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Abstract. The demand for interfaces that allow users to interact with
computers in an intuitive, effective, and efficient way is increasing. Ques-
tion Answering (QA) systems address this need by answering questions
posed by humans using knowledge bases. In recent years, many QA sys-
tems and related components have been developed both by practitioners
and the research community. Since QA involves a vast number of (par-
tially overlapping) subtasks, existing QA components can be combined in
various ways to build tailored QA systems that perform better in terms
of scalability and accuracy in specific domains and use cases. However, to
the best of our knowledge, no systematic way exists to formally describe
and automatically compose such components. Thus, in this work, we
introduce QAestro, a framework for semantically describing both QA
components and developer requirements for QA component composition.
QAestro relies on a controlled vocabulary and the Local-as-View (LAV)
approach to model QA tasks and components, respectively. Furthermore,
the problem of QA component composition is mapped to the problem
of LAV query rewriting, and state-of-the-art SAT solvers are utilized to
efficiently enumerate the solutions. We have formalized 51 existing QA
components implemented in 20 QA systems using QAestro. Our empir-
ical results suggest that QAestro enumerates the combinations of QA
components that effectively implement QA developer requirements.

1 Introduction

The main goal of Question Answering (QA) systems is to allow users to ask
questions in natural language, to find the corresponding answers in knowledge
bases, and to present the answers in an appropriate form. In recent years, QA
systems have received much interest, since they manage to provide intuitive
interfaces to humans for accessing distributed knowledge – structured, semi-
structured, or unstructured – in an efficient and effective way. Since the first
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attempts to provide natural language interfaces to databases around 1970 [1],
an increasing number of QA systems and QA related components have been
developed by both industry and the research community [12,16].

Despite different architectural components and techniques used by the var-
ious QA systems, these systems have several high-level functions and tasks in
common [22]. For instance, the analysis of a question often includes tasks such
as named entity recognition, disambiguation, and relation extraction, to name a
few. Recent literature reviews have studied and classified existing QA systems
and QA components with regard to the tasks they attempt to solve [22] and the
common goals and challenges they tackle [12,16]. In addition, several frameworks
have been proposed to address the re-usability of QA components. For instance,
openQA [17] suggests a modular QA system consisting of components perform-
ing QA tasks that expose well-defined interfaces. The interchangeability of QA
components is the main focus of other approaches as well, such as QALL-ME [8]
which proposes a service-oriented architecture for the composition of QA com-
ponents and Qanary [19] which introduces an ontology to tackle interoperability
in the information exchange between QA components.

The aforementioned works provide a framework for developing or even inte-
grating QA systems but fail to systematically address how to formally describe
and automatically compose existing QA components. Still the composition of
new QA systems for a specific domain or use case given the plethora of existing
QA components is a rather manual, tedious, and error-prone task.

We introduce QAestro, a framework to semantically describe QA com-
ponents and QA developer requirements and to produce QA component com-
positions based on these semantic descriptions. In particular, we introduce a
controlled vocabulary to model QA tasks and exploit the Local-As-View (LAV)
approach [15] to express QA components. Furthermore, QA developer requests
are represented as conjunctive queries involving the concepts included in the
vocabulary. The QA Component Composition problem can be afterwards cast
to the LAV Query Rewriting Problem (QRP) [11]. Then, state-of-the art SAT
solvers [10] can find the solution models in the combinatorial space of all solu-
tions which eventually correspond to QA component compositions. Using QAe-
stro, we formalized 51 QA components included in 20 distinct QA systems.
In an empirical study, we show that QAestro effectively enumerates possi-
ble combinations of QA components for different developer requirements. Our
main contributions are: (1) a vocabulary for expressing QA tasks and devel-
oper requirements; (2) the formalization of existing 51 QA components from 20
QA systems; (3) a mapping of the QA Component Composition problem into
QRP; (4) the QAestro framework that generates QA component compositions
based on developer requirements and (5) an empirical evaluation of QAestro
behavior on QA developer requirements over the formalized QA components.

The remainder of the paper is structured as follows. We introduce the problem
of QA Component Composition in the context of a motivating example in Sect. 2.
In Sects. 3 and 4, we introduce the QAestro framework and present its details
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Fig. 1. OKBQA QA Pipeline and Pipeline Instance. OKBQA pipeline consists of four
components that implement four core modules: Template Generation Module, Disam-
biguation Module, Query Generation Module, and Answer Generation Module. In this
example, the disambiguation task can be performed by OKBQA AGDISTIS, Alchemy,
and DBpedia NED interchangeably.

respectively. The results of our evaluation are reported in Sect. 5. We discuss the
related work in Sect. 6 and conclude with an outlook on future work in Sect. 7.

2 Motivating Example

We motivate our work by discussing the problem of QA component composition
in the context of the Open Knowledge Base and Question Answering (OKBQA)
framework1. OKBQA considers QA as a predefined workflow consisting of four
core modules providing Web service interfaces: (1) Template Generation Mod-
ule for analyzing a question in natural language and producing SPARQL query
skeletons, (2) Disambiguation Module for mapping words or word sequences to
Linked Data resources, (3) Query Generation Module for producing SPARQL
queries based on modules (1) and (2), and finally, (4) Answer Generation Module
for executing SPARQL queries to get the answers. Figure 1 illustrates an instan-
tiation of a QA pipeline with the components OKBQA TGM v.2, OKBQA
AGDISTIS, Sparqlator, and OKBQA AGM 2016 which implement the afore-
mentioned modules (1)–(4), respectively2. Although OKBQA provides a pub-
lic repository comprising several QA components that can be composed in the
OKBQA pipeline, still several issues remain open for the QA system developer.
First of all, there is no systematic way to identify other existing components
– either standalone or parts of other QA systems – that could be part of the
OKBQA pipeline. Secondly, there is no way to exploit OKBQA QA components
in existing QA systems systematically. Thirdly, it is not clear whether and how
other QA-related tasks and/or subtasks can be integrated in the OKBQA frame-
work. For instance, let us consider the disambiguation task. Several components,
such as Alchemy API3, and DBpedia NED [18] may replace OKBQA AGDIS-
TIS in the QA pipeline of Fig. 1 since they perform conceptually the same QA
task. Similarly, OKBQA AGDISTIS could serve the purpose of disambiguation

1 http://www.okbqa.org/.
2 All components can be found at http://repository.okbqa.org.
3 http://alchemyapi.com.

http://www.okbqa.org/
http://repository.okbqa.org
http://alchemyapi.com
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in other QA systems as well. The same observation holds for other QA tasks
that can participate in a QA pipeline. Hence, with the growing number of QA
components, identifying all viable combinations of QA components that per-
form one or more tasks in combination requires a complex search in the large
combinatorial space of solutions, which until now has to be performed manually.

3 QAESTRO Framework

QAestro is a QA framework that allows for the composition of QA components
into QA pipelines. QAestro is based on a QAV vocabulary, which encodes
the properties of generic QA tasks and is utilized to semantically describe QA
components. QAestro exploits semantic descriptions of QA components, and
enumerates the compositions of the QA components that implement a given QA
developer requirement. Thus, QAestro provides a semantic framework for QA
systems that not only enables a precise description of the properties of generic
QA tasks and QA components, but also facilitates composition, integration, and
reusability of semantically described QA components.

Formally, QAestro is defined as a triple 〈QAV, QAC, QACM〉, where: (i)
QAV is a domain vocabulary composed of predicates describing QA tasks, e.g.,
disambiguation or entity recognition; (ii) QAC is a set of existing QA compo-
nents that implement QA tasks, e.g., AGDISTIS [23] or Stanford NER [9]; and
(iii) QACM is a set of mappings that define the QA components in QAC in
terms of the QA tasks that they implement. Mappings in QACM correspond to
conjunctive rules, where the head is a predicate in QAC and the body is a con-
junction of predicates in QAV. QA developer requirements are also represented
as conjunctive queries over the predicates in QAC. Moreover, the problem of
QA Component Composition corresponds to the enumeration of combinations
of QA components that implement a QA developer requirement. In the following
sections, QAestro and the problem of QA composition are described in detail.

3.1 The Question Answering Tasks

QA systems implement abstract QA tasks to answer questions posed by humans.
QA tasks include question analysis, query construction, and the evaluation of the
generated query over a knowledge base to answer the input question [22]. Figure 2
depicts an abstract pipeline of the QA tasks [22], which receives a question as
input and outputs the answers to this question over a knowledge base.

Question Analysis: Using different techniques, the input question is analyzed
linguistically to identify syntactic and semantic features. The following tech-
niques form important subtasks:

Tokenization: A natural language question is fragmented into words, phrases,
symbols, or other meaningful units known as tokens.

POS Tagging: The part of speech, such as noun, verb, adjective, and pronoun,
of each question word is identified and attached to the word as a tag.
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Fig. 2. Pipeline of QA Tasks. A QA pipeline receives a question and outputs the
question answers. Question Analysis allows for question linguistic and semantic analysis
to identify question features. During Data Mapping, question features are mapped into
concepts in a Knowledge Base. A SPARQL query is constructed and executed during
Question and Answer Generation.

Dependency Parsing: An alternative form of syntactic representation of the
question to form a tree-like structure is created where arcs (edges in the tree)
indicate that there is a grammatical relation between two words, whereas the
nodes in the tree are the words (or tokens) in the question.

Recognition: An input question is parsed to identify the sequence of words that
represent a person, a thing, or any other entity.

Disambiguation: The identity of the entity in the text is retrieved and then
linked to its mentions in knowledge bases. Input for this may be one or more
of the following: question, entity, and template. The output is a list of disam-
biguated entities.

Linguistic Triple Generation: Based on the input natural language question,
triple patterns of the form 〈query term, relation, term〉 are generated [22].

Data Mapping: Information generated by Query Analyzer such as entities and
tokens is mapped to its mentions in online knowledge bases such as DBpedia.

Query Generating: SPARQL queries are constructed; generated queries rep-
resent input questions over entities and predicates in online knowledge bases.

Answer Generating: The SPARQL queries are executed on the end points of
knowledge bases to obtain the final answer.

Other QA Tasks include:

– Question Type Identification: This task identifies the type of the question.
The input is the natural language question; the output is the type of the
question, e.g., “yes-no”, “location”, “person”, “time”, or “reason”.

– Answer Type Identification: This task identifies the desired type of the
final answer. This task is sometimes performed as a part of the Question
Analysis task or as a subtask of Answer Generation.

– Query Ranking: In some of the QA systems, the task Query Generation
generates multiple candidate queries. This task ranks the generated SPARQL
queries using a ranking function and it helps to select the best ranked query.
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– Syntactic Parsing: The input question is represented in the form of a syn-
tactic tree, consisting of identified nouns, verbs, adjectives, relations, etc.
However, this task may use as input natural language question or POS tags
which makes it different from POS Tagging [21].

The above QA task definitions describe the logical structure of an abstract
QA pipeline. However, QA systems implement these tasks differently, sometimes
combining several of these tasks in different order or skipping some of the tasks.

3.2 Controlled Vocabulary for Abstract Question Answering Tasks

A vocabulary QAV of the domain of QA tasks is described as a pair 〈δ,A〉,
where δ is a signature of a logical language and A is the set of axioms describing
the relationships among vocabulary concepts. A signature δ is a set of predicate
and constant symbols, from which logical formulas can be constructed, whereas
the axioms A describe the vocabulary by illustrating the relationships between
concepts. For instance, the term disambiguation is a predicate of arity four in δ;
disambig(x, y, z, t) denotes that the QA task disambiguation relates an entity x,
a question y, a disambiguated entity z, and a template t. Furthermore, the binary
predicate questionAnalysis(x, y) models the question analysis task and relates
an entity x to a question y. The following axiom states that the disambiguation
task is a subtask of the question analysis task:

disambig(x, y, z, t) → questionAnalysis(x, y)

3.3 Semantic Descriptions of Question Answering Components

QAC is a set of predicate signatures {QAC 1, . . . ,QACn} that model QA compo-
nents. For example, AGDISTIS [23] is represented with predicate Agdistis(x, y, z)
where x, y, and z denote an entity, a question, and a disambiguated entity,
respectively. Further, the QA component Stanford NER [9] is modeled with the
predicate StanfordNER(y, x), which relates a question y to an entity x.

QAestro follows the Local-As-View (LAV) approach to define QA compo-
nents in QAC based on predicates in QAV. LAV is commonly used by data inte-
gration systems to define semantic mappings between local schemas and views
that describe integrated data sources and a unified ontology [20]. The LAV for-
mulation allows QAestro to scale up to a large number of QA components, as
well as to easily be adjusted to new QA components or modifications of existing
ones. This property of the LAV approach is particularly important in the area
of Question Answering, where new QA systems and components are constantly
being proposed by practitioners and the research community. Following the LAV
approach, a QA component C is defined using a conjunctive rule R. The head of
R corresponds to the predicate in QAC that models C, while the body of R is a
conjunction of predicates in QAV that represent the tasks performed by C. LAV
rules are safe, i.e., all the variables in the head of a rule are also variables in the
predicates in the body of the rule. Additionally, input and output restrictions
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of the QA components can be represented in LAV rules. The following LAV
rules illustrate the semantic description of the QA components AGDISTIS and
Stanford NER in terms of predicates in QAV. The symbol “$” denotes an input
attribute of the corresponding QA component.

Agdistis($x, $y, z) : – disambig(x, y, z, t), entity(x), question(y), disEntity(z)
StanfordNER($y, x) : – recognition(y, x), question(y), entity(x)

These rules state the following properties of AGDISTIS and Stanford NER:
(i) AGDISTIS implements the QA task of disambiguation; an entity and a ques-
tion are received as input, and a disambiguated entity is produced as output;
(ii) Stanford NER implements the QA task of recognition; it receives a question
as input and outputs a recognized entity.

3.4 Question Answering Developer Requirements

A QA developer requirement expresses the QA tasks that are required to be
implemented by compositions of existing QA components. QA developer require-
ments are represented as conjunctive rules, where the body of a rule is composed
of a conjunction of QA tasks. Similarly as for LAV mapping rules, input and out-
put conditions can be represented; the symbol “$” denotes attributes assumed
as input in the QA developer requirement. For instance, consider a developer
who is interested in determining those compositions of QA components that,
given a question q, perform entity recognition and disambiguation, and produce
as output an entity e; the question q will be given as input to the pipeline.

QADevReq($q, e) : – recognition(q, e), disambig(e, q, de, t)

Now, suppose another developer requires also to know the compositions of
QA components able to perform the pipeline of entity recognition and disam-
biguation. However, given the question as input, she requires to check all the
intermediate results produced during the execution of the two tasks. In this case,
the body of the rule remains the same, while the head of the rule (QADevReq)
includes all variables corresponding to the arguments of the disambiguation task.

QADevReq($q, e, de, t) : – recognition(q, e), disambig(e, q, de, t)

4 Composition of QA Components in Pipelines

In this section, we describe the QAestro solution to the problem of QA Com-
ponent Composition. We then describe the QAestro architecture, and the main
features of the QAestro components.
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4.1 The Problem of QA Component Composition

As previously presented, QAestro provides a vocabulary QAV that formalizes
QA tasks, and allows for the definition of QA components using LAV rules and
QA developer requirements using conjunctive queries based on QAV. In this
subsection, we will show how QAestro solves the problem of QA Component
Composition, i.e., how different QA components are automatically composed
for a given developer requirement based on LAV mappings that semantically
describe existing QA components. Next, we illustrate the problem of QA Com-
ponent Composition. Besides the descriptions of AGDISTIS and Stanford NER
(Subsect. 3.3), we consider further semantic descriptions for DBpedia NER [18],
Alchemy API, and the answer type generator component of the QAKiS QA
system [6], which we call Qakisatype.

DBpediaNER($y, x) : – recognition(y, x), question(y), entity(x)
Alchemy($y, z) : – disambig(x, y, z, t), question(y), disEntity(z)
Qakisatype($y, a) : – answertype(y, a, o), question(y), atype(a)

These rules state the following properties of the described QA components:

– The predicates DBpediaNER($y, x), Alchemy($y, z), and Qakisatype($y, a)
represent the QA components DBpedia NER, the Alchemy API, and Qak-
isatype, respectively. The symbol $ denotes the input restriction of these QA
components, i.e., the three QA components receive a question as input. These
predicates belong to QAC.

– The predicates recognition(y, x), disambig(x, y, z, t), and answertype(y, a, o)
model the QA tasks: entity recognition, disambiguation, and answer type
identification, respectively. These predicates belong to the QAV.

– An input natural language question is modeled by the predicate question(y),
while entity(x) represents a named entity identified in a question.

– The QAV predicates disEntity(z) and atype(a) model the QA tasks of gen-
erating disambiguated entities and answer type identification, respectively.

– The variables x, y, z, and a correspond to instances of predicates entity,
question, disEntity, and atype, respectively. The variable o is not bound to
any predicate because Qakisatype does not produce ontology concepts.

Additionally, consider the following QA developer requirement for QA com-
ponent compositions in a pipeline of entity recognition, disambiguation, and
answer type identification, which receives a question q and outputs an entity e.

QADevReq($q, e) : – recognition(q, e), disambig(e, q, de, t), answertype(q, a, o)

QAestro generates two QA compositions as solutions to the problem of QA
Component Composition. These compositions correspond to the enumeration of
those combinations of QA components that implement the pipeline of the QA
tasks of recognition, disambiguation, and answer type identification. Further,
each composition satisfies the input restrictions of each QA component.



QAestro – Semantic-Based Composition of Question Answering Pipelines 27

QADevReq($q, e) : – StanfordNER($q, e),Agdistis($e, $q, de),Qakisatype($q, a) (1)

QADevReq($q, e) : –DBpediaNER($q, e),Agdistis($e, $q, de),Qakisatype($q, a) (2)

Composition (1) indicates that the combination of the QA components Stan-
ford NER, AGDISTIS, and Qakisatype implements the pipeline of recogni-
tion, disambiguation, and answer type identification. The input restriction of
StanfordNER($q, e) is satisfied by the question that is given as input in the
pipeline. The QA component Agdistis($e, $q, de) is next in the composition; both
the entity e produced by Stanford NER and the question q given by input to the
pipeline, satisfy the input restrictions of this QA component. Similarly, input
restriction of Qakisatype($q, a) is satisfied by the question q. Additionally, Com-
position (2) implements the pipeline, but the QA component DBpedia NER is
utilized for the QA task of entity recognition. The input restriction of DBpedia
NER is also satisfied by the question received as input of the pipeline.

Consider the following compositions for the same QA developer requirement:

QADevReq($q, e) : – StanfordNER($q, e),Alchemy($q, de),Qakisatype($q, a) (3)
QADevReq($q, e) : –DBpediaNER($q, e),Alchemy($q, de),Qakisatype($q, a) (4)

Both compositions implement the pipeline of recognition, disambiguation,
and answer type identification; also the input restrictions of the QA components
are satisfied. However, these compositions are not valid because the argument e
that represents an entity is not generated by Alchemy. This argument is required
to be joined with the entity produced by the QA component that implements
the entity recognition task and to be output by the compositions.

Formally, the problem of QA Component Composition is cast to the problem
of Query Rewriting using LAV views [2]. An instance of QRP receives a set of
LAV rules on a set P of predicates that define sources in V , and a conjunctive
query Q over predicates in P . The output of Q is the set of valid re-writings of
Q on V . Valid rewritings QR of Q on V are composed of sources in V that meet
the following conditions:

– Every source in QR implements at least one subgoal of Q.
– If S is a source in QR and implements the set of subgoals SG of Q, then

• The variables in both the head Q and SG are also in the head of S.
• The head of the LAV rule where S is defined, includes the variables in

SG that are in other subgoals of Q.

Note that the QA component Alchemy(q, de) violates these conditions in
Composition (3) and (4), i.e., Alchemy(q, de) does not produce an entity e for a
question q. Thus, compositions that implement the QA task of disambiguation
with Alchemy(q, de) are not valid solutions for this QA developer requirement.

QAestro casts the problem of QA Component Composition into the Query
Rewriting Problem (QRP). Deciding if a query rewriting is a solution of QRP
is NP-complete in the worst case [20]. However, given the importance of QRP
in data integration systems and query optimization, QRP has received a lot of
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Fig. 3. QAestro Architecture. QAestro receives as input a QA developer require-
ment QADR and a set QACM of LAV rules describing QA components, and produces
all the valid compositions that implement QADR.

attention in the Database area, and several approaches are able to provide effec-
tive and efficient solutions to the problem, e.g., MCDSAT [2,13] or GQR [14].
Thus, building on existing solutions for QRP, we devise a solution to the problem
of QA Component Composition that is able to efficiently and effectively enumer-
ate valid compositions of a QA developer requirement. QAestro implements a
two-fold approach, where first, solutions to the cast instance of QRP are enumer-
ated. Then, input and output restrictions of QA components are validated. Valid
compositions of QA components that both implement a QA developer require-
ment and respect the input and output restrictions, are produced as solutions
of an instance of the problem of QA Component Composition.

4.2 The QAESTRO Architecture

QAestro relies on MCDSAT, a state-of-the-art solver of QRP to efficiently
enumerate the compositions of QA components that correspond to implementa-
tions of a QA developer requirement. Figure 3 depicts the QAestro architec-
ture. QAestro receives as input a QA developer requirement QADR expressed
as a conjunctive query over QA tasks in a vocabulary QAV. Furthermore, a set
QACM of LAV rules describing QA components in terms of QAV is given as
input to QAestro. QACM and QADR correspond to an instance of the QA
Component Composition which is cast into an instance of QRP and passed to
MCDSAT, a solver of QRP. MCDSAT encodes the instance of QRP into a CNF
theory in a way that models of this theory correspond to solutions of QRP. MCD-
SAT utilizes an off-the-shelf SAT solver to enumerate all valid query rewritings
that correspond to models of the CNF theory. The output of the SAT solver is
decoded, and input and output restrictions are validated in each query rewrit-
ing. Finally, QAestro decodes valid query rewritings where input and output
restrictions are satisfied, and generates the compositions of QA components that
implement the pipeline of QA tasks represented by QADR.



QAestro – Semantic-Based Composition of Question Answering Pipelines 29

5 Empirical Study

We empirically study the behavior of QAestro in generating possible QA com-
ponent compositions given QA developer requirements. We assess the following
research questions: (RQ1) Given the formal descriptions of QA components
using QAV and QA developer requirements are we able to produce sound and
correct compositions? (RQ2) Are we able to produce efficiently solutions to the
problem of QA Component Composition? The experimental configuration is as
follows:

QA Components and Developer Requirements. To evaluate QAestro
empirically, we have semantically described 51 QA components implemented by
20 QA systems which have participated in the first five editions of the QA over
Linked Data Challenge (QALD1–5)4. Additionally, we studied well-known QA
systems such as AskNow [7], TBSL [21], and OKBQA to semantically describe
their components. After closely examining more than 50 components of these
QA systems, we broadly categorized the components based on the QA tasks they
perform, as defined in Sect. 3.1. For defining the LAV mappings, we selected only
those QA components, for which there is a clear statement about input, output,
and the QA tasks they perform in a publication (i.e., scientific paper, white
paper, or source repository) about the respective QA system. Furthermore, we
constructed manually 30 QA developer requirements for standalone QA tasks
and QA pipelines integrating various numbers of QA tasks.

Metrics. (i) Number of QA component compositions: Number of QA compo-
nent compositions given the semantic descriptions of QA components in QACM
and a QA developer requirement; (ii) Processing Time: Elapsed time between
the submission of a QA developer requirement and the arrival of all the QA
component compositions produced by QAestro.

Implementation. QAestro is implemented in Python 2.7 on top of MCD-
SAT [2], which solves QRP with the use of the off-the-shelf model compilation
and enumeration tool c2d5. QAestro source code can be downloaded from
https://github.com/WDAqua/QAestro and the evaluation results can be viewed
at https://wdaqua.github.io/QAestro/. Experiments were executed on a laptop
with Intel i7-4550U, 4× 1.50 GHz and 8 GB RAM, running Fedora Linux 25.

5.1 Evaluation Results

Analysis of QA Components. In Fig. 4, we illustrate all QA components
that have been formalized using QAestro along with their connections to the
QA tasks they implement and the QA systems they belong to as an undirected
graph6. In total, the resulting graph consists of 82 nodes and 102 edges. From
the 82 nodes, 20 correspond to QA systems, 11 represent QA tasks, and 51 refer
4 http://qald.sebastianwalter.org/.
5 http://reasoning.cs.ucla.edu/c2d/.
6 The graph visualization was generated with cytoscape - http://www.cytoscape.org.

https://github.com/WDAqua/QAestro
https://wdaqua.github.io/QAestro/
http://qald.sebastianwalter.org/
http://reasoning.cs.ucla.edu/c2d/
http://www.cytoscape.org
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Fig. 4. QA Systems, Components, and Tasks. 51 QA components from 20 QA systems,
implementing 11 distinct QA tasks are depicted as a directed graph.

to concrete QA components – 43 are part of the QA systems while 8 are provided
also as standalone components (e.g., AGDISTIS, DBpedia NER, etc.). It can be
observed in Fig. 5a that the majority of the analyzed QA components implement
the Disambiguation task (10 in total) followed by the Query Generation (8),
Tokenization (8), and POS Tagging (7) tasks. Many of these components are
reused among the different QA systems. In addition, Fig. 5b shows that in almost
half of the QA systems, components that implement Tokenization and Query
Generation are included, while some less popular QA tasks like Answer Type
Identification and Syntactic Parser are part of only two QA systems.

QA Component Compositions. In order to evaluate the efficiency of QAe-
stro, we edited 30 QA developer requirements with different number of QA
tasks to be included in the QA pipeline and different expected inputs and out-
puts. Given these requirements and the semantic descriptions of QA components
QAestro produced possible QA component compositions. Figure 6a reports on
the number of different compositions for all 30 requirements grouped according
to the number of QA tasks they include. Figure 6b demonstrates the time needed
by QAestro to process each of the requirements and generate QA component
compositions. We performed the measurements 10 times and calculated the mean
values. While for standalone QA components or components that perform two
tasks the solution space is relatively limited – from one to 30 combinations –
for QA developer requirements that include three or more QA tasks the number
of QA compositions may increase significantly. For instance, we notice that for
a few requirements with three and four QA tasks the possible compositions are
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Fig. 5. Frequencies of QA components and Systems per QA Task. Disambiguation,
Tokenization, and Query Generation are the most popular tasks.

Fig. 6. Analysis of QA Component Compositions. QAestro is able to produce QA
component compositions effectively and very fast.

more than 100. In these cases, the requirements do not foresee input or output
dependencies between QA components, hence, the number of possible combina-
tions increases significantly. All solutions produced by QAestro are sound and
complete, since MCDSAT is able to produce every valid solution and all solutions
that it provides are valid [2]. Furthermore, the processing time is for all require-
ments less than half a second and relates linearly to the number of QA tasks,
since MCDSAT can perform model enumeration in linear time. Consequently,
the experimental results allow us to positively answer RQ1 and RQ2.
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6 Related Work

Since 2010, more than 70 Question Answering Systems have been developed [12].
However, most of these QA systems (e.g., [6,7]) are monolithic in their imple-
mentation, which restricts their reusability in other QA approaches. Therefore,
researchers have shifted their focus to building reusable QA architectures and
frameworks. QALL-ME [8] is one such framework; it provides a reusable archi-
tecture to build multilingual QA systems. Furthermore, openQA [17] is an exten-
sible framework for building multiple QA pipelines. It includes many external
QA systems such as TBSL [21] to build modular QA pipelines. Open Knowledge
Base and Question Answering (OKBQA) is a recent attempt to build component-
based QA systems. Its repository includes overall 24 QA components solving
four core QA tasks. However, there is no formalized way to describe how stand-
alone QA components like Stanford NER [9] and Alchemy API could be used to
perform the disambiguation task in OKBQA pipeline besides existing OKBQA
disambiguation components. In 1978, researchers first attempted to provide for-
malization for QA systems [4]. The authors illustrated how a natural language
question can be translated into a semantic representation and an underlying
knowledge system can be formally described. Qanary [5], co-developed by some
authors of this paper, is a recent attempt to provide a formalised methodology
for building vocabulary-driven QA systems by integrating reusable QA com-
ponents. QAestro can be integrated into Qanary, and allow for the semantic
description and automatic composition of QA components available in Qanary.

The problem of Web services selection and composition has been extensively
studied in the literature (e.g., [3,13]). Existing approaches range from heuristic-
based [3] to SAT solver-based methods [13], and have shown to be efficient and
effective for different instances of the problem. However, techniques proposed by
Izquierdo et al. [13] that exploit the properties of SAT solvers, have provided
evidence for large-scale composition of Web services. QAestro also exploits the
benefits of modern SAT solvers and makes available an effective and efficient
solution to the problem of QA Component Composition.

7 Conclusions and Future Work

In this work, we have tackled the problem of QA Component Composition by
casting it to the Query Rewriting Problem. We introduced QAestro, a frame-
work that enables QA developers to semantically describe QA components and
developer requirements by exploiting the LAV approach. Moreover, QAestro
computes compositions of QA components for a given QA developer require-
ment by taking advantage of SAT solvers. In an empirical evaluation, we tested
QAestro with various QA developer requirements for QA pipelines of varying
complexity, containing from two to five tasks. We observed that QAestro can
not only produce sound and valid compositions of QA components, but also
demonstrates efficient processing times. QAestro can successfully deal with
the growing number of QA systems and standalone QA components, that is, the
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appearance of a new QA component only causes the addition of a new map-
ping describing the QA component in terms of the concepts in the QA vocabu-
lary. Automated composition of QA components will enable subsequent research
towards determining and executing best-performing QA pipelines that achieve
better performance in terms of accuracy (precision, recall) and execution time.
Currently, QAestro is not capable of implementing the QA pipeline in an auto-
mated way to answer an input question, however, in the future, QAestro will
be integrated in approaches like Qanary to automatically retrieve all feasible
combinations of available QA components and to realize the best-performing
QA pipeline in concrete use cases.
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