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Abstract. Measurements play a crucial role in diagnosis of industrial
processes. The main aim of this paper is to discuss selected problems
connected with the role of measurements in model-based diagnosis. The
issue of the separation of the diagnostics of measuring instruments and
process diagnosis is discussed. The idea of self-diagnosable sensors of
single faults is shown as a solution. A short review of existing techniques
meeting the requirements for sensors of single faults is presented. We
also discuss practical heuristic rules, that can be used in the selection of
measuring instruments and diagnostic tests for diagnostic system.
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1 Introduction

The main task of the automatic, on-line diagnostic system of industrial processes
is to detect and accurately distinguish (isolate) faults occurring in installation
components, measuring instruments and actuators. All faults can lead to serious
accidents with subsequent economic losses, or can even be hazardous to people
and the environment.

Diagnostics is the process of formulating hypotheses about the occurrence
of faults as a result of acquisition, processing and analysis of sensor signals.
Therefore, without measurements there is no diagnostics. There is also a need
for diagnostics of measuring instruments because sensor faults can lead to serious
failures, such as the catastrophe in Buncefield, United Kingdom [2]. There was a
series of explosions and a tank farm fire on 11th September 2005. This was one
of the largest fires in post-war Europe. The level sensor fault caused an overflow
in a tank and ignition. As a result, there were 40 injured and serious financial
losses (£5 billion).

In this paper we discuss the following problems:

1. Is it possible to separate process diagnostics from the diagnostics of measur-
ing instruments? Which conditions allow for such separation?
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It is quite common to design the diagnostics system with the default assump-
tion that measuring instruments cannot be faulty or that their faults will be
detected separately. This approach is unrealistic because in many real cases
such a separation is impossible.

2. Which criteria should be taken into account by a process engineer during the
selection of the set of process variables used in the diagnostic system? Often
there is a variety of possible choices of sensors measuring different process
variables. So there is the engineering problem of which physical quantities
should be measured. Which criteria should be taken into account?

There is also a wide variety of formal optimal sensor placement methods
[3,5,11,14], but optimisation of the set of measuring instruments with respect
to the needs of the diagnostic system is very rare, so it is important to have
some practical hints on how to choose an appropriate instrumentation.

2 Formal Description of Relations: Process Variables -
Diagnostic Signals - Faults

The process is traceable when measurements Y and control signals U from the
control system are known. These values form the set of process variables X used
in process diagnosis.

X = {xn : n = 1, . . . , N} (1)

Fault detection and isolation is based on a set of diagnostic tests. Each j-th
diagnostic test outputs a diagnostic signal sj indicating the result of the check.
As a result of all the tests we obtain the set of all diagnostic signals S:

S = {sj : j = 1, . . . , J}. (2)

Therefore, fault detection is a mapping of the space of process variables X
into the space of diagnostic signals S:

X ∈ R
N ⇒ S ∈ R

J , (3)

where R denotes the set of real numbers.
Relation RXS is defined over the Cartesian product of X and S:

RXS ⊂ X × S. (4)

The expression xiRXSsj means, that the value of process variable xi is used in
the j-th diagnostic signal generation.

We define the bipartite graph GXS as the following tuple:

GXS =< X,S,RXS >, (5)

containing the set of process variables X and diagnostic signals S as vertices.
Relation RXS describes the graph edges.
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The presented definitions and ideas will be illustrated by an industrial example
of the steam draught of a boiler from a power plant (for details on diagnostic sys-
tem implementation see [8]). The steam draught contains an installation section
between the boiler drum and the system outlet to the turbine. The section is built
for the most part inside the steam boiler. It is possible to select three recurring ele-
ments in the installation: the steam superheater, the cooling water injector and
the injecting water control valve. The last two elements form the steam attemper-
ator. The installation section containing these three elements is shown in Fig. 1,
where: TP , FP , PP - steam temperature, flow and pressure, respectively, FW , PW -
cooling water flow and pressure, respectively, U - signal denoting position of the
injecting water control-valve, X - feedback signal denoting position of the valve.

TP1
RTP1

U

X

TP2 TP3

FW

PW

M

FP PP

Fig. 1. System of the steam superheater and attemperator.

The faults that should be isolated within the system are presented in Table 1
and the residuals used in the diagnostic system are shown in Table 2. Each
residual ri corresponds to diagnostic signal si.

Relation RXS for the steam draught is shown in Table 3. The graph connected
with this table is shown in Fig. 2.

To isolate the faults, it is necessary to know the relationship between the
faults forming the set:

F = {fk : k = 1, . . . ,K} (6)

and the values of the diagnostic signals. Expert knowledge about the fault-
symptom relation can be described and archived in many different forms [9]. A
binary relation can be represented by: logic functions, diagnostic trees, a binary
diagnostic matrix or a set of rules. The rules often take the form: if symptoms
s1 ∧ s2 ∧ · · · ∧ sn then fault fk or: if symptom si then fault fk ∨ fm ∨ fs. In the
case of multivalued residual evaluation, more complex rules are used. The set of
such rules can be represented as a Fault Isolation System (FIS) [7].

The most popular method of fault-symptom relation representation is a
binary diagnostic matrix (Table 4). It is defined over the Cartesian product of S
and F , so it specifies the relation:

RFS ⊂ F × S. (7)
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Table 1. The set of faults for the steam draught

F Faults

f1 Measuring path TP1 fault

f2 Measuring path TP1R fault

f3 Measuring path TP2 fault

f4 Measuring path TP3 fault

f5 Measuring path FP fault

f6 Measuring path PP fault

f7 Measuring path FW fault

f8 Measuring path X fault

f9 Measuring path PW fault

f10 Servomotor fault

f11 Injection water control-valve fault

f12 Injector fault

Table 2. The set of the residuals for the steam draught

R S The algorithms of generation of the residuals

r1 s1 r1 = TP2 − T̂P2; T̂P2 = f(TP1, FP , FW )

r2 s2 r2 = TP3 − T̂P3; T̂P3 = f(TP2, FP )

r3 s3 r3 = FW − F̂W ; F̂W = f(X,PW − PP )

r4 s4 r4 = X − X̂; X̂ = f(U)

r5 s5 r5 = TP1 − TP1R

Table 3. Binary matrix of RXS relation

S\X TP1 TP1R TP2 TP3 FP PP FW X PW U

s1 1 1 1 1

s2 1 1 1

s3 1 1 1 1

s4 1 1

s5 1 1

The expression fkRFSsj means that diagnostic signal sj is sensitive to
fault fk. The occurrence of fk sets the value of sj to one, i.e. indicating a fault
symptom. The matrix of this relation is called a binary diagnostic matrix. Each
matrix entry is defined as follows:

vjk =

{
0 ⇔< fk, sj >/∈ RFS

1 ⇔< fk, sj >∈ RFS

. (8)
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Fig. 2. Graph GXS of the relation process variables - diagnostic signals.

Table 4. Binary matrix of RXS relation

S\F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
s1 1 1 1 1 1

s2 1 1 1

s3 1 1 1 1 1

s4 1 1

s5 1 1

Matrix element vjk has the value 1, if signal sj detects fault fk, and 0 other-
wise. A fault signature is a column vector, containing the values of the diagnostic
signals for this fault: ⎡

⎢⎢⎣
v1k
v2k
. . .
vJk

⎤
⎥⎥⎦ , (9)

where vjk ∈ {0, 1},∀j = 1, . . . , J k = 1, . . . ,K.
Therefore, the columns of the binary diagnostic matrix (Table 4) correspond

to fault signatures. Each signature represents the following rule: if (s1 = v1k) ∧
· · · ∧ (sj = vjk) ∧ · · · ∧ (sJ = vJk) then fk. The interpretation of this rule is as
follows: if the values of the diagnostic signals are consistent with the signature
of fk then fk is a possible root cause.
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Fig. 3. Diagnostic graph GFS (a) and composition of RXS and RFS (b).

Each row of the binary diagnostic matrix represents the following rule: if
sj = 1 then fk ∨ · · · ∨ fp. The interpretation is as follows: in the case of the
occurrence of symptom sj possible root causes are faults detected by this signal
(the faults with 1 in the jth row of the diagnostic matrix).

The binary diagnostic matrix can be represented by a bipartite graph
(Fig. 3a), with vertices from sets F and S, and edges representing relation RFS :

GFS =< F,S,RFS > . (10)

The composition of both relations is depicted in Fig. 3b. It illustrates depen-
dencies between sets X, S, and F, so it is a qualitative model of the diagnostic
system. The set of all faults F contains the set of faults of measuring instru-
ments FM . The remaining part of F contains faults of process components and
actuators FC ; F = FM ∪ FC . Each measuring instrument xi has exactly one
corresponding fault in FM . It is worth noting that for the sensor faults relation
RFMS is identical to relation RXS (assuming equal ordering of measurements and
their corresponding faults in sets X and FM ). In the binary diagnostic matrix in
Fig. 4 FM = {f1, f2, f3, f4, f5, f6, f7, f8, f9} and FC = {f10, f11, f12}. The shaded
part of the matrix corresponds to the relation RFMS .
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Fig. 4. Exemplary diagram of the diagnostics with SSF.

3 Diagnostics of Measuring Instruments and Process
Diagnostics

Process engineers often need to separate the diagnostics of measuring instru-
ments from the diagnostics of the process components. This is motivated by a
need to monitor the quality of the measurements used in balance calculations
or process optimisation. In such cases, the diagnostics system does not take into
account the faults of process components and actuators. On the other hand, it
is quite common to build a diagnostic system with a default assumption that
the measuring instruments cannot be faulty. So the question arises: is it pos-
sible to separate on-line process diagnostics and the diagnostics of measuring
instruments? In what conditions is it possible?

Unfortunately, in the case of traditional measuring instruments such a sepa-
ration is impossible. Each diagnostic test uses the model of a part of a process,
and measurements of the input and the output signals are needed. Therefore,
the tests are sensitive to the faults of measuring instruments and to the faults
of components of the modeled part of the process.

In the general case, it is possible to design a diagnostic system for measuring
instruments, process components and actuators, with all faults fully diagnosable.
In such a case, diagnoses generated by the system are sufficient for all automation
system tasks. However, it is often impossible to obtain such a high fault distin-
guishability because of the costs of measuring instruments (see Table 4, where
all faults are detectable but not all of them can be isolated). Therefore, situa-
tions when faults of measuring instruments are indistinguishable from the other
faults are possible (elementary block {f6, f9, f11} in Table 4, where f6, f9 ∈ FM ,
f11 ∈ FC). Important method for detection of faults of measuring instruments is
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modelling of signals, using other measurements, resulting in so called virtual sen-
sors, providing analytical redundancy to hardware measuring instruments [12].

The separation of the diagnostics of the faults of measuring instruments from
the other faults is possible only if measuring instruments have self-diagnostic
capabilities; moreover, the self-diagnostics must be complete, i.e. deal with
all possible faults. This requires redundant sensors and a microprocessor unit
embedded in the measuring instrument. The simplest solution is to compare
values indicated by the redundant sensors and to indicate a fault in the case
of inconsistency - as a residual r5 in the example of the steam draught. An
exemplary structure of a measuring instrument with two redundant sensors, two
parallel signal processing paths (in the ASIC unit and microprocessor unit), and
with self-diagnostics, is presented on a web page [1].

Often, many different kinds of sensors can be used for different process vari-
ables. So there is an engineering problem: which physical quantities should be
measured? How to choose them? In practice, optimisation of the selection of
measuring instruments, with respect to fault diagnosis, is very rare. Therefore,
it is important to have some practical clues about the measurement selection.

Some clues can be derived from the analysis of a binary diagnostic matrix.
The particular form of the diagnostic matrix is a diagonal matrix (Table 5).

Table 5. Diagonal diagnostic matrix.

S\F f1 f2 f3 f4 f5

s1 1

s2 1

s3 1

s4 1

s5 1

With the diagonal diagnostic matrix, each test detects exclusively one fault.
This solution has many advantages:

– full detectability and distinguishability is achieved [6];
– the symptoms unambiguously points to the faults, so diagnostic reasoning is

very simple;
– multiple faults can be easily handled;
– there are no problems with the variation of the structure of the diagnosed

process and symptoms dynamics, which complicates diagnostic reasoning in
other cases [13].

These advantages of the diagonal diagnostic matrix encourage researchers to
search for methods for designing a set of residuals leading to a such diagnostic
matrix. For this purpose, a model of a process with faults influence is needed.
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After linearization, the computable and inner form (with fault influence) of resid-
uals can be obtained [4,6,7,10]. It is then possible to design additional residuals
to obtain the desired properties of a residual vector (in particular diagonal diag-
nostic matrix). Each residual must be sensitive to only one fault and each residual
should detect different sets of faults. There is a serious limitation to this app-
roach: the number of faults cannot be greater than the number of measurements.
In practice, this restriction is never met because we should consider the faults
of measurements and the faults in the process components.

Therefore, the diagonal diagnostic matrix may be interpreted as a two-
dimensional structure reflecting the outputs of sensors of single faults. How-
ever, not every fault can be directly measured.

The optimal diagnostic system uses sensors of single faults. Measuring instru-
ments can also be faulty, so each symptom is related with its designated fault
and with the possible fault of a sensor. To obtain a diagonal binary diagnostic
matrix it is necessary to:

– have a dedicated sensor for each fault of the process components and actuators,
– use measuring instruments with redundant sensors and an embedded diag-

nostic system.

These requirements can be summarized as a need for self-diagnosable sensors
of faults (SSF).

With SSF, the diagnostics of measuring instruments can be separated from
process diagnostics. The diagnostic system is reduced to two diagonal diagnos-
tic matrices, one for the measurements and the second for the other faults.
An exemplary diagram of the diagnostics with SSF is presented in Fig. 4,
where {x1, x2, x3, x4} is a set of process variables measured by SSF. The set:
{f1, f2, f3, f4} denotes sensor faults, where fault f1 corresponds to the measure-
ment of x1. The faults in the set {f5, f6, f7, f8} denotes components faults mea-
sured respectively by {x1, x2, x3, x4}. The number of diagnostic signals is equal
to the number of faults in both matrices. Such a solution does not yet exist, but
it is a good direction for the further development of diagnostic systems.

In the case of model-based diagnostics, a diagonal diagnostic matrix is very
hard to obtain. Using models in diagnostics means that each test uses measure-
ments of the inputs and the output of the model. The test using this model is
sensitive to the faults of those measuring instruments and to the faults of compo-
nents and actuators included in the modelled part of the process. In the example
(Fig. 1) residual r4 is the difference between the measured and calculated valve
position. The related diagnostic signal s4 is sensitive to the servomotor fault
(f10) and to the fault of the measuring path of X. Even in the case of a residual
calculated using redundant sensors (r5), the related diagnostic signal is sensitive
to both measurement faults (f1 and f2).

Moreover, there is the question, which models should be used? One possi-
bility is to use local models (LM), describing the smallest possible part of the
process (one process component). Another solution is to use global models (GM),
describing larger parts of the installation. Local models are sensitive to small sets
of faults. Global models are sensitive to much larger sets of faults. All residuals
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in the example of the steam draught use local models. An example of a model
describing a larger part of the system can be composed from residuals r3 and r4:

r3 = FW − F̂W F̂W = f(X,PW − PP ), (11)

r4 = X − X̂ X̂ = f(U). (12)

Substituting 12 in 11 we get:

r6 = FW − F̂W F̂W = f(U,PW − PP ). (13)

Residual r6 describes the overall valve and is sensitive to both faults f10 and
f11. On the other hand, it does not use measurement of X, so it is not sensitive
to fault f8.

Therefore, using local models leads to a diagnostic matrix that contains min-
imal number of non-zero entries. After sorting, ones are grouped near the diag-
onal of the diagnostic matrix. The process of diagnosis with local models is an
expression of the striving for a diagnostic matrix close to the diagonal matrix
(Table 5). The example of such a solution is a diagnostic matrix for evaporation
station in a sugar factory [7] shown in Table 6. This approach has the following
advantages:

– LM has a much simpler structure than GM and has a lower rank.
– Times of fault detection depend on the transport delays and the rank of the

process. They are shorter for smaller delays and lower ranks, which means LM.
– Computational expenditure on the identification of LM is smaller than on the

identification of GM.
– Design expenditure related with obtaining the set of the structured residuals

is lower for LM.
– Diagnostic systems based on LM are more robust in the case of changes of

the set of sensor signals.
– Changes in the structure or parameters of the process make it necessary to

design the whole set of residuals once again in the case of GM. With LM,
only part of the residuals must be adjusted.

All the above arguments unambiguously point to the advantages of LM in
the diagnostics of industrial processes. In some cases, it is justifiable to use
selected models covering larger parts of the process because this can improve
faults distinguishability.

To obtain structure of binary diagnostic matrix close to diagonal matrix:

– faults should be directly measured, or there should be measured variables
sensitive to the fault and located near the place of the fault occurrence - such
measurement will quickly detect the fault,

– process models for fault detection should be local and describing small part
of the diagnosed process, the input and the outputs of the model should be
measured.
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Table 6. Part of binary diagnostic matrix for sugar factory.

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1

1 1

1 1

1 1
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1 1

1 1

1 1
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1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

It is therefore appropriate to make direct measurements of faults occurring in the
process. There are already existing solutions for many faults. The examples are:
sensors for corrosion monitoring and gas or liquid leak detection. Optical vision
systems can be used for assembly monitoring, bottle-filling monitoring, quality
assessment, and the detection of blockages in conveyors. Thermovison is used for
control of overheating machines like pumps, engines, compressors, and turbines
and for detection of leaks and defects in thermal insulation. Wear of rotating
parts of machines like engines, pumps, fans, and turbines is often monitored by
vibration measurement. However, not each fault can be directly measured.
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4 Conclusion

The possibility of separating the process diagnostics from the diagnostics of mea-
suring instruments was analysed. It was shown that, in the general case, such
separation is impossible. The separation of the diagnostics of measuring instru-
ments from process diagnostics is possible only if all the measuring instruments
are equipped with redundant sensors and a microprocessor unit, providing self-
diagnostic functions. In this case, the diagnostic system has the structure of two
diagonal binary diagnostic matrices, one for the measuring devices, and the sec-
ond for the other faults. The self-diagnosable sensors of faults are future-proof,
but they have their limitations. Not every fault can be directly measured.
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13. Syfert, M., Kościelny, J.M.: Diagnostic reasoning based on symptom forming
sequence. In: 7th IFAC Symposium on Fault Detection, Supervision and Safety
of Technical Processes, pp. 89–94 (2009). doi:10.3182/20090630-4-ES-2003.00015

14. Sztyber, A.: Sensor placement for fault diagnosis using graph of a process. J. Phys.:
Conf. Ser. 783 (2017)

http://dx.doi.org/10.3182/20090630-4-ES-2003.00015

	Sensors of Single Faults - Remarks on Measurements in Diagnosis of Industrial Processes
	1 Introduction
	2 Formal Description of Relations: Process Variables - Diagnostic Signals - Faults
	3 Diagnostics of Measuring Instruments and Process Diagnostics
	4 Conclusion
	References




