Distance Antimagic Labelings of Graphs

N. Kamatchi^{1(\boxtimes)}, G.R. Vijayakumar², A. Ramalakshmi¹, S. Nilavarasi¹, and S. Arumugam³

¹ Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar 626001, Tamil Nadu, India kamakrishna770gmail.com $^2\,$ Tata Institute of Fundamental Research, Mumbai, India vijav@math.tifr.res.in 3 Kalasalingam University, Anand Nagar, Krishnankoil 626126, Tamil Nadu, India s.arumugam.klu@gmail.com s.arumugam.klu@gmail.com

Abstract. Let $G = (V, E)$ be a graph of order *n*. Let $f : V(G) \rightarrow \{1, 2, ..., n\}$ be a bijection. For any vertex $v \in V$, the neighbor sum $\{1\}$ \sum *,* 2*,...,n*} be a bijection. For any vertex $v \in V$, the neighbor sum *u*∈*N*(*v*) $f(u)$ is called the weight of the vertex *v* and is denoted by $w(v)$ *.* If $w(x) \neq w(y)$ for any two distinct vertices x and y, then f is called a distance antimagic labeling. A graph which admits a distance antimagic labeling is called a distance antimagic graph. If the weights form an arithmetic progression with first term *a* and common difference *d*, then the graph is called an (*a, d*)-distance antimagic graph.

In this paper we prove that the hypercube Q_n is an (a, d) -distance antimagic graph. Also, we present several families of disconnected distance antimagic graphs.

Keywords: (a, d) -distance antimagic graph \cdot Distance antimagic graph

1 Introduction

By a graph $G = (V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. We further assume that *G* has no isolated vertices. The order $|V|$ and the size $|E|$ are denoted by *n* and *m* respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [\[2\]](#page-5-0).

A *distance magic labeling* of a graph *G* of order *n* is a bijection $f: V \rightarrow$ $\{1, 2, \ldots, n\}$ with the property that there is a positive integer *k* such that $\sum_{x} f(y) = k$ for every $x \in V$. The constant *k* is called the *magic constant* of $y \in \overline{N}(x)$ the labeling *f.*

The sum \sum *y*∈*N*(*x*) *f*(*y*) is called the *weight* of the vertex *x* and is denoted

by $w(x)$.

Let G be a distance magic graph of order n with labeling f and magic constant *k*. Then \sum $u \in N_{G}c(v)$ $f(u) = \frac{n(n+1)}{2} - k - f(v)$, and hence the set of all

c Springer International Publishing AG 2017

S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 113–118, 2017. DOI: 10.1007/978-3-319-64419-6 15

vertex weights in G^c is $\{\frac{n(n+1)}{2} - k - i : 1 \leq i \leq n\}$, which is an arithmetic progression with first term $a = \frac{n(n+1)}{2} - k - n$ and common difference $d = 1$.

Motivated by this observation, in [\[1\]](#page-5-1) we introduced the following concept of (*a, d*)-distance antimagic graph.

Definition 1. [\[1\]](#page-5-1) *A graph G is said to be* (*a, d*)*-distance antimagic if there exists a bijection* $f: V \to \{1, 2, ..., n\}$ *such that the set of all vertex weights is* $\{a, a+\}$ $d, a+2d, \ldots, a+(n-1)d$ *and any graph which admits such a labeling is called an* (*a, d*)*-distance antimagic graph.*

Thus the complement of every distance magic graph is an $(a, 1)$ -distance antimagic graph.

We observe that if a graph *G* is (a, d) -distance antimagic with $d > 0$, then for any two distinct vertices *u* and *v* we have $w(u) \neq w(v)$. This observation naturally leads to the concept of distance antimagic labeling.

Definition 2. [\[3\]](#page-5-2) Let $G = (V, E)$ be a graph of order *n*. Let $f: V \rightarrow \{1, 2, \ldots, n\}$ *be a bijection.* If $w(x) \neq w(y)$ *for any two distinct vertices x and y in V*, *then f is called a distance antimagic labeling. Any graph G which admits a distance antimagic labeling is called a distance antimagic graph.*

Definition 3. *The* K_2 -bistar graph $K_2(m,n)$ is the graph obtained by joining *m* copies of K_2 to a vertex of K_2 and *n* copies of K_2 to the other vertex of K_2 .

In this paper we prove that the hypercube Q_n is an (a, d) -distance antimagic graph. Also, we present several families of disconnected distance antimagic graphs.

2 Main Results

The following theorem gives an (*a, d*)-distance antimagic labeling of hypercubes.

Theorem 1. For every $n \geq 3$, the hypercube Q_n is (a,d) -distance antimagic, *where* $a = 2^n + 2$ *and* $d = n - 2$ *. Moreover there exists an* (a, d) *-distance antimagic labeling* f_n : $V(Q_n) \rightarrow \{1, 2, ..., 2^n\}$ *such that if* $f_n(v) = j$ *, then* $w_{f_n}(v) = j$ $2^{n}+1+(n-2)j, 1 \leq j \leq 2^{n}$.

Proof. We prove this result by induction on *n*. For Q_3 , the labeling f_3 given in Fig. [1](#page-2-0) is a (10*,* 1)-distance antimagic labeling satisfying the condition that $w_{f_3}(j) = 9 + j = 2^n + 1 + j, 1 \le j \le 8$. We now assume that the theorem is true for Q_n . Let $f_n: V(Q_n) \to \{1, 2, 3, ..., 2^n\}$ be a $(2^n + 2, n - 2)$ -distance antimagic labeling of Q_n such that if $f_n(v) = j$, then $w_{f_n}(v) = 2^n + 1 + j$ for all $j, 1 \leq j \leq 2^n$. Let $Q_n^{(1)}$ and $Q_n^{(2)}$ be two copies of Q_n in Q_{n+1} , with a perfect matching *M* consisting of edges joining a vertex of $Q_n^{(1)}$ with the corresponding vertex of $Q_n^{(2)}$ $Q_n^{(2)}$ $Q_n^{(2)}$. Now (See Fig. 2) define $f_{n+1}: V(Q_{n+1}) \to \{1, 2, ..., 2^{n+1}\}$ by

$$
f_{n+1}(v) = \begin{cases} f_n(v) & \text{if } v \in V(Q_n^{(1)}) \\ f_n(v_1) + 2^n & \text{if } v_1 \in V(Q_n^{(2)} \text{ and } vv_1 \in M \end{cases}
$$

Fig. 1. *Q*³ with (10*,* 1)-distance antimagic labeling

Fig. 2. Q_{n+1} with (a, d) -distance antimagic labeling

If $f_{n+1}(v) = j, 1 \le j \le 2^n$, then

$$
w_{f_{n+1}}(v) = w_{f_n}(v) + 2^n + j
$$

= 2ⁿ + 1 + (n - 2)j + 2ⁿ + j
= (2ⁿ⁺¹ + 1) + (n - 1)j.

If $f_{n+1}(v_1) = j$, where $2^n + 1 \le j \le 2^{n+1}$ and $vv_1 \in M$, then

$$
w_{f_{n+1}}(v_1) = w_{f_{n+1}}(v) + n2^n + j
$$

= $(1 + 2^n) + (n - 2)j + n2^n + j$
= $(1 + 2^{n+1}) + (n - 1)(2^n + j).$

Thus, $w_f^{(n+1)}(j) = (1 + 2^{n+1}) + (n-1)j, j = 1, 2, 3, ..., 2^{n+1}$ and by induction the proof is complete the proof is complete.

Theorem 2. *The bistar* $G = K_2(n, n)$ *is distance antimagic.*

Proof. Let $V(G) = \{u_1, u_2, \ldots, u_n\} \cup \{v_1, v_2, \ldots, v_n\} \cup \{u, v\}$ and $E(G) = \{u_iu :$ 1 ≤ *i* ≤ *n*}∪ { $v_i v$: 1 ≤ *i* ≤ *n*}∪ { uv }*.* Define $f : V(G) \to \{1, 2, ..., 2n + 2\}$, by

$$
f(x) = \begin{cases} 2i & \text{if } x = u_i, i \leq i \leq n \\ 2i + 1 & \text{if } x = v_i, i \leq i \leq n \\ 1 & \text{if } x = v \\ 2n + 2 & \text{if } x = u \end{cases}
$$

Then

$$
w(x) = \begin{cases} 2i & \text{if } v = u_i, i \leq i \leq n \\ 2i + 1 & \text{if } v = v_i, i \leq i \leq n \\ 1 & \text{if } v = x \\ 2n + 2 & \text{if } v = y \end{cases}
$$

Hence *f* is a distance antimagic labeling of *G.*

Theorem 3. *Let G be an r-regular graph of order n. If G is distance antimagic, then* 2*G is also distance antimagic.*

Proof. Let f be a distance antimagic labeling of G . Let G_1 and G_2 be the two copies of *G* in 2*G.*

Define $g: V(2G) \to \{1, 2, ..., 2n\}$ by

$$
g(u) = \begin{cases} f(u) & \text{if } u \in V(G_1) \\ f(u) + n & \text{if } u \in V(G_2) \end{cases}
$$

Let $u, v \in V(G_1 \cup G_2)$. Then

$$
w_g(u) = \begin{cases} w_f(u) & \text{if } u \in V(G_1) \\ w_f(u) + rn & \text{if } u \in V(G_2) \end{cases}
$$

Hence it follows that $w_g(u) \neq w_g(v)$ if $u, v \in V(G_1)$ or $u, v \in V(G_2)$.

Now, let $u \in V(G_1)$ and $v \in V(G_2)$. Since $w_f(u) \neq w_f(v)$, without loss of generality we assume that $w_f(u) < w_f(v)$. Now, $w_g(u) = w_f(u) < w_f(v)$ $w_f(v) + rn = w_g(v)$. Thus *g* is a distance antimagic labeling of 2*G*.

Theorem 4. Let H be the graph obtained from the cycle C_3 by attaching a *pendent vertex at one vertex. Let G be the union of r copies of H. Then G is distance antimagic.*

Proof. Let H_i be the *i*th copy of *H* in *G*. Let $V(H_i) = \{u_{i1}, u_{i2}, u_{i3}, u_{i4}\}$ and $F(H_i) = \{(u_i, u_i), (u_i, u_i), (u_i, u_i)\}$ $E(H_i) = \{(u_{i1}, u_{i2}), (u_{i1}, u_{i3}), (u_{i2}, u_{i3}), (u_{i2}, u_{i4})\}.$ Define $f: V(G) \to \{1, 2, ..., 4r\}$, by

$$
f(u_{ij}) = \begin{cases} 4(i-1) + 1, & \text{if } j = 1 \\ 4(i-1) + 2, & \text{if } j = 2 \\ 4(i-1) + 3, & \text{if } j = 3 \\ 4(i-1) + 4, & \text{if } j = 4 \end{cases}
$$

where $1 \leq i \leq r$.

The vertex weights are given by

$$
w(u_{ij}) = \begin{cases} 8i - 3, & \text{if } j = 1 \\ 12i - 4, & \text{if } j = 2 \\ 8i - 5, & \text{if } j = 3 \\ 4i - 2, & \text{if } j = 4 \end{cases}
$$

Clearly the vertex weights are distinct.

Fig. 3. Distance antimagic labeling of union of 3-pan

Example 1. The distance antimagic labeling of 3 copies of *H* is given in Fig. [3.](#page-4-0)

Theorem 5. For $n = 2k + 1$, let H_k be the graph obtained from the path $(u_1, u_2, \ldots, u_{2k+1})$ by adding the edges (u_i, u_{i+2}) where *i* is odd. Let G be the *union of r copies of* H_3 *where* $n \geq 1$ *. Then G is distance antimagic.*

Proof. Let G_i be the i^{th} copy of H_3 in G , given in Fig. [4.](#page-4-1)

Fig. 4. The graph *H*³

Define $f: V(G) \to \{1, 2, ..., 4r\}$ by

$$
f(u_{ij}) = \begin{cases} 7(i-1) + 1 & \text{if } j = 1 \\ 7(i-1) + 2 & \text{if } j = 2 \\ 7(i-1) + 3 & \text{if } j = 3 \\ 7(i-1) + 4 & \text{if } j = 4 \\ 7(i-1) + 5 & \text{if } j = 5 \\ 7(i-1) + 6 & \text{if } j = 6 \\ 7(i-1) + 7 & \text{if } j = 7 \end{cases}
$$

The vertex weights are given by

$$
w(u_{ij}) = \begin{cases} 14i - 6 & \text{if } j = 1 \\ 28i - 13 & \text{if } j = 2 \\ 28i - 10 & \text{if } j = 3 \\ 14i - 4 & \text{if } j = 4 \\ 14i - 9 & \text{if } j = 5 \\ 14i - 11 & \text{if } j = 6 \\ 14i - 7 & \text{if } j = 7 \end{cases}
$$

Clearly the vertex weights are distinct.

3 Conclusion and Scope

We have proved the existence of distance antimagic labeling of some families of disconnected graphs and the hypercube Q_n . The existence of distance antimagic labelings for various graph products and other families of disconnected graphs are problems for further investigation.

References

- 1. Arumugam, S., Kamatchi, N.: On (a, d)-distance antimagic graphs. Australas. J. Combin. **54**, 279–287 (2012)
- 2. Chartrand, G., Lesniak, L.: Graphs & Digraphs. Chapman and Hall, CRC, London (2005)
- 3. Kamatchi, N., Arumugam, S.: Distance antimagic graphs. J. Combin. Math. Combin. Comput. **84**, 61–67 (2013)