Distance Antimagic Labelings of Graphs

N. Kamatchi^{1(⊠)}, G.R. Vijayakumar², A. Ramalakshmi¹, S. Nilavarasi¹, and S. Arumugam³

¹ Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamil Nadu, India kamakrishna77@gmail.com
² Tata Institute of Fundamental Research, Mumbai, India vijay@math.tifr.res.in
³ Kalasalingam University, Anand Nagar, Krishnankoil 626126, Tamil Nadu, India s.arumugam.klu@gmail.com

Abstract. Let G = (V, E) be a graph of order n. Let $f : V(G) \rightarrow \{1, 2, \ldots, n\}$ be a bijection. For any vertex $v \in V$, the neighbor sum $\sum_{u \in N(v)} f(u)$ is called the weight of the vertex v and is denoted by w(v). If $w(x) \neq w(y)$ for any two distinct vertices x and y, then f is called a distance antimagic labeling. A graph which admits a distance antimagic labeling is called a distance antimagic graph. If the weights form an arithmetic progression with first term a and common difference d, then the graph is called an (a, d)-distance antimagic graph.

In this paper we prove that the hypercube Q_n is an (a, d)-distance antimagic graph. Also, we present several families of disconnected distance antimagic graphs.

Keywords: (a, d)-distance antimagic graph \cdot Distance antimagic graph

1 Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. We further assume that G has no isolated vertices. The order |V| and the size |E| are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2].

A distance magic labeling of a graph G of order n is a bijection $f: V \to \{1, 2, ..., n\}$ with the property that there is a positive integer k such that $\sum_{y \in N(x)} f(y) = k$ for every $x \in V$. The constant k is called the magic constant of the labeling f.

The sum $\sum_{y \in N(x)} f(y)$ is called the *weight* of the vertex x and is denoted

by w(x).

Let G be a distance magic graph of order n with labeling f and magic constant k. Then $\sum_{u \in N_{G^c}(v)} f(u) = \frac{n(n+1)}{2} - k - f(v)$, and hence the set of all

 \bigodot Springer International Publishing AG 2017

S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 113–118, 2017. DOI: 10.1007/978-3-319-64419-6_15 vertex weights in G^c is $\{\frac{n(n+1)}{2} - k - i : 1 \le i \le n\}$, which is an arithmetic progression with first term $a = \frac{n(n+1)}{2} - k - n$ and common difference d = 1.

Motivated by this observation, in [1] we introduced the following concept of (a, d)-distance antimagic graph.

Definition 1. [1] A graph G is said to be (a, d)-distance antimagic if there exists a bijection $f: V \to \{1, 2, ..., n\}$ such that the set of all vertex weights is $\{a, a + d, a + 2d, ..., a + (n - 1)d\}$ and any graph which admits such a labeling is called an (a, d)-distance antimagic graph.

Thus the complement of every distance magic graph is an (a, 1)-distance antimagic graph.

We observe that if a graph G is (a, d)-distance antimagic with d > 0, then for any two distinct vertices u and v we have $w(u) \neq w(v)$. This observation naturally leads to the concept of distance antimagic labeling.

Definition 2. [3] Let G = (V, E) be a graph of order n. Let $f : V \to \{1, 2, ..., n\}$ be a bijection. If $w(x) \neq w(y)$ for any two distinct vertices x and y in V, then f is called a distance antimagic labeling. Any graph G which admits a distance antimagic labeling is called a distance antimagic graph.

Definition 3. The K_2 -bistar graph $K_2(m,n)$ is the graph obtained by joining m copies of K_2 to a vertex of K_2 and n copies of K_2 to the other vertex of K_2 .

In this paper we prove that the hypercube Q_n is an (a, d)-distance antimagic graph. Also, we present several families of disconnected distance antimagic graphs.

2 Main Results

The following theorem gives an (a, d)-distance antimagic labeling of hypercubes.

Theorem 1. For every $n \geq 3$, the hypercube Q_n is (a, d)-distance antimagic, where $a = 2^n + 2$ and d = n - 2. Moreover there exists an (a, d)-distance antimagic labeling $f_n : V(Q_n) \to \{1, 2, \ldots, 2^n\}$ such that if $f_n(v) = j$, then $w_{f_n}(v) =$ $2^n + 1 + (n - 2)j, 1 \leq j \leq 2^n$.

Proof. We prove this result by induction on n. For Q_3 , the labeling f_3 given in Fig. 1 is a (10, 1)-distance antimagic labeling satisfying the condition that $w_{f_3}(j) = 9 + j = 2^n + 1 + j, 1 \le j \le 8$. We now assume that the theorem is true for Q_n . Let $f_n : V(Q_n) \to \{1, 2, 3, \ldots, 2^n\}$ be a $(2^n + 2, n - 2)$ -distance antimagic labeling of Q_n such that if $f_n(v) = j$, then $w_{f_n}(v) = 2^n + 1 + j$ for all $j, 1 \le j \le 2^n$. Let $Q_n^{(1)}$ and $Q_n^{(2)}$ be two copies of Q_n in Q_{n+1} , with a perfect matching M consisting of edges joining a vertex of $Q_n^{(1)}$ with the corresponding vertex of $Q_n^{(2)}$. Now (See Fig. 2) define $f_{n+1}: V(Q_{n+1}) \to \{1, 2, \ldots, 2^{n+1}\}$ by

$$f_{n+1}(v) = \begin{cases} f_n(v) & \text{if } v \in V(Q_n^{(1)}) \\ f_n(v_1) + 2^n & \text{if } v_1 \in V(Q_n^{(2)}) \\ \end{cases} \text{ and } vv_1 \in M$$

Fig. 1. Q_3 with (10, 1)-distance antimagic labeling

Fig. 2. Q_{n+1} with (a, d)-distance antimagic labeling

If $f_{n+1}(v) = j, 1 \le j \le 2^n$, then

$$w_{f_{n+1}}(v) = w_{f_n}(v) + 2^n + j$$

= 2ⁿ + 1 + (n - 2)j + 2ⁿ + j
= (2ⁿ⁺¹ + 1) + (n - 1)j.

If $f_{n+1}(v_1) = j$, where $2^n + 1 \le j \le 2^{n+1}$ and $vv_1 \in M$, then

$$w_{f_{n+1}}(v_1) = w_{f_{n+1}}(v) + n2^n + j$$

= $(1+2^n) + (n-2)j + n2^n + j$
= $(1+2^{n+1}) + (n-1)(2^n + j).$

Thus, $w_f^{(n+1)}(j) = (1+2^{n+1}) + (n-1)j, j = 1, 2, 3, \dots, 2^{n+1}$ and by induction the proof is complete.

Theorem 2. The bistar $G = K_2(n, n)$ is distance antimagic.

Proof. Let $V(G) = \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\} \cup \{u, v\}$ and $E(G) = \{u_i u : 1 \le i \le n\} \cup \{v_i v : 1 \le i \le n\} \cup \{uv\}$. Define $f : V(G) \to \{1, 2, \dots, 2n+2\}$, by

$$f(x) = \begin{cases} 2i & \text{if } x = u_i, \ i \le i \le n\\ 2i+1 & \text{if } x = v_i, \ i \le i \le n\\ 1 & \text{if } x = v\\ 2n+2 & \text{if } x = u \end{cases}$$

Then

$$w(x) = \begin{cases} 2i & \text{if } v = u_i, \ i \le i \le n \\ 2i + 1 & \text{if } v = v_i, \ i \le i \le n \\ 1 & \text{if } v = x \\ 2n + 2 & \text{if } v = y \end{cases}$$

Hence f is a distance antimagic labeling of G.

Theorem 3. Let G be an r-regular graph of order n. If G is distance antimagic, then 2G is also distance antimagic.

Proof. Let f be a distance antimagic labeling of G. Let G_1 and G_2 be the two copies of G in 2G.

Define $g: V(2G) \to \{1, 2, ..., 2n\}$ by

$$g(u) = \begin{cases} f(u) & \text{if } u \in V(G_1) \\ f(u) + n & \text{if } u \in V(G_2) \end{cases}$$

Let $u, v \in V(G_1 \cup G_2)$. Then

$$w_g(u) = \begin{cases} w_f(u) & \text{if } u \in V(G_1) \\ w_f(u) + rn & \text{if } u \in V(G_2) \end{cases}$$

Hence it follows that $w_q(u) \neq w_q(v)$ if $u, v \in V(G_1)$ or $u, v \in V(G_2)$.

Now, let $u \in V(G_1)$ and $v \in V(G_2)$. Since $w_f(u) \neq w_f(v)$, without loss of generality we assume that $w_f(u) < w_f(v)$. Now, $w_g(u) = w_f(u) < w_f(v) < w_f(v) + rn = w_g(v)$. Thus g is a distance antimagic labeling of 2G.

Theorem 4. Let H be the graph obtained from the cycle C_3 by attaching a pendent vertex at one vertex. Let G be the union of r copies of H. Then G is distance antimagic.

Proof. Let H_i be the i^{th} copy of H in G. Let $V(H_i) = \{u_{i1}, u_{i2}, u_{i3}, u_{i4}\}$ and $E(H_i) = \{(u_{i1}, u_{i2}), (u_{i1}, u_{i3}), (u_{i2}, u_{i3}), (u_{i2}, u_{i4})\}.$ Define $f: V(G) \to \{1, 2, \dots, 4r\}$, by

$$f(u_{ij}) = \begin{cases} 4(i-1)+1, & \text{if } j = 1\\ 4(i-1)+2, & \text{if } j = 2\\ 4(i-1)+3, & \text{if } j = 3\\ 4(i-1)+4, & \text{if } j = 4 \end{cases}$$

where $1 \leq i \leq r$.

The vertex weights are given by

$$w(u_{ij}) = \begin{cases} 8i - 3, & \text{if } j = 1\\ 12i - 4, & \text{if } j = 2\\ 8i - 5, & \text{if } j = 3\\ 4i - 2, & \text{if } j = 4 \end{cases}$$

Clearly the vertex weights are distinct.

Fig. 3. Distance antimagic labeling of union of 3-pan

Example 1. The distance antimagic labeling of 3 copies of H is given in Fig. 3.

Theorem 5. For n = 2k + 1, let H_k be the graph obtained from the path $(u_1, u_2, \ldots, u_{2k+1})$ by adding the edges (u_i, u_{i+2}) where *i* is odd. Let *G* be the union of *r* copies of H_3 where $n \ge 1$. Then *G* is distance antimagic.

Proof. Let G_i be the i^{th} copy of H_3 in G, given in Fig. 4.

Fig. 4. The graph H_3

Define $f: V(G) \to \{1, 2, \dots, 4r\}$ by

$$f(u_{ij}) = \begin{cases} 7(i-1)+1 & \text{if } j = 1\\ 7(i-1)+2 & \text{if } j = 2\\ 7(i-1)+3 & \text{if } j = 3\\ 7(i-1)+4 & \text{if } j = 4\\ 7(i-1)+5 & \text{if } j = 5\\ 7(i-1)+6 & \text{if } j = 6\\ 7(i-1)+7 & \text{if } j = 7 \end{cases}$$

The vertex weights are given by

$$w(u_{ij}) = \begin{cases} 14i - 6 & \text{if } j = 1\\ 28i - 13 & \text{if } j = 2\\ 28i - 10 & \text{if } j = 3\\ 14i - 4 & \text{if } j = 4\\ 14i - 9 & \text{if } j = 5\\ 14i - 11 & \text{if } j = 6\\ 14i - 7 & \text{if } j = 7 \end{cases}$$

Clearly the vertex weights are distinct.

3 Conclusion and Scope

We have proved the existence of distance antimagic labeling of some families of disconnected graphs and the hypercube Q_n . The existence of distance antimagic labelings for various graph products and other families of disconnected graphs are problems for further investigation.

References

- Arumugam, S., Kamatchi, N.: On (a, d)-distance antimagic graphs. Australas. J. Combin. 54, 279–287 (2012)
- Chartrand, G., Lesniak, L.: Graphs & Digraphs. Chapman and Hall, CRC, London (2005)
- Kamatchi, N., Arumugam, S.: Distance antimagic graphs. J. Combin. Math. Combin. Comput. 84, 61–67 (2013)