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Abstract. A new method is proposed for black-box linear model iden-
tification of a dynamic system embedded at a nearly Gaussian noise.
The Gaussian process can highlight areas of the output spaces where the
prediction quality is poor, due to the lack of data or its complexity, by
indicating the higher variance of the predicted mean; the input spaces
in which we can reconstruct data represent the expected values. This
paper proposed a new approach for the online system identification for
non-zero initial conditions in the moving window.
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1 Introduction

To solve many of the problems in the design, implementation, and operation of
automatic control systems, relatively precise mathematical models for the sta-
tic and dynamic behavior of industrial processes are required. If the underlying
physical laws are not known or are only partially known, or if significant parame-
ters are not known precisely enough, one has to perform an experimental mod-
eling, which is called process or system identification. There are different ways
to identify systems when the input and output of the system are known. In real
systems, the signals are always more or less subject to interference with noise.
The expected values can only be estimated. Preferably, identification algorithms
should be fast algorithms that allow for the identification of dynamic systems
around the operating point in real time. There are different methods that model
different situations with respect to the noise. This study was based on identi-
fication methods using least squares estimation (LSE) [1,2] for the black-box
model (Fig. 1). The work is of use in the field of control systems engineering.
The innovation in the paper is a fast system for the high-precision identification
of linear dynamics that is independent of the initial conditions.
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2 Problem Formulation

Describing the process using equations with an acceptable error margin is very
difficult due to the complexity of the system structure and the noise distortion.
These data [1] have been obtained from an experiment. For identification, we
assume that the structure of the black-box system being tested (Fig. 1) will
be approximated by the parametric ARMAX model, which will have the same
dynamic properties in terms of system input/output.

Fig. 1. Output error model

For this reason, we define a cost function that minimizes the error between the
tested system and the approximating model (i.e., the model used to approximate
the system dynamics). The test signal satisfies the assumptions [1] of zero initial
conditions, and the system is embedded in nearly Gaussian noise [1–3]. The test
signal u(k) is permanently changeable, and the sampling sequences are equal
lengths of time [1]. For the above assumptions, we can solve problems fast with
robust identification of linear dynamic systems.

3 Least Squares Estimator (LSE)

Assuming the parametric model (1),

y(t) = ϕT (t)θ (1)

where y(t) is the measure of the output value, ϕ(t) stands for the n-dimensional
vector of the data samples, and the θ represents the n-dimensional vector of
the unknown coefficient. For the measurement data, we can write the Eq. (2) as
follows:

Y = ΦT θ. (2)

Due to account noise, and the inaccuracy of the model, it is better to use an
overly large number of samples, as additional data improves the accuracy of the
estimation. For N � n, the system is overdetermined, and there is no exact
solution. For oversized samples, the data matrix will not be a square matrix. In
this case, the samples matrix can be replaced by a pseudo square matrix. Taking
into account the inaccuracy of samples (3) [1–3],

ε(k) = y(k) − ϕT (k)θ, k ∈ N, k > 0 (3)
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The least squares error (LSE) estimator θ̂ is defined as a vector that minimizes
the cost function (4):

V (θ) =
1
2

N∑

t=1

ε2(k) =
1
2
εT ε =

1
2
||ε||2 (4)

where || � || is the Euclidean vector norm. For the positive definite matrix ΦT Φ,
the cost function (4) has a minimum:

minV (θ) = V (θ̂) =
1
2
[Y T Y − Y T Φ(ΦT Φ)−1ΦT Y ], (5)

E = Y − Φθ, (6)

0 =
dV

dθ
= −Y T Φ + θT (ΦT Φ), (7)

θ̂ = (ΦT Φ)−1ΦT Y. (8)

Equation (8) in the field of control systems engineering can be considered to
represent good or bad numerical task conditioning (9) for computing:

(ΦT Φ)(ΦT Φ)−1 = Ĩ ≈ I. (9)

Perturbations outside the main diagonal show poor conditions for the
numeric task. For significant perturbations outside the main diagonal obtained
numerically, a pseudo-square matrix can be close to the losing row, although
it is reversible. Equation (9) returns the predictive indices, probability of good
identification results for LSE (8). If the matrix ΦT Φ is known as the Gramian
matrix of Φ, which possesses several correct properties, such as being a positive
semi-definite matrix, the matrix ΦT Y is known as the moment matrix. Finally,
θ̂ is the coefficient vector of the least-squares hyperplane, expressed as (8). For
this reason, we consider an equation in the field of discrete time on the moving
window. Systems can be described by the autoregressive moving average model
with exogenous inputs (ARMAX) (10):

y(k) = z−n B(z−1)
A(z−1)

u(k) +
C(z−1)
A(z−1)

ε(k) (10)

The model does not require a preliminary asumption of the system stability,
as shown in Sect. 4, as this is a contribution of the new identification algorithm.
A necessary and sufficient condition to identify the system is satisfy the control-
lability condition in the sense limited input and output, bounded input generates
a bounded signal as an output over limited time range (b.i.b.o.), and a sufficient
amount of data. We assume the following:

ε =
C(z−1)
A(z−1)

ε(k) (11)
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where y(k), u(k), and ε(k) are a series of discrete data equally distant in time.
By describing the system using a difference equation, the following equation is
obtained:

y(k) + a1y(k − 1) + ... + any(k − n) + ε = b1u(k − 1) + ... + bmu(k − m);
k � n, n ≥ m; m,n ∈ N; u ∈ R; y ∈ R; ε ∈ R (12)

where the linearization error ε = 0, and b0, b1, ..., bm; a0, a1, ..., an are search
coefficients. By applying the discrete Z-transform, the zero initial condition and
ε = 0 are obtained as follows:

Ĝ(z) =
Y (z)
U(z)

=
b̂1z

m−1 + b̂2z
m−2 + ... + b̂m−1z + b̂m

zn + â1zn−1 + â2zn−2 + ... + ân−1z + ân
, (13)

The discrete transfer function, from the definition of the discrete “z” operator,
requires the assumption that the signal does not grow faster than the exponential
function (14)

Z[f∗(t)] = Z[f(kT )] = F (z), F (z) =
∞∑

k=−∞
f(kT )z−k

k ∈ N, T ∈ R, f(k) < k!, f(k) < eak2
; a > 0, a ∈ R. (14)

4 Non-zero Initial Condition

A linear system without noise fulfills the principle of causality and can be iden-
tified by the LSE in any state. For the non-zero initial condition, we have a
non-continuous function. The problem appears when the system is exposed to
noise, because such a system does not fulfill the principle of causality. The goal
is satisfy zero initial condition on u(k) signal for Eq. (12), zero initial condition
is being arbitrarily imposed with regard to the input signal, an output error is
added to the noise. For this reason, the discontinuity on the input is modeled as
a nonlinearity f(.) (Fig. 2):

Fig. 2. The system structure of the identification model.

A nonlinear function f(.) (Fig. 2) is estimated by the proposed delay func-
tion (15), which optimally carries out the ũ(k) (16) signal from the zero initial
condition to its actual state on range of data samples used to identification and
has an insignificant impact on the dynamics of the system (18). The function is
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use to satisfy the zero initial condition on the input signal ũ(k) for the compu-
tation algorithm (LSE) of error Eq. (24). A strong nonlinear function, [12,13],
corrects the discrete input value in Eqs. (8) and (12), by imposing the zero ini-
tial condition for the optimal first initials of samples by delay time (15). The
discrete output signal in Eqs. (8) and (12), are unchanged, and the original value
is retained (as the modification of Eqs. (8) and (12) breaks the principle of cau-
sation through the delay time of the input signal (15).

h(z) =
1
zη

; ηεN, η > 1 (15)

A proposed function (15) is defined as the zero input initial reconstructor (ZIIR).

ũ(k) = Z−1[h(z)U(z)]; kεN; k > 0; ûεR (16)

where u[1, ..., j) is arbitrary assuming the imposition of the zero initial con-
dition:

u[1, ..., j) ≡ 0 (17)

k = j, j + 1, ..., N ; NεN; jεN, (18)

N − j � n, (19)

y(k) = z−n B(z−1)
A(z−1)

ũ(k) +
C(z−1)
A(z−1)

ε(k), (20)

ε =
C(z−1)
A(z−1)

ε(k), (21)

where (21) includes an equation error.

y(k)+a1y(k−1)+ ...+any(ki−n)+ε = b1ũ(k−1)+ ...+bmũ(k−m); yεR, ε ∈ R

(22)
θ̂i = (Φ̃T

i Φ̃i)−1Φ̃T
i Yi. (23)

By applying the discrete Z-transform, the following is obtained:

Ĝi(z) =
b̂1z

m−1 + b̂2z
m−2 + ... + b̂m−1z + b̂m

zn + â1zn−1 + â2zn−2 + ... + ân−1z + ân
(24)

ŷ(k) = Z−1[Ĝ(z)ũ(z)] (25)

The mean squar error (MSE) is based on the window (27):

ei =
1

N − j

N−j∑

k=0

(yj+k − Eyj+k)2 (26)

êi =
1

N − j

N−j∑

k=0

(yj+k − Eŷj+k)2 (27)
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The optimality function (15) can be calculated as follows:

η = f(inf(ei(1(t))), inf(ei(δ(t)))), (28)

and the optimal identification we obtain for the minimum of error (29) is

Ĝ(z) = arg
Ĝi(z)

inf(ei). (29)

5 Numerical Experiments

5.1 Example System Identification

A discrete example system is described by Eq. (30), where the sampling dis-
cretization step �t = 0.1[s].

G(z) =
−0.3832z2 − 0.2338z + 0.06683
z3 − 1.127z2 + 0.494z − 0.1129

(30)

Using the relationship (20) can identify the model of the system for different
cases as demonstrated below.

System Without Noise. A plant that is not subject to noise is identified by
the LSE in any state by a minimum number of samples (Fig. 3). Oversizing data
in relation to the system dimensions is a result of numerical errors.

Fig. 3. Response-identified model without noise.
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System with Unit Distorted Input. If unit noise is introduced into the
system on the input (e.g. u(N − 5) = 0, for k > N − 5 samples), the principle
of causality for the dynamic system will not be satisfied. The results of such
a disturbance are presented in Table 1; the quality of these results depends on
the number of data gathered before disturbance. Here: the e1(t) is the MSE
(26), of the response-identified model for the step signal, the eδ(t) is the MSE
(26) of the response-identified model for the impulse signal, the eu(1..N) is the
MSE (26) distorted u signal by function h(z), and the e(j..N) is the MSE (26)
response-identified model.

By comparing the results of Tables 1 and 2, it can be seen that the distur-
bance of zero at the first position on the input signal for a large number of
samples fulfills the principle of causality and response-identified model for the
identification window.

Table 1. Distorted input u(N − 5) = 0 for k > N − 5 samples.

k e(j..N) e1(t) eδ(t) eu(1..N)

N − 10 396.8864 219.9079 93.5970 0.0151

N − 50 423.0187 219.9079 93.5970 0.0151

N − 100 493.6943 219.9079 93.5970 0.0151

N − 1000 1451.8 219.9079 93.5970 0.0151

N − 3000 3.30e+10 220.3036 93.5978 0.0151

Table 2. Distorted input u(N − j) = 0 on the first position input samples.

k e(j..N) e1(t) eδ(t) eu(1..N)

N − 10 114,1275 0,0142 3,5951 0.0156

N − 50 29.7687 0.0218 5.6054 0.0203

N − 100 19.6988 0.0218 5.5959 0.0270

N − 1000 0.5552 4.89e-4 0.1163 0.0076

N − 3000 7.336 4.90e-4 0.1164 0.0305

System with Noise on Output. The next experiment identifies the system
(30) embedded in Gaussian noise in the output. It was assumed that the output
system signal was exposed to a noise of covariance (32) (Fig. 4).

ErrCov =
1
N

N∑

i=1

(Exi − xi)2 (31)

yErrCov = 0.0494 (32)
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Table 3. Response error of the identified model with noise on the output.

k N − 100 N − 1000 opt(N−2698) N − 3000

eu(1..N) 0.0807 0.0235 0.0238 0.0928

e(j..N) 1089.6 2.3990 0.6006 5.4661

e(j..N)(MSIT ) 6.7094 2.5969 0.4274 0.5190

e1(t) 346.5430 22.1021 9.4401 53.5393

e1(t)(MSIT ) 3.2970 35.0409 1.5530 2.3846

eδ(t) 105.5208 54.2538 41.0381 70.1437

eδ(t)(MSIT ) 194.5097 63.7391 170.8675 120.9573

Table 3 shows the comparison error (26) of the response-identified model by
the Matlab System Identification Toolbox (MSIT) and the proposed algorithm.

Table 4 displays the dependence of the estimated model coefficients on the
horizon of the data and the dependence of the noise on the output.

Table 4. Dependence of the estimated coefficients on the discrete samples.

coeff\k Model N − 1000 opt(N−2698) N − 3000

a1 −1.1269 −0.3604 −0.3267 −0.3572

a2 0.4940 −0.3185 −0.2953 −0.3442

a3 −0.1129 −0.2609 −0.223 −0.2614

b1 −0.3832 −0.2139 −0.2843 −0.0875

b2 −0.2328 0.0207 −0.0998 −0.0485

b3 0.0668 0.0623 0.0034 0.0559

Fig. 4. Response-identified model with noise on the output.
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System with Noise on Input and Output. The next experiment identifies
the system (30) embedded in Gaussian noise on the input and output. It was
assumed that the input and output system signals were exposed to a noise of
covariance (33) (Fig. 6 and Tables 5 and 6).

uErrCov = 0.0494, yErrCov = 0.0494. (33)

Fig. 5 shows the time constants of the identified system based on proposed
algorithm and MSIT.

Table 5. Response error of the identified model with noise on the input and output.

k N − 100 N − 1000
opt(N−2713) N − 3000

eu(1..N) 0.0832 0.0415 0.0651 0.1526

e(j..N) 1136.6 2.8476 0.7436 11.6981

e(j..N)(MSIT ) 76.2574 3.5377 2.6045 4.2952

e1(t) 358.3644 28.4760 12.9394 101.9493

e1(t)(MSIT ) 42.2193 54.8410 55.5994 54.7985

eδ(t) 108.5663 58.6032 46.8358 46.8358

eδ(t)(MSIT ) 68.2047 90.8851 92.9625 92.0620

Fig. 5. The time constants of the response-identified model based on proposed algo-
rithm and MSIT.

5.2 Laboratory System Distillation Column

Identification Laboratory Subsystem of Distillation Column. Identifica-
tion of the non-Gaussian distribution of noise is done using registered data from
the measurement level point u = L175 to the measurement level point y = L176,
where: η = 3, k = 6000 samples, and the discretization step �t = 0.1[s] (Figs. 7,
8, 9 and 10).
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Table 6. Dependence of the estimated coefficients on the discrete samples.

coeff\k Model N − 1000 opt(N−2713) N − 3000

a1 −1.1269 −0.5878 −0.5854 −0.5950

a2 0.4940 −0.0964 −0.0679 −0.1212

a3 −0.1129 −0.2650 −0.2074 −0.2642

b1 −0.3832 −0.1129 −0.1455 −0.0306

b2 −0.2328 0.0020 −0.0797 −0.0123

b3 0.0668 0.0045 0.0765 0.0011

Fig. 6. Response-identified model with noise on the input and output.

Fig. 7. Direct identification at the technology operating point.
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Fig. 8. Identification by biased operating points to the zero initial condition.

Fig. 9. Identification by biased to zero initial condition with optimal filtering.

Fig. 10. Identification by biased to operating point with optimal filtering.
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Fig. 11. Comparison response identified models between the proposed algorithm with
optimal filtering and MSIT, by biased to zero initial condition (deviation model).

Comparison of the Proposed Algorithm and the Matlab System Iden-
tification Toolbox (MSIT). A comparison of the identified model transfer
function response between the proposed algorithm and MSIT (Fig. 11).

GF1(z) =
−0.0001766z2 + 2.856e − 05z + 0.0001745

z3 − 2.953z2 + 2.928z − 0.9745
(34)

GMSIT F1(z) =
0.0001183z2 − 0.0002365z + 0.0001183

z3 − 3z2 + 3z − 0.9998
(35)

where the error of identification (27) is obtained as

eF1 = 8.3425, eMSIT F1 = 140.7838 (36)

Fig. 12. Comparison of the response-identified models between the proposed algorithm
with optimal filtering and MSIT, by biased to operating point.
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A comparison of the identified model transfer function laboratory subsys-
tems between the proposed algorithm and MSIT around the operating point is
presented in (Fig. 12). If the operating point is biased to the neighborhood of the
zero initial condition and optimal filters are used, the proposed algorithm pro-
duces acceptable results. The state matrix changes very little, but a coefficient
of the control matrix changes, which has an impact on the system.

GF2(z) =
2.671e − 05z2 − 6.632e − 07z + 5.943e − 07

z3 − 2.954z2 + 2.93z − 0.976
(37)

GMSIT F2(z) =
−0.3832z2 − 0.2338z + 0.06683
z3 − 1.127z2 + 0.494z − 0.1129

(38)

where the error of identification (27) is obtained as

eF2 = 14.5630, eMSIT F2 = 153.6657 (39)

6 Conclusion

The proposed algorithm gives exact and repeatable results for systems embedded
at a nearly Gaussian noise on the input and output. The results of identification
are independent of the initial conditions. The algorithm allows for the correct of
the time constants in the identified model through the modulation of the func-
tion (15). In the literature there is a lot of theoretical proposals of concepts that
are based on the mathematics of dynamic systems [4–11]. The problem appears
when these concepts are used in control systems engineering, which requires more
generalized assumptions: limited precision of data representation and perturbed
Gaussian distribution on the input and output, as shown in Sect. 5.2. The study
demonstrated that the proposed algorithm is an innovation in the fields of con-
trol systems engineering and applied mathematics. It returns acceptable quality
indices for online real-system identification, is independent of the system state
and preliminary parametrization [10,11], and can be used for a wide range of
test signals for the assumptions given in [1]. Direct calculation of the identifi-
cation results for the window data range allows for robust identification of the
optimal model of LSE. A new achievement of the presented algorithm is the
ability to identify unstable systems, which satisfies the controllability condition
in the b.i.b.o. sense. The proposed algorithm also opens up a new horizon of
possibilities in process diagnostics, enabling high-precision faults detection and
reconstruction of damaged data using mathematical models and linear regres-
sion.

References

1. Soderstrom, T., Stoica, P.: System Identification. Prentice-Hall, Hemel Hempstead
(1989)

2. Keesman, K.J.: System Identification. An Introduction. Springer, London (2011).
doi:10.1007/978-0-85729-522-4

http://dx.doi.org/10.1007/978-0-85729-522-4


228 A. Latocha

3. Isermann, R., Munchhof, M.: Identification of Dynamic Systems. An Introduction
with Applications. Springer, Heidelberg (2011). doi:10.1007/978-3-540-78879-9
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