(1, 2)-Domination in Graphs

K. Kayathri^(\boxtimes) and S. Vallirani

PG and Research Department of Mathematics, Thiagarajar College, Madurai 625 009, Tamilnadu, India kayathrikanagavel@gmail.com, vallirani3@gmail.com

Abstract. A $(1, 2)$ -dominating set in a graph $G = (V, E)$ is a set having the property that for every vertex $v \in V - S$, there is at least one vertex in S at a distance 1 from v and a second vertex in S at a distance at most 2 from v. The $(1, 2)$ –domination number of G, denoted by $\gamma_{1,2}(G)$, is the minimum cardinality of a (1, 2)−dominating set of G. In this paper, we have derived bounds of $\gamma_{1,2}$ in terms of the order and the maximum degree. For trees, we get the bounds in terms of the number of pendant vertices. We have also characterized the graphs G of order n , for which $\gamma_{1,2}(G) = n, n-1, n-2.$

Keywords: Domination \cdot (1, 2)-dominating set

1 Introduction

Hedetniemi et al. $\begin{bmatrix} 3 \end{bmatrix}$ introduced the concept of $(1, k)$ -domination in graphs. Let k be a positive integer. A subset S of vertices is called a $(1, k)$ -dominating set in G if for every vertex $v \in V - S$, there are two distinct vertices $u, w \in S$ such that u is adjacent to v, and w is within distance k of v (*i.e.* $d_G(v, w) \leq k$). Hedetniemi et al. $[4,5]$ $[4,5]$ examined $(1,k)$ -domination along with the internal distances in $(1,k)$ dominating sets. Factor and Langley $[1,2]$ $[1,2]$ studied $(1,2)$ -domination of digraphs.

In this paper, we study $(1, 2)$ -domination in graphs. All our graphs are finite and simple.

2 Bounds of $\gamma_{1,2}$ in terms of Δ

We start with the following observations.

Observation 1. For any two graphs G and H, $\gamma_{1,2}(G \cup H) = \gamma_{1,2}(G) + \gamma_{1,2}(H)$ *.*

Observation 2. *If* H *is a spanning supergraph of* G, then $\gamma_{1,2}(H) \leq \gamma_{1,2}(G)$ *.*

Theorem 1. *If* G *is a graph of order* $n \geq 4$ *with* $\Delta(G) \geq n-2$ *, then*

$$
\gamma_{1,2}(G) = \begin{cases} 2 & \text{if } G \text{ is connected} \\ 3 & \text{if } G \text{ is disconnected.} \end{cases}
$$

-c Springer International Publishing AG 2017

S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 128–133, 2017.

DOI: 10.1007/978-3-319-64419-6 17

Proof. When $\Delta(G) = n - 1$, let u be a full-degree vertex; and v be any other vertex in G. Then $\{u, v\}$ is a $(1, 2)$ -dominating set and so $\gamma_{1,2}(G) = 2$.

When $\Delta(G) = n - 2$, let u be a vertex of degree $n - 2$; and v be the vertex which is not adjacent to u.

Case 1. G is connected.

Let w be a neighbour of v. Then $\{u, w\}$ is a $(1, 2)$ -dominating set and so $\gamma_{1,2}(G) = 2.$

Case 2. G is disconnected.

Then v is an isolated vertex. Let S be any $(1, 2)$ -dominating set of G. Since every isolated vertex must lie in S, $\gamma_{1,2}(G) > 3$. Clearly $\{u, v, x\}$ is a $(1, 2)$ -dominating set for every $x \in N(u)$ and $\gamma_{1,2}(G) = 3$.

Corollary 1. $\gamma_{1,2}(G) = 2$ *for the graphs* $G = K_n, K_{1,n}, W_n, F_n$ *and* $H + K_1$ *where* H *is any graph.*

Theorem 2. *Let* G *be a connected graph of order* $n \geq 5$ *with* $2 \leq \Delta(G) \leq n-3$ *. Then* $\gamma_{1,2}(G) \leq n - \Delta(G)$ *.*

Proof. Let G be a connected graph with the given hypothesis. Let $\Delta(G) = n-1$ k. Then $2 \le k \le n-3$ and $n - \Delta(G) = k+1$. Let $V(G) = \{u, v_i | 1 \le i \le n-1\}$, where u is a vertex of degree $\Delta(G)$, and $N(u) = \{v_{k+1}, v_{k+2}, ..., v_{n-1}\}.$ Then $V(G) = N[u] \cup V_1$, where $V_1 = \{v_1, v_2, ..., v_k\}$. Since G is connected, at least one vertex in V_1 has a neighbour in $N(u)$.

Case 1. Every vertex in V_1 has some neighbour in $N(u)$.

Without loss of generality, assume that v_i is adjacent to v_j in $N(u)$, for $1 \leq i \leq$ k. The vertices $v_{j_1}, v_{j_2}, ..., v_{j_k}$ need not be distinct. Let $V_2 = \{v_{j_i} | 1 \le i \le k\} \subseteq$ $N(u)$. Let $S = \{u, v_{j_1}, v_{j_2}, ..., v_{j_k}\} (= V_2 \cup \{u\}).$

Every vertex $v_i \in N(u) - S$ is adjacent to u and at a distance at most 2 from v_{j_1} . Every $v_i \in V_1$ is adjacent to v_{j_i} and at a distance 2 from u. Hence S is a $(1, 2)$ -dominating set and so $\gamma_{1,2}(G) \leq k+1$.

Case 2. Some vertex in V_1 has no neighbour in $N(u)$.

Without loss of generality, let $V_1' = \{v_1, v_2, ..., v_r\} \subseteq V_1$ be the set of vertices that have no neighbours in $N(u)$. Let $V''_1 = V_1 - V'_1 = \{v_{r+1}, v_{r+2}, ..., v_k\}$. Then $V(G) = N[u] \cup V'_1 \cup V''_1$. Since G is connected, at least one vertex in V'_1 is adjacent to some vertex in V_1'' . Without loss of generality, let v_1 be adjacent to v_{r+1} . Without loss of generality, assume that v_i is adjacent to v_j , in $N(u)$, for $r + 1 \leq i \leq k$. The vertices $v_{j_{r+1}}, v_{j_{r+2}}, ..., v_{j_k}$ need not be distinct. Let $V_2 = \{v_{j_i}|r+1 \leq i \leq k\} \subseteq N(u).$

Let $S = \{u, v_{j_{r+1}}, v_{j_{r+2}}, ..., v_{j_k}, v_1, v_2, ..., v_r\} (= V_2 \cup V'_1 \cup \{u\})$. Every $v_i \in W_i$ $N(u) - V_2$ is adjacent to u and at a distance at most 2 from $v_{j_{r+1}}$. Every $v_i \in V_1^{''}$ is adjacent to v_{j_i} and at a distance 2 from u. Hence S is a $(1, 2)$ -dominating set and so $\gamma_{1,2}(G) \leq k+1$.

A *wounded spider* is the graph formed by subdividing at most $n - 1$ of the edges of a star $K_{1,n}$ for $n \geq 2$. Let $WS_{n,t}$ denote the wounded spider formed by subdividing t edges of $K_{1,n}$, $1 \le t \le n-1$.

Corollary 2. $\gamma_{1,2}(WS_{n,t}) = t + 1$.

Proof. Let $V[WS_{n,t}] = \{u, v_1, v_2, ..., v_n, v_1', v_2', ..., v_t'\}$ and $E[WS_{n,t}] = \{uv_j, v_i v_i'|\}$ $1 \leq j \leq n, 1 \leq i \leq t$. Let S be any $(1, 2)$ -dominating set of $WS_{n,t}$. For $1 \leq i \leq t$, to dominate v_i , either $v_i \in S$ or $v'_i \in S$. Moreover, for $t+1 \leq j \leq n$, to dominate v_j , either $u \in S$ or $v_j \in S$. Therefore, $|S| \ge t + 1$.

Note that $t = n - \Delta - 1$. When $t \geq 2$, then $\Delta (WS_{n,t}) \leq n - 3$; and by Theorem [7,](#page-4-0) $\gamma_{1,2}(WS_{n,t}) \leq t+1$. Hence $\gamma_{1,2}(WS_{n,t}) = t+1$.

When $t = 1$, then $\Delta (WS_{n,t}) \geq n-2$; and by Theorem [1,](#page-0-0) $\gamma_{1,2}(WS_{n,t}) = 2$.

3 Composition of Two Graphs

Theorem 3. *Let* G *be a non-trivial connected graph. Then for any graph* H*,* $\gamma_{1,2}(GoH) = |V(G)|.$

Proof. Let $V(G) = \{v_1, v_2, ..., v_n\}$ and $V(H) = \{u_1, u_2, ..., u_s\}$. Let $H_1, H_2, ..., H_n$ denote the copies of H, where every vertex of H_i is adjacent to $v_i, 1 \le i \le n$. Let $V(H_i) = \{u_1^i, u_2^i, ..., u_s^i\}$. Let S be any $(1, 2)$ -dominating set of GoH . Since there is no adjacency between the vertices in H_i and H_j for $i \neq j$, every u_r^i in H_i is adjacent to either v_i or u_k^i , where $u_k^i \in N[u_r^i]$. Hence for each i, $1 \leq i \leq n$, to dominate $V(H_i)$, we need at least one vertex in S. Hence $\gamma_{1,2}(GoH) \geq n$. Let $S_1 = \{v_1, v_2, ..., v_n\}$. For every $u_r^i, 1 \leq i \leq n, 1 \leq r \leq n$ $s, d_{G \circ H}(u_r^i, v_i) = 1$ and $d_{G \circ H}(u_r^i, v_j) = 2$ for every $v_j \in N_G(v_i)$. Hence S_1 is a $(1, 2)$ -dominating set and so $\gamma_{1,2}(GoH) = n$.

Corollary 3. *Let* G *be any graph having* t *isolates. Then for any graph* H*,* $\gamma_{1,2}(GoH) = |V(G)| + t$, where $t \geq 0$.

Proof. Let $G_1, G_2, ..., G_k$ be the components of G. Then $\gamma_{1,2}(GoH) = \sum_{i=1}^{k} \gamma_{1,2}(G_i oH).$

Case 1. $t = 0$.

Since each G_i is connected, by Theorem [3,](#page-2-0) $\gamma_{1,2}(G_i \circ H) = |V(G_i)|$. Hence $\gamma_{1,2}(GoH) = |V(G)|.$

Case 2: $t \neq 0$.

Without loss of generality, let $G_1, G_2, ..., G_t$ denote the components of order 1. Then $G_i \circ H$ has a full - degree vertex; and so by Theorem [1,](#page-0-0) $\gamma_{1,2}(G_i \circ H) = 2$, for $1 \leq i \leq t$. By Theorem [3,](#page-2-0) $\gamma_{1,2}(G_i \circ H) = |V(G_i)|$, for $t + 1 \leq i \leq k$. Thus, we get the result.

4 Some Characterizations

Theorem 4. Let G be a connected graph of order $n \geq 2$. Then $\gamma_{1,2}(G) = n$ if *and only if* $n = 2$ *.*

Proof. When $G = K_2$, the result is obvious. Conversely, suppose that $n \neq 2$.

Claim. $\gamma_{1,2}(G) < n$.

We prove this result by induction on n .

When $n = 3$, a set of any two vertices of G is a $(1, 2)$ -dominating set of G and so $\gamma_{1,2}(G)=2 < n$.

Assume the result for $n = k$ with $k \geq 3$.

Next, let G be a connected graph of order $n = k + 1$. Let v be a vertex that is not a cut vertex in G. Then $G - v$ is connected, and of order $n - 1 = k$. By the induction hypothesis, $G - v$ has a (1, 2)-dominating set S with $|S| < k$. (i.e.) $|S| \leq k - 1$.

Let u be a neighbour of v .

Case 1. $u \in S$.

Since G is connected, $n \geq 3$ and v is not a cut-vertex in G, u has another neighbour (say) w. Then $S \cup \{w\}$ is a (1, 2)-dominating set in G and so $\gamma_{1,2}(G) \leq$ $k < n$.

Case 2. $u \notin S$.

Since S is a (1, 2)-dominating set in $G - v$, there exists a vertex $w \in S$ that is adjacent to u. Then $S \cup \{u\}$ is a $(1, 2)$ -dominating set in G and so $\gamma_{1,2}(G) \leq k < n$.

Thus, by induction, the result follows.

Theorem 5. Let G be a connected graph of order $n \geq 3$. Then $\gamma_{1,2}(G) = n - 1$ *iff* $n = 3$ *. i.e.* $\gamma_{1,2}(G) = n - 1$ *iff* $G = P_3$ or K_3 *.*

Proof. When $n = 3$, a set of any two vertices of G is a $(1, 2)$ -dominating set of G and so $\gamma_{1,2}(G)=2=n-1$. Conversely, suppose that $n \neq 3$.

Claim. $\gamma_{1,2}(G) < n-1$.

We shall prove this result by induction on n .

When $n = 4$, since G is connected, $\Delta(G) \geq 2$. Now, any two adjacent vertices form a (1, 2)-dominating set and so $\gamma_{1,2}(G)=2 < n-1$.

Assume the result for $n = k$ with $k \geq 4$.

Next, let G be a connected graph of order $n = k + 1$. The rest of the proof is similar to the proof of Theorem [4.](#page-2-1)

Corollary 4. *Let* G *be any graph of order* n*. Then*

 (i) $\gamma_{1,2}(G) = n$ *iff* $G = sK_1 \cup \frac{n-s}{2}K_2$, with $0 \leq s \leq n$.

 (iii) $\gamma_{1,2}(G) = n - 1$ *iff* $G = sK_1 \cup \frac{n - s - 3}{2}K_2 \cup H$ *, where* $H \cong P_3$ or K_3 *, with* $0 \leq s \leq n-3$.

Theorem 6. Let G be a connected graph of order $n \geq 4$. Then $\gamma_{1,2}(G) = n - 2$ *iff* $G = P_5$ *or* G *is of order 4.*

Proof. If $G = P_5$ or G is of order 4, it is easy to verify that $\gamma_{1,2}(G) = n - 2$. Conversely, suppose that

$$
\gamma_{1,2}(G) = n - 2. \tag{1}
$$

Let $n = 5$. If $\Delta(G) \geq 3 (= n-2)$, then $\gamma_1, \gamma_2(G) = 2$ (by Theorem [1\)](#page-0-0), contradicting (1). If $\Delta(G) = 2$, then G is either P_5 or C_5 ; but $\gamma_{1,2}(C_5) = 2$, and so $G = P_5$. Now, let $n \geq 6$.

Claim. $\gamma_{1,2}(G) < n-2$.

We shall prove this result by induction on n .

When $n = 6$, if $\Delta(G) \geq n - 2$, then $\gamma_{1,2}(G) = 2$ (by Theorem [1\)](#page-0-0); if $3 \leq$ $\Delta(G) \leq n-3$, then $\gamma_{1,2}(G) \leq n-3$ (by Theorem [7\)](#page-4-0); if $\Delta(G) = 2$, then G is either P_6 or C_6 and $\gamma_{1,2}(G) \leq 3$; and in all these cases, we get a contradiction to (1) .

Assume the result for $n = k$ with $k \geq 6$. Next, let G be a connected graph of order $n = k + 1$. The rest of the proof is similar to the proof of Theorem [4.](#page-2-1)

Corollary 5. For any graph G of order n, $\gamma_{1,2}(G) = n - 2$ iff G is one of the *following graphs:*

- *(i)* $G = sK_1 \cup \frac{n-6-s}{2} K_2 \cup H$ *, where* $H = 2P_3, 2K_3$ *or* $P_3 \cup K_3$ *, with* $0 \le s \le n-6$ *.*
- *(ii)* $G = sK_1 ∪ P_5 ∪ \frac{n-5-s}{2}K_2$, with $0 ≤ s ≤ n-5$.
- (iii) $G = sK_1 ∪ \frac{n-4-s}{2}K_2 ∪ H$ *where H is a connected graph of order* 4*, with* $0 \leq s \leq n-4$.

5 Trees

Theorem 7. Let T be a tree of order $n \geq 2$. Then $\gamma_{1,2}(T) = 2$ if and only if T *is a Star or Double Star.*

Proof. Suppose that $\gamma_{1,2}(T) = 2$. Let $S = \{u, v\}$ be a $(1, 2)$ -dominating set of T. Then every vertex in T is adjacent with either u or v. Hence $V(T) = N[u] \cup N[v]$. Then for every $x \in N(u)$ and $y \in V(T)$, $d(x, y) \leq d(x, u) + d(u, y) \leq 3$; similarly, for every $x \in N(v)$ and $y \in V(T)$, $d(x, y) \leq 3$; for every $x \in V - \{u, v\}$, $d(u, x) + d(x, v) \leq 3$; and so $d(u, v) \leq 3$. Hence $diam(T) \leq 3$; and so T is a Star or a Double Star $D_{r,s}$ (where $r+s=n-2$). Converse is obvious.

Theorem [7](#page-4-0) deals with the trees of diameter 2 and 3. The next result deals with trees of diameter ≥ 4 .

Theorem 8. *Let* T *be a tree of order* n *with* r *pendant vertices. Then*

(i) $3 \leq \gamma_{1,2}(T) \leq n-r$, *if diam*(*T*) ≥ 5 *(ii)* $\gamma_{1,2}(T) = n - r$, *if* diam(T) = 3 or 4*.*

Proof. Let $diam(T) \geq 3$. Let V_1 denote the set of all pendant vertices in T. Then $|V - V_1| \geq 2$ and $V - V_1$ is a (1, 2)-dominating set; and so

$$
\gamma_{1,2}(T) \le n - r.\tag{2}
$$

Using Theorem [7,](#page-4-0) $\gamma_{1,2}(T) \geq 3$; and so (i) follows.

When $diam(T) = 3$, T is a double star; and by Theorem [7,](#page-4-0) $\gamma_{1,2}(T)=2=$ $n-r$. When $diam(T) = 4$, $diam(T - V_1) = 2$; and so $T - V_1$ is $K_{1, n-r-1}$, where $n-r-1 ≥ 2$. Let $V(K_{1, n-r-1}) = \{u, u_1, u_2, ..., u_{n-r-1}\}$. For $1 ≤ j ≤ d_T(u_i) - 1$, let v_{i_j} denote a pendant vertex adjacent to u_i . For $1 \le t \le d_T(u) - n - r - 1$, let w_t denote a pendant vertex adjacent to u. (If $d_T(u) = n - r - 1$, then there is no w_t 's).

By $(2), \gamma_{1,2}(T) \leq n-r$ $(2), \gamma_{1,2}(T) \leq n-r$. Assume the contrary that $\gamma_{1,2}(T) \neq n-r$. Then there is a $(1, 2)$ -dominating set S_1 of cardinality $n - r - 1$.

If $S_1 = \{u_1, u_2, \ldots, u_{n-r-1}\}\$, then there is no vertex at a distance 2 from v_i , for $1 \leq i \leq n-r-1$ and $1 \leq j \leq d_T(u_i)-1$, which is a contradiction.

Then $u_i \notin S_1$, for some i, $1 \leq i \leq n-r-1$. Without loss of generality, let $u_1, u_2, ..., u_k$ ∉ S_1 and $u_{k+1}, u_{k+2}, ..., u_{n-r-1}$ ∈ S_1 , where $1 ≤ k ≤$ $n - r - 1$. For $1 \leq i \leq k$, $u_i \notin S_1$; and so all v_{i_i} 's must lie in S_1 . But $|S_1| = n - r - 1$. Hence it follows that, $d(u_i) = 2$ for $i = 1, 2, 3, ..., k$, and $S_1 = \{v_{1_1}, v_{2_1}, ..., v_{k_1}, u_{k+1}, u_{k+2}, ..., u_{n-r-1}\}.$

Case 1. $k = n - r - 1$.

Now $S_1 = \{v_{1_1}, v_{2_1}, ..., v_{(n-r-1)_1}\}$; and so u is not (1, 2)-dominated by S_1 , a contradiction.

Case 2. $k < n - r - 1$.

Now there is no vertex in S_1 at a distance at most 2 from v_{s_i} , $k+1 \leq s \leq n-r-1$, a contradiction.

Hence $\gamma_{1,2}(T) = n - r$.

References

- 1. Factor, K.A.S., Langley, L.J.: An introduction to (1, 2)-domination graphs. Congr. Numer. **199**, 33–38 (2009)
- 2. Factor, K.A.S., Langley, L.J.: A characterization of connected (1, 2)- domination graphs of tournaments. AKCE Int. J. Graphs Comb. **8**(1), 51–62 (2011)
- 3. Hedetniemi, S.M., Hedetniemi, S.T., Rall, D.F., Knisely, J.: Secondary domination in graphs. AKCE Int. J. Graphs Comb. **5**(2), 103–115 (2008)
- 4. Hedetniemi, J.T., Hedetniemi, K.D., Hedetniemi, S.M., Hedetniemi, S.T.: Secondary and internal distances of sets in graphs. AKCE Int. J. Graphs Comb. **6**(2), 239–266 (2009)
- 5. Hedetniemi, J.T., Hedetniemi, K.D., Hedetniemi, S.M., Hedetniemi, S.T.: Secondary and internal distances of sets in graphs II. AKCE Int. J. Graphs Comb. **9**(1), 85–113 (2012)