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Preface

In the post era of the Z and W discovery, after the observation of jets at UA1 and
UAZ2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California,
in 1983 “To proceed with high energy particle physics, one has to tag the flavour
of the quarks!”

This statement reflects the need for a highly precise tracking device, being able
to resolve secondary and tertiary vertices within high-particle densities. Since the
distance between the primary interaction point and the secondary vertex is pro-
portional to the lifetime of the participating particle, it is an excellent quantity to
identify particle flavor in a very fast and precise way. In colliding beam experi-
ments, this method was applied especially to tag the presence of b quarks within
particle jets. It was first introduced in the DELPHI experiment at LEP, but soon
followed by all collider experiments to date. The long expected ¢ quark discovery
was possible mainly with the help of the CDF silicon vertex tracker, providing the b
quark information. In the beginning of the twenty-first century, the new LHC
experiments were taking shape. CMS with its 206m? of silicon area is perfectly
suited to cope with the high-luminosity environment. Even larger detectors are
envisioned for the far future, like the SiLC project for the International Linear
Collider. Silicon sensors matured from small 1 inch single-sided devices to large 6
in double-sided, double metal detectors and to 6 (8) inch single-sided radiation hard
sensors. A large group of researchers inside the high energy physics community is
steadily developing and investigating new devices and is pushing the technology to
new limits. These larger and larger devices are the driving force to improve
industrial processing and quality control. Also the readout electronics evolved from
microsecond to nanosecond integration times and to radiation-tolerant sub-micron
technology devices.

This review describes the successes in high energy physics as well as the
developments in technology from the early days of NA11l to the current detector
CMS at the LHC and the design of the future one at High-Luminosity Large Hadron
Collider HL-LHC, ending with an outlook for detectors in an early design phase for
the future linear collider and the Future Circular Collider. The day-to-day life in a
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silicon laboratory and the practical handling and testing strategies and R&D tools
are also described. Particle Physics examples will be given to underline the
importance of silicon tracking devices for high energy physics.

In the second edition, the aspects about radiation are discussed in greater detail
of radiation studies, defect engineering, and concepts for very high radiation levels.
This edition also introduces measurement tools for sensor R&D. More details about
tracking systems are given, how they are operated and how their data is being
treated. Some sections demonstrate how dedicated silicon sensors are finding their
way into large high granular calorimeters and ultra-fast timing detectors.

Karlsruhe Frank Hartmann
June 2017
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Chapter 1
Basic Principles of a Silicon Detector

This chapter introduces the basic silicon properties and their technical application
to set the scene and provide understanding of the silicon sensors functionality. The
writing concentrates on examples of detectors used in particle physics experiments
— in the High Energy Physics HEP. It also describes the working principle of sil-
icon sensors as particle detectors, together with an explanation of their production
processes and design parameter considerations. A lot of teasers and links to infor-
mation about detectors of the last and future 40 years are scattered in this chapter to
underline the introduced parameters with real life examples.

The examples are taken from DEtector with Lepton, Photon and Hadron
Identification DELPHI (Chap.4) at the former Large Electron Positron collider
LEP at CERN in Geneva, the Collider Detector at Fermilab CDF residing at the
TEVATRON collider at Fermilab near Chicago (Chap.5), the Compact Muon
Solenoid CMS experiment (Chap. 6) at the Large Hadron Collider LHC at CERN
and it HL-LHC upgrade (Chap. 7) including the future high granularity silicon-based
calorimeter (Sect. 7.2) and finally the conceptual design considerations for the detec-
tors at the future International Linear Collider ILC and the Future Circular Collider
FCC (Chap. 8). The chapter also briefly introduces silicon non-strip sensors. Also
the R&D methods DLTS, TSC and TCT are being introduced. It concludes with a
quality assurance description and a walk-through prominent historic sensor failures.

1.1 Fundamental Silicon Properties

The Bible teaches us “In the beginning God created heaven and earth”. Today, we
still do not know for sure what heaven is made of, but earth consists of, at least the
upper crust, silicon and oxygen with some dirt (in the form of the other 90 elements)
thrown in for added value.

© Springer International Publishing AG 2017 1
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2 1 Basic Principles of a Silicon Detector

Silicon, the element which revolutionized the development of electronics, is
known as an important and multi-useable material, dominating today’s technology.
Its properties have been thoroughly investigated and are well known. Silicon is used
in solar cells, computers and telecommunication systems. Initially, silicon comes
from the Latin word silex; silicis, meaning “flint”. The physical properties of sil-
icon can be described as a hard, dark-grey solid with a bluish tinge. At ordinary
temperatures, silicon is impervious to air. At high temperatures, silicon reacts with
oxygen, forming an inert layer of silica. Silicon is important in plant and animal
life. Diatoms in both fresh and salt water extract silica from the water to use as a
component of their cell walls. Silicon does not occur in the free, elemental state, but
is found in the form of silicon dioxide and complex silicates. Jons Jacob Berzelius
is generally credited with the discovery of silicon in 1824. Henri Deville prepared
crystalline silicon in 1854, a second allotropic form of the element. Silicon is a semi-
conductor and a solid, which isolates at low temperatures and shows a measurable
conductivity at higher temperatures. The specific conductivity of 10°~10~#Q~'cm~!
lies somewhere between metals and insulators. Since the development of quantum
mechanics the electric conductivity can be explained with the covalent bond in the
crystal lattice. Bound electrons can be excited by inducing energy above threshold
energy (gap energy), e.g. energy from temperature, light, x-ray, 3-particles. Since
the 1960s semiconductors have been used as particle detectors. Initially, they were
operated in fixed-target experiments as calorimeters and as detectors with a high-
precision track reconstruction. Since the late 1980s they have been widely used in
collider experiments as silicon microstrip or silicon pixel detectors near the primary
interaction point. Silicon sensors have a very good intrinsic energy resolution: for
every 3.6 eV released by a particle crossing the medium, one electron—hole pair is
produced. Compared to about 30 eV required to ionise a gas molecule in a gaseous
detector, one gets 10 times the number of particles in silicon. The average energy loss
of a minimum ionising particle in silicon is 390 eV /pum, creating 108 (electron-hole
pairs)/pm; these values being high due to the high density of silicon.

The usefulness and success of silicon can be explained in a handful of keywords:

e existence in abundance

e favourable energy band gap

e possibility to engineer the gap properties by deliberate addition of certain impurity
atoms (dopants)

e the existence of a natural oxide

Since these topics are exhaustively discussed in standard literature like [169, 265,
283], this book keeps the discussion on basic silicon properties, such as band gap,
doping and pn-junctions brief. On the other hand, concepts and formulas necessary
for the understanding of the sensor functionality are presented as well as an overview
of “standard” sensor designs and the reasons for certain ranges of parameters.
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Table 1.1 Silicon properties

Parameter Symbol Unit Value
Atomic number 14

Relative atomic weight 28.0855
Structure Diamond
Lattice constant ap A 5.4307
Lattice orientation (111)
Electron configuration: 15225%2p93523p?
Density Pm gem ™3 2.328
Melting point Tn °C 1414
Boiling point T °C 2355

Gap energy (300K)/(0K) E, eV (1.124)/(1.170)
Dielectric constant & 11.7
Intrinsic carrier density n; em™3 1.45.10710
Mobility

— of the electrons Le cm? [Vs]~! 1350

— of the holes m cm? [Vs]~! 450
Effective density of states

— of the conductance band N. cm ™3 3.22.10%°
— of the valence band Ny cm™3 1.83 - 10"
Max. electric field Eax Vim™! 30

Thermal expansion coefficient 1/°C 2.5-107°
Intrinsic resistivity p kQcm 235

1.1.1 Just Silicon and Some Impurities

Quantitative properties of silicon are shown in Table 1.1. Silicon, as every semicon-
ductor, has a forbidden region in the energy band structure, the band gap. At low
temperature and in the absence of impurities (“intrinsic silicon”) the valence band
is full and the conduction band is empty. Without any impurities, the concentration
of electrons n in the conduction band and holes' p in the valence band are equal
to the intrinsic concentration n; = n = p. This is also reflected in the global charge
neutrality at equilibrium. The mechanism to alter conductivity behaviour is to insert
additional states in the forbidden region to increase the probability to excite electrons
or holes in the Fermi—Dirac sense (see Fig. 1.1). The technical expression is called
“doping”.

Silicon is a type IV material (four valence electrons), it can be doped with impu-
rities to alter its free charge carrier concentration. One can produce “n-type” silicon

lConcept of “holes”: if an electron absorbs E > AE, (Eggp) it can enter the conduction band
leaving a vacancy called “hole” representing a positive charge in the valence band which can move
in an applied electric field. These holes are treated like particles and follow the Fermi—Dirac statistic.
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Fig. 1.1 The numerous impurities establish additional levels in the forbidden zone, e.g. boron near
the valence band decreases the energy needed for hole excitation from 1.12 to 0.045eV. Useful
dopants add levels near the conduction or valence band. The A stands for acceptor, the D for donor.
The levels introduced in the mid-gap region such as those from gold or copper are undesired and
only increase leakage current but are not useful as attributed dopants

by adding type V material, e.g. phosphorus (donor impurity; excess of electrons as

majority charge carriers); “p-type” material can be realized by adding type III mate-

rial, e.g. boron (acceptor impurities; excess of holes as majority charge carriers).
Typical concentration levels are

Si atoms 5 - 10?2 cm 3

n; = 1.45 10" cm™3 at 27°C

HEP silicon sensor bulk 10'? cm—3

HEDP strip/pixel/p*-stop implant doping 10" — 10" cm—3

— on the higher end for latest generations
HEP dedicated contacts 10%° cm 3

light doping (IC industry) 10'® cm—3
heavy doping (IC industry) 10" cm—3

In thermal equilibrium the probability for occupancy of one state at the energy E
for the temperature 7 is given — taking into account the Pauli principle — by the

Fermi—Dirac statistics |

e(E—Ep)/ksT 4 1

FE.T)= (1.1)

where kg is the Boltzmann constant and E  the Fermi energy? or Fermi level.

1
fE=Ep) =3 (1.2)

Ef can be regarded as the energy where exactly half of the available levels are
occupied. With this knowledge, the location in the middle of the band gap for intrinsic
silicon and in-between the additional levels and the nearest band becomes obvious
(see Fig.1.1). The important point to remember is that the Fermi level is shifted

ZFermi energy: “the highest possible energy of a fermion at 7 = 0 K”.
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depending on the impurities. The actual value of E level is essential, whenever a
contact of two materials exists, because it defines naturally the relative levels of all
the other bands (see Fig. 1.4).

In thermal equilibrium, the Fermi energy is constant everywhere. The final number
of free charge carriers is calculated as

n:/ooD(E)'f(E,T)-dE (1.3)
0

with D(E) as the density of states, a pure quantum mechanical distribution counting
all possible energy levels up to the energy E.

The technologically important point is that for all practical temperatures, the
majority charge carrier concentration is identical to the dopant concentration, visible
in the location of the corresponding E (see Fig. 1.1). The densities of electrons n
and holes p then derive to

I

_Ec—Ep . 2omikpT
n= Nce T with Nc=2 T (1.4)
and \
_Ep-Ey . 2mmikpT \ 2
p = Nye %7 with Ny =2 T (1.5)

with N¢ for conduction band and Ny as effective state density in the valence band.
Ec, Er and Ey are the energies of the condition band, Fermi level and valence band.
The m} and m} stand for the effective masses of electrons and holes, respectively,
h is the Planck constant and the factor 2 is derived from the two possible spin states of
the electrons. Obviously the charge neutrality still holds, but free electrons find their
hole counterpart in the additional doping levels and no longer in the lower valence
band. The famous mass action law holds for intrinsic as well as doped material:

n-p=n>=Nc-Nye il (1.6)

where E, = Ec — Ey.

In ultrapure silicon at room temperature the intrinsic carrier concentration is
n; = 1.45 - 10'° cm—3 and with approximately 107> cm ™2 only about 1 in 10'2 silicon
atoms is ionised.

To finally understand the electric conduction mechanism, one has to know about
mobility p and drift velocity vp = pE. It is not difficult to convince oneself that
conduction depends on the number of free charges, their ability to move and their
“motivation” to move. Translating this into a mathematical formula, the conductivity
o and resistivity p of doped silicon material comes to
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1
o = e(uen + ppp) and therefore p = —— (1.7)
e(fen + pp p)

where e is the electron charge, p, and p, are the mobilities of electrons and holes,
respectively, with mobility . = 22 (E the electric field, vp the drift velocity), n and
p are the densities of electrons and holes, respectively. For the pure intrinsic silicon
case at T =300k we get

1

p= ~ 235 kQcm
1.6- 10*19c(135 am? . 1.45-1010%m=3 4 450<12 1 45 . 1010cm 3
(1.8)
Microscopically, mobility p is given by
€Ty
Heh = — (1.9)
me,h

with 7, the time between two scattering processes

1. at crystal defects, like dislocations or undesired impurities — this effect is not
dominant before irradiation, but is the dominant part after

2. at intentionally introduced impurities, namely the doping atoms

3. at phonons, the thermally stimulated lattice vibrations

Since the mobility p drops with increasing dopant concentration, the conductivity
o does not increase linearly with doping concentration. The mobilities in silicon
are quite high and therefore suited for the use as HEP detectors. The mobility for
electrons and holes is z, = 1350 cm?/Vs and p;, = 450 cm?/Vs, resulting in about
10 ps/pm with E> 5. 10* V/cm or below 10ns collection/readout time in silicon
sensors of several 100 wm thickness.

It is worthwhile to note that at high fields the velocity is not any more proportional
to the electric field; or said differently the mobility is not constant any more [283].
At very high fields the velocity even saturates, at around E = 107 V/cm for Silicon at
T=300k, which is an interesting property of the base material. Linearity is given for
holesupto E ~ 2 - 10* V/cm but already ends around E ~ 7 - 10* V/cm for electrons
in high-purity silicon materials. The effect is therefore close to negligible for sensors
used before the era of the LHC and even then only lightly relevant for the pixel
sensors collecting electrons. An example of hole and electron mobilities and their
dependence on field and doping concentrations in a strip sensor is presented later in
Fig.1.18.

A very important factor for silicon sensors is the base resistivity p. In material
dominated by one type of impurity, e.g. the donor dopant density N, is much larger
than the intrinsic carrier concentration, the following expression for the resistivity p
is valid: |

= 1.10
P= e(uly) (1-10)
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This is a very important parameter, which has to be carefully chosen for sensors. It
will be shown later that it is inversely proportional to the minimal detector operation
voltage. Generally, high resistivity (5 — 10 kQ2cm) material is preferred, but low?
resistivity (1 — 3 k2cm) material was chosen for the CMS experiment at the LHC —
details and reason, see Sect.6.4.1.

So far, the number of free charge carriers and the neutrality of the solid object
are considered only in a static way. In the real device, we have a dynamic equilib-
rium. Electron—hole pairs are generated and recombine all the time, only the average
concentration remains constant.

Figure 1.2 is more educational than representative for a real device. In an ideal
indirect* semiconductor (like silicon) an exited electron (hole) cannot recombine on
its own. A phonon is needed to simultaneously conserve energy and momentum. In a
real device the recombination rate is completely dominated by second order effects —
additional levels in the forbidden gap (Fig. 1.3). The lifetime 7, is completely defined
by the impurities, like interstitial atoms, such as Fe, Ni, Cu, Au, the dopant atoms,
crystal dislocation or grain boundaries:

1
= 1.11
TL o N, ( )

with v, as the thermal velocity (=107 cm/s), the charge carrier cross-section
o(~10~"5 ¢cm?) and impurity/trap concentration N;.

The important message from the Shockley—Read—Hall theory (schematically dis-
played in Fig. 1.3) is the role played by the impurities, acting not only as traps but also
as generation centres for electron-hole pairs. The direct band to band (E¢ <> Ey)
generation or recombination is technically negligible. Dislocations or precipitates in
the active device regions or point defects in the silicon crystal and especially metal
impurities like Cu, Au, Fe, Cr, etc. introduce new ‘deep’ levels inside the band gap.

3Not to compare with low resistivity IC silicon material with 10 — 100 Qcm.

4The lowest conduction band energy does not lie at the same position in k-space as the highest
valence band energy.
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Fig. 1.3 Shockley—Read—Hall in a nutshell: The Shockley—Read—Hall theory (Shockley and Read
[270] and Hall [126]) describes in detail the second order effects, which in reality are the most
relevant mechanisms. Defects take the function of step stones to generate or recombine free charge
carriers. Depending on the placement of the levels, reflecting different species of atoms, lifetimes
T range from ns to ms. R§: transit rate of electrons from conduction band to deep level; electron
capture

R: transit rate of electrons from deep level to conduction band; electron emission

R'u“: transit rate of holes from valence band to deep level; hole capture

Rg: transit rate of holes from deep level to valence band; hole emission

The deep levels are also often called generation-recombination centres or briefer
recombination centres or also intermediate-level states. The mechanism leads to a
reduction of minority carrier lifetime and thus influences device characteristics.

The emission/capture’ rates are primarily defined by the deep level cross-section
oe.n» the energy difference to the valence/conduction band and the fraction of deep
level states occupied by electrons n,; (holes pg;) in the first place, naturally dependent
on temperature. In steady state/thermal equilibrium® we have R, = Ry (tf. Fig. 1.3).
Therefore, similar to formulas 1.4 and 1.5, the emission rates R{ and Rg can be
quantified as

Eai—Ec,v Eaieh
eh _ =g BTy
R®" = (n,plar-cen - Nev-e T = (n,plai - Och  Vinsen - Ncv - € 5
(1.12)

with the activation energy E,.., & Eq4 — Ec v, the capture coefficient c, 5, the deep
level cross-section o, , and the thermal velocity v;p.e p.

Shortly, the influence of 7, on the intrinsic leakage current of silicon sensors will
be introduced.

1.1.2 The pn-Junction

In an intrinsic silicon substrate — the size of a standard silicon sensor used in high-
energy physics — there are ~10° free charge carriers but only ~2 - 10* generated
electrons induced by an ionising particle. The resulting signal would be lost in the

5The capture rate is similar, but here also the concentration of free electrons (holes) in the conduction
(valence) band to “feed” them are relevant.

6 According to the principle of detailed balance the concentrations of free electrons in the conduction
band and free holes in the valence band have to be constant.
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Fig. 1.4 How does p-type silicon behave when brought into contact with its neighbour n-type. By
joining p- and n-type together electrons move to the lower Fermi levels and holes to the higher,
building up a space charge region SCR, where in equilibrium, the Fermi energy Ef is constant
everywhere. To visualize it, first draw band diagrams for the p and n region with their defined Fermi
levels Ep_p, Ef—, separately. The dashed line depicts where the Fermi level Er_; would be in an
intrinsic sensor. Second, join the two parts, the electrons move to the material with the lower Fermi
energy, while the opposite is true for the holes. Last, in the state of equilibrium, a space charge is
built up and the potentials are shifted accordingly, with the Fermi energy constant everywhere

number of free charge carriers. Therefore, the free charge carriers have to be reduced
by several orders of magnitude. This could be achieved by cooling to very low
temperatures or by depleting the silicon volume of free charge carriers, using p- and
n-type silicon in a reverse-biased pn-junction configuration.

Cryogenic cooling would be highly unpractical for large detector applications,
therefore the basic diode properties of a pn-junction are exploited. The scope here
only describes a pn-junction in equilibrium and the actual use of high-doped material
in reverse bias at intermediate temperatures.

The principal concept of depleting a semiconductor volume, thus creating a space
charge region SCR, is visualized in Fig. 1.4. As discussed earlier the Fermi energy
in thermal equilibrium must be constant. Nature establishes the equilibrium by
the movement of the free majority charge carriers into the opposite regions (elec-
trons move to the p and holes vice versa to the n-region) leaving behind ionised
charged dopant atoms. The diffusion current jgisysion 1S described by Fick’s first law
Jdiffusion = —eDVn, equalizing the carrier density according to its gradient Vi with
the diffusion constant D.
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Some basic math is needed to achieve a “feeling” for the device. At the pn-junction
diffusion and recombination produces a space charge layer, creating an electric field
E and preventing further diffusion. The mathematical expressions are visualized in
Fig.1.5. A dynamic equilibrium is created: diffusion flow and field current of both
charge carriers are compensating each other at the pn-junction. The Poisson equation
describes the electrostatic potential ¢(x):

1
77 = o) (1.13)

with g; as relative dielectric constant os silicon in the SCR region. Assuming com-
plete ionisation the charge density o(x) (Fig. 1.5d), with the impurity densities N4
and Np (Fig. 1.5b) (acceptor and donor, respectively) plus the mobile charge densities
n(x) and p(x) (Fig.1.5¢), is described by

o(x) = —q[n(x) = p(x) + Na — Np] (1.14)

In the very localized contact region of n- and p-type silicon, the free charges com-
pensate for the charges of ionised and uncompensated impurities.

In Fig. 1.5d the depleted boundary layer is drawn. This leads to the negatively
(positively) charged x, (x,) region in the p (n) doped volume summing up to the
space charge region’ w:

w=x,—x, (1.15)

Integration of the Poisson equation including the depletion approximation® leads
to a linear behaviour of the electric field strength |E| (Fig.1.5e) n-type region
—x, <x < 0and p-type region 0 < x < x,, respectively, are

qNa
€0Esi

qNp
|E,(x)] = +——x +x,); |E,(x)| =+ (x —xp) (1.16)
€0ESsi

Integrating twice leads to the parabolic behaviour of the potential ¢(x) (Fig. 1.5f)
with the boundary condition ¢(x = 0) =0

The potentials for the n-type region for —x, < x < Oand p-typeregion0 < x < x,,
respectively, are then described by

o) = —LIE LA PP 1y ) ,x
n (X —_2| max| * Xn - (xn) X, > p(x)— 2| maxl'xp' (Xp) - xp

The total difference of potential in the space charge region gives the diffusion or
built-in voltage Viistusion

"Depleted of free charge carriers.
8Assuming an “abrupt” change of p(x) (see Fig. 1.5d — full line).
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Fig. 1.5 These diagrams display (a) A simple visualization of the atomic and charge configuration.
(b) The doping profile. (¢) The mobile charge density. (d) The space charge density. (e) The electric
field configuration. (f) The electric potential. (g) Electron energy across the pn-junction. All states

are depicting the equilibrium state, without any external voltage
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1 eq.1.10, 1.16 1
Vdiffusion = ¢p(+xp) - ¢n(_xn) = _|Emax|w a4 _ _w2 (118)
2 = 2upe

with mobility p, resistivity p and € = gyesi. From another viewpoint the potentials
¢p and ¢, are defined by the differences of intrinsic and extrinsic Fermi energy levels
and their carrier concentrations (see also Figs. 1.4 and 1.5):

N, N
Ep_n—EF_i=e¢n=kBT1H—D; Ep_,-—EF_pzeqbp:—kBTln—A
i n;
(1.19)
resulting in

kgT N N kgT . N4 -N
Viiffusion = @n — ¢p = BT (ln _D +In —A) =2 In # (1.20)

n; n; e n;

As an example with a p doping concentration of N, = 10cm™ and
Np = 102cm—3 forthe n region the widths would be x, = 0.02 pmand x, = 23 um
respectively and with

kBT1 10" . 10"

Viitfusion (' = 300 K) = ¢, — ¢, = n (1.45 - 1010)2

~04V  (121)

The whole system is completely defined by the energy barriers, which are fully
defined by the doping concentrations. Intrinsically the generation and recombination
of charges are in equilibrium and the system is stable. Creation of large volumes
with pure doping concentration difference is technically impossible; Vyifrusion 1S Of
the order of a few to some hundreds of millivolts with space charge regions of some
tens of micrometers. An additional technique is needed to increase the depleted
volume.

An external voltage +V will disturb this equilibrium of spontaneous, generation
and recombination of electrons/holes. The external voltage increases or decreases —
depending on the polarity — the intrinsic potential barrier of the pn-junction. As a
result of the external voltage the depletion width decreases or increases (see Figs. 1.6
and 1.7).

Silicon sensors are operated in reverse bias mode and the forward case will not be
considered any further. For the detector case, charge carriers created in the SCR can be
collected at the junction, while charge created in the non-depleted zone recombines
with free majority carriers or with the generation partner, and is lost. Operation
conditions, namely voltage Vexiemal, 1S therefore such that the full volume is depleted.
With Vexernal = Vibias > Viitfusion and Eq. (1.18) w results to

w = /2&pp Voias (1.22)

and vice versa
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Fig. 1.6 Forward (biaS) forward bias V>0
voltage: In the forward case, + -
the barrier decreases 0—-I]—0
significantly, the majority E A

carriers flow freely through

the diode p-type SCR n-type

> X
Flg. 1.7 Reverse (bias) reverse bias V<0
voltage In the reverse bias - +
case, the potential barrier as O-I}—O
well as the depletion width E
A

increases

D2

Vil depletion = Vip = (1.23)

2epp

with w = D as the full sensor thickness and resistivity p. Vgp is one of the most
important design parameters, describing the minimal operation value — the voltage
the sensor has to sustain without going into current breakdown. As an example,
sensors in the inner layers of the CMS tracker are 320 wm thick with a resistivity p
range of 1.5 — 3k€2, the depletion voltage Vp is therefore within

(0.032)% cm?

~ 122 — 244V
2-(8.85-10~“¥Fcm™1) - 11.7- (1350 cm2V~1s~1) . (1.5 — 3)kQ

Vrp =

To run over-depleted the operation voltage Vyys is therefore set to 400 V.
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under-depletion depletion over-depletion
inactive n++ n++
p* volume p+ p+
)i+

wD

Fig. 1.8 The field in the bulk silicon is linear, depleting a certain volume. The left
part shows an under-depleted Vyi,s < VEp sensor, while the right scheme shows the stan-
dard over-depletion Vypias > VEp case, the picture in the middle depicts full depletion
Vbias = VEp. The max field Ep,x is on the segmented side for p-in-n, where the strips are on
GND potential and the backplane is on high voltage potential

Electric field configurations for under-, full- and over-depletion conditions are
shown in Fig. 1.8. The absolute electric field values |E| for the different external
voltage configurations are given for different depths x by:

Under-depletion:  Vyiass < Vip

2V X . 2Vbias
E(x) = = (1 - —) with E,q, = (1.24)
D w w
Depletion: Vs = Vep = qu2’+;v””
N . 2 Vi
E() = 2% (D — x) with E,ppy = 20 (1.25)
€ D
Over-depletion: ~ Vyips > Vip
2Vep X Voias — ViD . Voias £ VrD
E =—(1——) Zbias T VED it By ymin = ~25 =2 (126
(x) D D + w1 / D ( )

With formula (1.26) the maximum electric fields can be, for example, calculated for
a sensor used during the LEP era and one from the CMS era. The bias voltage at
DELPHI was set to 60 V with an effective full depletion voltage of 40 V on a 300 wm
thick sensor resulting in a minimum electric field of 666 V/cm and maximum one of
3.3kV/em. With Vi =400V and Vip = 200V applied to a 300 pm thick sensor
minimum and maximum electric field strengths climb to E,,;, = 6.6kV/cm and
E,ox = 20kV/cm.
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With Viias > Vip, the equilibrium is disturbed and an electric field is now estab-
lished, sweeping the thermally generated electron—hole pairs in the SCR (generation
rate inside the space charge region Ggcr) out of the depletion region. As men-
tioned earlier, the emission process is dominated by the Shockley—Read—Hall tran-
sitions/emissions. Of course this is now an undesired effect, resulting in a reverse
current also called “leakage current” jr (1), described by

1 n; 1
jr=eGscpw = —en—w = —en;-o-vy - Ny-w (1.27)
2 TL 2

and with the surface A of the junction

1 n 1
L =-elw.-A=-e-ni-c-vy-N-w-A (1.28)
TL 2

In summary, the leakage current is completely dominated by the effective lifetime
7y (refer to formula (1.11), the generation lifetime of minority carriers), namely the
impurity states N, near mid-gap, e.g. Au and all noble metals are “lifetime killers”,

see Fig. 1.1. The temperature dependence enters indirectly via n; oc T2 - e_z*%.

For example, a CMS sensor has a leakage current of ~0.5 nA/strip at room tem-
perature, where a strip is A = 100 x 0.05 mm? with a depletion width of 300 wm,
the sensor thickness.

1 n 0.5(1.6 - 10~12C)(1.45 - 109 cm~3)(0.03 - 10 - 0.006 cm?)
T, = —e—w-A=

~ 4 m
2T, 05-109 A ms

The impurity concentration N, then amounts to

N, = b ! =2.5-10"/cm?
ovr 107-10715.4.1073 cm?

The current increases linearly with w oc +/V until the detector is fully depleted. At
higher bias voltages an electric breakdown is observed, where the current starts to
increase dramatically. The breakdown can either be explained by ‘“avalanche break-
down”, due to charge multiplication in charge collisions with the lattice or by “Zener
breakdown”, based on the quantum mechanical “tunnel effect”. Figure 1.9 shows
I x AV behaviour, as well as a breakdown. In Chap. 6 a design is introduced, which
allows bias voltages above even the maximum electric field of silicon.

The full capacitance of a sensor can be calculated by regarding the two planes
of the SCR as plates capacitor with silicon as dielectric inside. The capacitance C
decreases linearly with w until the depletion zone reaches through the full sensor
thickness w = D and therefore ~ /V:

A5 Voias < V.
Coux = { 204 Voias bias = 1D (1.29)
A

S = const. Vyias > Vb


http://dx.doi.org/10.1007/978-3-319-64436-3_6
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Fig. 1.9 The current—voltage characteristic for a silicon diode in the reverse bias direction is
depicted. The expanded view shows the / o JV dependence (for Vyias < Vpp), while the global
view shows the full scan including breakdown at higher voltages
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Fig. 1.10 The measurement plots describe the capacitance dependence on area and thickness quite
clearly. The x-axis coordinate of the kink shows the depletion voltage, defined by material resistance
and thickness. The y-coordinate of the plateau shows the minimal capacitance, defined by area and
thickness. The two upper bands depict sensors of two different geometries with slightly different
areas and same high resistivity material, both D = 400 pwm thick. The lower CV curves describe
D = 500 wm thick sensors. With increased thickness, C becomes smaller and Vgepletion D?
becomes larger. The different depletion voltages of the lower curves derive from two different
resistivities p2 > pl

Figure 1.10 expresses the capacitance C and Vpp dependency on area, thickness
and resistivity p. The capacity—voltage characteristic CV or 1/C? versus voltages
behaviour is used as a standard method to determine Vrp. The kink determines Vyp.
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1.1.3 SiO,

Silicon dioxide SiO; is very stable and chemically inert. It is a near-perfect dielectric
and one of the best insulators, with an extremely high breakdown field strength. Only
the co-existence of Si and SiO, defines the real technological value. Pure silicon is
simply too chemically reactive, without a thin layer of SiO; it will react with anything.
The excellent electrical properties of the Si — SiO, interface are also very important.
This interface has a very low density of energy states (especially for (100) crystal
orientation) in the band gap and therefore neither provides recombination centres
nor introduces fixed charges. SiO, is used as

gate oxide for transistors

dielectric in capacitors

passivation and protection

structure masking during etching, diffusion and ion implantation
insulation

For tracking sensors it serves mainly as coupling capacitor oxide and as final passi-
vation. Figure 1.11 shows the passivation of all Si areas leaving metal pads free for
connectivity.

The growth, application and structuring of SiO, are relatively easy and will be
described in Sect. 1.9.2, especially how the selective etching possibilities of Si or
Si0, allow dedicated processing.

Si - SiO; Interface

In modern silicon microstrip sensors, the surface consists of a sandwich of high-
doped silicon strips, a Si0, insulation layer with metal strips on top to be connected to
the readout electronics, called AC coupling. This metal-oxide semiconductor forms
the classical MOS structure. The subject is widely discussed for example in [194]
or in any electronic or solid state physics literature. The basics are discussed with

Fig. 1.11 The picture shows
a small section of a CMS
strip sensor, where the metal
pads are “open” for
connectivity, while the rest is
all covered with SiO; for
protection




18 1 Basic Principles of a Silicon Detector

(@)E
flat-band metal .
(gate) oxide silicon
BISISISICICIBICICISICICIS] Ec . © © @@ ®
-------------------------- E i V=0 GG ®
fermi 6 © 66 ® __L
E\/
(b)E
b .
accumulation metal N
E gate) oxide silicon
o (€ (éi@@@@@@xe D © € C 6]
ée c V>0 &6
€ &% 1_
@%)
213
(c) E
metal .
depletion (gate) oxide silicon
N eeeooee Fc V<0 ® e 00
N CSiSSS ©e < © 66
O Eferm\ © 57 © @}__\_
e ~ ©®6 §
EV
3] inversion metal
3 E gate) oxide silicon
] c 0 —
: Eferm\ V<<0 % |
24 P
E, B

Fig. 1.12 The diagrams show the different optimal cases of a MOS structure: (a) Flat-band,
(b) Accumulation, (c¢) surface depletion and (d) inversion. The left part of the diagram illustrates
schematically the energy bands of the Si — SiO; interface (not including the metal), taking into
account the charge or potential present on the oxide side, independent of their origin. The right part
displays a more volume-based picture, with a defined metal gate, where the metal potential defines
the interface case. In summary the band structure is defined by energy band shifts originating from
voltage or fixed charges on the SiO; side

an emphasis on the importance of a very pure oxide to have a well-defined deep
depleted surface for a good strip isolation. The Si — SiO; interface condition is
defined by the oxide charge or voltage potential applied on the metal part, simply
two aspects of the same physical electron/hole attraction or repelling mechanism.
The mechanism acts on the majority carriers of the bulk silicon. The basic cases and
their potential structures are shown in Fig. 1.12: flat-band condition, accumulation,
surface depletion and surface inversion. In Sect.2.3 the surface property change
caused by radiation is discussed.

The SiO; layer is considered as a thin surface with a constant homogeneous charge
density o, the integrated sum of electrons, holes, ionised doping atoms or undesired
contaminations.

As for the pn-junction, the Poisson equation almost describes the field and band
interface situation, only without any net current in the insulator.


http://dx.doi.org/10.1007/978-3-319-64436-3_2
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The Fermi level Ef is constant, no charge carriers from the semiconductor can
neutralize the charges. The surface charges cause an electric field penetrating into
the Si-bulk bending the energy bands.

Two majorly different configurations have to be discussed: the surface charge
has the same polarity as the bulk majority carriers, the majority charge carriers are
driven into the bulk. When a space charge layer builds up, this case is called surface
depletion, the mandatory case for a HEP sensor. It guarantees the isolation between
adjacent strips. Without a possible compensating current, but at a constant Er the
bands are bent. E¢ — Ef increases towards the surface. With a very low majority
carrier concentration, scaling as e~¥¢=£#) at the interface, the minority carriers
concentration increases due to the mass action law, finally becoming the majority
carriers. This configuration is called surface inversion and can ruin the strip-to-strip
isolation.

In the second configuration, charges from the bulk are attracted to and accumulate
at the interface, due to the different polarity in the surface layer compared to the
majority carrier in the bulk. The bands are then bent inwards. This case is called
accumulation and of course also short-circuits neighbouring strips. One prominent
example, where an electron accumulation layer forms, is the n* face of a double-
sided sensor or in an n-in- p sensor (more later). There the n* layer attracts electrons
at the n"—n-interface. The technical solution for the strip—strip isolation in this case
is presented in Sect. 1.6.3. The flat-band configuration is the configuration just in-
between depletion (outward bending) and accumulation (inward bending). In this
case, the external charge is just compensating the charge due to intrinsic surface
states. The potentials/bands in the silicon bulk are flat.

With an additional metal on top of the SiO, layer, the situation changes. The
work functions of metal and semiconductor are not the same and the flat-band case
is now intrinsically impossible, it can only be achieved via an external voltage, the
flat-band voltage Vijat-pand (often simply Vrp). In reality, a low Vgi_band 1S @
quality factor of the oxide and refers to a low contamination level. More globally, an
external voltage can always shift between the four configurations:

accumulation (V > Vat_band)
flat-band condition (V = Vat_band)
surface depletion (V < Vfai pand)
inversion (V < Vatr-band)

With all the above, it has to be taken into account that in standard operation of strip
sensors, no voltage is applied to the metal strips. Implant and metal are at almost
the same potential and only oxide contamination, charge-up or contamination in
the overlaying passivation can change the needed surface depletion case. In short,
in a strip sensor undesired charges in the oxide can easily decrease the inter-strip
resistance by several orders of magnitude. CCDs on the other hand make use of
exactly the possibility of the band shifts, attracting and repelling charges to shift
from CCD cell to cell. In the IC industry, the MOS structure is the most important
means to open or close a conductive channel, e.g. for a Field Effect Transistor FET.
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Fig. 1.13 With a capacitance over voltage scan on a MOS structure the point of inflection reveals
its flat-band voltage. Vaa—pana measures oxide thickness and purity. A low value guarantees a
low contamination level. High values arise often from significant amounts of oxide traps and/or
interface states in the oxide. Levels for HEP sensors range between Vga—pand = 1 and 10V, where
the example of 20V flat-band voltage belongs to a rejected sensor

Dedicated MOS structures on the sensor wafer allow the measurement of the flat-
band voltage and therefore provide a means to qualify oxide quality and have a hint
of the oxide thickness. By varying the voltage over a MOS structure, the accumula-
tion configuration changes through flat-band case to depletion. In the accumulation
configuration the majority carriers are attracted to the surface and the measured
capacitance is C = C,,, while in inversion case the serial capacitance of oxide plus
bulk silicon C = C,; Cpuik/(Cox + Cru) is measured. The flat-band voltage marks
the inflection of the CV characteristic.

Figure 1.13 displays a CV curve in a MOS measurement with a Vij4¢_pand €valu-
ation of several structures of different quality during the quality assurance campaign
of the CMS experiment.

It has to be mentioned that the measurement frequency of the LCR® device plays a
role. A high measurement frequency is used to avoid any majority or minority charge
carrier movement during the individual C measurement.

1.1.4 Summary of Silicon Properties

To summarize, the properties of intrinsic silicon, and the concept of changing elec-
trical properties by adding donor or acceptor atoms were introduced. The connection
of p- and n-doped silicon was described, where at equilibrium the Fermi level E is
constantly forming a potential barrier and a space charge region. The situation so far

Device measuring L inductance, C capacitance and R resistance.
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describes a single diode, which in reverse bias mode is devoid of free charge carriers
and any created charge from ionisation in the SCR can be collected at the electrodes.
The Si to SiO; affinity allows an easy integration of a capacitive coupling of diode
to metal contact, thereby allowing the use of a charge amplifying chip.
For a tracking detector further segmentation of these “diodes” is needed. The
production of raw silicon wafers is described in Sect.1.9.1 while the processing
steps from wafer to silicon sensor are introduced in Sect. 1.9.2.

1.2 Ingredients to Use Silicon as Detector Basis

All tracking detectors make use of the free charges resulting from the ionisation of
a passing charged particle in a medium, e.g. gas or a semiconductor. The average
energy loss of a charged particle in a medium is described by the Bethe formula.

dE 2 2Z 1 |:;1I1 (2m66'26272ﬂ11ax) _ 52 _ 5(7)

— = = 4xNartm, 2= — 1.30

dx ATeTem = q g2 I 2 | 159
In this formula z is the charge of the incident particle, 7,,,, the maximum kinetic
energy which can be imparted to a free electron in a single collision, / the mean
excitation energy, Z the atomic number, A the atomic mass, N4 the Avogadro’s
number, m, the electron mass, ¢ the speed of light, r, the classical electron radius,

B =v/cand~y = 11 = and ¢ density effect correction. The full function of average

energy loss of a travers‘ing charged particle is given in Fig. 1.14. The most prominent
part is the minimum at approximately 5y = 3 — the minimum deposited energy in
the medium. Every detector must be able to keep its noise well below this energy to
be able to detect these Minimum Ionizing Particles MIPs.

In addition, there are statistical fluctuations, a subject investigated in depth by
Landau. The number of collisions in a finite medium as well as the energy transfer
per scattering varies. The first effect can be described by a Poisson distribution, while
the latter is described by a “straggling function” first deduced by Landau. In rarer
cases, called d-rays or d-electrons, the transferred energy is large; these d-electrons
are responsible for the asymmetric long tail towards high charge deposits. All in
all the Most Probable Value MPV of energy transfer is about 30% lower than the
average value. For silicon, the average energy used for the creation of one electron—
hole pair in the indirect semiconductor is 3.6 eV, about three times larger than the
band gap of 1.12eV, deriving from the fact that part of the deposited energy is used
for phonon creation. For a MIP, the most probable number of electron—hole pairs
generated in 1 wm of silicon is 76, while the average is 108. A resulting Landau
distribution is shown in Fig. 1.15.

Whereas gas detectors utilize charge amplification in electron avalanche clouds
by applying high voltages, solid state devices have to cope with the raw signal of
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Fig. 1.14 Charged particles lose energy, when traversing material. The figure shows the stopping
power (d E /d X)) of copper for traversing muons [326]. Exactly this effect is the fundamental princi-
ple of all ionising detectors. The sensor design needs to make sure to detect the Minimum Ionizing
Particle MIP with a momentum ~300 MeV/c with a significant signal/noise (S/N) ratio. The plot
includes the corrections to the Bethe formula at low and high energies, whose explanations are
beyond the scope of this book
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Fig. 1.15 A Landau distribution. The distribution displays the ratio of ionisation signal charge to
noise in 500 pwm silicon from cosmic particles (MIP) arriving at normal incidence in a 3.8 T field.
The distribution shows well the difference between Mean Value and Most Probable Value MPV,
and the long tail of the distribution from delta-rays is clearly visible [340]
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the primary ionisation'®. The high density (p,, = 2.33g/cm?) of silicon causes an
average energy loss of about 390 S—\n/l for a MIP, resulting in the above mentioned

108 i;—mh In a standard volume of 1 x 1 x 0.3cm? at room temperature, there are

about 4.5 - 108 free charge carriers versus 3.2 - 10* electron—hole pairs created by a
MIP, this explains the need to work with fully depleted sensors. Due to the Landau
fluctuations and the most probable signal of 22400 electron—hole pairs = 0.7 - 32000,
the most probable collected charge is therefore 22400 holes or!! electrons collected
at either side of the detector, equal to 3.6 fC.

1.3 Working Principle of a Silicon Tracking Device

An early basic overview of silicon sensors can be found in [231]. The working prin-
ciple of a silicon microstrip detector is illustrated in Figs. 1.16 and 1.17. An ionising
particle penetrates through a fully depleted silicon n-doped slice. The generated holes
drift along the electric field, created by the bias voltage, to the p* doped strips'? while
the electrons drift to the n*+ backplane. The backplane has a higher doping con-
centration thus lower resistivity to achieve a good ohmic connection ‘avoiding’ a
Schottky contact'?. Figure 1.8 on p. 15 expresses the need to over-deplete to collect
charges, in the p-in-n example holes, from the whole volume and to enforce a fast
drift to the electrodes.

The charge induced on the doped strips are then capacitively coupled (AC) to the
aluminium readout strips, which are directly (DC) connected'* to the charge pream-
plifier of the readout chip. The custom ASIC (application specific integrated circuit)
then amplifies and shapes the signal. Also, analogue-to-digital conversion, zero sup-
pression, or baseline correction may be realized here. In principle, the capacitor does
not need to be implemented on the silicon sensor, it can also be implemented inside
the readout chip or in-between, this was for example the case for the NA11 experi-
ment, see Sect. 3.2 or any pixel sensor deployed in high energy physics. Sensors with

19(1) DEPEFT: are silicon sensors with intrinsic amplification, they are introduced in Sect. 1.12.6.
(2) There are also photo-avalanche diodes and silicon photo-multiplier SiPM with intrinsic charge
amplification, but these are not used as segmented sensors for high energy tracking sensors.
(3) LGAD:s, a recent development, are similar to SiPM and introduced in Sect. 1.12.8.

"n the most common sensor p-in-n, holes are collected at the segmented side, but for n-in-p,
n-in-n or double-sided sensors electrons are also collected.

121n an n-in-n, n-in-p or a double-sided detector, electrons drift to the nt doped strips.

130ften, highest doping concentration in the backplane, here n*+, lower doping for the strips/pixel,
here p* and lowest doping for the bulk, here n to achieve high resistivity in the bulk and low
resistivity elsewhere. The extra high doping for the backplane is not done at every vendor.

4Most often by ultrasonic wire-bonding.
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Fig. 1.16 Working principle of a p-in-n AC-coupled silicon microstrip detector. Electron—hole
pairs, resulting from the ionisation of the crossing charged particle, generated according to the Bethe
formula, travel to the electrodes on the sensor planes guided by the electric field. The segmentation in
the pn-junctions allows to collect the charges on a small individual strips, where they capacitively
couple to the Al readout strips. These are then connected to the readout electronics, where the
intrinsic signal is shaped and amplified. In the case of segmented p™-strip implants in an n-bulk
silicon material, holes are collected at the p™ strips. The field concentrates on the strips as illustrated
on the right end of the figure. Electrons are moving towards the n™*-backplane
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Fig. 1.17 Working principle of an n-in-p AC-coupled silicon microstrip detector. An n-in-p sen-
sor is basically the inversion of a p-in-n sensor plus pT-stop!® implants necessary to isolate the
individual strips — see later explanation (Sect. 1.3.4). Logically also the bias voltage is reversed. It
registers electrons instead of holes on the readout electrode

integrated capacitors are called AC-coupled and otherwise DC-coupled. Because
the capacitor value needs to be large, the full strip length consists of a “p*—oxide—
metal sandwich”. Examples are given in the DELPHI (Chap. 4), CDF (Chap. 5) and
CMS (Chap. 6) experiments.

I5For a simpler figure we avoid the use of ™+ and write p* for pT-stop although its doping
concentration is lower then for the n™" strip.


http://dx.doi.org/10.1007/978-3-319-64436-3_4
http://dx.doi.org/10.1007/978-3-319-64436-3_5
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Fig. 1.18 A two-dimensional electric field configuration, emphasizing the discrete strips (left).
The field linearity across the bulk volume and sharp rise at the strip (middle). Mobilities of holes
and electrons, dependent on the electric field and impurity/doping concentrations (right). Sensor
parameters and voltage settings taken from CMS (rf. Chap. 6). Plots adapted from [134]

1.3.1 Charge Collection — An Illustration

For better illustration, we simulated a CMS-like sensor: a D = 300 pm thick, with
strip-to-strip distance (pitch) of 80 wm, a bias voltage of 400V is used with respect
to a depletion voltage of 160 V. The dynamic drift of electrons and holes, after the
crossing of a MIP particle at a45° angle, are then simulated and presented. Figure 1.18
shows the electric field configuration of the sensor and the corresponding electron
and hole mobilities. The left plot shows a two-dimensional representation of the
electric field with a linear behaviour throughout the bulk of the sensor but highly
peaking at the p™-strips (electrodes), where by design we want to collect the charge.
The electric field at the centre of one strip is plotted in the middle figure, again the
strong rise at the strip is seen, a linear behaviour for the main part and a drop to zero
on the backside where the drop close to the surface reflects the significant thickness
of the conductive back-n*™ layer. The electric field strengths are at values where
the mobility is not constant any more, as depicted in the right plot of Fig.1.18 —
see also Sect. 1.1.1. The slope in the middle reflects the change due to electric field
strength, the sharp drop/rise at the edges is due to the change of doping concentration
and change in field. The electric field guides the drifting holes towards the strip-like
electrodes while the electrons drift to the common backplane (electrode).

Figure 1.19 shows the absolute sum of current density, meaning the colour code
does not distinguish between electrons and holes. In the simulation a MIP has tra-
versed the sensor at an angle of 45° at time 0°. Already after around 200ps the
electrons and holes are largely separated and the strip near the particle entrance col-
lects holes. The holes collection is distributed to different strips a bit later depending
on the drift length. After 4 — 5ns the electrons with a higher mobility are gone while
the hole collection continues. Figure B.1 in the Appendix shows more time slots of
the same simulation. For strip and pixel configuration the drift and collection mech-
anism is the main factor defining the integrated signal; the signal in a p-in-n strip
sensor consists mainly of holes (see signal creation in the next section).


http://dx.doi.org/10.1007/978-3-319-64436-3_6
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Fig. 1.19 Simulation: An ionising particle traverses the p-in-n sensor at a 45° angle, disturbing
the static situation — same configuration as in Fig. 1.18. The eight plots show the absolute sum of
the current densities (electrons and holes) for different times. The strips, collecting holes, are at the
bottom and the backplane at the rop. Plots adapted from [134]
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Figure 1.20 rounds up the example. It displays the resulting charge, collected at
the individual strips in a time-resolved way; the integrated sums are also provided.

1.3.2  Signal via Induction — Shockley—Ramo Theorem

In reality, the signal already starts to form before the charges reach the electrodes,
namely, due to induction of electric current, when the charges move. As a matter
of fact, the signal stops when the charges reach the electrode. With induction, both
charge types contribute to the signal at both electrodes (sensor faces) but depending on
the geometry with highly different weights —the voltages and charges on all electrodes
are related/linked by their electrostatic capacitance matrix. The mechanism can be
fully explained by the laws of electrostatics and has initially been discussed by
Shockley (1938) and Ramo (Ramo’s theorem 1939). An elegant way is to introduce
the concept of the weighting field which defines how the charge couples to the
respective electrodes. The weighting field is mostly distinctly different to the electric
field which defines the charge drift. Mathematically the weighting field is determined
by applying unit potential (U = 1V) to the measurement electrode and zero to all
others and then solving the Poisson equation. It therefore solely depends on the sensor
geometry, mainly the electrode geometry and the positioning of the electrodes with
respect to each other (readout and backplane); at first order electrode size versus
distance. The weighting field does not depend on the movement of the charges.
Similar as above, we assume the moving charge is an infinitesimal small electrode
with a capacitive coupling to all electrodes, depending on electrode geometries and
inversely on distances to electrodes. Said differently, this coupling mechanism is
coded into the weighting field/potential and is therefore only dependent on spacial
location, for example highest at a strip/pixel (check Figs. 1.21 and 1.23) or weighting
field constant for a diode. For more details, especially for the full mathematical
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Fig. 1.21 The lines indicate the weighting field and weighting potential while the electric field is
considered linear for most of the volume (see Fig. 1.18). The left figure shows a 2D example — a
strip configuration. In the right the 3D case of a pixel electrode is shown. As mentioned in the text,
to derive the weighting field, the neighbouring electrodes and backplane are set to potential=0.
Figures are taken from [247]

descriptions (reciprocity theorem) and more examples, the reader is referred to [69,
246, 247, 251, 276] and an analytical calculation of some examples (pixel/pads) can
be found in [257].

Examples of the weighting field for pixels and strips are shown in Fig. 1.21.

With the knowledge of the weighting field and the charge’s velocity as a function
of position, driven by the electric (operational) field, the instant induced current
can be calculated, while simple integration over the full particle path gives the full
induced charge (the signal).

The induced currents/charges can then be described by

A%
i =—qEw -v=qu, dsW

52 52
and Qo :/ idt :q/ Ewds = q[Vwl; (1.31)

51 51

with v the charge drift velocity driven by the electric field from spacepoint s; to s»,
the weighting field Ew (x, y, z), the weighting potential Vy (x, y, z) and the signal
(charge) Q. The induced charge Q. is therefore simply given by the difference in
the weighting potentials between two positions of the moving charge, independent
on path and velocity.

Both electrons and holes induce the same “signed” signal, since with opposite
electric charge sign, they also drift in the opposite direction.

First, we discuss the example of a diode to illustrate the dynamic behaviour and
then continue with more complex weighting fields/potentials for strips and pixel
configurations concentrating on Q. In the special case of a two-electrode configu-
ration (with no space charge) the electric field and the weighting field have the same
form. For example for a plate capacitor'® with plate distance D, the electric field is
E = %ed:constant and the weighting fieldis Ey = %ed:constant (with unit poten-
tial U=1V) and the unity vector e; the direction pointing from n to p. Subsequently
the weighting potential (zero to one) behaves linear (Fig. 1.23(left), diode case). In

16 Another example would be a cylindrical drift tube.
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Fig. 1.22 Signal currents and integrated charges of a 300 wm thick diode are plotted in a time
resolved manner for different bias voltages. N = 10000 electron-hole pairs have been introduced
in the middle of the diode bulk. The figure also illustrates the value of over-depletion defining largely
signal shape and duration (left). With barely the depletion voltage the electric field at the backplane
n*T-electrode is that low that electrons arrive late (right). Mind the different x-axis time-scales.
With the linear diode weighting potential and start point in the middle of the sensor, electrons and
holes contribute equally to the signal. Figure 1.23 illustrates how this picture changes for a strip
sensor and Fig. B.2 in the Appendix shows the case for a charge deposition at a different depth

the case of a silicon pn-diode (with space charge) or a large pad configuration (pad
size much larger than drift distance) the weighting field Ey = % is also constant
throughout the whole bulk (both electrodes same geometry). Due to the space charge
the electric field is linear and has in this case the same form as the weighting potential.
Therefore, in a diode, electrons and holes contribute equally to the induced signal,
precisely for charge generation throughout the full volume or deposited in the center.

Figure 1.22 illustrates the dynamic situation in a diode assuming a linear electric
field through the entire bulk. See formula 1.31, induced current i (¢) is a multiplication
of weighting field Eyy = % and charge velocity v(¢) in turn proportional to the electric
field i1 - E(x).Inadiode, we therefore expect the velocity of holes to increase, moving
towards higher electric field thus increasing induced current (vice versa for electrons).
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Fig. 1.23 The left plot illustrates the weighting potentials of a diode and strip sensors with
a = strip widths/ sensor depth. The a = 1/8 example corresponds to the geometric configura-
tion as in Fig.1.21 with Viy =1 at the p electrode. The right figure gives the 3D representation
of the weighting potential Vi for a strip sensor with @ = 1/8. With the holes moving to the
p-electrode, Oy (1 — Vi (x0)) and Q.(0 — Vi (xp)) gives the hole and electron contribution to the
induced signal

For pixel or strip sensors, both, the electric field E and the weighting field Ey,
(and weighting potential V) peak at the segmented electrodes. These configurations
are also reflected in Figs. 1.18 and 1.21. With the high electric field, also the drift
velocity v = uE and the charge mobility ;4 are maximal at (near) the pixel/strip
electrode (even more true for a pixel than for a strip). As a result, with high velocity
and high weighting field, the main current induction i = —gEy - v happens in close
vicinity of the electrodes; the location of original ionisation becomes less relevant.

As shown earlier (Q = q[Vw]f.f), with the knowledge of the local weighting
potential the integrated induced charge from electrons and holes can simply be
calculated by

Qur = On + Qe =qn - [Vw(p) — Vw(x0)) + ¢e - (Vw(n) — Viw(xo)]  (1.32)

assuming the charges are generated at a sensor/diode depths of xy with weighting
potential Vi (x9) and boundaries Vi (p) = 1 (Vi (n) = 0) at the p and n electrode
respectively. For example, Fig. 1.23(left) represents the weighting potentials of strip
sensors with different strip geometries and a diode versus depths.

With the figure and formula 1.32, one can derive that at mid-depth, electrons
and protons contribute equally to the signal at the p electrode for a diode, while
for a strip sensor (strip width/depth = 1/8), holes contribute 94% and electrons only
6%. With charge generated at xo = 200 pm holes would contribute 2/3 (in general
—N -e-xo/D)andelectrons 1/3 (N - e - (D — x¢)/D) in a diode and 3% (electrons)
and 97% (holes) in a p-strip. For a MIP generating charge throughout the volume
of a diode, electrons and holes contribute 50:50. Since the weighting field Ey only
depends on the given geometry it is possible to optimize the electrode design to
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maximise signal and to select which charge type mainly contributes to the signal
(50:50 for a diode to 90:10 or above for strips and pixels). However, there are
more constraints in real sensors, e.g. breakdown voltage, signal-to-noise, position
resolution, inter-strip capacitance, inter-strip resistance etc. More discussion about
strip parameters are being presented in Sect. 1.6.3. A large scale example of a pad
detector will be presented in Sect.7.2. Calculating the weighting field also becomes
more complicated with the introduction of signal routings (additional metal traces),
intermediate strips or a metal overhang on the strips, e.g. used in the AC-coupled
configuration of the CMS sensors (see also Sect. 6.4.2).

The Shockley—Ramo Theorem description is very powerful, especially when it
comes to dynamic situations and timely signal formation. The Transient Current
Technique TCT in Sect. 1.8.3 makes use of it to derive the detailed electric field
configurations in the sensors from the signal formation. For integration times larger
than the drift times, the notion of “charge collection”, even if not correct, is most
often sufficient to understand the situation, e.g. when evaluating charge distribution to
several channels (as illustrated in Fig. 1.20). Very naively, the electric field strength
(visually, the density of the field lines) gives a good estimate along which path
charges drift (to be collected) and where velocities (current induction process) are
high. The plots on the right of Fig. 1.21 show distributions of which percentage of
charge is induced in the different electrode configurations. It will be briefly discussed
in Sect.2.2.4 on p. 160 how the situation changes with the onset of trapping after
irradiation.

1.3.3 Signal Charge and Particle Position

The final position of the traversing particle is calculated by analysing the pulse height
distribution (time integrated signal) on the affected strips (see Fig. 1.24). A top view
photo of a sensor with descriptions of the diverse sensor elements is presented in
Fig. 1.25. Figure 1.26 displays a 3D view of a standard single-sided p-in-n strip
sensor design.

The strip pitch is a very important parameter in the design of the microstrip
sensor. In gaseous detectors with a high charge multiplication a signal distribution
over several sense wires is welcome to reconstruct the shape of the charge distribution
and find the centre. In silicon detectors there is no charge multiplication and small
charges would be lost in the noise distribution. Therefore, signal spreading over
many strips could result in a loss of resolution. For single-strip events the track
position is given by the strip number. The charge cloud on the way to the electrodes
also diffuses in the lateral direction. Quantitatively this is mainly affected by bias
voltage and temperature. The maximum time available for the lateral drift is the time
to travel across the full volume. It can be calculated by t,, = d/Ves = d/pten E
with the speed defined by v, , = ., E. Typical values are thickness D = 300 pm,
mobilities f1, = 1350 cm?/Vs and 1, = 450 cm?/Vs, mean electric field strengths
[(E)| = 2.5 kV/cm (DELPHI) or [(E)| = 15kV/cm (CMS). For these examples,


http://dx.doi.org/10.1007/978-3-319-64436-3_7
http://dx.doi.org/10.1007/978-3-319-64436-3_6
http://dx.doi.org/10.1007/978-3-319-64436-3_2
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Fig. 1.24 Cluster shape depending on particle location. (A) Shows a single-strip cluster, the com-
plete charge is collected on one strip. (B) Displays a two-strip cluster the second strip signal lies
just above the threshold. (C) A distinctive charge distribution provides best localization precision.
In the upper part, the 7 function is plotted against the position of a red laser hit for the three different
sensor types of the DELPHI outer detector with 50, 100, 200 pwm pitch for sensors RZ-1280, RZ-640
and RZ-320, respectively (1280, 640, 320 is the corresponding number of strips on the sensor). The

x-axis counts laser steps of 0.5 pm [137]
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the resulting lateral drift times are subsequently #, = 9ns and #;, = 27ns (DELPHI)
or t, = 1.5ns and t;, = 4.5ns (CMS). With diffusion o = +/2Dt and the diffusion
constant D = ukpT /q, temperature dependence comes into play and the charge
cloud diffusion for electrons and holes is the same, because u cancels with # o< 1/.
This results in a diffusion of approximately 6 p.m in the LEP era running detectors at
room temperature and below 1 pm in the CMS experiment operating at 7 = —10°C
(sensor temperature) and lower temperature. For tracks generating enough charge
on two strips to exceed the threshold value, the position can be determined more
precisely by either calculating the “centre-of-gravity” or better “centre-of-charge”!’
or by using an algorithm that takes into account the actual shape of the charge
distribution'® and the acceptance of the sensor. The best localization is achieved
for tracks in the middle of two strips, since the charge is shared equally and the
influence of noise is small. The signal for tracks near one strip have poor localization
properties, because the remaining small signal on th