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Abstract. The paper presents a study on health diagnosis and prog-
nosis of an industrial diesel motor. Two well-known approaches, Hidden
Markov Model (HMM) and particle filter (PF), are applied from real
recorded data with different measurements. The recorded data is firstly
pre-processed and health indicator is then chosen before implementing
each used approach. The obtained results are analyzed and discussed.
The use and advantages of each approach are finally highlighted.
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1 Introduction

Health diagnosis and prognosis plays an important role to avoid catastrophic
failures, reduce downtime, and eventually minimize operation and maintenance
costs. In the sense, various works on health diagnosis and prognosis have been
developed and successfully applied in industrial engineering. An excellent review
can be found in [6]. In various industrial applications such as transport, automo-
tive, marine, diesel motors are widely used. However diagnosing faults and/or
predicting its future health condition of a such motor still remains widely open
due to its complexity from both structural and functional point of view [2].

The diagnosis and prognosis approaches can broadly be classified into three
main classes: experiences-based methods, models-based methods and data-driven
ones. The first kind of methods based on the exploitation of knowledge on the fail-
ure or degradation of the system is quite simple and less expensive to implement
see [6]. However, these approaches are hardly applicable in a dynamic environ-
ment. Model-based methods are mainly based on analytical/mathematical mod-
els to describe the behavior of the system and mechanisms of the degradation
phenomenon [4]. The main advantages of model-based approaches are its high
accuracy and flexible in configuring input data. However, nonlinear and stochas-
tic characteristics of industrial system may increase the difficulty to build the
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analytical model. Real-time modification of model parameters is limited accord-
ing to the flexible configuration of the system. Data-driven methods allows to
identify the trend/patent of developing fault and predicting the remaining use-
ful life (RUL) [7] using information from historical treated data (trained data).
These approaches can identify the real-time health condition of system. More-
over, this kind of approaches is more precise than the first type of approaches,
their ability to link with recognized system behavior by experience methods.
Despite no specific physical model is needed, the data-driven approaches require
a monitoring system, learning time [2,6].

It is shown that particle filter (PF) [5] (a model-based approach) and hidden
Markov model (HMM) [1] (a data-driven method) are two interesting approaches
for fault diagnosis of a gear box [3]. In this paper, these approaches are applied
for health diagnosis and prognosis of an industrial diesel motor (IDM). Recorded
data is used to fit both HMM and PF models. A discussion is then conducted in
order to analyze the results of diagnosis and prognosis given by the HMM and
PF methods.

The rest of the paper is organized as follows: Sect. 2 is interested to problem
statement on the application case, and the description of used approaches in
the health diagnosis and prognosis. In Sect. 3, is devoted to present the applica-
tion results of the methods and assess and analyze the performance of the two
methods. Section 4 concludes the paper work and draws some future works.

2 Descriptions of the Case Study and Applied Methods

2.1 The Case Study

In the case study, an industrial diesel motor (IDM) used as an alternator to
supply electricity in a ship is considered. The IDM is monitored by a number of
sensors which allow to measure the temperature of the compressor output, the
engine torque and the fuel consumption every minutes. These data are collected
and pre-proceeded by PREDICT company1.

To reduce the data processing time and improve the performance in diag-
nosis and prognosis, the main feature allowing to represent the best the IDM’s
health condition among all collected data has to be identified. To this end, an
analysis based on expert system and principle component analysis are realized.
As result, the temperature of the compressor output (T3p) is chosen for this
study. The choice of the temperature as the main indicator can be justified since
the temperature evolution plotted in Fig. 1 is directly related to the failures of
IDM within the considered period.

Once the main indicator temperature is identified, the diagnosis and prog-
nosis processes can be applied to extract the health condition of the IDM. In
this study, Hidden Markov Models and Practical Filter methods, two well-known
diagnosis and prognosis methods, are chosen and implemented. The general prin-
ciple of the two methods will be described in the next section.
1 Industrial enterprise specialized in the development of solutions monitoring, diagno-

sis and prediction of failure for industrial facilities. Website: www.predict.fr/.

www.predict.fr/
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Fig. 1. Temperature of the compressor output overtime

2.2 Hidden Markov Models (HMM)

The HMM is a statistical method for modelling systems that evolve through a
finite number of states. The states of the considered system are hidden. HMM
allows to get knowledge about these hidden states based on the observed states.
A typical HMM is defined by the model λ given by the following equation:

λ = (A,B, π), (1)

where,

– A is transition matrix representing the transition probability among hidden
states,

A = {aij} = Pr[st+1 = j|st = i], 1 ≤ i, j ≤ N, (2)

where N is the number of hidden states, st is the system state at time t.
– B is the emission matrix representing the probability that the observation vk

is emitted from the hidden state j.

B = {bj(k)} = Pr[ot = vk|st = j], 1 ≤ j ≤ N, 1 ≤ k ≤ M, (3)

where M is the number of observed states.
– π the initial state distribution, π = {πi}.

2.3 Particle Filter Method (PF)

The particle filter (PF) method is a technique developed based on the Sequential
Monte Carlo and the Bayes theorem. The main idea is to approximately repre-
sent the posterior density function by a set of random samples (particles) with
associated weights (wk).

Generally the process of PF is based on the state function f and the mea-
surement function h. Let xk denote the system state at kth iteration, it can be
calculated as follows

xk = f(xk−1, uk) ←→ p(xk|xk−1) (4)
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zk = h(xk, vk) ←→ p(zk|xk) (5)

where, uk is noise process, zk is the measurement data and vk is measurement
noise at iteration k.

The prior probability distribution of the system state xk at time k, is deter-
mined starting from the probability distribution p(xk−1/z0 : k − 1) at time k−1
via the Chapman Kolmogorov equation.

p(xk|z0:k−1) =
∫

p(xk|xk−1)p(xk−1|z0:k−1)dxk−1 (6)

At time k, new measurement zk is collected and used to update the prior
distribution via Bayes rule. The posterior distribution can be determined as

p(xk|z0:k) =
p(zk|xk)p(xk|z0:k−1)

p(zk|z0:k−1)
(7)

The behaviour of the considered system is learned, and the unknown parameters
of the models are adjusted by the filter consequently.

3 Implementation and Result Discussions

To reduce the time and improve the performance in diagnosis and prognosis,
the collected data of the temperature of the compressor output (T3p) is selected
and pre-processed. The proceeded data set containing 46300 samples of T3p is
plotted in the Fig. 2. The figure indicates that there was a failure of IDM at
instant t = 27200. The maintenance was immediately carried out to restore the
IDM to the operational state. The given data is then divided into two parts. The
first part, containing the first 27200 measures from 1 to 27200, is used to train
the HMM and PF. The second part, containing the last 19101 measures from
27201 to 46302, is used to test and verify the performance of HMM and PF. The
learning and testing process of the two methods will be described in more detail
in the next sections.
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Fig. 2. Temperature of the compressor output overtime
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3.1 Implementation of HMM Method

In this section, the implementation of a hidden Markov model applied to our
case study is explained step by step as following.

Step 1: State Definition and Discretization.
As mentioned above in the theoretical parties, the HMM works with discrete

hidden and observed states. Therefore, in this step, these discrete states are
firstly defined, and then the given data are discretized into their corresponding
discrete states.

Thanks to the knowledge about the IDM and discussions with experts (oper-
ation engineer, reliability engineer, maintenance engineer), we decided here to
consider three hidden states S1, S2, and S3 permitting to represent the different
health conditions of the IDM. In addition, four observed states are distinguished
as: O1, O2, O3, and O4.

Given that the temperature data are continuous, these data need to be dis-
cretized before it can be used to train or to test the HMM. The discretization
is then done for both training and testing sets. Figure 3 shows the discretization
for the training data set.
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Fig. 3. Discretization of Temperature data in the training data set

Step 2: Health Condition Diagnosis by Using HMM.
In this step, the discrete training data obtained from the previous step is

used to train the HMM (estimate transition and emission matrix).
In more detail, the Baum-Welch algorithm was used to train the HMM. The

estimated transition and emission matrix are given below.

Â =

⎡
⎣ 0.8258 0.1329 0.0413

0.0573 0.9427 0
0.1032 0 0.8968

⎤
⎦ ; B̂ =

⎡
⎣ 0 0.0023 0.9977 0

0.2123 0.7877 0 0
0 0 0.0041 0.9959

⎤
⎦
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Fig. 4. Diagnosed hidden sate sequence

From the two above estimated matrix, each time when the observed mea-
sure is available, the HMM allows to diagnose the corresponding hidden state. By
using the Viterbi algorithm, the most likely sequence of the hidden state, which is
matched with the observed states in the training set, can be determined and plot-
ted in Fig. 4. From the Figure above, we can diagnose that, for example, the system
is almost in the health condition 2 (hidden sate S2) in interval from 0 to 5000.

Step 3: Health Condition Prognosis by Using HMM.
In this step, thanks to the estimated transition and emissions matrix, the prob-

ability that the system will be in state Si at time t in the future can be pre-
dicted. Figure 5 shows the results for 50 steps ahead prediction beginning from
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Fig. 5. Predicted hidden state probabilities
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instant t = 27200. From the Figure, we can conclude that there is a high proba-
bility that the system will be in condition state 2 within interval [27200, 27250].

3.2 Implementation of PF

Different from the case of HMM, the implementation of PF does not need to
discretize the data because it works directly with continuous variables. How-
ever, with PF, it is important that appropriate models of state and observation
functions must be firstly defined for specific applications.

Step 1: Model Definition.
Thanks to the dependency analysis among the data provided by the different

sensors, the following state model of the diesel motor is designed.

xk = xk−1 + a · Ck−1 (8)

where C represents the torque of IDM, which also has an important impact on
the evolution of the IDM’s health condition.

In addition, the observation function is defined as follow

zk = xk + vk = xk + N(0, b) (9)

where N(0, b) is a white Gaussian noise with mean value equals zeros, and vari-
ance equals b.

a and b are unknown parameters, and will be estimated in the next step.

Step 2: Health Condition Diagnosis by Using PF.
In this step, the training data is used to estimate the unknown parameters

of PF. Firstly, 5000 samples (particles) of x0, a0, and b0 are randomly generated
by using uniform distribution within intervals (200, 300), (0, 2.5), and (3.0, 5.0)
respectively. These particles and their weights are then updated step by step by
using the training data and the designed models. Finally, we found the best par-
ticle with â = 1.8325 and b̂ = 3.4631. During the training step, the evolution of
the IDM’s health condition xk is also diagnosed. Figure 6 shows the evolution of
the best particle. Diagnosis using PF allows us concluding that, for example, the
IDM’s health condition is equal to 370.7334, at instant t = 5000 with probability
w50000 = 0.89.

Step 3: Health Condition Prognosis by Using PF.
Once the behavior of the IDM’s health condition is learned, the state model

can be used to predict the future condition of the IDM. Note that, different to
the case of the diagnosis above, in the prediction, the torque values are unknown.
Therefore, the torque is assumed to be followed a specific mission profile within
the predicted horizon. The obtained results of 50 steps ahead prediction are
plotted in Fig. 7.

From Fig. 7, we can predict that, for example, the system is at condition
x30 = 264.6376 at time t = 30.
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Fig. 6. Evolution of the IDM’s health condition over the training period
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Fig. 7. Evolution of the IDM’s health condition over the predicted horizon

3.3 Discussions on HMM and PF Methods

In the above sections, we explained how to use the training data to teach our
HMM and PF, and how to use the two methods to diagnose and predict the
IDM’s health condition. However, we do not know if our diagnosed and predicted
results are far from the real conditions or not, because actually the real conditions
of the system are hidden and unknown.

Given that the hidden sates are unknown, we will never be able to evaluate
the performance of the two methods in diagnosis. Otherwise, we can at least
assess their performance in prediction indirectly through their ability in simu-
lating the observed temperature. To do this, the two trained models of HMM
and PF are firstly applied to predict the observed state (the temperature of the
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Fig. 8. Prediction performance of HMM and that of PF vs length of predicted horizon

compressor output) along the test set. Note that in order to compare to the
HMM, the predicted temperature provided by PF has to be discretized. The
prediction rate is then calculated by comparing the predicted temperature to
the real one in the test set. The predictions were done for the different length of
predicted horizon from 0 to 19101. The obtained results are shown in Fig. 8.

In the figure above, the prediction rate of PF decreases from 81 % to 47 %
when the length of predicted horizon increases form 1000 to 19101 min. For
HMM, the prediction rate decreases from 42 % to 36 %. It is clear that, when
the length of the predicted horizon increases, the uncertainties rise, and as a
consequence, the prediction performance of the two methods decreases. Therefor,
in real applications, it is recommended that the long predicted horizon is divided
into small ones, and the prediction is then done repeatedly for each sub-horizon.

Figure 8 also shows that the prediction performance of PF is always bet-
ter than that of HMM thanks to its ability to deal with noises of data, with
continuous values of condition state, and to take into account the impacts of
relevant indicators such as torque of the IDM. The low performance of HMM
can be understandable since its performance strongly depends on the quantity
and quality of the collected data.

Given the low performance in prediction, HMM is still used in a number of
applications. Indeed, from the practical point of view, the implementation of
HMM is more simple than that of PF since it does not require the knowledge
about the considered system.

4 Conclusions

In this paper, a study on the application of HMM and PF methods in health
condition diagnosis and prognosis of an industrial diesel motor is presented.
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To implement the HMM, the hidden and observed states are firstly defined. The
temperature data must be discretized before it can be used to estimate the tran-
sition and emission matrix of the HMM, and test its performance in prediction.
Otherwise, the implementation of PF does not need to discretize the temperature
data. The data can be used directly to estimate the unknown parameters in the
state and observed functions. A sensitivity analysis of the prediction performance
of the two methods are also realized. The analysis shows that the PF provides
the better results than those provided by HMM. However, the implementation
of PF is more complicated than that of HMM since it requires the knowledge
about the considered system to design its models. In addition, through the study,
some related issues are identified and needed to be addressed in future researches
such as difficulties in introducing the torque in HMM, in designing the state and
observed functions to improve the performance of PF, and also in assessing the
diagnosis and prognosis performances of the two methods.
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