 1289
CPh, 1290
DpCq, 1031
DΓX , 1037
E , 1437
Epx, yq, 1186
FpOq, 1455
FX, 1469
G, 1067, 1071
L, 1482
LpX,Y q, 1487
Lpx, yq, 1185
LppX, dμq, 1489
M, 172
Mr, 175
P, 1290
R, 1437
T r
s pXq, 1468

VpXq, 1468
μ, 628
∇, 939
�, 1433
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ω, 349
Y , 1443
f , 1447
BDynamics, 567
BIntonation, 567
BTempo, 567
BU , 590, 1443
BZ, 568
Bצλ,ex, 591
Bfi{Bxj , 1451
BYR, 580
BYR, 580
Bq, 1475
Bn, 966
φpnq, 1381
πY , 264
π1pXq, 920
π1pX,xq, 921
πj , 1392
πm,l, 393ś

I Mi, 1374
ψa,b, 236
ρD, 1337
Œ pgq, 944
σ-algebra, 1488
σpX{Y q, 520
σpX|Y q, 520
σrX|Y s, 520
„, 1373
„P s, 1362?
x, 1376�, 398, 1388

�λi

i , 482

�λi

i , 1388
˝, 1400
Ă, 1371
Ď, 1371
τpX,D, Sq, 581
|Ser|1, 229
|Ser|2, 229
θ, 524
Ã, 1412
X̃r

n, 175
ˆ, 177
J, 336, 1433ÝÑ
T 2pRq, 185
U , 591
Λ, 628
,צ 591
Ò, 915, 1457
Òn, 1457
( α, 1433
ϕx, 661
_, 1433
^, 1433
^r, 1407

xM , 434
℘score, 912
sxr, 265
`τx, 263
0τx, 263
GX, 965
RGlob, 354
RGlobA, 354
locLoc@, 281

0C, 1420

1C, 1420

AΔn, 293

RR, 1391

RSat
F
A, 434

R
μGlob, 354
R
μGlobA, 354
|m|α433
a\c b, 1424
aˆc b, 1424
abcardtpMq, 386
abcardtpmq, 386
adpxq, 1408
ad, 1375
add, 335
at, 448
b ˛ f , 721
b˚, 945, 946
book, 65, 72
bottompxq, 1390
c, 1348
c-spacenpXq, 205
c5, 420
cm, 766
cp3q, 461
c

p3q
h , 461

c
p3q
m , 461
char, 474
cmel, 474
cnat, 474
cardpAq, 1373
causalEnd, 767
causalStart, 767
charpF q, 1386
codompfq, 1419
colimpΔq, 1424
coordpF q, 1438
ctμ,εpMq, 409
cycpgq, 1382
d, 389, 1347
dB, 1348
dω, 973
d˚, 1449
d2Ex, 721
d˚
P , 394
dn, 1447
dt, 389
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d1,c, 390
d2,c, 390
dEx, 721
d˚
P,n, 394
d8,c, 390
deformLiGr, 766
denpEq, 339
df , 1455, 1469
dimpKq, 1445
dimpMq, 1392
dompfq, 1419
drappkq, 170
dw, 1470
e, 1347
eM , 1396
em, 1396
ez, 756
enh, 425
evp, 148
exz, 431
exppF,Gq, 334
exppadpxqq, 1409
extpEq, 337
f{α, 129
f : a Ñ b, 1419
f@S, 102
f ˝ g, 1419
f

ι{α, 274
f

ι{α ‹M , 288
f´1pCq, 1375
f˚F , 1411
fS,T , 1406
finalEnd, 767
finalStart, 767
framepF q, 1438
funpF q, 1438
g, 457, 1350
g ˝ f , 1372
gU,ws,wp , 1225
glb, 347
gradpfq, 1455
groundclasspCIq, 313
h, 1349, 1350
hx, 1411
i, 1432
i ă x, y ą, 207
itx, yu, 207
ic ă k ą, 207
ictku, 207
idpF q, 1438
intexz,B,GpChq, 459
intexz,B , 432
ip ă a, b ą, 207
ipta, bu, 207
isX , 378

isoX, 283
j, 1414
jak, 213
jakπ, 218
k-spectroid, 925
k-Spectroid, 925
k-Contra, 387
ks, 119
key, 1350
l, 1375
lpContq, 206
lpMq, 268, 1395
l2pNq, 1486
lambdawpxq, 259
lev, 1374
levpxq, 269
levi, 269
limpΔq, 1424
limpDq, 1387
loc, 280
lub, 347
m´1, 1378
mx, 1411
m12, 260
modo, 420
modp, 95
monexz, 431
myFMw, 239
myFMw, 239
npUq, 1445
nW , 409
nWεpMq, 409
nΓ pσq, 288
nkpUq, 1445
n8pKIq, 259
newset, 146
o, 62
o-TempClass, 93
obintexz,B , 433
p, 457
ppMq, 268
p-ClassChord, 93
p-EulerClass, 93
p-Scale, 95
pQx , 1335
pBP
Instrument, 599
pB , 567
pX , 1467
pj , 1374
pOnset, 100
pU,V , 588
pxΔ, 523
pβσμ, 121
pcf , 508
pint, 508
pmeter, 267
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pct, 642
prμ,εpMq, 409
prof , 379
pv, 62
q, 62
qX , 1414
rpצE , wq, 654
rH , 1337
rt, 207
relpx, aiq, 648
resGI {IdA, 294
res@A, 294
res

f
ι{IdA

, 294

resclasspCIq, 313
ret, 298
revk, 125
roundpxq, 1390
s1 ď s, 1445
spצE , w, tq, 654
spxq, 1412
spx, yq, 1185
sG, 457
sG˚, 457
sP , 457
scalemodp, 95
sem, 1438
set, 146
sigDen, 334
sing, 1426
sppxq, 269
span, 384
stipxq, 259
supppχq, 337
sympAq, 208
t, 62, 385
tpF q, 1438
tpx, yq, 1185
tn, 385
toppxq, 1390
true, 1428, 1459
v ^ w, 1468
w, 628
w-Pitch, 133
w-PitchClass, 94
w-TemperedScale, 96
wS

harmo, 647
wS

metro, 646
wS

motif , 647
wEvt.,RelEvt.., 642
wGrpArti, 645
wloc, 763
worth, 763
xhmax, 720
xhmean, 720
xmelodic, 720
xmetric, 720

x{E, 338
x ă y, 1373
x ą y, 1413
x@Ĝ, 257
x„, 332
x ą z, 227
x� y, 402
xh, 261
xm, 261
xU,V , 445
xalt, 108
xj,s, 710
xred, 108
ypti, jq, 724
C{oppb, 1424
C{b, 1424
C ( α, 1434
C@, 1422
Copp, 1421
Cspaces, 1411
Cspaces

? , 1411
Cspaces

X , 1411
aP , 1432
|, 1432
|?|, 1446
|?|d, 1446
|K|, 1446
|f |, 1446
|s|, 1446
ébauche, 1038
Colimit, 59

denotator, 1113
Limit, 58

denotator, 1113
List

denotator, 1113
Loc, 89
Mod@, 54
Power, 58, 90
Simple, 58
Syn, 58
T2, 917
head, 1375
tail, 1375
2-category, 939, 946
2D Fourier series, 1212

A
A-addressed

function, 288
gesture, 961

A-parametrized gesture, 1317
A2C, 870
abbreviation, 1053
abelian, 1378
abelian group, finitely generated -, 306
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Ableton Live, 1158
absolute

dynamical sign, 640
dynamics, 685
logic, 145
music, 774
novelty, 1062
pitch, 577
symbolic dynamics, 68
tempo, 561, 643

absolutely relative, 1028
absorbing point, 432
absorption, 1337

coefficient, 1337
abstract

cardinality, 386
complement, 208
gestalt, 391
specialization, 402

identity, 14
inclusion, 208
motif, 386
onset, 125
specialization, 402

abstraction, 405, 407, 425, 1026
concept framework, 385
textual -, 362

Abstraktmotiv, 909
accelerando, 608, 631, 644
accelerated motion, 607
accentuation, 592
accessory parameter, 831
accumulation point, 1443
acoustical wave, 963
acoustics, virtual -, 701
action

bodily -, 1305
complement -, 518
faithful -, 1378
free -, 1378
gestural -, 912
Lagrangian -, 1188, 1481
left -, 1378
local -, 1038
motor -, 608, 897
Nambu-Goto -, 1185, 1484
right -, 1378
transitive -, 1378

action-homunculus, 869
action-to-cognition layer, 870
activities, fundamental -, 3, 6
activity

combinatorial -, 198
construction -, 162
instinctive -, 623
interpretative -, 246, 251, 252

actology, 1001
acuteness, 237
Aczel, Peter, 1094
ad-hoc polymorphism, 802
adapted tempo curve, 576
Add-Element, 814
AddObjects, 1132
address, 53, 54, 1179, 1397, 1423

change, 54, 70
technique, 70

faithful, 431
fixed vs. variable, 89
for a chord, 94
full -, 431
fully faithful -, 431
functor, 141
killing, 168
navigation, 140
subcategory, 1089
variable, 53
zero -, 53

addressed
adjointness, 138
comma category, 137

adic representation, 1389
adjoint

functors, 907
left -, 1423
right -, 1423

adjointness, addressed, 138
adjunction, 1375
admissible parallel hypergesture, 1250
admitted

successor, 533
tonalities, 465

Adorno, Theodor Wiesengrund, v, 154, 245, 248, 548,
569, 574, 609, 623, 652, 889–891, 893, 894, 1182

Adrien, Jean-Marie, 1346
affect, 890, 893

categorical -, 1266
vitality -, 1266

affine
counterpoint group, 391
dual, 1398
Lie bracket, 444
simplex, 1461
tensor product, 1400
transformation, modular -, 786

affine functions
complex of -, 288
on functorial global compositions, 354

after qualifier, 815
Agawu, Kofi, 329
Age of Enlightenment, 36
aggregate, 207
Agmon, Eytan, 203, 205
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agogical
architecture, 799
operator, 720

agogics, 249, 643
global -, 629
primavista -, 629

AgoLogic, 576, 623, 789, 799
Agon, Carlos, xi, 210, 314
Air, 1283
Alain, 145
Alberti, Leon Battista, 856
aleatoric component, 198
aleatorics, 59
Alexander Technique, 868
Alfohrs, Lars V., 1465
algebra, 1385

Boolean -, 103, 1433
general linear -, 1408
group -, 925
Heyting -, 103, 930, 934, 1433
Lie -, 1408
logical -, 1433
monoid -, 1386
quiver -, 1388
Riemann -, 481
tensor -, 1469

algebra of gestures, 1002
algebraic

element, 1460
field extension, 1460
geometry, 550, 1009
topology, 164, 919
universe, 1029

algorithm, 1342
Euclidean -, 1386, 1389
in FM synthesis, 73
off-line -, 761
real-time -, 761
TX802, 236

algorithmic extraction of performance fields, 759
Alhaiya Bilwal, 1306
Alighieri, Dante, 116, 161, 1218
aliquid pro aliquo, 15
all-interval
n-phonic series, 195
series, 200

allomorph, 443
allomorphic extension, 443
allowed successor pairing, 531
almost regular manifold, 974
Alpaydin, Ruhan, 678, 1098, 1099
α-restriction, 433
alphabet

of creativity, 198
of music, 90

alphabetic ordering, 36, 38, 50

alterated note, 107
alteration, 107, 108, 162, 226, 466, 507, 1148

as tangent, 108
direction of -, 788
elementary -, 108
force field, 788
in pitch, 53
pitch -, 788
successively increased -, 788
two-dimensional -, 787

Alteration, 1135
altered scale, 480
alternating tensor, 1468
Alunni, Charles, 859, 861, 910, 1036, 1059, 1060, 1177
ambient

space, 90
coproduct -, 105
product -, 104

ambient space
dual -, 107

ambiguity, 245, 251
theory of -, 245
tonal -, 493

ambitus, 261
American

(musical) set theory, 116, 180, 202–211, 979
contour
theory, 385

jazz, 442
notation, 438
theory, 439

amplitude, 238, 1340
modulation, 236, 833
spectrum, 1340

AMS, 1034
Amuedo’s decimal normal rotation, 210
Amuedo, John, 209, 211, 439
amusia, 872
analyse créatrice, 1139
analysis, 1338

-by-synthesis, 609, 621
chord -, 438
coherent -, 634
comparative -, 273
complex -, 1465
FM -, 236
gestural -, 1274
immanent -, 378, 383
metrical -, 688
motivic -, 214, 404
musical -, 612
neutral -, 222, 250
normative -, 377
notic -, 1306
principal component -, 739
regression -, 711, 724, 726
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situs, 164, 227
sonic -, 694
spectral -, 524
text -, 609

analytic, 1465
analytical

discourse, 12
method, 1012
vector, 723
weight, 549, 553, 646

Anaxagoras, 855
anchor note, 625
Andersen, Anne Sophie, 1277
Andreatta, Moreno, vi, xi, 210, 314, 1036, 1173
Andrieu, Bernard, 868
ANSI-C, 783
anthropic principle, 465, 466, 543
anthropocentricity, 1177
anthropology, computer-aided -, 765
anti homomorphism, ring -, 1385
antisymmetric, 1373
antiworld, 460, 497, 498, 773
anvil, 1354
apophatic theology, 1004
Applebaum, Mark, 1264
application framework, 665
apposition, 16
approach

bigeneric -, 444
categorical -, 801
historical -, 465, 472
nonparametric -, 708
statistical -, 707
systematic -, 472
transformational -, 204

approximate, 683
Aprea, Bruno, 1292
arbitrary, 16
archetypal gesture, 1269
archicortex, 528
Archimedes, 864
architectural principle, 718
architecture

agogical -, 799
modulatory -, 495

Arduino, 1277
area

Broca’s -, 872
Wernicke’s -, 872

Argerich, Martha, 735, 736, 768
argument, 616
Aristotle, ix, 28, 38, 43, 773, 885
arm-based gesture, 1274
Arnold, Troy, 1276
aroh, 1306
arpeggio, 74, 134, 575, 592, 625

field, 575
arrow, 508, 898, 908, 1037, 1046, 1050, 1375, 1457

self-addressed -, 514
arsis, 1192, 1287, 1325
art, scientific -, 1045
articulated listening, 249
articulating notes, 1303
articulation, 249, 562, 632, 645, 685

double -, 17
field, 565–568
initial -, 578
operator, 591

Artin, Emil, 1087
artistic

difficulty, 1218
fantasy, 570
operator, 1204

artistry, combinatorial -, 199
arts, 5
Ashkenazy, Vladimir, 730, 735, 737
Assayag, Gérard, xi, 791
Assisi, Francis of, 847
associated

metric, 1450
metrical rhythm, 267
topology, 1450

AST, 202, 271, 387, 409, 439
global -, 314–316
software for -, 209

asymmetries of communication, 754
Atari�, 624

Mega ST4, 791
atlas, 252, 557, 987, 991, 1466
A-addressed, 252
projective -, 296
standard -, 293

atlases, equivalent -, 257
atom, semantic -, 442
atomic formula, 1435
atomism, ontological -, 24
atonal music, 204
attack, 1339
attarantate, 874
audience, 1278
auditory

cortex, 524, 527
gestalt, 396
nerve, 1355
representation, 197

augmentation, 134
augmented, 444
Augustinus, 463, 502, 1322
Auroux, Sylvain, 36
auto, 1420
autocomplementarity, 181, 427

function, 419, 519



Index R.49

autocomplementary, marked - dichotomy, 518
autocorrelation, 766
autocorrelogram, 715
autograph, free -, 1052
automorphism, 1378, 1385, 1420

group, 144, 1391
of interpretable compositions, 306

relative -, 1460
autonomy, 6
autoreferential, 849
avaroh, 1306
Avison, Charles, 248
awareness, kinesthetic -, 1281
axiom, 1434

of choice, 1374
axioms for QM, 1492
axis

third -, 96
diachronic -, 328, 472
fifth -, 96
of combination, 116, 212
of selection, 116, 212
paradigmatic -, 160
synchronic -, 328, 472
syntagmatic -, 16, 160

Ayler, Albert, 933

B
Bätschmann’s Bezugssystem, 11
Bätschmann, Oskar, 11, 155
Bénabou, Jean, 1038
Béziau, Jean-Yves, 1028
Békésy, Georg von, 1358
Babbitt, Milton, 203, 204
Bach, Johann Sebastian, 114, 115, 118, 121, 161, 189,

199, 203, 248, 249, 325, 488, 571, 608, 688, 709,
711, 752, 753, 890

Bachelard, Gaston, 1059, 1060
background, 415
Bacon, Francis, 5, 859, 860, 1005
Badiou, Alain, 1007, 1016
Bagatelle op.126,2, Beethoven, 894
Bageshri, 1305
Bakhtin, Michail, 856
ball, open -, 1449
Ballade op. 23, 1161
Banach space, 1450, 1486
Banach, Stefan, 1450
band, frequency -, 526
bandwidth, 708, 721
bankruptcy, scientific -, 22
bar grouping, 713
bar-line, 592, 631
bar-lines, 68
Barbin, Évelyne, 1040
Barker, Hugh, 886

barline meter, 97
Barlow, Klarenz, 1368
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matrix, 724
sound -, 1121

Desmond, Paul, 179
development, 249, 496

history, 612
software -, 595
syn- and diachronic of music, 199

Dezibel, 1348
Di, 1103
di-alteration, 108
diachronic, 16

axis, 328, 472
index, 223
normalization, 754

diaffine homomorphism, 1396
diagonal

embedding, 1403
field, 565

diagram, 898, 907, 1017, 1032, 1053, 1421
scheme, 1420
commutative -, 1421
filtered -, 1411
gestural -, 1036
Hasse -, 218, 1374
of forms, 57

diagrammatician, 859
dialog, 827

bidirectional, 31
experimental navigation -, 32

dialogical principle, 828
diameter, 520
diamond conjecture, 929, 937
diastematic, 672

index shape type, 387
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notation, 1322
shape type, 387

diatonic scale, 543
dichotomy class, 518

marked -, 518
consonance-dissonance -, 419, 519, 543
counterpoint -, 518
deformed -, 532
interval -, 518
major -, 519, 543
marked counterpoint -, 518
marked interval -, 518
Riemann -, 522
Saussurean -, 15

dictionary of expressive rules, 615
Diderot, Denis, 5, 36, 50
Dieudonné, Jean, 1044
difference, 1371

genealogical -, 756
phenomenological -, 756

different degree, 264
differentiable, 1451
n-chain, 975
manifold, 1466

differential, 1455, 1469
equation, 1452
form, 975
operator, 1470
semantic -, 163

differentiation rules, 610
difficulty, artistic -, 1218
digital age, 35
digraph, 914

categorical -, 940
dual -, 1457
global -, 996
radical -, 926
spatial -, 914, 940, 1457
topological -, 993

digraph (directed graph), 1457
diinjective, 1405
dilatation, 133, 1402

time -, 70
dilinear

homomorphism, 1392
part, 1397

dimension, 1392, 1445
cognitive -, 179
communicative -, 22
of a local composition, 178
of a simplex, 1445
ontological -, 17

diminished, 444
diminished seventh chord, 463, 497, 499, 501
Ding an sich, 21
direct

image, 1411
sum module, 1392

directed graph (digraph), 907, 914, 1375, 1457
direction of alteration, 788
directional endomorphism, 656
Dirichlet condition, 1483
disabled gesture, 875
discantus, 509, 931
disciplinarity, dynamic -, 666
discipline, basic -, 5
discourse

analytical -, 12
comparative -, 493
esthesic -, 14

discoursivity, 36, 42, 49
discrete, 638

interpretation, 254
field, 760
gesture, 817, 944
functor, 944

nerve, 254
topology, 1443

disease, psychosomatic -, 1288
disjoint, 1372

sum, 1424
disjunction, 346, 1432
dissonance, 463, 469, 509, 1364

deformed -, 532, 1236
emancipation of -, 31

dissonant interval, 527
mode, 450

distance, 226, 228
critical -, 1337
Euclidean - for diastematic types, 389
Euclidean - for rigid types, 389
for toroidal types, 390
function, 389
natural -, 362
on toroidal sequences, 390
relative Euclidean - for rigid types, 389
third -, 511
to an initial set, 580

Distributed RUBATO�, 764
distributed laboratory, 32
distributive, 1433
distributor, 689
division

of pitch distances, 61
of time
regular -, 376

divisor, resulting -, 313
Dockery, Wayne, 877
documentation, 3–6
dodecaphonic

composition, 124
composition principle, 115
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method, 775, 780
paradigm, 125
series, 125, 162, 194, 247, 253, 325
vocabulary, 199

dodecaphonism, 134, 206
communicative problem of -, 135
esthetic principles of -, 134

domain, 1372, 1419
fundamental scientific -, 5
modulation -, 476

dominance, 218, 269
topology, 231, 402

dominant, 263, 414, 445, 448
role of major scale, 541
seventh, 419

dominate, 227, 1413
Donald, Merlin, 874
double

articulation, 17
counterpoint, 513

doubt
cartesian -, 1012
sceptical -, 1012

drama, musical -, 753
dramaturgy, emotional -, 893
drawing, 1147
Dreiding, André, 291
Dress, Andreas, 291
drill, 1305
driving grid, 787
drum, ear -, 1354
dual

affine -, 1398
ambient space, 107
digraph, 1457
gesture, 940
linear -, 1397
numbers, 508, 1387
space, 1488

dual numbers, 107
dualism between major and minor, 122
duality, Descartes’ -, 1187
Dufourt, Hugues, 801
duration, 44, 67

period, 97
dux, 159, 199
DX7, 1342
Dylan, Bob, 885
dynamic

concept framework, 329
conceptualization, 67
disciplinarity, 666
navigation, 40

dynamical
initialization, 578
knowledge management, 329

modularity -, 666
sign
absolute -, 640
relative local -, 640
relative punctual -, 640

dynamically loadable module, 665
dynamics, 248, 249, 562, 564

absolute -, 685
historical -, 221, 223
mechanical -, 608
of performance, 658
primavista -, 629
relative -, 685
symbolic
absolute, 68
relative, 68

E
ε-ball, 229
E-MU Xboard, 1151
ε-neighborhood, 397
ε-paradigm, 229
ear

drum, 1354
inner -, 1355
middle -, 1354
outer -, 1354

ecclesiastical mode, 261, 540, 541
Eco, Umberto, 1050
edge, 1458
editing, geometric -, 783
editor, 802
EEG

depth -, 524
response, 524
semantic charge of -, 524, 525
test, 524

effect, groove -, 788
effective, 1378
Eggebrecht, Hans Heinrich, 21–23, 743
Ego, poetic -, 214, 219
Ehrenfels’ transpositional invariance criterion, 91
Ehrenfels, Christian von, 91, 167, 226, 246, 271, 273, 383
Ehresmann, Andrée, 1013, 1029, 1060
Ehresmann, Charles, 934
eigenvector, 899
Eilenberg, Samuel, 1178
Eimert, Herbert, 127, 211
Eitz, Carl, 1350
elastic, 672

shape type, 388
electrode, depth -, 525
electrophysiological correlate, 524
element, 1371

algebraic -, 1460
neutral -, 1376
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primitive -, 1460
transcendental -, 1460
varying -, 1023

elementary
alteration, 108
gesture, 817
neighborhood, 403
shift, 109

elementary gesture of the pianist, 1192
elements, category of -, 132, 1061, 1424
Ellington, Duke, 1297
emancipation of dissonance, 31
embedded local composition, 106
embedding, 1422

diagonal -, 1403
number, 208
Yoneda -, 1397, 1423

embodied
gesture, 1274, 1279
musical gesture, 1263, 1264

embodiment, 846, 864, 909, 952, 1176
musical -, 1314
science, 868

embryology, cognitive -, 870
emergence, 1061, 1063
emotion, 528, 604–606, 894
emotional

brain, 527
dramaturgy, 893
function of music, 528
landscape, 241

emotive state, 1266
emotivity, 212
empty

form name, 47
set, 146
string, 45

encapsulated history, 556
encapsulation, 23, 156, 806

speculative -, 28
encoding

color -, 765
formula, rubato -, 618

Encyclopédie, 5, 36, 38, 50
encyclopedia, 36, 362
encyclopedic ordering, 50
encyclopedism, 49
encyclospace, 36, 38, 50
endo, 1420
endolymph, 1355
endomorphism, 1420

directional -, 656
enharmonic -, 426
right-absorbing -, 432
ring, 1391

energy, 608

conservation, 973
spectrum, 1340

enharmonic, 425
endomorphism, 426
group, 426
identification, 425

ensemble rules, 610
enumeration

musical - theory, 190
of motives, 195
theory, global -, 309

envelope, 71, 1339
environment

collaborative -, 197
experimental -, 681

epi, 1420
epilepsy therapy, surgical -, 524
epileptiform potential, 524
epimorphism, 1420
epistemology

of musicology, 27
transitive -, 1059

epsilon
gestalt topology, 398
topology, 397

Epstein, David, 607
equation, 898, 907

Cauchy-Riemann -, 1465
differential -, 1452
Euler-Lagrange -, 1188, 1189, 1227, 1482
Poisson -, 1189, 1197, 1471
Schrödinger -, 1493
spring -, 1341

equations, Maxwell’s -, 973
equivalence

phonological -, 215
class, 1373
homotopy -, 1474
paradigmatic transformation -, 212
perceptual -, 229
relation, 250, 1373
syntagmatic -, 215

equivalent
atlases, 257
categories, 1422
covering, 252
norms, 1450

equivariant, 1378
Erlewine, Stephen Thomas, 877
Escher Theorem, 916, 931, 941, 961, 965, 966, 985, 995,

998, 1184
Escher, Maurits Cornelis, 161, 916
EspressoRUBETTE�, 759, 764
essence of creativity, 1287
essential parameter, 831
essentic form, 895
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esthesic, 11, 1342
identification, 248

esthesis, 12, 13, 211
esthetic, 211
esthetics, 13, 211

of music, 323
estrangement, 1003
ethnological form, 49
ethnology

inverse -, 754
ethnomusicological data, 83
ethnomusicology, 754
Euclid, 147, 148, 507, 1021, 1047, 1178
Euclidean

algorithm, 1386, 1389
geometry, 290
metric, 229

Euler
function, 1381
module, 62, 179
plane, 93
point, 62, 1349
space, 1349

Euler’s identity, 1341
Euler, Leonhard, 62, 478, 509, 1350, 1364, 1497
Euler-Lagrange equation, 1188, 1189, 1227, 1482
Eulerian square, 1025
European score notation, 67
Eustachian tube, 1355
evaluation, 295, 1433
Evans, Bill, 880
event

percussion -, 503
time -, 556

evolution, 628
ex movere, 894
exact

curve, 945
sequence, split -, 1380

exactness, 1002
exchange

of pitch and onset, 127
parameter -, 133, 134

existence, 57, 327
mathematical -, 145, 328, 340
musical -, 340

experiment
mental -, 550
musicological -, 30, 31
physical -, 29

experimental
environment, 681
humanities, 27
material, 330
natural sciences, 27
strategy, 694, 701

experimentation, 813
experiments of the mind, 31
explanatory variable, 724
explicitness conceptual -, 21
exponentiable, 1429
exponential

correspondence, 1464
law, 1464

exposition, 249, 496, 794
expression, 335, 603, 759

human -, 570
instrumental -, 825
of expression, 892
rhetorical -, 570

expressive rules, dictionary of -, 615
expressivity

pure -, 606
rhetorical -, 556

extension, 306, 330, 337, 552
allomorphic -, 443
basic -, 427
creative -, 201
cyclic -, 207
Galois -, 1460
separable -, 1460
strict -, 443
topology, 430

exterior
derivative, 973
score, 571

extraction
beat -, 1292
monotone -, 1019

extraterritorial part, 591
extroversive semiosis, 329

F
f -morphism, 1411
F-to-enter level, 727
face, 969, 1445

operator, 968
fact, 1067
facticity, 327, 345, 464

finite - support, 338
full -, 338

factor
pressure decrease -, 1337
strength -, 610

factory box, 805
faithful

action, 1378
address, 431
functor, 1421
local network, 980
point, 431

False, 1433
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‘false’ voice, 1315
family, 239

covering -, 1430
minimal cadential -, 455
of violins, 828
violin -, 241, 840

fanfare, 958, 1075
fantasy, artistic -, 570
faster uphill, 610
father, 619
Fauré, Gabriel, 1285
Feldman, Jacob, 607
Feldman, Morton, 250
Felver, Christopher, 1182
Fermat, Pierre de, 23, 1007
fermata, 550, 630, 632, 643
fermion, 1485
Ferrara, Franco, 1292
Ferretti, Roberto, xi
feuilleton, 635
feuilletonism, 751
FFT, 524
fiber, 611, 1375

critical -, 755, 758
group, 775
product, 1387, 1424
of local compositions, 138

structure, 756
sum, 1424
of local compositions, 140

Fibonacci sequence, 340
Fibonacci, Leonardo, 59, 340
fibration, linear -, 758
fiction, 327, 465
fictitious performance history, 627
field, 597

arpeggio -, 575
calculation, 761
diagonal -, 565
discrete -, 760
finite -, 786
fundamental -, 591
interpolation, 761, 764
intonation -, 563
of equivalence, 157
of fractions, 1406
operator, 652
paradigmatic -, 125
parallel articulation -, 567
parallel crescendo -, 567
parallel glissando -, 567
performance -, 564, 568, 585, 983
prime -, 1386
selection, 803
skew -, 1385
tempo -, 562

tempo-intonation -, 565
tensor -, 1468
vector -, 1245, 1451, 1468
writing, 803

field extension, algebraic -, 1460
fifth, 62, 1350

axis, 96
coordinate, 1350
sequence, 262

figuratio, 847
film music, 603
filtered diagram, 1411
filtering, input -, 760
final

coherence, 769
depth, 676
retard, 607
ritard, 896
vertex, 660

finale, 791
finalis, 261
finality, 766
fine arts, 13, 153
finer, 1443
finger, 912

space, 915
finger-based gesture, 1280
fingering, 248, 607, 622
finite, 1371

completeness, 138
cover topology, 353
field, 786
locally -, 1446
monoid, 1376
multigraph, 1375

finitely
cocomplete category, 1425
complete category, 1425
generated, 1381, 1391
abelian group, 306

Finscher, Ludwig, 825, 826
Finsler’s principle, 145
Finsler, Paul, x, 145, 1094
Fiordilino, Emilio, 1471
first representative, 180
FIS, 204
Fisher, George, 1264
Fitting’s lemma, 1396
Fitting, Hans, 1396
fixpoint, 1452

group, 1378
flasque module complex, 304
flat, 109

local network, 981
flatten, 74, 1111
flattening operation, 75, 270
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Fleischer, Anja, xi, 484
Fleisher, Leon, 883
FLOAT, 44
Floris, Ennio, 1012
flow, 886, 1299, 1300

box, 1455
interpolation, 582

Flusser, Vilém, 848
flying carpet, 767
FM, 236, 1342

-object, generalized, 239
analysis, 236
synthesis, 73

folding, 363
circular denotators, 369
colimit denotators, 367
limit denotators, 366

foramen ovale recording, 524
force

field, alteration -, 788
modulation -, 466, 469

forces in physics, 534
foreground, 415
form, 43, 52–57, 1004, 1074, 1086

bilinear -, 291
circular -, 64
circularity, 48
colimit -, 57
concept, 665
concert -, 793
contrapuntal -, 249
coordinator, 55
differential -, 975
essentic -, 895
ethnological -, 49
Forte’s prime -, 210
functor, 55
gestural -, 1086
identifier, 55, 56
large -, 1298
limit -, 57
list -, 809
morphisms, wrap -, 331
musical -, 6
name, 43, 44
empty -, 47

normal -, 209
of a symmetry, 113
pointer character, 48
powerset -, 56
prime -, 210
Rahn’s normal -, 209
regular -, 64
semiotic, global -, 1440
simple -, 56
simplify to a -, 63

sonata -, 249, 496, 791
space, 55
Straus’ zero normal -, 210
synonym -, 56
type, 55
typology, 55

form semiotics
morphism of -, 1439
category of -, 1092

formal
complexity, 383
structure, 801

formalism, Lie -, 658
formant, 238

manifold, 238
open - set, 238

formoid, radical -, 928
forms

category of -, 57
diagram of -, 57
ordering on -, 75–83

formula, 907, 1435
Δ- -, 926
atomic -, 1435
cadential -, 453
generalized -, 927
propositional -, 1435
quantifier -, 1435

formulas, category of -, 926
Forte’s prime form, 210
Forte, Allen, 203, 204, 209, 314
foundation chord, 439
foundations, 1028
four part texture, 826
Fourier analysis

cochlear -, 1365
decomposition, 70
ideology, 233
paradigm, 232
representation, 740, 832
theorem, 10
theory, 925
transform, 1344

Fourier series, 2D -, 1212
Fourier’s theorem, 1340
Fourier, Jean Baptiste Joseph, 422
fractal, 59, 162, 782

composition tools, 115
principle, 799

fractions, field of -, 1406
frame, 585, 596, 802, 1346, 1438

change of -, 1058
composed -, 802
simple -, 802
space, 55, 1087
structure, 591
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wavelet -, 236
framework, 806

application, 665
concept -, 3, 5, 9
hermeneutical -, 11

free
action, 1378
autograph, 1052
Chopin rubato, 625
commutative monoid, 1376
group, 1379
jazz, 548, 1177
locally -, 1413
module, 1392
monoid, 1376
variable -, 1436

free jazz, v, 13, 900
freedom of choice, 543
Frege, Gottlob, 849, 859, 867, 898, 937, 1180
French gesture theory, 894
frequency, 61, 70, 1340, 1341

band, 526
beat -, 1365
fundamental -, 1340
modulation, 236, 1111, 1342
modulation -, 236, 833
of variable inclusion, 732

Freud, Sigmund, 528
Friberg, Anders, 610
Fripertinger, Harald, xi, 167, 190, 211, 309, 310, 1382
Frost, Robert, 273
Frydén, Lars, 610, 621
Frye, Roger, 1024
fugue, 159, 199
full

address, 431
functor, 1421
model, 726
point, 431
subcategory, 1422
subcomplex, 1445

fully faithful
address, 431
functor, 1421
point, 431

function, 859, 898, 1181, 1372
A-addressed -, 288
autocomplementarity -, 419, 519
Bessel -, 1344
Borel -, 1488
characteristic -, 335, 1375
common-note -, 204
Euler -, 1381
generic -, 804
gradus suavitatis -, 1364, 1497
Green -, 1189, 1471

horizontal poetical -, 781
index -, 1390
interval -, 204
inverse -, 1373
level -, 269, 1374
of a symmetry, 113
poetical -, 16, 116, 212, 241, 248, 774, 781
theory, 265, 437
tonal -, 249, 263, 447
value, tonal -, 447
vertical poetical -, 782
weight -, 1253

function harmony, 32
functional, 1372

gesture, 1034
object, 1036
programming, 801
relation, 1196
semantics, 445

functor, 1179, 1421
address -, 141
constant -, 1422
contravariant -, 1421
covariant -, 1421
faithful -, 1421
form -, 55
full -, 1421
fully faithful -, 1421
gestural form -, 1087
global section -, 1412
God -, 1179
homology -, 1476
limiting -, 962
local -, 926
logical -, 946
module -, 143
nerve -, 988, 1445
of orbits, 1417
open -, 1416
open covering of -, 1416
representable -, 1423
resolution -, 294
simplicial -, 988
support -, 257
topological -, 939

functorial
composition, 1180
global composition, 256
local composition, 101

functors, adjoint -, 907
fundamental

activities, 3, 6
chord, 439
field, 591
group, 920, 1475
groupoid, 920, 1475
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note, 441
period, 1340
pitch, 437
scientific domain, 5
series, 115
space, 588

Fundamental Lemma of Calculus of Variations, 1471
fushi, 13, 342
Fux rules, 541, 1235
Fux, Johann Joseph, 523, 541, 840, 1367
fuzziness, 437
fuzzy

concept, 164
conceptualization, 375
logic, 336
set, 163, 1029
theory, 159

G
G-prime form, 208
Gabriel, Peter, 153, 925
Gabrielsson, Alf, 604, 607
gait, 1305
Galilei, Galileo, 27, 29, 32, 548
Galois

correspondence, 1093
extension, 1460
group, 1460
theory, 1087, 1460

Galois, Evariste, x
game, chironomic -, 1327
Garbers, Jörg, xi, 665, 1088, 1441
Garbusow, Nikolai, 181
Gast, Peter, 1033
gate function, hippocampal -, 528
Geary, James, 1022
Gegenklang, 265, 457
Geisser, Heinz, 1176, 1295
Gell-Mann, Murray, 145
genealogical difference, 756
genealogy

conceptual, 64
of denotator concept, 41
poietic, 128

general linear algebra, 1408
pause, 644
position, 322

General Midi, 235
general position, 106, 174

musical meaning of -, 106
generalization, 1026
generalized formula, 927
generated, finitely -, 1381, 1391
generating local composition, 106
Generative Theory of Tonal Music (=GTTM), 255, 376
generator

sound -, 700
time -, 775

generators for a topology, 1463
generic

composition, 174
function, 804
linear visualization, 362
point, 228, 269, 1413
score, 548

genotype, 782
Gentilucci, Maurizio, 871
geocentricity, 1175, 1177
geodesic, 241
geographic

information system (GIS), 667
orientation, 38

geometric
classification, 177, 989
constraint, 913
constraints, 912
coordinate, 1341
editing, 783
intuition, 1036
language, 893
morphism, 946
parameter, 832
realization, 988, 1446
representation, 783, 892

geometry
analytical -, 148
algebraic -, 148, 165, 550, 1009
Euclidean -, 290

germ, 267, 1451
rhythmic -, 127, 266

Germain, Sophie, 1017, 1033
germinal melody, 220, 221, 792
gestalt, 90, 167, 271, 383, 405

abstract -, 391
auditory -, 396
cardinality of a -, 391
global -, 251
musical -, 90, 127
paradigm, 672
psychology, 90
small -, 398
specialization, 402
category, 403

stability, 226
gestoid, 923
gestural

action, 912
analysis, 1274
constraint, 617
coordinate, 893
creativity, 1183
diagram, 1036
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form, 1086
groove, 1303
morphism, 1287
performance, 893
philosophy, 893
presheaf, 962, 1086
primitive, 901
rationale, 753
semantics, 753
similarity, 1289
strategy, 1270
symbol, 912
theory, 1182
transformation, 1272
vibration, 893

gestural form
coordinator, 1087
functor, 1087
identifier, 1087
space, 1087
type, 1086

gestural interaction of both hands, 1299
gesturalize, 1154, 1162
gesturally representable, 962
gesture, 604, 607–609, 891, 895, 898, 909, 914, 1001,

1005, 1032, 1036, 1067, 1176, 1180, 1245, 1300
A-addressed -, 961
A-parametrized -, 1317
archetypal -, 1269
arm-based -, 1274
bicategory, 937, 946
categorically natural -, 918
characteristic -, 956
circular -, 1269
complex -, 1042
continuous -, 817
deep-frozen -, 912
disabled -, 875
discrete -, 817, 944
dual -, 940
elementary -, 817
embodied -, 1274, 1279
embodied musical -, 1263, 1264
finger-based -, 1280
functional -, 1034
functor, discrete -, 944
global -, 993
high level -, 1041
human -, 1314
imaginary -, 1042, 1314, 1315
instrumental -, 817, 902, 1318
invisible -, 1302
mathematical -, 1002, 1036, 1037, 1040
melodic -, 1302
mimic -, 893
mirror -, 1270

normative -, 1305
objective -, 1042
of gestures, 894
of locally compact points, 983
of silence, 1327
of stemmata, 1256
orchestral -, 817
performative -, 1283
phenomenology, 848
physical -, 911, 1186, 1229, 1289
physical - curve, 912
semiotic, 1183
sketch of -, 1030, 1038
smartphone -, 1279
spectral -, 1318
speech -, 1311
subjective -, 1042
symbolic -, 911, 912, 1186, 1228, 1229, 1289
symbolic - curve, 912
technology, 1283
theory, 893, 1173
French -, 894

topos, 945
vocal -, 1301, 1313, 1315

gesture disabled, 875
gesture-sound mapping, 1279
gestures

of the conductor, 1285
algebra of -, 1002
category of -, 1289
types of -, 1286

Get-Editor, 814
Get-View, 814
Giannitrapani, Duilio, 525
Gianoli, Reine, 735
Gilels, Emil, 622
Gilson, Etienne, 12
Ginsburg, Carlo, 1040
GIS, 204, 315

structure, 203
Glarean, 261
glide reflection, 1402
glissando, 67, 551, 567, 594, 817, 1350
global, 245

affine functions, module of -, 355
agogics, 629
AST, 314–316
composition, 140, 831, 987, 1466
cochain complex of a -, 307

digraph, 996
enumeration theory, 309
form semiotic, 1440
functorial composition, 256
morphism, 274

gestalt, 251
gesture, 993
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hypergesture, 1223
molecule, 292
molecules, morphism of -, 292
morphisms, 246
network, 990
object, 245
objective composition, 252
morphism, 274

performance score, 598
predicate, 454
score, 250, 783
section, 288, 1424
functor, 1412

skeleton, 996
slope, 677
solution, 1454
standard composition, 293
tangent composition, 557
technical parameter, 835
tension, 677
theory, 220
threshold, 675
variational principle, 1231
world-sheet, 1224
Zarlino network, 992

globalization
metrical -, 99
orchestral -, 555

gluing, 1032
God, 1004, 1016, 1177, 1186

functor, 1179
Godøy, Rolf Inge, 902
Goethe, Johann Wolfgang von, 123, 163, 325, 748, 828
Goffman, Ervin, 853
Goldbach conjecture, 30
Goldbach, Christian, 30
golden section, 59
Goldin-Meadow, Susan, 899
Goldstein, Julius, 1361
Göller, Stefan, xi, 362, 1103, 1088, 1441
Goswitz, Robert, vi
Gottschewski, Hermann, 29
Gould, Glenn, 550, 608, 694, 702, 751, 752, 899, 909
GPL, xi
GPS, 598
gradus suavitatis function, 1364, 1497
Graeser, Wolfgang, 113, 115, 203, 249, 890, 1182
Graffman, Gary, 883
Gram identity, 292
grammar

locally linear -, 660
performance -, 615
rule-based -, 615

grand unification, 463
granddaughter, 660
grandmother, 660

graph, 1372, 1375, 1458
category, 939
directed -, 907, 914, 1375
of a FM-denotator, 73
operation -, 1138
Riemann -, 677
unordered -, 1458
weighted -, 239

graphical
interface design, 361
MOP, 813

Grassmann scheme, 1416
Greek prosody, 1324
greeking, 363, 381, 1103
Green function, 1189, 1471
Gregorian chant, 509 1321
Gregorian musical figures, 1328
Greimas, Algirdas Julien, 774–776
grid

dactylus -, 216, 217
driving -, 787
vector
horizontal -, 788
vertical -, 788

Grondin, Jean, 1050
groove

effect, 788
gestural -, 1303

Grothendieck
topology, 149, 353, 1430
topos, 1431

Grothendieck, Alexander, x, xii, 145, 149, 153, 351, 353,
358, 850, 908, 1031, 1038, 1173, 1177, 1179, 1430

ground class, 313
group, 1378

affine counterpoint -, 391
algebra, 925
automorphism -, 144, 1391
cohomology -, 1447
contrapuntal -, 115
control -, 775
cyclic -, 1381
enharmonic -, 426
fiber -, 775
fixpoint -, 1378
free -, 1379
fundamental -, 920, 1475
Galois -, 1460
Hegel -, 1066
homomorphism, 1378
isomorphism, 1378
isotropy -, 1378
Klein -, 206, 451
linear counterpoint -, 391
opposite -, 1378
p-Sylow -, 1380
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paradigmatic -, 390
of isometries, 394

product -, 1380
quotient -, 1379
rhythmical -, 810
simple -, 1379
Sylow -, 179
symmetric -, 1378
symmetry -, 144, 180, 470, 672
theory, 157, 212
torsion -, 1381

group-theoretical method, 198, 205
grouping, 376, 415, 608, 629

bar -, 713
concept, 250
hierarchical -, 611
instrumental -, 599
metrical -, 248
of sounds, 74
rules, 610
stemmatic -, 633
structure (=G), 377
time -, 99

groupoid, 922
fundamental -, 920 1475

Growth Point, 854
GTTM, 255, 376, 619
Guérin, Michel, 850
GUI, network -, 1096
Guitart lemma, 1006
Guitart, René, 1006
gyri, Heschl’s -, 1360

H
Hölderlin, Friedrich, 9, 116
Hüllakkord, 431
Haegi, Hans, 291
hair cell, 1356
Hajós group, 310, 314
Hajós, Gyorgy, 310
Halle, Morris, 234
Halsey, George, 309, 313
Hameer, 1305
Hamilton operator, 1493
Hamilton’s variational principle, 1243, 1481
Hamilton, William, 1385
Hamiltonian, 658
hammer, 1354
Han singing, 1321
hand, 855, 912, 915

impairment, 881
left -, 1289
pianist’s -, 911, 912

hand’s position, 1192
hands

gestural interaction of both -, 1299

shapes of the -, 1310
handshape, 1311
hanging orientation, 108, 509
Hanslick, Eduard, 15, 248, 251, 775, 828, 1181
harkat, 1306
HarmoRUBETTE�, 744
harmolodic, 794
harmonic

coherence, 447
knowledge, 485
logic, 449
minor, 479
morpheme, 449
morphology, 908
motion, 415
path, 482
progression, 128
semantics, 436
strip, 253, 262, 442
tension, 481, 482
topology, 443
weight, 482, 647

harmonic minor
scale, 472, 474
tonality, 460

harmonical-rhythmical scale, 794
harmony, 90, 181, 523

complete -, 827
jazz -, 276
Keplerian -, 30
Riemann -, 263
rubette for -, 1098

HarmoRUBETTE�, 448, 481, 648, 674, 714
Harnoncourt, Nicolas, 751, 754
Harris, Craig, 209
Hashimoto, Shuji, 607, 613
Hasse diagram, 218, 1374

specialization -, 220
hat, Mexican -, 1345
Hatten, Robert S., 871, 889, 898, 899, 909, 950, 979,

1265
Hauptmann, Moritz, 436
Hausdorff

locally compact -, 983
topology, 1445

Hausdorff, Felix, 1445
Hausegger, Friedrich von, 1293
Hawking, Stephen, 1187
hayashi, 13
Haydn, Joseph, 241, 826, 827
Hazlitt, William, 685
head, 914, 1457
head voice, 1315
heartbeat, 607
Hebb, Donald O, 719
Hegel
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body, 1066, 1070
box, 1072
group, 1066

Hegel, Georg Wilhelm Friedrich, 35, 748, 781, 1040,
1066, 1174

Heidegger, Martin, 854
Heijink, Hank, 761
helicotrema, 1355
Helmholtz, Hermann von, 509, 1364, 1365
Hemmert, Werner, xi
Hentoff, Nat, 603
Hermann, Jakob, 1048
hermeneutics, 1051

unicorn of -, 13
Hertz, 1340
Hervé, Jean-Luc, 817
Heschl’s gyrus, 524, 1360
Hess system, 524
Hesse, Hermann, v, 164, 573, 1177
Hewitt, Edwin, 309, 313
hexagram of Pascal, 1023
hexameter, 213
Heyting

algebra, 103, 335, 930, 934, 1433
category of - algebras, 930
logic, 436, 1460

Heyting, Arend, 335, 436, 1433
Hichert, Jens, 517, 534, 536, 538, 543
hidden symmetry, 114
hierarchical

decomposition, 710, 720
grouping, 611
organism, 249
smoothing, 708

hierarchy, 250, 555, 631
cellular -, 590, 596, 1254
closure, 588
deformation, 658
metrical -, 375
of performance development, 622
parallel -, 591
performance -, 556
phrasal -, 1311
piano -, 593
space -, 588
standard -, 590
tempo -, 624
violin -, 593

high level gesture, 1041
Hilbert space, 1486
Hindemith, Paul, 123, 414, 422
Hindustani

musician, 1305
vocalist, 1301

Hintergrund, 415
hippocampal

gate function, 528
memory function, 528

hippocampus, 524, 528
histogram, 716
historical

approach, 465, 472
dimension of music, 91
dynamics, 221, 223
instrumentation, 324
localization, 223
musicology, 328
process, 627, 634
rationale, 826
reality, 487

historicity in music, 220
history, 5

development -, 612
encapsulated -, 556
of mathematics, 1040
of music, 6

hit point, 582
problem, 580

Hjelmslev, Louis, 14, 16, 328, 849, 1183
Ho, Jocelyn, vi, vii
Hofmann, Ernst Theodor Amadeus, 248
Hofstadter, Douglas, 1022
holomorphic, 1465
homeomorphism, 1444
homology, 1475

functor, 1476
module, 966, 1475
network -, 986
singular -, 965, 1476
theory, 967

homology module, hypergestural -, 970
homomorphism

boundary -, 966
diaffine -, 1396
dilinear -, 1392
group -, 1378
Lie algebra -, 1408
linear module -, 1391
monoid -, 1376
ring -, 1385
structural -, 1385

homotopy, 916, 920, 957, 1181, 1185, 1289, 1447, 1474
relative -, 1447
category, 1474
commutative, 1474
equivalence, 1474
inverse, 1474
theory, 1474
type, 1474

Honing, Henkian, 547
Horace, 621
horizontal
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grid vector, 788
poetical function, 781
poeticity, 214

Horowitz cluster, 735, 739
Horowitz, Vladimir, 730, 735, 736, 738, 768, 899, 909
hue, 1115
Hul, Bopha, 1276
human

conceptualization, 145
expression, 570
gesture, 1314
precision, 623

human phonatory system, 1314
humanism, 828
humanities, 164, 225

experience in the -, 31
experimental -, 27

Husmann, Heinrich, 1366
hypergestural

homology module, 970
singular homology, 1236

hypergesture, 870, 894, 915, 937, 959, 967, 985, 1036,
1184, 1185

global -, 1223
non-singular -, 1247
parallel -, 1245
spatial -, 917
vocal -, 1316

hypermedia, 38
hypernetwork, 985
hyperouranios topos, 21, 38
hyperset theory, 1094
hypothesis, mimetic -, 1264, 1276

I
I, 22
I, the, 892
ICMC, 197, 612
icon, instrumental -, 784
Ide, Takefumi, 1274
idea

compositional -, 322
musical -, 774

ideal, 1386
left -, 1386
right -, 1386

ideas, intermediate -, 1010
idempotent, 1376

component, 1377
identical reproduction, 891
identification

conceptual -, 229
enharmonic -, 425
esthesic -, 248

identifier, 1438
form -, 55, 56

gestural form -, 1087
identity, 405, 408, 1419

of a point, 147
abstract, 14
Euler’s -, 1341
Jacobi -, 1408
of a work, 14
resolution of the -, 1494
slice, 275

ideology, Fourier -, 233
IL, 1434
image, 1375

denotator -, 59
direct -, 1411
inverse -, 1375

imaginary
gesture, 1042, 1314, 1315
time, 957, 1189, 1297, 1300
world, 1058

imagination, 5, 1032
imitation, 405, 407
immanent analysis, 383
impairment, hand -, 881
imperfect, consonance, 522, 532, 541
implementation, 627
implication, 346, 1432, 1433
importance, relative -, 648
improvisation, 40, 1278, 1295

jazz -, 179
melismatic -, 1303

improvised music, listen to -, 1295
in absentia, 16, 789
in praesentia, 16, 789
in-time music, 817
inbuilt performance grammar, 753
incarnation, 847
included, literally -, 208
inclusion

abstract -, 208, 210
literal -, 210

incomplete semiosis, 330
incorrect, politically -, 752
indecomposable, 1395

space, 588
independence, cognitive -, 179
index

cycle -, 1382
diachronic -, 223
function, 1390
set, 1373

indiscrete
interpretation, 254
topology, 1443

individual variable, 1435
ineffability, 22, 570
ineffable, 1285
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infinite, 1371
interpretation, 259
message, 751
performance, 549

infinitely small, 569
infinitesimal, 638
information, 35

paratextual -, 685
system, geographic -, 667

InfoRUBETTE�, 668
ingenium, 1012
ingenuity, 1015
inharmonic, 675
inharmonicity, 237
inheritance, 628, 802

principle, biological -, 627
property, 395

initial, 1424
articulation, 578
condition, 1452
design matrix, 724
moment, 574
performance, 586, 597
set, 573, 586, 596, 1254
polyhedral -, 580

value, 562
initial set, distance to an -, 580
initialization, dynamical -, 578
injective, 1372

module, 1407
inlet, 805
inner

derivation, 1408
ear, 1355
logic, 623
score, 548, 571, 1295

innervation, mimic -, 891
input

filtering, 760
real-time -, 783

inspector, chord -, 675
instance, 802
instantiation, 802
instinctive activity, 623
instrument

makeshift -, 1279
name, 69
space, 597

instrumental
condition, 701
expression, 825
gesture, 817, 902, 1318
grouping, 599
icon, 784
parameter, 832, 835
technique, 832

variety, 555
vector, 835
voice, 220

instrumentation
historical -, 324
orchestra - denotator, 69

instrumentum, 38
INTEGER, 44
integer, 1385
integral

curve, 1245, 1453
of perspectives, 325
surface, 1456

integrated serial motif, 195
integration

Lebesque -, 1488
method, 683

intellectuality
mathematical -, 1006
musical -, 1006

intelligence, 873
intensification, 799
intension, 330, 427

basic -, 427
topology, 429

intensity, 608
inter-corporeal, 1274
inter-period coherence, 769
inter-sensoriality, 1274
inter-sensory, 1264
interaction

interpretative -, 720
matrix, 709

interactive control, 813
interface design, graphical -, 361
interictal period, 524
interior, 1443
interiorization, 893
interlude, 689
intermediate

ideas, 1010
performance, 622

internal
category, 1464
movement, 897
structure, 254

interpolation, 570, 760
field -, 761, 764
flow -, 582

interpretable, 989
composition, 304
automorphism group of -, 306

molecule, 292, 316
interpretation, 220, 222, 549, 989

discrete -, 254
indiscrete -, 254
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infinite -, 259
iterated -, 258
just triadic degree -, 265
metrical, 268
motivic -, 271, 384
of a local composition, 258
of weights, 659
rhythmical -, 268
semantic -, 490
silly -, 254
singleton -, 275
sketchy -, 622
tangent -, 558
tetradic -, 276
third chain -, 260
triadic -, 276, 450, 455, 466
triadic degree -, 261

interpretative
activity, 246, 251, 252
interaction, 720

interpreter, 892, 893
interspace, 569

sequence, 192
structure, 192

interval
unordered p-space -, 207
unordered pc -, 207
class content vector, 207
consonant -, 414, 527
content, 207
contrapuntal -, oriented -, 509
cul-de-sac -, 538
cyclic - succession, 207
dichotomy, 518
dissonant -, 527
function, 204
multiplication, 512
ordered p-space -, 207
ordered pc -, 207
succession, 207
cyclic -, 208
mth -, 208

successive -, 526
time -, 70
vector, 208, 210

interval-class vector, 204
intonation, 562, 563

curve, 563
field, 563

intratextual, 329
introversive semiosis, 329
intuition

geometric -, 1036
mathematical, 1027
musical -, 202

intuitionistic logic, 443, 934, 1434

invariance

transformational -, 226, 271

vector, 208

invariant pcset, 208

invent problems, 1042

invention, 1001

method of -, 1039, 1044

inversa, 692

inverse, 1378

ethnology, 754

function, 1373

homotopy -, 1474

image, 1375

left -, 1378

performance theory, 611, 651, 756

right -, 1378

inversion, 117, 247, 262

chord -, 420

real, 124

retrograde -, 61, 120

tonal, 124

tonal -, 788

inverted weight, 681

invertible, 1385

invisible gesture, 1302

IRCAM, v, 238, 801, 1314

irreducible, 589

component, 269

degree system, 457

topological space, 1413

iso, 1420

isometry, 250, 1449

isomorphic, 1378

category, 1421

isomorphism, 1420

group -, 1378

monoid -, 1376

ring -, 1385

isomorphism classes

of local rhythms, 181

of chords, 180

isotropy group, 1378

isotypic tesselation, 309

ISPW, 761

Issigonis, Sir Alec, 1044

istesso tempo, 555

Italian conducting school, 1292

iterated interpretation, 258

J

Jackendoff, Ray, 250, 254, 376, 379, 619, 721

Jacobi identity, 1408

Jacobi, Carl, 1408

Jacobian, 1190, 1247, 1451

Jacobson, Nathan, 1395
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Jakobson, Roman, 16, 116, 157, 212, 222, 234, 241, 250,
329, 774, 781, 1050

James, William, 873
Jandl, Ernst, 799
Japanese philosophy, 1266
Jaques-Dalcroze, Émile, 875
Jauss, Hans Robert, 155
Java, 666
Java2D, 764
jazz, 12, 13, 40, 179, 571, 909

American -, 442
CD review, 342
free -, 13, 548, 900, 1177
harmony, 276
improvisation, 179
lead-sheet notation, 438

JCK, 342
Jefferson, Blind Lemon, 885
jnd, 229
Johnson, Tom, 488, 789
join, 1433
journalistic criticism, 730
joystick, 895
Józef Marja Hoene-Wroński, 319
JSynNote, 1111
Julia set, 162
Julia, Gaston, 162
Junod, Julien, 543, 1097
Jurek, Thom, 877
just, 93

chromatic octave, 96
class chord, 94
modulation, 475
scale, 96
triadic degree interpretation, 265
tuning, 1350

just-tempered tuning, 1351
justest

scale, 266
tuning, 460

juxtaposition, 61

K
K-net, 898, 924, 1182
k-partition, 310
Köhler, Egmont, 189
Körpersinn, 1182
Kagel, Maurizio, 127, 325
kairos, 826
Kaiser, Joachim, 248, 495, 752
Kan, Daniel, 907
kansei, 607, 613
Kant, Immanuel, ix, 9, 21, 29, 38, 145, 1043
Karajan, Herbert von, ix, 577, 608, 783, 1292
Karg-Elert, Sigfrid, 115, 415
Kashalkar, Ulhas, 1306

Katsman, Roman, 847
Kayser, Hans, 1177
Kendon continuum, 854
Kendon, Adam, 853, 899, 909, 1180, 1301
Kepler, Johannes, 114
Keplerian harmony, 30
kernel, 597, 1379

Naradaya-Watson -, 709
Priestley-Chao -, 744
smoothing, 708, 721
smoothing -, 708
symbolic -, 585
view, 680

kernel (of a performance cell), 1254
key, 784

function of music, 529
musicogenic -, 529
signature, 631

keyboard, 915
piano -, 912

Keyser, Cassius, 1052
khyal, 1309
killing, address -, 168
kindred, 240
kinesthetic awareness, 1281
kinetic model, 1306
Kircher, Athanasius, 198
Klangrede, 17, 827
Klein group, 206, 391, 451
Klumpenhouwer, Henry, 898, 980, 1182
Klumpenhouwer network, 924
knot in FM synthesis, 73
knowledge, 35, 361

crash, 339
harmonic -, 485
hiding, 198, 362
human -, 5
management, dynamical -, 329
ontology, 345
private -, 27
space, 9, 27
theory of -, 1005

Koenig, Thomas, 687
Kollmann, August, 827
Kopiez, Reinhard, 237, 604, 605
KORG, 1346
Kronecker delta, 1392
Kronecker, Leopold, 1392
Kronman, Ulf, 607, 896
Krull, Wolfgang, 1396
KTH school, 617, 621
Kubalek, Antonin, 735
Kunst der Fuge, 115, 203, 249, 608, 688, 699
Kuratowski closure operator, 1237, 1443
Kuriose Geschichte, 628, 629, 634, 701, 711
Kurth, Ernst, 1293
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Kurzweil, 701

L
l, 1348
λ-abstraction, 803
l-adic cohomology, 379
L-system, 782
Lüdi, Werner, 548, 791
Lévi-Strauss, Claude, 487
Laban, Rudolf, 874
laboratory

conceptual -, 30
distributed -, 32

Lagrange
density, 1482
potential, 1218

Lagrangian, 658, 1481
action, 1188, 1481
density, 1185

Lakoff, George, 859, 1181
Lamé, Gabriel, 1027
Landry, Elaine, 908
landscape, emotional -, 241
Langer, Jörg, 605
Langer, Susan, 604
language, 17, 853, 893

common -, 22
denotator -, 595
geometric -, 893
natural -, 1034

langue, 17
Laplace operator, 1471
large

form, 1298
performance of a - orchestra, 626

largest coefficient, 733
laryngeal movements, 1316
larynx, 1316
Lasker, Emanuel, 1027
Latin square, 1024
lattice, 1433
law

exponential -, 1464
Weber-Fechner -, 1348

Lawrence, David Herbert, 751
Lawvere, William, 149, 357, 934
layer

action-to-cognition -, 870
cognitive -, 869
RUBATO�-, 668

layers
of reality, 10
time -, 1299

Lazier, Rebecca, 933
lazy path, 1375
LCA, 525

Le Guin, Elizabeth, 1264
lead-sheet notation, 441, 571
leaf, 949
Leap Motion, 1143
learning

by doing, 32
process, 556

leaves of a stemma, 628
Lebesque integration, 1488
left

action, 1378
adjoint, 1423
coset, 1379
hand, 1289
ideal, 1386
inverse, 1378

legato, 645
LEGO, 782
Lehmann, Andreas, 743
Leibnitz, Gottfried Wilhelm, 465, 743, 869, 1178
Leitfaden, vii
λεκτoν, 16
Leman, Marc, 902, 1182
lemma

Fitting’s -, 1396
Guitart -, 1006
Yoneda’s -, 938

length, 268, 1395
minimal -, 689
of a local meter, 97
path -, 1375

lens space, 922
LEP, 196
Lerdahl, Fred, 237, 238, 240, 250, 254, 376, 379, 619, 721
Les fleurs du mal, 219, 799
level, 269

connotative -, 16
denotative -, 16
F-to-enter -, 727
function, 269, 1374
meta -, 17
metrical -, 377
neutral -, 211, 956
object-, 17
sound pressure -, 1348

levels of reality, 10
Levelt, Wilhelm, 1364, 1367
Levi, Beppo, 1040
Lewin, David, 70, 203, 204, 309, 315, 409, 889, 898, 908,

937, 938, 951, 956, 980, 1177, 1182, 1236
Lewis, Clarence Irving, 570
lexical, 344
lexicographic ordering, 50, 76, 1373
Leyton, Michael, xi, 773, 775
LH, 629
library, 51, 367
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Lidov, David, 1265
Lie algebra, 1408

homomorphism, 1408
linear -, 1408
bracket, 1246, 1408, 1455
affine -, 444

derivative, 1455, 1469
formalism, 658
operator, 638

Lie type operator, 1255
Lie, Sophus, 1408, 1455
Ligeti, György, 30, 1179, 1295
limbic

structure, 524
system, 528, 606, 1361

limit, 1424
circular -, 65
form, 57
ring, 1387
topology, 1444

limited
modulations, 481
transposition, 126
mode with -, 126

limiting functor, 962
line, 1375
linear

(in)dependence, 1393
algebra, special -, 1408
case, 205
category, 923
combination, 1391
counterpoint group, 391
dual, 1397
fibration, 758
Lie algebra, 1408
module homomorphism, 1391
ordering, 1373
on a colimit, 77
on a limit, 77
on finite subsets, 77

representation, 1393
visualization
generic -, 362
metrical -, 362

linear ordering among denotators, 50
linearization, 923
linguistics, 160

structuralist -, 250
Lipschitz, locally -, 1452
Lipschitz, Rudolf, 1452
LISP, 439
list form, 809
listen to improvised music, 1295
listener, 11, 13
listening

articulated -, 249
modes of -, 1281
music -, 1353
procedure, 610

Liszt, Franz, 16, 18, 495, 1076
literally included, 208
Lloyd, Sam, 1025
Lluis Puebla, Emilio, xi
local, 245

action, 1038
character of a contrapuntal symmetry, 533
composition, 75, 89, 90
commutative -, 105
embedded -, 106
functorial -, 101
generating -, 106
morphism, 105
objective -, 90, 979
sequence of a -, 192
wrapped as -, 91

compositions
coproduct of -, 105
fiber sum of -, 140
product of -, 104

functor, 926
meter, 97
length of a -, 97
period of a -, 97

meters, simultaneous -, 500
morphism, 1411
network, 980, 1253
faithful -, 980
flat -, 981

optimization, 676
orientation, 264
Para-meter, 267
performance score, 595, 1254
rhythm, 99, 106
ring, 1395
score, 250, 783
solution, 1452
standard composition, 293
symmetry, 533, 534
technical parameter, 835
threshold, 675

local topography, 17
local-global patchwork, 250
locality principle, 762
localization, 1406

historical -, 223
of epilepsy focus, 524
of musical existence, 21

locally
closed, 1445
compact, 1464
finite, 1446
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free, 1413
linear grammar, 660
Lipschitz, 1452
ringed space, 1411
trivial structure, 252

locally almost regular manifolds, category of -, 974
locally compact Hausdorff, 983
Lochhead, Judith, 1264
Locke, John, 1010
locus, Riemann -, 676
logarithmic perception, 550
LoGeoRUBETTE�, 668
logic, 345, 1039, 1067

absolute, 145
classical -, 1434
fuzzy, 336
harmonic -, 449
Heyting -, 436, 1460
inner -, 623
intuitionistic -, 443, 934, 1434
musical -, 264
of orbits, 200
of toposes, 227
performance -, 556
performing -, 774
predicate -, 436
topos -, 930

logical, 1430
algebra, 1433
connective symbol, 1432
functor, 946
motivation, 639
switch operator, 60
time, 502

loop, 1375
Lord, John, 189
Loria, Gino, 1048
loudness, 44, 67, 608, 1348
LPS, 595, 621, 1254
Lubet, Alex, vi
Luening, Otto, 250
Lussy, Mathis, 615

M
mth interval succession, 208
M-theory, 1485
M.M., 552, 562
Mälzel, Johannn Nepomuk, 341
Möbius

bottle, 558
strip, 476

Möbius strip, 252, 263, 442
Müller, Stefan, v, 1088
Mälzel, Johannn Nepomuk, 552, 562, 571
Mälzel metronome, 28, 1347
Möbius strip, 451, 781

Müller, Stefan, xi, 910
Mac Lane, Saunders, 908, 1035, 1178
Mac OS X, 665, 669
Machado, Antonio, 1004
machine, 1037
Γ -, 1038
performance -, 703
precision, 623
Turing -, 553

MacLean, Paul, 528
macro, 270

-event, 74
germ, 270

macrogesture, 1311
MacroScore, 1106
Mahler, Gustav, 1287
Maiguashca, Mesias, 59, 115
Majithia, Roopen, 886
major, 122, 541

dichotomy, 519, 543
mode, 448
scale, 473, 474
dominant role of -, 541

third, 1350
tonality, 460, 478
bigeneric -, 449

major-minor problem, 122
makeshift instrument, 1279
making music, 22
Mallarmé, Stéphane, 850
Malt, Mikhail, 811
manifold, 251, 913
J-, 1062
almost regular -, 974
categorical -, 993
differentiable, 1466
formant -, 238
musical -, 241
of opinions, 828
semantic -, 241
tangent -, 1467
with boundary, 1467

Manin, Yuri, 1177, 1181
Mannone, Maria, vi, vii, 1219
Mansouri, Baya, 1060
map, 1372

characteristic -, 1428
coboundary -, 1447
performance -, 586
refinement -, 275
simplicial -, 1445

mapping, gesture-sound -, 1279
maquette, 811
Marceau, Marcel, 865, 875
Marek, Ceslav, 248, 910
marked
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counterpoint dichotomy, 518
class, 518

dichotomy
autocomplementary -, 518
class, 518
rigid -, 518
strong -, 518

interval dichotomy, 518
Marquis, Jean-Pierre, 908
Marrou, Henri-Irénée, 1040
Marx, Adolf Bernhard, 496
Maschke, Heinrich, 1395
Mason, Robert, 108, 466
Mason-Mazzola theorem, 109
Mason’s theorem, 109
mass-spring, 1346
Massinger, Philip, 679
master, concert -, 626
matching, 761

of structures, 718
score-performance -, 761

material
change of -, 813
experimental -, 330
musical -, 811
of music, 90
time, 502

Math-motif, 406
mathêmata, 1015
Mathematica�, 769
mathematical

creativity, 1002
existence, 145, 328
gesture, 1002, 1036, 1037, 1040
intellectuality, 1006
intuition -, 1027
model, 464
morphism, 282
object, 1021
overhead, 512
pulsation, 1002, 1007, 1026, 1033, 1041, 1042, 1058,

1059, 1064
mathematically equivalent morphisms, 282
mathematics, 5, 160

creative -, 1033
history of -, 1040

matrilineal, 628
scheme, 626

matrix, 898, 1392
category, 1420
comparison -, 206
design -, 724
initial design -, 724
interaction -, 709
of checkboxes, 1110
product, 1392

Riemann -, 447, 481, 675
value -, 766
verse -, 213

matrix-like sketch, 1057
Matterhorn, 151
Mattheson, Johann, 248, 827, 1365
MAX, 115, 210, 441, 789
Max/MSP, 1127
maximal, 313

meter
nerve topology, 379
topology, 268, 378

structure content, 1362
Maxwell’s equations, 973, 1484
mayamalavagaula, 543
Mayer, Günther, 221
Mazur, Barry, 1032
Mazzola, Christina, xii
Mazzola, Guerino, vii, 218, 502, 503, 612, 721, 783, 890,

900, 1035–1038, 1045, 1163, 1173, 1176, 1295
Mazzola, Guerino, 1181
Mazzola, Patrizio, vi
Mazzola, Silvio, xii
McCullogh, Karl-Erik, 854
McNeill, David, 853, 899, 909, 1180
McPartland, Marian, 883
MDZ71, 239
mean

performance, 727
tempo, 727

meaning, 849, 853, 909
of sound, 241
paratextual -, 330
textual -, 330
topological -, 158
transformational -, 158

measurable, 1488
measure for complexity, 254
measurement, 28
mechanical

constraints, 912
dynamics, 608
model, 896
ritard, 896

mechanism
modulation -, 465
of conducting, 1291

mediante tuning, 1351
mediation, 774
meet, 1433
mela, 543
melakarta, 543
melismatic improvisation, 1303
MeloRUBETTE�, 744
melodic

charge, 610
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creation, 1077
gesture, 1302
minor, 480, 541
motion, 1305
movement, 1302
variation, 794

melodic minor
scale, 473, 474
tonality, 460

melody, 226, 271
germinal -, 220, 221, 792
retrograde of a -, 114

melody-as-motion, 1307
MeloRUBETTE�, 384, 408, 647, 672
membrane

basilar -, 1356
Reissner’s -, 1355
tectorial -, 1357

memory, 527, 528
function
hippocampal -, 528

mental
experiment, 550
organization, 35
time, 547
tone parameters, 67

mental 3D rotation, 872
Merleau-Ponty, Maurice, 854, 860, 867, 871, 1031, 1264
Mersenne, Marin, 1364
MES (Memory Evolutive System), 1060
message, 12, 24

infinite -, 751
passing, 802

messaging, 156
Messiaen

mode, 126
scale, 794

Messiaen, Olivier, 126, 127, 134, 794, 1266
meta-gesture, 1286
meta-object, 802, 811, 814

class, 814
protocol, 813

meta-programming, 801, 813
meta-vocabulary, 199
Metal, 1281
metal in the voice, 1315
metalanguage, 212
metalevel, 17
metamere, 1362
metaphor, 24

physical -, 1288
metasystem, 17
meter, 97, 375–381, 1347

beat -, 97
barline -, 97
local -, 97

method, 156, 802, 1005, 1007
analytical -, 1012
boiling down -, 648
continuous -, 639
dodecaphonic -, 775, 780
group-theoretical -, 198, 205
integration -, 683
of characteristics, 1456
of invention, 1039, 1044
operational -, 28
selection, 805
statistical -, 612, 673

metric, 1449
associated -, 1450
Euclidean -, 229
Minkowski -, 1484

metrical
analysis, 688
component, 267
globalization, 99
grouping, 248
hierarchy, 375
level, 377
linear visualization, 362
profile, 689
quality, 376
rhythm, associated -, 267
similarity, 163, 388
structure (=M), 377
weight, 375, 376, 646

MetroRUBETTE�, 744
metronome, 99

Mälzel -, 28, 1347
MetroRUBETTE�, 376, 670
Mexican hat, 236, 1345
Meyer wavelet, 1346
Meyer-Eppler, Werner, 1353, 1362
mezzoforte, 1349
Michel chromatic, 478
Michel-Angelo, 857
micro

-motif, 646
timing, 220

micro-gesture, 1223
micrologic, 569
microstructure

timing -, 719
microtiming, 1303
middle ear, 1354
middleground, 415
MIDI, 235, 783, 899, 912, 964, 1096, 1116, 1151, 1164

velocity, 913
Mikaleszewski, Kacper, 622
Milmeister, Gérard, 1035, 1088, 1096, 1103
mimesis, 891

cultural -, 874
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mimetic
category, 892
hypothesis, 1264, 1276

mimic
gesture, 893
innervation, 891

mind/body problem, 1264
minimal

cadential set, 455
length, 689

Minkowski, Hermann, 310, 1382
Minkowski metric, 1484
minor, 122

harmonic -, 479
melodic -, 480, 541
mode, 448
natural -, 478
tonality, 478

mirror, 947, 956, 1268
gesture, 1270
neuron, 871, 885, 1264

Mittelgrund, 415
Mitzler, Laurentz, 1365
mixed

sketch, 1028
weight, 671

modal
structure, 314
synthesis, 1346

mode, 126
aeolian -, 261
authentic -, 261
consonant -, 450
dissonant -, 450
dorian -, 261
ecclesiastical -, 261, 540, 541
hypoaeolian -, 261
hypodorian -, 261
hypoionian -, 261
hypolocrian -, 261
hypolydian -, 261
hypomixolydian -, 261
hypophrygian -, 261
ionian -, 261
locrian -, 261
lydian -, 261
Messiaen -, 126
mixolydian -, 261
phrygian -, 261
plagal -, 261
rhythmic -, 502
with limited transpositions, 126

model, 1436
kinetic -, 1306
mathematical, 464
mechanical -, 896

notic -, 1306
physical -, 27
template fitting -, 1361

modelage, 1003
modeling

categorical -, 1001, 1003, 1045, 1046
physical -, 236, 701

models, category of known simple -, 1062
modes of listening, 1281
modification, 1004

of functional relations, 813
syntax -, 813

modular
affine transformation, 786
composition, 251

modularity dynamical, 666
modulatio, 463
modulation, 459, 463–486, 840, 951, 952

amplitude -, 236, 833
degree, 465
domain, 476
force, 466, 469
frequency, 236, 833
frequency -, 1111, 1342
just -, 475
mechanism, 465
path, 491
pedal -, 499
pitch -, 236, 833
plan, 498, 499
quantized -, 470
quantum, 466, 467, 470, 471
rhythmical -, 473, 501, 503, 794
theorem, 470
theory, 1243
topos-theoretic background of -, 467
well-tempered -, 469

modulations, limited -, 481
modulator, 73, 236, 470, 490, 491, 494, 1342
modulatory

architecture, 495
region, 486

module, 1391
as basic space type, 59
cohomology -, 1477
complex, 288
constant -, 288
flasque -, 304
of A-addressed forms, 289
representative -, 298
retracted -, 289

direct sum -, 1392
dynamically loadable -, 665
free -, 1392
functor, 143
homology -, 966, 1475
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injective -, 1407
of a commutative local composition, 105
of global affine functions, 355
product -, 1392
projective -, 1406
semi-simple -, 1394
shaping -, 665
simple -, 1394
structuring -, 665

modules in music, 60
modus ponens, 1434
molecule, 291

global -, 292
interpretable -, 292, 316

Molino, Jean, 11, 13, 574
MOLS, 1025
moment, initial -, 574
Monk, Thelonious, 880, 1296
mono, 1420
monochord, 22
monogamic coupling, 632
monoid, 1376

algebra, 60, 1386
finite -, 1376
free -, 1376
free commutative -, 1376
homomorphism, 1376
isomorphism, 1376
morpheme -, 444
multigeneric -, 446
trigeneric -, 444
word -, 1376

monomorphism, 1420
monotone extraction, 1019
Montaigne, Michel de, 1040
Monteverdi, Claudio, 754
Monti, Georges, 1060
Montiel Hernandez, Mariana, xii, 274
mood, 604
MOP, 813

graphical -, 813
Morlet wavelet, 1345
morpheme

harmonic -, 449
monoid, 444

Morphemfeld, 417
morphic, 617, 1439
morphing, 788
morphism, 162, 908, 941, 1419
t-fold differentiable tangent -, 552
t-fold tangent -, 552
geometric -, 946
gestural -, 1287
global -, 246
local -, 1411
mathematical -, 282

mathematically equivalent -, 282
of denotators, 91
of form semiotics, 1439
of formed compositions, 291
of functorial global compositions, 274
of functorial local compositions, 130
of gestures, 915
of global molecules, 292
of local compositions, 105, 128–132
of objective global compositions, 274
of objective local compositions, 129
of performance cells, 586
spatial digraph -, 942
tangent -, 551, 557

morphology, harmonic -, 908
Morris, Robert, 203–205, 211, 314, 316, 409
Morrison, Joseph, 1346
MOSAIC, 1346
mosaic, 310
mother, 596, 619

primary -, 628, 629
prime -, 629
tempo, 562

mother performance, 984
motif, 100, 159, 228, 271

abstract -, 386
classification, 187–190
covering, 384
Reti’s definition of a -, 404
rhythmic -, 504
serial, 125
space, 384
Z-addressed -, 100

motif i, 1267
motif ii, 1269
motion, 604, 607, 897

accelerated -, 607
harmonic -, 415
melodic -, 1305
neurophysiological -, 897
sense of -, 608
tracking, 1290
trigger, 607

motivated, 16
motivation, 345

geometric -, 346, 347
logical -, 346, 639

motives, enumeration of -, 195
motivic

analysis, 214, 404
interpretation, 271, 384
nerve, 384
simplex, 385
weight, 408, 647
work, 276
zig-zag, 277, 781
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motor action, 608, 897
Motte-Haber, Helga de la, 863, 933
movement, 893

internal -, 897
melodic -, 1302
tensed -, 532

movements, laryngeal -, 1316
Mozart, Wolfgang Amadeus, 189, 377, 490
MSC (Mathematical Subject Classification), 1034
Müller, Stefan, 756, 1441
multigeneric monoid, 446
multigraph, 1375

finite -, 1375
multimedia object, 362, 370
multiple, 1016
multiple-dispatching, 802
multiplication

interval -, 512
scalar -, 1391

multiplicity, 208
principle, 1013, 1064

multiverse, 1175
Mumford, David, 300
Murenzi wavelet, 1345
music, 3, 7, 9, 13, 22

absolute -, 774
alphabet of -, 90
atonal -, 204
christianization of -, 891
composition technology, 464
concept of -, 21
critic, 249
role of -, 752

criticism, 248, 634
critique, 751
definition of -, 5
deixis, 16
emotional function of -, 528
esthetics of -, 323
fact of -, 10
film -, 603
historical dimension of -, 91
history, 6
in-time -, 817
key function of -, 529
listening, 1353
material of -, 90
North Indian raga -, 1305
psychology, 237, 250
research, 7
semiotic perspective of -, 15
software, 250
syn- and diachronic development of -, 199
tape -, 250
theory, 669
thinking -, 22

music data, spectral -, 964
music theory

professional -, 202
topological -, 1236

musical
concepts, definition of -, 97
analysis, 612
composition, 30
constraint, 913
content, 1286
creativity, 1227
drama, 753
embodiment, 1314
gestalt, 90, 127
idea, 774
intellectuality, 1006
intuition, 202
logic, 264
manifold, 241
material, 811
onset, 1347
ontolog, 21
ontology, 845
process, 811
prosody, 220
reality, 142
semantics, 134
sign, 895
string theory, 910
taste, 529
tempo, 28
time, 892
topography, 17
unit, 90

musician
Hindustani -, 1305
performing -, 912

musicking, 1301
musicological

experiment, 30, 31
ontology, 328

musicology, 3, 13, 669, 719
cognitive -, 21
computational -, 21
historical -, 328
systematic -, 328
traditional -, 22, 28

Musikalisches Opfer, 121
Musin, Ilya, 1289
musique concrète, 250
Muzzulini, Daniel, 442, 456, 469, 481

N
n-chain, differentiable -, 975
n-circle, 423
n-cube, 553
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singular -, 966
n-dimensional cube, 966
N -formed global composition, 291
n-modular pitch, 205
n-phonic series, all-interval -, 195
N -quotient, 296
Nagasawa, Nobuho, 1276
Nambu-Goto action, 1185, 1484
name, 64

instrument, 69
of a denotator, 45
of a form, 44

names, ordering on -, 76
naming policy, 44, 45, 58
Naradaya-Watson kernel, 709
narration, 773
narrativity, theory of -, 774
Nattiez, Jean-Jacques, 221, 249, 390, 779, 1178
natural, 1422

decomposition, 707
distance, 362
language, 1034
minor, 478
transformation, 1422

natural minor tonality, 460
natural sciences, experience in the -, 31
nature

exterior -, 29
interior -, 29

nature’s performance, 765
navigation, 31, 38

address -, 140
conceptual -, 35
dynamic -, 40
productive -, 39
receptive -, 38, 39, 75
topographical -, 19
trajectory, 31
visual -, 361

negation, 346, 1432, 1433
neigborhood, 163
neighborhood, 226, 672, 1443

elementary -, 403
neo-Riemannian theory, 979, 988, 990
nerve, 776, 1445

auditory -, 1355
class -, 283, 309, 322, 988
discrete -, 254
functor, 988, 1445
motivic -, 384
of a global functorial composition, 282
of a global objective composition, 253
weight, 379
induced -, 379

network, 980
global -, 990

global Zarlino -, 992
GUI, 1096
homology, 986
Klumpenhouwer -, 924
local -, 980, 1253
non-interpretable global -, 991

Neuhaus, Harry, 622
νευ̃μα, 159
Neumann condition, 1483
Neumann, John von, 1494
neumatic notation, 892
neume, 15, 158, 571, 890, 912, 1182, 1293, 1322, 1327
neural pitch processing, 1361
neuron, mirror -, 871, 885, 1264
neuronal oscillator, 606
neurophysiological motion, 897
neurosis semiotic -, 849
neutral, 11, 1342

analysis, 222, 250
element, 1376
level, 211, 956

neutral level, 12, 13
neutralization, 465
Newton, Isaac, 329, 1048
NeXT, 665, 687
NEXTSTEP, 665, 669
nexus, 314
Nicolas, François, 1006
Nietzsche, Friedrich, 850, 1033
nihil ex nihilo, 25
nilpotent, 1396
Node, 1106
Noether, Emmy, 115, 889, 1027, 1087
Noether, Max, 1027
Noh, 13, 342, 632
Noland, Carrie, 1265
Noll, Thomas, xii, 69, 181, 417, 421, 422, 425, 427, 432,

435, 443, 444, 449, 463, 469, 520, 523, 612, 675,
908, 980, 1088, 1377, 1441

non-commutative polynomials, 1386
non-interpretable

composition, 305, 308
global
composition, 990
network, 991

non-invertible symmetry, 127
non-lexical, 344
non-linear deformation, 640, 681, 733
non-linearity, 1359
non-singular hypergesture, 1247
nonparametric approach, 708
norealworld, 1053
norm, 17, 1450
normal, 1492

form, 209
Rahn’s -, 209
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order, 210
subgroup, 1379

normalization
diachronic -, 754
synchronic -, 754

normative
analysis, 377
gesture, 1305

norms equivalent -, 1450
North Indian raga music, 1305
not parallel, 654
notation, 891

American jazz -, 438
diastematic -, 1322
European score -, 67
lead-sheet -, 438, 441, 571
neumatic -, 892
square -, 1329

notched tone space, 1363
note

alterated, 107
anchor -, 625
satellite -, 625
symbol, 912

note-against-note, 509, 531
nothing, 1067
nothingness, 1068
notic

analysis, 1306
model, 1306

notional scenery, 1034, 1046
novelty, absolute -, 1062
number

complex -, 948
embedding -, 208
prime -, 227
ring, 1112

numbers
complex -, 1385
dual -, 508, 1387
rational -, 1385
real -, 1385

Núñez, Rafael, 859, 1181

O
object, 156, 802, 1005, 1419

description, 200
functional -, 1036
global -, 245
mathematical -, 1021
multimedia -, 362, 370
prototypical -, 229
visualization principle, 362

object-oriented programming, 48, 595, 627, 630, 633,
801, 802

objective

closure, 432
gesture, 1042
global - composition, 252
local - composition, 90
local composition, 979
trace, 101

Objective C, 665, 679
objectlevel, 17
objectystem, 17
observation, 28
OCR, 630
octave, 62, 1350

coordinate, 1350
period, 93

octave class, 117
ODE, 652, 683, 1451
Oe, Kenzaburo, 1266
Oettingen, Arthur von, 115, 123, 415, 423, 424, 1350
OFF, 913
off-line algorithm, 761
ON, 912
ON-OFF, 60, 964
ondeggiando, 592
oniontology, 845
onomatopoiesis, 16, 776
onset, 44, 67

abstract -, 125
musical -, 1347
origin, 97
physical -, 1347
self-addressed -, 70
time, 1335
weight, 99

ontological
atomism, 24
coordinate, 10
dimension, 17
perspective, 5
shift, 142

ontology, 9, 142, 149, 152, 328, 1001, 1018
musical -, 845
musicological -, 328
denotator -, 328
knowledge -, 345
musical -, 21
time -, 775

Onuma, Shiro, 1295
opacity, 1108
open

ball, 1449
formant set, 238
functor, 1416
semiosis, 330
set, 227, 1443
source, 666
covering of a functor, 1416
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Open-Editor, 814
OpenMusic, 210, 315, 774, 782, 801–821
openness, 237
operation, 1132

Boolean -, 784
flattening -, 75, 270
graph, 1138

operationalization, 201
operationalized thinking, 161
operator, 598, 616, 619

Beran -, 744
agogical -, 720
articulation -, 591
artistic -, 1204
basis-pianola -, 655
Beran -, 723
boundary -, 969
bounded -, 1487
canonical -, 207
differential -, 1470
face -, 968
field -, 652
Hamilton -, 1493
Laplace -, 1471
Lie -, 638
Lie type -, 1255
performance -, 598, 612, 637–661, 1253
physical -, 616, 651
pianola -, 659
prima vista -, 616
smoothing -, 721
splitting -, 649
sub-path -, 483, 1388
support -, 1336
symbolic -, 616, 650
tempo -, 653
test -, 652
Todd -, 619
TTO -, 207
validation -, 349

opinions, manifold of -, 828
opposite

category, 1421
group -, 1378

opposition, 16
optimal path, 675
optimization, local -, 676
Oram, Celeste, 1264, 1274, 1277
orbit, 1378

set-theoretic -, 1417
space, 1378

orbits, functor of -, 1417
Orchestervariationen, 115
orchestra instrumentation denotator, 69
orchestral

gesture, 817

globalization, 555
orchestration, 785
order, 1379, 1381

normal -, 210
of a PDE, 1455

ordered
p-space interval, 207
pair, 1372
pc interval, 207

ordering, 362
alphabetic, 50
alphabetic -, 36, 38
encyclopedic, 50
lexicographic -, 50, 76, 1373
linear -, 1373
on a colimit, 77
on a limit, 77
on finite subsets, 77

on
coefficient rings, 79
compound (naive) denotators, 51
compound (naive) forms, 51
coordinators, 76
denotators, 75–83
diagrams, 76
direct sums, 79
forms, 75–83
identifiers, 76
matrix modules, 79
Mod, 78–80
morphisms, 80
names, 76
simple forms, 76
types, 76
universal construction functors, 77
ZxASCIIy, 79

partial -, 1373
powerset -, 51
principle, 361
on denotators, 49

universal -, 39
ordinal, 1420
Oresme, Nicholas, 27, 548
organ of Corti, 1356
organic

composition principle, 717
principle, 163

organism
cellular, 325
hierarchical -, 249

organization
degree of -, 718
mental -, 35

orientation, 7, 262, 509, 1468
hanging -, 108
change of -, 509, 515, 531
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geographic -, 38
hanging -, 509
local -, 264
ontological -, 9
recursive -, 19
sweeping -, 108, 509

oriented
contrapuntal interval, 509
global composition, 291

origin, 267
of onset, 97

original, 892
OrnaMagic, 780, 787–789
ornament, 592, 786

pattern, 202
OrnamentOperator, 646
Orsini, Marco, 1293
orthogonality principle, 762
orthonormal decomposition, 10
Orthonormalization, 725
oscillator, 605

neuronal -, 606
oscillogram, 606
Osgood, Charles, 163
ostinato, 811
ottava battuta, 541
outer

derivation, 1408
ear, 1354
hair
cell, 1356

pillar
cell, 1356

outlet, 805
output, presto�-, 784
oval window, 1354, 1358
overhead, mathematical -, 512
overloading, 802
Oxley, Tony, 863

P
p-group, 1380
p-pitch, 206
p-scale, 95
p-space, 206
p-Sylow group, 1380
Pólya, George, 1013, 1039
painting, 151, 783
pair

ordered -, 1372
polarized -, 532
simplicial -, 1447
topological -, 1474
Yoneda -, 1437

Palestrina–Fux theory, 540
Pallasmaa, Juhani, 855, 875

Palmer, Richard, 884
paper science, 145
Papez, James, 528
Paré, Ambroise, 29
Para-rhythm, 267
paradigm, 16

dodecaphonic -, 125
Fourier -, 232
general affine -, 134
gestalt -, 672
phonological -, 220

παρὰδειγμα, 158
paradigmatic

concept, 229
field, 125
group, 390
strategy, 780
theme, 221, 222, 390
tool, 789
transformation equivalence, 212

paradigmatics, uncontrolled -, 165
parallel, 654

articulation
field, 567

crescendo field, 567
degree, 264
glissando field, 567
hierarchy, 591
hypergesture, 1245
admissible -, 1250

not -, 654
performance
field, 568
map, 567

process, 1139
space, 590

Parallelklang, 457
parameter

accessory -, 831
basis -, 67, 654
bow -, 833
cadence -, 454
color -, 835
essential -, 831
exchange, 133
geometric -, 832
global technical -, 835
instrumental -, 832, 835
local technical -, 835
pianola -, 67, 654
primavista -, 594
space, 357
stemma, 1257
system -, 473
technical -, 236
vibrato -, 833
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parameter exchange, 134
parametric polymorphism, 802
paratextual, 632

information, 685
meaning, 330

paratextuality, 349
Parker, William, 863
Parlan, Horace, 875
Parncutt, Richard, 607
parole, 17
part, 246, 250, 273

dilinear -, 1397
extraterritorial -, 591
translation -, 1397

partial, 72, 423
ordering, 1373

partial differential equation (PDE), 1471
partials, 10
participation value, 525
particle physics, 466
partition, 1372, 1462

intérieure, 13
partitioning, 210
Pascal, hexagram of -, 1023
Pascal, Pascal, 1023
passing, message -, 802
patch, 802, 811
patchwork, local-global -, 250
path, 1375

category, 1388, 1458
closed -, 1375
harmonic -, 482
lazy -, 1375
length, 1375
modulation -, 491
optimal -, 675

patrilineal, 628
pattern, 202
pause, 69, 631

general -, 644
pc, 207
pc-space, 207
pcseg, 207
pcset, 207

invariant -, 208
PDE, 657, 1455

quasi-linear -, 1455
PDE (partial differential equation), 1471
Peano axioms, 30
Peck, Robert, 990
pedal

modulation, 499
voice, 499

Pederson, Jimmi, 879
peer, 668
Peirce, Benjamin, 1053

Peirce, Charles Saunders, 1053
percept of self-motion, 897
perception, logarithmic -, 550
perceptional pitch concept, 1363
perceptual equivalence, 229
percussion, 220

event, 503
perfect consonance, 522, 532, 541
performance, 1253

body, 586
cell, 585, 1254
cells
category of -, 586
morphism of -, 586

complexity of -, 548
culture of -, 623
daughter -, 984
definitive -, 895
development, hierarchy of -, 622
dynamics of -, 658
field, 564, 568, 585, 983
parallel -, 568
prime mother -, 631

fields, algorithmic extraction of -, 759
gestural -, 893
grammar, 615
inbuilt -, 753

hierarchy, 556
history
fictitious -, 627
real -, 627

infinite -, 549
initial -, 586, 597
intermediate -, 622
logic, 556
machine, 703
map, 586
parallel -, 567

mean -, 727
mother -, 984
nature’s -, 765
of a large orchestra, 626
operator, 598, 612, 637–661, 1253
plan, 622
primavista -, 630
procedure, 610
real-time -, 607
research, computer-assisted -, 629, 701
score
global -, 598
local -, 595, 1254

structural rationale of -, 325
synthetic -, 610
theory, 319, 324, 909, 912
inverse -, 611, 651, 756

tradition, 753
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vector field, 1253
performance field, time -, 1191
PerformanceRUBETTE�, 583, 652, 654, 679, 733
performative

body, 1283
gesture, 1283

performer, 24, 895, 1263
performing

logic, 774
musician, 912

perilymph, 1355
period, 415

fundamental -, 1340
in the Euler module, 93, 94
interictal -, 524
octave -, 93
of a local meter, 97
of a Vuza canon, 313
of a Vuza rhythm, 312
of duration, 97
temporal -, 376

periodicity, 708
higher level -, 99

Perle, George, 203
permutation, 1373
perspective, 24, 150, 152, 324, 466

change of -, 324
f -, 275
of the composer, 246
ontological -, 5
variation of -, 151

perspectives, integral of -, 325
Peterson, Oscar, 875, 882
Petsche, Hellmuth, 524, 525
Pfeifer, Rolf, 873
phase, 1340

portrait, 1454
spectrum, 238, 1340

phaticity, 212
PHENICX, 1290
phenomenological difference, 756
phenomenology, 1001

gesture -, 848
phenotype, 782
philosophy, 5

Chinese -, 1278
denotator -, 153
gestural -, 893
Japanese -, 1266
of the body, 868
Yoneda -, 828, 1475

phonatory system
first part (diaphragm), 1314
human -, 1314
second part (larynx), 1314
third part (resonant space), 1314

phoneme, 234
phonological

equivalence, 215
paradigm, 220
poeticity, 215

photography, 151
phrasal hierarchy, 1311
phrasing, 248
physical

constraint, 913
gesture, 911, 1186, 1229, 1289
gesture curve, 912
metaphor, 1288
model, 27
modeling, 236, 701
onset, 1347
operator, 616, 651
pitch, 1349
ritard, 896
sound, 71
time, 547
tone parameters, 68

PhysicalOperator, 683
physics, 5

particle -, 466
physiological correlate, 897
pi-rank, 1381
pianissimo, 607
pianist, 912

elementary gesture of the -, 1192
pianist’s hand, 911, 912
piano

hierarchy, 593
keyboard, 912

Piano concert No.1, 201, 202
pianola

coordinate, 1347
deformation, 591, 656
operator, 659
parameter, 67, 654
space, 567, 588, 628
specialization, 659

piecewise smooth, 1340
Pierce, Alexandra, 889
Pinocchio, 370
pitch, 44, 67

-class, self-addressed -, 69
-class set, 203, 207
absolute -, 577
alteration, 53, 788
chamber -, 563, 1349
class, 93, 116
segment, 207
set, 207

concept, perceptional -, 1363
concert -, 576
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cycle, 207
detector, central -, 1361
difference, 62
distance, 61
fundamental -, 437
mathematical -, 61
modulation, 236, 833
physical -, 1349
processing, neural -, 1361
segment, 207
spaces, 205
symbolic -, 68

pivot, 470
pivotal chord, 463
pixel, 343
Plücker, Julius, 1027
plan, performance -, 622
plane transformation, 786
Plato, 27, 38, 165
platonic ideas, 21
playing, 22

structural -, 1267
Plomp, Reiner, 1364, 1367
Podrazik, Janusz, 210
Poe, Edgar Allan, 773
poetic Ego, 214, 219
poetical

function, 16, 116, 212, 241, 248, 774, 781
functions
spectrum of -, 218

poeticity, 116, 212
vertical -, 214
horizontal -, 214
phonological, 215

poetics
timbral -, 241
verse -, 248

poetology, 211
poiesis, 12, 211

retrograde -, 14
poietic, 11, 1342

genealogy, 128
Poincaré, Henri, 1004, 1071, 1079, 1180
point, 147–149, 908, 1371

generic -, 228
absorbing -, 432
accumulation -, 1443
closed -, 228
concept, 145
etymology, 147
Euler -, 1349
faithful -, 431
full, 431
fully faithful -, 431
generic -, 269, 1413
identity, 147

turning -, 465
pointed topological space, 1474
pointer, 23, 38, 146, 849, 1183

scheme, 48
points, category of -, 981, 1255
Poisson equation, 1189, 1197, 1471
polarity, 519, 527

at x, 523
in musical cultures, 543
profile, 228

polarized pair, 532
politically incorrect, 752
Pollock, Jackson, 860, 1291
Pólya

enumeration theory, main theorems of -, 191
theory, 191
weight function, 191

Pólya, George, 190, 310
polygamic coupling, 632
polygon, 785
polyhedral initial set, 580
polymorphism

ad-hoc -, 802
parametric -, 802

polynomials
commutative -, 1386
non-commutative -, 1386

polyphony, 826
polyrhythm, 800
polysemy, 108, 164
Popelard, Marie-Dominique, 856
Popper, Karl, 828, 1039
Porphyrean tree, 157
portrait, phase -, 1454
position

general -, 322
hand’s -, 1192
privileged -, 520

Posner, Roland, 214, 782
possible, world of the -, 1052
post-serialism, 201
potential

epileptiform -, 524
Lagrange -, 1218
sink -, 608

Pow, denotator, 1113
power

spectral -, 525
window, 524

powerset, 1375
form, 56
ordering, 51
type, 47

PR, 377
practising, 633, 634
pre-Hilbert space, 1341
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pre-morphism, 338
pre-object, 338
precise conceptualization, 211
precision, 1298

calculation -, 639
conceptual -, 32
human -, 623
machine -, 623

PrediBase, 665
predicate, 337

atomic -, 339
connective, 1435
deictic, 346
global -, 454
logic, 436
mathematical -, 340, 345
morphic -, 338
objective, 338
primavista -, 341, 632
European -, 341
non-European -, 341

punctual -, 338
PV -, 341
relational -, 338
shifter -, 344
textual -, 447, 454
variable, 1435

preferences, 675
prehistory of the string quartet, 826
Prélude op. 28, No. 4, 743
presemiotic, 848, 859, 861, 910, 1180, 1293
presence, 409, 647, 673
presentation, 1030
presheaf, 1422

continuous -, 982
gestural -, 962, 1086

pressure
bow -, 833
decrease factor, 1337
variation, 1335

presto�, 41, 115, 201, 202, 219, 220, 239, 437, 525, 576,
624, 780, 782, 783–789, 791, 1163

output, 784
Pribram, Karl, 980
Priestley-Chao

kernel, 744
prima vista operator, 616
primary mother, 628, 629
primavista, 556, 630

agogics, 629
dynamics, 629
parameter, 594
performance, 617, 630
predicate, 632

PrimaVista Browser, 1103
PrimavistaOperator, 630

PrimavistaRUBETTE�, 685
prime, 1389

field, 1386
form, 210
mother, 629
performance field, 631

number, 227
spectrum, 227, 239, 925, 1412
stemma, 628
vector, 62, 1351

primitive
element, 1460
gestural -, 901
gesture of conductor, 1287

principal component analysis, 739
principal homogeneous G-set, 204
principle

anthropic -, 465, 466, 543
architectural -, 718
concatenation -, 133, 512
dialogical -, 828
fractal -, 799
locality -, 762
multiplicity -, 1013, 1064
normative -, 378
object visualization -, 362
of relevance, 15
ordering -, 361
organic composition -, 717
organic -, 163
orthogonality -, 762
packing -, 362
sonata -, 135
variation -, 325
visualization -, 1107

priority, 725, 734
privileged position, 520
problem, 1032

Cauchy -, 1456
context -, 674
hit point -, 580
mind/body -, 1264
wild -, 756

procedure
listening -, 610
performance -, 610
rule based -, 615
rule learning -, 615
statistical -, 198
X-ray -, 892

process, 17, 330
creative -, 1066, 1072
historical -, 627, 634
learning -, 556
musical -, 811
of conceptualization, 201
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parallel -, 1139
unfreezing -, 912
view, 1138

process I, 1267
process II, 1270
product, 1374

ambient space, 104
Cartesian -, 1372
cartesian -, 1424
category, 1422
cellular hierarchy, 590
fiber -, 1387, 1424
group, 1380
matrix -, 1392
module, 1392
of local compositions, 104
of the cells, 587
ring, 1387
semidirect -, 1380
tensor -, 1388
topology, 1444
type, 46
weight function, 191
wreath -, 1380

production, 3, 4
of a musical work, 12

profile, metrical -, 689
program

canonical -, 325
change, 784

programme narratif, 774
programming

constraint -, 774, 801
functional -, 801
language
visual -, 801

object-oriented -, 48, 155, 595, 627, 630, 633, 801, 802
progression

harmonic, 249
chord -, 414
contrapuntal, 249
harmonic -, 128

projecting local composition, 178
projection, 128, 1374
projective

atlas, 296
functions, 297
module, 1406

Prokofiev, Serge, 183
prolongational reduction (=PR), 377
pronoun, 856
proof, 1014

chain, 1434
propagation, sexual -, 627, 628, 637
property
H˚-emergent -, 1062

inheritance -, 395
propositional

formula, 1435
variable, 1432

prosody
Greek -, 1324
musical -, 220

protocol, meta-object -, 813
prototype, 198
prototypical object, 229
pseg, 207
pseudo-metric, 1449

on abstract gestalt space, 394
psychological reality, 548
psychology, 5, 6

cognitive -, 179, 226
gestalt -, 90
music -, 237, 250

psychometrics, 163, 228
psychosomatic disease, 1288
Puckette, Miller, 761
pullback, 1424
pulsation, 1036

mathematical -, 1002, 1007, 1026, 1033, 1041, 1042,
1058, 1059, 1064

rhythmical -, 1326
punctus contra punctum, 931
pure expressivity, 606
pushout, 1424
PVBrowserRUBETTE�, 668
Pythagoras, 436
Pythagorean, 30

school, 97, 340
tonality, 461
tradition, 22, 154, 1364
tuning, 266, 478, 1350

Pythagoreans, 11

Q
quadrant, 1281
quale, 570
qualifier

after -, 815
before -, 815

quality, metrical -, 376
quantifier

existence -, 346
formula, 1435
universal -, 346

quantization, 689
quantized modulation, 470
quantum, modulation -, 466, 467, 470, 471
quantum mechanics (QM), 417, 425, 1485
quartet, string -, 774, 825
quasi-coherent, 1413
quasi-compact, 1445
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quasi-homeomorphism, 1414
quasi-linear PDE, 1455
quaternions, 1385
quatuor dialogué, 827
question, open -, 1072
quid, 1204
Quintilian, 856
quiver, 1375

algebra, 1388
complete -, 1375
Riemann -, 482
Riemann index -, 483
stemma -, 660

quotient
category, 1420
complex, 289
dominance topology, 231
group, 1379
ring, 1386
topology, 1444

R
radical, 1376

digraph, 926
formoid, 928

Radl, Hildegard, 460, 473, 477, 480
Raffael, 154
Raffman, Diana, 22, 570
raga, 543, 1309
Rahaim, Matt, vi, vii
Rahn, John, 203–205, 409
Ramachandran, Vilayanur S., 873, 885
Rameau’s cadence, 455
Rameau, Jean-Philippe, 414, 422, 436, 455, 1365
ramification

mode, 42
world-sheet -, 1230

Ramstein, Christophe, 901
random, 14
rank, 1392

torsion-free -, 1381
Raphael, 165
ratiocentricity, 1175, 1177
rational numbers, 1385
rationale, 616

gestural -, 753
historical -, 826

Ratner, Leonard, 329
Ratz, Erwin, 466, 497
Ravel, Maurice, 183
RCA, 525
real, 683

inversion, 124
numbers, 1385
performance history, 627
time, 1189

world, 1044
real-time

algorithm, 761
context, 760
input, 783
performance, 607

reality, 9, 10, 1018
historical -, 487
levels of -, 10
mental -, 11
musical -, 142
physical -, 10
psychological -, 11, 548

realization, geometric -, 988, 1446
reason, 5
recapitulation, 249, 496
receiver, 212
reception, 3, 4
receptive navigation, 75
recitation tone, 261
recombination, 813

weight -, 640
reconstruction, 406
recording

bipolar -, 524
foramen ovale -, 524

recta, 692
recursive

classification, 177
construction, 42
orientation, 19
typology, 42, 49

reduced
diastematic shape type, 387
strict style, 541

reductio ad absurdum, 1018
reduction, 1400

curvilinear -, 776
reductionism, 6
Reeves, Hubert, 167
reference

denotator, 332
tonality, 448

referentiality, 212
refinement, 1462

map, 275
reflection, 814

glide -, 1402
reflexive, 1373
reflexivity, 801
Regener, Eric, 204
region, modulatory -, 486
register, 784, 803
regression analysis, 711, 724, 726
regulae, 1016
regular
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denotator, 66–71
division of time, 376
form, 64
representation, 1393
structure, 708

regularity, time -, 99
rehearsal, 556, 609, 612, 633, 634
Reichhardt, Johann Friedrich, 827
reification, 814
Reinhardt, Django, 876
Reissner’s membrane, 1355
relation

causal -, 816
commutativity -, 1420
cross-semantical -, 612
equivalence -, 250, 1373
functional -, 1196
K -, 314
Kh -, 314
KI -, 314
temporal -, 816

relative
absolutely -, 1028
automorphism, 1460
delay, 236
dynamics, 685
homotopy, 1447
importance, 648
motivic topology, 400
symbolic dynamics, 68
tempo, 561, 685
topology, 1444

relative local
dynamical sign, 640
tempo, 643

relative punctual
dynamical sign, 640
tempo, 643

relevance, principle of -, 15
religion, Christian -, 847
Rellstab, Ludwig, 18
Remak, Robert, 1396
Remove-Element, 814
renaming, 47
reparametrization, 1185
repetition, 117, 1305

sequential -, 1304
replay, 117
Repp, Bruno, 719, 723, 739, 768
representable

functor, 1423
gesturally -, 962

representation, 1030
adic -, 1389
auditory -, 197
Fourier -, 740, 832

geometric -, 783, 892
linear -, 1393
regular -, 1393
score -, 610
textual -, 776

representative
first -, 180
module complex, 298

reprise, 799
reproduction, identical -, 891
res

cogitans, 1186
extensa, 1186

reset, 60
resolution, 357, 831, 840, 989

cohomology, 355
functor, 294
of a global composition, 294, 323

resolution of the identity, 1494
resolvent set, 1493
response, EEG -, 524
responsibility, collective -, 633
restriction

cellular hierarchy -, 590
of modulators, 498
scalar -, 107, 1392

resultant class, 313
resulting divisor, 313
retard, final -, 607
Reti, Rudolph, 165, 225, 376, 383, 403, 672, 721
Reti-motif, 406
retracted module complex, 289
retraction, 1420
retrograde, 14, 23, 119, 127, 134, 208, 247

address involution, 125
inversion, 61, 120, 134
of a melody, 114

retrogression, 207
reverberation time, 1337
reversed order

score played in -, 119
tape played in -, 120
sound, 121

revolution, experimental -, 29
Reye, Theodor, 1023
RGB, 1115
RH, 525, 629
rhetorical

expression, 570
expressivity, 556
shaping, 556

rhetorics, 827
rhythm, 117, 126, 375–381, 807, 1324

local -, 99, 106
throbbing -, 1271
Vuza -, 312
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rhythmic
germ, 127, 266
mode, 502
motif, 504
scale, 503

rhythmical
group, 810
modulation, 473, 501, 503, 794
theory, 502

pulsation, 1326
structure, 794

rhythms, 97
classification of -, 312
local -, isomorphism classes of -, 181

Richards, Whitman, 607
richness, semantic -, 570
Richter, Sviatoslav, 622
Riemann

algebra, 481
dichotomy, 522
graph, 677
harmony, 263
index quiver, 483
locus, 676
matrix, 447, 481, 675
quiver, 482
transformation, 315

Riemann Mapping Theorem, 1466
Riemann, Bernhard, 251
Riemann, Hugo, 99, 123, 160, 201, 205, 251, 375, 414,

417, 436, 447, 449, 463, 469, 481, 484, 509, 523,
669, 674, 693, 714, 721

Ries, Ferdinand, 825, 827
right

action, 1378
adjoint, 1423
coset, 1379
ideal, 1386
inverse, 1378

right-absorbing endomorphism, 432
rigid, 262, 279, 466, 470, 473, 672

difference shape type, 386
marked dichotomy, 518
shape type, 386

rigor, 1039
Riguet, Jacques, 1055
Rilke, Rainer Maria, 850
ring, 1385

anti-homomorphism, 1385
endomorphism -, 1391
homomorphism, 1385
isomorphism, 1385
limit -, 1387
local -, 1395
number -, 1112
product -, 1387

quotient -, 1386
self-injective -, 1407
simple -, 1386

ringed space, 1411
ritard

final -, 896
mechanical -, 896
physical -, 896

ritardando, 608, 644
Rizzolatti, Giacomo, 873
RMI, 668
Roederer chromatic, 478
Rogers, Carl, 1032
Roland R-8M, 220, 791
role

exchange, 61
of a music critic, 752
of conductor, 1288

Rostand, François, 1043
Rota, Nino, 1292
rotation, 202, 207, 208, 786, 899

Amuedo’s decimal normal -, 210
roughness, 1366
round window, 1358
Rousseau, Jean-Jacques, 248
row-class, 208
Rubato Composer, 947, 1095
RUBATO�, 41, 376, 628, 649, 650, 665–668, 719, 736,

759
concept, 665
Distributed -, 764
layer, 668

rubato
Chopin -, 550, 562, 576, 624, 765
encoding formula, 618

Rubato Composer, 979
rubette, 665, 669–686, 1096

BigBang -, 947, 1097, 1127, 1157
for counterpoint, 1097
for harmony, 1098
ScorePlay -, 1105, 1107
Select2D -, 1105

Rufer, Joseph, 125, 134
rule

based procedure, 615
contravariant-covariant -, 805
Fux -, 541
learning procedure, 615
preference - (=PR), 377
well-formedness - (=WFR), 377

rule-based grammar, 615
rules

differentiation -, 610
ensemble -, 610
grouping -, 610

Runge-Kutta-Fehlberg, 652, 683
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Ruwet, Nicolas, 222, 249, 779

S
S-duality, 1184, 1484
Sabine’s formula, 1338
Sachs, Klaus-Jürgen, 531, 532
Sacks, Oliver, 885
sacred denaturation, 891
Saint-Victor, Hugues de, 846, 862, 909, 1180
Salzer, Friedrich, 414
Sandall, Robert, 884
Sander, Emmanuel, 1022
Sands’ algorithm, 310
Sands, Arthur, 310
sapat, 1306
satellite, 370, 1104, 1114

note, 625
saturation, 434, 1406

sheaf, 434, 444
Saussure, Ferdinand de, 15, 160, 199, 222, 250, 472, 854,

856, 867, 1180
Sawada, Hideyuki, 607
SC, 207
scala

media, 1355
tympani, 1355
vestibuli, 1355

scalar, 1391
multiplication, 61, 1391
restriction, 107, 1392

ScalarOperator, 683
scale, 94, 442

12-tempered -, 260
major -, 473
melodic minor -, 473, 474
altered -, 480
chromatic -, 418
diatonic -, 543
harmonic minor -, 472, 474
harmonical-rhythmical -, 794
just -, 96, 260
justest -, 266
major -, 262, 474
Messiaen -, 794
minor
harmonic -s, 262
melodic -, 262

rhythmic -, 503
whole-tone -, 541

SCALE-FINDER, 210, 441
SCALE-MONITOR, 210, 441
scales, common 12-tempered, 96
Scarlatti, domenico, 1157
scatterplot, 713
scenery, notional -, 1034, 1046
sceptical doubt, 1012

Schönberg, Arnold, 30, 90, 115, 125, 127, 134, 135, 183,
199, 201, 203, 204, 212, 247, 253, 262, 325, 413,
422, 442, 463, 465, 466, 502, 775, 780, 1243

Schäfer, Sabine, 687
Schaeffer, Pierre, 250
Schauder basis, 1209, 1486
scheme, 1414

diagram -, 1420
Grassmann -, 1416
matrilineal -, 626
mental -, 13
Molino’s -, 11
sonata -, 503

Schenker, Heinrich, 270, 329, 414
scherzo, 791
Schmidt, Erhard, 1396
Schmitt, Jean-Claude, 846, 903, 909, 1180
Schneider, Albrecht, 902
Schoenberg, Arnold, 933
school

KTH -, 617, 621
Pythagorean -, 97, 340
Zurich -, 612

School of Athens, 154, 165
Schopenhauer, Arthur, 748
Schrödinger equation, 1493
Schubert, Franz, 214, 232, 792
Schumann, Robert, 407, 628, 629, 673, 701, 711, 743,

784, 785, 827, 894, 1260
Schweizer, Albert, 688
science

cognitive -, 611
computer -, 156
contemplative -, 27
doing -, 28
embodiment -, 868
experimental -, 29
paper -, 145

scientific art, 1045
scientific bankruptcy, 22
score, 11, 13, 60, 341, 783, 891, 899, 909, 912, 1105,

1263, 1287
concept, 250, 571, 754, 811
European - notation, 67
exterior -, 571
generic -, 548
global -, 250, 783
inner -, 548, 571, 1295
interior -, 13
local -, 250, 783
played in reversed order, 119
representation, 610
semantics, 574
transformation -, 785

score-following, 761
score-performance matching, 761
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ScorePlay rubette, 1105, 1107
Scriabin, Alexander, 182, 482, 799
SEA, 384
section, 1412, 1420

global -, 288, 1424
segment

class, 206, 208
pitch -, 207

Seifert-Van Kampen theorem, 929
Select2D rubette, 1105
selection

axis of -, 116, 212
field -, 803
method -, 805
stepwise forward -, 727

self-addressed
chord, 185
contrapuntal intervals, 514
denotator, 69
onset, 70
pitch-class, 69

self-addressed arrow, 514
self-adjoint, 1492
self-injective ring, 1407
self-modulating, 1342
self-motion, percept of -, 897
self-referential, 19, 146
self-similar time structure, 799
semantic

atom, 442
charge, 403
of EEG, 524, 525

completion, 49
depth, 383
differential, 163
interpretation, 490
loading, 42
manifold, 241
richness, 570

semantics
functional -, 445
gestural -, 753
harmonic -, 436
incomplete, 83
musical -, 134
of weights, 408
score -, 574

semi-simple module, 1394
semidirect product, 1380
semigroup, 1376
semiosis, 9

extroversive -, 329
incomplete -, 330
introversive -, 329
open -, 330
paratextual -, 349

textual, 334
textual -, 348

semiotic, 1265
component, 854
constraints, 232
gesture -, 1183
marker, visual -, 813
neurosis, 849
of E-forms, 1438

semiotical symmetry, 134
semiotics, 5, 14

of sound classification, 240
semitone, 62
sender, 12, 212
sense of motion, 608
sentence, 1432, 1436

valid -, 1433
sentic state, 604
sentograph, 895
separable extension, 1460
separating module complex, 296
sequence

Cauchy -, 1450
chord -, 486
contrapuntal -, 531
Fibonacci -, 340
interspace -, 192
of a local composition, 192

sequencer, 789
sequential repetition, 1304
sequentialization, 776
serial

motif, 125
technique, 127–128

serial motif
integrated -, 195
derived -, 194

serialism, 201
series

all-interval -, 194, 200
basic -, 125
dodecaphonic -, 125, 162, 194, 247, 253, 325
fundamental -, 115
pk, nq-, 125, 194
n-phonic -, 125, 194
time -, 707

Serre, Jean-Pierre, 1027, 1476
Sessions, Roger, 889, 894, 1182
set, 1371

Borel -, 1488
cadential -, 455
circular -, 66
class, 207, 208
closed -, 1443
complex, 204, 314
theory, 204
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concept, 146
empty -, 146
fuzzy -, 163, 1029
in AST, 203
index -, 1373
initial -, 573, 586, 596, 1254
minimal cadential -, 455
of operations, 209
open -, 227, 1443
pitch-class -, 203
resolvent -, 1493
small -, 1420
source -, 203
support -, 252
theory, 249, 1028

SET-SLAVE, 209, 441
set-theoretic orbit, 1417
SETI (Search for ExtraTerrestrial Intelligence), 1175
seventh

dominant -, 419
natural -, 423
subdominant -, 420
tonic -, 420

sexual propagation, 627, 628, 637
SGC, 208
Shakespeare, William, 637
shape, 405, 1004, 1056
J-, 1062
type, 385

shape type
contrapuntal motion -, 387
diastematic -, 387
diastematic index -, 387
elastic -, 388
reduced diastematic -, 387
rigid difference -, 386
rigid -, 386
toroidal sequence -, 388
toroidal -, 388

shapes of the hands, 1310
shaping, 1148

module, 665
rhetorical -, 556
vector, 723

sharp, 109
sheaf, 1415, 1431

on a base, 1412
saturation -, 434

sheafification, 1432
shearing, 119, 123, 133, 202, 1402
sheaves, category of -, 1431
Shepard, Roger, 872
Shepp, Archie, 877
Sherman, Robert, 179
shift, 109

constant -, 109

elementary -, 109
ontological -, 142

shifter, 574, 578, 856, 892, 895
esthesic -, 344
poietic -, 344

Shusterman, Richard, 868
Siebers, Tobin, 880
sieve, 1428

closed -, 1431
covering -, 1430

sight reading, 556, 722
sign, 14, 850, 1047

deictic -, 16
lexical -, 16
musical -, 895
shifter -, 16

signature, 592
key -, 631
time -, 631

significant, 14
significate, 14
signification, 14, 15, 337

process, 14
signs

of coefficients, 731
system of -, 5

similarity, 159, 163, 226, 228
gestural -, 1289
metrical -, 163, 388

simple
form, 56
simplify to a -, 63

frame, 802
group, 1379
module, 1394
ring, 1386

simple forms, ordering on -, 76
simplex, 596, 988, 1445

affine -, 1461
category, 939
closed -, 1446
dimension of -, 1445
motivic -, 385
singular -, 1447
standard -, 1447, 1461

simplicial
cochain complex, 1447
complex, 779, 1445
functor, 988
map, 1445
metrical weight, 269
pair, 1447
weight, 283, 988

simplify to a simple form, 63
Simula, 802
simultaneous local meters, 500
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singing, Han -, 1321
singleton interpretation, 275
singular
n-cube, 966
cochain, 1447
homology, 965, 1476
simplex, 1447

singular homology, hypergestural -, 1236
sink potential, 608
Siron, Jacques, 571
Sirone (Norris Jones), 1176
sister, 660
site, 1430

Zariski -, 1415
skeletal space, 918, 974
skeleton, 870, 1445

category, 1421
global -, 996
space-time -, 1226

sketch, 1056, 1059
matrix-like -, 1057
mixed -, 1028
of gesture, 1030, 1038

sketches, category of -, 1029
sketchy interpretation, 622
skew field, 1385
skin, 1274
slave tempo -, 624
Slawson, Wayne, 237
slice, 102

identity -, 275
f -slice, 275
Sloboda, John, 665, 743
slope, global -, 677
slot, 802
slur, 631, 632
SMAC, 612
small

gestalt, 398
infinitely -, 569
set, 1420

smallness, 237
smartphone, 1274

gesture, 1279
Smith III, Julius O, 1346
smooth, piecewise -, 1340
smoothing

hierarchical -, 708
kernel, 708
kernel -, 708, 721
operator, 721

SMPTE, 784
SNSF, 612, 665
sober, 1414

weight, 379
socle, 1396

software
development, 595
engineering, 152
for AST, 209
music -, 250

solution
global -, 1454
local -, 1452

somaethetics, 868
sonata

form, 249, 496, 791
principle, 135
scheme, 503
theory, 496

sonification, 1111, 1116
sound, 1313, 1335

classification, 232
color, 159
colors, space of -, 237
conceptualization of -, 14
design, 1121
generator, 700
grouping, 74
meaning of -, 241
natural -, 11
physical -, 71
pressure level, 1348
reversed -, 121
speech, 827
transformation, 120

Sound Pattern of English (=SPE), 234
sounding analysis, 694
SoundScore, 1107
source

open -, 666
set, 203

space, 892, 893, 1067, 1438
ambient -, 90
Banach -, 1450, 1486
basis -, 567, 588, 628
color -, 832
compositional -, 204
concept -, 1034
contour -, 205
creative -, 1034
dual -, 1488
Euler -, 1349
finger -, 915
form -, 55
fundamental -, 588
gestural form -, 1087
hierarchy, 588
Hilbert -, 1486
indecomposable -, 588
instrument -, 597
lens -, 922
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locally ringed -, 1411
motif -, 384
of sound colors, 237
of spectral values, 1317
of vocal gestures, 1315
orbit -, 1378
parallel -, 590
parameter -, 357
pianola -, 567, 588, 628
pre-Hilbert -, 1341
ringed -, 1411
skeletal -, 918, 974
tangent -, 551, 1467
top -, 588
topological -, 1443
vector -, 1392

space-time, 892
skeleton, 1226

span, 520, 672
time -, 70

spanning tree, 1458
spatial

concept, 894
digraph, 914, 940, 1457
morphism, 942

hypergesture, 917
spatialization, 891
SPE, 234
special linear algebra, 1408
specialization, 162, 218, 231, 402, 591, 1026

abstract -, 402
abstract gestalt -, 402
basis -, 656
co-inherited -, 402
gestalt -, 402
Hasse diagram, 220
inherited -, 402
pianola -, 659
topology, 403

specialize, 227
species, 239
spectral

analysis, 524
decomposition, 708
gesture, 1318
music data, 964
participation vector, 524, 525
power, 525
vector, 832

Spectral Theorem, 1494
spectral values, space of -, 1317
spectroid, 908, 925
spectrum, 721

amplitude -, 1340
energy -, 1340
of poetical functions, 218

phase -, 238, 1340
prime -, 227, 239, 925, 1412

speculum mundi, 36
speech, 17

gesture, 1311
sound -, 827
vocalization, 1302

Sperry, Roger, 873
Spicker, Volker, 909
SPL, 1348
spline, 1461

of type T , 1462
split

exact sequence, 1380
local commutative composition, 176

SplitOperator, 682
splitting, 629

operator, 649
spring equation, 1341
SQL, 668
square

Eulerian -, 1025
Latin -, 1024
notation, 1329

Staatliche Hochschule für Musik, 629
Staatliche Hochschule für Musik, 628, 687
stability, gestalt -, 226
stabilizer, 1378
stable concept, 226
staccato, 645
staff, 1322
stalk, 1411
standard

global - composition, 293
atlas, 293
chord, 436
hierarchy, 590
local - composition, 293
of basic musicological concepts, 92
simplex, 1447, 1461
composition, 173

standardized tempo, 723
Stange-Elbe, Joachim, xii, 628, 687
state

emotive -, 1266
sentic -, 604

stationary voice, 499
statistical

approach, 707
method, 612, 673
procedure, 198

Steibelt, Daniel, 120, 134
Steinway, 791
stemma, 556, 612, 619, 621–635, 1253

continuous -, 661
leaves of a -, 628
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parameter -, 1257
prime -, 628
quiver, 660
tempo -, 624
theory, 736, 755
tree, 660

stemmata, gesture of -, 1256
stemmatic

cross-correlation, 634
grouping, 633

Stendhal, 857
Stendhal syndrome, 1288
Stengers, Isabelle, 27, 548
stepwise forward selection, 727
stereocilia, 1356
stereotactic depth EEG, 524
Stern, Daniel, 1266
Stimmigkeit, 848
stirrup, 1354
Stockhausen, Karlheinz, 59, 127, 233, 316
Stokes’ theorem, 973, 1244, 1248, 1469, 1470
Stokes’ theorem for hypergestures, 976
Stolberg, Leopold, 214, 232, 792
Stone, Peter, 115
Stopper, Bernhard, 93
strategy

experimental -, 694, 701
gestural -, 1270
paradigmatic -, 780
target-driven -, 694, 701

stratum, cognitive -, 869
Straub, Hans, xii, 189, 284, 442, 455, 456, 1517
Straus’ zero normal form, 210
Stravinsky, Igor, 1293
strength factor, 610
stretching, 202

time -, 650
strict

extension, 443
style, 541
reduced -, 541

STRING, 44
string

empty, 45
landscape, 1175
of operations, 209
quartet, 69, 241, 774, 825
prehistory of the -, 826
theory, 825

theory, 910, 1173, 1175, 1482
musical -, 910

String Trio op.45, 933
strip

harmonic -, 253, 262, 442
Möbius -, 451, 476, 781

strong marked dichotomy, 518

structural
constant, 1408
homomorphism, 1385
playing, 1267
rationale of performance, 325

structuralist linguistics, 250
structuration, 1026
structure

formal -, 801
frame -, 591
internal -, 254
interspace -, 192
limbic -, 524
local vs. global -, 89
locally trivial -, 252
modal -, 314
of fibers, 756
regular -, 708
rhythmical -, 794
transitional -, 464

structures, matching of -, 718
structures-mères, 1028
structuring module, 665
Stucki, Peter, xii
style, 718

strict -, 541
sub-complex Kh, 210
sub-path operator, 483, 1388
subbase for a topology, 1443
subcategory, 1421

address -, 1089
full -, 1422
Yoneda -, 1437

subclass, 802
subcomplex, 1445

full -, 1445
subconscious, 529
subdivision, 622
subdominant, 263, 414, 445, 448

seventh, 420
subgroup, normal -, 1379
subject, 22
subjective gesture, 1042
subjectivity, 30
subobject, 1428

classifier, 1428, 1459
relation, 76

substance, 43
substitution theory, 1363
subtyping, 805
succession, 774

interval -, 207
successive interval, 526
successively increased alteration, 788
successor

admitted -, 533



R.102 Index

pairing
allowed -, 531

suchness, 851, 1179
sukoon, 1306
sum

direct, 63
disjoint -, 1424
fiber -, 1424

SUN, 668
Sundberg, Johan, 553, 607, 609, 615, 743, 896, 1182
super-summativity, 167, 226, 271
superclass, 802
supersensitivity, 688
superstring theory, 1485
support, 337

functor, 257
of a local composition, 90
operator, 1336
set, 252

supporting valence, 1362
surface, integral -, 1456
surgery, concept -, 633
surgical epilepsy therapy, 524
surjective, 1372
suspension, 722
sustain, 1315
Sutera, Salvatore, 1315
svara, 1306
Swan, Richard, 1027
sweeping orientation, 108, 509
Swing, 764
switch, vocabulary -, 240
Sylow

decomposition, 79, 445, 510
group, 179

Sylow, Ludwig, 1380
Sylvester, David, 860
symbol

gestural -, 912
logical connective -, 1432
note -, 912

symbolic
absolute dynamics, 68
computation, 801
gesture, 911, 912, 1186, 1228, 1229, 1289
gesture curve, 912
kernel, 585
operator, 616, 650
pitch, 68
relative dynamics, 68

Symbolic Composer, 115
SymbolicOperator, 683
symmetric, 1373

group -, 1378
SYMMETRICA, 311
symmetries

in music, 14, 114–128

musical meaning of -, 132

semantical paradigm for -, 133

symmetry, 91, 98, 113, 162, 1402

of parameter roles, 127

breaking, 775

codification of a -, 128

contrapuntal -, 532, 1235

degree of -, 208

form of a -, 113

function of a -, 113

group, 144, 180, 470, 672

conjugation class of the -, 180

hidden -, 114

inner - of C-major, 123

local -, 533, 534

non-invertible, 127

semantical function of -, 113

semiotical -, 134

transformation, 249, 250

underlying -, 129

Synaesthesia Playground, 1274

synaesthetic, 885

synchronic, 16

axis, 328, 472

normalization, 754

synonym form, 56

synonymy

circular -, 64

type, 47

syntagm, 16

syntagmatic equivalence, 215

syntax modification, 813

Synthesis, 219, 473, 501, 503, 780, 781, 787, 791–799

synthesis, 1338

modal -, 1346

synthesizer, 1121

synthetic performance, 610

syntonic comma, 97

system

auditory -, 11

coefficient -, 1447

Hess -, 524

limbic -, 528, 606, 1361

meta -, 17

object-, 17

of signs, 5

non-linguistic -, 15

parameter, 473

vestibular -, 608, 897

weight -, 632

systematic

approach, 472

musicology, 328

understanding, 826
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T
t-fold

tangent
composition, 551
morphism, 552

t-fold differentiable
tangent morphism, 552

t-gestalt, 391
tönend bewegte Formen, 251, 775
tableau, 1024
tactus, 377
tail, 914, 1457
Takemitsu, Toru, 1263, 1266
Takhtajan, Leon A., 1485
tala, 1309
tangent, 108, 511

bundle, 1451
category, 927
composition, 551
basis of a -, 551
global -, 557

interpretation, 558
manifold, 1467
morphism, 551, 557
space, 551, 1467
Zariski -, 927, 1415

tensor, 1468
torus, 511

tape music, 250
taquin, 1025
target-driven strategy, 694, 701
Tarry, Gaston, 1027
taste

common -, 752
musical -, 529

tautology, 1433
Taylor, Cecil, v, 548, 799, 862, 874, 909, 1182, 1291, 1295
Taylor, Yuval, 886
technical parameter, 236
technique

bodily -, 1280
cohomological -, 1061
instrumental -, 832

technology, gesture -, 1283
tectorial membrane, 1357
teleportation, 1180
telling time, 773
tempered, 93

class chord, 94
scale space, 96
tuning, 1350

template fitting model, 1361
tempo, 547, 550, 552, 561, 896

absolute -, 341, 561, 643
curve, 202, 220, 562, 607, 623, 723, 784
adapted -, 576

deformation of -, 576
daughter -, 562
discrete -, 28
field, 562
hierarchy, 624
istesso -, 555
mean -, 727
mother -, 562
musical -, 27, 28
operator, 653
relative -, 561, 685
relative local -, 643
relative punctual -, 643
slave, 624
standardized -, 723
stemma, 624
weight -, 653

tempo-intonation field, 565
TempoOperator, 683
temporal

box, 811
period, 376
relation, 816

tenor tone, 261
tensed movement, 532
tension, 414, 647

contrapuntal -, 531
global -, 677
harmonic -, 481, 482

tensor, 1468
algebra, 1469
alternating -, 1468
field, 1468
product, 1388
affine -, 1400

tangent -, 1468
Terhardt, Ernst, 1368
terminal, 1424
terminology, 203
territory, 591
Teschl, Gerhard, 1485
tesselating chord, 309
tesselation, isotypic -, 309
test

EEG -, 524
operator, 652
Turing -, 791
Wilcoxon -, 526

tetractys, 30, 1364
tetradic interpretation, 276
tetrahedron, 4, 6
text analysis, 609
textual

abstraction, 362
content, 1286
meaning, 330
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predicate, 447, 454
representation, 776
semioses
category of -, 337

textuality, 334–348
texture, four part -, 826
Thalmann, Florian, vi, vii, 979, 1036, 1097
The Topos of Music, 843
theme, 271, 415

basic -, 202
paradigmatic -, 221, 222, 390
Reti’s definition of a -, 404

theology, apophatic -, 1004
theorem, 1434

complement -, 208
counterpoint -, 534, 538
Fourier’s -, 1340
Mason’s -, 109
Mason-Mazzola -, 109
modulation -, 470
Seifert-Van Kampen -, 929
Stokes’ -, 973, 1244, 1248

theorist, 1263
theory

American jazz -, 439
American set -, 979
catastrophe -, 226, 497
category -, 908, 1002, 1028
classification -, 831
contour -, 271
counterpoint -, 775, 839
degree -, 436
Fourier -, 925
function -, 437
Galois -, 1087, 1460
gestural -, 1182
gesture -, 893, 1173
global -, 220
group -, 212
homology -, 967
homotopy -, 1474
hyperset -, 1094
landscape -, 1175
modulation -, 1243
music -, 669
neo-Riemannian -, 979, 988, 990
of ambiguity, 245
of knowledge, 1005
of narrativity, 774
Palestrina-Fux -, 540
performance -, 319, 324, 909, 912
rhythmical modulation -, 502
set -, 249, 1028
sonata -, 496
stemma -, 736, 755
string quartet -, 825

string -, 910, 1173, 1175, 1482
substitution -, 1363
superstring -, 1485
transformational -, 889, 898, 908, 938, 947, 965, 979,

1119
valence -, 1353
wavelet -, 1344

thesis, 1192, 1287, 1325
world-antiworld -, 497

Thiele, Bob, 603
thinking, 22

by doing, 28, 30
cartesian -, 898, 1182
music, 22
operationalized -, 161

thinking music, 22
third, 414

axis, 96
chain, 260, 438, 675
closure, 260
interpretation, 260
minimal -, 260
weak -, 260

comma, 265
class, 265

coordinate, 1350
degree tonality, 450
distance, 511
major -, 62, 1350
weight, 676

3D vision, 361
threshold

global -, 675
local -, 675

throbbing rhythm, 1271
tie, 592
Tierny, Miles, 149, 357
tiling lattice, 426
timbral poetics, 241
time, 4, 338, 892, 1067, 1295, 1326, 1347

-slice, 250
-span reduction (=TSR), 377
complex -, 1186, 1218
dilatation, 70
event, 556
generator, 775
grouping, 99
imaginary -, 957, 1189, 1297, 1300
interval, 70
layers, 1299
logical -, 502
material -, 502
mental -, 547
musical -, 892
onset -, 1335
ontology, 775



Index R.105

performance field, 1191
physical -, 547
real -, 1189
regularity, 99
reverberation -, 1337
series, 707
signature, 69, 631
span, 70
reduction, 619

stretching, 650
structure, self-similar -, 799
telling -, 773
told -, 773
unfolding -, 1298

time span, 980
timed co-performance, 1302
timing

micro -, 220
microstructure, 719

Tinctoris, Johannes, 517
Tizol, Juan, 1297
Todd operator, 619
Todd, Neil McAngus, 555, 608, 610, 612, 621, 897, 1182
ToE, 869
told time, 773
tolerance, 642, 681
ToM CD, vii
Tomasello, Michael, 856
Ton, 507
tonal

ambiguity, 493
function, 249, 263, 447
value, 447

inversion, 124, 788
tonalities, admitted -, 465
tonality, 249, 263, 414, 436, 447, 453

harmonic minor -, 460
major -, 460, 478
melodic minor -, 460
minor -, 478
natural minor -, 460
Pythagorean -, 461
reference -, 448
third degree -, 450

tone
recitation -, 261
space, notched -, 1363
tenor -, 261

tone parameters
mental -, 67
physical -, 68

tonic, 261, 414, 445, 448
seventh, 420

tonical, 263
Tonort, 507
tonotopy, 1361

tool, paradigmatic -, 789
top space, 588
top-down, 622
topic, 38, 329
topographic cube, 17, 32
topographical navigation, 19
topography, 9, 114

local -, 17
local character of -, 24
musical -, 17

topological
category, 939, 961, 1085, 1464
digraph, 993
functor, 939
meaning, 158
music theory, 1236
pair, 1474
space, 1443
irreducible -, 1413

topological space, pointed -, 1474
topology, 38, 157, 163, 225
AKξ-, 1237
algebraic -, 164, 919
associated -, 1450
base for a -, 1443
coherent -, 1444
coinduced -, 1444
colimit -, 1444
combinatorial -, 254
compact-open -, 914, 937, 1464
discrete -, 1443
dominance -, 231, 402
epsilon -, 397
epsilon gestalt -, 398
extension -, 430
finite cover -, 353
generators for a -, 1463
Grothendieck -, 149, 353, 1430
harmonic -, 443
Hausdorff -, 1445
indiscrete -, 1443
Lawvere–Tierny -, 357
limit -, 1444
maximal meter -, 268, 378
maximal meter nerve -, 379
on gestalt spaces, 395
on motif spaces, 395
product -, 1444
quotient -, 1444
quotient dominance -, 231
relative -, 1444
relative motivic -, 400
specialization -, 403
subbase for a -, 1443
uniform -, 1444
weak -, 1444
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Zariski -, 164, 239
topor, 1438
topos, 3, 9, 21, 914, 979, 1029, 1177, 1429

Boolean -, 1434
gesture -, 945
Grothendieck -, 1431
hyperouranios -, 21
logic, 435, 930
of conversation, 826
Platonic -, 148

topos-theoretic background of modulation, 467
toroidal

sequence shape type, 388
shape type, 388

torsion group, 1381
torsion-free rank, 1381
torus, 917

tangent -, 511
TOS, 605
Toscanini, Arturo, 1292
total, 1372, 1373
touch, 894
Tower, Joan, 1264
Träumerei, 673, 709, 711, 739, 768
trace, objective -, 101
track, 250
tracking, motion -, 1290
tradition, 331

contrapuntal -, 199, 1367
performance -, 753
Pythagorean -, 22, 1364

traditional musicology, 22
transcendence, 21
transcendental element, 1460
transform, Fourier -, 1344
TransforMaster, 789
transformation, 405, 407, 774

control of -, 200
gestural -, 1272
natural -, 1422
of sound, 120
plane -, 786
Riemann -, 315
score, 785
symmetry -, 249, 250

transformational
approach, 204
invariance, 226, 271
meaning, 158
theory, 889, 898, 908, 938, 947, 965, 979, 1119

transit, 1037
transitional structure, 464
transitive, 1373

action, 1378
epistemology, 1059

transitivity, 229

translation, 133, 1396
part, 1397

transposability, 167
transposition, 116, 134, 226, 513

limited -, 126
transvection, 119, 133
tree, 335

spanning -, 1458
stemma -, 660

triad, 90, 414
augmented -, 262
diminished -, 262
major -, 262
minor, 262

triadic
degree, 1245
interpretation, 261

interpretation, 276, 450, 455, 466
trigeneric monoid, 444
trigger, motion -, 607
trill, 74, 625
True, 1433
Truslit, Alexander, 1293
truth, 1002, 1016

denotator, 335
TTO operator, 207
tube, Eustachian -, 1355
Tudor, David, 250
tuning, 249

just -, 1350
just-tempered -, 1351
justest -, 460
mediante -, 1351
Pythagorean -, 266, 478, 1350
tempered -, 1350
12-tempered -, 90
well-tempered -, 1350

turbidity, 123
Turing

machine, 553
test, 791

turning point, 465
12-tempered

scales, common -, 96
tuning, 90

two-dimensional
alteration, 787

TX7, Yamaha -, 525
type, 43, 1438

casting, 333
change, 331
coproduct -, 47
form -, 55
gestural form -, 1086
homotopy -, 1474
of a cellular hierarchy, 590
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powerset -, 47
product -, 46
shape -, 385
synonymy -, 47

types
of gestures, 1286
ordering on -, 76

typology
of forms, 55
recursive, 49
recursive -, 42

U
Uhde, Jürgen, 248, 466, 497, 890, 893, 916, 950, 957,

1182
Unbewusstes, 528
uncertainty relation, 245, 425
uncontrolled paradigmatics, 165
underlying symmetry, 129
understanding, 325, 828

musical works, 324
systematic -, 826

Underwater, 1283
unfolding, 776

time, 1298
unfreezing process, 912
unfreezing gestures, 1287
Ungvary, Tamas, 895
unicorned view, 752
uniform topology, 1444
uniformity, 1444
union, 1371
unit, musical -, 90
unitary, 1492
unity, 36, 42, 49
universal ordering, 39
universe, 1175, 1420

algebraic -, 1029
of structure, 329
of topics, 329

unordered
graph, 1458
p-space interval, 207
pc interval, 207

UPIC, 1159
Ursatz, 329
Ussachevsky, Vladimir, 250
Utai, 13, 342

V
vakr, 1306
Valéry, Paul, v, 13, 41, 155, 547, 553, 561, 574, 585, 638,

860, 874, 889, 899, 1042, 1044, 1064, 1177, 1182
valence, 1362

supporting -, 1362
theory, 1353

valid sentence, 1433
validation operator, 349
valuation, interpretative -, 13
value

change, 632
initial -, 562
matrix, 766
participation -, 525

vampire, 947
Vanbremeersch, Jean-Paul, 1060
Varèse, Edgar, 323, 324
variable

bound, 1436
causal-final -, 767
explanatory -, 724
free, 1436
inclusion, frequency of -, 732
individual -, 1435
predicate -, 1435
propositional -, 1432

variable address, 53
variation, 405, 407, 507, 787

melodic -, 794
of the perspective, 151
pressure -, 1335
principle, 325

variational principle
global -, 1231
Hamilton’s -, 1243, 1481

variations
calculus of -, 1471
cycle of -, 791

varieties of sounds, 232
variety instrumental -, 555
varying element, 1023
vector, 1391

analytical -, 723
field, 1245, 1451, 1468
instrumental -, 835
interval -, 208, 210
interval-class -, 204
invariance -, 208
prime -, 1351
shaping -, 723
space, 1392
spectral -, 832
spectral participation -, 524, 525

vector field, performance -, 1253
velocity, 608, 784, 1349

instantaneous -, 27
bow -, 833
concept of instantaneous -, 27
MIDI -, 913
physical -, 27

verbal description, 622
Vercoe, Barray, 761
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Verdier, Jean-Louis, 354
Verillo, Ronald, 607
verse

matrix, 213
poetics, 248

vertex, 1375, 1445, 1457
final -, 660

vertical
grid vector, 788
poetical function, 782
poeticity, 214

vestibular system, 608, 897
Veyne, Paul, 1040
Viète, François, 1033
vibration, gestural -, 893
vibrato, 235, 237, 607, 833

parameter, 833
Vico, Giovan Battista, 1012
Vieru, Anatol, 211, 314
view, 802

configuration, 1108
kernel -, 680
process -, 1138
unicorned -, 752

Vigarello, Georges, 874
Villon, François, 116, 198, 199
Vinci, Leonardo da, 856
viola, 825
Viola, Bill, 1265
Violi, Patrizia, 867
violin, 825

family, 241, 828, 840
hierarchy, 593

violoncello, 825
virtual acoustics, 701
visual

navigation, 361
programming language, 801
semiotic marker, 813

visualization, 760, 761
principle, 1107

vitality affect, 1266
vocabulary

dodecaphonic -, 199
extension, 40
switch, 205, 240

vocal
gesture, 1301, 1313, 1315
hypergesture, 1316

vocal folds, 1321
vocal gestures, space of -, 1315
vocalist

Carnatic -, 1301
Hindustani -, 1301

vocalization, speech -, 1302
Vogel chromatic, 478

Vogel, Martin, 97, 418, 423, 427, 473, 478, 1350, 1499
voice, 509, 1313

crossing, 509
instrumental -, 220
leading, 249
pedal -, 499
stationary -, 499

Voisin, Frédéric, 817
Volkswagen Foundation, 665
volume, 188
Vordergrund, 415
vowel, 234
Vuza

class, 312
rhythm, 312

Vuza, Dan Tudor, 70, 211, 268, 309, 312
Vygotsky, Lev Semyonovich, 854

W
W, 498
Wagner, Richard, 212, 670
walking, 607, 1304
wall, 1066

bottom -, 631
Wall, Anthony, 856
Wallis, John, 1007
wallpaper, 1133, 1163
walls, 1072

extended -, 1072
open -, 1072

Wanderley, Marcelo, 901, 1182
Ward, Artemus, 615
wave, 1340

acoustical -, 963
waveguide, 1346
wavelet, 236, 1344

frame, 236
Meyer -, 1346
Morlet -, 1345
Murenzi -, 1345
theory, 1344

wavelet-transformed, 1344
weak topology, 1444
Weber-Fechner law, 1348
Webern, Anton von, 124, 125, 127, 163, 204, 246, 325,

711, 752
Wedderburn, Joesph, 1395
wedge, crescendo -, 641
wedge product, 1468
Wegner, Peter, 27
weight, 597, 610, 612, 619, 638, 673

analytical -, 549, 553, 646
class -, 283
combination, 681
continuous -, 639
function, 1253
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default -, 482
Pólya -, 191
product -, 191

harmonic -, 482, 647
induced nerve -, 379
inverted -, 681
metrical -, 375, 376, 646
mixed -, 671
motivic -, 408, 647
nerve -, 379
onset -, 99
profile, 218
recombination, 640
simplicial -, 283, 988
simplicial metrical -, 269
sober -, 379
system, 632
tempo, 653
third -, 676
watcher, 681

weighted graph, 239
Weil, André, 1041
Weissmann, Jody, 1035
well-ordered, 1373
well-tempered

modulation, 469
tuning, 1350

Weltgeist, 1174
Wernicke’s area, 872
Weyl, Hermann, 161
WFR, 377
whatness, 21, 1179
whereness, 21
White, Andrew, 571
whole, 246, 273
whole-tone scale, 541
Whymper, Edward, 151
Wicinski, A.A., 622
Widmer, Gerhard, 611
Wieland, Renate, 248, 889, 893, 894, 899, 916, 950, 1182
Wieser, Heinz-Gregor, 524
Wilcoxon test, 526
wild problem, 756
Wiles, Andrew, 1179
Wille, Rudolf, 3, 113, 453
window

oval -, 1354, 1358
power -, 524
round -, 1358

Winson, Jonathan, 528
Witten, Edward, 1177, 1485
Wittgenstein, Ludwig, 38, 327, 1178
Wittgenstein, Paul, 883
WLOG, 110
Wolff, Christian, 250
word, 60, 1376

monoid, 1376
work, 11, 13

identity of a -, 14
motivic -, 276
production of a -, 12

world, 460, 497, 498
imaginary -, 1058
of the possible, 1052
real -, 1044

world-antiworld thesis, 497
world-line, 1483
world-sheet, 1185, 1186, 1192, 1471, 1483

global -, 1224
ramification, 1230

wrap form morphisms, 331
wrapped as local composition, 91
wreath product, 1380
writing, field -, 803
Wulf, Bill, 32, 667
Wyschnegradsky, Ivan, 93

X
X-ray procedure, 892
Xenakis, Iannis, 30, 211, 1159
XML, 1096

Y
Yamaha, 687, 700, 1342, 1346

CX5M, 525
RX5, 220, 791
TX7, 525
TX802, 220, 236, 239, 791

Yemenite cantor, 1301
Yoneda

embedding, 1397, 1423
pair, 1437
philosophy, 92, 145, 152, 466, 828, 1475
subcategory, 1437

Yoneda Lemma, 142, 280, 324, 962, 870, 938, 1006, 1022,
1031, 1034, 1037, 1045, 1056, 1061, 1073, 1179,
1255, 1474

Yoneda, Nobuo, 145, 245, 323, 828, 851, 1179

Z
Z-addressed motives, contrapuntal meaning of -, 100
Z-relation, 210
Zahorka, Oliver, 628, 665, 687, 1088
Zalamea, Fernando, 1037, 1060
Zarca, Bernard, 1028, 1043
Zariski, Oskar, 164
Zariski

site, 1415
tangent, 109
space, 927, 1415

topology, 164, 239
Zarlino, Gioseffo, 122
Zbikowski, Lawrence, 1265, 1308
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Zermelo, Ernst, 1374
zero address, 53
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