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Abstract. A (1, 2)-dominating set in a graph G = (V, E) is a set having
the property that for every vertex v ∈ V −S, there is at least one vertex
in S at a distance 1 from v and a second vertex in S at a distance at most
2 from v. The (1, 2)−domination number of G, denoted by γ1,2(G), is
the minimum cardinality of a (1, 2)−dominating set of G. In this paper,
we have derived bounds of γ1,2 in terms of the order and the maximum
degree. For trees, we get the bounds in terms of the number of pendant
vertices. We have also characterized the graphs G of order n, for which
γ1,2(G) = n, n − 1, n − 2.
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1 Introduction

Hedetniemi et al. [3] introduced the concept of (1, k)-domination in graphs. Let
k be a positive integer. A subset S of vertices is called a (1, k)-dominating set in
G if for every vertex v ∈ V −S, there are two distinct vertices u,w ∈ S such that
u is adjacent to v, and w is within distance k of v (i.e. dG(v, w) ≤ k). Hedetniemi
et al. [4,5] examined (1, k)-domination along with the internal distances in (1, k)-
dominating sets. Factor and Langley [1,2] studied (1, 2)-domination of digraphs.

In this paper, we study (1, 2)-domination in graphs. All our graphs are finite
and simple.

2 Bounds of γ1,2 in terms of Δ

We start with the following observations.

Observation 1. For any two graphs G and H, γ1,2(G∪H) = γ1,2(G)+γ1,2(H).

Observation 2. If H is a spanning supergraph of G, then γ1,2(H) ≤ γ1,2(G).

Theorem 1. If G is a graph of order n ≥ 4 with Δ(G) ≥ n − 2, then

γ1,2(G) =
{

2 if G is connected
3 if G is disconnected.
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Proof. When Δ(G) = n − 1, let u be a full-degree vertex; and v be any other
vertex in G. Then {u, v} is a (1, 2)-dominating set and so γ1,2(G) =2.

When Δ(G) = n − 2, let u be a vertex of degree n − 2; and v be the vertex
which is not adjacent to u.

Case 1. G is connected.
Let w be a neighbour of v. Then {u,w} is a (1, 2)-dominating set and so
γ1,2(G) = 2.

Case 2. G is disconnected.
Then v is an isolated vertex. Let S be any (1, 2)-dominating set of G. Since every
isolated vertex must lie in S, γ1,2(G) ≥ 3. Clearly {u, v, x} is a (1, 2)-dominating
set for every x ∈ N(u) and γ1,2(G) = 3.

Corollary 1. γ1,2(G) = 2 for the graphs G = Kn,K1,n,Wn, Fn and H + K1

where H is any graph.

Theorem 2. Let G be a connected graph of order n ≥ 5 with 2 ≤ Δ(G) ≤ n−3.
Then γ1,2(G) ≤ n − Δ(G).

Proof. Let G be a connected graph with the given hypothesis. Let Δ(G) = n−1−
k. Then 2 ≤ k ≤ n − 3 and n − Δ(G) = k + 1. Let V (G) = {u, vi|1 ≤ i ≤ n − 1},
where u is a vertex of degree Δ(G), and N(u) = {vk+1, vk+2, ..., vn−1}. Then
V (G) = N [u]∪V1, where V1 = {v1, v2, ..., vk}. Since G is connected, at least one
vertex in V1 has a neighbour in N(u).

Case 1. Every vertex in V1 has some neighbour in N(u).
Without loss of generality, assume that vi is adjacent to vji in N(u), for 1 ≤ i ≤
k. The vertices vj1 , vj2 , ..., vjk need not be distinct. Let V2 = {vji |1 ≤ i ≤ k} ⊆
N(u). Let S = {u, vj1 , vj2 , ..., vjk}(= V2 ∪ {u}).

Every vertex vi ∈ N(u)−S is adjacent to u and at a distance at most 2 from
vj1 . Every vi ∈ V1 is adjacent to vji and at a distance 2 from u. Hence S is a
(1, 2)-dominating set and so γ1,2(G) ≤ k + 1.

Case 2. Some vertex in V1 has no neighbour in N(u).
Without loss of generality, let V

′
1 = {v1, v2, ..., vr} ⊆ V1 be the set of vertices

that have no neighbours in N(u). Let V
′′
1 = V1 −V

′
1 = {vr+1, vr+2, ..., vk}. Then

V (G) = N [u] ∪ V
′
1 ∪ V

′′
1 . Since G is connected, at least one vertex in V

′
1 is

adjacent to some vertex in V
′′
1 . Without loss of generality, let v1 be adjacent

to vr+1. Without loss of generality, assume that vi is adjacent to vji in N(u),
for r + 1 ≤ i ≤ k. The vertices vjr+1 , vjr+2 , ..., vjk need not be distinct. Let
V2 = {vji |r + 1 ≤ i ≤ k} ⊆ N(u).

Let S = {u, vjr+1 , vjr+2 , ..., vjk , v1, v2, ..., vr}(= V2 ∪ V
′
1 ∪ {u}). Every vi ∈

N(u)−V2 is adjacent to u and at a distance at most 2 from vjr+1 . Every vi ∈ V
′′
1

is adjacent to vji and at a distance 2 from u. Hence S is a (1, 2)-dominating set
and so γ1,2(G) ≤ k + 1.

A wounded spider is the graph formed by subdividing at most n − 1 of the
edges of a star K1,n for n ≥ 2. Let WSn,t denote the wounded spider formed by
subdividing t edges of K1,n, 1 ≤ t ≤ n − 1.
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Corollary 2. γ1,2(WSn,t) = t + 1.

Proof. Let V [WSn,t] = {u, v1, v2, ..., vn, v
′
1, v

′
2, ..., v

′
t} and E[WSn,t] = {uvj , viv

′
i|

1 ≤ j ≤ n, 1 ≤ i ≤ t}. Let S be any (1, 2)-dominating set of WSn,t. For 1 ≤ i ≤ t,
to dominate vi, either vi ∈ S or v

′
i ∈ S. Moreover, for t+1 ≤ j ≤ n, to dominate

vj , either u ∈ S or vj ∈ S. Therefore, |S| ≥ t + 1.
Note that t = n − Δ − 1. When t ≥ 2, then Δ(WSn,t) ≤ n − 3; and by

Theorem 7, γ1,2(WSn,t) ≤ t + 1. Hence γ1,2(WSn,t) = t + 1.
When t = 1, then Δ(WSn,t) ≥ n − 2; and by Theorem1, γ1,2(WSn,t) = 2.

3 Composition of Two Graphs

Theorem 3. Let G be a non-trivial connected graph. Then for any graph H,
γ1,2(GoH) = |V (G)|.
Proof. Let V (G) = {v1, v2, ..., vn} and V (H) = {u1, u2, ..., us}. Let
H1,H2, ...,Hn denote the copies of H, where every vertex of Hi is adjacent
to vi, 1 ≤ i ≤ n. Let V (Hi) = {ui

1, u
i
2, ..., u

i
s}. Let S be any (1, 2)-dominating

set of GoH. Since there is no adjacency between the vertices in Hi and Hj for
i �= j, every ui

r in Hi is adjacent to either vi or ui
k, where ui

k ∈ N [ui
r]. Hence

for each i, 1 ≤ i ≤ n, to dominate V (Hi), we need at least one vertex in S.
Hence γ1,2(GoH) ≥ n. Let S1 = {v1, v2, ..., vn}. For every ui

r, 1 ≤ i ≤ n, 1 ≤ r ≤
s, dGoH(ui

r, vi) = 1 and dGoH(ui
r, vj) = 2 for every vj ∈ NG(vi). Hence S1 is a

(1, 2)-dominating set and so γ1,2(GoH) = n.

Corollary 3. Let G be any graph having t isolates. Then for any graph H,
γ1,2(GoH) = |V (G)| + t, where t ≥ 0.

Proof. Let G1, G2, ..., Gk be the components of G.
Then γ1,2(GoH) =

∑k
i=1 γ1,2(GioH).

Case 1. t = 0.
Since each Gi is connected, by Theorem 3, γ1,2(GioH) = |V (Gi)|. Hence
γ1,2(GoH) = |V (G)|.
Case 2: t �= 0.
Without loss of generality, let G1, G2, ..., Gt denote the components of order 1.
Then GioH has a full - degree vertex; and so by Theorem 1, γ1,2(GioH) = 2, for
1 ≤ i ≤ t. By Theorem 3, γ1,2(GioH) = |V (Gi)|, for t + 1 ≤ i ≤ k. Thus, we get
the result.

4 Some Characterizations

Theorem 4. Let G be a connected graph of order n ≥ 2. Then γ1,2(G) = n if
and only if n = 2.
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Proof. When G = K2, the result is obvious. Conversely, suppose that n �= 2.

Claim. γ1,2(G) < n.
We prove this result by induction on n.
When n = 3, a set of any two vertices of G is a (1, 2)-dominating set of G

and so γ1,2(G) = 2 < n.

Assume the result for n = k with k ≥ 3.
Next, let G be a connected graph of order n = k + 1. Let v be a vertex that

is not a cut vertex in G. Then G − v is connected, and of order n − 1 = k. By
the induction hypothesis, G− v has a (1, 2)-dominating set S with |S| < k. (i.e.)
|S| ≤ k − 1.

Let u be a neighbour of v.

Case 1. u ∈ S.
Since G is connected, n ≥ 3 and v is not a cut-vertex in G, u has another
neighbour (say) w. Then S∪{w} is a (1, 2)-dominating set in G and so γ1,2(G) ≤
k < n.

Case 2. u /∈ S.
Since S is a (1, 2)-dominating set in G − v, there exists a vertex w ∈ S that is
adjacent to u. Then S∪{u} is a (1, 2)-dominating set in G and so γ1,2(G) ≤ k < n.

Thus, by induction, the result follows.

Theorem 5. Let G be a connected graph of order n ≥ 3. Then γ1,2(G) = n − 1
iff n = 3. i.e. γ1,2(G) = n − 1 iff G = P3 or K3.

Proof. When n = 3, a set of any two vertices of G is a (1, 2)-dominating set of
G and so γ1,2(G) = 2 = n − 1. Conversely, suppose that n �= 3.

Claim. γ1,2(G) < n − 1.
We shall prove this result by induction on n.
When n = 4, since G is connected, Δ(G) ≥ 2. Now, any two adjacent vertices

form a (1, 2)-dominating set and so γ1,2(G) = 2 < n − 1.
Assume the result for n = k with k ≥ 4.
Next, let G be a connected graph of order n = k + 1. The rest of the proof

is similar to the proof of Theorem 4.

Corollary 4. Let G be any graph of order n. Then

(i) γ1,2(G) = n iff G = sK1 ∪ n−s
2 K2, with 0 ≤ s ≤ n.

(ii) γ1,2(G) = n − 1 iff G = sK1 ∪ n−s−3
2 K2 ∪ H, where H ∼= P3 or K3, with

0 ≤ s ≤ n − 3.

Theorem 6. Let G be a connected graph of order n ≥ 4. Then γ1,2(G) = n − 2
iff G = P5 or G is of order 4.



132 K. Kayathri and S. Vallirani

Proof. If G = P5 or G is of order 4, it is easy to verify that γ1,2(G) = n − 2.
Conversely, suppose that

γ1,2(G) = n − 2. (1)

Let n = 5. If Δ(G) ≥ 3(= n−2), then γ1,2(G) = 2 (by Theorem 1), contradicting
(1). If Δ(G) = 2, then G is either P5 or C5; but γ1,2(C5) = 2, and so G = P5.
Now, let n ≥ 6.

Claim. γ1,2(G) < n − 2.
We shall prove this result by induction on n.
When n = 6, if Δ(G) ≥ n − 2, then γ1,2(G) = 2 (by Theorem 1); if 3 ≤

Δ(G) ≤ n − 3, then γ1,2(G) ≤ n − 3 (by Theorem 7); if Δ(G) = 2, then G is
either P6 or C6 and γ1,2(G) ≤ 3; and in all these cases, we get a contradiction
to (1).

Assume the result for n = k with k ≥ 6. Next, let G be a connected graph
of order n = k + 1. The rest of the proof is similar to the proof of Theorem4.

Corollary 5. For any graph G of order n, γ1,2(G) = n − 2 iff G is one of the
following graphs:

(i) G = sK1∪ n−6−s
2 K2∪H, where H = 2P3, 2K3 or P3∪K3, with 0 ≤ s ≤ n−6.

(ii) G = sK1 ∪ P5 ∪ n−5−s
2 K2, with 0 ≤ s ≤ n − 5.

(ii) G = sK1 ∪ n−4−s
2 K2 ∪ H where H is a connected graph of order 4, with

0 ≤ s ≤ n − 4.

5 Trees

Theorem 7. Let T be a tree of order n ≥ 2. Then γ1,2(T ) = 2 if and only if T
is a Star or Double Star.

Proof. Suppose that γ1,2(T ) = 2. Let S = {u, v} be a (1, 2)-dominating set of T .
Then every vertex in T is adjacent with either u or v. Hence V (T ) = N [u]∪N [v].
Then for every x ∈ N(u) and y ∈ V (T ), d(x, y) ≤ d(x, u)+d(u, y) ≤ 3; similarly,
for every x ∈ N(v) and y ∈ V (T ), d(x, y) ≤ 3; for every x ∈ V − {u, v},
d(u, x) + d(x, v) ≤ 3; and so d(u, v) ≤ 3. Hence diam(T ) ≤ 3; and so T is a Star
or a Double Star Dr, s (where r + s = n − 2). Converse is obvious.

Theorem 7 deals with the trees of diameter 2 and 3. The next result deals
with trees of diameter ≥ 4.

Theorem 8. Let T be a tree of order n with r pendant vertices. Then

(i) 3 ≤ γ1,2(T ) ≤ n − r, if diam(T ) ≥ 5
(ii) γ1,2(T ) = n − r, if diam(T ) = 3 or 4.

Proof. Let diam(T ) ≥ 3. Let V1 denote the set of all pendant vertices in T . Then
|V − V1| ≥ 2 and V − V1 is a (1, 2)-dominating set; and so

γ1,2(T ) ≤ n − r. (2)
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Using Theorem 7, γ1,2(T ) ≥ 3; and so (i) follows.
When diam(T ) = 3, T is a double star; and by Theorem7, γ1,2(T ) = 2 =

n− r. When diam(T ) = 4, diam(T −V1) = 2; and so T −V1 is K1, n−r−1, where
n−r−1 ≥ 2. Let V (K1, n−r−1) = {u, u1, u2, ..., un−r−1}. For 1 ≤ j ≤ dT (ui)−1,
let vij denote a pendant vertex adjacent to ui. For 1 ≤ t ≤ dT (u) − n − r − 1,
let wt denote a pendant vertex adjacent to u. (If dT (u) = n − r − 1, then there
is no wt’s).

By (2), γ1,2(T ) ≤ n − r. Assume the contrary that γ1,2(T ) �= n − r. Then
there is a (1, 2)-dominating set S1 of cardinality n − r − 1.

If S1 = {u1, u2, ..., un−r−1}, then there is no vertex at a distance 2 from vij ,
for 1 ≤ i ≤ n − r − 1 and 1 ≤ j ≤ dT (ui) − 1, which is a contradiction.

Then ui /∈ S1, for some i, 1 ≤ i ≤ n − r − 1. Without loss of general-
ity, let u1, u2, ..., uk /∈ S1 and uk+1, uk+2, ..., un−r−1 ∈ S1, where 1 ≤ k ≤
n − r − 1. For 1 ≤ i ≤ k, ui /∈ S1; and so all vij ’s must lie in S1. But
|S1| = n − r − 1. Hence it follows that, d(ui) = 2 for i = 1, 2, 3, ..., k, and
S1 = {v11 , v21 , ..., vk1 , uk+1, uk+2, ..., un−r−1}.

Case 1. k = n − r − 1.
Now S1 = {v11 , v21 , ..., v(n−r−1)1}; and so u is not (1, 2)-dominated by S1, a
contradiction.

Case 2. k < n − r − 1.
Now there is no vertex in S1 at a distance at most 2 from vsj , k+1 ≤ s ≤ n−r−1,
a contradiction.
Hence γ1,2(T ) = n − r.
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