
1-Normal DRA for Insertion Languages

Abhisek Midya1(B), Lakshmanan Kuppusamy2, V.S. Sumitha3,
and Alok Kumar Pani3

1 Computer Science & Engineering, ICFAI Tech School, Hyderabad 501203, India
abhisekmidyacse@gmail.com

2 Theoretical Computer Science Lab, School of Computer Science and Engineering,
VIT University, Vellore 632014, India

klakshma@vit.ac.in
3 Computer Science and Engineering, Christ University Faculty of Engineering,

Bangalore 560074, India
{sumitha.vs,alok.kumar}@christuniversity.in

Abstract. Restarting automaton is a type of regulated rewriting sys-
tem, introduced as a model for analysis by reduction. It is a linguisti-
cally motivated method for checking the correctness of a sentence. In this
paper, we introduce a new definition of normal restarting automaton in
which only one substring is removed using the DEL operation in a cycle.
This DEL operation is applied to reverse the insertion operation in an
insertion grammar. We use this 1-normal restarting automaton to solve
the membership problem of insertion languages. Further, we introduce
some interesting closure properties of 1-normal restarting automata.

Keywords: Insertion grammars · Membership problem · Restarting
automaton

1 Introduction

The restarting automaton was introduced by Petr Jancar et al. in 1995 in order
to model the ‘analysis by reduction’, which is a technique being used in linguistics
to analyze sentences of natural languages. Analysis by reduction consists of step
wise simplifications (reductions) of a given (lexically disambiguate) extended
sentence until a correct simple sentence is obtained. It is accepted, until an error
is found and the input is rejected. Each simplification replaces a short part of
the sentence by an even shorter one.

A restarting automaton contains a finite control unit, a head with a look-
ahead window attached to a tape. At several points it does cut-off substrings
from the look-ahead window using DEL operation followed by restart (RST)
operation. The head moves right along the tape until it takes any RST opera-
tion. RST implies that the restarting automaton places the look-ahead window
over the left border of the tape and it completes one cycle. After performing a
DEL/RST operation, the restarting automaton is unable to remember any step
of computation that was performed already. We can say that it is a modification
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 10–19, 2017.
DOI: 10.1007/978-3-319-64419-6 2

1-Normal DRA for Insertion Languages 11

of the list automaton [7] and forgetting automaton [8]. Further, when each time
the DEL operation is performed, the tape becomes smaller and smaller. A word
u can be reduced to a word v if there is a cycle starting with u and ending with
v. The computation ends by halting in an accepting or a rejecting state.

Insertion operations are introduced in [3] and based on these operations,
insertion grammars are introduced in [4,5] and further studied in [6]. The motiva-
tion for insertion grammar comes from linguistic and as well from DNA process-
ing and RNA editing. Informally, the insertion operation is defined as follows:
If a string x is inserted between two parts w1 and w2 of a string w1w2 to get
w1xw2, we call the operation insertion. The working nature of insertion gram-
mar is counterpart to the functionality of contextual grammar [9], where based
on the selector present in a string as a substring, the contexts are adjoined left
and right of the substring.

In [1], it has been shown that restarting automaton with delete (simply, DRA)
can represent the analyzer for characterizing the class of contextual grammars
with regular selector (CGR). Also [2] showed that restarting automata recognize
a family of languages which can be generated by certain type of contextual gram-
mars, called regular prefix contextual grammars with bounded infix (RPCGBI). In
this paper, we make a relationship between restarting automaton and insertion
languages.

The membership problem for a language is defined as follows: Given a gram-
mar G and a string w, whether w belongs to the language generated by G or
not? In this paper, we introduce 1-normal DRA. With the existing automaton -
DRA, we introduce a variant of normal DRA where the DEL operation can be
taken only once followed by restart in a cycle. We can say that 1-normal DRA
is similar to clearing restarting automata [12].

The paper is organized as follows. Section 2 is Preliminaries that recall mainly
the restarting automaton with delete operation (DRA) and insertion gram-
mars. Section 3 introduces 1-normal DRA and discusses some properties of it.
Section 4 discusses the relationship between the 1-normal DRA and insertion
grammars. Section 5 discusses about some interesting properties of 1 Normal -
DRA. Section 6 concludes the paper with some future work.

2 Preliminaries

Throughout the paper we will use the following notations. If Σ is an alphabet,
then Σ∗ denotes the set of all strings over Σ. For a string w, |w| is the length
of the string, sometimes called size of the string and ∅ denotes empty set. Any
consecutive symbols of a string is called a substring. If a string x is a substring
of y, then it is denoted by x ∈ sub(y). A string x ∈ Σ∗ is called a scattered
substring of a string y ∈ Σ∗ where |x| ≥ |y|, then x can be obtained by omitting
some symbols from y but maintaining the relative order of the remaining ones.
For an automaton, the language accepted by M is denoted by L(M) and for a
given grammar γ, the language generated by γ is denoted by L(γ).

12 A. Midya et al.

2.1 Restarting Automaton with Delete Operation (DRA)

A restarting automaton with delete (denoted by DR-automaton or by DRA)
is M = (Q,Σ, �, �, q0, k, δ) where Q is a finite set of states, Σ is the input
alphabet, �, � are left and right borders respectively and �, � /∈ Σ, k is the size
of the read-write window (k ≥ 1).

The transition relation δ describes different types of transition steps which
are given below. u′ is assumed to be the content of the look-ahead window (and
not necessarily the content of the tape).

• MVR - (q′,MV R) ∈ δ(q, u′), if M is in state q and sees a string u′ where
u′ �= � in its look-ahead window, then this MVR step shifts the look-ahead
window one position to the right and M enters into the state q′.

• DEL - (q′, v′) ∈ δ(q, u′), if M is in state q and sees a string u′ in its look-ahead
window, deleting an item from the look-ahead window. u′ is replaced by its
scattered substring v′ such that |v′| < |u′|. The border markers �, � must not
disappear from the tape. After using the DEL operation the automaton can
still read the remaining part of the tape also the automaton can place its
head to the right of the just rewritten (deleted) string 1.

• RST - Restart. It causes M to move its look-ahead window to the left border
marker � and re-enters into the initial state q0.

• ACCEPT - Accept ∈ δ(q, u′) where q ∈ Q. It gets into an accepting state.
• REJECT - If δ(q, u′) = ∅ (i.e., when δ is undefined), then M will reject.

A configuration of the automaton M is (u′, q, v′), where u′ ∈ {�Σ∗ ∪ λ} is the
content from the left border till the position of the head, q ∈ Q is the current state
and v′ ∈ {�Σ∗ �∪Σ∗�} is the content of the working list from the position of the
head and to the right till the right end of the tape. In the initial configuration
on an input word w, the control unit is in the fixed initial state q0 ∈ Q, and the
head is attached to the left border �, i.e. (λ, q0, �w�)-scanning � and looking at
the next k − 1 symbols. We suppose that the states Q of the finite control are
divided into two classes: the non-halting states (at least one instruction must be
there which is applicable when the unit is in such a state) and the halting states
(any computation ends by entering such a state), the halting states are further
divided into the accepting state and the rejecting state.

In general, the restarting automaton is non-deterministic, i.e. there can be
two or more instructions for a δ(q, u′), it suggests that there can be more than
one computation for an input string. Otherwise the automaton is said to be
deterministic. Any finite computation of a DRA consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head moves along
the tape and performing MVR, DEL operations until a RST operation is per-
formed and thus a new restarting configuration is reached. If no further RST
operation is performed, any finite computation necessarily finishes in a halting
configuration -such phase is called tail.

1 in our paper, we assume that after every DEL operation is immediately followed by
RST, its forming DEL-RST.

1-Normal DRA for Insertion Languages 13

The notation u′ ⇒M v′ indicates that there exists a cycle in M starting in
the initial configuration with the word u′ and ending in the configuration having
the word v′, the relation ⇒∗

M is the reflexive and transitive closure of ⇒M . We
say that u′ becomes v′ by M (or u′ is reduced to v′ by M) if u′ ⇒M v′, we are
certain that the word v′ is strictly shorter than u′ (v′ is the scattered subword of
u′). An input word w is accepted by M if there is a computation which starts in
the initial configuration with w (bounded by borders �, �) on the list and finishes
in an accepting configuration where the control unit is in one of the accepting
states. L(M) denotes the language consisting of all words accepted by M and
we say that M recognizes the language L(M).

A DEL step of an DRA may remove an arbitrary number of factors from the
actual content of the look-ahead window. Therefore the following restriction has
been included in DRA [1,2].

Definition 1 (Normal DRA). A DRA is called normal if all the DEL opera-
tions are in the form (q′, v′) ∈ δ(q, u′) where v′ is a scattered substring of u′, there
exist words x1, x2, x3, x4, x5 ∈ Σ∗ such that u′ = x1x2x3x4x5 and v′ = x1x3x5,
that is two substrings of u′ can be deleted.

Proposition 1 (Error preserving property of DRA). If u′⇒∗
Mv′ and u′ /∈

L(M) then v′ /∈ L(M).

2.2 Insertion Grammars

An Insertion grammar γ = (T,A, I), where T is an alphabet set, A is a finite
set of strings over T called axioms, I is the set of insertion rules of the form
(u, λ/x, v) where u, v ∈ T ∗ and x ∈ T+ which corresponds to the rewriting rule
uv → uxv,
Here u, v are called contexts and x is called inserted string for an insertion rule.
As usual, ⇒∗ denotes the reflexive transitive closure of ⇒. A language L(γ)
generated by γ is defined by L(γ) = {w ∈ T ∗ | y ∈ A : y ⇒∗ w}.

3 1-Normal DRA

We first define 1-normal DRA. The functionality and the accepting configura-
tions defined for DRA are the same for 1-normal DRA except the following
changes. Normal DRA can delete at most two substrings from the current string
but in this version at most one substring is deleted using DEL operation then
it takes RST (restart) immediately without reading the remaining part of the
tape, thus forming a new operation DEL-RST.

Definition 2 (1 − Normal DRA). A restarting automata is called 1-normal
DRA if all the DEL operations are in the form (q′, v′) ∈ δ(q, u′) where v′ is
a scattered substring of u′, there exist words x1, x3 ∈ Σ∗, x2 ∈ Σ+ such that
u′ = x1x2x3 and v′ = x1x3. In a cycle one substring can be deleted using DEL
operation and RST is followed immediately.

14 A. Midya et al.

As insertion grammars do not contain non terminals, 1-normal DRA do not need
to use any non terminal, so the error preserving property is satisfied for 1-normal
DRA and correctness preserving property is satisfied for deterministic 1-normal
DRA.

Before we go to analyze the relationship between 1-normal DRA and insertion
grammars which is the objective of the paper, we first need to understand the
relationship of DRA with contextual grammars [1]. External contextual gram-
mars are introduced by S. Marcus in 1969 [9]. Internal contextual grammars
[10] produce strings starting from an axiom and in each step left context and
right context are adjoined to the string based on certain string called selector
present as a substring in the derived string. u, v are called left context and right
context respectively. For more details on contextual grammars, we refer to [11].
We recall that in insertion grammar, looking at the context (u, v), the string x
is inserted. The selector in a contextual grammar can be of arbitrary type in
nature, like regular, context free etc., but the strings u, v are finite. In insertion
grammars all the strings u, v, x are finite. Normal DRA works in the opposite
way of contextual grammars in accepting strings [1]. In a normal DRA M , w is
given as an input. It checks the items of the look-ahead window with the contex-
tual grammar G that any given rule P in G has been used or not. If it finds that
any rule has been used then the automaton deletes the left and right context
u, v and takes the RST operation, otherwise takes MVR and checks whether any
rule in G can be applied. In this way, the automaton simulates the derivation of
contextual grammar in reverse order and if the input string can be reduced back
to the axiom z, it implies that the string w can be generated using the given
grammar G, thus w ∈ L(G). Here the size of the tape of the automaton M is
same as the size of the string w. Step by step, the automaton M only deletes
substrings of w, so the size of the tape becomes smaller and smaller. Tape size
of 1-normal DRA will be |w| + 2 where the 2 is added for the left border � and
the right border �.

4 1-Normal DRA and Insertion Grammar

In this section we shall establish the relationship between 1-normal DRA and
insertion grammars. We show that the membership problem for insertion lan-
guages can be solvable by the introduced 1-normal DRA. The paradigm of this
version of 1-normal DRA is closely related to insertion grammars. Insertion
grammar works just in the opposite direction of 1-normal DRA. The connection
is established based on the following observation.

– For an insertion rule (u, λ/x, v) where u, v ∈ T ∗ and x ∈ T+, the 1-normal
DRA has to delete the substring x between u and v (this means that uxv
is occurred as a substring in the given input string and the machine deletes
this substring x). In that case, we informally say that an insertion rule is
found/used in the look-ahead window as a substring.

1-Normal DRA for Insertion Languages 15

Let M be 1-normal DRA. A reduction system induced by M is RS(M) =
(Σ∗,⇒M). For each insertion grammar γ, we define a reduction system induced
by γ as RS(γ) = (T ∗,⇒−1

γ) where (u ⇒−1
γ v) iff (v ⇒γ u), u, v ∈ T ∗.

With the above detail we will construct a 1-normal DRA M in such a way
that if z ⇒∗

γ w then w ⇒∗
M z for w, z ∈ T ∗, z-axiom, thus RS(γ) = RS(M).

Let w be the input string given to 1-normal DRA. The automaton M checks
the string of the look-ahead window of (size k) with the given grammar γ that
any insertion rule from I has been found or not as a substring. If any insertion
rule from I is found in the look-ahead window as a substring (uxv) then the
automaton M deletes the inserted string x ∈ T+ using the DEL operation.

Theorem 1. For an insertion grammar γ, a 1-normal DRA M can be con-
structed in such a way that RS(γ) = RS(M) and L(γ) = L(M).

Proof. Given an insertion-grammar γ = (T,A,R), we have to construct a
1-normal DRA M = (Q,Σ, �, �, q0, k, δ), that accepts L(γ) where

– Q = {q0 = q′, q, Accept,Reject}
– Σ = T is the input alphabet
– �, � are left and right borders respectively and �, � /∈ Σ
– k is the size of the look-ahead window (k ≥ 1).
– δ is defined as follows:

For an insertion rule of the form: (x1, λ/x2, x3) where x1, x3 ∈ T ∗, x2 ∈ T+

(which offers a rewriting rule x1x3 →γ x1x2x3), the instruction of the 1-normal
DRA M will be (q′, v′) ∈ δ(q, u′) where u′ = x1x2x3, v

′ = x1x3. Here u′ is
replaced by v′ : |v′| < |u′| where v′ is a scattered substring of u′, immediately
followed by a RST instruction: RST ∈ δ(q, u′) for any possible contents u′ of
the look-ahead window. If no insertion rule does belong to look-ahead window
as a subword(uxv /∈ u′) and � does not belong to look-ahead (� /∈ u′) then the
automaton takes MV R operation.

• ACCEPT- Accept ∈ δ(q, u′) where u′ = �z�, z ∈ A.
• REJECT - δ(q, u′) = ∅. That is when δ is undefined. In other words, when

1-normal DRA is unable to take any of the DEL, MVR operations then the
transition becomes undefined.

Size of the Look-ahead Window:
Size of the look-ahead window of M will be k = max(kc, kb + 2) where kc is
the maximum length of the inserted string with its contexts - kc = max{(|u| +
|x| + |v|) where (u, λ/x, v) ∈ I, u, v = contexts}. kb is the maximum axiom size-
kb = max{|z| : z ∈ A}. 2 is added there for the left border � and the right
border �. The reason for 2 is added with kb is to satisfy the accepting condition
- Accept ∈ δ(q, u′) where u′ = �z� where �z� ≤ k.

1-normal DRA simulates the derivation of insertion-deletion grammar in
reverse order, in case of insertion rule it deletes the inserted string using DEL
instruction which is defined above. For insertion grammar the derivation starts
from the axiom to the generated string, the automaton starts the reduction from

16 A. Midya et al.

the generated string to the axiom. If z ⇒∗
γ w then w ⇒∗

M z where w, z ∈ T ∗, z-
axiom, thus RS(γ) = RS(M).

We have the following important result and the proof is obvious from
Theorem 1, and from the discussions of above paragraphs of Theorem 1.

Theorem 2. The membership problem for insertion languages can be solved by
1-normal DRA.

5 The Power of 1-Normal DRA

In this section, we discuss the power of 1-normal DRA and discuss some inter-
esting properties.

Theorem 3. All regular languages can be recognized by 1-normal DRA, i.e. for
each regular language L there exists a M such that L(M) = L ∪ λ.

Proof. Given a regular grammar γ = (N,T, P, S) where N is the finite set of non-
terminals,T is the finite set of terminals, P is the finite set of production rules of
the following form:A → aB where A ∈ N , A → b where b ∈ T , S is the starting
symbol. Now we have to construct a 1-normal DRA M = (Q,Σ, �, �, q0, k, δ),
that accepts L(γ) where Q = {q0 = q′, q, Accept,Reject}, Σ = N ∪ T is the
input alphabet, �, � are left and right borders respectively and �, � /∈ Σ, k is
the size of the look-ahead window (k ≥ 1), δ is defined as follows: For a regular
grammar rule is of the form: A → aB where A ∈ N , the instruction of the
1-normal DRA M will be (q′, v′) ∈ δ(q, u′) where u′ = aB, v′ = A. Here u′ is
replaced by v′ : |v′| < |u′| where v′ is a scattered substring of u′, immediately
followed by a RST instruction: RST ∈ δ(q, u′) for any possible contents u′ of the
look-ahead window. Also, if a regular grammar rule is A → b where b ∈ T then
the instruction of 1-normal DRA will be (q′, v′) ∈ δ(q, u′) where u′ = b, v′ = A.
In the same way, u′ is replaced by v′ : |v′| < |u′| where v′ is a scattered substring
of u′, immediately followed by a RST instruction: RST ∈ δ(q, u′).
If no regular rule does belong to look-ahead window as a subword (aB /∈ u′ or
b /∈ u′) and � does not belong to look-ahead (� /∈ u′) then the automaton takes
MV R operation.

• ACCEPT- Accept ∈ δ(q, u′) where u′ = �S�, S is the starting symbol.
• REJECT - δ(q, u′) = ∅. That is when δ is undefined. In other words, when

1-normal DRA is unable to take any of the DEL, MVR operations then the
transition becomes undefined.

Size of the Look-ahead Window:
Size of the look-ahead window of M will be k = max(kc, kb + 2) where kc is
the length of the right-hand side of the production, kc = 2. kb is the size of the
axiom - kb = 1. 2 is added there in order to satisfy the accepting condition -
Accept ∈ δ(q, u′) where u′ = �S�.

Theorem 4. There are context free languages which cannot be recognized by
1-normal DRA.

1-Normal DRA for Insertion Languages 17

Proof. We conclude Theorem 4 by focusing on Lemmas 1 and 2.

Lemma 1. The language L1 = {pnrqn | n ≥ 0} ∪ {λ} cannot be recognized by
1-normal DRA.

Proof. 1-normal DRA can delete at most one string in a cycle, so it will delete
all p in first n cycles and from (n + 1)th cycle it will start deleting q. Actually
in this case 1-normal DRA cannot delete two substrings in a same cycle, so it is
unable to keep track of the equality of p′s and q′s.

As we have seen in Lemma 1 that not all context-free languages are recog-
nized by a 1-normal DRA. We still could characterize CFL using 1-normal DRA
using inverse homomorphism and Greibach’s hardest context-free language [2].
Greibach constructed a context-free language H [12], such that:

– Any context-free language can be parsed in whatever time or space it takes
to recognize H.

– Any context-free language L can be obtained from H by an inverse homo-
morphism. That is, for each context-free language L ⊆ Σ∗, there exist a
homomorphism ρ so that L = ρ−1(H). The definition of the Greibach’s lan-
guage follows. Let Σ = {x1, x2, x̄1, x̄2,#, c}.
Define H = {λ ∪ {a1cb1cz1d...ancbncznd | n ≥ 1, b1...bn ∈ #D, ai, zi ∈ Σ∗},
for all i, 1 ≤ i ≤ n, b1 ∈ {x1, x2, x̄1, x̄2}∗, bi ∈ {x1, x2, x̄1, x̄2}∗, for all i ≥ 2}.

– (Note that ai and zi can contain c and #). D is a semi-Dyck language over
the alphabet {x1, x2, x̄1, x̄2, generated by the grammar with one non terminal
S and the set of rules: S ⇒ λ | SS | a1Sā1 | a2sā2. Clearly it is a context free
language.

Lemma 2. H is not accepted by 1-normal DRA.

Proof. Consider the language H as given above. Then, H cannot be accepted
by any 1-normal DRA. The main problem of recognition H by 1-normal DRA
is selection of b1, b2, ..bn(see the formal definition of H). Unfortunately no 1-
normal DRA can recognize H. We need to construct M = (Q,Σ, �, �, q0, k, δ),
such that L(M) = H. Apparently, w = c#xm

1 cdcx̄m
1 cd ∈ H. Let the accepting

computation will w1 ⇒M w′ ⇒M ... ⇒M Axiom. Firstly, there must be a deleted
substring of the form xr

1cdcx̄s
2 for some 0 ≤ r, s ≤ m. Here it is easy to see that

r = s. The first applied instruction of 1-normal DRA in order to recognize will
be (q′, v′) ∈ δ(q, u′) where u′ = xα

1 xr
1cdcx̄r

1x̄
β
1 , v′ = xα

1 x̄β
1 . Now consider the word

w = c#xm+1
1 xr

1cdcx̄r
1x̄

m
1 c#x1x̄1cd. From here we can easily conclude w /∈ H,

but w′ = c#xm+1
1 x̄m

1 c#x1x̄1cd is in H. So, contradiction of error preserving
property.

Corollary 1. (a) L(1-normal DRA)⊂ L(Normal − DRA)
(b) CFL − L(1-normal DRA)�= ∅
Proof. In Lemma 1, the language L1 = {pnrqn | n ≥ 0} ∪ {λ} can be recognized
by normal DRA, so from this fact easily we can conclude corollary(a).

18 A. Midya et al.

Let L2 = {pnqn | n > 0} and L3 = {pnq2n | n > 0} be two sample languages. It
is easy to see from the Theorem 2 that both L2, L3 are recognized by 1-Normal
DRA, in this way we can conclude corollary(b).

Theorem 5. L(1-normal DRA) is not closed under union and concatenation.

Proof. Languages L2 ∪ L3 and L2 · L3 cannot be recognized by 1-Normal DRA.
For a contradiction let us suppose that, there exist a 1-Normal DRA M such that
L(M) = L2∪L3 (L(M) = L2·L3, respectively). Let K be the size of the look-ahead
window. Let pnqn ⇒M pn−sbn−t be the first step of an accepting condition, where
s, t > 0, s + t > 0. Suppose when d = p comes in the look-ahead window then
1-Normal DRA takes DEL-RST operation and delete q where |d| ≤ |k|. Since we
set n arbitrarily large where s, t are constants we get necessarily s = t. Now if
d = pαpηqηqβ then 1-Normal DRA takes DEL-RST operation and delete pηqη

where α + β + 2η ≤ |k|. Then pm+ηq2m+η ⇒M pmq2m which is a contradiction
with the error preserving property as pm+ηq2m+η is not in L2 ∪ L3 (and not in
L2 · L3 respectively).

Theorem 6. There are non context free languages which can be recognized by
1-normal DRA.

Proof. 1-normal DRA. M recognizing a language that is not context-free
({(ab)2m | m ≥ 0}). The instructions of 1 - normal DRA are given below.

– : DEL-RST :(q′, v′) ∈ δ(q, u′) where u′ = abb, v′ = ab.
– : DEL-RST :(q′, v′) ∈ δ(q, u′) where u′ = bab, v′ = bb.
– : Accept ∈ δ(q, u′) where u′ = �z� where z = ab

The computation as follows, �abababababababab� ⇒M �abbabababababab� ⇒M

�ababababababab� ⇒M �abbababababab� ⇒M �abababababab� ⇒M

�abbabababab� ⇒M �ababababab� ⇒M �abbababab� ⇒M �abababab� ⇒M

�abbabab� ⇒M �ababab� ⇒M �abbab� ⇒M �abab� ⇒M �abb� ⇒M �ab�,
accepted.

Theorem 7. L(1-normal DRA) is not closed under homomorphism.

Proof. Consider L = {pnqnrms2m | n,m ≥ 0} recognized by L(1−normalDRA)
and the homomorphism h : p �→ p, q �→ q, r �→ r, s �→ q.

It is easy to see that each of the following languages:
L4 = {pnrqn | n ≥ 0} ∪ {pnqn | n ≥ 0}, L5 = {pnrqm | n,m ≥ 0, } ∪ {λ},
L6 = {pmqm | m ≥ 0} can be recognized by a 1-normal DRA. Using these
languages we can show several non-closure properties of 1-normal DRA.

Theorem 8. L(1-normal DRA) is not closed under intersection, intersection
with a regular language, and set difference.

Proof. Intersection part follows the equality L1 = L4∩L5 and Lemma 1. In order
to proof the next part, just notice that L5 is a regular language. Set differences
the part follows the equality L3 = (L4 − L6) ∪ {λ}.

1-Normal DRA for Insertion Languages 19

6 Conclusion

In this paper, we have introduced 1-normal DRA. We have solved the mem-
bership problem of insertion languages. We saw that s insertion grammars do
not contain non terminals, 1-normal DRA do not need to use any non terminal,
so the error preserving property is satisfied for 1-normal DRA and correctness
preserving property is satisfied for deterministic 1-normal DRA.

There is scope of future work. H in Lemma 2, can be accepted by introducing
auxiliary symbol to 1-normal DRA. Also, in case of running time, as here we are
using non deterministic 1-normal DRA, we are unable to comment about the
polynomial time complexity solution. We can solve the membership problem of
insertion languages in polynomial time by extending our work.

Acknowledgments. Tool Development - Poorna Chandra Tejasvi, Btech third year
student of Computer Science and Engineering, Christ University Faculty of Engineering,
Bangalore.

References

1. Jancar, P., Mraz, F., Platek, M., Prochazka, M., Vogel, J.: Deleting automata
with a restart operation. In: Bozapalidis, S. (ed.) Proceedings of Developments in
Language language theory III(97), Thessaloniki, pp. 191–202 (1998)

2. Jancar, P., Mraz, F., Platek, M., Prochazka, M., Vogel, J.: Restarting automata,
marcus grammars and context-free languages. In: Dassow, J., Rozenberg, G.,
Salomaa, A. (eds.) Developments in Language Theory, pp. 102–111. World Sci-
entific Publishing (1996)

3. Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages.
Ph.D. Thesis, University of Colorado, Boulder (1982)

4. Haussler, D.: Insertion languages. Inf. Sci. 131(1), 77–89 (1983)
5. Galiukschov, B.S.: Semicontextual grammars (in Russian). MAT. Logica i Mat.

Ling. 38–50 (1981)
6. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.

Comput. 131(1), 47–61 (1996)
7. Chytil, M.P., Platek, M., Vogel, J.: A note on the Chomsky hierarchy. Bull. EATCS

27, 23–30 (1985)
8. Jancar, P., Mráz, F., Plátek, M.: A taxonomy of forgetting automata. In:

Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 527–
536. Springer, Heidelberg (1993). doi:10.1007/3-540-57182-5 44

9. Marcus, S.: Contextual Grammars. Revue Roumane de Mathematiques Pures et
Appliques 14(10), 1525–1534 (1969)

10. Paun, G., Nguyen, X.M.: On the inner contextual grammars. Rev. Roum. Pures.
Appl. 25, 641–651 (1980)

11. Paun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Dordrecht
(1997)

12. Cerno, P., Mráz, F.: Clearing restarting automata. Fundam. Inform. 104, 17–54
(2010)

http://dx.doi.org/10.1007/3-540-57182-5_44

	1-Normal DRA for Insertion Languages
	1 Introduction
	2 Preliminaries
	2.1 Restarting Automaton with Delete Operation (DRA)
	2.2 Insertion Grammars

	3 1-Normal DRA
	4 1-Normal DRA and Insertion Grammar
	5 The Power of 1-Normal DRA
	6 Conclusion
	References

