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Abstract. Indicated coloring of a graph G is a coloring in which there are two
players Ann and Ben, Ann picks a vertex and Ben chooses a color for this vertex.
The aim of Ann is to achieve a proper coloring of the whole graph G, while Ben
tries to block the same. The smallest number of colors required for Ann to win the
game on a graph G is called the indicated chromatic number of G and is denoted
by χi(G). In this paper, we prove that T�Cn,T�Kn1 ,n2 ,...,nm and Kn1 ,n2 ,...,nm�Cm

are k-indicated colorable for all k greater than or equal to the indicated chro-
matic number of their corresponding Cartesian product, where T is any tree. Also
we prove that χi(Kk1 ,k2 ,...,km�Kl1 ,l2 ,...,ln ) = χ(Kk1 ,k2 ,...,km�Kl1 ,l2 ,...,ln ). Finally we have
given non-trivial examples of graphs G and H for which χi(G�H) > χ(G�H).
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. A game coloring
of a graph is a coloring in which two players Ann and Ben are jointly coloring the
graph G by using a fixed set of colors C. The motive of Ann is to get a proper coloring
of the whole graph, where as Ben is trying to prevent the realization of this project. The
minimum number of colors required for Ann to win the game on a graphG irrespective
of Ben’s strategy is called the game chromatic number of the graph G and it is denoted
by χg(G). The idea of indicated coloring was introduced by A. Grzesik in [3] as a slight
variant of the game coloring in the following way: in each round Ann is only picking
a vertex while Ben is choosing a color for this vertex. The aim of Ann as in indicated
coloring is to achieve a proper coloring of the whole graphG, while Ben tries to “block”
some vertex. A block vertex means an uncolored vertex which has all colors from C on
its neighbors. The smallest number of colors required for Ann to win the game on a
graphG is called the indicated chromatic number ofG and is denoted by χi(G). Clearly
from the definition we see that ω(G) ≤ χ(G) ≤ χi(G) ≤ Δ(G) + 1. If Ann has a winning
strategy using k colors for a graph G then we say that G is k-indicated colorable. Let
stk(G) denote a winning strategy of Ann while using k colors. The coloring number of
a graph G, denoted by col(G) is defined by col(G) = 1 + max

H⊆G
δ(H). By Szekeres-Wilf

inequality [6], χ(G) ≤ col(G).
Zhu in [9] has asked the following question for game coloring. Whether increasing

the number of colors will favor Ann? That is, if Ann has a winning strategy using
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k colors, will Ann have a winning strategy using k + 1 colors? The same question was
asked by Grzesik for indicated coloring. Also he showed by an example that the increase
in number of colors does make life simple for Ann rather it makes it much harder.
There has been already some partial answers to this question. For instance, Pandiya
Raj et al. [2,5] showed that chordal graphs, cographs, complement of bipartite graphs,
{P5,K3}-free graphs, {P5, paw}-free graphs, {P5,C5,K4−e}-free graphs and {P5,K4−e}-
free graphs having induced C5 are k-indicated colorable for all k ≥ χ(G). In addition
Lason in [4] has obtained the indicated chromatic number of matroids. In this paper,
we obtain T�Cn, T�Kn1,n2,...,nm and Kn1,n2,...,nm�Cm are k-indicated colorable for all k
greater than or equal to the indicated chromatic number of their corresponding Cartesian
product, where T is any tree. In addition, we have prove that χi(Kk1,k2,...,km�Kl1,l2,...,ln ) =
χ(Kk1,k2,...,km�Kl1,l2,...,ln). Finally we have given non-trivial examples of graphs G and H
for which χi(G�H) > χ(G�H).

Notations and terminologies not mentioned here are as in [8].

2 Indicated Coloring on Cartesian Product of Graphs

The Cartesian product of two graphs G and H, denoted by G�H, is a graph whose
vertex set V(G)×V(H) = {(x, y) : x ∈ V(G) and y ∈ V(H)} and two vertices (x1, y1) and
(x2, y2) of G�H are adjacent if and only if either x1 = x2 and y1y2 ∈ E(H), or y1 = y2
and x1x2 ∈ E(G). Vizing [7] proved that χ(G�H) = max{χ(G), χ(H)}. Note that while
considering the cartesian product G�H, for each v ∈ V(G), 〈v × V(H)〉 (for S ⊆ V(G),
〈S 〉 denotes the induced subgraph of S in G) is a copy of H and for each u ∈ V(H),
〈V(G) × u〉 is a copy of G. Also if S is an independent set in G and T is an independent
set in H, then S�T is an independent set in G�H.

Our main focus in Sect. 2 is to see whether the following is true. If G is k-indicated
colorable for all k ≥ χi(G) and H is k-indicated colorable for all k ≥ χi(H), will G�H
be k-indicated colorable for all k ≥ χi(G�H)? As a first step, we have considered a
few families for which this works out. In fact this also gives some partial answer to the
question raised by Grzesik in [3]. Let us recall a few results done in [3,5].

Theorem 1. [5] Any graph G is k-indicated colorable for all k ≥ col(G).

Theorem 2. [3] Every bipartite graphs is k-indicated colorable for every k ≥ 2.

An immediate consequence of Theorem 2 is the following.

Corollary 1. Let G and H be two non-trivial graphs. Then G and H are bipartite if and
only if G�H is k-indicated colorable for all k ≥ 2.

Proof. We know that G�H is bipartite if and only if G and H are bipartite. Suppose G
and H are bipartite, by using Theorem 2, G�H is k-indicated colorable for all k ≥ 2.
SupposeG�H is k-indicated colorable for all k ≥ 2, then 2 ≤ χ(G�H)) ≤ χi(G�H) = 2.
Hence G�H is bipartite.
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By using Corollary 1, we see that if both m and n are even, then Cm�Cn is
k-indicated colorable for all k ≥ 2. While considering the case when either m or n
(or both) is odd, the col(Cm�Cn) = 5. Thus for showing that Cm�Cn is k-indicated col-
orable for all k ≥ 3, it is enough to prove that Cm�Cn is 3 and 4-indicated colorable.
This still remains an open problem.

Let us next recall a strategy used in [1].

Definition 1. While coloring a graph G by using k colors, letNun(v) denote the number
of uncolored neighbors of v in G and C(v) denote the number of available colors for v
in G. A vertex v is said to be of type1 if C(v) > Nun(v) and of type2 if C(v) = Nun(v).

Lemma 1. Let Ann and Ben plays an indicated coloring game on graph G with k ≥
χ(G) colors. In certain stage, if all the uncolored vertices in G can be partitioned into
disjoint paths such that one end of each path is of type1 and all the other vertices are
of type2, then Ann has a winning strategy.

Proof. Let the color set be {1, 2, . . . , k ≥ χ(G)}. By our assumption, let P1, P2, . . . , Pl be
a partition of the uncolored vertices with the property that one end of each Pi, 1 ≤ i ≤ l,
is of type1 and all the other vertices in Pi are of type2. Let P1 = v11, v12, . . . , v1 j for
some j ≥ 1 and let v1 j be of type1 and v1i, 1 ≤ i ≤ j − 1 be of type2. Clearly there is
always an available color for v1 j. Now let Ann present the vertices of P1 in the order
v11, v12, . . . , v1 j (same order of the path P1). Since C(v1i) = Nun(v1i), for every i, 1 ≤ i ≤
j − 1 and one of the neighbor of v1i, namely v1(i+1) is presented after v1i. Thus Ben has
an available color for each v1i, 1 ≤ i ≤ j−1. Since all the uncolored vertices where only
of type1 or type2, Ben cannot create a block vertex in any of the paths. Thus a similarly
technique can be applied by Ann for all the other paths to yield an indicated coloring
using k colors.

Theorem 3. Let T be any tree. Then

(i) T�Cm is k-indicated colorable for all k ≥ χi(T�Cm) = χ(T�Cm)
(ii) T�Kn1,n2,...,nm is k-indicated colorable for all k ≥ χi(T�Kn1,n2,...,nm ) = m.

Proof. Let v0 be a center of T . Let Vi be the set of all vertices of T which are at a
distance i from v0, 1 ≤ i ≤ r where r is the radius of the tree. Let us label the vertices
of T as v0, v1, v2, . . . , vn−1 such that the vertices of Vi are to the left of the vertices of
Vj for every i, j such that 1 ≤ i < j ≤ r. Let vi j = (vi, u j) be the vertex of T�G where
vi ∈ T, u j ∈ G, 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ |V(G)| − 1. Let c(v) denote the color given
by Ben to the vertex v and if v is uncolored then assume that c(v) = ∅. In T�G, let
H0,H1, . . . ,Hn−1 be the copies of G corresponding to the vertices v0, v1, . . . , vn−1 of T
respectively. If vi and v j are non-adjacent vertices in T then 〈V(Hi),V(Hj)〉 = ∅ in T�G.
If vi and v j are adjacent vertices in T then 〈V(Hi),V(Hj)〉 = {vilv jl : 0 ≤ l ≤ |V(G)| − 1}
in T�G.

(i) Let us consider the graph G = Cm. Suppose m is even, T�Cm is bipartite and by
using Theorem 2, T�Cm is k-indicated colorable for all k ≥ 2 = χi(T�Cm). Now let
us consider m to be odd. It is easy to observe that χ(T�Cm) = 3 and col(T�Cm) = 4.
Hence by using Theorem 1, it is enough to show that T�Cm is 3-indicated colorable.
Let the color set be {1, 2, 3}. Let Ann present the vertices of H0 in any order. Since the
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col(H0) = 3, Ben always has an available color for each vertex of H0. Irrespective of
Ben’s strategy, there exist a vertex v0 j of H0 having two different colors in its neighbor,
namely v0( j−1) and v0( j+1) where 0 ≤ j ≤ m − 1 and j is taken mod n. Now consider the
subgraph G1 = 〈{v0 ∪ V1}〉�Cm in T�Cm. Let Hi be the Cm copy of the vertex vi ∈ V1,
1 ≤ i ≤ |V1|. Since 〈V(H0),V(Hi)〉 = {v0 jvi j : 0 ≤ j ≤ m − 1} for all 1 ≤ i ≤ |V1|
and there are 3 colors, the uncolored vertices of G1 are the vertices of Hi which are
the vertices of type2. Now Ann will present the vertex vi j of Hi for all 1 ≤ i ≤ |V1|.
Suppose Ben color vi j with the color of v0( j−1) then the vertex vi( j−1) is a vertex of type1,
otherwise vi( j+1) is a vertex of type1 where 1 ≤ i ≤ |V1|, 0 ≤ j ≤ m − 1 and j is taken
mod n. By using Lemma 1, Ann have an winning strategy on G1.

Let us consider the subgraphGi = 〈{Vi−1 ∪Vi}〉�Cm where 2 ≤ i ≤ r. Similarly Ann
follow the same procedure to presents the uncolored vertices of Gi, and thus Ann has a
winning strategy for Gi, 2 ≤ i ≤ r. This yields a winning strategy for Ann on the graph
T�Cm with 3 colors.

(ii) It is easy to observe that χ(T�Kn1,n2,...,nm ) = m and col(T�Kn1,n2,...,nm ) = m +
1. Hence by using Theorem 1, it is enough to show that T�Kn1,n2,...,nm is m-indicated
colorable. Let the color set be {1, 2, . . . ,m}. Let Ui, 1 ≤ i ≤ m be the m-partites of
the graph Kn1,n2,...,nm . Let us consider the subgraph G0 = 〈{u1, u2, . . . , um}〉 in Kn1,n2,...,nm ,
where ui ∈ Ui, 1 ≤ i ≤ m. Clearly G0 � Km and ω(Kn1,n2,...,nm ) = m. Now consider
the graph T�G0. Let J0, J1, . . . , Jn−1 be the copies of G0 corresponding to the vertices
v0, v1, . . . , vn−1 of T respectively.

Ann starts presenting the vertices of J0 in any order. Since col(J0) = m, Ben have an
available color for each vertex of J0. Now consider the subgraph G1 = 〈{v0 ∪ V1}〉�G0

in T�G0. Since 〈V(J0),V(Ji)〉 = {v0 jvi j : 1 ≤ j ≤ m} for all 1 ≤ i ≤ |V1| and there are
m colors, the uncolored vertices of G1 are the vertices of Ji which are the vertices of
type2. Now Ann will present the vertex vi1 of Ji for all 1 ≤ i ≤ |V1|. Ben should color
vi1 with one of the color from {1, 2, . . . ,m}\{c(v01)} and let it be ci, 1 ≤ i ≤ |V1|. For
each Ji, 1 ≤ i ≤ |V1| there is a vertex vii′ which is adjacent to the color ci of J0 where
1 ≤ i′ ≤ m and thus the vertex vii′ is a vertex of type1. By using Lemma 1, Ann has a
winning strategy on G1.

Let us next consider the subgraph Gi = 〈{Vi−1 ∪ Vi}〉�G0 where 2 ≤ i ≤ r in
T�G0. Let Ann follow a similar procedure as done in G1, for presenting the uncolored
vertices of Gi. This will give Ann a winning strategy for Gi, 2 ≤ i ≤ r, and hence a
winning strategy for T�G0 with m colors. Let it be stm(T�G0). Now consider the graph
T�Kn1,n2,...,nm . The strategy stm(T�G0) makes Ben to color exactly one vertex of Ui,
1 ≤ i ≤ m in each of the copies of Kn1,n2,...,nm corresponding to the vertices of T . Hence
for the remaining vertices in each of the Ui in the copies of Kn1,n2,...,nm corresponding
to the vertices of T , Ben will be forced to give the color given to vertex in Ui that is
already colored. Thus Ann can presents the remaining vertices in any order and this will
yield an m-indicated coloring for T�Kn1,n2,...,nm .

An immediate consequence of Theorem 3 is the following.

Corollary 2. For all m ≥ 2, the graph T�Km is k-indicated colorable for all k ≥ m.

In a similar fashion but with a little more involved arguments, we have showed
Theorems 4 and 5.
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Theorem 4. For all m ≥ 3 and n ≥ 3, the graph Kn1,n2,...,nm�Cn is k-indicated colorable
for all k ≥ m.

Theorem 5. For all m ≥ 2 and n ≥ 2, χi(Kk1,k2,...,km�Kl1,l2,...,ln ) = χ(Kk1,k2,...,km�Kl1,l2,...,ln ).

An immediate consequence of Theorems 4 and 5 is the following.

Corollary 3. For all m ≥ 3 and n ≥ 3, the graph Km�Cn is k-indicated colorable for
all k ≥ m and χi(Km�Kn) = χ(Km�Kn).

By the definition of indicated coloring, χi(G) ≥ χ(G) and thus χi(G�H) ≥ χ(G�H).
The families of graphs considered for our discussion till now are examples of graphs
for which χi(G�H) = χ(G�H). But we do have examples of non-trivial graphs G and
H for which χi(G�H) > χ(G�H). This is done in Proposition 1 and Theorem 6.

Fig. 1. Graph with χi(D) = χ(D) + 1 = 4.

Proposition 1. Let D be the graph given in Fig. 1. Then χi(D�K2) > χ(D�K2).

Proof. Let us consider the graph D given in Fig. 1. Clearly D is a uniquely colorable
graph such that χ(D) = 3 and χi(D) = 4 (see, [3]). Let us consider the graph D�K2.
Clearly D�K2 contains two copies of D. Let us denote these copies by D1 and D2.
Let the vertices of D1 be a, b, . . . , h as shown in Fig. 1, and its corresponding vertices
of D2 be denoted by a′, b′, . . . , h′ respectively. By the definition of Cartesian prod-
uct, aa′, bb′, . . . , hh′ ∈ E(D�K2). It is clear that χ(D�K2) = 3. Let the colors set be
{1, 2, 3}. We have to show that there is no winning strategy for Ann using 3 colors. In
any 3-coloring of D�K2 the vertices {a, d, g}, {b, e, h} and {c, f } should receive the same
color c1, c2 and c3 respectively and the vertices {a′, d′, g′}, {b′, e′, h′} and {c′, f ′} should
receive the same color c2, c3 and c1 respectively or c3, c1 and c2 respectively such that
{c1, c2, c3} = {1, 2, 3}. Let Ann start by presenting the vertex a in D1 and let the color
given by Ben be 1. Let the following be the strategy followed by Ben.

(i) color the vertex d with 2 or 3, (or) color the vertex d′ with 1.
(ii) color any one of the vertex of { f , g, e′, h′} with 2.

If Ben is able to accomplish one of the above, then clearly Ann does not have a win-
ning strategy. In order to avoid (i), she has to present the vertices in the order b, c, d, d′.
But even in this case Ann cannot prevent Ben from applying (ii). Thus Ben wins the
game on D�K2 with 3 colors and hence χi(D�K2) > χ(D�K2).

This idea for D�K2 can be generalised to D�T where T is any tree.
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Theorem 6. Let D be the graph given in Fig. 1 and T be any tree. Then χi(D�T ) >
χ(G�T ).
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