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Abstract. The paper discusses usability of various pattern recognition methods,
especially based on artificial neural networks for decision making support in
process control chart analysis. Their effectiveness for detecting process instability
is compared with the effectiveness of a human operator and of a widely accessed
commercial statistical software. The results are verified on the basis of data
obtained from real production processes.
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1 Introduction

Variability is one of the most troublesome factors of every process. It is caused by
common (random) and special causes. Common causes are coherent to the process. They
are usually accepted, as their identification and elimination often entail significant costs.
Special causes, however, can and must be eliminated [4] because their impact on the
process results can be significant. The sources of common causes of process variability
are easily assigned. They are continuously present in the process (e.g. gradual wear of
a tool’s blade) or occur suddenly (e.g. the breaking of a blade).

A widely recognized tool for monitoring process variability is the process control
chart (PCC). The concept was proposed by Walter Shewhart in the 1930s [4].

Implementation of a PCC is usually based on an approach where the process is char‐
acterized by a temporary normal distribution with constant mean (μ) and standard devi‐
ation (σ) values. If over time this assumption is not met, it is assumed that special causes
of variation occurred in the process and the causes must be eliminated [4].

In its basic form, a PCC enables monitoring of the statistics (e.g. mean value or
standard deviation) of selected process features (they are usually properties or qualities
of machined products or processed materials). On the basis of probability of occurrence
of certain statistics values, conclusions are drawn concerning the process stability [4].
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After recognizing that the process is running out of control a set of actions aimed at
restoring it is undertaken. These actions consist of stopping the process, analysis of
possible causes of instability and process correction. The use of PCC for process stability
monitoring is grounded on the condition that the process capability measured by so
called process capability indices (Cp, Cpk) is sufficient. For practical reasons, a PCC
analysis involves many predefined patterns that indicate the loss of process stability
(Fig. 1), for example: one point beyond control limits (LCL or UCL), seven consecutive
points making an increasing or decreasing trend, the so-called mixtures, i.e. the occur‐
rence of groups of three consecutive observations above, and then below the center line,
and many more [4, 17].

Fig. 1. The idea of a statistical model of the process (author’s research)

In most common cases, patterns on a PCC are constantly observed by an employee
that operates the machine. The employee, or “human operator” also makes decisions
about possible actions to be undertaken if the process loses its stability. Taking into
account that the main job of the human operator is to operate the machine and that the
human operator’s statistical knowledge is often insufficient [4] it can be expected that
his decisions may be not sufficient enough.

Although Walter Shewhart published the theoretical basis of a PCC almost one
hundred years ago, research is still conducted into expanding the field of their applica‐
tions. Messaoud [10], for example, applied a PCC to monitor the process of drilling in
order to discover unacceptable vibrations. Zhu and Lin [21] used Shewhart’s control
charts to monitor the density of wooden slabs. In 2011, Holmes and Mergen presented
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a case where a PCC was applied to an automatically controlled process. Their study was
conducted on the data from a process of brake drum production [5]. Chang studied the
application of PCC to the operation of curing high-pressure hoses. He showed that
application of a PCC made it possible to significantly reduce energy consumption [2].
Moore and Murphy analyzed the processes of surgical instrument production. These
processes were characterized by frequent changes in machine settings and rebooting of
machines due to the short run type of production. They proposed and applied a short run
PCC [11]. Tangjitsitcharoen and Boranintr applied a PCC to monitor the surface rough‐
ness of a product processed through rolling with the use of a cutting force ratio. For the
purpose of the statistical control of the process, they applied an I-MR (individual obser‐
vations – moving range) PCC [18].

Many researches attempt to improve the methods of PCC analysis based on the
assumption that sets of points on a PCC can be viewed as “images” of a process and
may be interpreted on the basis of a set of previously developed patterns, without the
need to apply the knowledge of assumptions concerning probability distribution and
statistics. Here, the term “image” means a time series made by subsequent points on a
chart, obtained as a result of measuring values or statistics for a given process. It may
be called an image of a process in a specified time frame. Such an approach to PCC
analysis becomes a classifying task. It involves classifying a set of points to a certain
group of patterns using an appropriate classifier and on the basis of occurring cases, and
assigning potential corrective measures. The results of this classification serve as a
decision making support for the operator and can be very helpful in his every days’ work.

The relevant literature offers a number of classification methods, for example: clas‐
sification through the induction of decision trees, Bayes classifiers, metaheuristic (e.g.
genetic algorithms), rough sets, k-nearest neighbor algorithm, and many other statistical
methods constantly developed [6, 15, 20]. Another one is research of Lesany et al., in
which the methods of classification of control chart patterns were analyzed in detail [7].

2 Process Control Charts Analysis with the Use of Artificial
Neural Networks

Among classification methods artificial neural networks (ANNs) have a special place.
Networks do not learn algorithms but do learn through examples. Therefore, they are
highly useful in solving problems related to the classification of objects. Below, several
selected applications of ANNs concerning classification in the area of broadly under‐
stood production engineering are presented.

In research carried out by Kujawińska and Hamrol, the best results in application of
ANNs to control chart analysis were obtained with the use of MLP (multilayer percep‐
tron) networks [3]. Lu et al. used an ANN to monitor the state of the process and eliminate
disturbances that occur during production [9]. Yu and Xi observed that neural networks
are characterized by significant resistance to the lack of data and other disturbances. In
their research they applied self-organizing maps for the control of process quality [19].
In 2013, Lonkwic published the results of research into the extent to which the neural
network method is capable of identifying the dimensional part in the process of profile
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bending. The results were satisfying and not worse than in the case of the traditional
approach [8]. Lesany et al. applied learning vector quantization and MLP neural
networks to study atypical patterns. They emphasize that correct and quick recognition
and analysis of unnatural patterns on Shewhart’s control charts is important, and
unfortunately, not always (or almost never) possible when using classical solutions [7].
In 2014, Rojek studied different types of neuronal nets for load prediction and failures
location within a water-supply network [12, 13] and for the system supporting the design
of a technological process [14] and other authors also [1, 16].

However, the application of ANN architecture is not free of difficulties. Above all,
problems related to the choice of such parameters as the number of neurons in particular
network layers and the parameters for learning should be mentioned. Another weakness
of ANNs is the fact that eventually, the results of the classification also depend on vari‐
ables used for the construction of models and on the length of the images. This element
significantly influences the effectiveness of recognition. In the case of images where
length increases, a tendency to faulty classifications of symptoms for MLP networks
was observed [3].

The aim of this paper is to study usability of various pattern recognition methods,
based on artificial neural networks for decision making support in process control chart
analysis. Their effectiveness for detecting process instability is compared with the effec‐
tiveness of a human operator and of a widely accessed commercial statistical software.

In the first stage of investigation three different types of networks were investigated
in relation to their usability for PCC analysis: MLP, RBF (Radial Basis Function) and
Kohonen (SOFM Self Organizing Feature Map). MLP networks are considered as the
most universal and widespread networks for various technical problems. The RBF
networks have some advantages in comparison to MLP. They enable to model any
nonlinear function. In Kohonen networks training is organized by using method of
competitive self-organizing. The results of the first stage made it possible to choose the
best settings of neural networks and use them as the input to the second stage of the
research: comparison of their effectiveness with the effectiveness of the human operator
and commercial statistical software. The data from grinding of roller bearings was
utilized in the first stage and from grinding together with superfinishing of a TV screen
surface in the second stage of study.

Over the course of the first stage of research, the number of neurons in the hidden
layer and the number of learning cycles were also changed (after processing a complete
learning cycle - the process known as epoch - the classification error for an epoch was
calculated and the whole cycle was repeated until this error fell below an acceptable
level). The number of neurons in the hidden layer was selected experimentally: for the
MLP network from 5 to 30, for the RBF network from 5 to 60. The number of learning
cycles changed from 10 to 150. In the case of the SOFM network, the topology of the
network also changed (network topology is a network structure; neurons are connected
to adjacent neurons by neighboring relations – typical network topologies are rectan‐
gular, hexagonal, or in the form of open or closed chains). Networks of the topology of
4 × 4, 10 × 10, 15 × 15 and 20 × 20 were used.

For the purpose of training of the MLP network the BFGS algorithm was used
(Broyden – Fletcher – Goldfarb – Shanno; for example “BFGS 130” means that the
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optimum solution was obtained in 130 steps). The RBF network was trained with the
use of the RBFT algorithm (Reduced Breadth-First Search) in two stages. In the first
stage, radial functions were distributed using only input variables from the data. In the
second stage, weights connecting radial functions with output neurons were determined.
In the case of the SOFM network, the training of the network took place with the use of
Kohonen’s method, which involves assigning nods to a layer of radial neurons.

For training 504 samples at the length of 5 or 10 elements were collected. The set
consisted of typical patterns defined for PCCs. It was divided into a learning file (75%
records), a test file (15% records) and a validation file (10% records). The sets of learning
included classes of previously defined patterns. The results of training, testing and vali‐
dating are presented in Table 1.

Table 1. Results of evaluation of training, testing, validation errors and classification
effectiveness for various types of networks in grinding process (authors’ research).

Network name Training
algorithm

Error (training) Error
(testing)

Error
(validation)

ANN
effectiveness (%)

MLP 5-25-1 BFGS 130 0.669640 0.425530 0.212770 95.64
MLP 5-22-1 BFGS 37 0.000000 0.000000 0.000000 100.00
MLP 5-13-1 BFGS 32 0.771433 0.538301 0.714897 87.92
MLP 10-12-1 BFGS 52 0.000000 0.000000 0.000000 100.00
MLP 10-25-1 BFGS 48 0.000000 0.000000 0.000000 100.00
MLP 10-29-1 BFGS 28 0.225992 0.000001 0.133333 98.80
RBF 5-41-1 RBFT 0.000000 0.000000 0.000000 100.00
RBF 5-31-1 RBFT 0.133934 0.425533 0.212771 97.43
RBF 5-17-1 RBFT 0.963215 0.829796 0.940434 70.36
RBF 10-21-1 RBFT 0.786442 0.566674 0.733333 86.71
RBF 10-31-1 RBFT 0.621472 0.933333 0.933333 91.71
RBF 10-60-1 RBFT 0.000000 0.266671 0.133333 98.31
SOFM 5-4 × 4 Kohonen 100 0.439724 0.537600 0.534939 98.49
SOFM 5-10 × 10 Kohonen 100 0.095634 0.099405 0.093437 99.71
SOFM 5-15 × 15 Kohonen 100 0.000000 0.000000 0.000000 100.00
SOFM 10-15 × 15 Kohonen 100 0.003876 0.002994 0.005495 99.99
SOFM 10-20 × 20 Kohonen 100 0.000000 0.000000 0.000000 100.00

Symbols:
MLP – number of neurons in input layer – number of neurons in hidden layer – number of neurons in output layer
RBF – number of neurons in input layer – number of neurons in hidden layer – number of neurons in output layer
SOFM – number of neurons in input layer – network topology

In the training and testing stage, the number of layers was selected along with the
number of neurons, minimizing the network’s error. This task was conducted by means
of a training algorithm. The training process was at the same time the process of
assigning parameters of the model represented by the network to available training and
testing data. A network’s error was determined with the use of an error function chosen
by the researcher, which aggregates determined differences between the cases presented
to the network. A testing error was used to evaluate the accuracy of the neural network
model during the process of neural network training on the basis of data from the test
sample that were not used in the first (training) stage. At the network testing stage there
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may be one more change in the network parameters. The validation error evaluates the
model of a neural network on the basis of data not used during the training and testing
of the network. The experiments compared training error, testing error, and validation
error. In the first experiments was used an RMS error. Next, entropy (single and multiple)
was used. Table 1 also includes the network evaluation expressed with the so-called
classification quality (ANN quality), defined as a number of correct indications of the
network to the number of all the possible indications expressed as a percentage.

By analyzing the models of MLP, RBF and SOFM neural networks, it can be seen
that the selected networks (Table 1, bold) take a high percentage value of the classifi‐
cation quality – reaching even 100%. This result was obtained through changing the
parameters in the network structure at the training stage. In all types of networks, the
first parameter of the structure concerned the number of inputs. The constructed models
had 5 and 10 inputs. In the case of the MLP network, a greater number of inputs resulted
in the change of the remaining parameters. In order to obtain 100% classification quality,
a much greater number of learning cycles were conducted in the BFGS algorithm, 37
for MLP 5-22-1 network, 52 for MLP 10-12-1 and 48 for MLP 10-25-1 respectively,
which extended the network’s learning time. Another parameter, i.e. the number of
neurons in the hidden layer of the network, also influenced both the classification quality
and learning time. In order to improve the quality of training and shorten the training
process, the neuron activation function in the hidden and output layers was changed.
Networks cope well with tasks related to signal classification but require significant
learning time and an ability to select an appropriate structure. The results of the research
with RBF and SOFM networks showed great quality of pattern recognition. Another
important feature was their speed of learning, especially through RFB networks.

It is worth mentioning that the number of accurate recognitions was increased in the
course of training by introducing an additional number of neurons in the hidden layer,
not by adding learning cycles.

3 Pattern Recognition on Control Charts – Comparative Study

Classification effectiveness of ANNs was compared with the effectiveness of the human
operator and a commercial statistical module. The comparison was made for two indus‐
trial processes: grinding of roller bearings and the superfinishing of a TV screen surface.
The study consisted of four stages:

1. Collecting data from grinding and superfinishing processes and analyzing the
process stability and relevant sets of data by an expert.

2. Defining a set of patterns at the length of 5 or 10 points (observations). For both
processes the set of 7 patterns (see Fig. 1): upper shift, lower shift, increasing run,
decreasing run, increasing trend, decreasing trend, groups 2 out of 3 were predefined.

3. Recognizing patterns by a human operator, a chosen commercial statistical appli‐
cation (Statistica 12.0 [17]), ANNs used in previous research and the new ANNs.

4. Comparison of recognition effectiveness of all three approaches.
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From each of the processes, 504 samples at the length of 5 or 10 elements were
collected. The learning sets included classes of previously defined patterns.

As a measure of comparison, the quotient of the number of correct recognitions and
the number of all occurrences of patterns in the analyzed set is expressed as a percentage
(MP). The value of the measure changes from 0 to 100%. The measure takes its
maximum value in a situation when all the patterns included in the analyzed set are
correctly recognized.

In the research, the so-called false classification error was also observed, i.e. an error
involving indication of a pattern in a case where there was none (MB). This measure
was defined as a quotient of the number of erroneous recognitions and the number of all
indications. It takes its minimum value in a situation when the method does not interfere
with the random process (no false signals). In order to compare the effectiveness of
recognition for particular methods, the values of both measures were analyzed simul‐
taneously. In the study, the assumption was made that the analyzed method of classifi‐
cation is characterized with high effectiveness if the value of the measure of correct
classification (MP) is larger than 95%, and at the same time, the value of the measure
of erroneous indications (MB) does not exceed 1%. Tables 2 and 3 present the results
of the classification verification in respect to the type of classifier and the kind of tech‐
nological process. The tables show only the value of the classification quality (the
measure of correct answers), because the value of the measure of false classifications
was below 1% and it was assumed that its significance for the effectiveness of recognition
is negligible. The results of the effectiveness of ANNs presented in the study were
juxtaposed with the results of pattern recognition by the Statistica module and the clas‐
sification quality of a human operator. The verification of the effectiveness of the clas‐
sification of PCC images confirmed the assumptions that the weak chain in the analysis
of control charts is the human operator—characterized by the smallest percentage of
accurate recognitions. The effectiveness of the human operator in the classification of
patterns for both processes equaled, on average, 84%. A decrease in the classification
quality may be observed for patterns with a greater number of points. The human oper‐
ator copes well with patterns of the trend, run or shift type. An exception significantly
deviating from this rule are the patterns such as mixtures and with 2 out of 3 points
located close to the control lines (in the so called warning zone).

Table 2. Comparison of classification effectiveness between a human operator, Statistica and
ANN for images of length 5 (own study).

Grinding process Superfinishing process
Classifier Classification effectiveness (%) Classifier Classification effectiveness (%)
MLP 5-22-1 100.00 MLP 5-22-1 96.35
RBF 5-41-1 100.00 RBF 5-41-1 97.84
SOFM 5-15 × 15 100.00 SOFM 5-15 × 15 98.42
Human operator 86.00 Human operator 83.00
Statistica 96.00 Statistica 95.00
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Table 3. Comparing classification effectiveness between operator, Statistica and ANN for
images of length 10 (own study)

Grinding process Superfinishing process
Classifier Classification effectiveness (%) Classifier Classification effectiveness (%)
MLP 10-25-1 97.56 MLP 10-25-1 97.62
RBF 10-60-1 98.31 RBF 10-60-1 98.35
SOFM 10-20 × 20 99.59 SOFM

10-20 × 20
99.65

Human operator 84.00 Human operator 82.00
Statistica 95.00 Statistica 95.00

As mentioned before for training 504 samples at the length of 5 or 10 elements were
collected. The set consisted of typical patterns defined for PCCs. It was divided into a
learning file (75% records), a test file (15% records) and a validation file (10% records).
The learning sets included classes of previously defined patterns. The PCC analysis
module in the Statistica software had 95% of accurate indications. The Statistica software
coped well with patterns such as increasing, decreasing, increasing run, decreasing run
and 2 out of 3 in zone A The effectiveness of recognition decreased by unconventional
patterns characteristic for both operations, mainly in the case of mixtures. The best
recognition results were obtained for classifiers based on ANNs. The percentage of
correct recognitions with the use of an ANN in the process of grinding was 100 in the
case of images of length 5. Slightly worse classification quality was achieved for the
process of superfinishing and in the case of images of a greater number of points.
Nevertheless, the average level of correct indications was higher than the classification
quality of the human operator and the Statistica module.

4 Conclusions

ANNs obtain great results in pattern recognition on control charts. They had significantly
more accurate recognitions than the classification performed by a human operator or
Statistica software.

Based on the authors’ research and literature review, a comparison of the three
discussed methods was conducted. The results are presented in Table 4.

All the discussed methods have their pros and cons. Which method to choose for
specific use should be decided on the basis of technical, quality and economic conditions.
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Table 4. A comparison of the three studied methods of pattern recognition on PCC.

Criteria Method of control chart analysis
Artificial network (ANN) Human operator Commercial statistical

software
Time needed to identify a
pattern in a PCC

Very short Quite long
Depends on a human
operator’s experience
and skills

Short

Possibility of wrong
pattern recognition

Low
Depends only on number
of patterns used in the
training phase

High
Depends on human
operator: skills, mental
abilities, self-discipline,
work conditions, time for
making decision

Medium
Is limited by number of
predefined patterns

User friendliness
Time needed to master
the “method”

Medium
Training and
implementation of ANN
requires specialized
knowledge.
Using ANN with a
dedicated user interface
is simple and requires no
special skills from the
process operator. Allows
him to concentrate fully
on operating the process

Medium
Running a PCC and
analyzing data gathered
requires continuous
engagement of a human
operator and interferes
with the main task
(operating the process)

High
Using commercial
statistical software
equipped with a
dedicated user interface
is simple and requires no
special skills and allows a
human operator to
concentrate on the
operating process

Pattern length (number of
points in a pattern) and
diversity

No limitations
ANN recognized both
short and long patterns.
The only condition is that
there are present in the
training set

Strongly limited
Human ability to
recognize long, complex
or rarely occurring
patterns is limited

Limited
In standard software,
only a limited number of
patterns are implemented

Essential technical and
intellectual resources

High
Expert for
implementation of
suitable software for
modelling and training
ANNs is necessary.
Powerful computers with
sufficient capacity and
resistance against
possible harmful
environment influences
are needed

Low
In many cases, a pocket
calculator, a sheet of
paper and basic statistical
skills are sufficient

Medium
Commercial statistical
software can be
implemented on
practically any computer.
The computer should be
resistant to possible
harmful environment
influences
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