
Constraint Programming for Constructive
Abduction. A Case Study in Diagnostic

Model-Based Reasoning

Antoni Lig ↪eza
(B)

AGH University of Science and Technology, Kraków, Poland
ligeza@agh.edu.pl

Abstract. Diagnostic reasoning is often based on abduction. Abductive
inference consists in generation of hypotheses which explain the current
behavior of the system under investigation. Such a reasoning is based
on accessible background knowledge and the results must be consistent
with all auxiliary observations. Efficient abductive diagnosis is carried
out as Model-Based Reasoning. The knowledge about the model defines
the search-space for diagnostic hypotheses. Unfortunately, use of classical
consistency-based reasoning leads to rough, qualitative results only, even
if good knowledge of the correct model is available. In this paper and
attempt to use Constraint Programming as a tool for diagnostic reason-
ing is presented. The ultimate goal is to provide more precise diagnoses.
Two case studies, one concerning fault parameter evaluation, and the
second concerning structural fault localization are presented.

Keywords: Model-Based Reasoning · Automated diagnosis ·
Consistency-based reasoning · Constraint programming · Abduction ·
Constructive abduction · Parametric fault identification · Structural fault
identification

1 Introduction

Model-Based Diagnostic Reasoning (MBDR) [3,6] requires formal definition of
the model of correct work of a system under investigation. The search for diag-
noses incorporates both Consistency-Based Diagnosis and abductive reasoning
[3,6,7,16]. Abduction can be considered as one of principal ways of reasoning for
problem solving. In fact, abductive reasoning consists in search for hypotheses
which provide a satisfactory explanation of the observed faults. Simultaneously,
the diagnostic hypotheses must be consistent with auxiliary observations. Note
that accessible background knowledge must be taken into account.

Search for potential diagnoses can be performed with experience-based
approaches based on shallow knowledge or with Model-Based Reasoning (MBR)
[6] taking into account the deep knowledge of system components, structure
and parameters. In this paper we follow the MBR approach where diagnostic

c© Springer International Publishing AG 2018
J.M. Kościelny et al. (eds.), Advanced Solutions in Diagnostics
and Fault Tolerant Control, Advances in Intelligent Systems and Computing 635,
DOI 10.1007/978-3-319-64474-5 8

http://orcid.org/0000-0002-6573-4246

Constraint Programming for Constructive Abduction 95

hypotheses are generated with help of Consistency-Based Reasoning (CBR) [16]
and abduction. Unfortunately, use of this classical methods lead to binary eval-
uation of component faults only. Moreover, the number of admissible diagnostic
hypotheses can be relatively large, especially in the case of many-element diag-
noses. In more complex cases, where values of certain variables are to be found
as well, simple abduction based on pure search (e.g. Backtracking Depth-First
Search or search on AND-OR graphs) becomes inefficient; some attempt to use
SAT-based methods has been reported in [5] and Constraint Programming in
application in enhanced diagnosis in [15].

In this paper we attempt to employ Constraint Programming to generate
more detailed diagnoses. The main goal is to put the abductive inference into a
formal framework of Constraint Programming in order to enable the use of con-
straint propagation techniques and tools. The main aim is to make abduction
more informative; we shall call this approach Constructive Abduction. Construc-
tive Abduction means that (i) the generated hypotheses should be as precise as
possible (e.g. numerical models of faults for further evaluation), and (ii) incon-
sistent hypotheses should be eliminated in a more efficient way [12]. Moreover,
localization of structural faults should be as precise as possible.

Existing methods of diagnostic inference are diversified. There are algebraic,
graph-based, and logical expert-like or model-based diagnostic approaches. Some
of the popular models include extended diagnostic matrices [8,9], Consistency-
Based Reasoning [6,10,16], logical causal graphs [10], and many other [3,7]. A
recent survey of various approaches is given by [17]. Following classical CBR, this
paper explores mainly the abductive approach and it is focused on employing
Constraint Programming for developing constructive abduction, where purely
logical abductive hypotheses are enriched with exact numerical solutions.

The main focus of this work consists in employing Constraint Programming
in abductive diagnosis of technical systems. An analysis of applying Constraint
Programming in modeling diagnostic reasoning is carried out. The ideas are
illustrated with a diagnostic example of a multiplier-adder system. Two case
studies are provided. The first one concerns finding more precise, numerical
models of faults. The second one is concerned on precise localization of structural
faults (e.g. a break in the circuit).

The paper is organized as follows. In Sect. 2 a simple motivation example
from [16] is recalled. Section 3 covers some minimal information on Constraint
Programming. Section 4 provides a note on abduction and a formal definition of
diagnosis within the Consistency-Based Approach and Constraint Programming
framework. Section 5 reports on an approach to precise numerical fault modeling.
Finally, Sect. 6 presents a case study of Constraint Programming application to
structural fault localization. The paper follows the ideas of the author [11,13]
and is a further development of ideas first presented in [12].

2 Motivation Example

In this section we briefly recall a classical diagnostic example of a feed-forward
arithmetic circuit. This is the multiplier-adder example presented in the seminal

96 A. Lig ↪eza

paper by R. Reiter [16]. This example was further re-explored in numerous
papers, including selected readings [6] and diagnostic handbook (Chapter [10]).
It was further explored in the discussion carried out in domain literature con-
cerning comparative analysis of diagnostic approaches [1,2,17]. Here we shall
base on an in-depth analysis presented in [14], and also explored in [11,13].

The basic, intuitive schema of the system is presented in Fig. 1.

A

B

D

C

E

3

2

2

3

Y

X

3 Z

12

10

G

F

m3

m2

m1

a1

a2

Fig. 1. The example multiplier-adder system.

The system is composed of five components and two layers. The first one
contains three multipliers m1, m2, and m3, and receiving the input signals A,
B, C, D and E. The second layer is composed of two adders, namely a1 and
a2, producing the output values of F and G. Only inputs (of the first layer)
and outputs of the system (of the second layer) are directly observable. The
intermediate variables, namely X, Y and Z, are hidden and cannot be observed.

Observe that the current state of the system is defined by the input values;
they are: A = 3, B = 2, C = 2, D = 3 and E = 3. It is easy to check — under the
assumption of correct work of all the system elements — that the outputs should
be F = 12 and G = 12. Note also that they should be equal to each other, which
is due to the symmetry of the system and the symmetry of the input vales; this
observation will be important for the analysis and we shall see later on why.

Now, since the current value of F is incorrect, namely F = 10, the system
is faulty. At least one of its components must be faulty1. At this stage, for
simplicity, we consider only correct components and faulty ones; no details about
the type of fault are taken into consideration so far.

Through the Consistency-Based Reasoning [16] two conflict sets can be iden-
tified. These are: DCF 1 = {m1,m2, a1} and DCF 2 = {m1, a1, a2,m3}. Conflict
sets are sets of components, such that under the assumption of correct system
model and the current fault manifestations, at least one element of such a set
must be faulty.

Note that the types of DCF1 and DCF2 are different; this is due to their origin.
DCF1 is of causal type — all the elements directly influence the conflicting vari-
able. On the other hand, DCF2 is of constraint type; this is a kind of mathematical
1 In Model-Based Diagnosis it is typically assumed that faulty behavior is caused by

a fault of a named component or a simultaneous fault of a set of such components;
no faults caused by faulty links, parameter setting or the internal structure are
considered.

Constraint Programming for Constructive Abduction 97

constraint which must be satisfied, but there is not necessary causal dependency
between the components and the value of the faulty variable (F).

In the analyzed case, i.e. F being faulty and G correct, the final diagnoses for
the considered case are calculated as reduced elements of the Cartesian product
of DCF1 = {m1,m2, a1} and DCF2 = {m1,m3, a1, a2} [14]. There are the
following potential diagnoses: D1 = {m1}, D2 = {a1}, D3 = {a2,m2} and
D4 = {m2,m3}. They all are shown in Fig. 2.

{ a1 , m1 , m2 }

{ a1 , a2 , m1 , m3 }

D1 D2

D4

D3

Fig. 2. Generation of potential diagnoses

Note that so far only binary faults were considered (i.e. a component may be
faulty or not). In [14] and further in [11] an attempt at introducing qualitative
diagnoses was undertaken. After calculation of possible binary diagnoses their
qualitative forms were considered, and with use of inference rules representing
simple constraints inconsistent qualitative diagnoses were eliminated. In the next
section a still more precise, in-depth, numerical analysis will be carried out. The
model of the system will be used as constraints. The binary logical diagnoses (i.e.
faulty or correct) will be further refined with exact numerical characteristics.

3 Constraint Programming

In this section a brief note on Constraint Programming is presented. We aim
at explaining the basic ideas of this promising technology for solving complex,
combinatorial problems. Our presentation is based on [11].

A Constraint Satisfaction Problem (CSP) is one where the goal consists in
finding a legal assignment of values to a set of predefined variables so that a set
of given constraints is satisfied.

More formally, after [4] let X = {X1,X2, . . . , Xn} denote a set of variables,
V = {V1, V2, . . . , Vn} is a set of domains for the variables in X and C is a set of
constraints. Each constraint is given by a pair (Si, Ri), where Si is referred to
as the scope (or scheme) and consists of a selection of variables from X, while
Ri is a relation defined over a Cartesian Product of domains appropriate for the
variables in the scope. The Constraint Satisfaction Problem is given by the triple
(X,V,C).

A solution to CSP given by (X,V,C) is any assignment of values to variables
of X of the form {X1 = v1,X2 = v2, . . . , Xn = vn}, such that vi ∈ Vi, and for
any constraint in (Si, Ri) ∈ C, Ri is satisfied by the appropriate projection of the
solution vector (v1, v2, . . . , vk) over variables of Si. Obviously, all the constraints

98 A. Lig ↪eza

must be satisfied, and there can be more than one admissible solution; no solution
may exist for an over-constrained problem.

If the domains of V are finite (e.g. binary or decimals digits are allowed)
we speak about Finite Domains (FD) problems. Obviously, such problems suf-
fer from combinatorial explosion while attempting at solving them. Constraint
Programming (CP) is a set of techniques (or a technology) for efficient dealing
which constraints.

The basic technique for solving a CSP given by (X,V,C) consists in sub-
sequent assignment of admissible values to variables of X (e.g. by backtracking
search); the order is chosen in an arbitrary way, and it can influence how fast a
solution is found.

The principal technique proposed to solve diagnostic problems is to use con-
straint programming in a specific way. There are two levels of constraints to
be used: (i) basic level constraints concerning variables and functional opera-
tion, and (ii) meta-level constraints concerning existence (or not) of basic level
constraints.

The specification of basic level constraints is straightforward. Below we show
some intuitive examples using the SWI-Prolog notation of the constraint pro-
gramming library over finite domains. The typical relation symbols are used but
they are preceded with the # sign. For example

A #= B, Y #< Z, X #= A*C

define the requirements that A must be equal to B, Y must be less than Z and
X must be equal to the result of multiplication of A and C. The specification
of constraints as such is typical for declarative programming, where the user
specifies some knowledge to be interpreted by the system in contrast to typical
procedural programming.

The way to specify the meta-level constrains – aimed in fact in encoding
connections within the network structure – is by reification. Below we have some
three examples:

P #==> A #= B

P #==> X #= A*C

P #==> G #= Y+Z

The meaning is that if P is True (or 1) then the constraint of the right-hand side
must also hold. Instead of P its negation in the form #\P can be used.

4 Diagnosis by Abduction as Constraint Programming

The key message of this section is to show that abduction can be solved in
a constructive way with efficient approach of Constraint Programming. The
obtained diagnoses are more precise than in the case of purely logical abduction
of Consistency-Based Diagnosis. In case of more than one potential diagnoses,
the exact values of variables can be used for further analysis, and — if applica-
ble — elimination of some spurious diagnoses due to impossible values predicted

Constraint Programming for Constructive Abduction 99

by CP or thanks to introduction of additional measurements for confirming or
rejecting the generated values.

Abductive inference consists in search for hypotheses which explain — or
logically imply — the manifested faults taking into account the system model
and all accessible background knowledge. The generated hypotheses must also
be consistent with all other auxiliary observations.

Search for diagnostic hypotheses is typically restricted to a predefined set
of components that can become faulty. In abductive reasoning diagnosis is car-
ried out with a spectrum of trial-and-error or search methods and tools. A most
typical approach is repeated backtracking search. In case of purely logical state-
ments the hypotheses take the form of a set of facts, both positive and negative
ones. For example, in case of Model-Based Diagnostic Reasoning (MBDR) such
diagnostic hypotheses can be generated by Consistency-Based Reasoning (CBR)
with reasonable search effort.

Let us consider the standard abduction scheme:

φ =⇒ ψ,ψ

φ
. (1)

This basic scheme for abductive inference states that φ =⇒ ψ, and observing
that ψ holds, a possible explanation of it is φ; both φ and ψ can be some arbitrar-
ily complex formulas covering specifications of faults and fault manifestations.

Abduction is not a legal inference rule, i.e. one preserving logical consequence.
In our case, φ is not the logical consequence of the faults manifested with ψ.
However, it is still a kind of production rule, often used in practice. The main
use of abduction is the search for hypotheses explaining the current observations.

In case of diagnostic reasoning, abduction is often performed by detection
and elimination of inconsistencies, i.e. the so-called Consistency-Based Reason-
ing (CBR). The main idea of Model-Based Consistency-Based Diagnosis was
presented in the seminal paper [16], and widely explored in the domain liter-
ature [3,6,7,10]. It rests in generation of diagnostic hypotheses stating which
components of the system may be faulty (abduction), so that assuming them
faulty explains the current observations with the model in mind in a consistent
way (deduction).

At this point let us explain the CBR approach [16] from logical point of
view. Consider a theory SD (System Description; this is a set of logical formulas
(constraints) describing in a formal way behavior of the system under discourse
i.e. the background knowledge) and a set OBS of some current observations to
be explained.

To put things in a more precise formal framework, let us define the current
observations as a set of variable-value pairs; hence, OBS = {M1 = m1,M2 =
m2, . . . Mk = mk}. Each pair Mi = mi denotes an observation that variable Mi

takes value mi, i = 1, 2, . . . k. Similarly, let EXP = {X1 = x1,X2 = x2, . . . Xn =
xn} be a set representing the fault defining variables and their values; the value
xi denotes the type of fault associated with variable Xi, i = 1, 2, . . . n. The
constraints are represented by the system model SD.

100 A. Lig ↪eza

Definition 1. A diagnosis for the system defined by SD and the fault observa-
tions OBS is the set EXP, such that

SD ∪ EXP |= OBS (2)

and
SD ∪ EXP ∪ OBS �|= ⊥ (3)

Typically, it is also required that EXP is minimal, i.e. only the absolutely
necessary hypotheses are specified within EXP . Further, if several competitive
hypotheses are available, the most likely ones may be selected with some auxil-
iary tests, heuristics or statistical information.

The main problem with abduction supported by CBR is that the gener-
ated diagnoses are only potential fault explanations. Moreover, typically they
are (i) numerous, (ii) imprecise, and perhaps (iii) uncertain (in more complex
systems exhibiting stochastic behavior). Especially the case of structural faults
may lead to extensive number of potential diagnoses and is hardly tractable.

5 Parametric Fault Identification: A Case Study

In this section a case study of precise numerical fault modeling is sketched out.
As the starting point consider the four logical potential diagnoses: D1 = {m1},
D2 = {a1}, D3 = {a2,m2} and D4 = {m2,m3}. They are logical in the sense
that the only information provided is of logical value: True (or 1) if a diagnosis
is valid or False (or 0) if a diagnosis is invalid. A constraint model for the
diagnostic case presented in Fig. 1 is aimed at obtaining more detailed, numerical
characteristics can be abducted.

First, the set of common observations OBS is modeled with simple con-
straints as follows2:

A #= 3, B #= 2, C #= 2, D #= 3, E #= 3,

F #= 10, G #=12,

In this code excerpt comma is used to separate constraints, while #<op> (like
= or # >) is used to express constraints; several typical relations can be used
in place of <op>.

Now, consider the first case of m1 being faulty. We assume that a faulty
multiplier produces the incorrect output and its value can be expressed as mul-
tiplication of the correct value by a factor K1/M1, where both the numbers are
integers. The system model SD takes the following form:

A * C * K1 #= X *M1,

B * D #= Y, C * E #= Z,

X + Y #= F, Y + Z #= G,

K1 #> 0, M1 #> 0.

2 The constraints are direct codes of SWI-Prolog; for constraint modeling we use the
clp(fd) package.

Constraint Programming for Constructive Abduction 101

The first constraint models the fault of m1. For the sake of operation in the
domain of integers, M1 is placed as a multiplication factor on the right-hand
side. The other constraints correspond directly to the operation and connections
of the components. The produced output is:

EXP = {X=4, Y=6, Z=6, K1=2, M1=3}

and it can be easily checked by hand.
As the second case consider the diagnosis a1 being faulty. We assume that

a this time it is the adder that produces the incorrect output and its value can
be expressed as subtraction from the correct value a factor A1 (an integer). The
model SD takes the following form:

A * C #= X, B * D #= Y, C * E #= Z,

X + Y - A1 #= F, Y + Z #= G.

The fourth constraint models the fault of a1. The other constraints correspond
directly to the operation and connections of the components. The produced
output is:

EXP = {X=6, Y=6, Z=6, A1=2}

and again, it can be easily checked by hand.
The third, a bit more complex case is the one of active diagnosis {a2,m2}.

The model (SD) for this case is as follows:

A * C #= X, B * D * K2 #= Y * M2, C * E #= Z,

X + Y #= F, Y + Z +A2 #= G,

K2 #> 0, M2 #> 0.

Variables K2/M2 model the multiplicative fault of m2 and variable A2 models the
fault of a2. The produced output is:

EXP = {X=6, Y=4, Z=6, K2=2, M2=3, A2=2}

and again, it can be easily checked by hand.
The fourth and perhaps the most complex case is the one of active diagnosis

{m2,m3}. Here we have to introduce four variables, namely K2/M2 and K3/M3 for
modeling two multiplicative faults, namely the one of m2 and m3, respectively.
The model (SD) is as follows:

A * C #= X, B * D * K2 #= Y * M2, C * E * K3 #= Z * M3,

X + Y #= F, Y + Z #= G,

K2 #> 0, M2 #> 0, K3 #> 0, M3 #> 0.

The produced output is:

EXP = {X=6, Y=4, Z=8, K2=2, M2=3, K3=4, M3=3}

and again, it can be checked by hand.
This case study shows, that Constraint Programming allows to obtain precise

numerical models of faults. They can be used for further analysis and refinement
of potential diagnoses.

102 A. Lig ↪eza

6 Structural Fault Identification. A Case Study

Structural faults are generally hard to identify basing on the observation of
input and output signals. This is so because even a single structural fault can
drastically change the overall behavior of the system. In practice, a simple break
or shortcut in an electrical network can result in behavior very different from
the expected one.

In the case study below we shall consider possible brakes of connections (e.g.
a wire break) among system components in the system presented in Fig. 1. The
simple experimental model covers 10 possible breaks, 6 of them concerning input
connections (between the inputs A, B, C, D, E and the 6 inputs of the multipliers
m1, m2 and m3), as well as 4 internal connections (between the outputs of the three
multipliers X, Y, Z and the four inputs of the two adders, namely a1 and a2).

In order to build a formal model, the following naming convention of connec-
tion points will be applied:

– input signals: A, B, C, D, E,
– system inputs: AM1, CM1, BM2, CM2, CM3, EM3; the first letter refers to

an appropriate input signal, and the rest of the string (M1, M2, M3) identifies
the multiplier,

– outputs of the multipliers: M1X, M2Y, M3Z,
– inputs of the adders: XA1, YA1, YA2, ZA2.

In general, the component is identified by its name (in capitals). Its input by
an appropriate signal name; when in front of the component – it refers to an
input, and when following the component – it refers to the output. The observed
signals are just F and G.

Now the convention applied to modeling connection breaks is as follow: let P
and Q be two connection points. A string of the form P Q denotes a propositional
formula with the intended meaning that P is connected to Q. So, for example,
D DM3 is a propositional formula such that when true, there is the connection
between D and DM3 (the case of correct connection). Simultaneously, #\D DM3
denotes negation of the formula (the connection is broken).

Now, the principal modeling paradigm consist in use of the so-called reifica-
tion: the fact that a connection constraint holds (P# = Q) is conditioned by the
existence of the connection (P Q must be true). This is denoted as:

P_Q \#==> P \#=Q.

Below, the specification of the complete set of constraints defining the SD is
provided. For the input level both the case of correct work and the broken
connection are covered.

% Definition of correct and incorrect connections by reification:
A_AM1 #==> A #= AM1, #\A_AM1 #==> AM1 #= 0,
C_CM1 #==> C #= CM1, #\C_CM1 #==> CM1 #= 0,
B_BM2 #==> B #= BM2, #\B_BM2 #==> BM2 #= 0,

Constraint Programming for Constructive Abduction 103

D_DM2 #==> D #= DM2, #\D_DM2 #==> DM2 #= 0,
C_CM3 #==> C #= CM3, #\C_CM3 #==> CM3 #= 0,
E_EM3 #==> E #= EM3, #\E_EM3 #==> EM3 #= 0,

In an analogous way the correct and faulty work of the 4 inter connections is
defined in the model below:

% Inter connections - correct and incorrect work by reification:
M1X_XA1 #==> M1X #= XA1, #\M1X_XA1 #==> XA1 #= 0,
M2Y_YA1 #==> M2Y #= YA1, #\M2Y_YA1 #==> YA1 #= 0,
M2Y_YA2 #==> M2Y #= YA2, #\M2Y_YA2 #==> YA2 #= 0,
M3Z_ZA2 #==> M3Z #= ZA2, #\M3Z_ZA2 #==> ZA2 #= 0,

The work of the multipliers is defined with usual constraints:

% Multipliers definition:
M1X #= AM1 * CM1,
M2Y #= BM2 * DM2,
M3Z #= CM3 * EM3,

Finally, the correct work of adders is defined as follows:

% Definition of adders:
XA1 + YA1 #= A1F,
YA2 + ZA2 #= A2G,
A1F #= F,
A2G #= G.

Note that a restriction of the number of errors can be defined in a straightforward
way, by imposing a constraint on the minimal number of correct connections that
must be still kept, e.g.:

A_AM1+C_CM1+B_BM2+D_DM2+C_CM3+E_EM3+M1X_XA1+
M2Y_YA1+M2Y_YA2+M3Z_ZA2 #>= 9,

means, that there can be at most one connection broken (there are 10 connec-
tions, at least 9 of them must work correct).

Now we can investigate possible faults of connections within the model. As
first example consider simulation of a fault consisting in a break of connec-
tion between the output of multiplier m3 and the second input of adder a2; in
such a case we expect formula M3Z ZA2 to be false (equal to 0). For the input
signal values of the system presented on Fig. 1 let change the input values to
[A,B,C,D,E] = [1,3,5,7,11]. In such a case one could expect the following output:
F = 26, and G = 21 (taking into account the existence of the fault). In fact, the
model leads to three admissible single-element diagnoses; these are:

– C CM3 = 0: the connection between input C and the first input of multiplier
m3 is broken (and so its output is 0),

104 A. Lig ↪eza

– E EM3 = 0: the connection between input E and the second input of multiplier
m3 is broken (and so its output is 0),

– M3Z ZA2 = 0: the internal connection between output of the multiplier m3
and the second input of adder a2 is broken (and so the input of adder a2
receives signal 0).

Now, an experiment when we search for two-element diagnoses (the number
of correct connections is constrained to be 8) results with three admissible diag-
noses; these are: (C CM3 = 0 and E EM3 = 0), (C CM3 = 0 and M3Z ZA2 = 0), and
finally (E EM3 = 0 and M3Z ZA2 = 0). Note that all the two-element diagnoses
are not minimal ; they are combinations of the single element ones.

It is symptomatic in this simple case that after removing the constraint on
a number of diagnoses, we obtain only one diagnosis more, i.e. (C CM3 = 0 and
E EM3 = 0 and M3Z ZA2 = 0), which obviously is not minimal either.

Now, in order to show another example, let us assume that the observed
outputs are F = 5 and G = 55. In this case we obtain as much as 13 admissible
diagnoses (of 1–4 elements). This single element diagnoses are: B BM2, D DM2.

Finally, consider a case when there are no single-element diagnoses. Assume
the observations are F = 21 and G = 55. In fact, no single diagnosis can explain
this observation. In general there are as many as 3 admissible two-element diag-
noses: (A AM1 and M2Y YA2), (C CM1 and M2Y YA2), and (M1X XA1, and M2Y YA2)
(and 7 including the non-minimal).

7 Conclusions

The paper presents an idea of applying Constraint Programming for enrich-
ing abductive diagnostic reasoning. Two case studies were explored. The first
one concerns the exact (numerical) knowledge for modeling the faults. In this
way not only logical or qualitative solutions are obtained (of the form yes/no),
but detailed numerical characteristics of the generated solutions are provided.
This kind of approach we call constructive abduction. The second one consists
in application of Constraint Programming to precise localization of structural
faults. The technique of reification was proposed to deal with this problem.

Possible further work may concentrate on the following issues. First, in order
to reduce the number of potential diagnoses more constraints are necessary. This
can be archived by providing more input-output data. The selection of potential
tests seem to be worth investigating. Second, a complex model - covering com-
ponents faults, component behavior and structural faults could be embedded
within a single model. This may require further constraint refinement and use of
auxiliary heuristic or probabilistic knowledge. Third, different type of structural
faults - shortcuts, switching, etc. can be incorporated in the model. In summary,
current Constraint Programming tools seem to open a new frontier of research
with in abductive diagnostic inference.

Acknowledgments. The presented research was carried out within AGH University
of Science and Technology Internal Project No. 11.11.120.859.

Constraint Programming for Constructive Abduction 105

References

1. Cordier, M.O., et al.: AI and automatic control approaches of model-based diagno-
sis: links and underlying hypotheses. In: Edelmayer, A.M. (ed.) Preprints: SAFE-
PROCESS 2000, 4th IFAC Symposium on Fault Detection, Supervision and Safety
for Technical Processes, pp. 274–279. IFAC (2000)

2. Cordier, M.O., et al.: A comparative analysis of AI and control theory approaches
to model-based diagnosis. In: Horn, W. (ed.) ECAI 2000. 14th European Confer-
ence on Artificial Intelligence, pp. 136–140. IOS Press (2000)

3. Davis, R., Hamscher, W.: Model-Based Reasoning: Troubleshooting.
Morgan Kaufmann Publishers, San Mateo (1992)

4. Dechter, R.: Constraint Processing. Elsevier Science, New York (2003)
5. Feldman, A., Pietersma, J., van Gemund, A.: A multi-valued sat-based algorithm

for faster model-based diagnosis. In: González, C.A., Escobet, T., Pulido, B. (eds.)
DX 2006: 17-th International Workshop on Principles of Diagnosis, pp. 93–100
(2006)

6. Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-Based Diagnosis.
Morgan Kaufmann, San Mateo (1992)

7. Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis.
Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

8. Kościelny, J.M.: Methodology of Process Diagnosis, Chap. 3, pp. 57–114. In: [7].
Springer (2004)

9. Kościelny, J.M.: Models in Process Diagnosis, Chap. 2, pp. 29–43. In: [7]. Springer
(2004)

10. Lig ↪eza, A.: Selected Methods of Knowledge Engineering in System Diagnosis,
Chap. 16, pp. 633–668. In: [7]. Springer (2004)

11. Lig ↪eza, A.: A Constraint Satisfaction Framework for Diagnostic Problems, pp.
255–262. Control and Computer Science. Information Technology, Control The-
ory, Fault and System Diagnosis. Pomeranian Science and Technology Publisher
PWNT, Gdańsk (2009)

12. Lig ↪eza, A.: Towards constructive abduction: solving abductive problems with con-
straint programming. In: Proceedings of the International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K,
vol. 2-KEOD, pp. 352–357. SCITEPRESS - Science and Technology Publications,
Lisbon, Portugal (2015)

13. Lig ↪eza, A.: Towards knowledge compilation for automated diagnosis: a qualita-
tive, model-based approach with constraint programming. In: Kowalczuk, Z. (ed.)
Advanced and Intelligent Computations in Diagnosis and Control. AISC, vol. 386,
pp. 355–367. Springer, Cham (2016). doi:10.1007/978-3-319-23180-8 26

14. Lig ↪eza, A., Kościelny, J.M.: A new approach to multiple fault diagnosis. Combina-
tion of diagnostic matrices, graphs, algebraic and rule-based models. The case of
two-layer models. Int. J. Appl. Math. Comput. Sci. 18(4), 465–476 (2008)

15. Puig, V., Escobet, T., Ocampo-Martinez, C., Tornil-Sin, S.: Robust fault diagnosis
of non-linear systems using constraints satisfaction. In: Preprints of the 7th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp.
1138–1143 (2009)

16. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)
17. Travé-Massuyès, L.: Bridges between diagnosis theories from control and AI per-

spectives. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and
Medila Diagnosis, pp. 3–28. Springer (2014)

http://dx.doi.org/10.1007/978-3-319-23180-8_26

	Constraint Programming for Constructive Abduction. A Case Study in Diagnostic Model-Based Reasoning
	1 Introduction
	2 Motivation Example
	3 Constraint Programming
	4 Diagnosis by Abduction as Constraint Programming
	5 Parametric Fault Identification: A Case Study
	6 Structural Fault Identification. A Case Study
	7 Conclusions
	References

