
Access Patterns Optimization in Distributed
Databases Using Data Reallocation

Adrian Sergiu Darabant(B), Leon Tambulea, and Viorica Varga

Department of Mathematics and Computer Science, Babes-Bolyai University,
Cluj-Napoca, Romania
dadi@cs.ubbcluj.ro

Abstract. Large distributed databases are split into fragments stored
on far distant nodes that communicate through a communication net-
work. Query execution requires data transfers between the processing
sites of the system. In this paper we propose a solution for minimizing raw
data transfers by re-arranging and replicating existing data within the
constraints of the original database architecture. The proposed method
gathers incremental knowledge about data access patterns and database
statistics to solve the following problem: online re-allocation of the frag-
ments in order to constantly optimize the query response time. We model
our solution as a transport network and show in the final section the
experimental numerical results we obtain by comparing the improve-
ments obtained between various database configurations, before and after
optimization.

1 Introduction

Let us consider a distributed database with a set of fragments/shards F stored
on a set of sites S in a communication network. A set Q of applications/queries
is executed against the database. We start from the assumptions that in order to
minimize the query execution time, the data transferred needs to be minimized.
Thus the data allocation to the sites of the system needs to be implemented
such that data transfer during query execution is minimized. This paper assumes
that the fragments have been already determined and (eventually) allocated, and
focuses on the problem of allocating (re-allocating) them in order to minimize
the total cost of data transmission. In practice, the optimal initial allocation of
fragments is not possible without apriori knowledge of the applications running
on the database. Our solution relaxes this requirement by allowing an initial
allocation unaware of the applications querying data. It then optimizes the allo-
cation by observing, at the database level, the access patterns incurred by the
queries and performing redundant re-allocation.

2 Related Work

Many aspects of the data allocation problem have been studied in the literature.
Reid and Orlowska [6] studied the communication cost minimization problem
c© Springer International Publishing AG 2017
D. Benslimane et al. (Eds.): DEXA 2017, Part I, LNCS 10438, pp. 178–186, 2017.
DOI: 10.1007/978-3-319-64468-4 14

Access Patterns Optimization in Distributed Databases 179

while replica allocation modeled as an integer linear programming with mini-
mizing the execution cost has been approached in [1,3,6].

Menon in [7] considered non-redundant allocation. This paper focuses on
redundant allocation. Wiese in [13] use clustering and clustered attributes.
Huang and Chen in [5] propose a simple and comprehensive model that reflects
transaction behavior in distributed databases.

The fragment allocation problem is NP-complete [9]. A genetic algorithm is
proposed in [12], a genetic search-based clustering in [2] and an evolutionary
approach in [4].

A reinforcement learning solution for allocating replicated fragments is pre-
sented in [8].

3 Query Evaluation and Data Transfer

Let A(q) be the query evaluation tree for query q. We add a root node to this tree
and we obtain a sub-tree rooted in the new node that corresponds to the entire
query q (the new root represents the overall q query). Leaf nodes in A(q) corre-
spond to fragments, while internal nodes represent relational operators (unary
or binary). When evaluating an operator op from q we get a transfer cost for
data from the nodes where each operand of op is evaluated/stored to the node
where op is evaluated.

In the next paragraphs we will use the following notations: F = {fi|i = 1, n} -
fragment set of the database, dfi = dim(fi) - size of fragment fi, i = 1, n,
S = {si|i = 1,m} - the sites of the system where fragments of F are stored,
S(f) - sites of the system where a fragment f, f ∈ F is stored, F (s) - fragments
stored on site s ∈ S.

Starting from a predefined (current) state of the database (fragments, sites,
current fragment allocation), in [10] we attach two values to each node of the
query tree A(q): d and c as follows: d - the size of data associated to the site
(fragment size if the current node is a leaf node, or an estimation of the relational
operator result size for internal nodes), and the costs vector c = (c1, . . . , cm) (m
is the number of sites) of evaluating the query on all sites. For leaf nodes this
equates to the size of the fragment or zero. For an internal node corresponding
to an operator op, ci is the minimal cost of the required data transfers when the
operator op is evaluated on site si. See our previous work [10].

The following paragraphs describe the computation method for the vector c
in the case of the two possible cases: an unary and a binary operator.

Let op be an unary/binary operator and its current operand(s) A(B) with
its associated values: dA and cA = [cA1 , . . . , c

A
m]. The incurred data transfer in

the evaluation of op on site si depending on the location of operand(s) is given
by the bellow expression (binop=1 for binary operators and 0 otherwise):

ci = min{cA1 + dA, . . . , c
A
i−1 + dA, c

A
i , c

A
i+1 + dA, . . . , c

A
m + dA}

+binop × min{cB1 + dB , . . . , c
B
i−1 + dB , c

B
i , c

B
i+1 + dB , . . . , c

B
m + dB} (1)

180 A.S. Darabant et al.

Fig. 1. The evaluation tree and the values associated to an example query.

We show in Fig. 1 the A(q) tree built for some real values of the fragments
size and results of the relational operators.

Using (1), we can compute the values for the vector c associated to query
q - that is the root of the A(q) tree in Fig. 1. Query q is executed on a specific
site of the system. The vector c that labels the root of the A(q) tree provides
the minimal cost of the data transfers during the execution of query q. In the
following we will analyze the required data transfer for the two possible cases:
when f is a sub-tree of q, or f is used in a combination of unary operators. These
cases are depicted in Figs. 2 and 3.

Fig. 2. Fragment used by a binary
operator - one operand is always a leaf
node (fragment)

Fig. 3. Fragment used by a sequence
of unary operators

The two cases described above are valid for a sub-tree of the binary opera-
tor op. The same applies for the second sub-tree, corresponding to the second

Access Patterns Optimization in Distributed Databases 181

operand. If the fragment used by the second sub-tree is also stored on site si,
then copi will be null. If all fragments used by a query q are stored on the site si
where the query is evaluated, then copi = 0 for all operator nodes from A(q).

Using the above analysis we can infer that by storing the fragment f on a
site where the query accessing f is executed (let this site be s), we can reduce
the data transfer cost by an amount r - equal to the size of fragment f or with
the size of the result of the last unary operator applied to f , but before a binary
operator applied to f - i.e. the first unary operator applied to f appearing strictly
before a binary operator on f , if such exists. If fragment f appears multiple times
in the evaluation tree A(q) (as for example is the case for B1 in Fig. 1), then the
data transfer is reduced on all accesses to fragment f .

Given a distributed database and a time interval, we denote by Q the set of
observed queries that are executed against the database and their access pat-
terns in the given time period. Information about the access patterns is stored
by the database’s statistical module in views and can be retrieved for analysis.
We should note that apriori knowledge about the database queries is not needed
(as for the case of fragmentation). Instead we retrieve statistical observed infor-
mation about operators, their evaluation and operator to query membership
relations from the database statistics.

In order to speed up the evaluation of a query q ∈ Q on a site s ∈ S, we
can infer a set of replication hints for the fragments accessed by q, denoted as a
triple (f, s, c) and signifying that by storing fragment f on site s we can reduce
the data transfer cost by c. Since query q can be observed running a number
r, r ≥ 1, of times on site s, then by using the replicas according to the replication
hints the data transfer costs are reduced by an amount of r ∗ c. Considering the
replication hints (f, s) proposed by all queries q ∈ Q and the amount of reduction
in data transfer cost for the resulting fragment storage policy we obtain a set of
replication hints for Q denoted as:

P = {(fi, sj , cij)|fi ∈ F, sj ∈ S, (fi, sj) �= (fk, sl),∀i �= k and j �= l} (2)

In the following we assume that the database dictionary after an observed
running interval contains information about: fragments, fragment allocation,
queries and fragments accessed by a query. Suppose that this information is
made available throughout computed views like an usual database would.

4 Induced Fragment Replication

Let si ∈ S be a site containing some fragments of the database. Let dsi be the
available memory space on site si. We can only store new fragments within the
limits of the available memory space. In the trivial case, if the available memory
is infinite, the solution to the replication problems is total replication where the
data transfer cost is null for any query. When the available memory space is
limited our proposed replication model needs to find the optimal set of replicas
within the memory space constraint such that data transfer cost is minimal for
the overall set of queries in Q. v If the size of a fragment fi ∈ F is dfi and the

182 A.S. Darabant et al.

available memory/storage space on site sj ∈ S is dsj , then we propose a solution
modeled as a transport network compatible flow problem.

A replication hint (fi, sj , cij) as mentioned in (2) has two possible implemen-
tation choices: to be retained/applied or dismissed. We introduce a new variable
rij , rij ∈ {0, 1} that denotes the above possibilities.

4.1 Network Flow Solution

When modeling the induced replication as a network flow problem we have two
possible options: a global variant for the whole set S of sites, or individually for
each site s ∈ S. We will describe the solution model for the former variant.

Given all the above described elements we propose a transport network
denoted as:

N = (V,A, lo, up, co, start, fin) (3)

where: V - is the vertex set, V = F ∪S ∪{start, fin}. We add two new vertices:
start and fin; A - the set of edges of the graph; lo and up correspond to the
lower and upper bound, while co is a set of functions that associates a real
non-negative value to each edge;

The set of edges A and the functions lo, up, co are defined as following, where
|S| denotes the number of sites:

∀fi ∈ F, ai = (start, fi) ∈ A; lo(ai) = 0;up(ai) = dfi × |S|; co(ai) = 0; (4)

∀sj ∈ S, aj = (sj , fin) ∈ A; lo(aj) = 0;up(aj) = dsj ; co(aj) = 0; (5)
⎧
⎨

⎩

∀(fi, sj , cij) ∈ P, aij = (fi, sj) ∈ A;

lo(aij) = up(aij) = dfi; co(aij) =
cij
dfi

; (6)

A flow in the above transport network N is a real function: fl : A −→ 	
having the following properties:

(1) Capacity Restrictions: fl(a) = 0 or lo(a) ≤ fl(a) ≤ up(a),∀a ∈ A.
(2) Flow Conservation ∀v ∈ V − {start, fin} :

∑

u∈V,
(u,v)∈A

fl(u, v) =
∑

u∈V,
(v,u)∈A

fl(v, u) or
∑

a=(u,v)∈A,
u∈V

fl(a) =
∑

a=(v,u),
u∈V

fl(a)

The value of the flow can be computed by:
∑

s∈S

fl(s, fin). Given a flow in the

network N , we can determine a cost given according to the following formula:

cost(fl) =
∑

a∈A

fl(a) × co(a).

where co(a) is the value associated to each edge, introduced above and computed
according to (4, 5, 6). A flow has a maximum cost if there is no other flow with a
higher cost. Conditions from (6) state that storing a fragment f on site s is done

Access Patterns Optimization in Distributed Databases 183

on the entire fragment or not at all. Equation (5) state that storing fragments
in a site cannot exceed the available storage space on that site. Equation (4)
state that the number of fragment replicas is unbounded. The flow cost is only
influenced by the values of the co function in (6) and its value represents the
amount of cost reduction for data transfers.

Finding the allocation schema (with replication) that maximizes the data
transfer cost reduction can be solved in the above conditions by finding the
maximum compatible cost flow in the transport network.

This transport problem is a special one due to its capacity restrictions and
the maximum cost requirement, but not the maximum flow. We elaborate a
backtrack type algorithm which determines for every site si a set of fragments
that can be replicated on that site. From all the constructed sets we only keep
the one with the maximum cost. The main issue of the backtracking algorithm is
that it performs an exhaustive search of the solution space. The explored space
grows proportionally with the product of the number of fragments and sites and
the required time to solution grows and becomes unrealistic for an online sys-
tem. As a solution to this issue we elaborate an approximate algorithm based
on a greedy approach to find the maximum cost flow. The previous algorithm
is simplified by considering only one set R in step 2. Candidate replication frag-
ments will be allocated to a site in cost descending order - as long as there is
available space. This approach reduces algorithm complexity while still allowing
a close approximation of the solution. We thought our proposal as a module in
a database system, that runs quasi-continuously and provides replication hints
whenever these exist and are possible. As a consequence the algorithm should
be as fast as possible and with minimal impact on the database.

Algorithm Max Cost Flow Greedy:
INPUT:n (number of fragments); df (n dimensional array - fragments’ dimension);

m (number of sites); ds (m dim. array - the available space on sites);
c (m x n dim. array - transfer cost of fragment F[i] to size S[j];

1.INIT.
FOR j=1,...,m

fragm[j] = EMPTY SET (index of the fragment replicated on site j)
2.FOR every site j=1,...,m construct array fragm[j]

2.1 SumDimF:=0; R = empty set;
sort descending fragment transport costs: c[j][1],...,c[j][n]
LET PF[1],...,PF[n] be the fragments in descending costs order
FOR i=1,...,n

--site j has enough space to store fragment PF[i]
IF (SumDimF+df[PF[i]]<=ds[j] and c[j][PF[i]]>0)
Add PF[i] to R;
update SumDimF;
store R in fragm[j];

OUTPUT: fragm[j], j=1,...,m --fragments to replicate in site j

5 Experimental Results

In order to evaluate the efficiency of the proposed solutions, we run a battery
of simulations and tests. For assessing the generality of our model we randomly
generate a set of database configurations. To test the proposed Induced Fragment
Replication (IFR) we generate different sets of large distributed databases. The

184 A.S. Darabant et al.

Table 1. Test distributed
DB configurations
DDB Frag Sites Queries Max reps

DDB1 20 5 10000 100

DDB2 50 5 10000 100

DDB3 100 5 10000 100

DDB4 200 5 10000 100

DDB5 300 5 10000 100

DDB6 20 10 10000 100

DDB7 50 10 10000 100

DDB8 100 10 10000 100

DDB9 200 10 10000 100

DDB10 300 10 10000 100

DDB11 20 20 10000 100

DDB12 50 20 10000 100

DDB13 100 20 10000 100

DDB14 200 20 10000 100

DDB15 300 20 10000 100
Fig. 4. Cost Improvements Percents for MFRN = 1
and MFRN = 5

synthetic experiments were preferred due to the lack of large and statistically
complete and consistent real databases. We choose to generate statistically data-
base configurations as we only need to process the meta-information from the
database and not the actual data. We first generated an initial database state
by averaging the evaluation costs over a number of uniformly sampled gener-
ated distribution configurations. Then we generate fifteen small to large sample
database configurations drawn from the same distribution (see [11] about the
configuration generator, test data and results) (Fig. 4).

The fifteen distributed database configurations are presented in Table 1.
In the following we present the analysis of the tests’ results. In order to asses

the improvements we measure the network transfer before and after applying
the induced fragmentation on a series of test databases. We consider the per-
cent of data transfer cost needed in query processing after applying the IFR
solution compared to the transfer cost in the initial database as the measure
of query optimization. We test the replication problem for the next cases: (a)
the available space is equal with the space occupied by the fragments; and (b)
the available space is 2 * space occupied by the fragments. Table 2 presents the
percents and execution times in seconds for IFR problem when (Maximum Frag-
ment Replication Number - the maximal number of generated fragment replicas)
MFRN=1 and MFRN=5 and the available free space corresponds to above space
constraints (a) and (b).

The proposed network flow problem is a bit uncommon as it needs a flow of
maximum cost (regardless of the value of the flow). There is no solver, to our
knowledge, for this problem formulation and thus we implemented a backtrack-
ing solution to solve the flow problem and then we proposed a faster Greedy
approximation algorithm for the same problem.

In Table 2 we show the transport cost expressed as a percentage of the original
database (before applying induced fragmentation). We also present the execution
times in seconds for each algorithm variant. The backtracking variant has an

Access Patterns Optimization in Distributed Databases 185

Table 2. Costs and exec times for MFRN = 1 and MFRN = 5, cases (a) and (b)

exact solution but the search space explodes exponentially with the product of
the number of fragments, sites and queries and thus its execution times explode
exponentially with this product (search space). In Table 2 we left empty the cells
where the backtracking solution failed to give a solution within the time required
for a Mathematical solver to solve the equivalent linear programming problem.

The proposed Greedy solution has an almost constant execution time with
a ratio of 6:1 between the fastest and slowest solution. As execution time this is
more than appropriate for a system where our module is run quasi-continuously
and produces fragmentation hints.

The cost penalty obtained by applying the proposed approximation Greedy
solution is around 1.75% higher compared to the exact backtracking solution.
However the execution time for the Greedy approach compared to the exact
solutions is in the order of 550 times less. The Greedy solution average running
time is around 0.5 s with the largest execution time being 1.24 s.

6 Conclusions and Future Work

In this paper we provide a solution for query response time improvement modeled
as a maximal compatible flow cost in transport networks. We perform online
perpetual data replication within the original space constraints of the database.
The major contribution is the Greedy algorithm that solves the transport flow
problem in a fraction of the time needed to a classical solver or algorithm with an

186 A.S. Darabant et al.

approximation penalty cost under 2% making this algorithm suitable to online
execution within the database and as a replacement to the classical solvers.

We only considered so far the transport cost as the argument driving data
replication and allocation in order to improve query response time. While it
solves a complex problem this model is in many cases too simplistic. As future
work we would like to extend our model to cases where data allocation is driven
by more parameters (CPU, storage, network capacities, etc.) or to non-relational
cloud databases where principles are different.

References

1. Apers, P.M.G.: Data allocation in distributed database systems. ACM T Datab.
Syst. 13(3), 263–304 (1988). Applied Mathematical Programming. Addison-Wesley
(1977)

2. Cheng, C.H., Lee, W.K., Wong, K.F.: A genetic algorithm-based clustering app-
roach for database partitioning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
32(3), 215–230 (2002)

3. Dokeroglu, T., Bayır, M.A., Cosar, A.: Integer linear programming solution for
the multiple query optimization problem. In: Czachórski, T., Gelenbe, E., Lent, R.
(eds.) Information Sciences and Systems 2014, pp. 51–60. Springer, Cham (2014).
doi:10.1007/978-3-319-09465-6 6

4. Graham, J., Foss, J.A.: Efficient allocation in distributed object oriented databases.
In: Proceedings of 16th International Conference on Parallel and Distributed Com-
puting Systems (ISCA), pp. 471–412 (2003)

5. Huang, Y., Chen, J.: Fragment allocation in distributed database design. J. Inf.
Sci. Eng. 17, 491–506 (2001)

6. Lin, X., Orlowska, M.: An integer linear programming approach to data allocation
with the minimum total communication cost in distributed database systems. Inf.
Sci. 85, 1–10 (1995)

7. Menon, S.: Allocating fragments in distributed databases. IEEE Trans. Parallel
Distrib. 16(7), 577–585 (2005)

8. Morffi, A.R., et al.: A reinforcement learning solution for allocating replicated
fragments in a distributed database. Comput. Sist. 11(2), 117–128 (2007)

9. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer,
Heidelberg (2011)

10. Tambulea, L., Darabant, A.S., Varga, V.: Data transfer optimization in distributed
database query processing. Studia Univ Babes Bolyai, Informatica LIX(1), 71–82
(2014)

11. Tambulea, L., Darabant, A. S., Varga, V.: Query Evaluation Optimization in a
Distributed Database using Data Reorganization (2015). http://www.cs.ubbcluj.
ro/∼ivarga/ddbpaper

12. Virk, R.S., Singh, D.G.: Optimizing access strategies for a distributed database
using genetic fragmentation. Int. J. Comput. Sci. Netw. Secur. 11(6), 180–183
(2011)

13. Wiese, L.: Clustering-based fragmentation and data replication for flexible query
answering in distributed databases. Int. J. Cloud Comput. 3(1), 3–18 (2014)

http://dx.doi.org/10.1007/978-3-319-09465-6_6
http://www.cs.ubbcluj.ro/~ivarga/ddbpaper
http://www.cs.ubbcluj.ro/~ivarga/ddbpaper

	Access Patterns Optimization in Distributed Databases Using Data Reallocation
	1 Introduction
	2 Related Work
	3 Query Evaluation and Data Transfer
	4 Induced Fragment Replication
	4.1 Network Flow Solution

	5 Experimental Results
	6 Conclusions and Future Work
	References

