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Abstract. Location-Based Social Networking Services (LBSNSs) have
been becoming increasingly popular. One of the applications provided by
LBSNSs is a PoI search based on spatial distance, social relationships,
and keywords. In this paper, we propose a novel query, Geo-Social Key-
word Skyline Query (GSKSQ), which returns the skyline of a set of PoIs
based on a query point, the social relationships of the query owner, and
query keywords. Skyline is the set of data objects which are not dom-
inated by others. We also propose an index structure, Social Keyword
R-tree, which supports efficient GSKSQ processing. The results of our
experiments on two real datasets Gowalla and Brightkite demonstrate
the efficiency of our solution.

1 Introduction

With the wide spread of mobile devices such as smart phones and tablets, peo-
ple use Location-Based Services (LBS) and Social Networking Services (SNS)
in their daily lives [4,8]. Due to this fact, Location-Based Social Networking
Services (LBSNS), e.g., Facebook and Yelp, are also prevalent [3]. In a LBSNS,
we can search points of interests (PoIs) based on three criteria, spatial distance,
social relationships, and keywords [1].

In this paper, we propose a novel query, Geo-Social Keyword Skyline Query
(GSKSQ), which returns the skyline [2] of a set of PoIs based on a query point,
the social relationships of the query owner, and user-specified keywords. Skyline
is the set of data objects which are not dominated by others. Informally, a data
object o is dominated by another data object o′ if o is worse than o′ for all
attributes. The result of a GSKSQ thus supports multi-criteria decision making
in LBSNS applications. We show a practical example of a GSKSQ in Example 1.

Example 1. Assume that a user ua searches a restaurant on a LBSNS, and
ua can choose it based on his/her current position, the number of check-ins of
his/her friends, and the number of keywords matched with a query. In this case,
ua can find such a restaurant easily by using a GSKSQ. Figure 1a represents
an example situation where ua specifies his/her position as a query point and
“Chinese restaurant” as a query keyword. Figure 1b represents the corresponding
social graph. As we can see in Figs. 1a and b, restaurant B is worse than restau-
rant C in the three attributes, so B is dominated by C. In the same manner,
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we can see that restaurants D, E, F, G, H, I, and J are dominated by C. As a
result, ua obtains restaurants A and C as the query result, and he/she can easily
choose preferable one from these two restaurants.

Fig. 1. A practical example of a GSKSQ

A naive way to calculate a Geo-Social Keyword Skyline (GSKS) is to check
whether or not a given PoI is dominated by any other PoIs. However, this app-
roach is computationally expensive particularly when the number of PoIs is large
[2]. In addition, because the result of a GSKSQ is dependent on a query, we can-
not pre-compute the results of any queries. In this paper, we propose an index
structure called Social Keyword R-tree (SKR-tree), which is a kind of aR-tree [5],
and supports efficient GSKSQ processing. With the SKR-tree, we can retrieve
the result while pruning unpromising PoIs. Our contributions in this paper are
summarized as follows: (1) We propose a novel query, GSKSQ, which returns
the skyline of a set of PoIs based on a query point, the social relationships of the
query owner, and user-specified keywords. (2) We propose an index structure
called SKR-tree to calculate a GSKS efficiently. (3) We propose a scoring func-
tion to support efficient retrieval on SKR-tree. We design this function based on
an idea about user behaviors, and show that this function is optimal w.r.t. the
number of node accesses of the SKR-tree. (4) The results of our experiments on
real datasets Gowalla1 and Brightlite2 demonstrate the efficiency of our solution.

The organization of this paper is as follows. Section 2 defines the problem
of this paper. We describe our algorithm in Sect. 3, and Sect. 4 presents our
experimental results. Finally, we conclude this paper in Sect. 5.

1 https://snap.stanford.edu/data/loc-gowalla.html.
2 https://snap.stanford.edu/data/loc-brightkite.html.

https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-brightkite.html
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2 Problem Definition

2.1 Geo-Social Keyword Skyline Query (GSKSQ)

We define a PoI pi ∈ P as pi = 〈loc, key〉, where i is the identifier of pi, loc
is the location of pi, and key is the set of keywords held by pi. When a user
u retrieves a GSKS, he/she issues a GSKSQ by specifying a query point and
query keywords. A GSKSQ is defined as qu = 〈loc, key〉. In response to qu,
each pi ∈ P obtains attribute values pi.G(qu), pi.S(qu), and pi.K(qu), which
respectively correspond to a spatial distance, social relationships, and keywords.
pi.G(qu) is the Euclidean distance between qu.loc and pi.loc, which is defined as
follows.

pi.G(qu) = dist(qu.loc, pi.loc)

Note that smaller pi.G(qu) is better. pi.S(qu) is the number of users who are
friends of u and have checked-in to pi. So, pi.S(qu) is defined as

pi.S(qu) = |u.friends ∩ pi.checkin|,
where u.friends is the set of users who are friends of u, and pi.checkin is the
set of users who have checked-in to pi. For example, in Fig. 1b, A.S(qu) is 4,
C.S(qu) is 3, and F.S(qu) and I.S(qu) are 0. Larger pi.S(qu) is better. pi.K(qu)
is the number of the common keywords in qu.key and pi.key, and is defined as
follows.

pi.K(qu) = |qu.key ∩ pi.key|
As same as pi.S(qu), larger pi.K(qu) is better. Based on these three attribute
values, we define dominance below.

Definition 1 (Dominance). Let qu be a geo-social keyword skyline query. If pi
and pj satisfy that (pi.G(qu) ≥ pj .G(qu)) ∧ (pi.K(qu) ≤ pj .K(qu)) ∧ (pi.S(qu) ≤
pj .S(qu)), we represent this condition as follows.

pi 	 pj

Furthermore, if pi and pj satisfy that (pi 	 pj) ∧ [((pi.G(qu) > pj .G(qu)) ∨
(pi.K(qu) < pj .K(qu)) ∨ (pi.S(qu) < pj .S(qu))], pi is dominated by pj, and we
represent this condition as follows.

pi ≺ pj

We now define a GSKS as follows.

Definition 2 (Geo-Social Keyword Skyline (GSKS)). Let P be a set of
PoIs, and qu = 〈loc, key〉 be a geo-social keyword skyline query. The Geo-Social
Keyword Skyline of P calculated on qu is the subset P ′ of P , which satisfies that

�pj ∈ P such that pi ≺ pj , (1)

for ∀pi ∈ P ′.

Our objective is to achieve efficient processing of a GSKSQ.
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Algorithm 1. Baseline algorithm

1 for ∀pi ∈ P do
2 Calculate each attribute value of pi

3 for ∀pi ∈ P do
4 for ∀pj ∈ P do
5 if pi � pj then
6 P ← P\{pj}
7 if pi ≺ pj then
8 P ← P\{pi}
9 break

10 return P

2.2 Baseline

We show a baseline algorithm for processing a GSKSQ in Algorithm1. In Algo-
rithm1, we calculate all attribute values of all PoIs at first (lines 1–2). We then
check whether or not a given PoI dominates or is dominated by other PoIs (lines
3–9), and finally we obtain a GSKS (line 10).

Algorithm 1 is computationally expensive because of two reasons. First, we
have to calculate all attribute values of all PoIs. In particular, it increases com-
putational cost w.r.t. pi.S(qu). This is because to calculate this attribute value,
we have to check how many friends of the query owner checked-in for all PoIs.
Second, the baseline algorithm executes dominance check for all PoIs, and this
operation is the main overhead of skyline computation [7]. We propose a more
efficient algorithm which alleviates this cost.

3 Proposed Solution

3.1 Social Keyword R-Tree (SKR-Tree)

We propose an index structure called SKR-Tree to achieve efficient GSKSQ
processing. SKR-tree is a kind of a R-tree as illustrated in Fig. 2. Nodes of SKR-
tree store information on the three attributes, and are classified to two kinds of
nodes, leaf nodes and internal nodes. A leaf node ni corresponds to a PoI pi,
and contains:

– a pointer to pi,
– ni.loc, which is the location of pi,
– ni.key, which is the set of keywords held by pi,
– ni.S, which is the upper-bound social value of pi.

We detail ni.S, which is the upper bound of pi.S(qu) for any qu, in Sect. 3.2. For
example, in Fig. 2, leaf node nA (nB) contains a pointer to pA (pB), nA.key =
{k1} (nB .key = {k2}) is the set of keywords, and nA.S = 1 (nB .S = 3) is the
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Fig. 2. An example of SKR-tree

upper-bound social value. An internal node ni is a Minimum Bounding Rectangle
(MBR) which consists of its all child nodes, and contains:

– ni.key, which is the union of the keyword sets which are held by its all child
nodes,

– ni.S, which is the maximum upper-bound social value among all its child
nodes’ ones.

For example, in Fig. 2, internal node nC is an MBR which consists of its child
nodes nA and nB , a set of keywords {k1, k2} = nA.key ∩ nB .key, and 3, which
is the maximum of nA.S and nB .S.

Given a GSKSQ qu, we can calculate the three attribute values for all
ni, and we represent them as ni.G(qu), ni.S, and ni.K(qu). If ni is a leaf
node, ni.G(qu) is pi.G(qu). If ni is an internal node, ni.G(qu) is the Euclid-
ean distance between qu.loc and the nearest neighbor point in the correspond-
ing MBR of ni. ni.S is an upper-bound social value of ni, and ni.K(qu) is
|qu.key ∩ ni.key|. By using these attribute values, we can execute dominance
check between a node ni and a PoI pj . If ni is dominated by pj , PoIs which
are pointed by ni’s descendant nodes are not in the GSKS, so we can prune the
subtree rooted at ni. This reduces attribute value calculation, node accesses, and
dominance checks. Therefore, we can accelerate query processing performance.
Note that once SKR-tree is constructed, it is updated efficiently by incremental
manner [5].

3.2 Upper-Bound Social Value Calculation

To construct SKR-tree, we have to calculate upper-bound social values, which
are defined below, for all leaf nodes.

Definition 3 (Upper-bound social value). Given a leaf node ni and a set
of all users U , ni.S is calculated as follows.

ni.S = max∀uj∈U |uj .friends ∩ pi.checkin|
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For example, in Fig. 3, |ua.friends ∩ pA.checkin| is 3, and those for ub, uc,
ud, ue, and uf are respectively 3, 1, 1, 4, and 2. In this case, nA.S = 4. Note
that once we obtain ni.S, it is efficiently updated if the social graph is updated
because an insertion or a deletion of a check-in and a friendship affects just a
part of social graph.

Fig. 3. An example social graph to calculate an upper-bound social value

3.3 GSKSQ Processing Algorithm

We propose Algorithm 2 to calculate a GSKS efficiently on a SKR-tree.
In Algorithm 2, we traverse nodes based on scores. These scores are obtained

by a scoring function F , and higher scores mean higher priorities. We achieve
this priority by using a priority queue QF , and this queue is initialized by the
root node nroot (line 1). At the first of each iteration, we pop and get the top
node of QF , ntemp, and check whether or not ntemp is dominated by PoIs in
P temp
GSKS , which is an intermediate result set (lines 3–8). If ntemp is dominated

by pi ∈ P temp
GSKS , we prune the subtree rooted at ntemp, and proceed to the next

iteration. Otherwise, if its child nodes ni ∈ ntemp.children are internal nodes,
we calculate the three attribute values of ni, and push them to QF (lines 9–
13). If ni ∈ ntemp.children are leaf nodes, we calculate pi.G(qu), pi.S(qu), and
pi.K(qu) where pi is pointed by ni. Then, we execute dominance checks for all
pi against the PoIs in P temp

GSKS . After that, we add the PoIs pointed by nodes in
ntemp.children which are not dominated by pj ∈ P temp

GSKS to P temp
GSKS , and remove

non-skyline PoIs from P temp
GSKS (lines 14–23). We continue this iteration while QF

is not empty (line 24).

3.4 Scoring Function Design

The node traversal order in Algorithm2 is dependent on a scoring function F .
We design F based on two criteria. First one is the number of node accesses. To
achieve fast query processing, the number of node accesses should be minimized.
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Algorithm 2. Proposed algorithm

1 QF .push(nroot)
2 while QF �= ∅ do
3 ntemp = QF .top
4 QF .pop

5 for ∀pi ∈ P temp
sky do

6 if ntemp ≺ pi then
7 ntemp.children = ∅
8 break

9 if ntemp.children are not leaf then
10 for ∀ni ∈ ntemp.children do
11 Calculate each attribute value of ni

12 ni.score = F (ni, qu)
13 QF .push(ni)

14 else
15 for ∀ni ∈ ntemp.children do
16 Calculate each attribute value of ni.p

17 P temp
sky ← P temp

sky \{∀pj ∈ P temp
sky |pj ≺ ni.p}

18 if �pj ∈ P such that pi ≺ pj then

19 P temp
sky ← P temp

sky ∪ {ni.p}

20 return P temp
sky

Second one is the number of dominance checks. It is intuitively known that if
P temp
GSKS has a skyline PoI that dominates many PoIs, we can reduce unnecessary

checks. Therefore, we should obtain such a PoI as soon as possible.
Now we address the first requirement and introduce Theorem 1. Proof is

omitted due to space limitation.

Theorem 1. Assume that we process a GSKSQ by using Algorithm2. Let ni

and nj be arbitral nodes of SKR-tree, which satisfy that ni ≺ nj. If F satisfies
that

F (qu, ni) < F (qu, nj), (2)

the number of node accesses is minimum for retrieving the GSKS on the SKR-
tree.

Based on Theorem 1, we address the second requirement. Our F consists
of three sub-scoring functions fG, fS , and fK , which correspond to the three
attributes. As well as F , higher scores of these sub-scoring functions mean higher
priorities. Note that, PoIs which dominate larger space potentially dominate may
nodes and PoIs. Here, we design F and the three sub-scoring functions as follows.

F (qu, ni) =

{
fG(qu, ni) · fS(qu, ni) · fK(qu, ni) (fG(qu, ni) = 0)
− 1

fS(qu,ni)·fK(qu,ni)
(fG(qu, ni) = 0)

, (3)
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fG(qu, ni) = distmax − ni.G(qu), (4)

fS(qu, ni) =

{
ni.S(qu) (ni.S(qu) = 0)
α (ni.S(qu) = 0)

, (5)

fK(qu, ni) =

{
ni.K(qu) (ni.K(qu) = 0)
α (ni.K(qu) = 0)

, (6)

where distmax is the farthest distance among the ones between qu.loc and all
corners of nroot, which is an MBR, and α is a real number which satisfies 0 <
α < 1. The reason why F , fS , and fK have 2 cases is that the most natural
definitions of them, which is the first cases, do not satisfy Eq. (2) in case that
one or more of fG, fS , and fK is 0.

In addition to this, we refine fS by considering a practical characteristic of
social relationships. Assume that a user issues a GSKSQ. It can be expected that
he/she tends to issue this query in his/her friends’ living area. This is because
users on SNSs are more likely to connect with people they already know, or have
some offline basis for the connection [6]. In this case, his/her friends tend to
check-in to near PoIs to the query point. This suggests that distance between
attribute and social attribute values have correlation. To this end, we design a
sub-scoring function f ′

S , which employs fS of Eq. (5) and is employed instead of
fS in Eq. (3), as follows.

f ′
S(qu, ni) =

{
fS(qu, ni) · fG

d(qu, ni) (ni.G(qu) = 0)
fS(qu, ni) (ni.G(qu) = 0)

, (7)

where d is a real number which provides the influence of distance attribute. Note
that d is selected by some empirical studies.

Based on the above discussion, we finally redesign a scoring function F which
we propose in this paper and is described below.

F (qu, ni) =

{
fG

d+1(qu, ni) · fS(qu, ni) · fK(qu, ni) (fG(qu, ni) = 0)
− 1

fS(qu,ni)·fK(qu,ni)
(fG(qu, ni) = 0)

This scoring function is based on Eqs. (3) and (7).

4 Experimental Evaluation

4.1 Experimental Setup

We used two real datasets of Gowalla and Brightkite detailed in Table 1. These
datasets include: (1) PoIs which hold IDs and locations, (2) users who hold
logs of friendships and check-ins. For each PoI in a given dataset, we assigned
five synthetic keywords, and the number of distinct keywords in the dataset
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Table 1. Datasets

Dataset #Users #PoIs #Friendships #Check-ins

Gowalla 196,591 1,280,969 1,900,655 3,981,334

Brightkite 58,228 772,965 428,157 1,072,965

is 10,000. To simulate semantic proximities (e.g., the keyword of “restaurant”
tends to appear with the keyword of “lunch”), we used continuous five integers
calculated by modulo 10,000 as the keywords (e.g., 9,999, 0, 1, 2, 3). For these
datasets, we run 100 GSKSQs by the following way. We first pick a random user
and choose 1–5 query keywords in the same way employed for PoIs. We calculate
the MBR of PoIs which the user has checked-in, and choose a random location
from the MBR as a query point. For α in Eqs. (5) and (6), we use 0.001. All
algorithms were implemented in C++, and executed on Intel Xeon 3.47 GHz
with 192 GB RAM.

4.2 Experimental Result

Pre-processing. The calculation times of upper-bound social values are only
67.7 s for Gowalla, and 35.2 s for Brightkite. These are trivial times in practice.
The calculation for Gowalla takes more time because Gowalla has more users,
check-ins, and friendships. In addition, the construction times of SKR-tree are
4.38 × 104 s for Gowalla, and 2.38 × 104 s for Brightkite. These are reasonable
times in practice because we can update them once we construct them. Gowalla
takes more time because it has more PoIs.

Results with Different Number of Query Keywords. We run GSKSQs
with different number of query keywords to demonstrate the efficiency of our
algorithm, and to investigate the impact of the number of query keywords. The
result is shown in Fig. 4. We used the best d shown in Table 2, which are acquired
from empirical experimental results. We can see that our algorithm significantly
outperforms the baseline. It is also seen that both algorithms need longer process-
ing times as the number of query keywords increases. When the number of query
keywords is large, the number of PoIs which have the common keywords with
query keywords is also large. Hence, the number of dominance checks increases.

Table 2. The best d for each number of query keywords

Dataset Number of query keywords

1 2 3 4 5

Gowalla 101 116 122 122 122

Brightkite 119 119 119 120 120
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We here show the pruning rate of our algorithm in Fig. 5. We define pruning rate
as a rate of pruned nodes to the entire nodes. According to Fig. 5, the pruning
rates for Gowalla are lower than those of Brightkite. This difference is explained
by Table 1. The differences of the numbers of users, check-ins, and friendships
are larger than the difference of the number of PoIs, and that causes differences
of attribute values of social relationships. These pruning rates bring the results
that the processing times of the proposed algorithm on Gowalla are in 43%–49%
compared to that of the baseline one, while those on Brightkite are in 12%–16%.

Fig. 4. Impact of the number of query keywords

Fig. 5. Pruning rates for the two datasets

5 Conclusion

In this paper, we introduced a novel query, GSKSQ. Although this query sup-
ports decision making in LBSNS, it requires high processing cost when we use a



Geo-Social Keyword Skyline Queries 435

naive algorithm. To overcome this problem, we proposed an index called SKR-
tree and an algorithm which uses this index. Our algorithm optimizes a number
of node accesses, and achieves effective dominance checks by considering a prac-
tical characteristic of social relationships. The experimental results demonstrate
that the performance of our algorithm is better than that of the baseline algo-
rithm.
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