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Abstract. The domination game is a two-player game played on a finite,
undirected graph G. During the game, the players alternately choose a
vertex of G such that each chosen vertex dominates at least one previ-
ously undominated vertex. One player, called Dominator, tries to finish
the game within few moves, while the second player, Staller, tries to
make it last for as long as possible. The game domination number γg(G)
is the total number of moves in the game when Dominator starts and
both players play optimally. The Staller start game domination number
γ′
g(G) is defined similarly when Staller starts the game. The behaviour

of the game domination number on the removal of a vertex and an edge
so as that no heredity is possible, in contrast with what is happening
for domination. In this paper we consider the special case of no-minus-
graphs.
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1 Introduction

The game domination number was introduced by Brešar et al. [4]. This parameter
is to domination what the game chromatic number is to graph colourings (see
e.g. [1]).

Recall that a vertex is said to dominate itself and its neighbours. In the
domination game, two players, named Dominator and Staller, alternate turns
choosing a vertex in a finite, undirected graph G, and adding it to a set of
vertices S. Whenever a player chooses a vertex to add to S, the vertex must
dominate at least one vertex not yet dominated by the vertices of S. The game
ends when no move is possible, that is when S is a dominating set of the graph.
The total number of chosen vertices is called the score of the game. The two
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players have opposite goals, Dominator tries to minimize the final score while
Staller tries to maximize it.

Two graph parameters relative to this game were introduced in [4]. Assuming
both players play optimally, the game domination number γg(G) is the score of
the game on G when Dominator starts (we say in Game 1), and the Staller start
game domination number γ′

g(G) is the score when Staller starts (in Game 2).
Both parameters are studied in parallel since many results hold for both of them.
We thus may refer to them on the game domination numbers.

The first and the most natural question is to try to find bounds for the game
domination number of a graph. In terms of the order n of the graph, Kinnersley
et al. [8] conjectured that γg(G) is bounded above by 3n

5 . Early results on this
question for trees can be found in [3,6].

A natural technique to find bounds for the game domination number would
be to find some heredity property: find a graph operation that involves a monoto-
nous behaviour of the game domination number of the graphs. A first natural
way of finding heredity is to consider the game within its course, and to have
some vertices partially dominated. Given a subset S of vertices in a graph G,
we denote by G|S the graph where the vertices of S are considered already
dominated. Kinnersley et al. [8] observed that whatever the set S of already
dominated vertices, the game last no longer on G|S than on G. More generally,

Theorem 1 (Continuation principle [8]). Let G be a graph and A,B ⊆ V (G).
If B ⊆ A then γg(G|A) ≤ γg(G|B) and γ

′
g(G|A) ≤ γ

′
g(G|B).

This result together with earlier observations [4] on the problem allowed to
deduce that the Staller start and the Dominator start game domination number
may differ by at most one:

Theorem 2. [4,8] For any graph G and subset S of vertices, |γg(G|S) −
γ′
g(G|S)| ≤ 1

Another early consideration of heredity for the game domination numbers
was made in [5], where the authors proved that the ratio of the game domination
number of a graph and of a spanning subgraph could not be bounded. Then, the
consequences of vertex and edge removal in a graph were considered in [2] and
it is proved that in both cases, the game domination number can either increase
or decrease.

Another main track of research on this topic is to compare the behaviour of
the Staller start and Dominator start game domination numbers. As mentioned
earlier, it is known that the difference is at most one, and that it can occur in both
directions. Naturally, it comes that Staller can have the game last longer when
she start the game, e.g. on a star; but it may also happen that she makes the game
finish earlier when starting, as e.g. on the 5-cycle. This second behaviour is more
surprising, and seems to happen on fewer graphs. It may not happen for example
on trees. In [7], a special family of graphs was introduced, called no-minus: a
graph G is no-minus if for any subset of vertices S ⊆ V , γg(G|S) ≤ γ′

g(G|S). In
that cases, it is never interesting for Staller to pass a move. It is known already
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that forests [8], tri-split and dually chordal graphs [7] are no-minus graphs. In the
following, we consider the case of no-minus graphs for earlier studied parameters,
such as edge and vertex deletion.

2 Edge and Vertex Removal in No-Minus Graphs

2.1 Edge Removal

Here, we prove that removing an edge from a no-minus graph can either increase
or decrease its game domination number by at most 1.

Theorem 3. If G is a no-minus graph and e ∈ E(G), then
∣
∣γg(G) − γg(G − e)

∣
∣ ≤ 1 and

∣
∣
∣γ

′
g(G) − γ

′
g(G − e)

∣
∣
∣ ≤ 1.

Proof. First we prove that γg(G) ≤ γg(G − e) + 1. It is enough to show that
Dominator has a strategy on G such that at most γg(G − e) + 1 moves will
be played. Both the players play a dominator start game on G, at the same
time Dominator imagines a dominator start game played on G − e with at most
γg(G − e) steps. Dominator’s strategy on G is as follows. He copies every move
of Staller in the real game to the imaginary game and responds optimally in
G− e. Each response in the imagined game is then copied back to the real game
in G. Let e = uv and if every move of Dominator and Staller are legal, then the
real game ends by at most γg(G − e) steps. Suppose at the kth step Dominator
chooses a vertex in the imagined game that is not a legal move in the real game.
This is possible only if Dominator chooses a vertex that dominates either u or
v itself and all other neighbours of that vertex are already dominated. Suppose
that it dominates v only which is already dominated in G. After this move, the
set of vertices dominated in both the graphs are same. At this stage the number
of moves in the real game is k − 1 and the next turn is that of Dominator.
Therefore γg(G) ≤ k − 1 + γg(G|D) where D denotes the set of vertices already
dominated in G. But in the imagined game, the next turn is that of Staller and
the number of moves at this stage is k. Since Staller did not play optimally in
G − e, k + γ

′
g(G − e|D) ≤ γg(G − e). So,

γg(G) ≤ k − 1 + γg(G|D)
= k − 1 + γg(G − e|D)
≤ k + γg(G − e|D)

≤ k + γ
′
g(G − e|D)

≤ γg(G − e).

Hence, in this case the real game ends in at most γg(G − e) steps.
Suppose, at the kth step Staller chooses a vertex in the real game and this is

not a legal move in the imagined game. This is possible only if Staller chooses
one of the end vertices of e and the other end vertex is the only vertex which
is newly dominated. Let v denote the newly dominated vertex. Let D denote
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the set of vertices dominated in the real game after the kth move, at this stage
the set of vertices dominated in the imagined game is D − v. In the real game,
k vertices are already selected by both the players and the next is Dominator’s
turn. Therefore, γg(G) ≤ k + γg(G|D). But in the imagined game both the
players selected k − 1 vertices and the next turn is that of Staller. Therefore
k − 1 + γ

′
g(G − e|D − v) ≤ γg(G − e). So,

γg(G) ≤ k + γg(G|D)
≤ k + γg(G − e|D)
≤ k + γg(G − e|D − v)

≤ k + γ
′
g(G − e|D − v)

= k − 1 + γ
′
g(G − e|D − v) + 1

≤ γg(G − e) + 1.

Hence γg(G) ≤ γg(G − e) + 1.
Now we prove that γg(G − e) − 1 ≤ γg(G). This proof is analogous to the

proof of γg(G− e) ≤ γg(G)+2 in [2] but we substitute the condition γg(G|D) ≤
γ

′
g(G|D) instead of γg(G|D) ≤ 1 + γ

′
g(G|D). In both the cases the proof is

independent of who moves the first. Hence this proof works for γ
′
g(G) also.

2.2 Vertex Removal

If a vertex from a graph G is removed, its game domination number either
increases arbitrary large or decreases by at most two [2]. However, if G is a
no-minus graph and v is a pendant vertex, we have the following lemma.

Lemma 1. If G is a no-minus graph and v is a pendant vertex, then

γg(G) − 1 ≤ γg(G − v) ≤ γg(G)

γ′
g(G) − 1 ≤ γ

′
g(G − v) ≤ γ

′
g(G).

Proof. First we prove that γg(G − v) ≤ γg(G|v). For that we need to show that
Dominator has a strategy on G−v that at most γg(G|v) moves will be played. The
strategy is as follows. Dominator and Staller play an ordinary Dominator start
game played on G − v and at the same time Dominator imagines another game
played on G|v. He copies every move of Staller in the real game to the imagined
game and respond optimally in the imagined game. He then copies back every
optimal response in the imagined game to the real game. Every move of Staller
in the real game is a legal move in the imagined game. Dominator never chooses
v in the imagined game, so every move of Dominator in the imagined game is a
legal move in the real game. Hence, the real game ends by at most γg(G|v) steps.
That is γg(G − v) ≤ γg(G|v). By the continuation principle γg(G|v) ≤ γg(G).
Hence γg(G − v) ≤ γg(G).
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Now, we prove that γg(G) ≤ γg(G − v) + 1. It is enough to show that Domi-
nator has a strategy on G such that at most γg(G− v)+1 moves will be played.
Dominator imagines a dominator start game played on G − v simultaneously
with the game played on G. He is copying every move of Staller in the real game
to the imaginary game and respond optimally in it. Every optimal response in
the imagined game is then copied back to the real game. If all the moves are legal
then γg(G) ≤ γg(G− v). Suppose at the kth step Staller chooses a vertex that is
not a legal move in G − v. This is possible only if Staller chooses a vertex whose
neighbours are already dominated except v. Let D denote the set of vertices
dominated in the real game after the kth step. But in the imagined game both
the players played k − 1 moves and the next move is that of Staller. Therefore
k − 1 + γ

′
g(G − v|D − v) ≤ γg(G − v) and hence

γg(G) ≤ k + γg(G|D)
≤ k + γg(G − v|D − v)

≤ k + γ
′
g(G − v|D − v)

≤ k − 1 + γ
′
g(G − v|D − v) + 1

≤ γg(G − v) + 1.

Hence, γg(G) − 1 ≤ γg(G − v) ≤ γg(G). The proof is independent of who moves
the first. So γ

′
g(G) − 1 ≤ γ

′
g(G − v) ≤ γ

′
g(G) also holds.

3 Examples of No-Minus Graphs Attaining Possible
Values

3.1 Edge Removal

Trees are no-minus graphs [8]. So, by Theorem 3,
∣
∣γg(T ) − γg(T − e)

∣
∣ ≤ 1 and

∣
∣
∣γ

′
g(T ) − γ

′
g(T − e)

∣
∣
∣ ≤ 1, for a tree T . Here, we show that all is possible except

for k = 1, 2.

Case 1. γg(T ) − γg(T − e) = 1.
For k = 1 , 2, there is no tree T with γg(T ) = k and γg(T − e) = k − 1.
For k = 3, let T be the graph obtained from P4 by attaching two vertices

at one of the end vertex of P4 and let e denote the middle edge of P4. Clearly
γg(T ) = 3 and γg(T − e) = 2.

For k = 4, let T be the graph obtained from P3 by attaching two vertices
at both end vertices of P3 and subdivide one of the added edge. If e is the edge
of P3 incident to the vertex attached to the subdivided edge. Clearly γg(T ) = 4
and γg(T − e) = 3.

For k ≥ 5, let e be an edge of the star K1,k−2 and attaching two vertices at
the pendant vertex incident to e. Let T be the graph obtained by subdividing
each edge incident to the center. Clearly γg(T ) = k and γg(T − e) = k − 1.



440 T. James et al.

Case 2. γg(T ) − γg(T − e) = −1.
For k = 1, let T be the star K1,t. Clearly γg(T ) = 1 and γg(T − e) = 2.
For k = 2, let T be the graph obtained from P3 by attaching two vertices

at one end vertex. Let e be the newly added edge of T . Clearly γg(T ) = 2 and
γg(T − e) = 3.

For k ≥ 3, let T be the graph obtained from the star K1,k by subdividing
each edge except one. Let e be the edge that is not subdivided in the star. Clearly
γg(T ) = k and γg(T − e) = k + 1.

Case 3. γg(T ) − γg(T − e) = 0
There is no tree T with an edge e such that γg(T ) = 1 and γg(T − e) = 1.

Any tree with γg(T ) = 1 is of the form K1,k and γg(K1,k − e) = 2.
Let e denotes the middle edge of P4 and γg(P4) = γg(P4 − e) = 2.
For k ≥ 3, Let T be the graph obtained from K1,k−1 by subdividing each

edge and e is any pendant edge of T . Clearly γg(T ) = γg(T − e) = k.

Case 4. γ
′
g(T ) − γ′

g(T − e) = 1
For k = 4, let T be the graph obtained from P4 by attaching three vertices at

one of the end points of P4 and let e be the middle edge of P4. Clearly γ
′
g(T ) = 4

and γ
′
g(T − e) = 3.

For k = 5, let T be the graph obtained from P4 and K1,t by connecting them
with an edge e in such a way that one end vertex of e is the degree two vertex
of P4 and the other end vertex is any pendant vertex of the star K1,k. Clearly
γ

′
g(T ) = 5 and γ

′
g(T − e) = 4.

For k ≥ 6, let e be an edge of the star K1,k−3 and let T be the graph obtained
from the star K1,k−3 by subdividing each of its edge and attach three vertices to
pendant vertex of the subdivided edge. Clearly γ

′
g(T ) = k and γ

′
g(T −e) = k−1.

Case 5. γ
′
g(T ) − γ′

g(T − e) = −1.
Let T be the graph obtained from K2 by removing its edge. Clearly γ

′
g(T −

e) = 2.
For k = 2, P4 is the graph with γ

′
g(P4) = 2 and let T be the graph obtained

from P4 by removing its pendant edge. Clearly γ
′
g(T − e) = 3.

For k = 3, let T be the graph obtained from P3 by attaching three vertices at
one of the end points of P3. Clearly γ

′
g(T ) = 3. If e is any pendant edge incident

to the highest degree vertex of T then γ
′
g(T − e) = 4.

For k ≥ 4, let T be the graph obtained from a star K1,k−2 by subdividing
each edge except one and attaching three vertices at the end vertex of the edge
which is not subdivided. In this case γ

′
g(T ) = k. Ife is the edge incident to one

of the new vertices attached. Clearly γ
′
g(T − e) = k + 1.

Case 6: γ
′
g(T ) − γ′

g(T − e) = 0
For k ≥ 2, let T be the graph obtained from K1,k−1 by subdividing each

edge. Clearly γ
′
g(T ) = k. If e is any pendant edge then γ

′
g(T − e) = k + 1.

For k = 1, there is no tree with γ
′
g(T ) = 1 and γ

′
g(T ) − γ′

g(T − e) = 0.
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3.2 Vertex Removal

Here, we consider the effect of vertex removal in trees. It may be noted that,
there are trees T whose game domination number becomes arbitrarily large after
removing a vertex from T . It is proved [2] that there is no graph G with γg(G) = k
and γg(G − v) = k − 2 for k ≤ 4. We give examples of trees with γg(T ) = k and
γg(T − v) = k − t for any t ∈ {0, 1, 2} and any integer k ≥ 5.

Proposition 1. For any k ≥ 5 there exists a tree T with a vertex v such that
γg(T ) = k and γg(T − v) = k − 2.

Proof. Let T be a tree obtained from K1,k−2 with v as its center in which each
edge is subdivided and two vertices are attached at an end vertex u of one
subdivided edge as in Fig. 1.

Fig. 1. A tree T with γg(T ) = 7 and γg(T − v) = 5

Dominator first chooses the vertex v. So γg(T ) ≤ 1 + γ
′
g(T − v|N(v)) and

γ
′
g(T − v|N(v)) = 2 + k − 3. Therefore γg(T ) ≤ k. Dominator never chooses a

pendant vertex in T . Suppose that Dominator first chooses a vertex other than v
and if it is u then Staller chooses the vertex adjacent to both u and v in T . In this
case the game ends with atleast k moves. Suppose that Dominator’s first turn is
neither u nor v in T . In this case, Staller chooses a pendant vertex adjacent to
u. If second move of Dominator is u then the game ends with atleast k moves.
If second move of Dominator is a vertex other than u, then Staller chooses the
other pendant vertex adjacent to u. In this case, the game ends with atleast k
moves and hence the game domination number of T is k. Dominator first chooses
the vertex u in T − v, after that Staller and Dominator alternately chooses a
vertex from each component. So, the game on T − v has k − 2 steps and hence
γg(T − v) = k − 2.

Proposition 2. For any k ≥ 1 there exists a tree T with γg(T ) = k and γg(T −
v) = k − 1 for some vertex v ∈ V (T ).

Choose T = Pn, n ≥ 1. This satisfies the above proposition, as mentioned in [2].
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Proposition 3. For any k ≥ 1 there exists a tree T with γg(T ) = k and γg(T −
v) = k for some vertex v ∈ V (T ).

Proof. Let k be a positive integer and let T ′ be an arbitrary tree with γg(T ′) = k
[4]. Let x be a first optimal move of Dominator in T ′. Let T be the tree obtained
from T ′ by attaching a vertex u to x [2]. In that case, T and T − u have the
same game domination number.

Proposition 4. For any k ≥ 1 there exists a tree T with γ
′
g(T ) = k and γ

′
g(T −

v) = k for some vertex v ∈ V (T ).

Proof. Let T be a tree obtained from the star K1,k−1 (k ≥ 2) by subdividing
each edge. Let v be an end vertex of any subdivided edge. Then γ

′
g(T ) = k and

γ
′
g(T − v) = k.

K2 satisfies the desired property for k = 1.

Proposition 5. For any k ≥ 1 there exists a tree T with γ
′
g(T ) = k and γ

′
g(T −

v) = k − 1

Proof. Consider the star K1,k−1 (k ≥ 2) and let v be the center of the star. Let
T be a tree obtained from this star by subdividing each edge. Clearly, γ

′
g(T ) = k

and γ
′
g(T − v) = k − 1.

K1 satisfies the desired property for k = 1.

Remark 1. It is proved [2] that there is no graph G with γ
′
g(G) = k and γ

′
g(G −

v) = k−2 for k < 4 and there exist graphs G with γ
′
g(G) = k and γ

′
g(G−v) = k−2

for k ≥ 4.

Proposition 6. There is no tree T with γ
′
g(T ) = 4 and γ

′
g(T − v) = 2 for any

vertex v ∈ T .

Proof. Assume the contradiction. Let T be a tree with a vertex v such that
γ

′
g(T ) = 4 and γ

′
g(T − v) = 2. First, consider the case that v is a pendant

vertex. Since T is a tree and tree is a no-minus graph [8], so γ
′
g(T ) − 1 ≤

γ
′
g(T − v) ≤ γ

′
g(T ). Therefore γ

′
g(T ) is at most 3 and this contradicts γ

′
g(T ) = 4.

Now, consider the case that v is a cut vertex. In this case T − v is disconnected
with exactly two components. If T − v has more than two components then
Staller start game domination number of T −v is at least 3. This is not possible.
So clearly T − v has exactly two components T1 and T2. Each component is
either K1 or K2, otherwise it contradicts that γ

′
g(T − v) is 2. Since T is a tree,

v is adjacent to exactly one vertex in each component. In this case γ
′
g(T ) is at

most 3. This contradicts that γ
′
g(T ) = 4.

Proposition 7. There is no tree with γ
′
g(T ) = 5 and γ

′
g(T − v) = 3 for any

vertex v in T .
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Proof. Assume the contradiction. Let T be a tree with a vertex v such that
γ

′
g(T ) = 5 and γ

′
g(T −v) = 3. Removal of a pendant vertex from a tree decreases

its game domination number by at most 1. So clearly v is a cut vertex and T −v
has at most 3 components. Now, we prove that the vertex v is not an optimal
first move of Staller in T . If possible let v be an optimal first move of Staller in
T . Then

γ
′
g(T ) = 1 + γg(T |N [v])

≤ 1 + γ
′
g(T |N [v])

= 1 + γ
′
g(T − v|N(v))

≤ 1 + γ
′
g(T − v).

Hence, Staller start game domination number of T − v is decreased by at most
1. First, we consider the case that T − v has 3 components. In this case each
component is either K1 or K2. Staller first chooses a vertex from any of the three
components and then Dominator chooses v. In this case the game is finished in
at most 4 steps. This contradicts that γ

′
g(T ) = 5.

Now consider the case that T − v has exactly two components say T1 and
T2. In this case one component say T1 has γ

′
g(T1) = 1 and the other component

T2 has γ
′
g(T2) = 2. So T1 is either K1 or K2 and there is a vertex in T2 which is

adjacent to all undominated vertices in T2 after the first move of Staller. Consider
a staller start game played on T and first optimal move of Staller is from either
T1 or T2. If the first optimal move is from T1 then Dominator chooses v after
that Staller chooses a vertex from T2 and Dominator chooses a vertex from T2

that dominates all the undominated vertices in T . So the game on T is finished
in at most 4 steps. This contradicts γ

′
g(T ) = 5. If the first optimal move is from

T2 then Dominator chooses a vertex which is adjacent to all the undominated
vertices in T2. After that, Staller chooses a vertex from T and if with this move
the game is not yet over, Dominator chooses a vertex in T2 which is adjacent to

Fig. 2. A tree T with γ
′
g(T ) = 8 and γ

′
g(T − v) = 6
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v. So, the game is finished in at most 4 steps. This is a contradiction. So there
is no tree with γ

′
g(T ) = 5 and γ

′
g(T − v) = 3.

Proposition 8. For any k ≥ 6 there exists a tree T with a vertex v such that
γ

′
g(T ) = k and γ

′
g(T − v) = k − 2.

Proof. Let T be the tree obtained from a K1,k−3 by subdividing each edge where
v as the center of K1,k−3 and attaching three vertices to one of the end points
say u of a subdivided edge as in Fig. 2. Clearly, γ

′
g(T ) = k and γ

′
g(T −v) = k−2.
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4. Brešar, B., Klavžar, S., Rall, D.F.: Domination game and imagination strategy.
SIAM J. Discrete Math. 24, 979–991 (2010)
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