
A Variety-Sensitive ETL Processes

Nabila Berkani1(B) and Ladjel Bellatreche2

1 École nationale Supérieure d’Informatique (ESI), Algiers, Algeria
n berkani@esi.dz

2 LIAS/ISAE-ENSMA – Poitiers University, Poitiers, France
bellatreche@ensma.fr

Abstract. Nowadays, small, medium and large companies need
advanced data integration techniques supported by tools to analyse data
in order to deliver real-time alerts and trigger automated actions, etc. In
the context of rapidly technology changing, these techniques have to con-
sider two main issues: (a) the variety of the huge amount of data sources
(ex. traditional, semantic, and graph databases) and (b) the variety of
storage platforms, where a data integration system may have several
stores, where one hosts a particular type. These issues directly impact
the efficiency and the deployment flexibility of ETL (Extract, Transform,
Load). In this paper, we consider these issues. Firstly, thanks to Model
Driven Engineering, we make generic different types of data sources. This
genericity allows overloading the ETL operators. To show the benefit of
this genericity, several examples of instantiation are described covering
relational, semantic and graph databases. Secondly, a Web-service-driven
approach for orchestrating the ETL flows is given. Thirdly, we present
a fusion procedure that merges the set of heterogeneous instances and
deployed according their favorite stores. Finally, our finding is validated
through a proof of concept tool using the LUBM benchmark and YAGO
KB and deployed in Oracle RDF Semantic Graph 12c.

1 Introduction

The past few decades have witnessed a spectacular explosion in the quantity
of data sources available in various types and formats. This situation pushes
small, medium and large companies to exploit this mine of data in order to
achieve a high decision making in science, society, health, etc. This usually
passes through the data integration process [11]. Plenty of commercial and open
sources data integration solutions and tools exist in the market. When source
data are extracted and materialized in an integration system such as a data ware-
house, more specific techniques and tools implementing ETL (Extract, Trans-
form, Load) are widely used [20]. Oracle Warehouse Builder, SAP Data Service,
Talent Studio for Data Integration, IBM Infosphere Warehouse Edition, etc. are
examples of these tools. The maturity of the ETL motivates researchers to make
generic its whole workflow [5,26]. An ETL algebra composed of 10 generic oper-
ators (Retrieve, Extract, Convert, Filter, Merge, Join, Union, Aggregate, Delete
and Store) has been proposed [20]. The signature of each operator is personalized
c© Springer International Publishing AG 2017
D. Benslimane et al. (Eds.): DEXA 2017, Part II, LNCS 10439, pp. 201–216, 2017.
DOI: 10.1007/978-3-319-64471-4 17

202 N. Berkani and L. Bellatreche

according the type of data sources and the target data warehouse (T DW). By
examining deeply the ETL techniques, we figure out that they mainly concen-
trate on the traditional types of data such as relational databases [24] – which
has reigned several decades – and recently semantic databases (SDB) [3,14].
In the context of rapidly technology changing, several new types of databases
appear (e.g., Graph databases, NoSQL, Time Series, Knowledge bases (KB) such
as Yago [21]) and consequently they became candidate for the data integration.
This phenomenon is called by the Variety of sources [7].

The variety does not only impact data sources, but also the storage of the
T DW, where multi-stores are well-adapted to achieve high performance of data
accesses. More concretely, we passed from (n− 1) scenario, where n heteroge-
neous sources are integrated into T DW deployed on one store to (n−m) sce-
nario, where the T DW may be deployed in several stores, where each one may
store a specific type of data [10]. To deal with the variety of sources, we propose
the usage of Meta-Driven Engineering (MDE) and then overload the ETL oper-
ators to deal with specific type of source. Inspired from the Meta-Object Facility
(MOF)1, we make generic different sources in order to deal with their variety.
The MOF describes a generic framework in which the abstract syntax of mod-
elling languages can be defined [15]. It has a hierarchical structure composed of
four layers of meta-data corresponding to the different levels of abstraction: the
instance layer (M0), the model layer (M1), the meta-model layer (M2) and the
meta-meta-model layer (M3). Each layer defines a level to ensure the consistency
and the correctness of the instance model syntax and semantics at each level of
abstraction.

This generic model can be easily exploited by ETL operators, where each one
is overload. An operator overloading (as in C++ language) allows a programmer
to define the behaviour of an operator applied to objects of a certain class the
same way methods are defined [6]. In our context, each ETL operator will be
overload to deal with the diversity of each type of sources.

To offer the designers the possibility to deploy their T DW on a multi-stores,
we exploit the Store operator of ETL. It can be associated with a Service Web
that orchestrates the ETL flows and distributes the data over the stores accord-
ing their storage formats.

In this paper, we detail our generic model using MDE. We give examples of
its instantiation from three types of data sources: relational, semantic and graph
databases. The ETL operators are then overloaded for these types. Thanks to
the Store operator, the multi-store deployment is guaranteed. Our proposal is
implemented and experimented.

The rest of this paper is organized as follows. We give an overview on the
evolution of the ETL in Sect. 2. In Sect. 3, we give a formalization of three main
classes of databases (relational, semantic and graph) and a motivating exam-
ple. In Sect. 4, a generalization of ETL elements are given by the means of
MDE techniques and the process to overload the ETL operators. In Sect. 5, the
deployment methodology of a data warehouse on multi-store system is developed.

1 http://www.omg.org/mof/.

http://www.omg.org/mof/

A Variety-Sensitive ETL Processes 203

A case study is proposed and various experiments are presented. Section 7 con-
cludes the paper.

2 Related Work

In this section, we give an overview of the most important studies on the ETL and
the efforts to making them variety-sensitive. The first studies on ETL dealt with
sources considering their physical implementations such as: (i) their deployment
platforms (centralized, parallel, etc.) and (ii) their storage models (e.g. tables,
files). In [23], a set of algorithms was proposed to optimize the physical ETL
design. Simitsis et al. [18] have proposed algorithms for optimizing the efficiency
and the performance of ETL process. Other non-functional requirements such as
freshness, recoverability, and reliability have also been considered [19]. The work
of [13] proposes an automated data generation algorithm assuming the existing
physical models for ETL to deal with the problem of data growing. In order
to hide the physical implementations, several research efforts have been pro-
posed. The first category of these studies attempts to consider the logical level
of data sources. In this perspective, [27] proposed an ETL workflow modelled
as a graph, where its nodes represent activities, record-sets, attributes, and its
edges describe the relationships between nodes that define ETL transformations.
In [25], a formal ETL logical model is given using LDL [17] as a formal language
for expressing the operational semantics of ETL activities. The second category
of these studies considered the conceptual level of sources. Approaches based on
ad-hoc formalisms [26], on standard languages using UML [22], model driven
architecture (MDA) [8], BPMN [1,28] and mapping modelling [4,12] have been
proposed. The third category use ontologies as external resources to facilitate
and automate the conceptual design of ETL process. [20] automated the ETL
process by constructing an OWL ontology linking schemes of semi-structured
and structured (relational) sources to a target data warehouse (DW) schema.
Other studies like [14] consider data source provided by the semantic Web and
annotated by OWL ontologies. However, the ETL process in this work is depen-
dent on the storage model used for instances which is the triples.

Based on this brief overview, we figure out the effort deployed by the research
community in generalizing the ETL processes by going from the physical level
to the semantic level of the sources. In [27], a generic model of ETL activities
that plays the role of a pivot model has been proposed, but without MDE tech-
niques. [20] has defined an ETL algebra with 10 generic operators. The main
drawbacks of these approaches are: they deal with traditional types of sources
(relational and XML schemes) and they make an implicit assumption that the
data warehouse is deployed on one system usually relational.

3 Background and a Motivating Example

In this section, we give an overview on the most important types of databases:
relational, semantic and graph databases adopted by a large number of sources.

204 N. Berkani and L. Bellatreche

Then, a motivating example is considered to illustrate the basic ideas behind
our proposal.

3.1 Formalization of Databases

A relational database is defined by set of tables, attributes, instances and
constraints.

A semantic database (SDB) is formally defined as follows [3]:
<OM, I, Pop, SLOM , SLI>, where:

– OM : <C,R,Ref, formalism> is the ontology model of the SDB; where C
and R denote respectively concepts and roles of the model; Ref is a function
defining terminological axioms of a DL TBOX (Terminological Box) [2], (e.g.,
Ref(Student) →(Person ∩ ∀ takesCourse(Person, Course))) and Formalism
is the formalism followed by the global ontology model like RDF, OWL, etc.);

– I: presents the instances (the ABox) of the SDB;
– Pop: C → 2I is a function that relates each concept to its instances;
– SLOM : is the Storage Layout of the ontology model (vertical, binary or hor-

izontal) [9]; and
– SLI : is the Storage Layout of the instances I.

A graph database usually used to represent knowledge bases through a graph
G whose nodes (V), edges (E) and labels (Lv, Le) represent respectively classes,
instances and data properties, object properties and DL constructors. Neo4J2

is an example of a storage system of graph databases.

3.2 Motivating Example

To explicit the basic ideas behind our proposal, let us consider a scenario, where
a governmental organisation wants constructing a data warehouse to analyse
the performance of students in universities. To do so, this organisation consid-
ers four data sources with a high variety. The particularity of these sources is
that they are derived from the benchmark related to the universities (LUMB3)
and the Yago4 knowledge base. The details of these sources are given below:
S1 is a MySQL relational databases with the following schema composed of
tables and attributes: Student(name), Course(title), University, S2 is a Berke-
ley XML DB with a schema composed of elements and attributes: Graduat-
eStudent(name), GraduateCourse(title), University, S3 is an Oracle RDF SDB
composed of classes, properties: Student(name), Publication, University, and S4

is a Neo4j Graph DB with nodes, edges: Person, Student(name), Publication,
PublicationAuthor, University.

The obtained warehouse has two stores Semantic Oracle and Mongodb. In
this context, the different ETL operators have to be overloaded to deal with
2 https://neo4j.com/product/.
3 http://swat.cse.lehigh.edu/projects/lubm/.
4 www.yago-knowledge.org/.

https://neo4j.com/product/
http://swat.cse.lehigh.edu/projects/lubm/
www.yago-knowledge.org/

A Variety-Sensitive ETL Processes 205

Fig. 1. An example of ETL operator overloading

this variety. Figure 1 describes the whole architecture of the ETL process, where
Extract and Convert operators are overloaded. As we see, they have the same
name, but different signatures. Based on the format of each store, the Store
operator is also overloaded.

4 Generalisation of ETL Elements

Before discussing our proposal in overloading ETL operators, we first formalize
the ETL process and its operators. An ETL process is defined as 5-tuples as
follows: <InputSet,OutputSet,Operator, Function,ETLResul>, where:

InputSet: represents a finite set of input elements describing data sources. Each
source has its own format and storage layout. To make generic the representa-
tion of data sources, we propose to generalize them using MOF initiatives. The
obtained meta-model is composed of conceptual entities and their attributes. In
addition, links between entities are also represented via associations. We also
represent several semantically restrictions, such as primary and foreign keys.
Figure 2, part (a), illustrates the fragment of our meta-model. Table 1 is an
instantiation of relational, semantic and graph databases sources.

OutputSet: is a finite set of intermediate or target elements. The output of the
ETL process can be either the intermediate output (sub process) or the final
output (ETL process). The final output corresponds to the target data stores,
where the schema of each store can be seen as an instance of our meta-model
(part (a) of Fig. 2).

Operator: is a set of operators commonly encountered during the ETL process
in [20]. By analysing these operators, we propose to decompose them into four
categories: (1) loading class, (2) branching class, (3) merging class and (4) activ-
ity class.

206 N. Berkani and L. Bellatreche

Fig. 2. Excerpt of ETL meta models

Table 1. Sample of InputSet and OutputSet databases.

Elements Databases

Relational Ontological Graph

Entity Table Class Node

Association Table Object property Edge

Attribute Column Data property Node

Property Domain of values Data type Domain of values

Restriction Primary key SameAs Node

– Branching Class: delivers multiple output-sets which can be further classi-
fied in Filter operations based on conditions or Extract and Retrieve opera-
tions that handle with the appropriate portion of selected data.

– Merging Class: fuses multiple data incoming from data sources. We identify
two possible operations: (i) Merge operation applied when the data belong to
attributes related to entities of the same source; (ii) Union operation applied
when data belong to entities incoming from different data sources

– Activity Class: represents points in the process where work is performed. It
corresponds to all operations of join conversion and aggregation. Join opera-
tions is applied when data belong to different entities. Conversion operation
is applied on data having different format in order to unify it and adapt it to
the target data stores. The aggregation operation is done depending on the
schema of the target data stores applying needed functions (count, sum, avg,
max, min).

A Variety-Sensitive ETL Processes 207

– Loading Class: represents the point of data quality by the detection of
duplicated data and cleaning them before their loading in the target data
store.

Based on this, we propose a meta models of these operations (part (c) of Fig. 2).
The generic formalization of each operator is given by:

- Retrieve(S,E,A,R): retrieves data D of attributes A related to entities E from Source S;
- Extract(S,E,A,R,CS): enables the data D extraction of A related to entities E from
source S satisfying constraint CS;
- Merge(S,E1, E2, A1, A2, D1, D2): merges data D1 and D2 belonging to the source S;
- Union(S1, S2, A1, A2, D1, D2): unifies data D1 and D2 belonging to different sources S1
and S2 respectively;
- Filter(S,E,A,D,CS): filters incoming data D, allowing only values satisfying con-
straints CS;
- Join(S,E1, E2, A1, A2, D1, D2): joins data D1 and D2 having common attributes A1
and A2;
- Convert(S,E,A,D, FS , FT): converts incoming data D from the format FS of source S
to the format of the target data store FT ;
- Aggregate(S,E,A,D, F): aggregates incoming data D applying the aggregation function
F (count, sum, avg, max) defined in the target data-store.
- DD(D): detects and deletes duplicate values on the incoming data D;
- Store(T,E,A,D): loads data D of attributes A related to entities E in the target data
store T .

Function: is a function over a subset of Input-Set applied in order to generate
data satisfying restrictions defined by any ETL operator.

ETLResult: is a set of output elements representing the flow.

4.1 Overloading Operators

In this section, we show the mechanism to overload ETL operators by considering
semantic and graph databases.

In the case of a semantic database, the signature of overload operators is as
follows:

- Retrieve(Si, C, I): retrieves instances I related to classes C from Source Si;
- Extract(Si, C, I, CS): extracts instances I related to classes C from source S satisfying
constraint CS;
- Merge(Si, C1, C2, I1, I2): merges instances I1 and I2 related to the classes C1 and C2
respectively and belonging to the same source Si;
- Union(S1, S2, C1, C2, I1, I2): unifies instances I1 and I2 related to C1 and C2 respec-
tively and belonging to different sources S1 and S2 respectively;
- Filter(Si, C, I, CS): filters incoming instances I related to C, allowing only the values
satisfying constraints CS;
- Join(Si, C1, C2, I1, I2): joins instances I1 and I2 related to C1 and C2 respectively and
having common object properties;
- Convert(Si, C, I, FS , FTDW): converts incoming instances I from the format FS of source
Si to the format of the target T DW (FTDW);
- Aggregate(S,C, I, F): aggregates incoming instances I related to C applying the aggre-
gation function F (count, sum, avg, max) defined in the T DW.
- DD(I): detects and deletes duplicate values on the incoming instances I;
- Store(TDW, I): loads instances I in target T DW.

In the case of a graph database, the signature of overload operators is as
follows:

208 N. Berkani and L. Bellatreche

- Retrieve(G, Vj , Lj): retrieves a node Vj having an edge labeled by Lj of G.
- Extract(G, Vj , CS): extracts, from G, the node Vj satisfying CS.
- Convert(G,GT , Vi, VT): converts the format of the node Vi to the format of the target
node VT . The conversion operation is applied at instance level.
- Filter(G, Vi, CS): applied on Vi node, allowing only instances satisfying CS.
- Merge(G, Vi, Vj): merge instances denoted by nodes Vi, Vj in same graph G.
- Union(G,GT , Vi, Vj , Ej): links nodes that belongs to different sources. It adds in the
target graph GT , both nodes Vi and Vj and link them by an edge Ej .
- Join(G,GT , Vi, Vj , Ej): joins instances whose corresponding nodes are Vi ∈ G and Vj ∈
GT . They are linked by an object property defined by an edge Ej .
- Store(GT , Vj): loads instances denoted by nodes Vj to the target graph GT .
- DD(GT , CS): sorts the graph GT based on CS and detects duplication.
- Aggregate(GT , Vj , Op): aggregates instances represented by the nodes Vj .

Some primitives need to be added to manage the ETL operations required
to build the ETLgraph such as:

- AddNode(GT , Vj , Ej , Lj): adds node Vj , edge Ej , label Lj required to GT .
- UpdateNode(GT , Vj , Ej , Lj): updates node Vj , edge Ej , label Lj in GT .
- RenameNode(GT , Vj , Ej , Lj): renames node Vj , edge Ej , label Lj in GT .
- DeleteNode(GT , Vj , Ej , Lj): deletes node Vj , edge Ej , label Lj from GT .
- SortGraph(GT , Vj , CS): sorts nodes of GT based on some criteria CS to improve search
performance.

Our goal is to facilitate, manage and optimize the design of the ETL process
during the initial design, deployment phase and during the continuous evolution
of the T DW. For that, we enrich the existing ETL operators with split, context
and Link operators elevating the clean-up and deployment of ETL process at
the conceptual level.

- Split(G,Gi, Gj , CS): splits G into two sub-graphs Gi and Gj based on CS.
- Link(GT , Vi, Vj , CS): links two nodes Vi and Vj using the rule CS.
- Context(G,GT , CS): extracts from the graph G a sub-graph GT that satisfies the context
defined by restrictions CS using axioms.

5 Deployment on a Multistores System

In this section, we propose a methodology to satisfy the n−m scenario discussed
in the Introduction. To do so, we have to consider three issues: consolidation of
schemas, fusion of instances, and deployment.

5.1 Consolidation ETL Algorithm

Algorithm 1 describes in details the overloading of ETL operators in the context
of semantic and graph data sources. It is based on mappings defined between
data sources schemes and global schema. We used mappings described in [3].

5.2 Fusion Procedure

In this section, we propose a fusion method to merge different input data sources
representations based on the target model chosen by the designer. Our solution
is based on the Graph Property model presented above [16]. The property graph
is common because modellers can express other types of models or graphs by

A Variety-Sensitive ETL Processes 209

Algorithm 1. Overloading ETL Process Algorithm
Input: IO or Contextual KB, Si: Local sources SDB
Output: T DW (schema + instances)

1: VSi := ∅; ETLG:= Graph(Tbox(kb)); Vkb := GetNodes(kb);

2: if Input is IO then

3: Inputcond := (C : Class of ontology IO);

4: else if Input is KB then

5: Inputcond := (Vi ∈ Vkb ∧ (Vi isClass));

6: end if

7: for each Inputcond do

8: for Each Si do

9: if Equivalent or complete mappings (NSi
,NKB) ∨ (CSi

, CIO) then

10: if Input is IO then

11: C := IdentifyClass(CTDW , Ci);

12: else if Input is KB then

13: Vi:= IdentifyNode(ETLG, Vi);

14: Ei:= IdentifyEdge(ETLG, Ei);

15: end if

16: else if sound or overlap mappings (NSi
,NKB) ∨ (CSi

, CIO) then

17: if Input is IO then

18: Const := ExtractConstraint(CTDW , Ci);

19: else if Input is KB then

20: Const := ExtractNeighbor(ETLGraph, Vi);

21: end if

22: end if

23: if (Input is IO) then

24: if (Const isDataTypeProperty) then

25: I:= Convert(Cj , I, const);

26: I:= Filter(Cj , I, Const);

27: else if (Const isObjectProperty) then

28: I:= Join(Cj , Ci, I, Const);

29: else if (Const isAxiom) then

30: I:= Aggregate(Cj , Ci, I, Const);

31: end if

32: I:= MERGE(CSi
, I); I:= UNION (CSi

, CIO, I);

33: STORE(IO, Ci, DD(I));

34: else if (Input is KB) then

35: if (Const isDataTypeProperty) then

36: I:= Convert(Vj , I, const);

37: I:= Filter(Vj , I, Const);

38: else if (Const isObjectProperty) then

39: I:= Join(Vj , Vi, I, Const);

40: else if (Const isAxiom) then

41: I:= Aggregate(Vj , Vi, I, Const);

42: end if

43: I:= MERGE(NSi, I); I:= UNION (NSi, Nkb, I);

44: for Each I do

45: ETLG := addEdge(ETLG, Ni, edge, I);

46: ETLG := addNode(ETLG, Ni, edge, I);

47: end for

48: ETLG := Filter(ETLG, DD(Ni), Null-values);

49: STORE(ETLG);

50: end if

51: end for

52: end for

210 N. Berkani and L. Bellatreche

adding or abandoning particular elements. To do so, we propose to use the prim-
itives proposed previously. They enable designers to adds, deletes and renames
graph elements in order to manage the ETL flow generated and adapt it to the
target storage layout chosen. An example of addnode primitive is done as follows:

- Sparql query language :
construct ?V
where {GRAPH :?G {?V rdf:type name-space:Class}}
- Using Cypher query language for Neo4j graph database:
MERGE (<node-name>:<label-name>
{<Property1-name>:<Pro<rty1-Value> <Propertyn-name>:<Propertyn-Value>}

On the basis of items presented previously, we have identified three particular
cases:

Deployment of KB on SDB: the RDF graph allowing the representation of
KB deployed on SDB can be obtained by restricting labels of the nodes and edges
to Uniform Resource Identifiers (URIs) and not allowing node/edge attributes;

Deployment of KB on graph database: using graph property having
directed, labelled, attributed nodes and edges will allow a deployment of KB
on a graph system;

Deployment of traditional data on graph: starting from a property graph,
we generate a standard semantic graph by discarding the nodes/edges attributes.
Having a semantic graph, we consider the nodes as attributes/data of traditional
data, labels nodes are either attributes or data, edges as relationships between
data and attributes of traditional data, labels edges can be either has data or
has attributes.

5.3 Deployment of ETL Process

Storage deployment models can follow different representations according to spe-
cific requirements. A T DW can be deployed using horizontal, vertical, hybrid
models, NoSQL, etc. [9]. In our case, we choose to deploy the T DW into vertical
representation using Oracle DBMS which offers a storage model to represent
instances and graphs using Oracle RDF Semantic Graph. We translated the
T DW schema into vertical relational model, then generated an N-Triple file,
load it into a staging table using Oracle’s SQL*Loader utility. We applied the
ETL Algorithm to populate the target schema.

6 Experimental Study

In order to illustrate the feasibility of our approach, we use our motivating exam-
ple (cf. Section 3). We choose Oracle semantic database system to implement the
sources and the warehouse. Oracle 12c release 2 delivers RDF Semantic Graph
features as part of Oracle Spatial and Graph. With native support for RDF
and OWL standards for representing semantic data, with SPARQL for query

A Variety-Sensitive ETL Processes 211

language. Oracle has defined two subclasses of DLs: OWLSIF and a richer frag-
ment OWLPrime. Note that OWLPrime limits the expressive power of DL for-
malism in order to ensure decidable query answering. The proposed Algorithm1
was implemented using the overload of ETL operators in order to integrates the
created sources into the DW taking in account their heterogeneity. Note that
generic ETL operators defined in the previous section are expressed on the con-
ceptual level. Therefore, each operation has to be translated according the logical
level of the target DBMS (Oracle). Oracle offers two ways for querying semantic
data: SQL and SPARQL. We choose SPARQL to express this translation. Here
an example of KB aggregation ETL operator translation to SPARQL:

PREFIX yago: http://yago-knowledge.org/resource/yago.owl#
AGGREGATE: Aggregates incoming record-set.
Select (Count(?Instance) AS ?count) Where {
GRAPH :?G {?Instance rdf:type yago:Class}}
Group By ?Instance.

The proposed tool is implemented in Java language and uses JENA API to
access ontologies and a KB. Each generic ETL operator is implemented as a Web
Service Restful using Java overload polymorphism implementation. The restful
web service is implemented is such way to consider the overload resolution. Each
ETL operator is overloaded by determining the most appropriate definition to
use. It compares the argument type used to call the appropriate service restfull
with the parameter types specified in the definitions. This will allow managing
the different representations of input data (instances and graph). The proposed
ETL algorithm consists then in orchestrating the Web services.

Each Web service that accesses the persistent storage is implemented using
Data Access Object (DAO) Design patterns5. DAO implements the access mech-
anism required to handle the different input representations. The DAO solution
abstracts and encapsulates all access to persistent storage, and hides all imple-
mentation details from business components and interface clients. The DAO
pattern provides flexible and transparent accesses to different storage layout. In
order to obtain a generic implementation of the ETL process, we implemented
our solution following service oriented architecture (SOA). SOA offers the loose
coupling of the web services defined bellow, and interaction among them. The
application implements an orchestration of web services in early binding. Indeed,
each web service is implemented in such way that parameters and variables are
detected and checked at compile time. Figure 3 describes the whole architecture
of the ETL and MultiStore Services.

A demonstration video summarizing the different services offered by our pro-
posal is available at: https://youtu.be/zbtl1qMvPOU.

6.1 Evaluation Study

In this section, we present the performance of our approach through a set of
experiments considering an Ontology and large KB. Four criteria are used to
5 http://www.oracle.com/technetwork/java/dataaccessobject-138824.html.

https://youtu.be/zbtl1qMvPOU
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

212 N. Berkani and L. Bellatreche

Fig. 3. A general architecture of the ETL and MultiStore Services.

evaluate our proposal: (i) complexity of the proposed ETL algorithm, (ii) eval-
uation time per ETL operators before and after overloading, (iii) scalability of
the ETL process, (iv) inference performance.

Environment of our experiments. Our experiments are based on LUBM
ontology and YAGO KB (version 3.0.2). The architecture of the YAGO system
is based on themes. Each theme is a set of facts. A fact is the equivalent of an
RDF triple (s,p,o). YAGO has defined the context relation between individuals
[21], which we used to extract the set of themes related to our context study
which is university domain. The resulting contextual YAGO KB contains around
5, 9 × 106 triples. Note that five (5) sets of triples were generated using LUBM
benchmark and Yago knowledge base.

(1) Deployment of Data Sources and T DW: We have created five Oracle SDBs
using generated data-sets and deployed the T DW schema using Oracle SDB.
We chose N-Triple format (.nt) to load instances using Oracle SQL*Loader.

(2) Oracle Database Tuning: T DW schema was optimized using Btree
indexing triples and sparql query hints. Some PL/SQL APIs are
also invoked after each load of significant amount of data. The API
SEM PERF.GATHER STATS Collects stats for sources models and
SEM APIS.ANALYZE MODEL for T DW model in the semantic network
graph. The memory SGA and PGA are also increased to 2GB.

(3) Inference Engine: Oracle has incorporated a reasoner engine defined based
on TrOWL and Pellet reasoners. Oracle provides full support for native
inference in the database for RDFS, RDFS++, OWLPRIME, OWL2RL,
etc. It uses forward chaining to do the inference. It compiles entailment rules

A Variety-Sensitive ETL Processes 213

directly to SQL and uses Oracle’s native cost-based SQL optimizer to choose
an efficient execution plan for each rule. The following is an example of user
defined rules applied, they are saved as records in tables. Rule1: co-author
rule: authorOf(?A1, ?P) ∧ authorOf(?A2, ?P) → coAuthor(?A1, ?A2).

(4) Hardware: Our evaluations were performed on a laptop computer (HP Elite-
Book 840 G2) with an Intel(R) CoreTM i5-5200U CPU 2.20 GHZ and 8 GB
of RAM and a 500 GB hard disk. We use Windows10 64bits. Cytoscape6 is
used for visualization.

Obtained results. We evaluate our proposal based on the following criteria:

Criterion 1: ETL Algorithm Complexity. The algorithm is implemented based
on semantic ontologies (classes and properties) and graph theory, where nodes
represents concepts and instances, edges for roles and labels for definitions. We
examine the number of iterations of our algorithm to generate ETL process
as flow or graph. In this case, we are interesting on the time complexity. The
algorithm is based on concepts searches (Tbox for intentional mappings i.e. map-
pings only between classes and properties and not between instances). The time
complexity is O(n), where n represents the number of involved classes or nodes.
Figure 4a shows the number of iterations by classes. It indicates a polynomial
time. This finding shows the feasibility and efficiency of our approach.

Criterion 2: Evaluation Time Per ETL Operator Before and After Overloading.
We run the ETL Algorithm for both scenarios (without overload for ontology
and KB, and with overload for both) to populate the target schema of semantic
T DW. We measure the time spent to run each ETL operator. Figure 4b shows
the results obtained. Our approach improves the performance time spent by
overloaded ETL operator in an 18%. This is due to one call of the functions
related to ETL operators done by the compiler, instead of multiple calls in a
case without overload.

Criterion 3: Scalability of the Proposed Solution. The ETL Algorithm popu-
lates the target schema of semantic T DW using an overload of ETL operators.

(a) Complexity of the proposed ETL algo-
rithm

(b) Evaluation time per ETL operator be-
fore and after overloading.

Fig. 4. Complexity and evaluation time of the ETL process

6 http://www.cytoscape.org/.

http://www.cytoscape.org/

214 N. Berkani and L. Bellatreche

(a) Scalability of the proposed solution. (b) Number of method calls

Fig. 5. Scalability and number of calls

We measure the time spent to integrate data sources having different sizes. Note
that time spent to load all instances is equal 3, 2 min. Figure 5a illustrates the
results obtained where for each triple size loaded using overload approach, cor-
responding time performance is shown in milliseconds. The result remains rea-
sonable w.r.t. the size of the stored instances. This is proof the scalability of our
approach.

Criterion 4: Number of Method Calls. We consider a set of SDB participating
in the T DW. We run the ETL Algorithm from two different perspectives: first
taking in account the overload of ETL process, second without considering it.
Figure 5b shows the number of methods calls with and without overloading of
ETL operators for each SDB integrated. It clearly demonstrates that number
of invocation method without the overload is much higher comparing to the
number of method calls using the overload of ETL operators.

7 Conclusion

In this paper, we deal with the variety of data sources and diversity of deploy-
ment platforms when constructing a data warehouse. Thanks a Model Driven
Engineering techniques, we make generic all elements of the ETL processes. Meta
models are proposed for each element. This genericity contributes in overloading
all ETL operators in order to reduce their development costs (prototyping) and
consequently their performance. Examples of instantiation of three major classes
of databases (relational, semantic and graph) are given. Our efforts of genericity
facilitates the multi-store deployment. Finally, an evaluation of our proposal to
study the effect of overloading on the performance of different operators is also
given. A tool available at Youtube is also given. Currently, we are working the
scalability of our proposal using considering a large set of dynamic data sources.

A Variety-Sensitive ETL Processes 215

References

1. Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-based concep-
tual modeling of ETL processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK
2012. LNCS, vol. 7448, pp. 1–14. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32584-7 1

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

3. Berkani, N., Bellatreche, L., Khouri, S.: Towards a conceptualization of ETL and
physical storage of semantic data warehouses as a service. Cluster Comput. 16(4),
915–931 (2013)

4. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data
modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information
Systems, pp. 229–263. Springer, Boston (1998). doi:10.1007/978-1-4615-5643-5 8

5. Casati, F., Castellanos, M., Dayal, U., Salazar, N.: A generic solution for ware-
housing business process data. In: VLDB, pp. 1128–1137 (2007)

6. Craig, I.: The Interpretation of Object-Oriented Programming Languages.
Springer, London (2002). doi:10.1007/978-1-4471-0199-4

7. Dong, X.L., Srivastava, D.: Big data integration. PVLDB 6(11), 118 (2013)
8. Mazón, J.-N., Trujillo, J.: An MDA approach for the development of data ware-

houses. In: JISBD, p. 208 (2009)
9. Jean, S., Bellatreche, L., Ordonez, C., Fokou, G., Baron, M.: OntoDBench: inter-

actively benchmarking ontology storage in a database. In: Ng, W., Storey, V.C.,
Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 499–503. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41924-9 44

10. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.:
CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distrib. Parallel Databases 34(4), 463–503 (2016)

11. Lenzerini, M.: Data integration: a theoretical perspective. In: ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 233–246
(2002)

12. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data mapping diagrams for data ware-
house design with UML. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W.
(eds.) ER 2004. LNCS, vol. 3288, pp. 191–204. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30464-7 16

13. Nakuçi, E., Theodorou, V., Jovanovic, P., Abelló, A.: Bijoux: data generator for
evaluating ETL process quality. In: ACM DOLAP, pp. 23–32 (2014)

14. Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis.
Support Syst. 52(4), 853–868 (2012)

15. Raventós, R., Olivé, A.: An object-oriented operation-based approach to transla-
tion between MOF metaschemas. Data Knowl. Eng. 67(3), 444–462 (2008)

16. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. CoRR,
abs/1006.2361 (2010)

17. Shmueli, O., Tsur, S.: Logical diagnosis of LDL programs. New Gener. Comput.
9(3/4), 277–304 (1991)

18. Simitsis, A., Vassiliadis, P., Sellis, T.-K.: Optimizing ETL processes in data ware-
houses. In: ICDE, pp. 564–575 (2005)

19. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL workflows
for fault-tolerance. In: ICDE, pp. 385–396 (2010)

http://dx.doi.org/10.1007/978-3-642-32584-7_1
http://dx.doi.org/10.1007/978-3-642-32584-7_1
http://dx.doi.org/10.1007/978-1-4615-5643-5_8
http://dx.doi.org/10.1007/978-1-4471-0199-4
http://dx.doi.org/10.1007/978-3-642-41924-9_44
http://dx.doi.org/10.1007/978-3-540-30464-7_16
http://dx.doi.org/10.1007/978-3-540-30464-7_16

216 N. Berkani and L. Bellatreche

20. Skoutas, D., Simitsis, A.: Ontology-based conceptual design of ETL processes for
both structured and semi-structured data. Int. J. Semant. Web Inf. Syst. 3(4),
1–24 (2007)

21. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW, pp. 697–706 (2007)

22. Trujillo, J., Luján-Mora, S.: A UML based approach for modeling ETL processes
in data warehouses. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P.
(eds.) ER 2003. LNCS, vol. 2813, pp. 307–320. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-39648-2 25

23. Tziovara, P., Vassiliadis, P., Simitsis, A.: Deciding the physical implementation of
ETL workflows. In: DOLAP, pp. 49–56 (2007)

24. Vassiliadis, P.: A survey of extract-transform-load technology. IJDWM 5(3), 1–27
(2009)

25. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.: A
generic and customizable framework for the design of etl scenarios. Inf. Syst. 30(7),
492–525 (2005)

26. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL
processes. In: DOLAP, pp. 14–21 (2002)

27. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activities as graphs.
In: DMDW, pp. 52–61 (2002)

28. Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.: Leveraging business process
models for ETL design. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 15–30. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16373-9 2

http://dx.doi.org/10.1007/978-3-540-39648-2_25
http://dx.doi.org/10.1007/978-3-540-39648-2_25
http://dx.doi.org/10.1007/978-3-642-16373-9_2
http://dx.doi.org/10.1007/978-3-642-16373-9_2

	A Variety-Sensitive ETL Processes
	1 Introduction
	2 Related Work
	3 Background and a Motivating Example
	3.1 Formalization of Databases
	3.2 Motivating Example

	4 Generalisation of ETL Elements
	4.1 Overloading Operators

	5 Deployment on a Multistores System
	5.1 Consolidation ETL Algorithm
	5.2 Fusion Procedure
	5.3 Deployment of ETL Process

	6 Experimental Study
	6.1 Evaluation Study

	7 Conclusion
	References

