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Abstract. The article presents a comparative analysis of two variants
of the Particle Kalman Filter designed by using two different ship motion
models. The first filter bases only on the kinematic model of the ship and
can be used in many types of vehicles, regardless of the vehicle dynamics
model. The input value to the filter is the noisy position of the ship.
The second filter makes use of the kinematic and dynamic models of the
moving ship. The input values to the filter are the noisy ship position
and the forces generated by ship propellers during manoeuvres. These
filters are used as state observers. The output values from the filters are
position and velocity vectors in three degrees of freedom in the global
coordinate system. The simulation test results show that both filters
reveal similar accuracy in state observer.
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1 Introduction

In recent years, the marine navigation systems have developed rapidly, following
the development in measurement technology, and control systems and algorithms
[12]. The accuracy and reliability of those systems have visibly increased, which
allows them to be used to control such offshore operations as drilling, loading and
offloading, or pipe-laying at increasing depths and during heavy environmental
disturbances [11].

The main component of the marine navigation system is the dynamic posi-
tioning (DP) system [4,5]. It is, generally, designed to increase the safety of
navigation and to allow performing precise offshore operations. The DP system
has two basic goals, which are: keeping the ship on the position, and following
the reference trajectory.

The DP system performs ship positioning in three degrees of freedom: surge
(forward motion), sway (transverse motion), and yaw (rotation about the vertical
axis). It usually consists of: thruster control system, power management system,
computer system, and sensors.
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The thruster control system takes commands from the DP computer system
and performs control and allocation of the thrusters. This system has been the
subject of scientific analyses [15,17].

The power management system is responsible for turning on/off electrical
generators to meet ship electricity demands, and to prevent the blackout on
the ship. The ship power management issues were the subject of a number of
publications [18].

The computer system is the main power of each DP system. This element
manages the whole system of the DP vessel. Its tasks include data collection and
processing, and distributing relevant information over the entire DP system.
This topic has also raised the interest of a number of research workers [2,3].

The sensors are responsible for measuring position, velocity, acceleration,
heading, and other ship motion parameters. The data collected by the sensor
system are passed to the computer system, where data fusion algorithms process
them to calculate the required values [9].

It frequently occurs that some parameter values cannot be obtained directly
from measurements. In those cases the computer system makes use of a special
observer algorithm to calculate the missing values [6]. For instance, the DP
system requires the information about the ship position and velocity, but when
the ship keeps the desired position, its velocity is very low and immeasurable.
That is why systems of this type have an element which filters the measured
position and the observation data of immeasurable ship velocity. In this paper,
the velocities are calculated from the position data received from noisy GPS
signals. There are two approaches to design filters and observers for DP systems.
The first approach makes use of the mathematical model of the ship. The more
accurate the model is, the better state observers/ filters for these systems may
be designed. However, creating an accurate ship model is a difficult task, due to
the action of environmental disturbances such as wind, wave, and sea currents.
These disturbances introduce additional variables to the nonlinear ship model.
The second approach, which is adopted in the article, makes use of a more
complicated algorithm, which takes into account disturbances and ship models
in a simplified way to create a filter/observer.

Common estimators used in the DP systems are: Nonlinear Observer (NO),
Extended Kalman Filter (EKF) or, very rarely, Particle Filter (PF). The Kalman
Filter was the first to be used in an advance control system. Then it was
developed to the Extended Kalman Filter, which is used until today in many
marine applications. It has been the object of study in numerous publications
[4,5,10,14]. The next estimator was the Nonlinear Observer proposed by Fossen
and Strand [13]. This observer makes use of a nonlinear model of the ship and
reveals very good quality of estimation. It was used in many marine applications
[8,13]. The last estimator, the Particle Filter [1,8,10] is not often used in control
systems, due to relatively high structural complexity and resultant difficulties
concerning real-time computer application.

In this paper, the idea of the Particle Kalman Filter (PKF) [7,16], is devel-
oped. So far, filters of this type have never been applied in the DP system.
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The PKF is a combination of the Particle Filter and the Kalman Filter. The
main task of filtering in the DP system is to observe ship velocities with high
accuracy. The PKF algorithms enables to estimate the unmeasured states with
a very small error with respect to the real state, what will be seen in the simula-
tion results. The goal of this paper is to analyse the PKF making use of different
ship models. The first model takes only into account ship kinematics, while the
second one considers both kinematics and dynamics of the moving ship. The
second model is more accurate, but both filters give almost similar results. In
the simulations, the ship model and the white noise were used to generate the
GPS signal. Estimating the ship position requires the information on propeller
forces, which was taken in this case from position regulators.

2 Ship Model

The vessel model consists of two parts, which model ship kinematics and dynam-
ics, respectively. These two parts make use of different reference frames. The
position vector is defined in the earth-fixed frame as η = [x, y, ψ]T where x and
y are ship position coordinates and ψ is the heading with reference to the X axis
directed to the North. The velocity vector is defined in the coordinate system
fixed to the vessel as υ = [u, v, r]T . Here u and v are the surge and sway veloci-
ties, and r is the angular velocity. The relation between the velocity vector in the
Earth frame and the body-fixed frame is expressed by the kinematic equation.

η̇ = R(ψ)υ (1)

R(ψ) =

⎡
⎣

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦ (2)

The transformation is performed by using matrix R(ψ) which describes the
rotation around the Z axis by ψ angle.

For dynamic positioning, the dynamic model at low velocities is given by:

M υ̇ + Dυ = τ control + τwave + τwind (3)

where M is the inertia matrix. It contains the added mass coefficients which
depend on the hull shape and body rigidity factor. D is the damping matrix
caused by the linear wave drift damping and the laminar skin friction damping
τ control, τwave, τwind are the force vectors generated by ship propellers, wind
and wave, respectively [4].

3 Environmental Disturbances Model

The environmental forces generated by wind and waves are given by nonlinear
equations [4].
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The wind force τwind = [Xwind, Ywind, Nwind]T is given by the following
equations:

Xwind =
1
2
CX(γr)ςaV 2

r AT (4)

Ywind =
1
2
CY (γr)ςaV 2

r AL (5)

Nwind =
1
2
CN (γr)ςaV 2

r ALL (6)

where CX(γr), CY (γr), CN (γr) are the nonlinear coefficients depending on the
wind direction relative to the vessel. AT and AL are, respectively, the transverse
ship surface and the side ship surface. The ςa is the air density, and L is the ship
length. Vr is the wind velocity.

The wave forces τwave = [Xwave, Ywave, Nwave]T is given by the following
equations:

Xwave =
∑

ςwgBLTwcosβwsi(t) (7)

Ywave =
∑

−ςwgBLTwsinβwsi(t) (8)

Nwave =
∑ 1

24
ςwgBL(L2 − B2)cosβwsi(t) (9)

where B is the ship breadth, Tw is the average draft of the ship considered as a
parallelepiped, ςw is the sea water density, si(t) is the wave angle, βw is the angle
between the ship course and the wave direction, and si(t) is the density function
of the i-th component ωei of the meeting frequency. It is calculated from:

si(t) = Aikisin(ωeit) (10)

where ωi is the amplitude of the harmonic wave of a given frequency. The fre-
quency range Δω represents the relationship:

Ai =
√

2S(ωi)Δω (11)

The spectral wave density S(ωi) is calculated using the Pierson-Mostkowitz
spectrum:

S(ωi) =
4π2H2

s

(0.710T0)4ω5
i

∗ exp(
−16π2

(0.710T0)4ω4
i

) (12)

where T0 is modal period and Hs is the significant wave height.
The wave number is calculated from

ki =
ωi

g
(13)

where g is the acceleration of gravity. The factor changing the meeting frequency
ωei with which the waves interact with the ship hull also depends on the speed.
This frequency is given by the following formula:

ωei = ωi − ω2
i V cos(βw)

g
(14)

where V is the resultant ship velocity vector.
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4 Ship Kinematics Model for PKF

In the real world, not all vessels have access to the model of dynamics. In this
situation, the observers can make use only of simple kinematics models. The first
type of the Particle Kalman Filter (PKF 1) analysed in this paper makes use of
the ship model which does not include such external disturbances as wind and
waves.

The simplest model of kinematics of an arbitrary ship is given by:

x (k + 1) = APKF1x (k) + w (15)
y(k + 1) = CPKF1x (k + 1) + v (16)

APKF1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0 T 2/2 0 0
0 1 0 0 T 0 0 T 2/2 0
0 0 1 0 0 T 0 0 T 2/2
0 0 0 1 0 0 T 0 0
0 0 0 0 1 0 0 T 0
0 0 0 0 0 1 0 0 T
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

CPKF1 = [I6x6, 06x3] (18)

Here x (k) = [x(k), y(k), ψ(k), ẋ(k), ẏ(k), ψ̇(k), ẍ(k), ÿ(k), ψ̈(k)] and x(k), y(k),
ψ(k) are the ship position and heading coordinates in the Earth-fixed reference
frame, ẋ(k), ẏ(k), ψ̇(k) are the longitudinal, transverse and rotational velocity,
and ẍ(k), ÿ(k), ψ̈(k) are the ship acceleration components. The disturbances are
added as w and v .

5 Ship Dynamics Model for PKF

In the second approach, the ship dynamics model is assumed to be known,
which allows to implement a more complicated model of the ship to the observer
algorithm [4,5]. The Particle Kalman Filter with the model of ship kinematics
and dynamics (PKF 2) makes use of two coordinate systems, described as:

η̇ = R(ψ)υ (19)
M υ̇ + Dυ = τ control (20)

When the system (19) is used, for which R(ψ)T = R(ψ)−1, it is possible to
obtain υ = R(ψ)η̇, subsequently: υ̇ = R(ψ)T η̈ + R(ψ)T η̇. Finally we get:

J(η)η̈ + C(η, η̇) + F (η)η̇ = τ ∗ (21)
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where the vessel model parameters are defined as

J(η) = R(ψ)MR(ψ)T (22)
F (η) = R(ψ)DR(ψ)T (23)

C(η, η̇) = R(ψ)MṘ(ψ)T (24)
τ ∗ = R(ψ)τ control (25)

In the simulation, the state-space model of the ship was used, where x =
[η; η̇] are the state-space vectors. The generalized ship state-space model is:

η̈ + J(η)−1[C(η, η̇) + F (η)]η̇ = J−1(η)τ ∗ (26)

The general ship model takes the form:

ẋ = APKF2(x )x + BPKF2(x )u + w (27)
y = CPKF2x + v (28)

APKF2(x ) =
[
03x3 I3x3

03x3 −J−1(x )[C(x , ẋ ) + F (x )]

]
(29)

BPKF2(x ) = [03x3 J−1(x )]T (30)
CPKF2 = [I6x6] (31)

where w is the process noise sequence, and v is the measurement noise sequence.
The y = (x, y, ψ) is the output state vector.

The above equations represent the continuous models of the ship. To imple-
ment it into the algorithm, the continuous model require discretisation. To obtain
discrete samples for the state estimation algorithm, the nonlinear model (27),
(28) is expanded into the Taylor series around the point x̂ .

f [x (t),u(t)] = f [x̂ (t),u(t)] +
∂f [x (t),u(t)]

∂x(t)
|x=x̂ + [x (t) − x̂ (t)] (32)

The discrete model of the ship without external disturbances takes the form:

xk+1 = AD
PKF2xk + w (33)

y (k+1) = CD
PKF2xk+1 + v (34)

where:

AD
PKF2 = I6x6 + T

∂(APKF2(x )x + BPKF2(x )u)
∂x

|x=x̂ (35)

CD
PKF2 = I6x6 (36)

In these equations T is the sampling time, and In×n is the identity matrix of
size n × n.
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6 Particle Kalman Filter

The Particle Kalman Filter (PKF) algorithm is a combination of the Monte
Carlo (MC) method with the Kalman Filter. The Particle Filter (PF) is used to
filter the noisy states and the Kalman Filter (KF) is used to observe the non-
measurable states. In order to develop the details of the algorithm we introduce
the nonlinear function fk of states which draws the state values to the next
time step with normal distribution. hk is the updated nonlinear function of
measurements.

x i
k = fk(x i

k−1,u
i
k−1,w

i
k−1) (37)

y i
k = hk(x i

k) (38)

In the above equations, x i
k is the vector of state variables, y i

k is the vector
of measurement, and w i

k−1 are the noise estimations. Each sample with weight
{x i

0:k,ωi
k}Ns

i=1 depends on the random measure of the posterior probability den-
sity function, p(x 0:k|ym

1:k) where {x i
0:k, i = 0, . . . , Ns} is the set of support points

with associated weights {ωi
k, i = 0, . . . , Ns}, and x 0:k = {xj , j = 0, . . . , k} rep-

resents the state-space in time. Ns is the number of the sample.

p(x 0:k|ym
1:k) =

Ns∑
i=1

ωi
k(x 0:k − x i

0:k) (39)

Here x 0:k is the sample state from 0 to k, x i
0:k is the i-th drawn sample at the

sample time 0 : k. Using normalized weights
∑

ωi
k = 1 the yk is given by the

equation:

yk =
N∑

i=1

ωi
kh(x i

k) (40)

In this algorithm the weights are calculated from normal distribution:

ωi
k =

1√
2πxN

exp(
(−ym

k − yi
k )

2

4
) (41)

where xN is the variance measure, ym
k is the variable measure, and y i

k is the
calculated output from the i-th sample at time k. The measurement vector is
ym

k = (xm
k , ym

k , ψm
k ), where xm

k , ym
k are the simulated measures of coordinates

obtained from GPS, ψm
k is the simulated measurement of the vessel course.

Due to sample degradation, the resampling algorithm is implemented. The
first step of resampling is weight normalization

∑
ωi

k = 1. The algorithm draws
samples with high weights from all particles [1]. Then the particles with low
weights are replaced. The output weight of all samples is set equal to 1/Ns. The
final values from the PF part are calculated using (40). These values are then
used as the input values to the KF part.
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The KF algorithm works in a loop and performs the following calculations:

Kk = PkHT (HPkHT + Rk)−1 (42)
x̂k = xk + Kk(z k − Hxk) (43)
P̂k = Pk − KkHPk (44)

Pk+1 = AP̂kAT + Qk (45)
xk+1 = Ax̂k (46)

There are two stages in the loop: prediction and correction. In the above for-
mulas, Kk is the Kalman gain matrix, xk is the state estimate update, Pk is
the error covariance update, Pk+1is the error covariance propagation, x̂k is the
state estimate propagation, and z k is the output from PF. A is the discrete
model of state transition. Qk is the covariance matrix of the process, and Rk

is the covariance matrix of the measurement. In the simulation, the resampling
algorithm described in [1] was used.

The pseudo-code of the proposed algorithm is shown below. The numbers on
the right side refer to the equations used in the algorithms.

Algorithm 1 PKF1 PKF2
Input : ym , uk , k
Output : xk , yk

1 I n i t i a l i z a t i o n : K0 , P0 , Rk , Qk

2 IF k = 0
3 FOR i = 1 . . . Ns

4 xi
k = fk(xi

k−1,u
i
k−1,w

i
k−1) // draw (15) (33)

5 yi
k = hk(xi

k) // upadte (16) (34)
6 ωi

k = 1
Ns

7 yk =
∑Ns

i=1 yi
kωi

k

END FOR
END IF

8 IF k >= 2
9 FOR i = 1 . . . Ns

10 xi
k = fk(xi

k−1,u
i
k−1,w

i
k−1) // draw (15) (33)

11 yi
k = hk(xi

k) // upadte (16) (34)
// Assign the p a r t i c l e a weight ωi

k us ing ym
k

12 ωi
k = 1√

2πxN
exp( (−ym

k −yi
k)

2

4 ) (41) (41)
END FOR

13 t =
∑Ns

i=1 ωi
k // c a l c u l a t i o n a t o t a l weight

14 FOR i = 1 . . . Ns

15 ωi
k = ωi

k

t // norma l i za t i on
END FOR

16 Resampling
17 yk =

∑N
i=1 ωi

kyi
k // c a l c u l a t e va lue

// Kalman Part
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18 Kk−1 = Pk−1H
T (HPk−1H

T + Rk)−1

19 x̂k−1 = xk−1 + Kk−1(zk − Hxk−1)
20 P̂k−1 = Pk−1 − Kk−1HPk−1

21 Pk = APKF1P̂k−1A
T
PKF1 + Qk

22 xk = APKF1x̂k−1

23 yk = Hxk

In the algorithms, H is equal to (18). The sampling period T of both algorithms
is equal to 0.01 s.

7 Simulation and Experimental Results

This section presents the results of two simulation tests:

1. In the first simulation test, the velocities were set equal to zero and the states
were observed while position keeping.

2. In the second simulation test, the velocities were set from 0 to 2 m/s and the
states were observed while manoeuvring.

Table 1. The mean square error of the estimator with respect to the real value

KPF Test x y ψ u v r

KPF 1 Test 1 0.0058 0.0059 0.0050 0.0013 0.0016 0.0013

KPF 2 Test 1 0.0048 0.0081 0.0049 0.0004 0.0004 0.0012

KPF 1 Test 2 0.1983 0.0751 0.0027 0.0568 0.0074 0.0004

KPF 2 Test 2 0.1964 0.0707 0.0044 0.0574 0.0073 0.0018

As can be seen from Table 1, both filters, with and without ship dynamics,
return similar results of position filtering. Table 1 compares the mean square
errors received for both filters in tests 1 and 2. As can be noticed, the filter with
ship dynamics gives sometimes better results, but not in all cases. The values
observed during the tests are almost the same in both cases. As shown in Figs. 1,
2, 3, and 4, the observers produce overshoots during manoeuvres in test 2, while
in test 1 the overshoots are small. This is connected with the fact that the filters
have slow dynamics. Figures 5 and 6 show filtering capabilities of both filters.
Despite high interference, the output values from the filters reveal good quality
and have small errors with respect to the real values.
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Fig. 1. Longitudinal velocity: real and observed from PKF1, test 1
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Fig. 2. Longitudinal velocity: real and observed from PKF2, test 1
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Fig. 3. Longitudinal velocity: real and observed from PKF1, test 2
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Fig. 4. Longitudinal velocity: real and observed from PKF2, test 2
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Fig. 5. Measured, real and observed position along the X axis, test 1
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Fig. 6. Measured, real and observed position along the X axis, test 2

8 Conclusion

The paper presents the Particle Kalman Filter designed in two variants: with and
without dynamic equations. As can be seen, both filters return similar results
of position filtering and velocity observation, therefore it seems possible to use
the proposed filter without dynamics for observation of objects moving at low
velocity. The possibility for more precise modelling and improving the dynamics
of the filter during manoeuvres (with respect to the overshoot and velocity of the
observed signal) lies in changing the window width to search the variables and in
changing the number of samples. In the here reported simulation, it took about
40 [s] for the computer to simulate the ship behaviour covering a period of 300
[s]. This means that the filter can effectively work as a real-time algorithm. The
simulations were performed for 100 samples of variable signals. The algorithm
is scalable and can be adapted to the computing power, as the running time of
the algorithm depends linearly on the number of samples per one iteration.
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