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Preface

This volume contains selected papers presented at ICTCSDM 2016, the International
Conference on Theoretical Computer Science and Discrete Mathematics. ICTCSDM
2016 was held during December 19–21, 2016, at Kalasalingam University in rural
Tamil Nadu, India. The conference was jointly organized by the National Centre for
Advanced Research in Discrete Mathematics (n-CARDMATH), Kalasalingam
University, India, Department of Computer Science, Ball State University, USA, and
Department of Mathematics, Indiana University-Purdue University, Fort Wayne, USA.

The conference was sponsored and financially supported by the Science and
Engineering Research Board, Government of India, New Delhi, the National Board for
Higher Mathematics, Mumbai, the Council of Scientific and Industrial Research,
New Delhi, the Indian National Science Academy, New Delhi, and Kalasalingam
University.

The conference attracted around 150 participants from all over the world. The
nations represented were USA, Indonesia, Czech Republic, Slovakia, South Africa,
Malaysia, Dubai, Iran, and India.

Twelve experts from outside India and 14 experts from leading institutions within
India delivered invited talks on various topics such as line graphs and their general-
izations, large graphs of given degree and diameter, graphoidal covers, adjacency
spectrum, distance spectrum, b-coloring, separation dimension of graphs and hyper-
graphs, domination in graphs, graph labeling problems, subsequences of words and
Parike matrices, k-design conjecture, graph algorithms and interference model for
wireless sensor networks.

The call for papers for ICTCSDM 2016 was distributed around the world, resulting
in 210 submission. After the review process a total of 57 papers (27%) were accepted
subject to revision for publication in this volume.

We thank the authors for their valuable contributions and the Program Committee
members and other referees for their constructive and enlightening comments on the
manuscripts. We thank Springer for publishing the proceedings in the Lecture Notes in
Computer Science series. We thank the Organizing Committee from Kalasalingam
University for the excellent arrangements and for its efficient management of the
conference-related activities. We thank all the sponsors for their financial support.

June 2017 S. Arumugam
Jay Bagga

L.W. Beineke
B.S. Panda
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Degree Associated Reconstruction Number
of Biregular Bipartite Graphs Whose Degrees

Differ by at Least Two

A. Anu and S. Monikandan(B)

Department of Mathematics, Manonmaniam Sundaranar University,
Tirunelveli 627012, India

esa.anu1188@gmail.com, monikandans@gmail.com

Abstract. A vertex-deleted subgraph of a graph G is called a card of
G. A card of G with which the degree of the deleted vertex is also given
is called a degree associated card (or dacard) of G. The degree associated
reconstruction number of a graph G (or drn(G)) is the size of the smallest
collection of dacards of G that uniquely determines G. It is shown that
drn(G) = 1 or 2 for all biregular bipartite graphs with degrees d and
d+ k, k ≥ 2 except the bistar B2,2 on 6 vertices and that drn(B2,2) = 3.

Keywords: Reconstruction · Reconstruction number · Isomorphism

1 Introduction

All graphs considered in this paper are finite, simple and undirected. We shall
mostly follow the graph theoretic terminology of [7]. A vertex-deleted subgraph
or card G − v of a graph (digraph) G is the unlabeled graph (digraph) obtained
from G by deleting the vertex v and all edges (arcs) incident with v. The deck of
a graph (digraph) G is its collection of cards. Following the formulation in [2],
a graph (digraph) G is reconstructible if it can be uniquely determined from its
deck. The well-known Reconstruction Conjecture (RC) due Kelly [10] and Ulam
[16] asserts that every graph with at least three vertices is reconstructible. The
conjecture has been proved for many special classes, and many properties of G
may be deduced from its deck. Nevertheless, the full conjecture remains open
[6]. Harary and Plantholt [9] defined the reconstruction number of a graph G,
denoted by rn(G), to be the minimum number of cards which can only belong
to the deck of G and not to the deck of any other graph H, H �∼= G, these cards
thus uniquely identifying G. Reconstruction numbers are known for only few
classes of graphs [4].

An extension of the RC to digraphs is the Digraph Reconstruction Conjecture
(DRC) proposed by Harary [8]. It was disproved by Stockmeyer [15] by exhibiting
several infinite families of counter-examples and this made people doubt the
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RC itself. To overcome this, Ramachandran [12] introduced degree associated
reconstruction for digraphs and proposed a new conjecture in 1981. It was proved
[12] that the digraphs in all these counterexamples to the DRC obey the new
conjecture, thereby protecting the RC from the threat posed by these digraph
counterexamples.

The ordered triple (a, b, c) where a, b and c are respectively the number of
unpaired outarcs, unpaired inarcs and symmetric pair of arcs incident with v
in a digraph D is called the degree triple of v. The degree associated card or
dacard of a digraph (graph) is a pair (d,C) consisting of a card C and the
degree triple (degree) d of the deleted vertex. The dadeck of a digraph is the
multiset of all its dacards. A digraph is said to be N-reconstructible if it can be
uniquely determined from its dadeck. The new digraph reconstruction conjecture
[12] (NDRC) asserts that all digraphs are N-reconstructible. Ramachandran [13]
then studied the degree associated reconstruction number of graphs and digraphs
in 2000. The degree (degree triple) associated reconstruction number of a graph
(digraph) D is the size of the smallest collection of dacards of D that uniquely
determines D. Articles [1–3,5,11,14] are recent papers on this parameter.

A graph G is bipartite if its vertex set is the union of two disjoint independent
sets, called partite sets of G. A graph whose vertices all have one of two possible
degrees is called a biregular graph. We show that if G is a biregular bipartite
graph, other than the bistar B2,2 on 6 vertices, with degrees d and d + k, k ≥ 2,
then drn(G) = 1 or 2 and that drn(B2,2) = 3.

2 Drn of Biregular Bipartite Graphs

The degree of a vertex v in G is denoted by degG v or simply deg v. A vertex of
degree m is called an m-vertex. The neighbourhood of a vertex v in G, written
NG(v) or simply N(v), is the set of all vertices adjacent to v in G.

Notation. By x, x′ with or without subscripts, we mean respectively a d-vertex
and a (d + k)-vertex in the partition X. Such vertices but in the partition Y are
denoted by y and y′ respectively.

An extension of a dacard (d(x), G − x) of G is a graph obtained from the
dacard by adding a new vertex v and joining it to d(x) vertices of the dacard and
it is denoted by H(d(x), G−x) (or simply by H). Throughout this paper, H and
v are used in the sense of this definition. For a graph G, to prove drn(G) = k,
we show that every extension (other than G) of at least one dacard has at most
k − 1 dacards in common with those of G (thus drn(G) ≤ k), and that at least
one extension has precisely k − 1 dacards in common with those of G (thus
drn(G) ≥ k).

In their paper [5], Barrus and West have characterized (Theorem A) graphs
G with drn(G) = 1.
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Theorem A. The dacard (d,G − v) belongs to the dadeck of only one graph
(up to isomorphism) if and only if one of the following holds:

(i) d = 0 or d = |V (G − v)|;
(ii) d = 1 or d = |V (G − v)| − 1, and G − v is vertex-transitive; or
(iii) G − v is complete or edgeless.

Ramachandran [13] has verified that drn(G) = 1, 2 or 3 for all graphs G on
at most 6 vertices, and in particular, drn(G) = 1 or 2 for all biregular bipartite
graphs G on at most 6 vertices with degrees d and d + k such that k ≥ 2,
except the bistar B2,2 and that drn(B2,2) = 3. So, we assume that all biregular
bipartite graphs G considered here onwards have order at least 7 and no dacard
of G satisfies the conditions of Theorem A and so drn(G) ≥ 2.

Theorem 1. If G is a biregular bipartite graph with a vertex adjacent to all the
vertices in the other partite set, then drn(G) = 2.

Proof. The graph G is clearly connected. Let z be a vertex adjacent to all the
vertices in the other partite set of G. If deg z = d, then G is a complete bipartite
graph and drn(G) = 2, since it is known [13] that drn(Km,n) = 2 for 2 ≤ m < n.
So, let deg z = d + k, k ≥ 2.

Suppose that z is adjacent to a d-vertex. Consider the two dacards (d+k,G−
z) and (d,G−w), where w is a d-vertex in N(z). It is clear that the dacard G−w
is connected and so it has exactly one partite set such that every vertex in the
partite set has degree d or d + k. To get an extension H(d + k,G − z), add
a new vertex v to the dacard G − z and join it with precisely d + k vertices.
Clearly G − z contains exactly one partite set (say Z1) having a (d − 1)-vertex
and a (d + k − 1)-vertex. If v were joined to all the vertices in Z1, then the
resulting extension H would be isomorphic to G. Otherwise, in every extension
H(d + k,G − z), the newly added vertex v is joined to at least one vertex not in
Z. But then any d-vertex deleted dacard of H(d + k,G − z) contains a vertex of
degree different from d and d+k from each partite set and so it is not isomorphic
to G − w.

Suppose that no d-vertex is adjacent to z. Now consider the two dacards
(d+k,G− z) and (d+k,G−w), where w ∈ N(z). In G−w, exactly one partite
set is (d+k)-regular. In the extension H(d+k,G−z), if the newly added vertex
v were joined only to the (d+k − 1)-vertices, then H would be isomorphic to G.
Otherwise, any (d + k)-vertex deleted dacard of H(d + k,G − z) must contain
irregular partite sets or a partite set is (d + k − 1)-regular and hence it is not
isomorphic to (d+k,G−w). Thus no graph other than G contains both the two
dacards (d + k,G − z) and (d + k,G − w) in its dadeck and hence drn(G) = 2.

Theorem 2. Let G be a biregular bipartite graph. If G has a vertex adjacent to
no d-vertices and has a vertex adjacent to no (d + k)-vertices, then drn(G) = 2.
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Proof. Let z be a vertex adjacent to no (d+k)-vertices and let z′ be that adjacent
to no d-vertices. Here we use the two dacards (d(z), G − z) and (d(z′), G − z′).
Clearly δ(G − z′) > d − 1. In the extension of (d(z), G − z), if the newly added
vertex v were joined to all the (d − 1)-vertices, then the resulting extension H
would be isomorphic to G. Thus, in every extension of (d(z), G − z), vertex
v is not joined to a (d − 1)-vertex of (d(z), G − z). But then each dacard of
H(d(z), G − z) contains at least one vertex of degree at most d − 1 and so it
is not isomorphic to (d(z′), G − z′). Thus no graph other than G has both the
dacards (d(z), G − z) and (d(z′), G − z′) in its dadeck and drn(G) = 2.

Theorem 3. If G is a biregular bipartite graph such that all the vertices in a
partite set have the same degree in G, then drn(G) = 2.

Proof. Let Y be such a partite set. Let G have exactly a vertices of degree d, and
b vertices of degree d+k, where a, b ≥ 1 and k ≥ 2. We consider the two dacards
(d,G − x) (or (d + k,G − x′)) and (d + k,G − y′) (or (d,G − y)). In G − y′ (or
G − y), exactly one partite set is (d + k)-regular (or d-regular). In the extension
of (d,G − x) (or (d + k,G − x′)), if the newly added vertex v were joined to all
(d + k − 1)-vertices (or (d − 1)-vertices), then the resulting extension H would
be isomorphic to G. Thus, in every extension of (d,G − x) (or (d + k,G − x′)),
vertex v is not joined to at least one (d + k − 1)-vertex (or (d − 1)-vertex). But
then any (d + k)-vertex (or d-vertex) deleted dacard would contain either at
least one vertex of different degree in each partite set or exactly one d-regular
(or (d + k)-regular) partite set. Hence no dacard of H is isomorphic to G − y′

(or G − y). Thus no graph other than G has both the dacards (d,G − x) (or
(d + k,G − x′)) and (d + k,G − y′) (or (d,G − y)) in its dadeck and drn(G) = 2.

Theorem 4. If G is a biregular bipartite graph such that all but one vertex in
a partite set have degree d + k, (k ≥ 2) then drn(G) = 2.

Proof. Let Y be such a partite set and let y be the unique d-vertex in Y. If
the other partite set X contains at least two d-vertices, then we choose the two
dacards (d + k,G − x′) and (d,G − y), where x′ ∈ N(y). In G − y, exactly one
partite set is (d + k)-regular. Now we consider the extension of (d + k,G − x′).
If the newly added vertex v were not joined to any vertex of degree d or d + k,
then the resulting extension H would be isomorphic to G. Otherwise, any d-
vertex deleted dacard of H contains at least one (d + k + 1)- vertex, at least one
vertex of different degree in both the partite sets, or a (d + 1)-regular partite
set. Hence such a dacard is not isomorphic to G − y. Therefore no graph other
than G contains both these two dacards in its dadeck, we have drn(G) = 2. So,
we assume that X contains a unique d-vertex.

Let us first consider the case that G is disconnected. Suppose that the two
d-vertices of G are belonging to the same component of G. Then consider the two
dacards (d + k,G − x′) and (d,G − x), where x′ and x are belonging to different
components. Clearly Δ(G−x) ≤ d+k. Consider the extension of (d+k,G−x′).
If the newly added vertex v were joined to all the (d + k − 1)-vertices, then H
would be isomorphic to G. Otherwise, any d-vertex deleted dacard of H contains
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at least one vertex of degree d+k+1 and so it is not isomorphic to G−x. Suppose
that the two d-vertices of G are belonging to different components of G. Then
consider the two dacards (d + k,G − x′) and (d,G − x) where x′ and x are in
different components and y ∈ N(x′). Clearly Δ(G−x) ≤ d+k. In the extension
H(d + k,G − x′), if the newly added vertex v were not joined to any d-vertex
and to any (d + k)-vertex, then H would be isomorphic to G. Otherwise, any
d-vertex deleted dacard of H contains at least one vertex of degree d+k +1 and
so it is not isomorphic to G − x, we have drn(G) = 2.

Assume now that G is connected and if the two d-vertices are adjacent, then
consider the dacards (d,G − x) and (d,G − y). In G − y, exactly one partite set
is (d + k)-regular. In H(d,G − x), if v were not joined to any (d + k)-vertex,
then H would be isomorphic to G. Otherwise, any d-vertex deleted dacard of
H contains a (d + k + 1)-vertex and so it is not isomorphic to G − y. Hence
drn(G) = 2. So, let us assume that the two d-vertices are nonadjacent in G. Let
X have m (d + k)-vertices. Suppose that |Y | �= m + 1. Consider the two dacards
(d,G−y) and (d,G−x). In G−x, exactly one partite set is (d+k)-regular and it
has size m. In H(d,G−y), if v were joined to all the (d+k −1)-vertices, then H
would be isomorphic to G. Otherwise, any d-vertex deleted dacard of H contains
at least one (d+ k +1)-vertex, at least one vertex of different degree in both the
partite sets, or there is a unique (d + k)-regular partite set of size not equal to
m. Therefore H has no dacard isomorphic to G − x. Suppose that |Y | = m + 1
and m = d + k. Consider the two dacards (d,G − x) and (d + k,G − x′), where
x′ /∈ N(y). In G − x′, exactly one d-vertex in each partite set. In H(d,G − x), if
v were joined to all the (d + k − 1)-vertices, then H would be isomorphic to G.
Otherwise, any d-vertex deleted dacard of H has at least one vertex of degree
at most d + k − 1, or at least two d-vertices in the same partite set. Therefore
H has no dacard isomorphic to G − x′.

Finally, assume that m ≥ d+ k +1. Consider the two dacards (d+ k,G−x′)
and (d,G−y), where y /∈ N(x′). Exactly one partite set of G−x′, say Y1 contains
a (d + k − 1)-vertex. Similarly, exactly one partite set of G − y, say X1 contains
a (d + k − 1)-vertex. Now we construct two new dacards of a supergraph, say
G1 obtained from G by adding a new vertex z to the partite set X and joining
it with all the vertices in the partite set Y and therefore the new vertex attains
the degree at least d + k + 1. By adding a new vertex w1 and joining it to all
the vertices in Y1 of G − x′ gives a new dacard (d + k,G1 − x′). Similarly, by
adding a new vertex w2 and joining it to the neighbours of every vertex in X1

of G − y gives a new dacard (d + 1, G1 − y). Clearly, degG1−x′ w1 = m + 1 and
degG1−y w2 = m.

In the extension H1(d+1, G1 − y), if v were not joined to the pair of vertices
of degrees d and d + k, then H1 would be isomorphic to G1. Otherwise, any
(d + k)-vertex deleted dacard of the extension H1 is connected and it contains a
unique (m + 1)-vertex and a (d + k − 1)-vertex (or (d + 1)-vertex) in the same
partite set. Hence such a dacard of H1 is not isomorphic to (d + k,G1 − x′).
Therefore drn(G1) = 2. This means that G1 can be obtained uniquely from the
new dacards (d + k,G1 − x′) and (d + 1, G1 − y). Now the vertex z in G1 is
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identifiable as the unique vertex of degree at least d + k + 1. Consequently, G
can be obtained uniquely from G1 by deleting the vertex z. In other words, G
can be obtained uniquely from the two dacards (d + k,G − x′) and (d,G − y)
and hence drn(G) = 2.

Theorem 5. If G is a biregular bipartite graph such that all but one vertex in
a partite set have degree d, then drn(G) = 2.

Proof. Let Y be such a partite set. We proceed by two cases.

Case 1. X contains at least two (d + k)-vertices.
Here we consider the dacards (d,G−x) (or (d+k,G−x′)) and (d+k,G−y′), where
x (or x′) /∈ N(y′). In G − y′, exactly one partite set is regular. In H(d,G − x), if
v were joined to all the (d−1)-vertices, H would be isomorphic to G; otherwise,
any (d + k)-vertex deleted dacard of H contains irregular partite sets and so it
is not isomorphic to G − y′.

Case 2. X contains exactly one (d + k)-vertex.
Case 2.1. Both ”|X| = |Y | = d + k + 1” and y′ /∈ N(x′) hold.
In (d + k,G − x′), exactly one partite set is regular and the unique (d + k)-
vertex is adjacent to all the d-vertices. In H(d,G−x), if v were joined to all the
(d−1)-vertices, then H would be isomorphic to G; otherwise, any (d+k)-vertex
deleted dacard of H contains at least one vertex of degree d − 2, no vertex of
degree d + k, or the dacard has irregular partite sets. Therefore no dacard of H
is isomorphic to G − x′.

Case 2.2. Either |X| = |Y | = d + k + 1 or y′ /∈ N(x′) does not hold.
If G is disconnected, then we consider the dacards (d,G−x) and (d+k,G− y′),
where x and y′ belong to different components of G. In G− y′, there is a unique
component such that one of the partite sets of the component must contain
(d − 1)-vertices. In H(d,G − x), if v were joined to all the (d − 1)-vertices, then
H would be isomorphic to G; otherwise, any (d + k)-vertex deleted dacard of
H contains at least two components containing (d − 1)-vertices or at least two
partite sets containing (d − 1)-vertices and so it is not isomorphic to G − y′.

Now we assume that G is connected. Consider the dacards (d+k,G−y′) and
(d,G − x), where x /∈ N(y′). Exactly one partite set of G − y′, say Y1 is regular.
Similarly, the dacard G − x contains exactly one partite set, say X1 such that
every vertex in X1 has degree at least d. Now we construct two new dacards of
a supergraph say G1 obtained from G by adding a new vertex z to the partite
set Y and joining it to all the vertices in the partite set X and therefore the
new vertex attains the degree at least d + k + 1. By adding a new vertex w1 and
joining it to the neighbours of every vertex in Y1 of G − y′ gives the new dacard
(d + k,G1 − y′). Note that degree of w1 is at least d + k + 1 in the supergraph
G1. Similarly, by adding a new vertex w2 and joining it to all the vertices in X1

of G − x gives the new dacard (d + 1, G1 − x).
In the extension H1(d+1, G1−x), if v were joined to all the (d−1)-vertices and

to w2, then the resulting extension H1 would be isomorphic to G1. Otherwise,
any (d+k)-vertex deleted dacard of the extension H1 is connected and containing
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no vertex that is adjacent to all the vertices of the other partite set, or the dacard
has a unique partite set having a (d − 1)-vertex and a vertex (say w) such that
w is adjacent to all the vertices of the other partite set. Hence no (d + k)-vertex
deleted dacard of H1 is isomorphic to G1 − y′ and drn(G1) = 2, which means
that G1 can be obtained uniquely from the new dacards (d + 1, G1 − x) and
(d + k,G1 − y′). Now the vertex z in G1 is identifiable as the unique vertex of
degree at least d + k + 1. Consequently, G can be obtained uniquely from G1 by
deleting the vertex z. In other words, G can be obtained uniquely from the two
dacards (d + 1, G1 − x) and (d + k,G1 − y′) and so drn(G) = 2.

Theorem 6. If G is a biregular bipartite graph such that every partite set con-
tains at least two vertices of degree d as well as d + k, where k ≥ 2, then
drn(G) = 2.

Proof. Assume first that G is connected. Let X have m1 vertices of degree d and
n1 vertices of degree d + k. Let that in Y be m2 and n2 respectively.

Case 1. m1 �= m2.
Without loss of generality, let us take that m1 > m2. Here we use the two
dacards (d,G− y) and (d+k,G−x′). In G−x′, exactly one partite set contains
m1 vertices of degree d and the rest of them in the partite set have degree d+k.
In H(d,G − y), if v were joined to all the vertices of degree d − 1 or d + k − 1
then H would be isomorphic to G; otherwise, any (d + k)-vertex deleted dacard
of H contains at most m1 − 1 vertices of degree d in each partite set, or exactly
one partite set has m1 vertices of degree d and has at least one vertex of degree
d − 1 or d + k − 1. Thus no dacard of H would be isomorphic to G − x′.

Case 2. n1 �= n2.
Without loss of generality, let us take that n1 > n2. Here we use the two dacards
(d + k,G − y′) and (d,G − x). In G − x, exactly one partite set contains n1

vertices of degree d + k and the rest of them in the partite set have of degree d.
In H(d+k,G−y′), if v were joined to all the vertices of degree d−1 or d+k −1
then H would be isomorphic to G; otherwise, any d-vertex deleted dacard of H
contains at most n1−1 vertices of degree d+k in each partite set, or exactly one
partite set has n1 vertices of degree d + k and has at least one vertex of degree
d − 1 or d + k − 1. Thus no dacard of H would be isomorphic to G − x.

Case 3. m1 = m2 and n1 = n2.
Consider the dacards (d,G−y) and (d+k,G−x′). The dacard G−y (respectively
G−x′) contains a unique partite set, say Z such that every vertex in it has degree
d − 1 or d + k − 1. Now we construct two new dacards of a supergraph say G1

obtained from G by adding a new vertex z to the partite set Z and joining it
to all the vertices in the partite set Y and therefore the new vertex attains the
degree at least d + k + 1 in G1. By adding a new vertex w1 to G − y and joining
it to all the neighbours of every vertex in Z of G − y gives the new dacard
(d + 1, G1 − y). Note that the degree of w1 is at least d + k + 1 in the graph G1.
Similarly, by adding a new vertex w2 to G − x′ and joining it to all the vertices
in Z of G − x′ gives the other new dacard (d + k,G1 − x′).
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In the extension H1(d + 1, G1 − y), if v were joined to w2 and to all the
vertices of degree d − 1 or d + k − 1, then the resulting extension H1 would be
isomorphic to G1. Otherwise, any (d+ k)-vertex deleted dacard of the extension
H1 is connected and it contains no vertex adjacent to all the vertices of the
other partite set, or exactly one partite set has a (d − 1)-vertex and a vertex
(say w) such that w is adjacent to all the vertices of the other partite set. Hence
no dacard of H1 is isomorphic to (d + k,G1 − x′) and so drn(G1) = 2, which
means that G1 can be obtained uniquely from the new dacards (d + 1, G1 − y)
and (d + k,G1 − x′). Now the vertex z in G1 is identifiable as the unique vertex
of degree at least d + k + 1. Consequently, G can be obtained uniquely from G1

by deleting the vertex z. In other words, G can be obtained uniquely from the
two dacards (d + 1, G1 − y) and (d + k,G1 − x′) and hence drn(G) = 2, which
completes the case that G is connected.

Now G is assumed to be disconnected; let G1, G2, ..., Gn be the components of
G. Let (Xi, Yi) be the bipartition of Gi, i = 1, 2, . . . , n. Suppose that Xi contains
m′

i (respectively n′
i) vertices of degree d (respectively d + k) and Yi contains m′′

i

(respectively n′′
i ) vertices of degree d (respectively d+k). If m′

i > m′′
i (or n′

i > n′′
i )

for some i, then consider any one component of G and proceeding as in Case 1
(or Case 2), we get drn(G) = 2. So, assume that m′

i = m′′
i and n′

i = n′′
i for all i.

Suppose that m′
i ≥ m′

j or n′
i ≥ n′

j for some i �= j. If m′
i > m′

j and n′
i = n′

j for
some i �= j, then we consider the two dacards (d+k,G−x′

n′
i
) and (d,G−xn′

j
). In

G−xn′
j
, there is a component containing exactly one partite set with n′

i vertices
of degree d + k and all the vertices in the other partite set have degree d or
d+ k. In H(d+ k,G−x′

n′
i
), if v were joined to all the vertices of degree d− 1 or

d + 1, then H would be isomorphic to G; otherwise any d-vertex deleted dacard
of H contains a component such that one of the partite sets of the component
contains m′

i vertices of degree d and all the vertices in the other partite set have
degree d − 1 or d + k − 1. Therefore no dacard of H would be isomorphic to
G − xn′

j
.

If m′
i = m′

j and n′
i > n′

j for some i �= j, then consider the two dacards
(d,G − xn′

i
) and (d + k,G − x′

n′
j
). In G − x′

n′
j
, there is a component containing

exactly one partite set having n′
i vertices of degree d + k and all the vertices in

the other partite set have degree d or d+k. In H(d,G−xn′
i
), if v were joined to

the pairs of vertices of degrees d − 1 and d + k − 1, then H would be isomorphic
to G; otherwise, any (d + k)-vertex deleted dacard of H contains a component
such that one of the partite sets of it contains m′

i vertices of degree d and all the
vertices in other partite set have degree d − 1 or d + k − 1. Thus no dacard of H
would be isomorphic to G − x′

n′
j
. Finally, if m′

i = m′
j and n′

i = n′
j for all i �= j;

then consider any one component of G and by proceeding as in Case 3, we get
drn(G) = 2.

From Theorems 3 to 6, we have the following main result.

Theorem 7. If G is a biregular bipartite graph with degrees d and d + k, where
k ≥ 2, then drn(G) = 2.
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Abstract. Restarting automaton is a type of regulated rewriting sys-
tem, introduced as a model for analysis by reduction. It is a linguisti-
cally motivated method for checking the correctness of a sentence. In this
paper, we introduce a new definition of normal restarting automaton in
which only one substring is removed using the DEL operation in a cycle.
This DEL operation is applied to reverse the insertion operation in an
insertion grammar. We use this 1-normal restarting automaton to solve
the membership problem of insertion languages. Further, we introduce
some interesting closure properties of 1-normal restarting automata.

Keywords: Insertion grammars · Membership problem · Restarting
automaton

1 Introduction

The restarting automaton was introduced by Petr Jancar et al. in 1995 in order
to model the ‘analysis by reduction’, which is a technique being used in linguistics
to analyze sentences of natural languages. Analysis by reduction consists of step
wise simplifications (reductions) of a given (lexically disambiguate) extended
sentence until a correct simple sentence is obtained. It is accepted, until an error
is found and the input is rejected. Each simplification replaces a short part of
the sentence by an even shorter one.

A restarting automaton contains a finite control unit, a head with a look-
ahead window attached to a tape. At several points it does cut-off substrings
from the look-ahead window using DEL operation followed by restart (RST)
operation. The head moves right along the tape until it takes any RST opera-
tion. RST implies that the restarting automaton places the look-ahead window
over the left border of the tape and it completes one cycle. After performing a
DEL/RST operation, the restarting automaton is unable to remember any step
of computation that was performed already. We can say that it is a modification
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 10–19, 2017.
DOI: 10.1007/978-3-319-64419-6 2
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of the list automaton [7] and forgetting automaton [8]. Further, when each time
the DEL operation is performed, the tape becomes smaller and smaller. A word
u can be reduced to a word v if there is a cycle starting with u and ending with
v. The computation ends by halting in an accepting or a rejecting state.

Insertion operations are introduced in [3] and based on these operations,
insertion grammars are introduced in [4,5] and further studied in [6]. The motiva-
tion for insertion grammar comes from linguistic and as well from DNA process-
ing and RNA editing. Informally, the insertion operation is defined as follows:
If a string x is inserted between two parts w1 and w2 of a string w1w2 to get
w1xw2, we call the operation insertion. The working nature of insertion gram-
mar is counterpart to the functionality of contextual grammar [9], where based
on the selector present in a string as a substring, the contexts are adjoined left
and right of the substring.

In [1], it has been shown that restarting automaton with delete (simply, DRA)
can represent the analyzer for characterizing the class of contextual grammars
with regular selector (CGR). Also [2] showed that restarting automata recognize
a family of languages which can be generated by certain type of contextual gram-
mars, called regular prefix contextual grammars with bounded infix (RPCGBI). In
this paper, we make a relationship between restarting automaton and insertion
languages.

The membership problem for a language is defined as follows: Given a gram-
mar G and a string w, whether w belongs to the language generated by G or
not? In this paper, we introduce 1-normal DRA. With the existing automaton -
DRA, we introduce a variant of normal DRA where the DEL operation can be
taken only once followed by restart in a cycle. We can say that 1-normal DRA
is similar to clearing restarting automata [12].

The paper is organized as follows. Section 2 is Preliminaries that recall mainly
the restarting automaton with delete operation (DRA) and insertion gram-
mars. Section 3 introduces 1-normal DRA and discusses some properties of it.
Section 4 discusses the relationship between the 1-normal DRA and insertion
grammars. Section 5 discusses about some interesting properties of 1 Normal -
DRA. Section 6 concludes the paper with some future work.

2 Preliminaries

Throughout the paper we will use the following notations. If Σ is an alphabet,
then Σ∗ denotes the set of all strings over Σ. For a string w, |w| is the length
of the string, sometimes called size of the string and ∅ denotes empty set. Any
consecutive symbols of a string is called a substring. If a string x is a substring
of y, then it is denoted by x ∈ sub(y). A string x ∈ Σ∗ is called a scattered
substring of a string y ∈ Σ∗ where |x| ≥ |y|, then x can be obtained by omitting
some symbols from y but maintaining the relative order of the remaining ones.
For an automaton, the language accepted by M is denoted by L(M) and for a
given grammar γ, the language generated by γ is denoted by L(γ).
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2.1 Restarting Automaton with Delete Operation (DRA)

A restarting automaton with delete (denoted by DR-automaton or by DRA)
is M = (Q,Σ, �, �, q0, k, δ) where Q is a finite set of states, Σ is the input
alphabet, �, � are left and right borders respectively and �, � /∈ Σ, k is the size
of the read-write window (k ≥ 1).

The transition relation δ describes different types of transition steps which
are given below. u′ is assumed to be the content of the look-ahead window (and
not necessarily the content of the tape).

• MVR - (q′,MV R) ∈ δ(q, u′), if M is in state q and sees a string u′ where
u′ �= � in its look-ahead window, then this MVR step shifts the look-ahead
window one position to the right and M enters into the state q′.

• DEL - (q′, v′) ∈ δ(q, u′), if M is in state q and sees a string u′ in its look-ahead
window, deleting an item from the look-ahead window. u′ is replaced by its
scattered substring v′ such that |v′| < |u′|. The border markers �, � must not
disappear from the tape. After using the DEL operation the automaton can
still read the remaining part of the tape also the automaton can place its
head to the right of the just rewritten (deleted) string 1.

• RST - Restart. It causes M to move its look-ahead window to the left border
marker � and re-enters into the initial state q0.

• ACCEPT - Accept ∈ δ(q, u′) where q ∈ Q. It gets into an accepting state.
• REJECT - If δ(q, u′) = ∅ (i.e., when δ is undefined), then M will reject.

A configuration of the automaton M is (u′, q, v′), where u′ ∈ {�Σ∗ ∪ λ} is the
content from the left border till the position of the head, q ∈ Q is the current state
and v′ ∈ {�Σ∗ �∪Σ∗�} is the content of the working list from the position of the
head and to the right till the right end of the tape. In the initial configuration
on an input word w, the control unit is in the fixed initial state q0 ∈ Q, and the
head is attached to the left border �, i.e. (λ, q0, �w�)-scanning � and looking at
the next k − 1 symbols. We suppose that the states Q of the finite control are
divided into two classes: the non-halting states (at least one instruction must be
there which is applicable when the unit is in such a state) and the halting states
(any computation ends by entering such a state), the halting states are further
divided into the accepting state and the rejecting state.

In general, the restarting automaton is non-deterministic, i.e. there can be
two or more instructions for a δ(q, u′), it suggests that there can be more than
one computation for an input string. Otherwise the automaton is said to be
deterministic. Any finite computation of a DRA consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head moves along
the tape and performing MVR, DEL operations until a RST operation is per-
formed and thus a new restarting configuration is reached. If no further RST
operation is performed, any finite computation necessarily finishes in a halting
configuration -such phase is called tail.

1 in our paper, we assume that after every DEL operation is immediately followed by
RST, its forming DEL-RST.
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The notation u′ ⇒M v′ indicates that there exists a cycle in M starting in
the initial configuration with the word u′ and ending in the configuration having
the word v′, the relation ⇒∗

M is the reflexive and transitive closure of ⇒M . We
say that u′ becomes v′ by M (or u′ is reduced to v′ by M) if u′ ⇒M v′, we are
certain that the word v′ is strictly shorter than u′ (v′ is the scattered subword of
u′). An input word w is accepted by M if there is a computation which starts in
the initial configuration with w (bounded by borders �, �) on the list and finishes
in an accepting configuration where the control unit is in one of the accepting
states. L(M) denotes the language consisting of all words accepted by M and
we say that M recognizes the language L(M).

A DEL step of an DRA may remove an arbitrary number of factors from the
actual content of the look-ahead window. Therefore the following restriction has
been included in DRA [1,2].

Definition 1 (Normal DRA). A DRA is called normal if all the DEL opera-
tions are in the form (q′, v′) ∈ δ(q, u′) where v′ is a scattered substring of u′, there
exist words x1, x2, x3, x4, x5 ∈ Σ∗ such that u′ = x1x2x3x4x5 and v′ = x1x3x5,
that is two substrings of u′ can be deleted.

Proposition 1 (Error preserving property of DRA). If u′⇒∗
Mv′ and u′ /∈

L(M) then v′ /∈ L(M).

2.2 Insertion Grammars

An Insertion grammar γ = (T,A, I), where T is an alphabet set, A is a finite
set of strings over T called axioms, I is the set of insertion rules of the form
(u, λ/x, v) where u, v ∈ T ∗ and x ∈ T+ which corresponds to the rewriting rule
uv → uxv,
Here u, v are called contexts and x is called inserted string for an insertion rule.
As usual, ⇒∗ denotes the reflexive transitive closure of ⇒. A language L(γ)
generated by γ is defined by L(γ) = {w ∈ T ∗ | y ∈ A : y ⇒∗ w}.

3 1-Normal DRA

We first define 1-normal DRA. The functionality and the accepting configura-
tions defined for DRA are the same for 1-normal DRA except the following
changes. Normal DRA can delete at most two substrings from the current string
but in this version at most one substring is deleted using DEL operation then
it takes RST (restart) immediately without reading the remaining part of the
tape, thus forming a new operation DEL-RST.

Definition 2 (1 − Normal DRA). A restarting automata is called 1-normal
DRA if all the DEL operations are in the form (q′, v′) ∈ δ(q, u′) where v′ is
a scattered substring of u′, there exist words x1, x3 ∈ Σ∗, x2 ∈ Σ+ such that
u′ = x1x2x3 and v′ = x1x3. In a cycle one substring can be deleted using DEL
operation and RST is followed immediately.
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As insertion grammars do not contain non terminals, 1-normal DRA do not need
to use any non terminal, so the error preserving property is satisfied for 1-normal
DRA and correctness preserving property is satisfied for deterministic 1-normal
DRA.

Before we go to analyze the relationship between 1-normal DRA and insertion
grammars which is the objective of the paper, we first need to understand the
relationship of DRA with contextual grammars [1]. External contextual gram-
mars are introduced by S. Marcus in 1969 [9]. Internal contextual grammars
[10] produce strings starting from an axiom and in each step left context and
right context are adjoined to the string based on certain string called selector
present as a substring in the derived string. u, v are called left context and right
context respectively. For more details on contextual grammars, we refer to [11].
We recall that in insertion grammar, looking at the context (u, v), the string x
is inserted. The selector in a contextual grammar can be of arbitrary type in
nature, like regular, context free etc., but the strings u, v are finite. In insertion
grammars all the strings u, v, x are finite. Normal DRA works in the opposite
way of contextual grammars in accepting strings [1]. In a normal DRA M , w is
given as an input. It checks the items of the look-ahead window with the contex-
tual grammar G that any given rule P in G has been used or not. If it finds that
any rule has been used then the automaton deletes the left and right context
u, v and takes the RST operation, otherwise takes MVR and checks whether any
rule in G can be applied. In this way, the automaton simulates the derivation of
contextual grammar in reverse order and if the input string can be reduced back
to the axiom z, it implies that the string w can be generated using the given
grammar G, thus w ∈ L(G). Here the size of the tape of the automaton M is
same as the size of the string w. Step by step, the automaton M only deletes
substrings of w, so the size of the tape becomes smaller and smaller. Tape size
of 1-normal DRA will be |w| + 2 where the 2 is added for the left border � and
the right border �.

4 1-Normal DRA and Insertion Grammar

In this section we shall establish the relationship between 1-normal DRA and
insertion grammars. We show that the membership problem for insertion lan-
guages can be solvable by the introduced 1-normal DRA. The paradigm of this
version of 1-normal DRA is closely related to insertion grammars. Insertion
grammar works just in the opposite direction of 1-normal DRA. The connection
is established based on the following observation.

– For an insertion rule (u, λ/x, v) where u, v ∈ T ∗ and x ∈ T+, the 1-normal
DRA has to delete the substring x between u and v (this means that uxv
is occurred as a substring in the given input string and the machine deletes
this substring x). In that case, we informally say that an insertion rule is
found/used in the look-ahead window as a substring.
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Let M be 1-normal DRA. A reduction system induced by M is RS(M) =
(Σ∗,⇒M ). For each insertion grammar γ, we define a reduction system induced
by γ as RS(γ) = (T ∗,⇒−1

γ ) where (u ⇒−1
γ v) iff (v ⇒γ u), u, v ∈ T ∗.

With the above detail we will construct a 1-normal DRA M in such a way
that if z ⇒∗

γ w then w ⇒∗
M z for w, z ∈ T ∗, z-axiom, thus RS(γ) = RS(M).

Let w be the input string given to 1-normal DRA. The automaton M checks
the string of the look-ahead window of (size k) with the given grammar γ that
any insertion rule from I has been found or not as a substring. If any insertion
rule from I is found in the look-ahead window as a substring (uxv) then the
automaton M deletes the inserted string x ∈ T+ using the DEL operation.

Theorem 1. For an insertion grammar γ, a 1-normal DRA M can be con-
structed in such a way that RS(γ) = RS(M) and L(γ) = L(M).

Proof. Given an insertion-grammar γ = (T,A,R), we have to construct a
1-normal DRA M = (Q,Σ, �, �, q0, k, δ), that accepts L(γ) where

– Q = {q0 = q′, q, Accept,Reject}
– Σ = T is the input alphabet
– �, � are left and right borders respectively and �, � /∈ Σ
– k is the size of the look-ahead window (k ≥ 1).
– δ is defined as follows:

For an insertion rule of the form: (x1, λ/x2, x3) where x1, x3 ∈ T ∗, x2 ∈ T+

(which offers a rewriting rule x1x3 →γ x1x2x3), the instruction of the 1-normal
DRA M will be (q′, v′) ∈ δ(q, u′) where u′ = x1x2x3, v

′ = x1x3. Here u′ is
replaced by v′ : |v′| < |u′| where v′ is a scattered substring of u′, immediately
followed by a RST instruction: RST ∈ δ(q, u′) for any possible contents u′ of
the look-ahead window. If no insertion rule does belong to look-ahead window
as a subword( uxv /∈ u′) and � does not belong to look-ahead (� /∈ u′) then the
automaton takes MV R operation.

• ACCEPT- Accept ∈ δ(q, u′) where u′ = �z�, z ∈ A.
• REJECT - δ(q, u′) = ∅. That is when δ is undefined. In other words, when

1-normal DRA is unable to take any of the DEL, MVR operations then the
transition becomes undefined.

Size of the Look-ahead Window:
Size of the look-ahead window of M will be k = max(kc, kb + 2) where kc is
the maximum length of the inserted string with its contexts - kc = max{(|u| +
|x| + |v|) where (u, λ/x, v) ∈ I, u, v = contexts}. kb is the maximum axiom size-
kb = max{|z| : z ∈ A}. 2 is added there for the left border � and the right
border �. The reason for 2 is added with kb is to satisfy the accepting condition
- Accept ∈ δ(q, u′) where u′ = �z� where �z� ≤ k.

1-normal DRA simulates the derivation of insertion-deletion grammar in
reverse order, in case of insertion rule it deletes the inserted string using DEL
instruction which is defined above. For insertion grammar the derivation starts
from the axiom to the generated string, the automaton starts the reduction from
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the generated string to the axiom. If z ⇒∗
γ w then w ⇒∗

M z where w, z ∈ T ∗, z-
axiom, thus RS(γ) = RS(M).

We have the following important result and the proof is obvious from
Theorem 1, and from the discussions of above paragraphs of Theorem 1.

Theorem 2. The membership problem for insertion languages can be solved by
1-normal DRA.

5 The Power of 1-Normal DRA

In this section, we discuss the power of 1-normal DRA and discuss some inter-
esting properties.

Theorem 3. All regular languages can be recognized by 1-normal DRA, i.e. for
each regular language L there exists a M such that L(M) = L ∪ λ.

Proof. Given a regular grammar γ = (N,T, P, S) where N is the finite set of non-
terminals,T is the finite set of terminals, P is the finite set of production rules of
the following form:A → aB where A ∈ N , A → b where b ∈ T , S is the starting
symbol. Now we have to construct a 1-normal DRA M = (Q,Σ, �, �, q0, k, δ),
that accepts L(γ) where Q = {q0 = q′, q, Accept,Reject}, Σ = N ∪ T is the
input alphabet, �, � are left and right borders respectively and �, � /∈ Σ, k is
the size of the look-ahead window (k ≥ 1), δ is defined as follows: For a regular
grammar rule is of the form: A → aB where A ∈ N , the instruction of the
1-normal DRA M will be (q′, v′) ∈ δ(q, u′) where u′ = aB, v′ = A. Here u′ is
replaced by v′ : |v′| < |u′| where v′ is a scattered substring of u′, immediately
followed by a RST instruction: RST ∈ δ(q, u′) for any possible contents u′ of the
look-ahead window. Also, if a regular grammar rule is A → b where b ∈ T then
the instruction of 1-normal DRA will be (q′, v′) ∈ δ(q, u′) where u′ = b, v′ = A.
In the same way, u′ is replaced by v′ : |v′| < |u′| where v′ is a scattered substring
of u′, immediately followed by a RST instruction: RST ∈ δ(q, u′).
If no regular rule does belong to look-ahead window as a subword (aB /∈ u′ or
b /∈ u′) and � does not belong to look-ahead (� /∈ u′) then the automaton takes
MV R operation.

• ACCEPT- Accept ∈ δ(q, u′) where u′ = �S�, S is the starting symbol.
• REJECT - δ(q, u′) = ∅. That is when δ is undefined. In other words, when

1-normal DRA is unable to take any of the DEL, MVR operations then the
transition becomes undefined.

Size of the Look-ahead Window:
Size of the look-ahead window of M will be k = max(kc, kb + 2) where kc is
the length of the right-hand side of the production, kc = 2. kb is the size of the
axiom - kb = 1. 2 is added there in order to satisfy the accepting condition -
Accept ∈ δ(q, u′) where u′ = �S�.

Theorem 4. There are context free languages which cannot be recognized by
1-normal DRA.
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Proof. We conclude Theorem 4 by focusing on Lemmas 1 and 2.

Lemma 1. The language L1 = {pnrqn | n ≥ 0} ∪ {λ} cannot be recognized by
1-normal DRA.

Proof. 1-normal DRA can delete at most one string in a cycle, so it will delete
all p in first n cycles and from (n + 1)th cycle it will start deleting q. Actually
in this case 1-normal DRA cannot delete two substrings in a same cycle, so it is
unable to keep track of the equality of p′s and q′s.

As we have seen in Lemma 1 that not all context-free languages are recog-
nized by a 1-normal DRA. We still could characterize CFL using 1-normal DRA
using inverse homomorphism and Greibach’s hardest context-free language [2].
Greibach constructed a context-free language H [12], such that:

– Any context-free language can be parsed in whatever time or space it takes
to recognize H.

– Any context-free language L can be obtained from H by an inverse homo-
morphism. That is, for each context-free language L ⊆ Σ∗, there exist a
homomorphism ρ so that L = ρ−1(H). The definition of the Greibach’s lan-
guage follows. Let Σ = {x1, x2, x̄1, x̄2,#, c}.
Define H = {λ ∪ {a1cb1cz1d...ancbncznd | n ≥ 1, b1...bn ∈ #D, ai, zi ∈ Σ∗},
for all i, 1 ≤ i ≤ n, b1 ∈ {x1, x2, x̄1, x̄2}∗, bi ∈ {x1, x2, x̄1, x̄2}∗, for all i ≥ 2}.

– (Note that ai and zi can contain c and #). D is a semi-Dyck language over
the alphabet {x1, x2, x̄1, x̄2, generated by the grammar with one non terminal
S and the set of rules: S ⇒ λ | SS | a1Sā1 | a2sā2. Clearly it is a context free
language.

Lemma 2. H is not accepted by 1-normal DRA.

Proof. Consider the language H as given above. Then, H cannot be accepted
by any 1-normal DRA. The main problem of recognition H by 1-normal DRA
is selection of b1, b2, ..bn(see the formal definition of H). Unfortunately no 1-
normal DRA can recognize H. We need to construct M = (Q,Σ, �, �, q0, k, δ),
such that L(M) = H. Apparently, w = c#xm

1 cdcx̄m
1 cd ∈ H. Let the accepting

computation will w1 ⇒M w′ ⇒M ... ⇒M Axiom. Firstly, there must be a deleted
substring of the form xr

1cdcx̄s
2 for some 0 ≤ r, s ≤ m. Here it is easy to see that

r = s. The first applied instruction of 1-normal DRA in order to recognize will
be (q′, v′) ∈ δ(q, u′) where u′ = xα

1 xr
1cdcx̄r

1x̄
β
1 , v′ = xα

1 x̄β
1 . Now consider the word

w = c#xm+1
1 xr

1cdcx̄r
1x̄

m
1 c#x1x̄1cd. From here we can easily conclude w /∈ H,

but w′ = c#xm+1
1 x̄m

1 c#x1x̄1cd is in H. So, contradiction of error preserving
property.

Corollary 1. (a) L(1-normal DRA)⊂ L(Normal − DRA)
(b) CFL − L(1-normal DRA)�= ∅
Proof. In Lemma 1, the language L1 = {pnrqn | n ≥ 0} ∪ {λ} can be recognized
by normal DRA, so from this fact easily we can conclude corollary(a).
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Let L2 = {pnqn | n > 0} and L3 = {pnq2n | n > 0} be two sample languages. It
is easy to see from the Theorem 2 that both L2, L3 are recognized by 1-Normal
DRA, in this way we can conclude corollary(b).

Theorem 5. L(1-normal DRA) is not closed under union and concatenation.

Proof. Languages L2 ∪ L3 and L2 · L3 cannot be recognized by 1-Normal DRA.
For a contradiction let us suppose that, there exist a 1-Normal DRA M such that
L(M) = L2∪L3 (L(M) = L2·L3, respectively). Let K be the size of the look-ahead
window. Let pnqn ⇒M pn−sbn−t be the first step of an accepting condition, where
s, t > 0, s + t > 0. Suppose when d = p comes in the look-ahead window then
1-Normal DRA takes DEL-RST operation and delete q where |d| ≤ |k|. Since we
set n arbitrarily large where s, t are constants we get necessarily s = t. Now if
d = pαpηqηqβ then 1-Normal DRA takes DEL-RST operation and delete pηqη

where α + β + 2η ≤ |k|. Then pm+ηq2m+η ⇒M pmq2m which is a contradiction
with the error preserving property as pm+ηq2m+η is not in L2 ∪ L3 (and not in
L2 · L3 respectively).

Theorem 6. There are non context free languages which can be recognized by
1-normal DRA.

Proof. 1-normal DRA. M recognizing a language that is not context-free
({(ab)2m | m ≥ 0}). The instructions of 1 - normal DRA are given below.

– : DEL-RST :(q′, v′) ∈ δ(q, u′) where u′ = abb, v′ = ab.
– : DEL-RST :(q′, v′) ∈ δ(q, u′) where u′ = bab, v′ = bb.
– : Accept ∈ δ(q, u′) where u′ = �z� where z = ab

The computation as follows, �abababababababab� ⇒M �abbabababababab� ⇒M

�ababababababab� ⇒M �abbababababab� ⇒M �abababababab� ⇒M

�abbabababab� ⇒M �ababababab� ⇒M �abbababab� ⇒M �abababab� ⇒M

�abbabab� ⇒M �ababab� ⇒M �abbab� ⇒M �abab� ⇒M �abb� ⇒M �ab�,
accepted.

Theorem 7. L(1-normal DRA) is not closed under homomorphism.

Proof. Consider L = {pnqnrms2m | n,m ≥ 0} recognized by L(1−normalDRA)
and the homomorphism h : p �→ p, q �→ q, r �→ r, s �→ q.

It is easy to see that each of the following languages:
L4 = {pnrqn | n ≥ 0} ∪ {pnqn | n ≥ 0}, L5 = {pnrqm | n,m ≥ 0, } ∪ {λ},
L6 = {pmqm | m ≥ 0} can be recognized by a 1-normal DRA. Using these
languages we can show several non-closure properties of 1-normal DRA.

Theorem 8. L(1-normal DRA) is not closed under intersection, intersection
with a regular language, and set difference.

Proof. Intersection part follows the equality L1 = L4∩L5 and Lemma 1. In order
to proof the next part, just notice that L5 is a regular language. Set differences
the part follows the equality L3 = (L4 − L6) ∪ {λ}.
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6 Conclusion

In this paper, we have introduced 1-normal DRA. We have solved the mem-
bership problem of insertion languages. We saw that s insertion grammars do
not contain non terminals, 1-normal DRA do not need to use any non terminal,
so the error preserving property is satisfied for 1-normal DRA and correctness
preserving property is satisfied for deterministic 1-normal DRA.

There is scope of future work. H in Lemma 2, can be accepted by introducing
auxiliary symbol to 1-normal DRA. Also, in case of running time, as here we are
using non deterministic 1-normal DRA, we are unable to comment about the
polynomial time complexity solution. We can solve the membership problem of
insertion languages in polynomial time by extending our work.

Acknowledgments. Tool Development - Poorna Chandra Tejasvi, Btech third year
student of Computer Science and Engineering, Christ University Faculty of Engineering,
Bangalore.
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Abstract. The biological sequences that occur in DNA, RNA and pro-
teins can be considered as strings formed over the well defined chemical
alphabets. Such gene sequences form structure based on the complemen-
tary pair and the structures can be interpreted as languages. Matrix
insertion-deletion system has been introduced a few years back that
modelled several bio-molecular structures occur at intramolecular and
intermolecular level. In this paper, we identify some structures that are
frequently noticed during RNA folding process such as double bulge loop,
extended internal loop, triple stem and loop and we give the correspond-
ing formal language representation to such structures. Further, we model
the structures using Matrix insertion-deletion systems. This work is pio-
neering to give the language representation and modelling the structures
of RNA folding process using formal grammar.

Keywords: Gene sequences · Bio-molecular structures · Matrix gram-
mars · Insertion-deletion systems · Folding process

1 Introduction

Insertion-deletion systems are inspired from the insertion and deletion oper-
ations that take place in gene sequences. These operations frequently occur
in DNA processing and RNA editing. In [4], the insertion operation was first
studied. The deletion operation was first studied in [7] from a formal language
perspective. Insertion and deletion operations together were introduced in [6].
The corresponding grammatical mechanism is called insertion-deletion system
(abbreviated as ins-del system). Informally, insertion operation means inserting
a string η in between the strings w1 and w2 to obtain w1ηw2 whereas deletion
operation means deleting a substring δ from the string w1δw2 and obtain w1w2.

The DNA molecule consists of sequences that are built of nucleotides, which
are of in four forms a(adenine), t(thymine), g(guanine), c(cytosine). The RNA
molecule consists of sequences that are built of nucleotides, which are of in four
forms a, u(uracil), g, c. The complementary pair for RNA (DNA) is given as
ā = u(t), ū(t̄) = a, ḡ = c and c̄ = g. The patterns are formed in the bio-molecules
based on the complementary pairs and other biological constraints. Such patterns
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 20–29, 2017.
DOI: 10.1007/978-3-319-64419-6 3
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can be considered as structures. These structures play an important role in
governing the functionality and behavior of the bio-molecules [1,16].

We now discuss briefly about the bio-molecular structures that are com-
monly noticed in bio-molecules such as DNA, RNA and protein. First, we will
look the stem and loop, hairpin, pseudoknot and attenuator structures which are
shown in Figs. 1 and 2. The strings are obtained by reading the symbols as per
directed dotted lines. The string cuucaucagaaaaugac resembles the stem and
loop language (refer Fig. 1(a)) and the string atcgcgat resembles the hairpin lan-
guage (refer Fig. 1(b)). The string gcucgcga (refer Fig. 2(a)) represents pseudo-
knot structure which resembles the crossed dependency pattern and the string
gucgacgucgac (refer Fig. 2(b)) represents attenuator structure which resembles
the copy language (which is a non-context-free language) pattern respectively.
The above examples clearly depict the correlation between gene sequence and
natural language constructions. The bio-molecular structures stem and loop and
hairpin (as shown in Fig. 1) can be modelled by context-free (shortly, cf) gram-
mars [15]. The bio-molecular structures pseudoknot and attenuator (as shown
in Fig. 2) which are beyond the power of cf grammars. The connection between
non-context-free constructs, such as multiple agreement, crossed dependencies,
and gene sequences were carried out in [16,18]. For more details on linguistic
behaviour of gene sequences and genomic structures, we refer to [1,15,18].

S

S

S

S

S

a                  t

t                  a

c                 g

g                 c(a)

 (b)
     #

5’     c                a  a  u  g  a  c      3’
u          a
u          a 

a                       a

u           c

c          g

Fig. 1. Bio-molecular structures: (a) stem and loop (◦ stands for complementary pair)
(b) hairpin (S is a non-terminal of the cf grammar and # denotes the empty string)

 g            c

 c           g

 c          g

 u          a

g    c    u    c      g    c     g    a

g                  c

u                 a

c                g

u                  a

(a)

g  u  c  g  a  c      g  u  c  g  a  c

 (b)
u u u u

_R _R

c                  g

 g                 c

Fig. 2. (a) Pseudoknot (b) attenuator
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(a)                                                                                                                                     (b)

S        S      S       S        S      S      S       S        S   S           S                 S               S             S

Fig. 3. Intermolecular structures: (a) double stranded molecule (S is a non-terminal
for the cf grammar) (b) nick language (S is a non-terminal for the cf grammar)

Now, we shall look into some intermolecular structures found in RNA [17]
and is shown in Fig. 3: (a) double strand language and (b) nick language where
the cut takes place at arbitrary positions represented by a •. In [1,5], an initial
attempt was carried out on how formal grammars can be used for analyzing
the linguistic behavior of biological sequences. Later, the study was extended
by David Searls in [15,16]. In the last three decades, so many attempts have
been made to establish the linguistic behavior of biological sequences starting
by looking into regular, context-free and by defining new grammar formalisms
like crossed-interaction grammar [13], cut grammars, ligation grammars [15,16],
simple and extended simple linear tree adjoining grammars [19].

However, there was no unique grammar model that encapsulates all the
above discussed bio-molecular structures. For example, double copy language
cannot be modelled by a simple linear tree adjoining grammar [19]. To overcome
this failure, in [8], we have introduced a simple and powerful grammar model
Matrix insertion-deletion system that captures all the popular and important
bio-molecular structures that are noticed often in bio-molecules. In [8], various
bio-molecular structures that occur at intramolecular level such as pseudo knot,
hairpin, stem and loop, attenuator, cloverleaf are modelled using the above gram-
mar system. In [9], various bio-molecular structures that occur at intermolecular
level such as double strand language, nick language, holliday structure, replica-
tion fork are modelled using the above grammar system. Incidentally in [12], the
same system has been introduced from formal language theory perspective by
Ion Petre and Sergey Verlan and a few computational completeness results of
the system were discussed in the paper.

In this paper, we first identify some structures such as double bulge loop,
extended internal loop, triple stem and loop that are formed during the RNA fold-
ing process. We give a formal language representation to the identified structures
and we model such structures using Matrix insertion-deletion systems.

2 Preliminaries

We start with recalling some basic notations used in formal language theory. A
finite non-empty set V or Σ is called an alphabet. ΣRNA is a finite non-empty set
over the symbols {a, u, g, c}. We denote by V ∗ or Σ∗, the free monoid generated
by V or Σ, by λ its identity or the empty string, and by V + or Σ+ the set
V ∗ − {λ} or Σ∗ − {λ}. The elements of V ∗ or Σ∗ are called words or strings.
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A language L is defined as L ⊆ Σ∗. For any word w ∈ V ∗ or Σ∗, we denote the
length of w by |w|. For more details on formal language theory, we refer to [14].

Next, we recall the basic definition of insertion-deletion systems. Given an
insertion-deletion system γ = (V, T,A,R), where V is an alphabet (set of non-
terminal and terminal symbols), T ⊆ V (set of terminal symbols), A is a finite
language over V , R is a set of finite triples of the form (u, α/β, v), where
(u, v) ∈ V ∗ × V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +). The pair (u, v) are called
contexts which will be used in deletion/insertion rules. Insertion rule is of the
form (u, β, v)ins which means that β is inserted between u and v. Deletion rule
is of the form (u, α, v)del, which means that α is deleted between u and v. In
other words, (u, β, v) corresponds to the rewriting rule uv → uβv, and (u, α/λ, v)
corresponds to the rewriting rule uαv → uv.

Consequently, for x, y ∈ V ∗ we can write x =⇒∗ y, if y can be obtained from
x by using either an insertion rule or a deletion rule which is given as follows:
(the down arrow ↓ indicates the position where the string is inserted, the down
arrow ⇓ indicates the position where the string is deleted and the underlined
string indicates the string inserted)

1. x = x1u
↓vx2, y = x1uβvx2, for some x1, x2 ∈ V ∗ and (u, β, v)ins ∈ R.

2. x = x1uαvx2, y = x1u
⇓vx2, for some x1, x2 ∈ V ∗ and (u, α, v)del ∈ R.

The language generated by γ is defined by L(γ) = {w ∈ T ∗ | x =⇒∗

w, for some x ∈ A}, where =⇒∗ is the reflexive and transitive closure of the
relation =⇒.

2.1 Matrix Insertion-Deletion Systems

In this subsection, we describe the matrix insertion-deletion systems introduced
in [8,12].

Definition 1. A matrix insertion-deletion system is a construct Γ =
(V, T,A,R) where V is an alphabet, T ⊆ V , A is a finite language over V , R is a
finite set of matrices {R1, R2, . . . Rl}, where each ri, 1 ≤ i ≤ l, is a matrix of the
form Ri = [(u1, α1, v1)t1 , (u2, α2, v2)t2 , . . . , (uk, αk, vk)tk ] with tj ∈ {ins, del},
1 ≤ j ≤ k.

For 1 ≤ j ≤ k, the triple (uj , αj , vj)tj is an ins-del rule. Consequently, for x, y ∈
V ∗ we write x ⇒ x′ ⇒ x′′ ⇒ . . . ⇒ y, if y can be obtained from x by applying all
the rules of a matrix Ri, 1 ≤ i ≤ l, in order; in this case, we write x =⇒ri y. Note
that the string w is collected after applying all the rules in a matrix and also
w ∈ T ∗. At this point, we make a note that in a derivation, the rules of a matrix
are applied sequentially one after another in order and no rule is in appearance
checking. By w =⇒∗ z, we denote the relation w =⇒Ri1

w1 =⇒Ri2
. . . =⇒Rik

z,
where for all j, 1 ≤ j ≤ k, we have 1 ≤ ij ≤ l. The language generated by Γ is
defined as L(Γ ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}.
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3 Modelling Bio-Molecular Structures

In this section, we first discuss the structures that are formed during the RNA
folding process. We next give the interpretation for each structure with a formal
language representation (as shown in Table 1) and model them using Matrix
insertion-deletion systems. The bio-molecular structures that are commonly
noticed in RNA structures can be categorized as primary, secondary and ter-
tiary structures. In addition to the RNA folding process, protein folding process
also plays a major role in the biological functions of a living cell.

The primary structure of a nucleic acid molecule represents the exact
sequence of nucleotides that forms the complete molecule. The secondary struc-
ture (two dimensional) is a two dimensional representation formed by folding
back onto itself with base pairing of complementary nucleotides (Watson-Crick
pairs) which may form loops. The tertiary structures are three dimensional struc-
ture and study of such structures is very difficult. The evolution of RNA sequence
needs to satisfy three requirements: folding, structure, and function [11]. As fold-
ing is to be considered as one of the important requirements in RNA sequence,
identifying the structure during RNA folding process deserves a special atten-
tion. The commonly noticed looping structures during this process are stem and
loop, internal loop, bulge loop and multi branch loop.

Table 1. Bio-molecular structure and formal language representation

Fig. no. Bio-molecular structure formal language representation

Figure 4(a) (Left) Double bulge loop
Ldbl = {u1u2v1ū2

Rv2ū1
R}

Figure 4(a) (Middle) Extended internal loop
Leil = {u1v1u2v2ū2

Ru3v3ū3
Rū1

R}
Figure 4(a) (Right) Double stem and loop

Ldsl = {v1u1v2ū1
Rv3u2v4ū2

Rv5}
Figure 4(b) (Left) Hybrid loop Lhl = {u1v1u2v2ū2

Rv3u3v4u4v5ū4
Rv6ū3

Rv7ū1
R}

Figure 4(b) (Right) Quadruple stem and loop
Lqsl = {u1u2v1ū2

Ru3v2ū3
Ru4v3ū4

Rū1
R# }

Figure 4(c) (Left) Triple stem and loop
Ltsl = {u1v1ū1

Ru2v2ū2
Ru3v3ū3

R}
Figure 4(c) (Right) Extended double bulge loop

Ledbl = {u1A1u2v1ū2
RBv2B̄A2ū1

R}

For more details on RNA secondary structures and its prediction, we refer to
[2,3,13]. The bio-molecular structures found in RNA folding process represented
in Figs. 4(a) through (c) can be given in terms of languages as shown in Table 1
if the strings are collected as per the dotted directed lines. We now model each
of the above language by Matrix insertion-deletion system. In most of the fol-
lowing derivations, at each derivation step, we directly write the resultant string
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v2                                                            v4
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(a) Left: Double bulge loop, Middle: Extended internal loop, Right: Double stem and loop
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(b) Left: Hybrid loop, Right: Quadruple stem and loop
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u1                                                       u3
   _ R
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A1                          A2
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v1

B
v2

 _

_ R

_R
u1                    u1

 (b)(a)

                                                    u3u1

u2 u2

u2

B

(c) Left: Triple stem and loop, Right: Extended double bulge
loop

Fig. 4. Some bio-molecular structures found during RNA folding process

obtained by applying all the rules in a matrix. In all the propositions, we have
adopted the method of proof by construction in modelling the bio-molecular
structures using Matrix insertion-deletion systems. In the derivation step, the
rule at the suffix of =⇒ denotes the corresponding matrix rule applied. In all
the structures, the loop (vi) and the stem (ui and its complementary pair ūi

R)
need not be empty string. If needed, all possible combinations of each vi, ui

and its complementary pair ūi
R of string length one can be included in axiom

itself. An important objective is to have a minimum (length) axiom, wherever
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possible. From formal language theory perspective, as structures can be viewed
as languages, at many places we refer the structure as language.

Theorem 1. The language of the double bulge loop structure (see left of
Fig. 4(a)) Ldbl = {u1u2v1ū2

Rv2ū1
R | u1, u2, v1, v2 ∈ Σ+

RNA} can be generated
by Matrix insertion-deletion system.

Proof. The language Ldbl can be generated by the Matrix insertion-deletion
system Υdbl = ({b, b̄, †1, †2, †3}, {b, b̄}, {b†1 b′b1 †2 b̄′b2 †3 b̄}, R), where b, b′, b1, b2 ∈
{a, u, g, c}, b̄, b̄′ is complement of b and b′ respectively. The rules R is given by:

R1 = [(λ, a, †1)ins, (†3, u, λ)ins], R2 = [(λ, u, †1)ins, (†3, a, λ)ins],
R3 = [(λ, c, †1)ins, (†3, g, λ)ins], R4 = [(λ, g, †1)ins, (†3, c, λ)ins],
R5 = [(†1, u, λ)ins, (†2, a, λ)ins], R6 = [(†1, a, λ)ins, (†2, u, λ)ins],
R7 = [(†1, g, λ)ins, (†2, c, λ)ins], R8 = [(†1, c, λ)ins, (†2, g, λ)ins], R9 = [(λ, b, †2)ins],
R10 = [(λ, b, †3)ins], R11 = [(λ, †1, λ)del], R12 = [(λ, †2, λ)del], R13 = [(λ, †3, λ)del].

A sample derivation is given as follows:

↓ †1 †2†↓
3 =⇒R1 a↓ †1 †2 †↓

3 u =⇒R1 ac †↓
1 †↓

2 †3 gu =⇒R2 ac †↓
1 u †↓

2 a †3 gu
=⇒R2 ac †1 gu↓ †2 ca †3 gu =⇒R3 ac †1 gua↓ †2 ca †3 gu =⇒R3 ac †1 guac†2
ca↓ †3 gu =⇒R4 ac †1 guac †2 cau↓ †3 gu =⇒R4 ac †1 guac †2 caug †3 gu =⇒R5

ac⇓guac †2 caug †3 gu =⇒R6 acguac⇓caug †3 gu =⇒R7 acguaccaug⇓gu.

As the structure belongs Σ+
RNA, the axiom consists of the minimum possible

string from the structure. Moreover, we have considered all possible combina-
tions for the b and b̄ in the insertion rules for generating the structure. The idea
is †1, †2 and †3 are used as markers. †1 and †3 are used to control the u1ū1

R

part of the language. Whenever a b is adjoined to the left of †1 its corresponding
complementary b̄ is adjoined to the right of †3 and the synchronization is main-
tained. Similarly, †1 and †2 are used to control the u2ū2

R part of the language.
Whenever a b is adjoined to the right of †1 its corresponding complementary b̄ is
adjoined to the right of †2 such that the synchronization is maintained. †2 and
†3 are used to control the v1 and v2 part of the language respectively.

From the construction of the system, it is easy to see that the usage of markers
guarantee that the system Υdbl generates only the language Ldbl.

Remark 1. We can note from the previous system that (especially, the matrix
rules), a gene and its complimentary gene are specified with the possible com-
binations in the insertion rules, the system looks cumbersome and congested.
In order to avoid this, for the rest of the propositions, we generalize a gene
and its compliment gene (or pair) in insertion rules using b and b̄ where
b ∈ {a, t, g, c} and if b = a then, b̄ refers to its complimentary pair t. For
example, if there is an insertion rule RI = [(λ, b, †1)ins, (†5, b̄, λ)ins], then it
refers to the following four insertion rules: (i) R1 = [(λ, a, †1)ins, (†3, u, λ)ins],
(ii) R2 = [(λ, u, †1)ins, (†3, a, λ)ins], (iii) R3 = [(λ, c, †1)ins, (†3, g, λ)ins],
(iv) R4 = [(λ, g, †1)ins, (†3, c, λ)ins].
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Using this generalization, we have the following on similar lines.

Theorem 2. The language of the extended internal loop structure and double
stem and loop structure (see middle and right of Fig. 4(a)) can be generated by
Matrix insertion-deletion system.

Proof. The proof is similar to that of Theorem1 and the details are omitted.

Theorem 3. The language of the triple stem and loop structure and extended
double bulge loop structure (see left and right of Fig. 4(c)) can be generated by
Matrix insertion deletion system.

Proof. The language Ltsl = {u1v1ū1
Ru2v2ū2

Ru3v3ū3
R | u1, u2, u3, v1, v2, v3 ∈

Σ+
RNA} representing of the triple stem loop structure can be generated by the

Matrix insertion-deletion system Υtsl = ({b, b̄, †1, †2, †3, †4, †5}, {b, b̄}, {b †1 b1b̄ †2
b′b2 †3 b̄′b′′ †4 b3b̄′′†5}, R), where b, b′, b′′, b1, b2, b3 ∈ {a, u, g, c}, b̄, b̄′, b̄′′ is comple-
ment of b, b′ and b′′ respectively. The rules R is given as follows:

R1 = [(λ, b, †1)ins, (λ, b̄, †2)ins], R2 = [(†2, b, λ)ins, (†3, b̄, λ)ins],
R3 = [(λ, b, †4)ins, (λ, b̄, †5)ins], R4 = [(†1, b, λ)ins], R5 = [(λ, b, †3)ins],
R6 = [(†4, b, λ)ins], R′

i = [(λ, †i, λ)del] | 1 ≤ i ≤ 5.

Similarly, the language Ledbl = {u1A1u2v1ū2
RBv2B̄A2ū1

R | u1, u2, v1, v2 ∈
Σ+

RNA, A1, A2, B, B̄ ∈ ΣRNA} representing the extended double bulge loop
structure can be generated by the Matrix insertion-deletion system given by
Υedbl = ({b, b̄, †1, †2, †3, †4, †5}, {b, b̄}, {b†1A1b

′†2b1b̄′†3Bb2†4 B̄A2b̄†5}, R), where
the symbols b, b′, b1, b2, A1, A2, B, B̄ ∈ {a, u, g, c}, b̄, b̄′, B̄ is complement of b, b′

and B respectively. The rules R is given as follows:

R1 = [(λ, b, †1)ins, (λ, b̄, †5)ins], R2 = [(λ, b, †2)ins, (λ, b̄, †3)ins],
R3 = [(†2, b, λ)ins], R4 = [(λ, b, †4)ins], R′

i = [(λ, †i, λ)del] | 1 ≤ i ≤ 5.

From the construction of the system, one can check that the usage of markers
guarantee that the systems Υtsl, Υedbl generate only the languages Ltsl, Ledbl

respectively.

Theorem 4. The language of hybrid loop as well as quadruple stem and loop
structure (see left and right of Fig. 4(a)) can be generated by Matrix insertion-
deletion system.

Proof. For u1, u2, u3, u4, v1, v2, v3, v4, v5, v6, v7 ∈ Σ+
RNA, the language of the

hybrid loop structure given by Lhl = {u1v1u2v2ū2
Rv3u3v4u4v5ū4

Rv6ū3
Rv7ū1

R}
can be generated by Matrix insertion-deletion system Υhl = ({b, b̄, †1, †2, . . . , †8},
{b, b̄}, {b†1 b1b

′ †2 b2b̄′ †3 b3b
′′ †4 b′′′ †5 b4b̄′′′ †6 b5b̄′′ †7 b6 †8 b̄}, R), where the symbols

b, b′, b′′, b′′′, b1, b2, b3, b4, b5, b6 ∈ {a, u, g, c}, b̄, b̄′, b̄′′, b̄′′′ is complement of b, b′, b′′,
b′′′ respectively. The rules R is given as follows:

R1 = [(λ, b, †1)ins, (†8, b̄, λ)ins], R2 = [(λ, b, †2)ins, (λ, b̄, †3)ins],
R3 = [(λ, b, †4)ins, (λ, b̄, †7)ins], R4 = [(λ, b, †5)ins, (λ, b̄, †6)ins],
R5 = [(†1, b, λ)ins], R6 = [(†2, b, λ)ins], R7 = [(†3, b, λ)ins], R8 = [(†5, b, λ)ins],
R9 = [(†6, b, λ)ins], R10 = [(†7, b, λ)ins], R′

i = [(λ, †i, λ)del] | 1 ≤ i ≤ 8.
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Similarly, the language Lqsl can be generated by the Matrix insertion-deletion
system Υqsl = ({b, b̄, †1, †2, †3, †4, †5, †6}, {b, b̄}, {b †1 b′b1 †2 b̄′b′′ †3 b2b̄′′ †4 b′′′b3 †5
b̄′′′b̄ †6 #}, R), where b, b′, b′′, b′′′, b1, b2, b3,# ∈ {a, u, g, c}, b̄, b̄′, b̄′′, b̄′′′ is comple-
ment of b, b′, b′′, b′′′ respectively. The rules R is given as follows:

R1 = [(λ, b, †1)ins, (λ, b̄, †6)ins], R2 = [(†1, b, λ)ins, (†2, b̄, λ)ins],
R3 = [(λ, b, †3)ins, (λ, b̄, †4)ins], R4 = [(†4, b, λ)ins, (†5, b̄, λ)ins],
R5 = [(λ, b, †2)ins], R6 = [(†3, b, λ)ins],
R7 = [(λ, b, †5)ins], R′

i = [(λ, †i, λ)del] | 1 ≤ i ≤ 6.

From the construction of the system, one can check that the usage of markers
guarantee that the systems Υhl, Υqsl generate the languages Lhl, Lqsl respectively.

4 Conclusion

In this paper, using the Matrix insertion-deletion system we have modelled sev-
eral bio-molecular structures that occur at RNA folding process. We remark
that in this paper, to model all the bio-molecular structures, we used matrix of
insertion rules and matrix of deletion rules separately (i.e., the system has no
insertion rule and deletion rule together in a matrix), thus forming a new sub-
class. In the systems we have considered here, the insertion rules does not use
any context but only the deletion rules use contexts. This can be viewed as the
insertion operation works in a context-sensitive manner and the deletion opera-
tion works in a context-free manner. Thus, the system uses both the nature of
context-sensitiveness and context-freeness and it seems to be a promising model
for application to various domains including natural language processing. More
specifically, In the vein of the paper, modelling tertiary structures, protein sec-
ondary structures [10] using this system are left as future research work.

References

1. Brendel, V., Busse, H.G.: Genome structure described by formal languages. Nucleic
Acids Res. 12(5), 2561–2568 (1984)

2. Brown, M., Wilson, C.: RNA Pseudoknot modelling using intersections of sto-
chastic CFG with applications to database search. In: Proceedings of the Pacific
Symposium on Biocomputing, Hawaii, USA, pp. 109–125 (1995)

3. Cai, L., Russell, L., Wu, Y.: Stochastic modelling of RNA pseudoknotted struc-
tures: a grammatical approach. Bioinformatics 19(1), 66–73 (2003)

4. Galiukschov, B.S.: Semicontextual grammars (in Russian). Matem. Logica i
Matem. Lingvistika, pp. 38–50 (1981)

5. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biol. 49(6), 737–750 (1987)

6. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

7. Kari, L.: On insertion and deletion in formal languages. Ph.D. Thesis, University
of Turku (1991)



Formal Language Representation and Modelling Structures 29

8. Kuppusamy, L., Mahendran, A., Krishna, S.N.: Matrix insertion-deletion sys-
tems for bio-molecular structures. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 301–312. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19056-8 23

9. Lakshmanan, K., Anand, M., Clergerie, E.V.: Modelling intermolecular structures
and defining ambiguity in gene sequences using matrix insertion-deletion systems.
In: Enguix, G.B., Dahl, V., Dolores Jimenez Lopez, M. (eds.) Biology, Compu-
tation and Linguistics, New Interdisciplinary Paradigms, pp. 71–85. IOS Press,
Amsterdam (2011)

10. Mamitsuka, H., Abe, N.: Prediction of beta-sheet structures using stochastic tree
grammars. In: Proceedings of Fifth Workshop on Genome Informatics, pp. 19–28.
Universal Academy Press, Yokohama (1994)

11. Pan, T., Sosnick, T.: RNA folding during transcription. Annu. Rev. Biophys. Bio-
mol. Struct. 35, 161–175 (2006)

12. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456,
80–88 (2012)

13. Rivas, E., Eddy, S.R.: The language of RNA: a formal grammar that includes
pseudoknots. Bioinformatics 16(4), 334–340 (2000)

14. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, New York
(1996). doi:10.1007/978-3-642-59126-6

15. Searls, D.B.: Representing genetic information with formal grammars. In: Proceed-
ings of the National Conference on Artificial Intelligence, Saint Paul, Minnesota,
pp. 386–391 (1988)

16. Searls, D.B.: The computational linguistics of biological sequences. In: Hunter, L.
(ed.) Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press, Menlo
Park (1993)

17. Searls, D.B.: Formal grammars for intermolecular structures. In: First International
IEEE Symposium on Intelligence and Biological Systems, Washington, USA, pp.
30–37 (1995)

18. Searls, D.B.: The language of genes. Nature 420(6912), 211–217 (2002)
19. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: TAG for RNA structure

prediction. Theoret. Comput. Sci. 210(2), 277–303 (1999)

http://dx.doi.org/10.1007/978-3-642-19056-8_23
http://dx.doi.org/10.1007/978-3-642-19056-8_23
http://dx.doi.org/10.1007/978-3-642-59126-6


Homometric Number of a Graph and Some
Related Concepts

Anu V.1(B) and Aparna Lakshmanan S.2

1 Department of Mathematics, St. Peter’s College,
Kolenchery 682 311, Kerala, India

anusaji1980@gmail.com
2 Department of Mathematics, St. Xavier’s College for Women,

Aluva 683 101, Kerala, India
aparnaren@gmail.com

Abstract. Given a graph G = (V,E), two subsets S1 and S2 of the
vertex set V are homometric, if their distance multisets are equal. The
homometric number h(G) of a graph G is the largest integer k such that
there exist two disjoint homometric subsets of cardinality k. We prove
that the homometric number of the Cartesian product of two graphs
is at least twice the product of the homometric numbers of the indi-
vidual graphs. We also prove that the homometric number of the kth-
power graph of a graph G is always greater than or equal to that of
G. The homometric number of some classes of graphs are also obtained.
A lower bound for the homometric number of triangle-free regular graphs
is obtained and two graph parameters; weak homometric number and
twin number, which are related to homometric number are also discussed.

Keywords: Homometric number · Weak Homometric number · Twin
Number

1 Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). If
there is no ambiguity in the choice of G, then we write V (G) and E(G) as V and
E respectively. For any set S ⊆ V, the cardinality of S is denoted by |S|. The
distance multiset of S, denoted by DMG(S) or simply by DM(S), is the multiset
of all pair-wise distances between any two vertices of S. Two subsets S1 and S2 of
the vertex set V are said to be homometric, if their distance multisets are equal.
The homometric number h(G) of a graph G is the largest integer k such that
there exist two disjoint homometric subsets, S1 and S2 of the vertex set V , each
of cardinality k. Clearly, h(G) � �n

2 �, where �x� denotes the greatest integer
less than or equal to x. Even though there is a concept of infinite distance in
the case of disconnected graphs, to avoid ambiguity we consider only connected
graphs. For a family G of graphs, h(G) = inf{h(G) : G ∈ G}. If Gn denotes the
class of all graphs on n vertices, then h(Gn) is denoted by h(n).
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S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 30–37, 2017.
DOI: 10.1007/978-3-319-64419-6 4
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In 2010, Albertson et al. [1] initiated the study of homometric sets in graphs.
They proved that c logn

log logn � h(n) � n
4 , for n > 3. Axenovich and Özkahya [4]

gave a better lower bound on the maximal size of homometric sets in trees. They
showed that every tree on n vertices contain homometric sets of size at least 3

√
n.

A haircomb tree on n vertices contains homometric sets of size at least
√
n
2 . They

also proved that, for any graph G of diameter d, h(G) � cn
1

2d−2 . Recently, Fulek
and Mitrović [8] improved the result on haircomb trees by proving that there
exist disjoint homometric sets of size at least cn

2
3 , for a constant c. Lemke et al.

[10] showed that if G is a cycle of length 2n then every subset of V (G) with n
vertices and its complement are homometric sets.

1.1 Basic Definitions and Preliminaries

For any graph G the number of vertices in G is denoted by n(G) or simply by n.
The distance between any two vertices u and v in V is the length of a shortest
path joining u and v in G and is denoted by dG(u, v) or simply by d(u, v).
The maximum distance between any pair of vertices in G is the diameter of
the graph G and is denoted by diam(G). Any induced path P = u1, u2, . . . , ul

in G where l = diam(G) + 1 is called a diametral path with end vertices u1

and ul. Since {u1, u2, . . . , u� l
2 �} and {u� l

2 �+1, . . . , u2� l
2 �} are disjoint homometric

subsets, �diam(G)
2 � � h(G), where �x� denotes the least integer greater than or

equal to x.
For any set S ⊆ V (G) the distance set of S, denoted by DG(S) or simply by

D(S), is the set of all pair-wise distances between any two vertices of S. Two
subsets S1 and S2 of the vertex set V are said to be weakly homometric if their
distance sets are equal [11]. The weak homometric number of a graph G is the
largest integer k such that there exist two disjoint weakly homometric subsets
S1 and S2 of the vertex set V each of cardinality k and it is denoted by hw(G).
Clearly h(G) � hw(G) � �n

2 � [2].
For a graph G, two disjoint subsets of vertices are called twins if they have

the same cardinality and induced subgraphs with the same number of edges [5].
The twin number t(G) is the largest k such that there are twins A and B in G
with |A| = |B| = k. i.e.,DM(A) and DM(B) contains equal number of one’s.
Hence, t(G) � h(G).

The Cartesian product of two graphs G and H, denoted by G�H is the
graph with vertex set V (G) × V (H) and any two vertices (u1, v1) and (u2, v2)
are adjacent in G�H if u1 = u2 and v1v2 ∈ E(H) or u1u2 ∈ E(G) and
v1 = v2. It is known that [9], if (u1, v1) and (u2, v2) are two vertices in G�H,
then dG�H((u1, v1), (u2, v2)) = dG(u1, u2) + dH(v1, v2).

The kth-power graph of a graph G, denoted by Gk, is the graph obtained
from G by adding edges between any two vertices of G of distance less than or
equal to k. The join of two graphs G and H, denoted by G ∨ H is defined as the
graph with V (G ∨ H) = V (G) ∪ V (H) and E(G ∨ H) = E(G) ∪ E(H) ∪ {uv :
u ∈ V (G) and v ∈ V (H)}. Let Kn and Cn denote the complete graph and cycle
on n vertices respectively. The join of K1 and Cn−1 is called the wheel, denoted
by Wn.
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A distance-hereditary graph is a graph in which the distances in any con-
nected induced subgraph are the same as they are in the original graph. A
universal vertex is a vertex adjacent to all the other vertices of the graph. A
vertex with degree one is called a pendant vertex. The (n,m)-kite is the graph
constructed by taking a copy of Kn and a path on m vertices and adding an
edge between a vertex in Kn to a pendant vertex in the path [1]. The friendship
graph Fk is a graph which consists of k triangles with a common vertex.

A graph G is almost irregular if it has exactly one pair of vertices of the
same degree. The construction of almost irregular graph is explained in [3].
Two vertices u and v are said to be false twins if N(u) = N(v), where N(u)
denotes the set of adjacent vertices of u and true twins if N [u] = N [v] where
N [u] = N(u) ∪ {u}.

Throughout this paper, we consider only simple graphs. For any graph the-
oretic terminology and notations the readers may refer to [6].

2 Homometric Number

Theorem 1. If G is a distance-hereditary graph and H is a connected induced
subgraph of G, then h(H) � h(G).

Proof. Let S1 and S2 be two disjoint homometric sets in H with |S1| = |S2| =
h(H). For any two vertices u, v in S1, dH(u, v) = dG(u, v). This is true for the
corresponding vertices u′ and v′ in S2 with dH(u, v) = dH(u′, v′). Thus S1 and
S2 will be disjoint homometric sets in G also. Hence h(G) � h(H).

Theorem 2. For any two connected graphs G and H, h(G�H) � 2 h(G)h(H).

Proof. Let S1 = {u1, u2, . . . , uk} and S2 = {u1′ , u2′ , . . . , uk′} be two dis-
joint homometric subsets of V (G) and T1 = {v1, v2, . . . , vs} and T2 =
{v1′ , v2′ , . . . , vs′ } be two disjoint homometric subsets of V (H). Hence corre-
sponding to any two vertices ui and uj in S1 there exist two vertices u′

i and
u′
j in S2 such that dG(ui, uj) = dG(u′

i, u
′
j). Similarly corresponding to any two

vertices va and vb in T1 there exist two vertices v′
a and v′

b in T2 such that
dH(va, vb) = dH(v′

a, v
′
b). Consider (S1 ×T1)∪ (S1 ×T2) and (S2 ×T1)∪ (S2 ×T2).

Clearly, they are two disjoint subsets of V (G�H) of the same cardinality.
Let (ui, va) and (uj , vb) be any two vertices in (S1 × T1) ∪ (S1 × T2). Then
dG�H((ui, va), (uj , vb)) = dG(ui, uj) + dH(va, vb).

Case 1. Both (ui, va) and (uj , vb) are in S1 × T1.
If ui �= uj and va �= vb, then there exist (u′

i, v
′
a), (u

′
j , v

′
b) ∈ S2 × T2 such

that dG�H((ui, va), (uj , vb)) = dG�H((u′
i, v

′
a), (u

′
j , v

′
b)). If ui = uj , then take

ui′ = uj′ ∈ S2 so that (ui′ , v
′
a), (uj′ , v′

b) ∈ S2 × T2 and dG�H((ui, va), (uj , vb))
= dH(v′

a, v
′
b) = dG�H((ui′ , v

′
a), (uj′ , v′

b)). If va = vb, then take va′ =
vb′ ∈ T2 so that (u′

i, va′), (u′
j , vb′) ∈ S2 × T2 and dG�H((ui, va), (uj , va)) =

dG�H((u′
i, va′), (u′

j , vb′)).
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Case 2. Both (ui, va) and (uj , vb) are in S1 × T2.
A similar argument as in Case 1 shows that corresponding to any two vertices

in S1 × T2, there exists a pair of vertices in S2 × T1 such that the distance is
preserved.

Case 3. (ui, va) is in S1 × T1 and (uj , vb) is in S1 × T2.
If ui �= uj , then there must exist u′

i, u
′
j ∈ S2 such that dG(ui, uj) = dG(u′

i, u
′
j).

Thus there exist (u′
i, va) ∈ S2 × T1 and (u′

j , vb) ∈ S2 × T2 such that
dG�H((ui, va), (uj , vb))= dG�H((u′

i, va), (u
′
j , vb)). If ui = uj , then take ui′ =

uj′ ∈ S2 so that (ui′ , va) ∈ S2 × T1 and (uj′ , vb) ∈ S2 × T2 and
dG�H((ui, va), (uj , vb)) = dG�H((ui′ , va), (uj′ , vb)). Here va cannot be equal
to vb.

Hence, we have proved that corresponding to any two vertices in (S1 × T1) ∪
(S1 × T2), there exists a pair of vertices in (S2 × T1) ∪ (S2 × T2) such that the
distance is preserved. Thus (S1×T1)∪(S1×T2) and (S2×T1)∪(S2×T2) are two
disjoint homometric subsets of V (G�H). Therefore, h(G�H) � 2 h(G)h(H).

Remark 1. In G�H, there are n(H) copies of G and n(G) copies of H. So the
above theorem can be modified as follows: For any two connected graphs G
and H, h(G�H) � max{2h(G)h(H), n(G), n(H)}. But the bound cannot be
improved since h(Pn�Pn) = n2

2 = 2 h(Pn)h(Pn), if n is even.

Theorem 3. The homometric number of kth-power graph of a graph G is
greater than or equal to that of G. i.e., h(Gk) � h(G).

Proof. Let S1 and S2 be two disjoint homometric subsets of G with |S1| = |S2| =
h(G). Each distance d in DMG(S1) = DMG(S2) becomes � d

k � while considering
in Gk. Therefore S1 and S2 will be two disjoint homometric subsets of Gk and
hence h(Gk) � h(G).

Remark 2. There are graphs G such that h(G2) = 2 h(G). For example, let G
be the (m,m − 2)-kite, where m is odd, with vertices v1, v2, . . . , v2m−2; where
v1, v2, . . . , vm are the vertices of Km and vm+1, vm+2, . . . , v2m−2 are the vertices
of the path and the edge is added between vm and vm+1. In [1], it is proved that
h(G) = m−1

2 . In G2, S1 = {v1, v3, . . . , v2m−3} and S2 = {v2, v4, . . . , v2m−2} are
two disjoint homometric sets so that h(G2) = m − 1 = 2 h(G). But the bound
cannot be improved since h(C2

n) = h(Cn) = �n
2 �.

Theorem 4. If G is a wheel graph Wn+1, the complement of a path or a cycle,
a friendship graph or an almost irregular graph on n vertices, then h(G) = �n

2 �.
Proof. Case 1. G is the wheel graph Wn+1 = K1 ∨ Cn.

Let v1, v2, . . . , vn be the vertices of Cn and v be the vertex of K1. Put
v1, v2, . . . , v�n

2 � in S1 and v�n
2 �+1, . . . , v2� n

2 � in S2. Then DM(S1) = DM(S2)
consists of �n

2 � − 1 one’s and �n
2 �C2 − (�n

2 � − 1) two’s. Thus h(Wn+1) � �n
2 �. If

n + 1 is odd, this is the maximum possible value. If n + 1 is even, to increase
the homometric number, we have to put v in any of S1 and S2. Let it be in S1.
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Then the number of one’s in DM(S1) will be greater than that of DM(S2). (The
other case also follows similarly.) So h(Wn+1) = �n

2 �.
Case 2. G is the complement of the path Pn.

Let Pn : v1, v2, . . . , vn be a path on n vertices. If n is even, S1 =
{v1, v3, v5, . . . , vn−1} and S2 = {v2, v4, . . . , vn} are independent sets in Pn.
So they are cliques in Pn. Hence DM(S1) = DM(S2) contains �n

2 �C2 one’s
in Pn. So h(Pn) = �n

2 �. If n is odd, take S1 = {v1, v3, v5, . . . , vn−2} and
S2 = {v2, v4, . . . , vn−1}. As in the above case DM(S1) = DM(S2) in Pn. Hence
h(Pn) = �n

2 �.
If G is the complement of a cycle, the proof is similar to that of a path.

Case 3. G is the friendship graph Fk.
Let u1, v1, u2, v2, . . . , uk, vk, u be the vertices of Fk, where u is an universal

vertex and uivi is an edge for each i = 1, 2, . . . , k. Then S1 = {u1, u2, . . . , uk} and
S2 = {v1, v2, . . . , vk} will be two disjoint homometric sets and hence homometric
number is k.

Case 4. G is an almost irregular graph.
We can directly verify the result for n � 3. Suppose n � 4. Let G be a graph

with vertices v1, v2, . . . , vn. If n is even, let

d(vi) =

{
i, for i = 1, 2, . . . , n

2 .

i − 1, for i = n
2 + 1, . . . , n.

Then N(vi) = {vn−j , j = 0, 1, . . . , i − 1; i �= n − j}. If n = 4k + 2, take S1 =
{vi/odd i with i � n

2 − 2 and even i with i � n
2 + 1} and S2 = {vi/even i with

i � n
2 − 1 and odd i with i � n

2 . If n = 4k, take S1 = {vi/odd i with i � n
2 − 1

and even i with i � n
2 + 2} and S2 = {vi/even i with i � n

2 and odd i with
i � n

2 + 1.
If n is odd, let n = 2k + 1, and

d(vi) =

{
i, for i = 1, 2, . . . , n−1

2 .

i − 1, for i = n+1
2 , . . . , n.

Take S1 = {vi/i is odd and i �= k + 1 or k + 2} and S2 = {vi/i is even}.
In all cases, arrange the vertices in S1 (similarly in S2) in increasing order of

their suffix. Then the distance between any two vertices in S1 will be same as
that of corresponding vertices in the same position in S2. Hence S1 and S2 will
be two disjoint homometric sets and h(G) = �n

2 �.

3 Regular Graphs

In this section we discuss the homometric number of regular graphs. The only
1-regular connected graph is K2 and the only 2-regular connected graphs are the
cycles. Therefore in this section we consider graphs with regularity greater than
or equal to 3.
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Lemma 1. If G is a k-regular graph, then h(G) � 2.

Proof. Let G be a k-regular graph, k � 3. Then n � 4. Let u and v be two
adjacent vertices in G. Let w be a vertex distinct from u and v. Since d(w) =
k � 3, there is a vertex z adjacent to w distinct from u and v. Take S1 = {u, v}
and S2 = {w, z}. Then DM(S1) = DM(S2) = {1} and hence h(G) � 2.

Proposition 1. Let G be a k-regular triangle free graph. Then h(G) � �k
2 �.

Proof. If G is complete, then the proof is trivial. Now suppose u and v are two
non adjacent vertices. If k is even, partition N(u) = S1 ∪ S2 such that and
|S1| = |S2| = k

2 . Then S1 and S2 will form two disjoint homometric sets whose
distance multisets containing only two’s and hence h(G) � k

2 .
If k is odd, put k−1

2 neighbours of u together with u in S1 and k−1
2 neighbours

of v together with v in S2 so that S1 ∩ S2 = φ. Then S1 and S2 will form two
disjoint homometric sets with cardinality k+1

2 and hence h(G) � k+1
2 .

Theorem 5. If b � �k
2 �, then there exists a k-regular graph with homometric

number b.

Proof. Consider the cycle C2b with vertex set {v1, v2, . . . , v2b}. If k is even, make
vi adjacent to vj for every d(vi, vj) � k

2 . If k is odd make vi adjacent to vj for
every d(vi, vj) � k

2 and vi adjacent to vi+b for every i = 1, 2, . . . , b. Then S1 =
{v1, v2, . . . , vb} and S2 = {vb+1, vb+2, . . . , v2b} will be two disjoint homometric
subsets and hence h(G) = b.

4 Some Related Graph Parameters

In this section we find the weak homometric number of the complete bipartite
graph and the wheel graph. We also find that the homometric number and the
twin number are equal for any graph G with diameter 2.

Theorem 6. For the complete bipartite graph Km,n, with m � n,

hw(Km,n) =

{
�n
2 �, if m = 1, n � 2,

�m+n
2 �, otherwise.

Proof. Let V = (X,Y ) be a bipartition of Km,n with |X| = m and |Y | = n.

Case 1. m = 1, n � 2.
Put the vertices of Y in S1 and S2 so that S1∩S2 = φ and |S1| = |S2| = �n

2 �.
Therefore, in this case hw(Km,n) � �n

2 �. If n is even, this is the maximum
possible value. If n is odd, in order to increase the weak homometric number,
we have to put the universal vertex in any of S1 or S2. Then the distance set of
that set will contain one’s but not that of other. Hence hw(Km,n) = �n

2 �.
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Case 2. m = n = 1 or m,n � 2.
Let X = {u1, u2, . . . , um} and Y = {v1, v2, . . . , vn}. If m = n, S1 = X and

S2 = Y will form a weak homometric partition in G. If m = 2 and n = 3, then
S1 = {u1, u2} and S2 = {v1, v2} will be two disjoint weak homometric sets in
G. In all other cases, put u1, v1 and v2 in S1 and u2, v3 and v4 in S2. Thus
D(S1) = D(S2) = {1, 2}. Put the remaining vertices of V in S1 and S2 so that
S1 ∩ S2 = φ and |S1| = |S2| = �m+n

2 �. Hence, in this case hw(Km,n) = �m+n
2 �.

Theorem 7. For the wheel graph Wn,

hw(Wn) =

{
�n
2 �, if n �= 6,

2, if n = 6.

Proof. Wn = K1 ∨ Cn−1. Let v1, v2, . . . , vn−1 be the vertices of Cn−1 and v be
the vertex of K1. We can directly verify the result up to W6. Suppose n � 7. Put
v1, v2 and v3 in S1 and v4, v5 and v6 in S2 so that D(S1) and D(S2) contains both
1 and 2. Put the remaining vertices in S1 and S2 in such a way that |S1| = |S2|
and S1 ∩ S2 = φ. Hence hw(Wn) = �n

2 �, if n �= 6.

Theorem 8. For any graph G with diameter 2, the homometric number and
the twin number are equal.

Proof. Since diameter is 2, distance multiset of any subset of vertices contains
1 and 2 only. Let S1 and S2 be twins with |S1| = |S2| = t(G). Then S1 and
S2 induce subgraphs with the same number of edges and hence number of pair
of non adjacent vertices in S1 and S2 are also equal. So DM(S1) and DM(S2)
contains equal number of one’s and two’s. Hence S1 and S2 are two disjoint
homometric sets. Therefore h(G) = |S1| = |S2| = t(G).

Note 1. A graph G is a cograph if and only if G does not contain P4 as an
induced subgraph [7]. Hence two vertices of a connected cograph are a distance
at most two apart and by above theorem homometric number and twin number
are equal for any connected cograph.
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Abstract. A bipartite graph B with bipartion X, Y is called a Ferrers
bigraph if the neighbor sets of the vertices of X (or equivalently Y )
are linearly ordered by set inclusion. The Ferrers dimension of B is the
minimum number of Ferrers bigraphs whose intersection is B. In this
paper we present a new approach of finding the forbidden subgraphs of
bigraphs of Ferrers dimension 2 when it contains a strong bisimplicial
edge.

Keywords: ATE · Ferrers dimension · Strong bisimplicial edge · For-
bidden subgraphs

1 Introduction

Ferrers bigraphs (the bipartite analogue of Ferrers digraphs) were introduced
independently by Guttman [4] and Riguet [7].

A bipartite graph (in short, bigraph) B = (X,Y,E) is a Ferrers bigraph if it
satisfies any of the following equivalent conditions:

(i) The neighbors of the vertices of X (or equivalently of Y ) are linearly ordered
by inclusion.

(ii) The rows and columns of the biadjacency matrix can be permuted (inde-
pendently) so that the 1’s cluster in the upper right (or lower left) as a
Ferrers diagram.

(iii) The biadjacency matrix has no 2-by-2 permutation matrix
(

1 0
0 1

)
or

(
0 1
1 0

)

as a submatrix.

The biadjacency matrix is the submatrix of the adjacency matrix whose rows are
indexed by one partite set and columns by the other. The biadjacency matrix of
B is called a Ferrers matrix.

The inclusion condition on the verices of X partite set and the vertices of Y
partite set induced two natural partitions of the vertices of X(Y ) partite sets
associated with a Ferrers bigraph. These different disjoint subsets into which the
vertices of X(Y ) partite set of a Ferrers bigraph is being partitioned are called
partition classes.

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 38–49, 2017.
DOI: 10.1007/978-3-319-64419-6 5
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The Ferrers dimension of a bigraph B, written f(B), is defined to be the
minimum number of Ferrers bigraphs whose intersection is B. The bigraphs with
Ferrers dimension 2 have been characterized, by Cogis [1] and others. Cogis [1]
introduced the associated graph H(B) for B whose vertices are the 0s of the
biadjacency matrix A(B) of B, with two vertices are adjacent in H(B) if and
only if they are the 0s of a 2-by-2 permutation submatrix of A(B) and proved that
f(B) = 2 if and only if H(B) is bipartite. In [8] Sen et al. translate the Cogis’s
condition to an adjacency matrix condition for bigraphs of Ferrers dimension 2
in the following theorem.

Theorem 1. [1,8] The following conditions are equivalent:

(i) B has Ferrers dimension at most 2;
(ii) The rows and the columns of A(B) can be permuted independently, so that

no 0 has a 1 both below it and to its right;
(iii) The associated graph H(B) of B is bipartite.

A two clique circular arc graph is a circular arc graph whose vertices can be
covered by two disjoint cliques. Trotter and Moore [9] characterized two clique
circular arc graph in terms of forbidden subgraphs. They presented the forbidden
families as a set system and proved that B is a circular arc graph if and only if
its complement B contains no induced subgraphs of the form G1, G2, G3 and
several infinite families Ci, Ti, Wi, Mi, Ni (i ≥ 1).

Huang [5] proved that a bipartite graph B is of Ferrers dimension two if and
only if its complement is a two clique circular arc graph. Therefore a bigraph B
is of Ferrers dimension two if and only if B contains none of the graphs of the
families Ci, Ti, Wi, Di, Mi, Ni (i ≥ 1) and the graphs G1, G2 and G3 as induced
subgraphs.

Now it can be observed that the graphs IV , V I, V of Fig. 1 are respectively
the graphs G1, G2 and G3. The class Ci is the class of even cycles of length ≥ 6.
The classes Ti, Wi, Di are respectively the classes of graphs IIIn, In and IIn of
Fig. 1. The class Mi has exactly one strong bisimplicial edge. The class Ni has
no strong bisimplicial edges. In this paper using condition (ii) of the Theorem
1 we alternatively determine the class Mi of forbidden subgraphs of bigraphs of
Ferrers dimension 2.

A pair of edges of a bigraph B is separable if they induce the subgraph 2K2

in B. A bigraph B is separable if it contains 2K2 as an induced subgraph, other-
wise it is called non-separable. Obviously the biadjacency matrix of a separable
bigraph contains 2×2 permutation submatrix and hence a non-separable bigraph
is a Ferrers bigraph. A bigraph is chordal bipartite or bichordal if it does not con-
tain any chordless cycle of length ≥ 6. As every chordless cycle of length ≥ 6 is
of Ferrers dimension ≥ 3, so a bigraph B having Ferrers dimension at most 2 is
necessarily bichordal. Three mutually separable edges e1, e2, e3 of a graph G are
said to form an asteroidal triple of edges(ATE) [3,6], if for any two of them, there
is a path from the vertex set of one to the vertex set of another that avoids the
neighbors of the third edge. According to Das and Sen [3] if a bichordal graph B
contains an ATE then its Ferrers dimension is greater than 2.
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Das and Sen [2] have determined a minimal set of bichordal graphs (see
Fig. 1) with the property that any bichordal graph has an ATE if and only if it
contains a graph of this set as an induced subgraph.

In(n ≥ 9) IIn(n ≥ 10) IIIn(n ≥ 10)

IV V V I

Fig. 1. List of ATE’s.

2 Forbidden Induced Subgraphs of ATE - Free Bigraphs
of Ferrers Dimension 2

In [3] Das and Sen showed that the graph B1 of Fig. 2 is bichordal and ATE-free
but of Ferrers dimension 3 as the associated graph H(B1) of the graph has an
odd cycle. Actually it is the first graph of Mi class of Trotter and Moore.

y4 x3 y3
x4

y5
x2

y1x1

y2x5

y6 x6

Fig. 2. The bigraph B1.

Definition 1. [3] Let e = xy be an edge of a bipartite graph B = (X,Y,E).
Also let B(e) = B(xy) denote the subgraph induced by adj(x) + adj(y). An edge
e = xy of the bipartite graph B is bisimplicial if B(e) or B(xy) is complete.
A bisimplicial edge e = xy of B is said to be strong if B\B(e) is connected;
otherwise it is weak.

It can be observed that bigraph of Fig. 2 contains the strong bisimplicial edge
x1y1. The biadjacency matrix of this bigraph can be arranged as follows (Fig. 3).

Motivated by the structure of the above matrix we state below the following
theorem which is the central result of this paper.
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x6

x5

x4

x3

x2

x1

0
0
0
0
1
1
y1

0
1
1
1
1
1
y2

1
0
1
1
1
0
y3

0
1
0
1
1
0
y4

0
0
1
0
1
0
y5

0
0
0
1
0
0
y6

Fig. 3. Biadjacency matrix of B1

Theorem 2. Let a bipartite graph B = (X,Y,E) be bichordal and ATE - free
and contains a strong bisimplicial edge. Then either f(B) = 2 or the biad-
jacency matrix A(B) of B contains one of the matrix of the infinite class
M = {M1,M2,M3, ...} of matrices as a submatrix, where M1, M2, M3 etc.
are given in the Fig. 4.

0
0
0
0
1
1

0
1
1
1
1
1

1
0
1
1
1
0

0
1
0
1
1
0

0
0
1
0
1
0

0
0
0
1
0
0

0
0
0
0
0
0
1
1

0
1
1
1
1
1
1
1

1
0
1
1
1
1
1
0

0
1
0
1
1
1
1
0

0
0
1
0
1
1
1
0

0
0
0
1
0
1
1
0

0
0
0
0
1
0
1
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
1
1

0
1
1
1
1
1
1
1
1
1

1
0
1
1
1
1
1
1
1
0

0
1
0
1
1
1
1
1
1
0

0
0
1
0
1
1
1
1
1
0

0
0
0
1
0
1
1
1
1
0

0
0
0
0
1
0
1
1
1
0

0
0
0
0
0
1
0
1
1
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
1
0
0

Fig. 4. The matrices M1, M2, M3 respectively

Now we state the notations used in the proof.
Let e = xy be a bisimplicial edge of a bipartite graph B = (X,Y,E). We

write B′ = (X ′, Y ′, E′) = B\{x, y}, B1 = (X1, Y1, E1) = B(xy)\{x, y}, B2 =
(X2, Y2, E2) = B\B(xy) = B′\B1. N(e) = Vertex set of B(e) i.e., the set of
neighbors of x and y. Let X2

′ be the set of those members of X2 which are
adjacent to some members of Y1 and X2

′′ = X2 − X2
′. So, X2 = X2

′ ⋃X2
′′.

Similarly we can define Y2
′ and Y2

′′ so that Y2 = Y2
′ ⋃Y2

′′.
Next we denote the subgraphs induced by the vertices X1

⋃
Y2

′ and X2
′ ⋃Y1

by P and Q respectively.
The proof of the theorem is very long and requires a careful reading. Here we

consider the bigraphs as copy-free i.e. no two vertices have the same neighbor.
To prove Theorem 2 we first prove the following lemma.

Lemma 1. Let B be a bichordal and ATE-free bigraph and let e = xy be a
strong bisimplicial edge of B. Then the induced subgraphs P and Q as defined
above are non-separable.
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Proof of the Lemma. If possible, let the induced subgraph P have separable
edges xiyi and xjyj where xi, xj ∈ X1 and yi, yj ∈ Y2

′. Since B2 is connected,
it must contain a path between yi and yj . Now if this path is of length 2, say
yix

′yj ∈ X1, then we have a six cycle xiyxjyjx
′yixi in B. On the other hand

if the path is of length > 2, say yix
′...x′′yj , then three edges e = xy, e′ = x′yi

and e′′ = x′′yj are mutually separable and constitute an ATE of B; for we have
paths yxiyi between e and e′ and yxjyj between e and e′′ which avoid N(e′′)
and N(e′) respectively and N(e) does not contain any vertex of the bigraph B2.
Similarly it can be shown that the subgraph Q is also non-separable.

Proof of Theorem 2. We recall that no vertex of B is a copy of another.
By the above lemma, the subgraphs P and Q are non - separable (i.e., their
biadjacency matrices are Ferrers bigraph) so we can order the vertices of Y2

′

and X2
′ such that, Adj(B′), the biadjacency matrix of B′ has the following

configuration (Fig. 5).

B2

B1

P

0
0

0

0

Q

X ′′
2

X ′
2

X1

Y1 Y ′
2 Y ′′

2

Fig. 5. Biadjacency matrix of B′

We recall that the vertices X2 = X2
′ ⋃X2

′′ and Y2 = Y2
′ ⋃Y2

′′ induced the
subgraph B2 of B′. Consequently Adj(B2), the biadjacency matrix of B2 is a
submatrix of Fig. 5, where the row and column arrangements are the same as
in Adj(B′) (i.e., of Fig. 5). Also it is to be noted that in the Adj(B2) we can
permute the rows (columns) of X2

′′ (Y2
′′), and the rows (columns) of X2

′ (Y2
′)

which belongs to the same partitioned class of the Ferrers bigraphs Q(P ) without
changing the structure of Fig. 5. These permutations will be referred to as the
permissible permutations.

We will show that when a bigraph B satisfies the given conditions of the
theorem and its biadjacency matrix is free from the matrices of the infinite class
M of binary matrices, Adj(B′) with its rows and columns arranged in Fig. 5 will
exhibit the characteristics of a bigraph of Ferrers dimension 2 (Theorem 1) and
once this is established, we place the x-row and y-column of the bisimplicial edge
e = xy to the top and extreme left of Adj(B′) and this will prove the theorem.
This will be established if we can show that Adj(B2) has the property that no
0 has a 1 both to its right and below it. For this we will show below that, if
Adj(B2) for any permissible permutation of its rows and columns, contains the
configuration (i) of the form,
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xj

xi

1
0
yi

−
1
yj

(i)

Where ‘−’ position is either 0 or 1, then the bigraph B contains either an ATE
or a 6-cycle or its biadjacency matrix contains any of the matrices of the class
M.

To complete the proof of the theorem, we need to consider following cases:

Case 1. Neither P nor Q is complete bipartite graph;
Case 2. P is complete but Q is not;
Case 3. Q is complete but P is not;
Case 4. Both P and Q are complete.

We will observe that while a 6-cycle or an ATE will be present in all the four
cases the class of forbidden matrices M will occur only in case 4.

Case 1. Suppose for any permissible permutation of its rows and columns,
Adj(B2) contains the configuration (i).

This case is to be divided again into four subcases subject to whether the
vertices xi, xj and the vertices yi, yj belong to the same partitioned class or to
distinct partitioned classes.

Subcase 1a. xi and xj belong to two distinct partitioned classes of X2 and so do
yi and yj belong to two distinct classes of Y2, where x1, y1 ∈ V (B1) = X1

⋃
Y1.

In this case clearly Adj(B′) contains a configuration.

xj

xi

x1

0
1
1
y1

1
0
1
yi

−
1
0
yj

Now if the ‘−’ position is 1, then the above configuration is 6-cycle. So we
suppose that ‘−’ position is 0. Then the three edges e = xy, e1 = xiyj , e2 = xjyi
of B are mutually separable. Also we have path xy1xi between e and e1 and
path yx1yi between e and e2 which avoid respectively N(e2) and N(e1). And
there exists path between e1 and e2 which avoid N(e) (since e1 and e2 are two
edges of the connected component B2 and no vertex of it is adjacent to e). So
{e, e1, e2} constitute an ATE of B.

Subcase 1b. yi and yj belong to the same partitioned class, whereas xi and xj

belong to two distinct classes.
In this case Adj(B′) contains a configuration.

xj

xi

x1

0
1
1
y1

1
0
−
yi

−
1
−
yj

Let x1 ∈ X1, y1 ∈ Y1, and x1yi, x1yj positions are both 1 or both 0.
It is possible that by permuting the vertices yi and yj , we can get a F2-

matrix, except of course when we are confronted with a vertex of xk belonging
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to still another partitioned class of X2 and having the following configuration of
Adj(B′).

xk

xj

xi

x1

0
1
1
1
y1

0
0
1
1
y2

0
1
0
−
yi

1
0
1
−
yj

Now, let x1 ∈ X1 and y1, y2 ∈ Y1.
Here also we find three mutually separable edges e = xy, e1 = xjyi and e2 =

xkyj . And these three edges constitute an ATE of B, for the paths xy1xj , xy2xiyj
between e, e1 and e, e2 avoid the neighbour of e2 and e1 respectively and because
B2 is connected the path between e1 and e2 avoids neighbours of e.

Subcase 1c. xi and xj belong to the same partitioned class of X2 whereas yi
and yj belong to two distinct classes of Y2.

This is similar to case 1b and so is omitted.
Subcase 1d. xi and xj belong to the same partitioned class and yi and yj
belong to the same partitioned class.

First suppose that xi, xj ∈ X ′
2 and yi, yj ∈ Y ′

2 . Now one possibility is that
we can permute xi, xj and/or yi, yj and get Adj(B′) as F2-matrix straightway
without facing any obstruction elsewhere. Otherwise, the four configurations are
the instances in Adj(B′), where there are vertices xk, belonging to a class other
than that of xi, xj and yk, belonging to a class other than that of yi and yj ,
when we fail to derive the F2-matrix directly (Fig. 6).

xk

xj

xi

x1

0
1
1
1
y1

0
1
0
1
yi

1
0
1
1
yj

−
1
0
0
yk

xj

xi

xk

x1

0
0
1
1
y1

0
1
−
1
yk

1
0
1
0
yi

−
1
0
0
yj

xj

xi

xk

x1

0
0
1
1
y1

1
0
1
1
yi

0
1
0
1
yj

1
0
−
0
yk

xk

xj

xi

x1

0
1
1
1
y1

−
0
1
1
yk

0
1
0
0
yi

1
0
1
0
yj

Fig. 6.

In all these cases it can be seen through a careful and exhaustive scrutiny that
B contains either an ATE or 6-cycle.

Case 2 and 3. Proof in these cases are similar to the case 1 (i.e., if, for any
permissible permutation of its rows and columns, Adj(B2) contains the config-
uration (i) as before, then the bigraph B contains either an ATE or a 6-cycle)
and so are omitted.

Case 4. Here both P and Q are complete bipartite graphs. Since no vertex of B
is a copy of another, it is clear that X1 and Y1 are singleton sets, let X1 = {x1}
and Y1 = {y1}. So Adj(B) has the following structure (Fig. 7):

If possible let Adj(B2) contains a configuration (i). Here we will show that
M is the only class of matrices of Ferrers dimension > 2 but the corresponding
bigraph is free from a 6-cycle or an ATE. We observe that the structure,
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X2

x1

x

0

0
1
1
y

1
1
y1 Y2

0 0

B2

Fig. 7. Biadjacency matrix of B.

xj

xi

x1

x

0
0
1
1
y

0
1
1
1
y1

1
0
1
0
yi

−1
0
0
yj

of Adj(B) with xy as strong bisimplicial edge implies that B must contain an
ATE or C6 according as ‘−’ position is a 0 or 1. So if Adj(B) contains the
configuration (i), (and symmetry of Adj(B) shows that) Adj(B) must have one
of the following structures:

or
xj

xi

x1

x

0
0
1
1
y

1
1
1
1
y1

1
0
−0
yi

−1
−0
yj

xj

xi

x1

x

0
0
1
1
y

0
1
1
1
y1

1
0
−0
yi

−1
−0
yj

The positions x1yi and x1yj are both 0 or both 1.
Here we suppose that both the positions x1yi and x1yj are 1. (We are not

considering the possibility that x1yi and x1yj are 0, since later we add all possible
row and/or column to the above matrices).

Note that the xjyj position in either of the matrices is 0 or 1. To facilitate
the matter we replace the xj row by two rows xj1 and xj2 to the matrices, one
row taking the value ‘0’ and the other taking the value ‘1’ in the corresponding
yj column. So we get the matrices.

and
xj2

xj1

xi

x1

x

0
0
0
1

1

y

1
1
1
1

1

y1

1
1
0
1

0

yi

1
0
1
1

0

yj

xj2

xj1

xi

x1

x

0
0
0
1

1

y

0
0
1
1

1

y1

1
1
0
1

0

yi

1
0
1
1

0

yj

Fig. 8.

We label the vertices xi, xj1, xj2 by x3, x4 and x2 and the vertices yi, yj by y3, y2
respectively in both the figures for the sake of convenience.

Clearly, by permuting the x3, x4 and x2 rows and y3, y2 columns of Fig. 8(i),
Adj(B) gets the following F2-matrix structure (Fig. 9(i)). Also permuting the
rows and columns of the matrix in Fig. 8(ii) we get F2-matrix of Fig. 9(ii).
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and

x4

x3

x2

x1

x

0
0
0
1

1

y

1
1
1
1

1

y1

0
1
1
1

0

y2

1
0
1
1

0

y3

x4

x3

x2

x1

x

0
0
0
1

1

y

0
0
1
1

1

y1

0
1
1
1

0

y2

1
1
0
1

0

y3

Fig. 9.

Naturally, the questions arises; is it possible that by adding a row/column to the
rearranged matrices of the above figures we will get a matrix which forbids its
F2 representation ? And we have to address this important question every time,
whenever we come across a matrix having F2-characteristics.

We answer this question through a very long and exhaustive searching
process, where we will show that:

In any of the case of Fig. 9(i) or Fig. 9(ii), this attempts lead in addition to
a 6-cycle or an ATE, the only M class of forbidden matrices.

Now we will prove our point for the matrix of Fig. 9(i) through a detailed
study. The proof for the matrix of Fig. 9(ii) is of similar nature and so will be
omitted.

We first take into account the particular means of adding suitable rows and
columns to Fig. 9(i) (to forbid F2-matrix) that yields the bigraph B1.

To the matrix of Fig. 9(i), there are several alternatives for adding rows
among these, we consider the particular row (name it x5).

x5 0

y

0

y1

0

y2

1

y3

Then the new matrix gets the following F2-representation (Fig. 10).
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Fig. 11.

To Fig. 10, we add two new columns, say y4 and y5 to get the matrix (Fig. 11).
First we suppose that x3y4 position is a 1. Then we have the matrix of the

left side and permuting the rows and columns of that matrix we have the matrix
of the right side.
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If this matrix has a configuration (i), then the corresponding bigraph B has an
ATE or C6 according as ‘−’ entry is a 0 or 1. Otherwise it is a F2 matrix. So
we consider x3y4 position is a 0. Then if x3y5 is a 1 then we have an ATE or C6

according as x5y5 position is a 0 or 1. Thus both the entries x3y4 and x3y5 are
0. So we have the matrix of Fig. 12.
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Fig. 13. The biadjacency matrix of B1

Now it is a matter of verification that when y4 and y5 column of the above matrix
of Fig. 12 have the structure as in Fig. 13 then we get the matrix which is the
biadjacency matrix of the bigraph B1 (after suitable labeling the vertices). For
the other structures of y4 and y5 columns, when Fig. 12 contains the submatrix.

xj

xi

1
0
y4

−
1
y5

where xi, xj are any two among the x2, x4, x5 rows, then it can be checked that
its corresponding bigraph B must contains either an ATE or a 6-cycle.

Next rearranging the rows and columns of the matrix of Fig. 13 and renaming
y3 and y2 as y2 and y3 respectively also renaming x4 and x3 as x3 and x4

respectively we have the matrix (Fig. 14), which is also the biadjacency matrix
of B1.

Motivated by the above structure of the matrix of Fig. 14 we consider the
matrix of Fig. 15.

Now rearranging the rows and columns of the above matrix in Fig. 15 we
have the matrix of Fig. 16, which is actually a F2-matrix.

Now if the position x2y2 is 0 then we have an ATE. If the position x2y4 = 0
then deleting the x3 row and y5 column we have the matrix of Fig. 14 i.e., the
biadjacency matrix of B1. If x2y3 = 0 then we have a F2-matrix. Next if the
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position x3y2 or x3y5 is 0 then it retains its F2-matrix structure. And if x3y3
position is 0 then deleting x4 row and y4 column we have again a matrix which
has same structure of Fig. 14. Again it can be observed that if any of the positions
x6y3, x5y4, x4y5, x3y6 is a 1 then we have an induced C6 since in each case we

have the matrix

⎛
⎝1 1 0

1 0 1
0 1 1

⎞
⎠ as a submatrix. And if the positions x6y5 or x5y6 is

1 the we have an ATE. Finally, if any of the positions x6y4,x6y6,x5y5 or x4y6 is
1 the matrix of Fig. 15 retains its F2-matrix structure. Thus we do not have any
new forbidden bigraph from Fig. 15 which is free from ATE or C6 but of Ferrers
dimension > 2.

Next we consider the matrix of Fig. 17. The bigraph corresponding to M2 is
bichordal, ATE free and have xy as a strong bisimplicial edge but its associated
graph is not a bipartite graph and hence the Ferrers dimension of M2 > 2. Now
we can observe that no position among x3y7, x4y6, x5y5, x6y4 and x7y3 should
be 1. Since in each case we have a submatrix which is the biadjacency matrix
of C6.
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Fig. 17. The matrix M2
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Next if x6y7 = 1, then xy, x6y7, x7y2 forms an ATE. If x5y7 = 1 then x5y7,x3y6
and x4y5 form an ATE. If x7y7 = 1 then we have the following matrix (which is
M1) as a submatrix of M2.

x6

x5

x4

x3

x2

x7

0
0
0
0
1
1

y7
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1
1
1
1
1
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y4
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y5

0
0
0
1
0
0

y6

Similarly we can verify that if x4y7 = 1 or x5y6 = 1 then we have the matrix
M1 as a submatrix of M2 and if x6y6 = 1 then we have an ATE.

Also it can be verified that if we replace any 1 by a 0 in the matrix M2 then
it either contains an ATE, a C6, the matrix M1 or becomes a F2-matrix. Thus
the bigraph corresponding to M2 is minimal bichordal, ATE free graph but of
Ferrers dimension > 2.

Similarly we can verify that bigraphs corresponding to M3 and other matrices
of the class M are the only minimal bichordal, ATE free bigraphs but of Ferrers
dimension > 2. This completes the proof.
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Abstract. Let G = (V, E) be a graph. A subset S of V is called a
dominating set of G if every vertex in V \S is adjacent to a vertex in S.
A dominating set S is called a secure dominating set if for every vertex
v ∈ V − S, there exists u ∈ S such that uv ∈ E and (S − {u}) ∪ {v} is
a dominating set of G. If S is a secure dominating set of both G and its
complement G, then S is called a global secure dominating set (gsd-set)
of G. The minimum cardinality of a gsd-set of G is called the global
secure domination number of G and is denoted by γgs(G). In this paper
we present several basic results on γgs(G) and interesting problems for
further investigation.

Keywords: Domination · Global domination · Secure domination ·
Global secure domination

1 Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops
nor multiple edges. The order |V | and the size |E| are denoted by n and m
respectively. For graph theoretic terminology we refer to Chartrand and Lesniak
[1].

Let G = (V,E) be a graph. A subset S of V is called a dominating set of G
if every vertex v ∈ V − S is adjacent to a vertex is S. The domination number
γ of G in the minimum cardinality of a dominating set of G. For an excellent
treatment of the fundamentals of domination we refer to the book by Haynes
et al. [3]. A survey of several advanced topics in domination is given in the book
edited by Haynes et al. [4]. Sampathkumar [5] introduced the concept of global
domination in graphs.

Definition 1. A subset S of V is called a global dominating set of G if S is a
dominating set of both G and its complement G. The global domination number
γg of G is the minimum cardinality of a global dominating set of G.

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 50–54, 2017.
DOI: 10.1007/978-3-319-64419-6 6
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Strategies for protection of a graph G = (V,E) by placing one or more guards
at every vertex of a subset S of V, where a guard at a vertex can protect all
vertices in its closed neighborhood have resulted in the study of several concepts
such as Roman domination, weak Roman domination and secure domination.
The concept of secure domination is motivated by the following situation and
was introduced by Cockayne et al. [2]. Given a graph G = (V,E), we wish to place
one guard at each vertex of a subset S of V in such a way that S is a dominating
set of G and if a guard at v moves along an edge to protect an unguarded vertex
u, then the resulting configuration of guards also forms a dominating set. This
leads to the concept of secure domination.

Definition 2 [2]. A dominating set S of G is called a secure dominating set of
G if for each u ∈ V − S, there exists v ∈ S such that u is adjacent to v and
(S−{v})∪{u} is a dominating set of G. In this case we say that u is S-defended
by v or v S-defends u. The secure domination number γs(G) is the minimum
cardinality of a secure dominating set of G.

In this paper we combine the concepts of global domination and secure dom-
ination which arises naturally and present several results on global secure dom-
ination number of a graph.

We need the following definitions and theorems.

Definition 3. The corona of two graphs G1 and G2, denoted by G1 ◦ G2, is the
graph obtained by taking |V (G1)| copies of G2 and joining the ith vertex of G1

to every vertex in the ith copy of G2.

Definition 4. Let G = (V,E) be graph, S ⊆ V and v ∈ S. A vertex u ∈ V is
an S-private neighbor of v if N(u)∩ S = {v}. The set of all S-private neighbors
of v is denoted by PN(v, S). If further u ∈ V \ S, then u is called an S-external
private neighbor or S-epn of v.

Theorem 1 [2]. For the path Pn we have γs(Pn) =
⌈
3n
7

⌉
for all n ≥ 4.

Theorem 2 [2]. For the cycle Cn we have γs(Cn) =
⌈
3n
7

⌉
for all n ≥ 4.

Theorem 3 [5]. If G is a graph with δ = 1, then γg ≤ γ + 1.

2 Main Results

Definition 5. Let G = (V,E) be a graph. A subset S of V is a global secure
dominating set (g.s.d. set) of G if S is a secure dominating set of G and its
complement G. The minimum cardinality of a global secure dominating set of G
is called the global secure domination number of G and is denoted by γgs(G).

Observation 1. If S is a γs-set of G, then S is a secure dominating set of G
if for every vertex v ∈ V − S, there exists a vertex u in S such that uv /∈ E(G)
and (S − {u}) ∪ {v} is a dominating set of G.
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Since any vertex v which is isolated either in G or in G lies in every g.s.d
set of G, we confine ourselves to graphs G for which G and G have no isolated
vertices.

Theorem 4. Let S be a global dominating set of G, which is a secure dominating
set of G. Let u ∈ V − S. Then u is not S-defended in G if and only if for every
vertex v in S adjacent to u in G, there exists a vertex x in V − S, not adjacent
to u such that x is an S-epn of v in G.

Proof. Suppose u is not S-defended in G. Hence for every v ∈ S such that v is
adjacent to u in G, the set S1 = (S − {v}) ∪ {u} is not a dominating set of G.
Let x be a vertex in V −S1 which is not dominated by S1 in G. Therefore x is an
S-epn of v in G. Conversely if x is an S-epn of v in G, then x is not dominated
by any vertex of S1 in G. Hence u is not S-defended in G.

We proceed to determine γgs(G) for some standard graphs. If G =
Kn1,n2,...,nr

where each ni ≥ 2 and r ≥ 3, then G = Kn1 ∪ Kn2 ∪ · · · ∪ Knr
.

Hence it follows that γgs(G) = r.
We observe that γgs(G) ≥ max{γs(G), γs(G)}. The following theorem shows

that equality holds for paths Pn and cycles Cn, for all n ≥ 6.

Theorem 5

1. γgs(Cn) = γs(Cn) =

⎧
⎨

⎩

2 if n = 4
3 if n = 5⌈
3n
7

⌉
if n ≥ 6.

2. γgs(Pn) = γs(Pn) =
⌈
3n
7

⌉
for n ≥ 4.

Proof. Let Cn = (v1, v2, v3, . . . , vn, v1). Obviously γgs(C4) = 2 and γgs(C5) = 3.
Now let n ≥ 6. For any i, with 1 ≤ i ≤ n, {vi, vj} where j 	= i + 2, i + (n − 2)
(where addition is taken modulo n) is a secure dominating set of Cn. Hence any
subset S of V (Cn) with |S| ≥ 3 is a secure dominating set of Cn. So γgs(Cn) =
max{γs(Cn), γs(Cn)} = γs(Cn) =

⌈
3n
7

⌉
.

The proof is similar for Pn.

Theorem 6. Let p and q be two integers with 2 ≤ p ≤ q and let G = Kp,q.
Then

γgs(G) =

⎧
⎪⎪⎨

⎪⎪⎩

2 if p = 2 and q = 2
3 if p = 2 and q > 2
3 if p = 3
4 if p ≥ 4.

Proof. Let V1, V2 be the bipartition of G with |V1| = p and |V2| = q. If p = q = 2,
then S = {v1, v2} where v1 ∈ V1 and v2 ∈ V2 is a global secure dominating set.
Therefore γgs(G) = 2. If p = 2, q > 2, then S = V1 ∪ {x} where x ∈ V2, is a
global secure dominating set of G and hence γs(G) ≤ 3. Further any minimum
secure dominating set of G contains exactly one vertex from V1 and one vertex
from V2 and this is not a secure dominating set of G. Hence γgs(G) = 3. When
p = 3, γs(G) = 3 and if S is any minimum secure dominating set of G, then
S ∩ V1 	= ∅ and S ∩ V2 	= ∅. Therefore γgs(G) = 3. The proof is similar for p ≥ 4.
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Observation 2. Let G = K2,q or K2,q − e where q ≥ 3. Then γs(G) = γs(G) =
2. However γgs(G) = 3 > max{γs(G), γs(G)}. Also if G = G1 ∪ G2 where
G1 = K2 or K3 and G2 = Kn − e with n ≥ 5, then γs(G) = 3, γs(G) = 2 if
G1 = K2 and γs(G) = 3 if G1 = K3, but γgs(G) = 4 > max{γs(G), γs(G)}.

Hence the following problem arises.

Property 1. Characterize the class of graphs G for which

γgs(G) = max{γs(G), γs(G)}.

Theorem 5 shows that path Pn and cycle Cn where n ≥ 6 satisfy the above
equation. In the following two theorems we give two infinite families of graphs
satisfying the above equation.

Theorem 7. Let T be any tree with Δ < n − 1. Then γgs(T ) = max{γs(T ),
γs(T )}.

Proof. Let V1, V2 be the bipartition of T. Then 〈V1〉 and 〈V2〉 are cliques in T
and hence γs(T ) = 2. Also γs(T ) ≥ 2 and hence γgs(T ) = max{γs(T ), γs(T )} =
γs(T ).

Theorem 8. If either G or G is disconnected having at least three components,
then γgs(G) = max{γs(G), γs(G)}.

Proof. Assume that G is disconnected. Then any secure dominating set S of G
contains at least one vertex from each component of G and hence S is also a
secure dominating set of G. Hence γgs(G) = γs(G) = max{γs(G), γs(G)}.

In the following theorem we determine the global secure domination number
of corona of two graphs.

Theorem 9. Let G1 and G2 be two connected graphs of order n1 and n2 respec-
tively with n1 ≥ 3. Then γgs(G1 ◦ G2) = n1γs(G2 + K1).

Proof. Let V (G1) = {v1, v2, . . . , vn1}. Let Si be a γs-set of Hi = G2 + {vi}.

Then S =
n1⋃

i=1

Si is a secure dominating set of G1 ◦ G2 and hence γs(G1 ◦ G2) ≤
n1γs(G2 + K1). Now let D be any secure dominating set of G1 ◦ G2. Then
D ∩ V (Hi) is a secure dominating set of Hi. Thus |D ∩ V (Hi)| ≥ γs(G2 + K1)

and hence |D| =
n1∑

i=1

|D ∩ V (Hi)| ≥ n1γs(G2 + K1). Therefore γs(G1 ◦ G2) =

n1γs(G2 + K1). Further any γs-set of G1 ◦ G2 is a secure dominating set of its
complement and hence γgs(G1 ◦ G2) = n1γs(G2 + K1).

Observation 3. Let C1, C2, C3, . . . , C2r be the cyclic Hamiltonian decomposi-
tion of K4r+1. Let G be the subgraph induced by the cycles C1, C2, . . . , Cr. Then
γs(G) = γgs(G).



54 S.V. Divya Rashmi et al.

Observation 4. It follows from Theorem 3 that if δ = 1, then γg ≤ γ +1. Such
a result is not true for secure domination. Given a positive integer k, there exists
a graph G such that δ = 1 and γgs = γs + k. For example, consider the graph G
obtained by adding a vertex u and joining u to the vertex v of Kk+3 − e where
d(v) = k + 1. Then γs(G) = 2 and γgs(G) = 2 + k.

Property 2. Investigate graphs for which γgs = γs + 1.

Theorem 10. Let G be a connected bipartite graph with bipartition X,Y such
that |X| ≤ |Y |. Then γgs(G) = γs(G) or γs(G) + 1. Further γgs(G) = γs(G) + 1
if and only if γs(G) = |X|,X is the only γs-set of G and there exists a vertex y
in Y which is adjacent to all vertices of X.

Proof. If there exists a γs-set S of G such that S ∩ X 	= ∅ and S ∩ Y 	= ∅, then
S is secure dominating set of G and hence γgs(G) = γs(G). Otherwise X is the
only γs-set of G. Now if every vertex in Y is non-adjacent to a vertex in X,
then X is a secure dominating set of G and hence γgs(G) = γs(G) = |X|. If
there exists a y ∈ Y such that y is adjacent to all vertices in X, then X is not a
secure dominating set of G and X ∪ {y} is a secure dominating set of G. Thus
γgs(G) = γs(G) + 1.

Conjecture 1. For the n-dimensional hypercube Qn, we have γgs(Qn) = γs(Qn).

3 Conclusion and Scope

In this paper we have initiated a study of global secure domination in graphs.
For any graph G,max{γs, γs} ≤ γgs(G) ≤ γs + γs. Hence the following problem
arises naturally.

Property 3. Given three integers a, b, c with max{a, b} ≤ c ≤ a + b, does there
exist a graph G with γs = a, γs = b and γgs = c?

For any γs-set S of G, let X(S) = {v ∈ V −S such that either (V −N(v))∩S =
∅ or for any u ∈ (V − N(v)) ∩ S, (S − {u}) ∪ {v} is not a dominating set of G}.
Choose a γs-set S of G for which |X(S)| is minimum.

Conjecture 2. γgs(G) ≤ |S ∪ X(S)|.
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Abstract. Teleradiology is one of the emerging technologies used for
sharing medical images through networks such as LAN, WAN, Cloud,
etc. for better treatment, expert suggestions and research purpose. The
images and medical related records of a patient are accessed by any
physician at any time from any location. Medical field is one of the main
areas for privacy violation and security threats. This work aims to pro-
tect the privacy of patients, hospitals and centralized server which store
the patient’s information by combining both patients image and med-
ical records into a single image file using data hiding. In such a sensitive
area data loss is not acceptable. In this paper, a novel method is pro-
posed for solving the above problem which enable us to retrieve original
medical image without any data loss. We hide the patient’s details in
the medical image and encrypt the cover medical image. Once image is
decrypted the concerned person can only extract the patient’s informa-
tion from the cover medical image. The proposed system uses two keys;
one for encryption and another for data hiding. If the third party knows
both the keys, the patient’s information can be retrieved. Our proposed
method provides double protection and achieves the security in sharing
the medical image with patient’s record. This proposed method provides
the advantage over other existing method in terms of improved data
capacity and zero error rates, and maintains PSNR above 51 dB.

Keywords: Medical image · Data hiding · Reversibility

1 Introduction

Data hiding is an invisible communication but gives more importance to the
information rather than medical image. Patient’s information is secure and com-
pletely recoverable, but medical image is not the same as the original image after
the data is extracted. Hence a normal data hiding technique is not suited for
this work. A small change in medical image may violate image properties. Since
c© Springer International Publishing AG 2017
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medical image is diagnosed visually or by analyzing small values in the cover
medical image, loss in sensitive medical image is not acceptable. So we use the
technology called reversible data hiding. Reversible data hiding is a data hiding
technique, which can recover the original medical image without any distortion
from the embedded medical image after the data is extracted. Reversible data
hiding is guaranteed for reversible, lossless, distortion free recovery of both cover
medical image and patient information.

Arjun [1] proposed a method for improving the data capacity of the cover
images called duplicating peak pair values. Yun [2] proposed a new method for
cover image recovery, namely Reversible Data Hiding (RDH). In this paper, the
author describes two methods: LSB method and Quantization Index Modulation
(QIM) method. In LSB method, we replace LSB bits of a pixel with data. This
replaced LSB values are not memorized further. In Quantization Index Mod-
ulation (QIM) method, normally the quantization error occurs. Due to these
reasons complete cover image recovery gets impossible in effect. In [1,2], authors
achieved good data capacity, but is not useful for an application with large
amount of data and data capacity is depending on the cover image.

Wen [3] introduced a method for Reversible Data Hiding for complete cover
image recovery. This method keeps a separate record for change of the selected
minimum points. This method improves the data capacity and reached the goal
of data and cover image recovery. In this method also the authors could not
achieve large amount of data capacity. Yongjian [4] has introduced a new method
namely even and odd number based embedding method. Ho [5] proposed two
methods, difference image histogram and the transform coefficient histogram.
The method introduced by Masoumeh [6] utilizes the difference of the pixel
values of the host image and the zero or the minimum points of a histogram of
the different image. It then modifies the pixel gray scale value slightly to embed
secret data into image. In this histogram work [3–6], the data capacity depends
only on the cover image and could not increase the data capacity to a maximum.

Qiminget [7] proposed a method that uses JPEG images as cover image.
Data are embedded on the compressed data of the image. It does not require
decompression of the JPEG cover images. In this work, the data capacity depends
on the compression method and image. This work may lead to error in the data
extraction.

A new method proposed by Hsiang [8] uses hierarchical relationships of orig-
inal cover images. The result shows that better performance can be obtained in
enhanced image quality and embedding capacity. This hierarchical relationship
breaks at some point of data extraction. This may lead to increase in the error rate.

In this paper we propose a novel reversible data hiding method which achieves
better quality after data embedding, high PSNR value, maximum data embed-
ding capacity and complete recoverability of both cover medical image and
patient’s information. There is no error after extracting the data. The file size
remains intact and data embedding capacity does not depend on the cover image
property. We get uniform embedding capacity for all the images (1bpp). This
novel technique seems to be the best method that works extremely well and
improves all the parameters of data hiding.
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2 Proposed Method

The new Reversible Data Hiding Method meets all the measurements like
improved security, data embedding capacity, PSNR value and also keeps the
file size same as original. The block diagram of the method is given in Fig. 1.

Fig. 1. Block diagram of hiding and encryption of cover medical image

2.1 Image Encryption

The input medical cover image is in uncompressed format and each pixel with
gray value ranging from 0 to 255 is represented by 8 bits. Denote the bits of a
pixel as b(i, j, 0), b(i, j, 1) . . . b(i, j, 7) where (i, j) indicates the pixel position of
the medical image, and the gray value is p(i, j).

Let b(i, j, r) =
p(i, j)

2r
(mod 2), where r = 0, 1, . . . , 7 (1)

and

P(i, j, r) =
7∑

u=0

b(i, j, r).2r (2)

For providing security on the cover medical image we perform encryption using
simple XOR (exclusive-or) operation.

Thus B(i, j, r) = b(i, j, r) ⊕ k(i, j, r) (3)

where k(i, j, r) are the encryption key using a standard stream cipher. Then
B(i, j, k) are the encrypted medical image with data. The medical image with
data is encrypted by using XOR operation. Without knowing the key, the third
party cannot understand medical image as well as data.
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2.2 Pre-processing and Location Map

Our primary aim is to keep the boundary values of cover medical image same as
original. For that we perform preprocessing. Preprocessing is necessary for the
medical images because any one pixel value changed after the data extraction is
waste and not used for diagnosing.

In grayscale medical image boundary values are 0 and 255. If we add any
data on these pixel values the grayscale value range is undefined (0 and 255 may
change to −1 and 256). So we need to modify these boundary values by using
the following procedure (4).

If Pixel value equal to 255 then
New Pixel value = 254;
else if Pixel value equal to 0 then
New Pixel value = 1;
end

2.3 Duplicating Pixel Values

All pixel values are in the range of 0 to 255 before preprocessing and contain
original values of cover image. The aim is to increase the image data capacity
(1 bit per pixel). To get maximum data capacity, we set all the pixel values in the
cover image into two peak gray scale values (IR, IS). Limiting gray scale to two
peak value (IR, IS) in this method gets maximum frequency of the peak pair.
This is the core idea of the proposed extended XOR method. Limiting peak gray
scale values to two is a step by step procedure and is carried out by six rounds
of XOR operation.

2.4 Data Embedding, Extracting and Recovery

In embedding process, generate a histogram from cover image and find highest
two peak values IS and IR, where (IS < IR). The data for embedding is bk.
Then perform the following data embedding algorithm.

If Pixel value < IS, set Pixel IS-1;
If Pixel value = IS, set IS bk;
If IS< Pixel value < IR, no change in pixel value;
If Pixel value = IR, set IR +bk;
If Pixel value > IR, set Pixel IR +1;

Finally last 16 pixel LSB values of the image are replaced with IS and IR value
for extraction. If the data to be embedded is not complete, then the above
procedure is repeated iteratively. After the data embedding phase the output
will be embedded on cover image.
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The data extraction phase is actually the reverse process of data embedding.
First extract two peak values from the last 16 bit LSBs and perform the following
procedure for data extraction.

If Pixel value= IS 1, bk is 1;
If Pixel value= IS, bk is 0;
If Pixel value= IR, bk is 0;
If Pixel value= IR + 1, bk is 1;

Finally perform the cover image recovery phase, because in RDH both cover
image and data are equally important. Cover image recovery, completely recovers
the cover image that is same as original cover input image. The recovery of cover
image operation is performed by using the following procedure.

If Pixel value < IS 1, set pixel value IS+ 1.
If Pixel value = IS - 1 or IS, set pixel value IS;
If Pixel value = IR or IR + 1, set pixel value IR.
If Pixel value > IR + 1, set pixel value IR? 1.

Finally, compare both original image and recovered image. If the result is
same, it means that reversible data hiding (RDH) is successful. We tested all
the images in the test set and we got a completely recovered image, which is the
same as the original image before embedding.

3 Experimental Results

The aim for this extended XOR method is to get fixed range of data capacity
for all image data set, to get the maximum data embedding capacity (1 bit per
pixel) and improving PSNR value. This method also keeps the file size same as
original.

This method is extended from duplicating peak pairs by XOR method and
is focused on the data embedding capacity and PSNR value. This method works
well and the result shows that the data embedding capacity is fixed for all image
sets. The embedding capacity get 1 bpp (bit per pixel) and PSNR value is above
51 dB.

The Proposed method has been tested four data sets which are normal, aer-
ial, medical and sequence images. Each test set shows the fixed data capacity,
improvement in PSNR value and improved security. The file size is preserved
and is same as that of original image.

An example of a medical image, informations embedded image, encrypted
image and recovered image is given in Fig. 2.
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Fig. 2. The original and embedded images of Medical image 3. (a) Original cover
image of “Medical image 1”. (b) Information embedded image. (c) Encrypted image.
(d) Recovered medical image.

3.1 6-Rounds Duplicating for Improving Data Capacity

In the proposed method, 6-rounds duplication of pixel values into peak pair
values are performed using XOR operation. The result shows that this proposed
method works well in maximizing the data embedding capacity, PSNR value,
security and also keeps file cover image size as original. This method is focused
on the data embedding capacity and PSNR value. Table 1 shows the analysis of
the data hiding parameters is kept. The parameters are PSNR (Peak Signal to
Noise Ratio), bit per pixel, and pure payload length. The result shows that the
proposed method works well for all the parameters.

Table 1. Analysis of data hiding in medical images.

Test image name PSNR Bit per pixel Pure payload

Medical image 1 51.1375 1 262144

Medical image 2 51.0593 1 262144

Medical image 3 50.9464 1 262144

Medical image 4 51.1266 1 262144

Medical image 5 51.0012 1 262144

Medical image 6 51.0254 1 262144

Medical image 7 51.6812 1 262144

Medical image 8 51.0050 1 262144

Figure 3 gives the comparison of medical images PSNR and data embedding
capacity.
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Fig. 3. PSNR comparison of medical images

3.2 File Size

One of the main properties of cover image is its size. The image size is calculated
by M * N* L, where M and N are the number of rows and columns of the image
respectively and L is the number of gray levels in the image. In the proposed
method the gray levels are not changed. For example, if the dimension of image
is 512 * 512 and the number of gray levels is 8, then the image size is M ∗N ∗L =
512 ∗ 512 ∗ 8 = 262.2KB.

3.3 Reversibility

In most cases of data hiding, the cover image will experience some distortion due
to data hiding and cannot revert back to the original cover object. Some parame-
ter distortion to the cover image even after the hidden data has been extracted

Table 2. Analysis of reversibility

Test image name Before Data embedding
(Original Medical image)
PSNR (dB)

PSNR (dB) After
Data embedding
PSNR (dB)

After data
Extracted
PSNR (dB)

Medical image 1 99 51.1375 99

Medical image 2 99 51.0593 99

Medical image 3 99 50.9464 99

Medical image 4 99 51.1266 99

Medical image 5 99 51.0012 99

Medical image 6 99 51.0254 99

Medical image 7 99 51.6812 99

Medical image 8 99 51.0050 99
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out. The Reversible Data Hiding gives importance to both cover medium and
information. These reasons made Reversable Data Hiding technique popular
now. These techniques are used in sensitive areas such as copy right protec-
tion, feature tagging, highly secret communications, digital watermark, medical,
military, cloud, etc.

From the Comparison between original image (before data embedding) and
retrieved image, we easily see that both the medical images are same. Thus we
can get the original medical image in the receiver side without loss. This is shown
in Table 2.

4 Conclusion

The method proposed in this paper gives better results in all parameters like
data capacity, PSNR value and file size. The proposed data hiding method keeps
the original image without loss after the data extraction and achieves maximum
data capacity (1 bit per pixel). This method is also tested with many medical
images and we achieved maximum data embedding capacity and PSNR value
above 51 dB.
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Abstract. Indicated coloring of a graph G is a coloring in which there are two
players Ann and Ben, Ann picks a vertex and Ben chooses a color for this vertex.
The aim of Ann is to achieve a proper coloring of the whole graph G, while Ben
tries to block the same. The smallest number of colors required for Ann to win the
game on a graph G is called the indicated chromatic number of G and is denoted
by χi(G). In this paper, we prove that T�Cn,T�Kn1 ,n2 ,...,nm and Kn1 ,n2 ,...,nm�Cm

are k-indicated colorable for all k greater than or equal to the indicated chro-
matic number of their corresponding Cartesian product, where T is any tree. Also
we prove that χi(Kk1 ,k2 ,...,km�Kl1 ,l2 ,...,ln ) = χ(Kk1 ,k2 ,...,km�Kl1 ,l2 ,...,ln ). Finally we have
given non-trivial examples of graphs G and H for which χi(G�H) > χ(G�H).

Keywords: Game chromatic number · Indicated chromatic number · Cartesian
product

1 Introduction

All graphs considered in this paper are simple, finite and undirected. A game coloring
of a graph is a coloring in which two players Ann and Ben are jointly coloring the
graph G by using a fixed set of colors C. The motive of Ann is to get a proper coloring
of the whole graph, where as Ben is trying to prevent the realization of this project. The
minimum number of colors required for Ann to win the game on a graphG irrespective
of Ben’s strategy is called the game chromatic number of the graph G and it is denoted
by χg(G). The idea of indicated coloring was introduced by A. Grzesik in [3] as a slight
variant of the game coloring in the following way: in each round Ann is only picking
a vertex while Ben is choosing a color for this vertex. The aim of Ann as in indicated
coloring is to achieve a proper coloring of the whole graphG, while Ben tries to “block”
some vertex. A block vertex means an uncolored vertex which has all colors from C on
its neighbors. The smallest number of colors required for Ann to win the game on a
graphG is called the indicated chromatic number ofG and is denoted by χi(G). Clearly
from the definition we see that ω(G) ≤ χ(G) ≤ χi(G) ≤ Δ(G) + 1. If Ann has a winning
strategy using k colors for a graph G then we say that G is k-indicated colorable. Let
stk(G) denote a winning strategy of Ann while using k colors. The coloring number of
a graph G, denoted by col(G) is defined by col(G) = 1 + max

H⊆G
δ(H). By Szekeres-Wilf

inequality [6], χ(G) ≤ col(G).
Zhu in [9] has asked the following question for game coloring. Whether increasing

the number of colors will favor Ann? That is, if Ann has a winning strategy using
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 63–68, 2017.
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k colors, will Ann have a winning strategy using k + 1 colors? The same question was
asked by Grzesik for indicated coloring. Also he showed by an example that the increase
in number of colors does make life simple for Ann rather it makes it much harder.
There has been already some partial answers to this question. For instance, Pandiya
Raj et al. [2,5] showed that chordal graphs, cographs, complement of bipartite graphs,
{P5,K3}-free graphs, {P5, paw}-free graphs, {P5,C5,K4−e}-free graphs and {P5,K4−e}-
free graphs having induced C5 are k-indicated colorable for all k ≥ χ(G). In addition
Lason in [4] has obtained the indicated chromatic number of matroids. In this paper,
we obtain T�Cn, T�Kn1,n2,...,nm and Kn1,n2,...,nm�Cm are k-indicated colorable for all k
greater than or equal to the indicated chromatic number of their corresponding Cartesian
product, where T is any tree. In addition, we have prove that χi(Kk1,k2,...,km�Kl1,l2,...,ln ) =
χ(Kk1,k2,...,km�Kl1,l2,...,ln). Finally we have given non-trivial examples of graphs G and H
for which χi(G�H) > χ(G�H).

Notations and terminologies not mentioned here are as in [8].

2 Indicated Coloring on Cartesian Product of Graphs

The Cartesian product of two graphs G and H, denoted by G�H, is a graph whose
vertex set V(G)×V(H) = {(x, y) : x ∈ V(G) and y ∈ V(H)} and two vertices (x1, y1) and
(x2, y2) of G�H are adjacent if and only if either x1 = x2 and y1y2 ∈ E(H), or y1 = y2
and x1x2 ∈ E(G). Vizing [7] proved that χ(G�H) = max{χ(G), χ(H)}. Note that while
considering the cartesian product G�H, for each v ∈ V(G), 〈v × V(H)〉 (for S ⊆ V(G),
〈S 〉 denotes the induced subgraph of S in G) is a copy of H and for each u ∈ V(H),
〈V(G) × u〉 is a copy of G. Also if S is an independent set in G and T is an independent
set in H, then S�T is an independent set in G�H.

Our main focus in Sect. 2 is to see whether the following is true. If G is k-indicated
colorable for all k ≥ χi(G) and H is k-indicated colorable for all k ≥ χi(H), will G�H
be k-indicated colorable for all k ≥ χi(G�H)? As a first step, we have considered a
few families for which this works out. In fact this also gives some partial answer to the
question raised by Grzesik in [3]. Let us recall a few results done in [3,5].

Theorem 1. [5] Any graph G is k-indicated colorable for all k ≥ col(G).

Theorem 2. [3] Every bipartite graphs is k-indicated colorable for every k ≥ 2.

An immediate consequence of Theorem 2 is the following.

Corollary 1. Let G and H be two non-trivial graphs. Then G and H are bipartite if and
only if G�H is k-indicated colorable for all k ≥ 2.

Proof. We know that G�H is bipartite if and only if G and H are bipartite. Suppose G
and H are bipartite, by using Theorem 2, G�H is k-indicated colorable for all k ≥ 2.
SupposeG�H is k-indicated colorable for all k ≥ 2, then 2 ≤ χ(G�H)) ≤ χi(G�H) = 2.
Hence G�H is bipartite.
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By using Corollary 1, we see that if both m and n are even, then Cm�Cn is
k-indicated colorable for all k ≥ 2. While considering the case when either m or n
(or both) is odd, the col(Cm�Cn) = 5. Thus for showing that Cm�Cn is k-indicated col-
orable for all k ≥ 3, it is enough to prove that Cm�Cn is 3 and 4-indicated colorable.
This still remains an open problem.

Let us next recall a strategy used in [1].

Definition 1. While coloring a graph G by using k colors, letNun(v) denote the number
of uncolored neighbors of v in G and C(v) denote the number of available colors for v
in G. A vertex v is said to be of type1 if C(v) > Nun(v) and of type2 if C(v) = Nun(v).

Lemma 1. Let Ann and Ben plays an indicated coloring game on graph G with k ≥
χ(G) colors. In certain stage, if all the uncolored vertices in G can be partitioned into
disjoint paths such that one end of each path is of type1 and all the other vertices are
of type2, then Ann has a winning strategy.

Proof. Let the color set be {1, 2, . . . , k ≥ χ(G)}. By our assumption, let P1, P2, . . . , Pl be
a partition of the uncolored vertices with the property that one end of each Pi, 1 ≤ i ≤ l,
is of type1 and all the other vertices in Pi are of type2. Let P1 = v11, v12, . . . , v1 j for
some j ≥ 1 and let v1 j be of type1 and v1i, 1 ≤ i ≤ j − 1 be of type2. Clearly there is
always an available color for v1 j. Now let Ann present the vertices of P1 in the order
v11, v12, . . . , v1 j (same order of the path P1). Since C(v1i) = Nun(v1i), for every i, 1 ≤ i ≤
j − 1 and one of the neighbor of v1i, namely v1(i+1) is presented after v1i. Thus Ben has
an available color for each v1i, 1 ≤ i ≤ j−1. Since all the uncolored vertices where only
of type1 or type2, Ben cannot create a block vertex in any of the paths. Thus a similarly
technique can be applied by Ann for all the other paths to yield an indicated coloring
using k colors.

Theorem 3. Let T be any tree. Then

(i) T�Cm is k-indicated colorable for all k ≥ χi(T�Cm) = χ(T�Cm)
(ii) T�Kn1,n2,...,nm is k-indicated colorable for all k ≥ χi(T�Kn1,n2,...,nm ) = m.

Proof. Let v0 be a center of T . Let Vi be the set of all vertices of T which are at a
distance i from v0, 1 ≤ i ≤ r where r is the radius of the tree. Let us label the vertices
of T as v0, v1, v2, . . . , vn−1 such that the vertices of Vi are to the left of the vertices of
Vj for every i, j such that 1 ≤ i < j ≤ r. Let vi j = (vi, u j) be the vertex of T�G where
vi ∈ T, u j ∈ G, 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ |V(G)| − 1. Let c(v) denote the color given
by Ben to the vertex v and if v is uncolored then assume that c(v) = ∅. In T�G, let
H0,H1, . . . ,Hn−1 be the copies of G corresponding to the vertices v0, v1, . . . , vn−1 of T
respectively. If vi and v j are non-adjacent vertices in T then 〈V(Hi),V(Hj)〉 = ∅ in T�G.
If vi and v j are adjacent vertices in T then 〈V(Hi),V(Hj)〉 = {vilv jl : 0 ≤ l ≤ |V(G)| − 1}
in T�G.

(i) Let us consider the graph G = Cm. Suppose m is even, T�Cm is bipartite and by
using Theorem 2, T�Cm is k-indicated colorable for all k ≥ 2 = χi(T�Cm). Now let
us consider m to be odd. It is easy to observe that χ(T�Cm) = 3 and col(T�Cm) = 4.
Hence by using Theorem 1, it is enough to show that T�Cm is 3-indicated colorable.
Let the color set be {1, 2, 3}. Let Ann present the vertices of H0 in any order. Since the
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col(H0) = 3, Ben always has an available color for each vertex of H0. Irrespective of
Ben’s strategy, there exist a vertex v0 j of H0 having two different colors in its neighbor,
namely v0( j−1) and v0( j+1) where 0 ≤ j ≤ m − 1 and j is taken mod n. Now consider the
subgraph G1 = 〈{v0 ∪ V1}〉�Cm in T�Cm. Let Hi be the Cm copy of the vertex vi ∈ V1,
1 ≤ i ≤ |V1|. Since 〈V(H0),V(Hi)〉 = {v0 jvi j : 0 ≤ j ≤ m − 1} for all 1 ≤ i ≤ |V1|
and there are 3 colors, the uncolored vertices of G1 are the vertices of Hi which are
the vertices of type2. Now Ann will present the vertex vi j of Hi for all 1 ≤ i ≤ |V1|.
Suppose Ben color vi j with the color of v0( j−1) then the vertex vi( j−1) is a vertex of type1,
otherwise vi( j+1) is a vertex of type1 where 1 ≤ i ≤ |V1|, 0 ≤ j ≤ m − 1 and j is taken
mod n. By using Lemma 1, Ann have an winning strategy on G1.

Let us consider the subgraphGi = 〈{Vi−1 ∪Vi}〉�Cm where 2 ≤ i ≤ r. Similarly Ann
follow the same procedure to presents the uncolored vertices of Gi, and thus Ann has a
winning strategy for Gi, 2 ≤ i ≤ r. This yields a winning strategy for Ann on the graph
T�Cm with 3 colors.

(ii) It is easy to observe that χ(T�Kn1,n2,...,nm ) = m and col(T�Kn1,n2,...,nm ) = m +
1. Hence by using Theorem 1, it is enough to show that T�Kn1,n2,...,nm is m-indicated
colorable. Let the color set be {1, 2, . . . ,m}. Let Ui, 1 ≤ i ≤ m be the m-partites of
the graph Kn1,n2,...,nm . Let us consider the subgraph G0 = 〈{u1, u2, . . . , um}〉 in Kn1,n2,...,nm ,
where ui ∈ Ui, 1 ≤ i ≤ m. Clearly G0 � Km and ω(Kn1,n2,...,nm ) = m. Now consider
the graph T�G0. Let J0, J1, . . . , Jn−1 be the copies of G0 corresponding to the vertices
v0, v1, . . . , vn−1 of T respectively.

Ann starts presenting the vertices of J0 in any order. Since col(J0) = m, Ben have an
available color for each vertex of J0. Now consider the subgraph G1 = 〈{v0 ∪ V1}〉�G0

in T�G0. Since 〈V(J0),V(Ji)〉 = {v0 jvi j : 1 ≤ j ≤ m} for all 1 ≤ i ≤ |V1| and there are
m colors, the uncolored vertices of G1 are the vertices of Ji which are the vertices of
type2. Now Ann will present the vertex vi1 of Ji for all 1 ≤ i ≤ |V1|. Ben should color
vi1 with one of the color from {1, 2, . . . ,m}\{c(v01)} and let it be ci, 1 ≤ i ≤ |V1|. For
each Ji, 1 ≤ i ≤ |V1| there is a vertex vii′ which is adjacent to the color ci of J0 where
1 ≤ i′ ≤ m and thus the vertex vii′ is a vertex of type1. By using Lemma 1, Ann has a
winning strategy on G1.

Let us next consider the subgraph Gi = 〈{Vi−1 ∪ Vi}〉�G0 where 2 ≤ i ≤ r in
T�G0. Let Ann follow a similar procedure as done in G1, for presenting the uncolored
vertices of Gi. This will give Ann a winning strategy for Gi, 2 ≤ i ≤ r, and hence a
winning strategy for T�G0 with m colors. Let it be stm(T�G0). Now consider the graph
T�Kn1,n2,...,nm . The strategy stm(T�G0) makes Ben to color exactly one vertex of Ui,
1 ≤ i ≤ m in each of the copies of Kn1,n2,...,nm corresponding to the vertices of T . Hence
for the remaining vertices in each of the Ui in the copies of Kn1,n2,...,nm corresponding
to the vertices of T , Ben will be forced to give the color given to vertex in Ui that is
already colored. Thus Ann can presents the remaining vertices in any order and this will
yield an m-indicated coloring for T�Kn1,n2,...,nm .

An immediate consequence of Theorem 3 is the following.

Corollary 2. For all m ≥ 2, the graph T�Km is k-indicated colorable for all k ≥ m.

In a similar fashion but with a little more involved arguments, we have showed
Theorems 4 and 5.
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Theorem 4. For all m ≥ 3 and n ≥ 3, the graph Kn1,n2,...,nm�Cn is k-indicated colorable
for all k ≥ m.

Theorem 5. For all m ≥ 2 and n ≥ 2, χi(Kk1,k2,...,km�Kl1,l2,...,ln ) = χ(Kk1,k2,...,km�Kl1,l2,...,ln ).

An immediate consequence of Theorems 4 and 5 is the following.

Corollary 3. For all m ≥ 3 and n ≥ 3, the graph Km�Cn is k-indicated colorable for
all k ≥ m and χi(Km�Kn) = χ(Km�Kn).

By the definition of indicated coloring, χi(G) ≥ χ(G) and thus χi(G�H) ≥ χ(G�H).
The families of graphs considered for our discussion till now are examples of graphs
for which χi(G�H) = χ(G�H). But we do have examples of non-trivial graphs G and
H for which χi(G�H) > χ(G�H). This is done in Proposition 1 and Theorem 6.

Fig. 1. Graph with χi(D) = χ(D) + 1 = 4.

Proposition 1. Let D be the graph given in Fig. 1. Then χi(D�K2) > χ(D�K2).

Proof. Let us consider the graph D given in Fig. 1. Clearly D is a uniquely colorable
graph such that χ(D) = 3 and χi(D) = 4 (see, [3]). Let us consider the graph D�K2.
Clearly D�K2 contains two copies of D. Let us denote these copies by D1 and D2.
Let the vertices of D1 be a, b, . . . , h as shown in Fig. 1, and its corresponding vertices
of D2 be denoted by a′, b′, . . . , h′ respectively. By the definition of Cartesian prod-
uct, aa′, bb′, . . . , hh′ ∈ E(D�K2). It is clear that χ(D�K2) = 3. Let the colors set be
{1, 2, 3}. We have to show that there is no winning strategy for Ann using 3 colors. In
any 3-coloring of D�K2 the vertices {a, d, g}, {b, e, h} and {c, f } should receive the same
color c1, c2 and c3 respectively and the vertices {a′, d′, g′}, {b′, e′, h′} and {c′, f ′} should
receive the same color c2, c3 and c1 respectively or c3, c1 and c2 respectively such that
{c1, c2, c3} = {1, 2, 3}. Let Ann start by presenting the vertex a in D1 and let the color
given by Ben be 1. Let the following be the strategy followed by Ben.

(i) color the vertex d with 2 or 3, (or) color the vertex d′ with 1.
(ii) color any one of the vertex of { f , g, e′, h′} with 2.

If Ben is able to accomplish one of the above, then clearly Ann does not have a win-
ning strategy. In order to avoid (i), she has to present the vertices in the order b, c, d, d′.
But even in this case Ann cannot prevent Ben from applying (ii). Thus Ben wins the
game on D�K2 with 3 colors and hence χi(D�K2) > χ(D�K2).

This idea for D�K2 can be generalised to D�T where T is any tree.
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Theorem 6. Let D be the graph given in Fig. 1 and T be any tree. Then χi(D�T ) >
χ(G�T ).
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Abstract. The Big Data plays a valuable role in large scale information
management that overshoots the potential of traditional data process-
ing technologies. The importance of volume, velocity, variety, veracity
and value of big data made researchers to put efforts to handle them
efficiently. On considering the 5V’s of big data, if the veracity charac-
teristic is not well focused, then the idea of big data will not be widely
recognized. Advances in technology allow users to extract and utilize the
big data which make data privacy violations in maximum cases. Also
the data used for big data analytics may include restricted information.
So it is necessary to protect and notice whether this kind of data is
used with certain principles. In this paper we formalize a Bi-level secu-
rity mechanism called Cosine Similarity with P-Stability for data privacy
and graph protection in one of the big data environment called Online
Social Network.

1 Introduction

The data is flooded unconditionally due to the development of multichannel busi-
ness environment which led to Big Data. The big data is in account because of 5V’s
named Volume, Velocity, Variety, Veracity and Value [1]. The Volume parameter
of big data indicates the massive quantity of data originating every second. It is
not in terms of terabytes but in terms of zettabytes and Yottabytes. The Velocity
parameter of big data indicates the speed at which data originated, handled and
distributed. This data will move viral in seconds but today’s technology allows us
to analyze the data while it’s being originated before putting it into the database.
The Variety parameter of big data indicates the dissimilar types of data that all
can now use. In the earlier days all concentrated only on the structured data which
will be attached into tables or relational databases but in today’s world eighty per-
centage of data available are unstructured. The big data technology allows us to
analyze all dissimilar data together. The Veracity parameter of big data indicates
the disorder or messiness or trustworthiness of data. Another major issue is relia-
bility and accuracy of data. The Value parameter of big data indicates that there
should be a business value from the data extracted.

From the above mentioned parameters of big data, our work is to concentrate
on veracity parameter to identify privacy issues when data is used for analysis
c© Springer International Publishing AG 2017
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and when data network is in public. If the privacy of data is not well focused, then
the idea of big data will not be widely recognized [2]. For our work online social
network is taken as a model and the privacy issues and protection methods are
analyzed. Also since an online social network is expressed by means of graphs, it
is necessary for graph protection to maintain data privacy. The social networking
sites will collect and store all the information about our personal life and our
relationship in society. Then they recycle our personal information for business
credits [3]. Advances in technology allow users to extract and utilize the big data
which may cause data privacy violations. So it is necessary to protect and notice
whether private data are used with certain principles. Already there are many
privacy and security mechanisms for traditional data but they are insufficient for
big data era. Therefore different efforts are needed to identify proper mechanism
for securing big data.

In this paper, we map out the basic privacy requirements of big data analytics
in Sect. 2. The existing mechanism for data privacy and graph protection is
discussed in Sect. 3. In Sect. 4, we propose a bi-level security mechanism called
Cosine Similarity with P-Stability for data privacy and graph protection. The
Performance Evaluation of our proposed mechanism is shown in Sect. 5.

2 Privacy Requirements of Big Data

The research on privacy in big data is in its early stage. In general, if data privacy
is not applicable, then the big data is not authentic. While big data generates
extensive values for profitable extension and technical revolution, we are already
conscious that the severe flood of data also leads to new privacy concerns. In this
paper we concentrate on big data privacy and locate the privacy requirements
of big data analytics.

Big Data Collection privacy requirements: The collection of big data takes
place universally, so there is possibility of intrusion and the data may be dripped
unexpectedly. Since the data collected is personal and sensitive, we should head
for physical protection mechanisms and information security mechanisms for
data privacy before it is securely stored.

Big Data Storage privacy requirements: In comparison to Intrusion on
individual’s data during the big data collection, compromising of big data storage
system is more injurious [4]. Hence it is necessary to make sure the confidentiality
of data stored in storage system or data center.

Big Data Processing privacy requirements: The big data processing is
one of the significant parts of big data analytics, as it extracts valuable knowl-
edge for profitable growth and technical revolution. Since the efficiency of big
data processing is an essential measure for the success of big data, the big data
processing privacy requirements will be very demanding. The big data process-
ing efficiency can’t be compromised for big data privacy and should ensure effi-
ciency while protecting individual privacy. Maintaining big data privacy is the
most demanding issue in big data processing.
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In the current era, numbers of data privacy mechanisms are proposed already
[5]. But they are used to handle only traditional analytics data privacy. The
traditional data privacy mechanisms are not adequate to overcome the privacy
issues related to the big data analytics. Traditional mechanisms can provide only
single level of data privacy. In the next section we will discuss about existing
mechanisms for data privacy and graph protection.

3 Existing Mechanisms for Data Privacy and Graph
Protection

The existing mechanism for data privacy and graph protection are huge in num-
ber. Some of them are discussed in this section.

Privacy-preserving aggregation: This mechanism is favored for data collec-
tion which is designed on some homomorphic encryption [6]. Here distinct sources
use the same public key for encrypting their individual data when they want to
share group of individual data together. Then the ciphertext from every individ-
ual is aggregated and shared. The authorized user can decrypt the data using
respective private key. This privacy preserving aggregation mechanism can give
security for individual data privacy during big data collection and storing. But
the issue here is the mechanism is purpose specific. The ciphertext aggregated
for one purpose can’t be used for other purpose. Hence the Privacy preserving
aggregation mechanism is inadequate for big data analytics.

Operations over encrypted data: For securing individual sensitive data [7],
the data and their related keywords are encrypted and maintained in the storage.
When the user wants to view the data, query can be executed and data can be
retrieved from the storage. Now the data privacy is ensured. While analyzing
operation over encrypted data, there is possibility of using this individual privacy
in big data analytics but the problem here is it takes long computing duration
and is complex [13]. Since big data analytics deals with huge volume and need
to process the analysis in a timely manner, this mechanism is inadequate for big
data analytics.

De-identification: This mechanism is also traditional one used for protecting
privacy. Here to provide individual privacy, first data should be disinfected and
second some values should not be delivered to all. While comparing with privacy-
preserving aggregation and operation over encrypted data, de-identification will
be more successful and flexible for data analytics [8]. But the hacker will be able
to get exterior information support for de-identification in the big data world.
Thus this mechanism is also inadequate for big data privacy protection.

The discussion above indicates that the data privacy protection will be still
demanding one because of the risks involved. But in contrast with privacy-
preserving aggregation and operation over encrypted data, the de-identification
mechanism will be more suitable for providing data privacy in big data analytics.
This is possible if we eliminate risks on de-identification.
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Protection of Graphs: There are various mechanisms for the protection of
graphs. Such as modifying the edges of the original graph, perturbation of the
original graph, and creating supernodes which crumple set of vertices in the
original graph. There are some other mechanisms that focus on the content
attached to the vertices of the graph and the aim is to protect identity disclosure
and attribute disclosure [9].

In the next section, we propose bi-level security mechanism for protecting
data privacy for both individuals and for graphs using Cosine Similarity with
P-Stability.

4 Cosine Similarity with P-Stability

The online social network is represented as a graph where individuals are the ver-
tices and relationships between individuals are edges. From every user the data
are collected by data analyst for big data analysis which may lead to data pri-
vacy issues. Thus security on data privacy is required. Also once every individual
makes a relationship with ‘n’ different individuals, and based on the relationship
maintained there will be several sub-graphs in a single main graph called online
social network. So there is a possibility of hacking data by individuals within
one subgraph or between different subgraphs. Hence to overcome both individu-
als and graph data privacy issues we propose bi-level security mechanism called
Cosine Similarity with P-Stability.

The first level of security is provided by Cosine Similarity computing algo-
rithm [10]. The Cosine Similarity algorithm has two types. One type reveals infor-
mation between each other and the other type won’t reveal information between
each other. Our algorithm will identify the similarity between two individuals
without revealing information between them. For every pair of individuals the
Cosine Similarity (1) is measured and finally all values are aggregated.

The steps of Cosine Similarity Computing algorithm are as follows

IA = Individual A
−→a = (a1, a2, . . . , an)
IB = Individual B
−→
b = (b1, b2, . . . , bn)

Step 1: IA Calculation:
Consider the security parameters k1, k2, k3, k4
Select two large prime numbers α, p
Assign | p |= k1, | α |= k2
Set an+1 = an+2 = 0
Identify a large random number s ∈ Zp

and n + 2 random numbers cx, x = 1, 2, . . . n + 2, with | cx |= k3.
For each ax, x = 1, 2, . . . n + 2.
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Cx =
{

s(ax.a + cx) mod p, ax �= 0
s.cx mod p, ax = 0

End for
Calculate A =

∑n
x=1 a2

x

Keep s−1 mod p as secret
Send (α, p, C1, . . . Cn+2) to IB

Step 2: IB Calculation:
Set bn+1 = bn+2 = 0
For each bx, x = 1, 2, . . . n + 2

Dx =
{

bx.α.Cx mod p, bx �= 0
rx.Cx mod p, bx = 0 where rx is a random number with | rx |= k4

End for
B =

∑n
x=1 b2x and

D =
∑n+2

x=1 Dx mod p
Send (B,D) to IA

Step 3: IA Calculation:
Calculate E = s−1.D mod p

Calculate −→a .
−→
b =

∑n
x=1 ax.bx = E−(E mod α2)

α2

Cos(−→a ,
−→
b ) =

−→a .
−→
b√

A
√

B
(1)

The second level of security is provided by P-Stability for graphs [9]. When we
publish original graph (OSN) in the public, there will be a problem in data
protection. So the original graph should be replaced with anonymous graph. For
this, first we have to identify the degree sequence of original graph. Then with
this identified degree sequence multiple possible graphs are generated. Now the
original graph is replaced with generated anonymous graph and the modified
graph will look like original to the public. This transformation will confuse the
hackers or analyst since the original graph is replaced by another. A graph with
same degree sequence as original graph is referred as P-Stable graph and if a
graph is P-Stable then it is protected. Also the graphs can be P-Stable if it
satisfies the Theorems 1, 2 and 3.

For a graph with n vertices, m edges and degree sequence d, we define m, Δ
and δ as follows:

m = number of edges in G

Δ = max{di : 1 ≤ i ≤ n}
δ = min{di : 1 ≤ i ≤ n}

Theorem 1 [11]. The Class of all graphs with degree sequences d which satisfy
m > Δ(Δ − 1) is P-stable.

Theorem 2 [12]. The class of all graphs with degree sequences d = (d1, . . . dn)
which satisfy (Δ − δ + 1)2 ≤ 4δ(n − Δ − 1) where δ and Δ are defined as above,
is P-stable.
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Theorem 3 [12]. The class of all graphs with degree sequences d =
(d1, . . . dn) which satisfies {(2m−nδ)−(Δ−δ)δ}{(nΔ−2m)−(Δ−δ)(n−Δ−1)} ≤
(Δ − δ)2δ(n − Δ − 1) where δ, Δ and m are defined as above, is P-stable.

5 Performance Evaluation

To measure the security level of our proposed Cosine Similarity with P-Stability
mechanism, we collected hundred individuals information. With this information
the similarity between individuals are identified using Cosine Similarity mech-
anism. With this a graph representing Online Social Network model is framed.
The graph protection is implemented using P-Stability for graphs. The experi-
mental result proves that, of the number of existing mechanisms available today
some only are applicable for big data. In these the applicable existing tradi-
tional mechanisms also provide only individuals data privacy and it fails to
provide graph protection in online social network. But our proposed mechanism
Cosine Similarity with P-Stability will provide both individuals and graph data
privacy for online social network. Figure 1 shows the comparison of existing and
proposed mechanisms.

Fig. 1. Comparison of existing traditional mechanisms with our proposed Cosine Sim-
ilarity with P-Stability mechanism. In this figure L1 indicates Level 1 and the L2
indicates Level 2.

6 Conclusion

The volume of data is growing daily and it is difficult to visualize the next age
applications without providing data privacy algorithms. In this paper, we explore
the privacy demands in the big data analytics environment. We explored privacy
demands in every phase of big data life cycle and examined some advantages and
disadvantages of existing data privacy mechanisms in the context of big data. We
proposed a bi-level security mechanism called Cosine similarity with P-Stability
for data privacy and graph protection in one of the big data environment Online
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Social Network. The experimental result proves that our proposed mechanism
provide dual security in data privacy for both individuals and graphs which the
existing traditional mechanisms couldn’t do.
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Abstract. Let G = (V, E) be a graph on n vertices. A bijection f : V →
{1, 2, . . . , n} is called a nearly distance magic labeling of G if there exists
a positive integer k such that

∑
x∈N(v) f(x) = k or k+1 for every v ∈ V .

The constant k is called a magic constant of the graph and any graph
which admits such a labeling is called a nearly distance magic graph.
In this paper we present several basic results on nearly distance magic
graphs and compute the magic constant k in terms of the fractional total
domination number of the graph.

Keywords: Distance magic graphs · Nearly distance magic graphs

1 Introduction

All graphs in this paper are simple graphs without isolated vertices. For graph
theoretic terminology and notation we refer to Chartrand and Lesniak [3].

By a graph labeling we mean an assignment of numbers to graph elements
such as vertices or edges or both. Different types of labelings have been defined
by various researchers by imposing different conditions on such an assignment.
For an overview on graph labelings and its recent developments we refer to the
dynamic survey by Gallian [4].

Let G = (V,E) be a graph of order n. Let f : V → {1, 2, . . . , n} be a bijection.
The weight wf (v) of a vertex v is defined by wf (v) =

∑
x∈N(v) f(x), where N(v)

is the open neighbourhood of v. If wf (v) = k (a constant) for every v ∈ V , then
f is said to be a distance magic labeling of the graph G. A graph which admits
a distance magic labeling is called a distance magic graph. The constant k is
called the distance magic constant. The concept of distance magic labeling was
originally introduced by Vilfred [9]. For an overview of known results on distance
magic labeling we refer to Arumugam et al. [1] and Rupnow [8]. Two distance
magic graphs of order 7 with magic constants 21 and 7 respectively are shown
in Fig. 1.

c© Springer International Publishing AG 2017
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Fig. 1. Distance magic graphs

Definition 1. Let G = (V,E) be a graph without isolated vertices. A function
f : V → [0, 1] is said to be a fractional total dominating function of G if for every
vertex v ∈ V ,

∑
x∈N(v) f(x) ≥ 1. The fractional total domination number γft(G)

is defined as γft(G) = min{|f | : f is a fractional total dominating function of
G}, where |f | =

∑
v∈V f(v).

At the International workshop on graph labeling (IWOGL-2010) Arumugam
posed the following problem: For a distance magic graph G of order n, is it pos-
sible to obtain two distance magic labelings f1, f2 with distinct magic constants
k1, k2? Arumugam et al. [2] later solved this problem by obtaining a formula for
the magic constant k in terms of the fractional total domination number of the
graph, thereby showing that the magic constant is independent of the labeling
f . This result was also independently proved by Slater et al. [7].

Theorem 1. If G is a distance magic graph of order n, then the distance magic
constant k of G is given by

k =
n(n + 1)
2γft(G)

(1)

Kamatchi [5] showed that the integers 4, 6, 8 and 12 do not appear as magic
constants for any distance magic graph. He posed the following problem: Deter-
mine the set S of positive integers which appear as magic constants of some
distance magic graph. Froncek et al. [6] proved that for every t ≥ 6 there exists
a 4−regular distance magic graph with magic constant 2t.

2 Main Results

Consider the complete tripartite graph G = K4,3,3. One can easily prove that
γft(G) = 3

2 . If f is a distance magic labeling of G, then by (1) the magic constant
k = 110

3 �∈ N. Hence the graph G is not distance magic. However, we can find
a bijection f : V → {1, . . . , 10} for which the weights wf (v) = 36 or 37 (see
Fig. 2). It is interesting to note that the vertex weights satisfy the inequality
36 < 110

3 < 37. This motivates the following concept of nearly distance magic
labeling.
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Fig. 2. Nearly distance magic labeling of K4,3,3

Definition 2. Let G = (V,E) be a graph on n vertices. A bijection f : V →
{1, 2, . . . , n} is called a nearly distance magic labeling of G if there exists a posi-
tive integer k such that

∑
x∈N(v) f(x) = k or k+1 for every v ∈ V . The constant

k is called the magic constant of the graph and the graph which admits such a
labeling is called a nearly distance magic graph.

The following theorem is a generalisation of Theorem 1.

Theorem 2. If G is a nearly distance magic graph with magic constant k, then

k =
⌊

n(n + 1)
2γft(G)

⌋

. (2)

Proof. Let f be a nearly distance magic labeling of G with magic constant k. Let
V = {v1, . . . , vr, . . . vn} be the vertex set of G such that w(vi) = k for 1 ≤ i ≤ r
and w(vi) = k + 1 for r + 1 ≤ i ≤ n. Let A = (ai,j)n×n be the adjacency matrix
of G. Let X = (f(v1), f(v2), . . . , f(vn))T . Then,

AX = (k, k, . . . , k
︸ ︷︷ ︸

r terms

, k + 1, k + 1, . . . , k + 1)T

Let g be a fractional total dominating function of G such that |g| =∑n
i=1 g(vi) = γft(G).

Let Y = (g(v1), g(v2), . . . g(vn))T and AY = (l1, l2, . . . ln)T with each li ≥ 1

Since XT AY is a 1 × 1 matrix, XT AY = (XT AY )T = Y T AX.

Now Y TAX = Y T (AX)

= (g(v1), g(v2), . . . g(vn))(k, k, . . . , k, k + 1, k + 1, . . . , k + 1)T

= k(g(v1) + g(v2) + . . . + g(vr)) + (k + 1)(g(vr+1 + g(vr+2) + . . . + g(vn))

= kγft(G) +
n∑

i=r+1

g(vi).
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Similarly,

XT AY = XT (AY )

= (f(v1), f(v2), . . . f(vn))(l1, l2, . . . ln)T

=
n∑

i=1

f(vi)li ≥
n∑

i=1

f(vi) =
n(n + 1)

2
.

Since XT AY = Y T AX we get kγft(G) +
n∑

i=r+1

g(vi) ≥ n(n+1)
2 . It follows that

k +

n∑

i=r+1

g(vi)

γft(G)
≥ n(n + 1)

2γft(G)
(3)

Now define θ : V (G) −→ [0, 1] by, θ(v) = min {1, f(v)
k }. Since f is a nearly

distance magic labeling with magic constant k it follows that
∑

x∈N(v) θ(x) ≥ 1.
Hence θ is a fractional total dominating function. Therefore we have,

γft(G) ≤ |θ| =
∑

v∈V (G)

θ(v) ≤ 1
k

∑

v∈V (G)

f(v) =
n(n + 1)

2k
.

Therefore

k ≤ n(n + 1)
2γft(G)

. (4)

From (3) and (4) we have k ≤ n(n+1)
2γft(G) ≤ k +

n∑

i=r+1
g(vi)

γft(G) and 0 ≤
n∑

i=r+1
g(vi)

γft(G) < 1.

Hence k =
⌊

n(n+1)
2γft(G)

⌋

Observation 1. If G is a nearly distance magic graph of order n with magic
constants k1 and k2, k1 ≤ k2 then k1 ≥ n − 1 and k2 ≥ n.

Theorem 3. The graph G = nC4 ∪ P2, where n ≥ 1 is nearly distance magic
with magic constant 4n + 1.

Proof. Let (ui1, ui2, ui3, ui4, ui1), 1 ≤ i ≤ n, be the n copies of C4 in G and let
{v1, v2} be the vertices of P2. Define f : V → {1, 2, . . . , 4n + 2} by

f(v1) = 4n + 2, f(v2) = 4n + 1

and f(uij) =
{

i + n(j − 1) if 1 ≤ i ≤ n and j = 1, 2
(7 − j)n + 1 − i if 1 ≤ i ≤ n and j = 3, 4.

(5)

Clearly f is a bijection. w(v2) = 4n+2 and the weight of the remaining vertices
is 4n + 1. Therefore f is a nearly distance magic labeling with magic constant
4n + 1.
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Fig. 3. Nearly distance magic labeling of 4C4 ∪ P2

A nearly distance magic labeling of 4C4 ∪ P2 is given in Fig. 3.

Theorem 4. The graph G = nC4 ∪ K2,3 is nearly distance magic with magic
constant 4n + 7.

Proof. Let (ui1, ui2, ui3, ui4, ui1), 1 ≤ i ≤ n, be the n copies of C4 in G and
{u(n+1)1, u(n+1)3}, {u(n+1)2, u(n+1)4, u(n+1)5} be the bipartition of K2,3. Define
g : V → {1, 2, . . . , 4n + 5} by,

g(uij) =

⎧
⎨

⎩

i + 1 + (n + 1)(j − 1) if 1 ≤ i ≤ n + 1 and j = 1, 2
(7 − j)(n + 1) + 2 − i if 1 ≤ i ≤ n + 1 and j = 3, 4
1 if i = n + 1 and j = 5.

(6)

Then w(x) = 4(n + 2) for x ∈ {u(n+1)1, u(n+1)3}. The weight of the remaining
vertices is 4n+7. Hence g is a nearly distance magic labeling with magic constant
4n + 7

Lemma 1. There is no nearly distance magic graph with magic constant 4.

Proof. Suppose there exists a nearly distance magic graph G with magic constant
4 then |V (G)| = 4 or 5. Let |V (G)| = 4 and v be the vertex in G with label 4.
Then all vertices adjacent to v are pendent vertices and hence w(v) cannot be 4
or 5, which is a contradiction. The proof is similar if |V (G)| = 5.

Observation 2. It follows from Theorems 3 and 4 that for every odd integer
k ≥ 5 there exists a nearly distance magic graph with magic constant k.

Observation 2, Theorems 3, 4 and Lemma 1 lead to the following problem:

Problem 1. For any even integer k �= 4, does there exist a nearly distance magic
graph G with magic constant k?

Theorem 5. Let G be a r-regular graph which is not distance magic. Suppose
G admits a nearly distance magic labeling f with magic constant k. Then r is
odd and there are exactly n

2 vertices with weight k.
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Proof. Let f be a nearly distance magic labeling of G. Let t be the number of
vertices with weight k. Hence

∑
v∈V w(v) = tk + (n − t)(k + 1) = n(k + 1) − t.

Since G is r-regular it follows that
∑

v∈V w(v) =
∑

v∈V

∑
x∈N(v) f(v) = r n(n+1)

2 .
Hence

r
n(n + 1)

2
= n(k + 1) − t.

Therefore k = r(n+1)
2 + t

n − 1. Since k is an integer and t < n it follows that
r is odd, n is even and t = n

2 .

Theorem 6. A tree T is nearly distance magic if and only if T ∼= P2 or P3.

Proof. Let f be a nearly distance magic labeling of a tree T of order n. Suppose
u1 and u2 are pendent vertices such that N(u1) = {v1}, N(u2) = {v2} and
v1 �= v2. Then it follows that f(v1) = n and f(v2) = n − 1. Now any vertex
adjacent to v1 is a pendent vertex and hence the component which contains v1 is
a star. Therefore T is not connected which is a contradiction. Hence T ∼= K1,n−1

and it follows that T ∼= P2 or P3.

3 Conclusion and Scope

Since any distance magic graph is nearly distance magic, an interesting problem
for further investigation is the construction of graphs which are nearly distance
magic but not distance magic. Another possible direction for further investiga-
tion is characterisation of specific families of graphs which are nearly distance
magic.

Acknowledgement. The first two authors are thankful to the Department of Science
and Technology, New Delhi for financial support through the project No. SR/S4/MS-
734/11.
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Abstract. In this paper, some necessary and sufficient conditions for the

existence of an evenly partite directed bigraph (
−→
Kp,q⊕q) factorization in

the product graphs (Cm ◦ Kn)∗ and (Km ◦ Kn)∗, for m ≥ 3, n, p, q ≥ 2
are obtained.

Keywords:
−→
Kp,q⊕q-factorization · m-partite graph · Wreath product

of graphs · Symmetric digraph

1 Introduction

Let G be a graph. Then, for any positive integer s, sG denotes s disjoint copies
of G, G(s) denotes the graph obtained from G by replacing each edge by s
edges and G∗ is the symmetric digraph of G obtained by replacing every edge
of G by a symmetric pair of arcs. An m-partite graph G has the partition of
the vertex set V into m subsets such that uv is an edge of G if and only if
u and v belong to different partite sets. The graph with vertex set V having
partite sets V1,V2,. . . ,Vm such that |Vi| = ni and edge set E = {(u, v) ∈ Vi × Vj ,
i, j ∈ {1, 2, . . . ,m} and i �= j} is called a complete m-partite graph and is denoted
by Kn1,n2,...,nm

.
−→
Kp,q⊕q denotes an evenly partite directed bigraph having partite

sets V1, V2 and V3 with |V1| = p, |V2| = |V3| = q such that all arcs are oriented
from the p vertices (tails) at V1 towards q vertices (heads) at V2 and V3 and there
is no arc between V2 and V3. Decomposition of G is a partition of G into edge -
disjoint subgraphs G1, G2, ..., Gl such that E(G) = E(G1) ∪ E(G2) ∪ ...∪ E(Gl);

in this case we express G =
l⊕

i=1

Gi. In particular, if F is any graph and Gi
∼= F,

then it is called an F -decomposition of G and is denoted by F |G. A spanning
subgraph of G is called an F - factor of G, if each component of G is isomorphic
to F. Decomposition of G into F - factors is called an F - factorization of G and
we denote it by F‖G. The wreath product of the graphs G and H denoted by
G ◦ H, has vertex set V (G) × V (H) in which two vertices (u1, v1) and (u2, v2)
are adjacent whenever u1u2 ∈ E(G) or u1 = u2 and v1v2 ∈ E(H). For other
definitions which are not mentioned here, see [1].

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 83–89, 2017.
DOI: 10.1007/978-3-319-64419-6 11
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In 2000, Ushio [4] obtained a necessary and sufficient condition for the exis-
tence of an Sk(=

−→
K1, k−1

2 ⊕ k−1
2

)-factorization of K∗
n,n,n. In 2002, Ushio [5] proved

that the necessary condition for the existence of an Sk-factorization in K∗
n,n,n(λ)

is also sufficient. Hemalatha and Muthusamy [3] proved that the necessary con-
dition is also sufficient for the existence of an Sk-factorization in (Cm ◦ Kn)∗.
Further, some necessary and sufficient conditions for the existence of an Sk-
factorization of K∗

n1,n2,...,nm
have been established. Hemalatha and Muthusamy

[2] obtained some necessary and sufficient conditions for the existence of an
S̃k

∼= −→
K1, k−1

2 ⊕ k
2
-factorization in (Cm ◦ Kn)∗ and (Km ◦ Kn)∗.

In this paper, some necessary and sufficient conditions for the existence of−→
Kp,q⊕q-factorizations in (Cm ◦ Kn)∗ and (Km ◦ Kn)∗, for m ≥ 3, n, p, q ≥ 2 are
obtained.

2 Evenly Partite Directed Bigraph Factorization
of (Cm ◦ Kn)

∗

Necessary Condition

Theorem 1. m ≥ 3 and n, p, q ≥ 2 be given integers. If (Cm ◦ Kn)∗ has an−→
Kp,q⊕q-factorization, then

(a) mn ≡ 0(mod 3p) where p = q
(b) n ≡ 0(mod p+2q

3d
pq
d ), where m = 3, p + 2q ≡ 0(mod 3) and d = (p, q)

(c) n ≡ 0(mod (p+2q)pq
d ) where m = 3, p + 2q �≡ 0(mod 3) and d = (p, q)

(d) n ≡ 0(mod (p+2q)pq
d ) where m > 3, p �= q and d = (p, q).

Proof. Let V1, V2, ..., Vm be the partite sets of the m-partite digraph (Cm◦Kn)∗.
Assume that (Cm ◦ Kn)∗ has an

−→
Kp,q⊕q-factorization. Let r be the number of−→

Kp,q⊕q - factors, s be the number of components in each
−→
Kp,q⊕q - factor and b

be the total number of components in the
−→
Kp,q⊕q-factorization.

s =
mn

p + 2q
(1)

b =
mn2

pq
(2)

r =
b

s
=

n(p + 2q)
pq

. (3)

When p = q, mn = 3ps and hence (a) follows.
Now due to the structure of

−→
Kp,q⊕q, the p tails at V, requires q heads at Vi+1

and Vi−1. Thus p|n and q|n and hence if d = gcd(p, q), Vi then

n ≡ 0(mod
pq

d
) (4)
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From Eq. (1), n = s(p+2q)
m . Now we will deal the theorem into 2 cases as m = 3

and m > 3.

Case(i). m = 3.
It divides either s or p + 2q since it is a prime. If 3|s, then

n ≡ 0(mod p + 2q) (5)

If 3|p + 2q, then
n ≡ 0(mod (p + 2q)/3)). (6)

Thus, (b) and (c) follows from Eqs. (4), (5) and (6).

Case(ii). m > 3. By the definition of
−→
Kp,q⊕q, the number of tail vertices of a−→

Kp,q⊕q-factor from any Vi must be a multiple of p. Also, due to the structure
of (Cm ◦ Kn)∗ it is clear that, all the m - parts of V ((Cm ◦ Kn)∗) should have
equal number of tail vertices since otherwise if si is the number of components
in an

−→
Kp,q⊕q,-factor having tail at Vi, then si = pti and hence it requires pqti

head vertices from Vi−1 and Vi+1. If ti is different for each Vi then |Vi| �= n for
all i = 1, 2, ...,m. Thus,

n ≡ 0(mod p + 2q). (7)

(d) follows from Eqs. (4) and (7). Hence the proof.

Sufficient Conditions

Notation: Let vij denotes jth vertex at Vi, where i, j ∈ 1, 2...,m. A
−→
Kp,q⊕q with

tail at v1i, i = 1, 2, ..., p and q heads at v2j , j = 1, 2, ..., q and v3j , j = 1, 2, ..., q is
denoted by [v11, v12, ..., v1p; v21, v22, ..., v2q, v31, v32, ..., v3q].

The following lemmas are required to prove the main result.

Lemma 1. For given integers m ≥ 3, p, q ≥ 2 and an m-partite digraph G, if G

has an
−→
Kp,q⊕q-factorization, then sG also has an

−→
Kp,q⊕q-factorization for every

positive integer s.

Proof. sG is nothing but s disjoint copies of G and hence the proof follows.

Lemma 2. For any integer s > 0,
−→
Kp,q⊕q‖−→

Ksp,sq⊕sq.

Lemma 3. If (Cm ◦ Kn)∗ and (Km ◦ Kn)∗ have
−→
Kp,q⊕q-factorizations, then so

do (Cm ◦ Ksn)∗ and (Km ◦ Ksn)∗, for every positive integer s.

Proof. If (Cm ◦ Kn)∗ and (Km ◦ Kn)∗ have
−→
Kp,q⊕q-factorizations, then (Cm ◦

Ksn)∗ and (Km ◦ Ksn)∗, have
−→
Ksp,sq⊕sq-factorizations. But, by Lemma 2,−→

Ksp,sq⊕sq has a
−→
Kp,q⊕q - factorization. Hence the proof.

Theorem 2. If n ≡ 0(mod p) and m = 3t, t ≥ 1 then
−→
Kp,p⊕p‖(Cm ◦ Kn)∗.
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Proof. Let n = ps and s = 1. Let the m = 3t vertex partite sets of (Cm◦Kp)∗ be
V1 = {11, 21, ..., p1}, V2 = {12, 22, ..., p2}, . . . V3t = {13t, 23t, ..., p3t}. Then the 3−→
Kp,p⊕p -factors F0, F1 and F2 of (Cm ◦ Kp)∗ are as follows:

Fj =
t−1⊕

i=0

{[
13i+j+1, 23i+j+1, ..., p3i+j+1; 13i+j+2, 23i+j+2, ..., p3i+j+2,

13i+j , 23i+j , ...p3i+j
]}

, j = 0, 1, 2,

where the superscripts are taken addition modulo 3t with residues 1, 2, ..., 3t.
Thus, F0, F1 and F2 together comprise an

−→
Kp,p⊕p - factorization of (Cm ◦ Kp)∗

and hence by Lemma 3,
−→
Kp,p⊕p‖(Cm ◦ Kn)∗.

Theorem 3. Let odd m ≥ 3 and p, q ≥ 2 be given positive integers such that
gcd(p, q) = 1. If n ≡ 0(mod pq(p + 2q)) then

−→
Kp,q⊕q‖(Cm ◦ Kn)∗.

Proof. Let n = pq(p+2q)s. If s = 1, then n = pq(p+2q). Let the m-partite sets
of (Cm ◦ Kpq(p+2q))∗ be V1 = {11, 21, ..., (pq(p + 2q))1}, V2 = {12, 22, ..., (pq(p +
2q))2}, ..., Vm = {1m, 2m, ..., (pq(p + 2q))m}. Now for j = 0, 1, 2, ..., (p + 2q) − 1
and r = 0, 1, 2, ..., (p + 2q) − 1, we can construct (p + 2q)2

−→
Kp,q⊕q-factors Fjr of

(Cm ◦ Kpq(p+2q))∗ as follows:

Fjr =

pq−1⊕

i=0

{
[(pqj + ip+ 1)1, (pqj + ip+ 2)1, ..., (pqj + ip+ p)1;

(q(r + i) + 1)2, (q(r + i) + 2)2, ..., (q(r + i) + q)2,

(q(pq + r + j) + 1)m, (q(pq + r + j) + 2)m, ..., (q(pq + r + j) + q)m],

[q(pq + r) + ip+ 1)2, (q(pq + r) + ip+ 2)2, ..., (q(pq + r) + ip+ p)2;

(pq(j + p+ q) + iq + 1)3,

(pq(j + p+ q) + iq + 2)3, ..., (pq(j + p+ q) + iq + q)3,

(pq(j + p) + iq + 1)1, (pq(j + p) + iq + 2)1..., (pq(j + p) + iq + q)1],

[(pqj + ip+ 1)3, (pqj + ip+ 2)3, ..., (pqj + ip+ p)3;

(q(r + i) + 1)4, (q(r + i) + 2)4, ..., (q(r + i) + q)4,

(pq(p+ q) + (r + i)q + 1)2,

(pq(p+ q) + (r + i)q + 2)2, ..., (pq(p+ q) + (r + i)q + q)2],

[q(pq + r) + ip+ 1)4, (q(pq + r) + ip+ 2)4, ..., (q(pq + r) + ip+ p)4;

(pq(j + p+ q) + iq + 1)5, (pq(j + p+ q) + iq + 2)5, ..., (pq(j + p+ q) + iq + q)5,

(pq(j + p) + iq + 1)3, (pq(j + p) + iq + 2)3..., (pq(j + p) + iq + q)3],

[(pqj + ip+ 1)5, (pqj + ip+ 2)5, ..., (pqj + ip+ p)5;

(q(r + i) + 1)6, (q(r + i) + 2)6, ..., (q(r + i) + q)6, (pq(p+ q) + (r + i)q + 1)4,

(pq(p+ q) + (r + i)q + 2)4, ..., (pq(p+ q) + (r + i)q + q)4],

...

[q(pq + r) + ip+ 1)(m−1), (q(pq + r) + ip+ 2)(m−1), ...,

(q(pq + r) + ip+ p)(m−1);

(pq2 + q(p+ r − i− 1) + 1)m, (pq2 + q(p+ r − i− 1) + 2)m, ...,
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(pq2 + q(p+ r − i− 1) + q)m,

(pq(j + p) + iq + 1)(m−2), (pq(j + p) + iq + 2)(m−2)...,

(pq(j + p) + iq + q)(m−2)],

[(pq(p+ 2q + r) + ip+ 1)m, (pq(p+ 2q + r) + ip+ 2)m, ...,

(pq(p+ 2q + r) + ip+ p)m;

(pq(p+ q) + (r + i)q + 1)(m−1), (pq(p+ q) + (r + i)q + 2)(m−1), ...,

(pq(p+ q) + (r + i)q + q)(m−1),

(pq(p+ q) + (j + i)q + 1)1, (pq(p+ q) + (j + i)q + 2)1...,

(pq(p+ q) + (j + i)q + q)1]
}
,

where the additions in the bases are taken modulo pq(p + 2q) with residues
1, 2, ..., pq(p + 2q). i.e., by dividing each partite set into p + 2q parts consist-
ing of pq vertices and keeping the first p2q vertices at V1 as fixed tail we
can form p + 2q

−→
Kp,q⊕q-factors. When j, r varies over 1, 2, ..., p + 2q, we have

(p+2q)2
−→
Kp,q⊕q-factors of (Cm ◦Kpq(p+2q))∗. Due to symmetry of arcs, we have

another(p + 2q)2
−→
Kp,q⊕q-factors as above. All these 2(p + 2q)2

−→
Kp,q⊕q-factors

together comprise an
−→
Kp,q⊕q-factorization of (Cm ◦ Kpq(p+2q))∗. By Lemma 3,−→

Kp,q⊕q‖(Cm ◦ K̄pq(p+2q)s)∗ and hence
−→
Kp,q⊕q‖(Cm ◦ Kn)∗.

3 Evenly Partite Directed Bigraph Factorization
of (Km ◦ Kn)

∗

In this section, some necessary and sufficient conditions for the existence of an−→
Kp,q⊕q-factorization of (Km ◦ Kn)∗ for m ≥ 3, n, p, q ≥ 2 have been obtained.

Necessary Condition

Theorem 4. Let m ≥ 3 and n, p, q ≥ 2 be given integers. If (Km ◦ Kn)∗ has an−→
Kp,q⊕q-factorization, then

(a) mn ≡ 0(mod 3p) where p = q
(b) n ≡ 0(mod p+2q

3
pq
d ), where m = 3, p + 2q ≡ 0(mod 3) and d = (p, q)

(c) n ≡ 0(mod pq(p+2q)
d ), where m = 3, p + 2q �≡ 0(mod 3) and d = (p, q)

(d) n ≡ 0(mod pq
d

(p+2q)
d ), where m > 3, p �= q and d = (p, q).

Proof. Let V1, V2, ..., Vm be the partite sets of the m-partite digraph (Km◦Kn)∗.
Assume that (Km ◦ Kn)∗ has an

−→
Kp,q⊕q-factorization. Let r be the number of−→

Kp,q⊕q - factors, s be the number of components in each
−→
Kp,q⊕q - factor and b

be the total number of components in the
−→
Kp,q⊕q-factorization.

s =
mn

p + 2q
(8)

b =
m(m − 1)n2

2pq
(9)

r =
b

s
=

n(m − 1)(p + 2q)
2pq

. (10)
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When p = q, mn = 3ps and hence (a) follows.
From Eq. (8) for m > 3 and d = gcd(p, q), we have,

n ≡ 0(mod
p + 2q

d
). (11)

Now due to the structure of
−→
Kp,q⊕q, the p tails at Vi, requires q heads at

Vi+1 and Vi−1. Thus p|n and q|n and hence if d = gcd(p, q), then

n ≡ 0(mod
pq

d
) (12)

(d) follows from Eqs. (11) and (12).
When m = 3, (b) and (c) follows from Eqs. (8) and (12).

Sufficient Conditions

Theorem 5. For given integers p, q ≥ 2, if q = ps then
−→
Kp,q⊕q‖(K2s+1 ◦ Kq)∗,

for some positive integer s.

Proof. Let V1 = {1(1), 2(1), ..., (q)(1), }, V2 = {1(2), 2(2), ..., (q)(2)}, ..., V2s+1 =
{1(2s+1), 2(2s+1), ..., (q)(2s+1)} be the 2s + 1-partite sets of (K2s+1 ◦ Kq)∗. We
now construct s(2s + 1)

−→
Kp,q⊕q - factors as follows: Let

Fjr =
s−1⊕

i=0

{[(p(i + r) + 1)(j), (p(i + r) + 2)(j), ...,

(p(i + r + 1))(j); 1(2i+j+1), 2(2i+j+1), ..., (q)(2i+j+1),

1(2i+j+2), 2(2i+j+2), ..., (q)(2i+j+2)]},

j = 1, 2, ..., 2s + 1, r = 0, 1, 2, ..., s − 1, where the superscripts are taken modulo
2s+1 with residues 1, 2, ..., 2s+1 and the additoins in the bases are taken modulo
q with residues 1, 2, ..., q. i.e., by fixing the q = ps vertices in one partite set as
centers and the vertices of the remaining partite sets as end vertices, we can form
s

−→
Kp,q⊕q-factors. By shifting the center through the 2s+1 -partite sets we have all

s(2s+1)
−→
Kp,q⊕q-factors Fjr, j = 1, 2, ..., 2s+1, r = 0, 1, 2, ..., s−1 which together

give an
−→
Kp,q⊕q - factorization of (K2s+1 ◦ Kq)∗. Thus,

−→
Kp,q⊕q‖(K2s+1 ◦ Kq)∗.

Theorem 6. For given positive integers odd m ≥ 3 and p, q ≥ 2 such that
gcd(p, q) = 1, if n ≡ 0(mod pq(p + 2q)), then

−→
Kp,q⊕q‖(Km ◦ Kn)∗.

Proof. By Walecki’s construction, when m ≥ 3 is odd, (Km◦Kn)∗ ∼= ⊕m−1
2

i=1 (Hi◦
Kn)∗, where Hi is a Hamiltonian cycle of (Km ◦ Kn)∗. But by Theorem 3,−→
Kp,q⊕q‖(Hi ◦ Kn)∗ when n ≡ 0(mod pq(p + 2q)) and hence by Lemma 1,−→
Kp,q⊕q‖(Km ◦ Kn)∗. Hence the theorem.
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4 Conclusion

In this paper, some necessary conditions for the existence of an
−→
Kp,q⊕q-

factorization of (Cm ◦ Kn)∗ are obtained. Further, it is proved that the nec-
essary conditions are also sufficient for the existence of an

−→
Kp,p⊕p-factorization

in (Cm ◦ Kn)∗ if (i). m = 3t, t ≥ 1 and n ≡ 0(mod p) and (ii). m ≥ 3 is odd and
n ≡ 0(mod pq(p+2q)). In Sect. 3, some necessary conditions for the existence of
an

−→
Kp,q⊕q-factorization of (Km ◦Kn)∗ are obtained and the sufficiency is proved

when (i). q = ps and m = 2s + 1, for some positive integer s and (ii). m ≥ 3 is
odd and n ≡ 0(mod pq(p + 2q)).
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Abstract. A graph embedding comprises of an ordered pair of injective
maps ≺ f, p � from a guest graph G = (V (G), E(G)) to a host graph
H = (V (H), E(H)) which is formulated as follows: f is a mapping from
V (G) to V (H) and p assigns to each edge (a, b) of G, a shortest path
p(a, b) in H. The minimum layout problem is to find an embedding ≺
f, p � from a graph G into a graph H such that

∑
e∈E(H) EC≺f,p�(e) =

∑ |(a, b) ∈ E(G) : e ∈ E(p(a, b))| is minimized. In this paper we develop
an algorithm to find the minimum layout of embedding the circulant
graph into certain height balanced trees like Fibonacci tree and wounded
lobster.

Keywords: Height balanced tree · Layout · Circulant graph · Fibonacci
tree

1 Introduction

Graph embedding has been an integral tool in efficient implementation of par-
allel algorithms on parallel computers with minimal communication overhead.
A graph embedding comprises of an ordered pair of injective maps ≺ f, p �
from a guest graph G = (V (G), E(G)) to a host graph H = (V (H), E(H))
which is formulated as follows: f is a mapping from V (G) to V (H) and p
assigns to each edge (a, b) of G, a shortest path p(a, b) in H [1,7]. Figure 1
illustrates a graph embedding. The edge congestion of an embedding is defined
by EC≺f,p�(e) = |(a, b) ∈ E(G) : e ∈ E(p(a, b))| [6].

The layout L≺f,p�(G,H) of an embedding is defined as the sum of edge
congestion of all the edges of H [3,5]. The minimum layout of G into H is given
by L(G,H) = min L≺f,p�(G,H). The minimum layout problem is to find the
embedding that induces L(G,H). When the host graph is a tree, the layout
problem finds application in graph drawing, data structures and representations
and networks for parallel systems [5,10].

Maximum Induced Subgraph Problem [3]: Let G = (V (G), E(G)) and S ⊆
V (G). Let IG(S) = {(u, v) ∈ E(G) : u ∈ S and v ∈ S} and for 1 ≤ k ≤ |V (G)|,
let IG(k) = max

S⊆V , |S|=k
|IG(S)|. Then the problem is to find S ⊆ V (G) with

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 90–97, 2017.
DOI: 10.1007/978-3-319-64419-6 12
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Fig. 1. Embedding of an enhanced hypercube G into rooted complete binary tree H

|S| = k such that IG(k) = |IG(S)|. Such a set S is called an optimal set with
respect to the maximum induced subgraph problem.

Min-cut Problem [3]: Let G = (V (G), E(G)) and S ⊆ V (G). Let ΘG(S) =
{(u, v) ∈ E : u ∈ S and v /∈ S} and for 1 ≤ k ≤ |V (G)|, let ΘG(k) =

min
S⊆V , |S|=k

|ΘG(S)|. Then the problem is to find S ⊆ V (G) with |S| = k such

that ΘG(k) = |ΘG(S)|. Such a set S is said to be optimal with respect to the
min-cut problem. For any graph G, ΘG(V − S) = ΘG(S) for all S ⊆ V (G). If G
is an r-regular graph, then ΘG(k) = rk−2IG(k) for every k ∈ {1, 2, . . . , |V (G)|}.

The following results provide a method for partitioning the edges of the host
graph which in turn can be effectively used to solve the minimum layout problem.

Lemma 1 (Congestion Lemma) [6]. Let G be an r-regular graph and ≺ f, p �
be an embedding of G into H. Let S be an edge cut of H such that the removal
of edges of S splits H into 2 components H1 and H2 and EC≺f,p�(S) denote
the sum of edge congestion over all the edges in S. Let G1 = G[f−1(H1)] and
G2 = G[f−1(H2)]. Suppose the following conditions hold.

1. For every edge (a, b) ∈ Gi, i = 1, 2, p(a, b) has no edges in S.
2. For every edge (a, b) in G with a ∈ G1 and b ∈ G2, p(a, b) has exactly one

edge in S.
3. G1 is optimal with respect to the maximum induced subgraph problem.

Then EC≺f,p�(S) is minimum and EC≺f,p�(S) = ΘG(|V (G1)|) =
ΘG(|V (G2)|).
Lemma 2 [6]. Let ≺ f, p � be an embedding from G into H. Let
{S1, S2, . . . , Sp} be a partition of E(H) such that EC≺f,p�(Si) is minimum for

all i. Then L≺f,p�(G,H) is minimum and L≺f,p�(G,H) =
p∑

i=1

EC≺f,p�(Si).

Definition 1 [10]. A circulant undirected graph G(n;±S), S ⊆ {1, . . . , �n/2�},
n ≥ 3 is defined as a graph consisting of the node set V = {0, 1, . . . , n − 1} and
the edge set E = {(i, j) : |j − i| ≡ s(mod n), s ∈ ±S}.
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In this paper, we confine our work to the circulant graph G(n;±S), where
S = {1, 2, ..., j}, 1 ≤ j < �n/2�. For n ≥ 3, 1 ≤ j < �n/2�, G(n;±{1, 2, ..., j}) is
a 2j-regular graph. Figure 2(a) illustrates a circulant graph.

Lemma 3 [8]. A set of k consecutive nodes induces an optimal set with respect
to the maximum induced subgraph problem in G(n;±S) on k nodes.

Lemma 4 [8]. Let G be the circulant graph G(n;±S), n ≥ 3. Then for 1 ≤
k ≤ n,

IG(k) =

⎧
⎨

⎩

k(k − 1)/2 ; k ≤ j + 1
kj − j(j + 1)/2 ; j + 1 < k ≤ n − j
1
2{(n − k)2 + (4j + 1)k − (2j + 1)n} ; n − j < k ≤ n .
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Fig. 2. (a) Circulant graph G(8;±{1, 2, 3}) (b) Wounded lobster L4

A height balanced tree T is a rooted binary tree in which for every node v,
the difference between the heights of the left and right child denoted as v1 and
v2 respectively is at most one [2].

Fibonacci trees are a type of height balanced trees which are built recursively
in one of the following two ways.

Fibonacci Tree fh [4]: The trees f1 and f2 consists of only the root node. For
h ≥ 3, fh is constructed by taking a new root node and attaching fh−1 on the
left side and fh−2 on the right side of the root node by an edge as shown in
Fig. 3(a).

Fibonacci Tree f
′
h [2]: The tree f1

1 consists of only the root node and f
′
2 is

formed by attaching a pendant node to the root node. For h ≥ 3, the left
subtree of f

′
h is f

′
h−1 and its right subtree is f

′
h−2. Figure 3(b) illustrates f

′
h for

h = 1, 2, . . . 5.
Let |V (fh)| = mh and |V (f

′
h)| = m

′
h. Then, mh = 2Fh−1 and m

′
h = Fh+2−1,

where Fh denotes the Fibonacci number.
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Fig. 3. (a) fh type Fibonacci trees (b) f
′
h type Fibonacci trees

Definition 2 [9]. A lobster is a tree with the property that the removal of pen-
dant nodes leaves a caterpillar. A wounded lobster Ln is a lobster satisfying the
following conditions:

(i) There are 2n−2 spine nodes and every spine node is adjacent to exactly one
node of degree 2 and one node of degree 1.

(ii) Removal of pendant nodes incident at nodes of degree 2 leaves a caterpillar.

Figure 2(b) illustrates a wounded lobster.
There are several techniques for traversing the nodes of a tree according to

the order in which the nodes are visited. In this paper we confine our study to
postorder.

Algorithm 1. Postorder Tree Traversal Algorithm
Do the following recursively until all nodes are traversed:
Step 1 - Traverse left subtree.
Step 2 - Traverse right subtree.
Step 3 - Visit root node.

2 Main Results

In this section we embed the circulant graph into Fibonacci trees and wounded
lobster to minimize their layouts.

Theorem 1. The minimum layout of circulant graphs G = G(mh;±S) and
G

′
= G(m

′
h;±S) into the Fibonacci trees is given by (a) L(G, fh) =

Fh−2.ΘG(m3) +Fh−3.ΘG(m4) + . . . + F2.ΘG(mh−1) + 2|S| and (b)L(G′, f
′
h) =

Fh−1.ΘG′ (m
′
2) + Fh−2.ΘG′ (m

′
3) + . . . + 2ΘG′ (m

′
h−2) + ΘG′ (m

′
h−1) + 2|S|.

Proof. We split the proof into three parts comprising of labeling the guest and
host graphs, followed by the proposal of embedding and layout computation.

Guest and Host Labeling: Label the circulant graph and the two types of
Fibonacci trees as in the pattern given in Table 1.
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Table 1. Labeling algorithm

Labeling I Labeling II

Guest Graph: Label the consecutive
nodes of G(mh;±S) as
0, 1, 2, . . . ,mh − 1 in the clockwise
direction

Guest Graph: Label the consecutive
nodes of G(m

′
h;±S) as 0, 1, . . . ,m

′
h − 1

in the clockwise direction

Host Graph: Label the nodes of fh by
postorder tree traversal from 0 to
mh − 1

Host Graph: Label the nodes of f
′
h by

postorder tree traversal from 0 to
m

′
h − 1

Proposed Embedding: Define an embedding ≺ f, p � from G(mh;±S) into
fh and G(m

′
h;±S) into f

′
h such that f(x) = x.

Layout Computation: We split the proof into two cases.

Proof for (a): For 1 ≤ i ≤ mh − 1, let Si be an edge cut of fh such that its
removal disengages fh into two components Xi and Xi as shown in Fig. 4(a),
with the node set Vi of Xi being as follows.

For 1 ≤ i ≤ mh−1,

Vi =

⎧
⎪⎨

⎪⎩

{0, 1, . . . , i − 1}, if i = mg, 1 ≤ g ≤ h − 1
{ma,ma + 1, . . . , i − 1}, if i = ma + mb, 1 ≤ b < a ≤ h − 1
{i − 1}, otherwise.

For mh−1 + 1 ≤ i ≤ mh − 1,

Vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{mh−1,mh−1 + 1, . . . , i − 1}, if i = mh−1 + mg, 1 ≤ g ≤ h − 1

{mh−1 + ma,mh−1 + ma + 1, . . . , i − 1}, if i = mh−1 + ma + mb,

1 ≤ b < a ≤ h − 1

{i − 1}, otherwise.

Let Gi be the graph induced by {f−1(u) : u ∈ Vi}. It can be noted that Xi is
consecutively labeled for all i and hence by Lemma 3, Vi is an optimal set with
respect to the maximum induced subgraph problem. Si also satisfies conditions
(i) and (ii) of Lemma 1. In addition, {Si}mh−1

i=1 forms a partition of E(fh). Hence
by Lemma 2, L≺f,p�(G, fh) is minimum.

Let mh −1 = Fh +Fh−2 +Fh−3 +Fh−4 + . . . F2, where mh −1 represents the
number of edge cuts of fh and Fh, Fh−2, Fh−3, . . . , F3, F2 denote the number of
node sets Vi of cardinality m2,m3, . . . ,mh−2 and mh−1 respectively.

Layout: L(G, fh) =
mh−1∑

i=1

EC≺f,p�(Si) =
mh−1∑

i=1

ΘG(|Vi|) =
Fh∑

i=1

ΘG(m2) +

Fh−2∑

i=1

ΘG (m3) +
Fh−3∑

i=1

ΘG(m4) + . . . +
F3∑

i=1

ΘG(mh−2) +
F2∑

i=1

ΘG(mh−1) =

Fh−2.ΘG(m3) + Fh−3.ΘG(m4) + . . . + F2.ΘG(mh−1) + 2|S|.
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Proof for (b): Let S
′
i , 1 ≤ i ≤ mh −1 be an edge cut of f

′
h such that removal of

S
′
i disconnects f

′
h into two components Yi and Y i as depicted in Fig. 4(b) where

the node set V
′
i of Yi is defined by replacing mg,ma,mb and mh−1 in Vi of case

(a) by m
′
g,m

′
a,m

′
b and m

′
h−1 respectively.

Let G
′
i be the graph induced by {f−1(a) : a ∈ V

′
i }. Clearly Xi is labeled

consecutively for all i and hence by Lemma 3, V
′
i is an optimal set with respect

to the maximum induced subgraph problem. S
′
i also satisfies the remaining two

conditions of Lemma 1. In addition, {S
′
i}m

′
h−1

i=1 forms a partition of E(f
′
h). Hence

by Lemma 2, L≺f,p�(G, f
′
h) = L(G, f

′
h).

Let m
′
h − 1 = Fh + Fh−1 + Fh−2 + . . . F2, where Fh, Fh−1, Fh−2, . . . , F3, F2

denote the number of nodes sets V
′
i of cardinality m

′
1,m

′
2, . . . ,m

′
h−2 and m

′
h−1

respectively.

Layout: L(G
′
, f

′
h) =

m
′
h−1∑

i=1

EC≺f,p�(S
′
i) =

m
′
h−1∑

i=1

ΘG′ (|V ′
i |) =

Fh∑

i=1

ΘG′ (m
′
1) +

Fh−1∑

i=1

ΘG′ (m
′
2) + . . . +

F3∑

i=1

ΘG′ (m
′
h−2) +

F2∑

i=1

ΘG′ (m
′
h−1) = Fh−1.ΘG′ (m

′
2) +

Fh−2.ΘG′ (m
′
3) + . . . + 2ΘG′ (m

′
h−2) + ΘG′ (m

′
h−1) + 2|S|.

Theorem 2. The minimum layout of G = G(2n;±S) into the wounded lobster
Ln is given by L(G,Ln) = 1

3{2n−1(12j(2n−4 + 1) + 2n−3(3 − 2n) − 7)}.

Proof. Guest and Host Labeling: Label G(2n;±S) in the clockwise direction
as described in Table 1. Label Ln using postorder tree traversal order from 0 to
2n − 1.

Proposed Embedding: Define an embedding ≺ f, p � from G(2n;±S) into
Ln such that f(x) = x.

Layout Computation: Table 2 gives three sets of edge cuts covering E(Ln)
and the node set of the components obtained by the removal of these edge cuts
as depicted in Fig. 4(c).

Let Gr, G
′
r and G

′′
r be the inverse image of Yr, Y

′
r and Y

′′
r respectively under

≺ f, p �. By Lemma 3, the node set of all the three inverse images are optimal in G
with respect to the maximum induced subgraph problem. All three edge cutsSr, S

′
r

Table 2. Edge cuts of Ln

Edge Cuts Components V(Component)

Sr r = 1, 2, . . . , 2n−1 Yr, Y r V (Yr) =

{
{4(r − 1)} if r is odd

{2(r − 2) + 1} if r is even

S
′
r r = 1, 2, . . . , 2n−2 Y

′
r , Y

′
r V (Y

′
r ) = {4(r − 1) + 1, 4(r − 1) + 2}

S
′′
r r = 1, 2, . . . , 2n−2 − 1 Y

′′
r , Y

′′
r V (Y

′′
r ) = {4(r − 1) + 0, . . . , 4(r − 1) + 3}
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and S
′′
r also satisfy the remaining two conditions of Lemma1. In addition, {Sr, r =

1, 2, . . . , 2n−1} ∪ {S′
r, r = 1, 2, . . . , 2n−2} ∪ {S′′

r , r = 1, 2, . . . , 2n−2 − 1} forms
a partition of E(Ln). Hence by Lemma 2, the layout induced by the embedding
≺ f, p � is minimum.

From Lemmas 2 and 4, L(G,Ln) =
2n−1
∑

r=1
EC≺f,p�(Sr) +

2n−2
∑

r=1
EC≺f,p�(S

′
r) +

2n−2−1∑

r=1
EC≺f,p�(S

′′
r ) =

2n−1
∑

r=1
ΘG(|V (Yr)|) +

2n−2
∑

r=1
ΘG(|V (Y

′
r )|) +

{
2n−3
∑

r=1
ΘG

(|V (Y
′′
r )|)+

2n−2−1∑

r=2n−3+1

ΘG(|V (Y
′′
r )|)

}

= 2n−1

3 { 12j (2n−4+1)+2n−3(3−2n)−7 } .
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Fig. 4. Edge cuts of (a) f5 (b) f
′
5 (c) L4

3 Conclusion

In this paper we have embedded and found the minimum layout of the cir-
culant graph into certain classes of height balanced trees like Fibonacci trees
and wounded lobster by using edge partitioning techniques and isoperimetric
methods.
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Abstract. In formal language theory, the Siromoney matrix grammars
generate matrix languages. They are two dimensional languages which
are m× n arrays of terminals. In string languages, the ability of a regu-
lar language to dissect an infinite language into two partitions of infinite
size has already been studied under the dissecting power of regular lan-
guages. In this paper we extend this special dissecting capacity of certain
classes of string languages to matrix languages. The results demonstrate
the matrix dissectibility of certain classes of matrix languages like infi-
nite recursive matrix languages, constantly growing matrix languages
(CGML), languages that are not CGML immune and CF:CF Siromoney
matrix languages. In this paper the objectives of the study, extension
methodology and results are discussed in detail.

Keywords: Theory of computing · Formal languages · Regular lan-
guages · Matrix languages · Regular matrix languages · Semi-linear ·
Constantly growing · Dissectible

1 Introduction

In formal language theory, the study of the structural properties of different
families of languages has been a vital tool in understanding and solving many
problems. In this line of study, another structural property which deals with the
ability of an infinite language to partition an infinite set into two infinite sets
called dissectibility was studied by Tomoyuki Yamakami and Yuichi Kato [9].
This study motivated us to extend the concept of dissectibility to the language
of arrays. If the dissecting set was regular it was called REG-dissectibility and
in general if it was an infinite language C it was called C-dissectibility.

Till now, the infinite language which dissects and the one which is being
dissected have been string languages.

c© Springer International Publishing AG 2017
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Now, we consider matrix languages that have been introduced by Siromoney
et al. [6]. These matrix languages are languages whose sentences are matrices
and are two dimensional languages (m×n rectangular arrays of terminals). More
about these languages can be seen in [2,4,7]. This version of matrix language
is also called as Siromoney matrix language [8]. We extend the concept of dis-
sectibility to these kind of matrix languages.

2 Preliminaries

Let Σ be a finite non-empty set of symbols. A string over Σ is a finite sequence
of symbols in Σ. The set of all strings over Σ is Σ∗. The empty string is λ. The
set Σ+ = Σ∗ − {λ}. For basic definitions and notations we follow [1,5].

If A and B are two sets, their difference A − B = {x | x ∈ A, x �∈ B}.
|A| = ∞ means A is infinite and |A| < ∞ means A is finite. If A and B are
two countable sets A ⊆ae B means |A − B| < ∞. ae means almost everywhere.
A =ae B whenever both A ⊆ae B and B ⊆ae A hold. A denotes the complement
of A.

Definition 1. [9] An infinite language L is regular dissectible (REG-dissectible)
if there exists a regular language C such that |L ∩ C| = ∞ and |L ∩ C| = ∞.

Definition 2. [9] A non-empty language family F is REG-dissectible if and only
if every infinite language in F is REG-dissectible.

In notations, REG-DISSECT denotes the collection of all infinite REG-
dissectible languages.

Instead of C being regular if it is an arbitrary non-empty language family
then it yields the general case which is termed as C-dissectibilty.

We require the concepts of linear and semilinear as defined by Parikh [3].

Definition 3. Let N denote the non-negative integers and let N
n be the carte-

sian product of N with itself n times. For elements x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in N

n, let x + y = (x1 + y1, x2 + y2, . . . , xn + yn) and
c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn), c in N. A subset A of N

n is said to be
linear if there exist elements v, v1, v2, . . . , vm in N

n such that A = {x | x =
v + k1v1 + · · · + kmvm, each ki in N}. A subset of Nn is said to be semi-linear
if it is a finite union of linear sets.

Definition 4. The Parikh mapping is a monoid morphism ψ : Σ∗ → N
k where

N denotes non-negative integers. For any string x ∈ Σ∗, Σ = {a1, a2, . . . , ak}
the parikh image of x denoted by ψ(x) = (#a1(x), #a2(x), . . . , #ak

(x)) where
#ak

(x) denotes the number of occurrences of ak in x.
ψ(L) of a language L over Σ is {ψ(x) | x ∈ L}. A language L is semilinear

whenever ψ(L) is semilinear.
A classic property of context free languages is the semilinearity of their length

sets.
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Definition 5. A phrase-structure matrix grammar (abbreviated PSMG),
(context-sensitive matrix grammar (CSMG), context-free matrix grammar
(CFMG), right-linear matrix grammar (RLMG)) is a pair G = (G1, G2) where
G1 = (V1, I1, P1, S) is a phrase-structure grammar (PSG), (context sensitive
grammar (CSG), context free grammar (CFG), right linear grammar (RLG))
with

V1 = a finite set of horizontal non-terminals
I1 = a finite set of intermediates = {S1, . . . , Sk}
P1 = a finite set of PSG (CSG, CFG, RLG) production rules called horizontal

production rules and

S = the start symbol, S ∈ V1, V1 ∩ I1 = φ. G2 =
k⋃

i=1

G2i where G2i =

(V2i, I2, P2i, Si), i = 1, 2, . . . , k are k-right linear grammars with
I2 = a finite set of terminals

V2i = finite set of vertical non-terminals
Si = the start symbol and P2i finite set of right linear production rules,

V2i ∩ V2j = φ if i �= j.

The derivations are obtained by first applying the horizontal productions and
then the vertical productions.

If both G1 and G2 are context free grammars then the matrix languages they
generate are called CF:CF Siromoney matrix languages [8].

Definition 6. The set of all matrices generated by G is defined to be M(G) =
{m × n arrays [aij ] | i = 1, 2, . . . ,m, j = 1, 2, . . . , n, m,n ≥ 1, S

∗⇒
G1

S1 . . . Sn ⇓
G2

∗

[aij ]} and M(G) is called a phrase-structure matrix language (PSML), (context-
sensitive matrix language (CSML), context free matrix language (CFML),
regular matrix language (RML)) if G is a PSMG (CSMG, CFMG, RLMG).

Definition 7. A set S ⊆ N × N is called double-semilinear [8] if and only if it
is a finite union of Cartesian products of the form S1 ×S2 where S1, S2 ⊆ N are
semilinear.

The length set of a CF:CF Siromoney matrix language is double
semilinear [8].

In notations, if L is the language generated by G1 and R1, R2, . . . , Rk (the subsets
of) the regular sets corresponding to G2i, i = 1, 2, . . . , k we write M(G) =
(L) :: (R1, . . . , Rk).

Definition 8. P is the family of all polynomial time decidable languages. A
language L is said to be in P iff there exists a deterministic Turing machine
that runs in polynomial time on all inputs and outputs 1 if w ∈ L and outputs 0
if w �∈ L. P can also be viewed as a uniform family of boolean circuits. A language
L is in P iff there exists an uniform family of Boolean circuits {cn | n ∈ N} such
that (i) for all n ∈ N, cn takes n bits as input and output only one bit (ii) for
all x ∈ L, c(x) = 1 (iii) for all x �∈ L, c(x) = 0.
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Definition 9. A non-empty language L is said to be constantly growing if there
exists a constant p > 0 and a finite subset k ⊆ N+ that satisfies the following
condition: for every string x in L with |x| ≥ p, there exists a string y ∈ L and
a constant c ∈ K for which |x| = |y| + c holds. This property is called constant
growth property and the languages which satisfy it are called constantly growing
languages and are denoted by CGL.

Definition 10. [9] Given any family F of languages, a language S is said to be
F immune if S is infinite and S has no infinite subset belonging to F .

Definition 11. A language L is CGL immune if L is infinite and L has no
infinite subset belonging to CGL.

3 Dissecting Matrix Languages

We extend the concept of dissectibility to matrix languages as follows.
Two dimensional rectangular pictures or images are generalizations of words

(A word is a row in a picture).
For an alphabet Σ, let Σm×n denote the set of pictures (matrices) of size

(m,n) i.e., pictures with m rows and n columns over Σ. Let Σ∗∗ denote the set
of all rectangular pictures over Σ.

Each member of Σ∗∗ is called as image or picture. Each member of Σm×n is
called as picture of image of size m × n.

L ⊆ Σ∗∗ is called a matrix language.

Definition 12. Let Σ be a finite set of symbols. Let Σ∗∗ be the set of all images
over Σ. Let L be a matrix language over Σ. L ⊆ Σ∗∗. L is said to be REG
MAT-dissectible if there exists a regular matrix language C, C ⊆ Σ∗∗ such that
|L ∩ C| = ∞ and |L ∩ C| = ∞ (Fig. 1).

Definition 13. In general, an infinite matrix language S is C-MAT-dissectible
if there exists an infinite matrix language C such that |S ∩ C| = ∞ and |S ∩
C| = ∞.

Definition 14. A non-empty matrix language family F is REG-MAT dissectible
if and only if every infinite matrix language in F is REG-MAT dissectible.

L

C

Σ**

C

Fig. 1. C MAT-DISSECTS L
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Theorem 1. The family of regular matrix dissectible regular matrix languages
is non-empty.

Proof. Consider the regular matrix language M(G) = (L) :: (S1, S2) where
M(G) = L = S1S

+
2 , S1 = (X)+, S2 = (·)+X which generates the token L

(every element of the language looks like L).

M(G) = L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

X · · · · ·
X · · · · ·
X · · · · ·
X · · · · ·
X · · · · ·
X · · · · ·
X X X X X X

,

X · · ·
X · · ·
X · · ·
X X X X

, . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Consider the regular matrix language M(G′) = (C) :: (R1, R2) where C =
S1(S2

2)+, R1 = (X)+, R2 = (·)+X

C =

⎛

⎜⎜⎜⎜⎝

X · ·
X · ·
X · ·
X X X

,

X · · · ·
X · · · ·
X · · · ·
X · · · ·
X X X X X

, . . .

⎞

⎟⎟⎟⎟⎠
.

Hence |L ∩ C| = ∞ and |L ∩ C| = ∞ and L is a regular matrix language that is
REG-MAT dissectible.

Theorem 2. The class of regular dissectible context free matrix languages is
non-empty.

Proof. Consider the context free matrix language M(G) = (L) :: (S1, S2) where
M(G) = L = {Sn

1 S2S
n
1 | n ≥ 1}, S1 = X(·)+, S2 = X(X)+ which generates the

token T (every element of the language looks like T ).

M(G) = L =

⎛

⎜⎜⎜⎜⎝

X X X
· X ·
· X ·
· X ·
· X ·

,

X X X X X
· · X · ·
· · X · ·
· · X · ·
· · X · ·

, . . .

⎞

⎟⎟⎟⎟⎠

Consider the regular matrix language M(G′) = (C) :: (R1, R2) where C =
{S1S1S2S1S1}, R1 = X(·)+, R2 = X(X)+,

C =

⎛

⎜⎜⎝
X X X X X
· · X · ·
· · X · ·

,

X X X X X
· · X · ·
· · X · ·
· · X · ·

, . . .

⎞

⎟⎟⎠ .

Here L is REG-MAT dissectible.
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Definition 15. A matrix language L is said to be a recursive matrix language
if there is a Turing machine matrix automata TMMA that halts on all inputs.
If X ∈ L, it accepts X and halts. If X �∈ L, it rejects X and halts.

Definition 16. The family of all polynomial time decidable matrix languages is
denoted by P-MAT.

Theorem 3. Every infinite recursive matrix language is P-MAT dissectible.

Proof. Consider Σ = {0, 1}. Let L be an infinite recursive matrix language. By
definition there exists a turing machine matrix automaton M that halts on all
inputs. If X ∈ L, then M accepts X and halts. If X �∈ L then M rejects X
and halts.

Case (i). L =ae Σ∗∗

L is infinite. Consider

C = {X | X = (xij) and xij =

{
0; if i = j = 1
0 or 1; otherwise

=
{(

0
)
,

(
0 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 0
1 1

)
,

(
0 1
0 0

)
,

(
0 1
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
, . . .

}

Clearly |L ∩ C| = ∞ and |L ∩ C| = ∞.
This C easily dissects L.

Case (ii). L �=ae Σ∗∗

By definition, |Σ∗∗ − L| is infinite. Let z0, z1, z2, . . . be the lexicographic
ordering of all matrices over Σ∗∗. To define lexicographic ordering on matrices
we consider matrix as concatenation of rows to form a sequence and then we
use lexicographic ordering of words. For each Xm×n, to determine the value of
C(X) we use the following procedure P from round 0 to mn. Initially we set
A = R = φ. At round i, we compute C(zi) by calling P recursively round by
round. We then stimulate the turing machine matrix automaton M on the input
zi within mn steps. When M accepts z1 we update A to A∪{i} if C(zi) = 1 and
R to R ∪ {i} if C(zi) = 0. On the contrary, when either M(zi) = 0 or M(zi) is
not obtained within mn steps we do nothing. After round mn, if |A| > |R| then
define C(X) = 0; otherwise define C(X) = 1.

Now C = {X ∈ Σ∗∗|C(X) = 1}. Clearly C is in P. |L ∩ C| = ∞ and
|L∩C| = ∞. Therefore every infinite recursive matrix language can be dissected
by an appropriate matrix language in P.

Definition 17. A matrix language L is said to be constantly growing matrix
language (CGML) if there exists constant p > 0 and K ⊆ N

+ such that for
every matrix Xm1×n1 ∈ L with m1n1 ≥ p there exists a matrix Ym2×n2 ∈ L and
a constant C ∈ K for which n1 = n2 + C holds.

Let CGML denote the family of all constantly growing matrix languages.
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Theorem 4. Every constantly growing matrix language is REG-MAT-
dissectible.

Proof. Let L be a constantly growing matrix language over Σ. L ⊆ Σ∗∗. By
definition, there exists a constant p > 0 and K ⊆ N+ such that for every
matrix Xm1×n1 ∈ L there exists a matrix Ym2×n2 ∈ L and C0 ∈ K for which
n1 = n2+C0. By notation, let [c] = {1, 2, 3, . . . , c}. Let c be the maximal element
in K. Let c′ = c + 1. Let Li = {Xm1×n1 ∈ L | n1 ≡ i (mod c′)}. L =

⋃

i∈[C]

Li.

We prove that there exists at least 2 indices i1 and i2 that make Li1 and Li2

infinite. The proof is by the method of contradiction. Assuming the contradiction
let i be the only index that makes Li infinite.

Li = {Xm1×n1 ∈ L | n1 ≡ i (mod c′)}.

Let Sij = {Ym2×n2 ∈ L | there exists Xm1×n1 ∈ L such that n1 = n2 + C0}.
Since L is a constantly growing language, there exists j such that Sij is infinite
for some j. Sij ⊆ L� where � = i − j (mod c′). This implies that L� if infinite.
This is a contradiction to our assumption that i is the only index that makes
L� infinite. Therefore there exists 2 indices i1 and i2 such that |Li1 | = ∞ and
|Li2 | = ∞. We define C as follows

C = {Xm1×n1 ∈ Σ∗∗ | n1 ≡ i1 (mod c′)} which is a regular matrix language.
Since Li1 ⊆ C and Li2 ⊆ C, |L ∩ C| = ∞ and |L ∩ C| = ∞. Therefore C

dissects L.

Definition 18. A matrix language is said to be constantly growing matrix lan-
guage immune (CGML immune) if L is infinite and L has no infinite subset
belonging to CGML.

Theorem 5. Every language that is not CGML-immune is REG-MAT dis-
sectible.

Proof. Let L be a matrix language that is not CGML immune. By definition, L
has an infinite subset S belonging to CGML. By the transitive closure property
of REG-MAT dissectibility, for any two infinite matrix languages A and B if
A is REG-MAT dissectible and A ⊆ B, then B is also REG-MAT dissectible.
Here S ⊆ L and S is in CGML. Therefore S is also REG-MAT dissectibile. This
implies that L is REG-MAT dissectible.

Theorem 6. Every CF:CF Siromoney matrix language is REG-MAT dis-
sectible.

Proof. Every CF:CF Siromoney matrix language is double semilinear. Hence
every such matrix language can be defined by a set of linear equations which
conveys the existence of constant growth property. By Theorem 4 every con-
stantly growing matrix language is REG-MAT dissectible. Therefore every such
CF:CF Siromoney matrix language is REG-MAT dissectible.
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4 Conclusion

The two dimensional picture languages called Siromoney matrix languages are
generalization of string languages in two dimensions. The structural property
of dissecting an infinite language into two infinite sets has played a vital part
in learning more about string languages and it has been extended to matrix
languages in this paper.

In the paper, the P-MAT dissectibility of infinite recursive matrix languages
and REG-MAT dissectibility of constantly growing matrix languages (CGML),
languages that are not CGML immune and CF:CF Siromoney matrix languages
have been demonstrated. The work reported in this paper is highly significant
because it introduces MAT-dissectibility and dissects certain classes of infinite
matrix languages using their classical fundamental properties.
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Abstract. A vertex-deleted subgraph of a graph G with which the
degree of the deleted vertex is given is called a degree associated card
of G. The degree associated reconstruction number (or drn) of a graph G
is the size of the smallest collection of the degree associated cards of G
that uniquely determines G. A split graph G is a graph in which the ver-
tices can be partitioned into an independent set and a clique. We prove
that the drn is 1 or 2 for all split graphs such that all the vertices in
the independent set have equal degree, except four graphs on six vertices
and for these exceptional graphs, the drn is 3.

Keywords: Isomorphism · Reconstruction number · Split graph

1 Introduction

All graphs considered are simple and finite. We shall mostly follow the graph
theoretic terminology of [8]. A vertex-deleted subgraph or card G − v of a graph
(digraph) G is the unlabeled graph obtained from G by deleting the vertex v and
all edges incident with v. The deck of a graph (digraph) G is the collection of all
its cards. Following the formulation in [7], a graph (digraph) G is reconstructible
if it can be uniquely determined from its deck. The well-known Reconstruc-
tion Conjecture (RC) of Kelly [11] and Ulam [20] has been open for more than
50 years. It asserts that every graph G with at least three vertices is recon-
structible. The conjecture has been proved for many special classes, and many
properties of G may be deduced from its deck. Nevertheless, the full conjecture
remains open. Surveys of results on RC and related problems include [7,16]. For
a reconstructible graph G, Harary and Plantholt [10] defined the reconstruction
number of a graph G, denoted by rn(G), to be the minimum number of cards
which can only belong to the deck of G and not to the deck of any other graph
H, H � G, these cards thus uniquely identifying G. Reconstruction number is
known for only few classes of graphs [5].

An extension of RC to digraphs is the Digraph Reconstruction Conjecture
(DRC), proposed by Harary [9]. The DRC was disproved by Stockmeyer [19]

S. Monikandan—Research is supported by the SERB, Govt. of India, Grant no.
EMR/2016/000157.
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by exhibiting several infinite families of counter-examples. Ramachandran then
proposed a variation in the DRC and introduced the degree associated recon-
struction [14] and the degree associated reconstruction number [15] of graphs
(digraphs).

The ordered triple (a, b, c) where a, b and c are respectively the number of
unpaired outarcs, unpaired inarcs and symmetric pair of arcs incident with v
in a digraph D is called the degree triple of v. The degree associated card or
dacard of a digraph (graph) is a pair (d,C) consisting of a card C and the
degree triple (degree) d of the deleted vertex. The degree associated deck (or
dadeck) of a graph (digraph) is the collection of all its dacards. A digraph is
said to be N-reconstructible if it can be uniquely determined from its dadeck.
The new digraph reconstruction conjecture (NDRC) asserts that all digraphs are
N-reconstructible. The degree (degree triple) associated reconstruction number
of a graph (digraph) G is the size of the smallest subcollection of the dadeck
of G which is not contained in the dadeck of any other graph H, H �∼= G, this
subcollection of dacards thus uniquely identifying G. Articles [1–4,6,12,13,18]
are recent papers on this parameter.

A split graph G is a graph in which the vertices can be partitioned into an
independent set (say X) and a clique (say Y ). Throughout this paper, we use
the notation G, X and Y in the sense of this definition. The independent set X
is said to regular if all the vertices in it have equal degree in G. Ramachandran
and Monikandan proved [17] that the validity of the RC for all graphs is equiv-
alent to the validity of the RC for all 2-connected graphs G with diam(G) = 2
or diam(G) = diam(G) = 3. As many split graphs belong to this class of 2-
connected graphs, to determine any reconstruction parameter for split graphs
assumes important. In this paper, we prove that drn(G) = 1 or 2 for all split
graphs G with regular independent set except four graphs on six vertices (Fig. 1)
and for these exceptional four graphs, the drn is 3.

2 Drn of Split Graphs

The next theorem, due to Barrus and West [6], characterizes all graphs G with
drn(G) = 1.

Theorem 1. The dacard (C, d) belongs to the dadeck of only one graph (up to
isomorphism) if and only if one of the following holds:

(1) d = 0 or d = |V (C)| ;
(2) d = 1 or d = |V (C) − 1| , and C is vertex-transitive;
(3) C is complete or edgeless.

In a graph G of order ν, a vertex with degree d is called a d-vertex and a
(ν −1)-vertex is called a complete vertex. By m(d(v), G−v), we mean m dacards
each isomorphic to (d(v), G − v). The bistar Bm,n is the tree with m + n + 2
vertices whose central vertices have m and n leaf neighbours respectively. An
s-blocking set of a graph G is a family F of graphs not isomorphic to G such
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order graph drn(G) blocking set

4 2
,

5 2
, ,

5 2
, ,

6 2
, ,

6 2

6 2

, ,

6 3
, ,

6 3

, ,

6 3

, ,

6 3
, ,

Fig. 1. Split graphs of order at most 6 with regular independent set and having drn
2 or 3.

that every collection of s dacards of G will appear in the dadeck of some graph
of F and every graph in F will have s dacards in common with G.

Let |X| = m > 0, |Y | = n > 0 and let X be r-regular. Then clearly 0 ≤ r ≤ n
and if r were 0 or n, then G would contain an isolated vertex or a complete vertex,
which implies drn(G) = 1 by Theorem 1. Thus 1 ≤ r ≤ n − 1. All split graphs
G on at most six vertices with regular independent set, except the ten graphs
given in the table in Fig. 1, must contain a complete vertex or an isolated vertex
and so drn(G) = 1. The drn of these ten graphs is two or three (dark vertex
of graphs given in Fig. 1 denotes the vertex whose removal results in a dacard
common with G). So, we assume that all split graphs G consider hereafter have
order at least seven and, by Theorem 1, no isolated as well as complete vertices.
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Let Yi denote the set of vertices in Y that are adjacent to exactly i vertices
in X for i = 0, 1, ...,m. Then, in G, the degree of a vertex v ∈ Yi is n − 1 + i for
i = 0, 1, ...,m. Let k1, k2, ..., kt be integers, where 0 ≤ k1 < k2 < ... < kt ≤ m,
such that Yki

�= φ for all i = 1, 2, ..., t. Thus Y can be written as ∪t
i=1Yki

.
An extension of a dacard (d(v), G − v) of G is a graph obtained from the

dacard by adding a new vertex w and joining it to d(v) vertices of the dacard
and it is denoted by H(d(v), G − v) (or simply by H). Throughout this paper,
H and w are used in the sense of this definition.

Theorem 2. If G is a split graph with r = n − 1, then drn(G) = 2.

Proof. We proceed on the value of k1, which is the smallest integer such that
Yk1 is non empty.

If k1 were equal to 0, then |Y0| would be equal to 1 (because Y0 can contain
at most only one vertex as r = n − 1) and since n ≥ 2 and r = n − 1, it follows
that Ym would be nonempty, so G would contain a complete vertex, which is
excluded.

Case 1. k1 = 1.
If n > 2, then the vertex in Y1 is adjacent to exactly one vertex, say s in X. Also,
since r = n − 1, every other vertex in X is adjacent to all the vertices in Y \ Y1.
Moreover, the vertex s is non-adjacent to exactly one vertex in Y. Thus Y can
be written as Y = Y1 ∪ Ym−1 ∪ Ym, where |Y1| = |Ym−1| = 1, which implies that
Ym �= φ as n > 2. Hence G has a complete vertex, which is excluded.

If n = 2, then assume m > 4 (as otherwise ν ≤ 6, which is excluded).
Clearly the partite set Y can be written as Y = Y1 ∪ Ym−1, where |Y1| =
|Ym−1| = 1. The dadeck of G consists of only the dacards (m,K2 ∪ (m − 1)K1),
(2,K1,m−1∪K1), (1,K1,m) and (m−1)(1, Bm−2,1). Now consider the two dacards
(m,K2 ∪ (m − 1)K1) and (1,K1,m). To get an extension H(m,K2 ∪ (m − 1)K1)
non-isomorphic to G, add a new vertex and join it to the two vertices of positive
degree. But then every one-vertex deleted dacard of H must contain a cycle and
so it is non-isomorphic to (1,K1,m). Thus no graph (� G) has both the dacards
(m,K2 ∪ (m − 1)K1) and (1,K1,m) in its dadeck and hence drn(G) ≤ 2.

Case 2. k1 = 2.
Clearly a vertex in Y2 is adjacent to exactly two vertices, say s, t in X. Also,
since r = n − 1, every vertex in X, other than s and t, is adjacent to all the
vertices in Y \ Y2 and so every vertex in Y \ Y2 gets at least m − 2 neighbours
in X. Since r = n− 1, the vertex s (respectively t) is nonadjacent to exactly one
vertex, say s

′
(respectively t

′
) in Y \ Y2.

If s
′ �= t

′
(this happens when n ≥ 3), then every vertex in Y \ Y2 gets at

least m − 1 neighbours in X and hence Y = Y2 ∪ Ym−1 ∪ Ym, where |Y2| = 1
and |Ym−1| = 2. We can take that n = 3 (as otherwise n would be at least four
and G would contain a complete vertex). Since G has order at least seven, we
have m ≥ 4. Now consider the dacards (m + 1, G − v) and (2, G − u), where
v ∈ Ym−1, u ∈ X, and uv ∈ E(G). The dacard G − u contains exactly m − 1
vertices of degree two. To get an extension H(m+1, G−v), join the newly added
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vertex w to all but one vertex, say z in G−v. If z were the unique 2-vertex, then
H would be isomorphic to G. If z is not the unique 2-vertex, then every 2-vertex
deleted dacard of the resulting extension H must contain at most m− 2 vertices
of degree two and so it is not isomorphic to G − u. Hence drn(G) ≤ 2.

Now assume s
′
= t

′
(this happens when n ≥ 2). Then Y = Y2 ∪ Ym−2 ∪ Ym

where |Y2| = 1 and |Ym−2| = 1. We can take that n = 2 (as otherwise n would
be at least three and G would contain a complete vertex). Since G has order at
least seven, we have m ≥ 5. Hence, in this case, the graph G is isomorphic to
the bistar B2,m−2 whose drn is proved (Barrus and West [6]) to be 2.

Case 3. k1 > 2.
Consider the dacards (n−1+kt, G−v) and (n−1, G−u), where v ∈ Ykt

, u ∈ X
and uv /∈ E(G). The dacard G − u contains no n-vertices. To get an extension
H(n − 1 + kt, G − v), add a new vertex w to G − v and join it to some set of
vertices (say Y

′
) in Y \ {v} and some set of vertices (say X

′
) in X.

Suppose |X ′ | = kt and Y
′
= Y \ {v}. If X

′
consists of only (n − 2)-vertices,

then H ∼= G. If every vertex in X
′
has degree n − 1, then m − kt = kt and the

resulting extension has no (n − 1)-vertex and so it has no dacard isomorphic to
(n−1, G−u). Therefore we assume that X

′
contains vertices of degree n−1, n−2

and that it contains no vertices of other degree. But then any (n − 1)-vertex
deleted dacard of the resulting extension must contain an n-vertex and so it is
not isomorphic to G − u.

Suppose X
′
= X and |Y ′ | = n− 1+ kt −m. Then any (n− 1)-vertex deleted

dacard of the extension H must contain an n-vertex and so it is not isomorphic
to G − u.

We now assume the only remaining case that φ �= X
′

� X and φ �= Y
′

�

Y \ {v}. Then |Y ′ | < n − 2, which implies |X ′ | > kt because the associated
degree of G − v is n − 1+ kt. Since G − v has exactly kt vertices of degree n − 2
(in X of it), it follows that X

′
must contain at least one (n − 1)-vertex. Now

this vertex must occur as an n-vertex in any (n−1)-vertex deleted dacard of the
resulting extension H and so such a dacard is not isomorphic to G − u. Hence
drn(G) ≤ 2 and by Theorem 1, drn(G) = 2.

Theorem 3. If G is a split graph with r ≤ n − 2, then drn(G) = 2.

Proof. We proceed by two cases depending upon the value of r as below.

Case 1. r ≤ n − 3.
Now n ≥ 4 and kt ≤ m−1. Consider the dacards (n−1+kt, G−v) and (r,G−u),
where v ∈ Ykt

and u ∈ X. Clearly the dacard G−u contains no vertices of degree
r − 1 or r + 1. To get an extension H(G − v), add a new vertex w to G − v and
join it to some set of vertices (say Y

′
) in Y \ {v} and some set of vertices (say

X
′
) in X.
Suppose Y

′
= Y \ {v} and |X ′ | = kt. If every vertex in X

′
has degree r − 1,

then H ∼= G. If every vertex in X
′
has degree r, then m − kt = kt and the

resulting extension has no r-vertex, so it has no dacard isomorphic to (r,G−u).
We therefore assume that X

′
contains vertices of degree r − 1, r and that it
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contains no vertices of other degree. But then any r-vertex deleted dacard of the
resulting extension must contain an (r + 1)-vertex and hence such a dacard is
not isomorphic to G − u.

Suppose |Y ′ | = n − 1 + kt − m and X
′
= X. Then every r-vertex deleted

dacard must contain an (r + 1)-vertex (because kt ≤ m − 1) and hence it is not
isomorphic to G − u.

Now we consider the remaining case that φ �= X
′
� X and φ �= Y

′
� Y \{v}.

Then |Y ′ | < n − 2, which implies |X ′ | > kt because the associated degree of
G − v is n − 1 + kt. Since G − v has exactly kt vertices of degree r − 1 (in X of
it), it follows that X

′
must contain at least one r-vertex. But then this vertex

will occur as an (r + 1)-vertex in every r-vertex deleted dacard of the resulting
extension H and so such a dacard is not isomorphic to G−u. Hence drn(G) ≤ 2.

Case 2. r = n − 2.
Now n ≥ 3 and kt ≤ m − 1. If |Y0| were at least two, then either r would be at
most n−3 or G would have a complete vertex, giving a contradiction. Therefore
|Y0| = 0 or 1. Also if |Y0| = 0, then, since r = n − 2, it follows that |Y1| ≤ 4. If
|Y1| were 3 or 4, then the order of G would be at most six. Thus, either |Y0| = 0
and |Y1| ≤ 2, or else |Y0| = 1.

Now proceeding as in Case 1 but with the two dacards (n − 1 + kt, G − v)
and (n− 2, G−u), where v ∈ Ykt

, u ∈ X and u is nonadjacent to a vertex in Y1,
we will have drn(G) ≤ 2 and by Theorem1, drn(G) = 2.

3 Conclusion

For graphs with at least three vertices, knowing the degree of the deleted vertex
is equivalent to knowing the total number of edges. A simple counting argument
computes the size of the graph when its entire deck is known. So the dadeck gives
the same information as the deck. However, the counting argument requires the
entire deck, so an individual dacard gives more information than the correspond-
ing card.

In the above sections, we have proved that the drn is at most 3 for a split
graph G with regular independent set. There is a hope to complete a proof of
drn(G) ≤ 3 for all split graphs G. With reference to our results, it seems that
the drn of bipartite graphs, with a regular independent partite set, is likely to
be at most 3. However, extending this result to the family of all bipartite graphs
needs intensive work as because reconstructibility of the family of all bipartite
graphs remains open.
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EMR/2016/000157 awarded to the second author by SERB, Government of India, New
Delhi.
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Abstract. Let G = (V,E) be a graph of order n. Let f : V (G) →
{1, 2, . . . , n} be a bijection. For any vertex v ∈ V, the neighbor sum∑

u∈N(v)

f(u) is called the weight of the vertex v and is denoted by w(v).

If w(x) �= w(y) for any two distinct vertices x and y, then f is called a
distance antimagic labeling. A graph which admits a distance antimagic
labeling is called a distance antimagic graph. If the weights form an
arithmetic progression with first term a and common difference d, then
the graph is called an (a, d)-distance antimagic graph.

In this paper we prove that the hypercube Qn is an (a, d)-distance
antimagic graph. Also, we present several families of disconnected dis-
tance antimagic graphs.

Keywords: (a, d)-distance antimagic graph · Distance antimagic graph

1 Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops
nor multiple edges. We further assume that G has no isolated vertices. The order
|V | and the size |E| are denoted by n and m respectively. For graph theoretic
terminology we refer to Chartrand and Lesniak [2].

A distance magic labeling of a graph G of order n is a bijection f : V →
{1, 2, . . . , n} with the property that there is a positive integer k such that∑

y∈N(x)

f(y) = k for every x ∈ V. The constant k is called the magic constant of

the labeling f.
The sum

∑

y∈N(x)

f(y) is called the weight of the vertex x and is denoted

by w(x).
Let G be a distance magic graph of order n with labeling f and magic

constant k. Then
∑

u∈NGc (v)

f(u) = n(n+1)
2 − k − f(v), and hence the set of all

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 113–118, 2017.
DOI: 10.1007/978-3-319-64419-6 15
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vertex weights in Gc is {n(n+1)
2 − k − i : 1 ≤ i ≤ n}, which is an arithmetic

progression with first term a = n(n+1)
2 − k − n and common difference d = 1.

Motivated by this observation, in [1] we introduced the following concept of
(a, d)-distance antimagic graph.

Definition 1. [1] A graph G is said to be (a, d)-distance antimagic if there exists
a bijection f : V → {1, 2, . . . , n} such that the set of all vertex weights is {a, a+
d, a + 2d, ..., a + (n − 1)d} and any graph which admits such a labeling is called
an (a, d)-distance antimagic graph.

Thus the complement of every distance magic graph is an (a, 1)-distance
antimagic graph.

We observe that if a graph G is (a, d)-distance antimagic with d > 0, then
for any two distinct vertices u and v we have w(u) �= w(v). This observation
naturally leads to the concept of distance antimagic labeling.

Definition 2. [3] Let G = (V,E) be a graph of order n. Let f : V → {1, 2, . . . , n}
be a bijection. If w(x) �= w(y) for any two distinct vertices x and y in V , then
f is called a distance antimagic labeling. Any graph G which admits a distance
antimagic labeling is called a distance antimagic graph.

Definition 3. The K2-bistar graph K2(m,n) is the graph obtained by joining
m copies of K2 to a vertex of K2 and n copies of K2 to the other vertex of K2.

In this paper we prove that the hypercube Qn is an (a, d)-distance antimagic
graph. Also, we present several families of disconnected distance antimagic
graphs.

2 Main Results

The following theorem gives an (a, d)-distance antimagic labeling of hypercubes.

Theorem 1. For every n ≥ 3, the hypercube Qn is (a, d)-distance antimagic,
where a = 2n+2 and d = n−2. Moreover there exists an (a, d)-distance antimagic
labeling fn : V (Qn) → {1, 2, . . . , 2n} such that if fn(v) = j, then wfn(v) =
2n + 1 + (n − 2)j, 1 ≤ j ≤ 2n.

Proof. We prove this result by induction on n. For Q3, the labeling f3 given
in Fig. 1 is a (10, 1)-distance antimagic labeling satisfying the condition that
wf3(j) = 9 + j = 2n + 1 + j, 1 ≤ j ≤ 8. We now assume that the theorem is
true for Qn. Let fn : V (Qn) → {1, 2, 3, . . . , 2n} be a (2n + 2, n − 2)-distance
antimagic labeling of Qn such that if fn(v) = j, then wfn(v) = 2n + 1 + j for
all j, 1 ≤ j ≤ 2n. Let Q

(1)
n and Q

(2)
n be two copies of Qn in Qn+1, with a perfect

matching M consisting of edges joining a vertex of Q(1)
n with the corresponding

vertex of Q(2)
n . Now (See Fig. 2) define fn+1 : V (Qn+1) → {1, 2, . . . , 2n+1} by

fn+1(v) =

{
fn(v) if v ∈ V (Q(1)

n

fn(v1) + 2n if v1 ∈ V (Q(2)
n and vv1 ∈ M
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Fig. 1. Q3 with (10, 1)-distance antimagic labeling

Fig. 2. Qn+1 with (a, d)-distance antimagic labeling

If fn+1(v) = j, 1 ≤ j ≤ 2n, then

wfn+1(v) = wfn(v) + 2n + j

= 2n + 1 + (n − 2)j + 2n + j

= (2n+1 + 1) + (n − 1)j.

If fn+1(v1) = j, where 2n + 1 ≤ j ≤ 2n+1 and vv1 ∈ M, then

wfn+1(v1) = wfn+1(v) + n2n + j

= (1 + 2n) + (n − 2)j + n2n + j

= (1 + 2n+1) + (n − 1)(2n + j).

Thus, w(n+1)
f (j) = (1 + 2n+1) + (n − 1)j, j = 1, 2, 3, . . . , 2n+1 and by induction

the proof is complete.

Theorem 2. The bistar G = K2(n, n) is distance antimagic.

Proof. Let V (G) = {u1, u2, . . . , un}∪{v1, v2, . . . , vn}∪{u, v} and E(G) = {uiu :
1 ≤ i ≤ n} ∪ {viv : 1 ≤ i ≤ n} ∪ {uv}. Define f : V (G) → {1, 2, . . . , 2n + 2}, by

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2i if x = ui, i ≤ i ≤ n
2i + 1 if x = vi, i ≤ i ≤ n
1 if x = v
2n + 2 if x = u
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Then

w(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2i if v = ui, i ≤ i ≤ n
2i + 1 if v = vi, i ≤ i ≤ n
1 if v = x
2n + 2 if v = y

Hence f is a distance antimagic labeling of G.

Theorem 3. Let G be an r-regular graph of order n. If G is distance antimagic,
then 2G is also distance antimagic.

Proof. Let f be a distance antimagic labeling of G. Let G1 and G2 be the two
copies of G in 2G.

Define g : V (2G) → {1, 2, . . . , 2n} by

g(u) =
{
f(u) if u ∈ V (G1)
f(u) + n if u ∈ V (G2)

Let u, v ∈ V (G1 ∪ G2). Then

wg(u) =
{
wf (u) if u ∈ V (G1)
wf (u) + rn if u ∈ V (G2)

Hence it follows that wg(u) �= wg(v) if u, v ∈ V (G1) or u, v ∈ V (G2).
Now, let u ∈ V (G1) and v ∈ V (G2). Since wf (u) �= wf (v), without loss of

generality we assume that wf (u) < wf (v). Now, wg(u) = wf (u) < wf (v) <
wf (v) + rn = wg(v). Thus g is a distance antimagic labeling of 2G.

Theorem 4. Let H be the graph obtained from the cycle C3 by attaching a
pendent vertex at one vertex. Let G be the union of r copies of H. Then G is
distance antimagic.

Proof. Let Hi be the ith copy of H in G. Let V (Hi) = {ui1, ui2, ui3, ui4} and
E(Hi) = {(ui1, ui2), (ui1, ui3), (ui2, ui3), (ui2, ui4)}.

Define f : V (G) → {1, 2, . . . , 4r}, by

f(uij) =

⎧
⎪⎪⎨

⎪⎪⎩

4(i − 1) + 1, if j = 1
4(i − 1) + 2, if j = 2
4(i − 1) + 3, if j = 3
4(i − 1) + 4, if j = 4

where 1 ≤ i ≤ r.
The vertex weights are given by

w(uij) =

⎧
⎪⎪⎨

⎪⎪⎩

8i − 3, if j = 1
12i − 4, if j = 2
8i − 5, if j = 3
4i − 2, if j = 4

Clearly the vertex weights are distinct.
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Fig. 3. Distance antimagic labeling of union of 3-pan

Example 1. The distance antimagic labeling of 3 copies of H is given in Fig. 3.

Theorem 5. For n = 2k + 1, let Hk be the graph obtained from the path
(u1, u2, . . . , u2k+1) by adding the edges (ui, ui+2) where i is odd. Let G be the
union of r copies of H3 where n ≥ 1. Then G is distance antimagic.

Proof. Let Gi be the ith copy of H3 in G, given in Fig. 4.

� � � � � � �

ui1 ui2 ui3 ui4ui6 ui5 ui7

Fig. 4. The graph H3

Define f : V (G) → {1, 2, . . . , 4r} by

f(uij) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

7(i − 1) + 1 if j = 1
7(i − 1) + 2 if j = 2
7(i − 1) + 3 if j = 3
7(i − 1) + 4 if j = 4
7(i − 1) + 5 if j = 5
7(i − 1) + 6 if j = 6
7(i − 1) + 7 if j = 7

The vertex weights are given by

w(uij) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

14i − 6 if j = 1
28i − 13 if j = 2
28i − 10 if j = 3
14i − 4 if j = 4
14i − 9 if j = 5
14i − 11 if j = 6
14i − 7 if j = 7

Clearly the vertex weights are distinct.
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3 Conclusion and Scope

We have proved the existence of distance antimagic labeling of some families of
disconnected graphs and the hypercube Qn. The existence of distance antimagic
labelings for various graph products and other families of disconnected graphs
are problems for further investigation.
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Abstract. This paper extends conjunctive grammar to Probabilistic
Conjunctive Grammar (PCG). This extension is motivated by the con-
cept of probabilistic context free grammar which has many applica-
tions in the area of computational linguistics, computer science and bio-
informatics. Our focus is to develop PCG for its application in linguistics
and computer science. In bio-informatics stochastic conjunctive grammar
has been defined to detect Pseudo knots in RNA.

Keywords: Conjunctive grammar · Probabilistic conjunctive grammar

1 Introduction

Conjunctive grammar, introduced in [1], is a context-free grammar augmented
with an explicit set-theoretic intersection operation. Every rule in a conjunctive
grammar is of the form

A → α1& · · · &αn

where n ≥ 1 and αi are strings consisting of terminal and nonterminal symbols.
Each of the above rules indicates that any string that can be generated from
each αi can be generated by A. Conjunctive grammar can express everything
that ordinary context-free grammar can. An important property of conjunctive
grammar is that the parse of a string generated by a grammar can be represented
in the form of a tree with shared leaves, which generalizes ordinary context-
free parse trees. By using this property we can define a probabilistic variant of
conjunctive grammar as a generalization of probabilistic context-free grammar. A
probabilistic context-free grammar [2,3] can be defined as a probability measure
on a set of rooted trees. This measure is specified by a set of rules for evolving
symbols known as non-terminals into sequences of non-terminals and terminals
and by assigning probabilities to these rules. This gives a probability measure
on the set of finite sequences of terminals. Applications of this grammar are seen
in the area of bio-informatics, linguistics and computer science.

In computer science (computational linguistics), stochastic grammars have
a longer tradition, and were studied and used mainly in the field of natural
language processing [12,13]. Probabilistic methods have been employed in auto-
matic speech recognition. Recognition of natural unrestricted speech requires a
c© Springer International Publishing AG 2017
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“language model” that attaches probabilities to the production of all possible
strings of words [9]. In [10], two applications of the Inside-Outside algorithm
to speech recognition tasks has been discussed. The first application involves
the direct comparison of stochastic context-free grammars (SCFGs) with hidden
Markov models (HMMs) in modeling isolated words. The second application
investigates the role of SCFGs in representing the language model component of
a speech recognizer.

Stochastic context free grammars (SCFGs) were introduced in bioinformatics
for the purpose of modeling RNA secondary structure, the original early refer-
ences being [4,5]. Stochastic context free grammars are applied to the problems
of folding, aligning and modeling families of homologous RNA sequence [6]. The
SCFG is used to differentiate the tRNA sequences from the other RNA sequences
of similar length, to produce multiple alignments of large collections of tRNA
sequences, and to determine structure of new tRNA sequences [5].

In Computer Science, the probabilistic context free grammars are used as
a model for research in security and privacy. Using the PCFG word mangling
rules are generated and then passwords are guessed to be used in password
cracking [7]. PCFG models are used for understanding the choice of passwords
by constructing password strength meter and password cracking utilities [8].

In bio-informatics, RNA pseudoknot prediction is done through stochastic
conjunctive grammars [11]. Grammars work by rewriting non-terminals symbols
using a set of production rules. Stochastic grammars can be trained to predict
the most probable structure for an RNA sequence by assigning probabilities to
each production rule.

In this paper we propose a probabilistic model of conjunctive grammar which
can be used in computational linguistics, security and privacy in computer sci-
ence. This model will be more effective than the probabilistic context-free model
in the above areas of application since conjunctive grammar is a powerful exten-
sion of context-free grammar.

2 Context-Free Grammar (CFG) and Probabilistic
Context-Free Grammar (PCFG)

Definition 2.1. A CFG is a four tuple G = (Σ, N, P, S), where Σ and N are
disjoint finite non-empty sets of terminal and nonterminal symbols respectively,
P is a finite set of rules of the form A → β, where A ∈ N and β ∈ (Σ ∪ N)∗

and S ∈ N is the start symbol.

Definition 2.2. A PCFG is a five tuple G = (Σ, N, P, S, q), where Σ and N are
disjoint finite non-empty sets of terminal and nonterminal symbols respectively,
P is a finite set of rules of the form A → β where A ∈ N and β ∈ (Σ ∪ N)∗,
S ∈ N is the start symbol, each rule in P is augmented with a conditional
probability assigned by a function q given as q(A → β) for every rule in P. For
any A ∈ N

∑

A→β∈P

q(A → β) = 1. Also for a given parse tree T containing
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rules A1 → β1, A2 → β2, · · · , An → βn, the probability of T under PCFG is

p(T ) =
n∏

i=1

q(Ai → βi).

Example 2.3. Consider the PCFG, G = (Σ, N, P, S, q) where N = {S,A,B},
Σ = {a, b}, S = {S} and P and q are given below

P q

S → AB 1.0

A → aA 0.5

A → a 0.5

B → bB 0.7

B → b 0.3

Then

S ⇒ AB (p = 1)
⇒ (aa)B (p = 0.25)
⇒ (aa)(bB) (p = 0.175)
⇒ (aa)(bb) (p = 0.0525)
⇒ aabb (p = 0.0525)

Hence the probability of generating the sequence aabb is 0.0525.

3 Conjunctive Grammar (CG) and Probabilistic
Conjunctive Grammar (PCG)

Definition 3.1. [1] A conjunctive grammar is a quadruple G = (Σ,N,P,S), in
which Σ and N are disjoint finite non-empty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A → α1& · · · &αn (with A ∈ N and α1, · · · , αn ∈ (Σ ∪ N)∗) (*)

and S ∈ N is a nonterminal designated as the start symbol. For any rule of the
form (∗) and any number i (1 ≤ i ≤ n), an object A → αi is referred to as a
conjunct.

A rule (∗) means that the occurence of a noterminal symbol A can be replaced
by α1& · · · &αn.

For any finite nonempty set Σ, let Σ∗denote the set of all words of finite
length over Σ. The immediate derivability relation denoted by ⇒ is defined as
follows: Using a rule A → α1& · · · &αn ∈ P, any occurence of a nonterminal
symbol A in any term can be rewritten as · · ·A · · · ⇒ · · · (α1& · · · &αn) · · ·

A conjunction of several identical strings can be rewritten by one such string:
For every w ∈ Σ∗, · · · (w& · · · &w) · · · ⇒ · · · w · · ·
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Definition 3.2. Let G = (Σ, N, P, S) be a conjunctive grammar. The language
generated by the term ϕ is LG(ϕ) = {w | w ∈ Σ∗, ϕ ⇒∗ w}. The language
generated by the grammar is L(G) = LG(S) = {w | w ∈ Σ∗, S ⇒∗ w}.

Any language represented as an intersection of finitely many context-free lan-
guages can be directly specified using conjunction for the start symbol.

As context-free grammar (CFG) has been extended to the probabilistic
(stochastic) context-free grammar (PCFG), in the same way we extend the con-
junctive grammar (CG) to its probabilistic form, namely Probabilistic Conjunc-
tive Grammar (PCG).

Definition 3.3. A Conjunctive grammar G = (Σ, N, P, S, q), is called a prob-
abilistic conjunctive grammar (PCG) if for each rule A → B, a probability
q(A → B) is assigned such that for any A ∈ N ,

∑

A→β∈P

q(A → β) = 1.

Also if T is a parse tree containing the rules A1 → β1, A2 → β2, · · · , An → βn

then

p(T ) =
n∏

i=1

q(Ai → βi).

Assigning probabilities is important when dealing with machine learning
because a string can have many parse trees to derive it. These parse trees will
possibly have very different structure but the application of probabilities helps
us to select the most probable parse and the parsing will be faster by pruning
off the low probability sub trees.

Definition 3.4. The probabilistic conjunctive language L(Gp) defined by a PCG
is given as

L(Gp) = {(x, q(x)) | S
qi(x)==⇒x, for i = 1, · · · , k, x ∈ Σ∗ and q(x) =

k∑

i=1

qi(x)}

where S is the start symbol and there are k distinctively different derivations of
generating x from S.

Definition 3.5. Let Gp be a probabilistic Conjunctive grammar. Then a proba-
bilistic conjunctive grammar Gp1 is equivalent to Gp if and only if

L(Gp) = L(Gp1).

Example 3.6. Consider the PCG Gp = (Σ, N, P, S, q), where N =
{S,A,B,C}, Σ = {a, b, ε}, S = {S} and P and q are below
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P q

S → AB&C 1.0

A → aA 0.4

A → a 0.4

A → ε 0.2

B → bB 0.7

B → ε 0.3

C → aC 0.4

C → bC 0.4

C → ε 0.2

Then

S ⇒ AB&C (p = 1)
⇒ (aA)B&C (p = 0.4)
⇒ (a)B&C (p = 0.04)
⇒ (a)(bB)&C (p = 0.028)
⇒ (a)(b)&C (p = 0.0084)
⇒ (a)(b)&(aC) (p = 0.00336)
⇒ (a)(b)&(a(bC)) (p = 0.001344)
⇒ (a)(b)&(a)(b) (p = 0.0002688)
⇒ ab &ab (p = 0.0002688)
⇒ ab (p = 0.0002688)

3.1 Binary Normal Form of PCG

A binary normal form is a natural extension of Chomsky Normal Form for the
conjunctive grammars.

Definition 3.7. A PCG is said to be in binary normal form, if each rule in P
is one of the following forms:

(i) A → B1C1& · · · &BmCm, where m ≥ 1;A,Bi, Ci ∈ N ,
(ii) A → a, where A ∈ N, a ∈ Σ,
(ii) S → ε, if S does not appear in right parts of the production rules.

Each rule r in P is augmented with a probability q(r) such that for any A ∈ N,

∑

r∈P

q(r) = 1.

The binary normal form theorem for CG was given in [1].
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The following theorem on the binary normal form of PCG is analogous to
the procedure used by Hoptcroft and Ullman [14] to prove the Chomsky Normal
form for context-free grammars and [15] for normalized stochastic context free
grammar.

Theorem 3.8. Any PCG Gp is equivalent to a PCG Gpb
in which all the

productions are in binary normal form.

Proof. We consider two cases:

Case I: G is a PCG generating a language not containing ε.
We construct a PCG, G1 which is equivalent to G such that there are no pro-
ductions of the form of A

p1−→ B, where A,B ∈ N. Consider productions in G of
the form A

p1−→ B leading to a derivation chain

A
p1−→ B1

p2−→ B2 · · · pm−−→ Bm
pm+1−−−→ B

pm+2−−−→ w, where w /∈ N

We define a new production by A
p−→ w where p = p1p2 · · · pm+2, provided that

there are no loops among A,B1, · · · , Bm, B ∈ N. If there exists a loop between
nonterminals A and B such that

A
p0−→ B,A

pi−→ αi, i = 1, · · · , n and B
q0−→ A,B

qj−→ βj , j = 1, · · · ,m (1)

then

p0 + p1 + · · · + pn = q0 + q1 + · · · + qm = 1.

Now we replace the set of productions in (1) by the following productions

A
ri−→ βi,i = 1, · · · ,m,

A
ti−→ αi,i = 1, · · · , n,

B
si−→ αi,i = 1, · · · , n,

B
ui−→ βi,i = 1, · · · ,m,

where

ri =
p0qi

1 − p0q0
,i = 1, · · · ,m, (2)

ti =
pi

1 − p0q0
,i = 1, · · · , n, (3)

si =
q0pi

1 − p0q0
,i = 1, · · · , n, (4)

ui =
qi

1 − p0q0
,i = 1, · · · ,m, (5)
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We prove one of the Eqs. (2), (3), (4) and (5). By applying the productions
A

p0−→ B and B
q0−→ A, an arbitrary number of times before replacing B by βi

with probability qi, we can easily derive βi from A,

A
p0−→ B

qi−→ βi

A
p0−→ B

q0−→ A
p0−→ B

qi−→ βi

A
p0−→ B

q0−→ A
p0−→ B

q0−→ A
p0−→ B

qi−→ βi

...

Therefore, βi can be derived from A with probability ri, which is defined as the
sum of the probabilities of obtaining βi from A by means of infinite number of
derivations, such that

ri = p0qi + p0q0p0qi + p0q0p0q0p0qi + · · · = p0qi

∞∑

n=0

(q0p0)n =
p0qi

1 − p0q0

Similarly the other equations can be proved.
In this way, loop between A and B is being eliminated. Hence we

get an equivalent PCG G1in which there are no productions of the form
A

p−→ B,A,B ∈ N .
We now construct a PCG G2 equivalent to G1 in which there are no pro-

ductions of the form A
p−→ α1α2 . . . αn, n ≥ 2 where A ∈ N and αi ∈ (Σ ∪ N)∗.

Suppose that αi ∈ Σ and let αibe a terminal symbol ′a′. Then the αi is replaced
by a new non terminal Bi which is not appearing as the premise of any rule in
G1. Hence we get A

p−→ α1α2 . . . Bi . . . αn and Bi
1−→ a. After repeating this pro-

cedure for all terminals in α1 . . . αn in all the production rules, we get a grammar
G2 in which all the productions are of the form

1. A
p−→ a, where A ∈ N , a ∈ Σ, or

2. A
p−→ α1α2 . . . αn, n ≥ 2, where A,αi ∈ N ,

Clearly G2 is equivalent to G1.
Finally we construct a PCG G3 equivalent to G2 in which all the productions

are of the form A
p−→ a or A

p−→ B1C1&B2C2& · · · &BmCm, A,Bi, Ci ∈ N and
a ∈ Σ. Consider a typical production in G2 of the form A

p−→ B1B2 . . . Bm,m ≥ 3
and A,Bi ∈ N . We replace this production by the productions

A
p−→ B1D1

D1
1−→ B2D2

...

Dm−2
1−→ Bm−1Bm,

where D′s are the new nonterminals which do not appear as the premise of any
production in G2. After the elimination of this production from G2, we get a
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grammar G3 that is equivalent to G2. Hence G3 is in binary normal form and is
equivalent to G.

Case II: G is a PCG generating a language containing ε.
We introduce a new start symbol S′ and add, S′ → ε to P ′, and for each
production S → C1& . . . &Ck ∈ P ′, a rule S′ → C1& . . . &Ck added to P ′ as
well.

Example 3.9. Consider PCG Gp = ({s, t}, {S,M,C}, P, S, q), where P with q
are given below

S
0.8−−→ Mt&SC, S

0.2−−→ t

M
0.4−−→ tMss, M

0.3−−→ sM, M
0.3−−→ tss

C
0.7−−→ sC, C

0.3−−→ t.

The equivalent grammar to Gp in binary normal form is given by

Gpb
= ({s, t}, {A,B,C,D, S,M,N}, P, S, q)

where P with q are defined as:

S
0.8−−→ MB&SC, S

0.2−−→ t

M
0.4−−→ ND, M

0.3−−→ AM, M
0.3−−→ BD

C
0.7−−→ AC, C

0.3−−→ t

N
1−→ BM

D
1−→ AA

A
1−→ s

B
1−→ t.

The derivation of the string “tsst” is given below

S ⇒ MB&SC (p = 0.8)
⇒ (BD)B&SC (p = 0.24)
⇒ ((t)D)B&SC (p = 0.24)
⇒ ((t)AA)B&SC (p = 0.24)
⇒ ((t)ss)B&SC (p = 0.24)
⇒ ((t)ss)t&(SC) (p = 0.24)
⇒ (tsst)&(tC) (p = 0.048)
⇒ (tsst)&(t(AC)) (p = 0.0336)
⇒ (tsst)&(t(sC)) (p = 0.0336)
⇒ (tsst)&(ts(AC)) (p = 0.02352)
⇒ (tsst)&(ts(sC)) (p = 0.02352)
⇒ (tsst)&(ts(st)) (p = 0.007056)
⇒ tsst (p = 0.007056)
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4 Conclusion

In this paper we have extended the concept of conjunctive grammar to proba-
bilistic conjunctive grammar. Application of probabilistic conjunctive grammar
to other areas will be reported in a subsequent paper.
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Abstract. A (1, 2)-dominating set in a graph G = (V, E) is a set having
the property that for every vertex v ∈ V −S, there is at least one vertex
in S at a distance 1 from v and a second vertex in S at a distance at most
2 from v. The (1, 2)−domination number of G, denoted by γ1,2(G), is
the minimum cardinality of a (1, 2)−dominating set of G. In this paper,
we have derived bounds of γ1,2 in terms of the order and the maximum
degree. For trees, we get the bounds in terms of the number of pendant
vertices. We have also characterized the graphs G of order n, for which
γ1,2(G) = n, n − 1, n − 2.

Keywords: Domination · (1, 2)-dominating set

1 Introduction

Hedetniemi et al. [3] introduced the concept of (1, k)-domination in graphs. Let
k be a positive integer. A subset S of vertices is called a (1, k)-dominating set in
G if for every vertex v ∈ V −S, there are two distinct vertices u,w ∈ S such that
u is adjacent to v, and w is within distance k of v (i.e. dG(v, w) ≤ k). Hedetniemi
et al. [4,5] examined (1, k)-domination along with the internal distances in (1, k)-
dominating sets. Factor and Langley [1,2] studied (1, 2)-domination of digraphs.

In this paper, we study (1, 2)-domination in graphs. All our graphs are finite
and simple.

2 Bounds of γ1,2 in terms of Δ

We start with the following observations.

Observation 1. For any two graphs G and H, γ1,2(G∪H) = γ1,2(G)+γ1,2(H).

Observation 2. If H is a spanning supergraph of G, then γ1,2(H) ≤ γ1,2(G).

Theorem 1. If G is a graph of order n ≥ 4 with Δ(G) ≥ n − 2, then

γ1,2(G) =
{

2 if G is connected
3 if G is disconnected.

c© Springer International Publishing AG 2017
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Proof. When Δ(G) = n − 1, let u be a full-degree vertex; and v be any other
vertex in G. Then {u, v} is a (1, 2)-dominating set and so γ1,2(G) =2.

When Δ(G) = n − 2, let u be a vertex of degree n − 2; and v be the vertex
which is not adjacent to u.

Case 1. G is connected.
Let w be a neighbour of v. Then {u,w} is a (1, 2)-dominating set and so
γ1,2(G) = 2.

Case 2. G is disconnected.
Then v is an isolated vertex. Let S be any (1, 2)-dominating set of G. Since every
isolated vertex must lie in S, γ1,2(G) ≥ 3. Clearly {u, v, x} is a (1, 2)-dominating
set for every x ∈ N(u) and γ1,2(G) = 3.

Corollary 1. γ1,2(G) = 2 for the graphs G = Kn,K1,n,Wn, Fn and H + K1

where H is any graph.

Theorem 2. Let G be a connected graph of order n ≥ 5 with 2 ≤ Δ(G) ≤ n−3.
Then γ1,2(G) ≤ n − Δ(G).

Proof. Let G be a connected graph with the given hypothesis. Let Δ(G) = n−1−
k. Then 2 ≤ k ≤ n − 3 and n − Δ(G) = k + 1. Let V (G) = {u, vi|1 ≤ i ≤ n − 1},
where u is a vertex of degree Δ(G), and N(u) = {vk+1, vk+2, ..., vn−1}. Then
V (G) = N [u]∪V1, where V1 = {v1, v2, ..., vk}. Since G is connected, at least one
vertex in V1 has a neighbour in N(u).

Case 1. Every vertex in V1 has some neighbour in N(u).
Without loss of generality, assume that vi is adjacent to vji in N(u), for 1 ≤ i ≤
k. The vertices vj1 , vj2 , ..., vjk need not be distinct. Let V2 = {vji |1 ≤ i ≤ k} ⊆
N(u). Let S = {u, vj1 , vj2 , ..., vjk}(= V2 ∪ {u}).

Every vertex vi ∈ N(u)−S is adjacent to u and at a distance at most 2 from
vj1 . Every vi ∈ V1 is adjacent to vji and at a distance 2 from u. Hence S is a
(1, 2)-dominating set and so γ1,2(G) ≤ k + 1.

Case 2. Some vertex in V1 has no neighbour in N(u).
Without loss of generality, let V

′
1 = {v1, v2, ..., vr} ⊆ V1 be the set of vertices

that have no neighbours in N(u). Let V
′′
1 = V1 −V

′
1 = {vr+1, vr+2, ..., vk}. Then

V (G) = N [u] ∪ V
′
1 ∪ V

′′
1 . Since G is connected, at least one vertex in V

′
1 is

adjacent to some vertex in V
′′
1 . Without loss of generality, let v1 be adjacent

to vr+1. Without loss of generality, assume that vi is adjacent to vji in N(u),
for r + 1 ≤ i ≤ k. The vertices vjr+1 , vjr+2 , ..., vjk need not be distinct. Let
V2 = {vji |r + 1 ≤ i ≤ k} ⊆ N(u).

Let S = {u, vjr+1 , vjr+2 , ..., vjk , v1, v2, ..., vr}(= V2 ∪ V
′
1 ∪ {u}). Every vi ∈

N(u)−V2 is adjacent to u and at a distance at most 2 from vjr+1 . Every vi ∈ V
′′
1

is adjacent to vji and at a distance 2 from u. Hence S is a (1, 2)-dominating set
and so γ1,2(G) ≤ k + 1.

A wounded spider is the graph formed by subdividing at most n − 1 of the
edges of a star K1,n for n ≥ 2. Let WSn,t denote the wounded spider formed by
subdividing t edges of K1,n, 1 ≤ t ≤ n − 1.
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Corollary 2. γ1,2(WSn,t) = t + 1.

Proof. Let V [WSn,t] = {u, v1, v2, ..., vn, v
′
1, v

′
2, ..., v

′
t} and E[WSn,t] = {uvj , viv

′
i|

1 ≤ j ≤ n, 1 ≤ i ≤ t}. Let S be any (1, 2)-dominating set of WSn,t. For 1 ≤ i ≤ t,
to dominate vi, either vi ∈ S or v

′
i ∈ S. Moreover, for t+1 ≤ j ≤ n, to dominate

vj , either u ∈ S or vj ∈ S. Therefore, |S| ≥ t + 1.
Note that t = n − Δ − 1. When t ≥ 2, then Δ(WSn,t) ≤ n − 3; and by

Theorem 7, γ1,2(WSn,t) ≤ t + 1. Hence γ1,2(WSn,t) = t + 1.
When t = 1, then Δ(WSn,t) ≥ n − 2; and by Theorem1, γ1,2(WSn,t) = 2.

3 Composition of Two Graphs

Theorem 3. Let G be a non-trivial connected graph. Then for any graph H,
γ1,2(GoH) = |V (G)|.
Proof. Let V (G) = {v1, v2, ..., vn} and V (H) = {u1, u2, ..., us}. Let
H1,H2, ...,Hn denote the copies of H, where every vertex of Hi is adjacent
to vi, 1 ≤ i ≤ n. Let V (Hi) = {ui

1, u
i
2, ..., u

i
s}. Let S be any (1, 2)-dominating

set of GoH. Since there is no adjacency between the vertices in Hi and Hj for
i �= j, every ui

r in Hi is adjacent to either vi or ui
k, where ui

k ∈ N [ui
r]. Hence

for each i, 1 ≤ i ≤ n, to dominate V (Hi), we need at least one vertex in S.
Hence γ1,2(GoH) ≥ n. Let S1 = {v1, v2, ..., vn}. For every ui

r, 1 ≤ i ≤ n, 1 ≤ r ≤
s, dGoH(ui

r, vi) = 1 and dGoH(ui
r, vj) = 2 for every vj ∈ NG(vi). Hence S1 is a

(1, 2)-dominating set and so γ1,2(GoH) = n.

Corollary 3. Let G be any graph having t isolates. Then for any graph H,
γ1,2(GoH) = |V (G)| + t, where t ≥ 0.

Proof. Let G1, G2, ..., Gk be the components of G.
Then γ1,2(GoH) =

∑k
i=1 γ1,2(GioH).

Case 1. t = 0.
Since each Gi is connected, by Theorem 3, γ1,2(GioH) = |V (Gi)|. Hence
γ1,2(GoH) = |V (G)|.
Case 2: t �= 0.
Without loss of generality, let G1, G2, ..., Gt denote the components of order 1.
Then GioH has a full - degree vertex; and so by Theorem 1, γ1,2(GioH) = 2, for
1 ≤ i ≤ t. By Theorem 3, γ1,2(GioH) = |V (Gi)|, for t + 1 ≤ i ≤ k. Thus, we get
the result.

4 Some Characterizations

Theorem 4. Let G be a connected graph of order n ≥ 2. Then γ1,2(G) = n if
and only if n = 2.



(1, 2)-Domination in Graphs 131

Proof. When G = K2, the result is obvious. Conversely, suppose that n �= 2.

Claim. γ1,2(G) < n.
We prove this result by induction on n.
When n = 3, a set of any two vertices of G is a (1, 2)-dominating set of G

and so γ1,2(G) = 2 < n.

Assume the result for n = k with k ≥ 3.
Next, let G be a connected graph of order n = k + 1. Let v be a vertex that

is not a cut vertex in G. Then G − v is connected, and of order n − 1 = k. By
the induction hypothesis, G− v has a (1, 2)-dominating set S with |S| < k. (i.e.)
|S| ≤ k − 1.

Let u be a neighbour of v.

Case 1. u ∈ S.
Since G is connected, n ≥ 3 and v is not a cut-vertex in G, u has another
neighbour (say) w. Then S∪{w} is a (1, 2)-dominating set in G and so γ1,2(G) ≤
k < n.

Case 2. u /∈ S.
Since S is a (1, 2)-dominating set in G − v, there exists a vertex w ∈ S that is
adjacent to u. Then S∪{u} is a (1, 2)-dominating set in G and so γ1,2(G) ≤ k < n.

Thus, by induction, the result follows.

Theorem 5. Let G be a connected graph of order n ≥ 3. Then γ1,2(G) = n − 1
iff n = 3. i.e. γ1,2(G) = n − 1 iff G = P3 or K3.

Proof. When n = 3, a set of any two vertices of G is a (1, 2)-dominating set of
G and so γ1,2(G) = 2 = n − 1. Conversely, suppose that n �= 3.

Claim. γ1,2(G) < n − 1.
We shall prove this result by induction on n.
When n = 4, since G is connected, Δ(G) ≥ 2. Now, any two adjacent vertices

form a (1, 2)-dominating set and so γ1,2(G) = 2 < n − 1.
Assume the result for n = k with k ≥ 4.
Next, let G be a connected graph of order n = k + 1. The rest of the proof

is similar to the proof of Theorem 4.

Corollary 4. Let G be any graph of order n. Then

(i) γ1,2(G) = n iff G = sK1 ∪ n−s
2 K2, with 0 ≤ s ≤ n.

(ii) γ1,2(G) = n − 1 iff G = sK1 ∪ n−s−3
2 K2 ∪ H, where H ∼= P3 or K3, with

0 ≤ s ≤ n − 3.

Theorem 6. Let G be a connected graph of order n ≥ 4. Then γ1,2(G) = n − 2
iff G = P5 or G is of order 4.
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Proof. If G = P5 or G is of order 4, it is easy to verify that γ1,2(G) = n − 2.
Conversely, suppose that

γ1,2(G) = n − 2. (1)

Let n = 5. If Δ(G) ≥ 3(= n−2), then γ1,2(G) = 2 (by Theorem 1), contradicting
(1). If Δ(G) = 2, then G is either P5 or C5; but γ1,2(C5) = 2, and so G = P5.
Now, let n ≥ 6.

Claim. γ1,2(G) < n − 2.
We shall prove this result by induction on n.
When n = 6, if Δ(G) ≥ n − 2, then γ1,2(G) = 2 (by Theorem 1); if 3 ≤

Δ(G) ≤ n − 3, then γ1,2(G) ≤ n − 3 (by Theorem 7); if Δ(G) = 2, then G is
either P6 or C6 and γ1,2(G) ≤ 3; and in all these cases, we get a contradiction
to (1).

Assume the result for n = k with k ≥ 6. Next, let G be a connected graph
of order n = k + 1. The rest of the proof is similar to the proof of Theorem4.

Corollary 5. For any graph G of order n, γ1,2(G) = n − 2 iff G is one of the
following graphs:

(i) G = sK1∪ n−6−s
2 K2∪H, where H = 2P3, 2K3 or P3∪K3, with 0 ≤ s ≤ n−6.

(ii) G = sK1 ∪ P5 ∪ n−5−s
2 K2, with 0 ≤ s ≤ n − 5.

(ii) G = sK1 ∪ n−4−s
2 K2 ∪ H where H is a connected graph of order 4, with

0 ≤ s ≤ n − 4.

5 Trees

Theorem 7. Let T be a tree of order n ≥ 2. Then γ1,2(T ) = 2 if and only if T
is a Star or Double Star.

Proof. Suppose that γ1,2(T ) = 2. Let S = {u, v} be a (1, 2)-dominating set of T .
Then every vertex in T is adjacent with either u or v. Hence V (T ) = N [u]∪N [v].
Then for every x ∈ N(u) and y ∈ V (T ), d(x, y) ≤ d(x, u)+d(u, y) ≤ 3; similarly,
for every x ∈ N(v) and y ∈ V (T ), d(x, y) ≤ 3; for every x ∈ V − {u, v},
d(u, x) + d(x, v) ≤ 3; and so d(u, v) ≤ 3. Hence diam(T ) ≤ 3; and so T is a Star
or a Double Star Dr, s (where r + s = n − 2). Converse is obvious.

Theorem 7 deals with the trees of diameter 2 and 3. The next result deals
with trees of diameter ≥ 4.

Theorem 8. Let T be a tree of order n with r pendant vertices. Then

(i) 3 ≤ γ1,2(T ) ≤ n − r, if diam(T ) ≥ 5
(ii) γ1,2(T ) = n − r, if diam(T ) = 3 or 4.

Proof. Let diam(T ) ≥ 3. Let V1 denote the set of all pendant vertices in T . Then
|V − V1| ≥ 2 and V − V1 is a (1, 2)-dominating set; and so

γ1,2(T ) ≤ n − r. (2)
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Using Theorem 7, γ1,2(T ) ≥ 3; and so (i) follows.
When diam(T ) = 3, T is a double star; and by Theorem7, γ1,2(T ) = 2 =

n− r. When diam(T ) = 4, diam(T −V1) = 2; and so T −V1 is K1, n−r−1, where
n−r−1 ≥ 2. Let V (K1, n−r−1) = {u, u1, u2, ..., un−r−1}. For 1 ≤ j ≤ dT (ui)−1,
let vij denote a pendant vertex adjacent to ui. For 1 ≤ t ≤ dT (u) − n − r − 1,
let wt denote a pendant vertex adjacent to u. (If dT (u) = n − r − 1, then there
is no wt’s).

By (2), γ1,2(T ) ≤ n − r. Assume the contrary that γ1,2(T ) �= n − r. Then
there is a (1, 2)-dominating set S1 of cardinality n − r − 1.

If S1 = {u1, u2, ..., un−r−1}, then there is no vertex at a distance 2 from vij ,
for 1 ≤ i ≤ n − r − 1 and 1 ≤ j ≤ dT (ui) − 1, which is a contradiction.

Then ui /∈ S1, for some i, 1 ≤ i ≤ n − r − 1. Without loss of general-
ity, let u1, u2, ..., uk /∈ S1 and uk+1, uk+2, ..., un−r−1 ∈ S1, where 1 ≤ k ≤
n − r − 1. For 1 ≤ i ≤ k, ui /∈ S1; and so all vij ’s must lie in S1. But
|S1| = n − r − 1. Hence it follows that, d(ui) = 2 for i = 1, 2, 3, ..., k, and
S1 = {v11 , v21 , ..., vk1 , uk+1, uk+2, ..., un−r−1}.

Case 1. k = n − r − 1.
Now S1 = {v11 , v21 , ..., v(n−r−1)1}; and so u is not (1, 2)-dominated by S1, a
contradiction.

Case 2. k < n − r − 1.
Now there is no vertex in S1 at a distance at most 2 from vsj , k+1 ≤ s ≤ n−r−1,
a contradiction.
Hence γ1,2(T ) = n − r.
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Abstract. Given a bijection f : V (G) → {1, 2, · · · , |V (G)|}, we asso-
ciate two integers S = f(u)+f(v) and D = |f(u)−f(v)| with every edge
uv in E(G). The labeling f induces an edge labeling f ′ : E(G) → {0, 1}
such that for any edge uv in E(G), f ′(uv) = 1 if gcd(S,D) = 1, and
f ′(uv) = 0 otherwise. Let ef ′(i) be the number of edges labeled with
i ∈ {0, 1}. We say f is SD-prime cordial labeling if |ef ′(0) − ef ′(1)| ≤ 1.
Moreover G is SD-prime cordial if it admits SD-prime cordial labeling.
In this paper, we investigate some new construction of SD-prime cordial
graph.

Keywords: SD-prime labeling · SD-prime cordial labeling · SD-prime
cordial graph

1 Introduction

All graphs considered here are simple, finite, connected and undirected. For all
other standard terminology and notations we follow Harary [3]. A labeling of a
graph is a map that carries the graph elements to the set of numbers, usually to
the set of non-negative or positive integers. If the domain is the set of vertices
the labeling is called vertex labeling. If the domain is the set of edges then
the labeling is called edge labeling. If the labels are assigned to both vertices
and edges then the labeling is called total labeling. For all detailed survey of
graph labeling we refer Gallian [2]. In [5,6], Lau and Shiu have introduced the
concepts SD-prime labeling. In [4], Lau et al. have introduced SD-prime cordial
labeling and they discussed SD-prime cordial labeling for some standard graphs.
Lourdusamy et al. [7] proved that splitting graph of star and bistar, shadow
graph of star and bistar, degree splitting graph of star and bistar, subdivision
of star and bistar, square graph of bistar and path, K1,3 ∗ K1,n, closed helm,
gear graph, flower graph, total graph of path and cycle, the graph obtained by
duplication of each vertex of path and cycle by an edge, quadrilateral snake,
alternative triangular snake, triangular ladder, Pn � K1, Cn � K1, jewel graph
and K2 + mK1 admit SD-prime cordial labeling. In this paper, we discussed
some new construction of graphs on SD-prime cordial labeling concerning star,
path and fan related graph.
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 134–143, 2017.
DOI: 10.1007/978-3-319-64419-6 18
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Given a bijection f : V (G) → {1, 2, · · · , |V (G)|}, we associate two integers
S = f(u) + f(v) and D = |f(u) − f(v)| with every edge uv in E.

Definition 1. [5] A bijection f : V (G) → {1, 2, · · · , |V (G)|} induces an edge
labeling f ′ : E(G) → {0, 1} such that for any edge uv in G, f ′(uv) = 1 if
gcd(S,D) = 1, and f ′(uv) = 0 otherwise. We say f is SD-prime labeling if
f ′(uv) = 1 for all uv ∈ E(G). Moreover, G is SD-prime if it admits SD-prime
labeling.

Definition 2. [4] A bijection f : V (G) → {1, 2, · · · , |V (G)|} induces an edge
labeling f ′ : E(G) → {0, 1} such that for any edge uv in G, f ′(uv) = 1 if
gcd(S,D) = 1, and f ′(uv) = 0 otherwise. The labeling f is called SD-prime
cordial labeling if |ef ′(0) − ef ′(1)| ≤ 1. We say that G is SD-prime cordial if it
admits SD-prime cordial labeling.

Definition 3. [1] If G1(p1, q1) and G2(p2, q2) are two connected graphs, G1ôG2

is obtained by superimpose any selected vertex of G2 on any selected vertex of
G1. The resultant graph G = G1ôG2 consists of p1 + p2 − 1 vertices and q1 + q2
edges.

Definition 4. The join of two graphs G1 and G2 is denoted by G1 + G2 and
whose vertex set is V (G1+G2) = V (G1)

⋃
V (G2) and edge set is E(G1+G2) =

E(G1)
⋃

E(G2)
⋃{uv : u ∈ V (G1), v ∈ V (G2)}.

Definition 5. The graph Fn = Pn +K1 is called a fan.

2 Main Results

Lemma 1. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 2. The graph obtained by identifying
a vertex w in G and a vertex of degree n in K1,n admits a SD-prime cordial
labeling if one of the following conditions holds:

1. n is even,
2. n is odd and q is even,
3. n is odd, q is odd, p is odd and ef ′(1) = q+1

2 ,
4. n is odd, q is odd, p is even and ef ′(1) = q−1

2 .

Proof. Let f be a SD-prime cordial labeling of a graph G of order p and size
q. That is the vertices of g are labeled with numbers {1, 2, · · · , p} and |ef ′(1) −
ef ′(0)| ≤ 1.

Let w ∈ V (G) be such that f(w) = 2. Let us denote by H the graph obtained
by identifying a vertex w in G and a vertex of degree n in K1,n.

We define a vertex labeling g of H such that

g(v) = f(v), v ∈ V (G);
g(xi) = p+ i, i = 1, 2, · · · , n.
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Thus for the induced edge labeling we get

g′(uv) = f ′(vu), v ∈ V (G);

and for i = 1, 2, · · · , n
g′(wxi) = 0 if (p is odd and i is odd) or (p is even and i is even);
g′(wxi) = 1 if (p is odd and i is even) or (p is even and i is odd).

Let us denote by e∗
g′(k) number of edges wxi labeled with k, where k = 0, 1.

Then

|eg′(1) − eg′(0)| = ∣
∣(ef ′(1) − e∗

g′(1)) − (ef ′(0) − e∗
g′(0))

∣
∣

=
∣
∣ef ′(1) − ef ′(0) + e∗

g′(1) − e∗
g′(0)

∣
∣ .

Thus, if n is even and q is even then

|eg′(1) − eg′(0)| =
∣
∣
∣
q

2
− q

2
+

n

2
− n

2

∣
∣
∣ = 0;

if n is even, q is odd and ef ′(1) = q+1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q + 1
2

− q − 1
2

+
n

2
− n

2

∣
∣
∣
∣ = 1;

if n is even, q is odd and ef ′(1) = q−1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q − 1
2

− q + 1
2

+
n

2
− n

2

∣
∣
∣
∣ = 1;

if n is odd, q is even and p is even then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q

2
− q

2
+

n+ 1
2

− n − 1
2

∣
∣
∣
∣ = 1;

if n is odd, q is even and p is odd then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q

2
− q

2
+

n − 1
2

− n+ 1
2

∣
∣
∣
∣ = 1;

if n is odd, q is odd, p is odd and ef ′(1) = q+1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q + 1
2

− q − 1
2

+
n − 1
2

− n+ 1
2

∣
∣
∣
∣ = 0;

if n is odd, q is odd, p is even and ef ′(1) = q−1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q − 1
2

− q + 1
2

+
n+ 1
2

− n − 1
2

∣
∣
∣
∣ = 0.
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Lemma 2. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 1. The graph obtained by identifying
a vertex w in G and a vertex of degree n in K1,n admits a SD-prime cordial
labeling if one of the following conditions holds:

1. n is even,
2. n is odd and q is even,
3. n is odd, q is odd, p is even and ef ′(1) = q+1

2 ,
4. n is odd, q is odd, p is odd and ef ′(1) = q−1

2 .

Proof. The proof is analogous to that of Lemma 1.

Theorem 1. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 2s, where s = 0, 1, 2, · · · . The graph
obtained by identifying a vertex w in G and a vertex of degree n in K1,n admits
a SD-prime cordial labeling.

Proof. The proof follows from Lemmas 1 and 2.

Lemma 3. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 2. The graph obtained by identifying a
vertex w in G and a vertex of degree 1 in Pn admits a SD-prime cordial labeling
if one of the following conditions holds:

1. n is odd,
2. n is even and q is even,
3. n is even, q is odd, p is odd and ef ′(1) = q+1

2 ,
4. n is even, q is odd, p is even and ef ′(1) = q−1

2 .

Proof. Let f be a SD-prime cordial labeling of a graph G of order p and size
q. That is the vertices of g are labeled with numbers {1, 2, · · · , p} and |ef ′(1) −
ef ′(0)| ≤ 1.

Let w ∈ V (G) be such that f(w) = 2. Let us denote by H the graph obtained
by identifying a vertex w in G and a vertex of degree 1 in Pn.
We define a vertex labeling g of H such that

g(v) = f(v), v ∈ V (G);

If p is odd and n is odd,

g(xi) =

⎧
⎪⎨

⎪⎩

p+ i − 1 if i ≡ 2, 3 (mod 4) and 2 ≤ i ≤ n

p+ i if i ≡ 0 (mod 4) and 2 ≤ i ≤ n

p+ i − 2 if i ≡ 1 (mod 4) and 2 ≤ i ≤ n;

If p is even and n is odd,

g(xi) =

⎧
⎪⎨

⎪⎩

p+ i if i ≡ 2 (mod 4) and 2 ≤ i ≤ n

p+ i − 2 if i ≡ 3 (mod 4) and 2 ≤ i ≤ n

p+ i − 1 if i ≡ 0, 1 (mod 4) and 2 ≤ i ≤ n;
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If n is even,

g(xi) =

⎧
⎪⎨

⎪⎩

p+ i − 1 if i ≡ 2, 1 (mod 4) and 2 ≤ i ≤ n

p+ i if i ≡ 3 (mod 4) and 2 ≤ i ≤ n

p+ i − 2 if i ≡ 0 (mod 4) and 2 ≤ i ≤ n.

Thus for the induced edge labeling we get

g′(uv) = f ′(vu), v ∈ V (G);
g′(wx2) = 0 if (n is odd) or (p is odd and n is even);
g′(wx2) = 1 if (p is even and n is even);

g′(x2i−1x2i) = 0 if n is odd and 2 ≤ i ≤ n − 1
2

;

g′(x2i−1x2i) = 1 if n is even and 2 ≤ i ≤ n

2
;

g′(x2ix2i+1) = 1 if n is odd and 1 ≤ i ≤ n − 1
2

;

g′(x2ix2i+1) = 0 if n is even and 1 ≤ i ≤ n − 2
2

.

Let us denote by e∗
g′(k) number of edges wx2, xixi+1 labeled with k, where

k = 0, 1.
Then

|eg′(1) − eg′(0)| = ∣
∣(ef ′(1) − e∗

g′(1)) − (ef ′(0) − e∗
g′(0))

∣
∣

=
∣
∣ef ′(1) − ef ′(0) + e∗

g′(1) − e∗
g′(0)

∣
∣ .

Thus, if n is odd and q is even then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q

2
− q

2
+

n − 1
2

− n − 1
2

∣
∣
∣
∣ = 0;

if n is odd, q is odd and ef ′(1) = q+1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q + 1
2

− q − 1
2

+
n − 1
2

− n − 1
2

∣
∣
∣
∣ = 1;

if n is odd, q is odd and ef ′(1) = q−1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q − 1
2

− q + 1
2

+
n − 1
2

− n − 1
2

∣
∣
∣
∣ = 1;

if n is even, q is even and p is odd then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q

2
− q

2
+

n − 2
2

− n

2

∣
∣
∣
∣ = 1;
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if n is even, q is even and p is even then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q

2
− q

2
+

n

2
− n − 2

2

∣
∣
∣
∣ = 1;

if n is even, q is odd, p is odd and ef ′(1) = q+1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q + 1
2

− q − 1
2

+
n − 2
2

− n

2

∣
∣
∣
∣ = 1;

if n is even, q is odd, p is even and ef ′(1) = q−1
2 then

|eg′(1) − eg′(0)| =
∣
∣
∣
∣
q − 1
2

− q + 1
2

+
n

2
− n − 2

2

∣
∣
∣
∣ = 1.

Lemma 4. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 1. The graph obtained by identifying a
vertex w in G and a vertex of degree 1 in Pn admits a SD-prime cordial labeling
if one of the following conditions holds:

1. n is odd,
2. n is even and q is even,
3. n is even, q is odd, p is even and ef ′(1) = q+1

2 ,
4. n is even, q is odd, p is odd and ef ′(1) = q−1

2 .

Proof. The proof is analogous to that of Lemma 3.

Theorem 2. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 2s, where s = 0, 1, 2, · · · . The graph
obtained by identifying a vertex w in G and a vertex of degree 1 in Pn admits a
SD-prime cordial labeling.

Proof. The proof follows from Lemmas 3 and 4.

Lemma 5. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 2. The graph obtained by identifying a
vertex w in G and a vertex of degree n in Fn admits a SD-prime cordial labeling
if one of the following conditions holds:

1. n is even and q is even,
2. n is even, q is odd, p is even and ef ′(1) = q−1

2 ,
3. n is odd and q is even,
4. n is odd, q is odd, p is odd and ef ′(1) = q+1

2 ,
5. n is odd, q is odd, p is even and ef ′(1) = q−1

2 .

Proof. Let f be a SD-prime cordial labeling of a graph G of order p and size
q. That is the vertices of g are labeled with numbers {1, 2, · · · , p} and |ef ′(1) −
ef ′(0)| ≤ 1.
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Let w ∈ V (G) be such that f(w) = 2. Let us denote by H the graph obtained
by identifying a vertex w in G and a vertex of degree n in Fn.
We define a vertex labeling g of H such that

g(v) = f(v), v ∈ V (G);

If n is even,

g(xi) =

⎧
⎪⎨

⎪⎩

p+ i if i ≡ 1, 2 (mod 4) and 1 ≤ i ≤ n

p+ i+ 1 if i ≡ 3 (mod 4) and 1 ≤ i ≤ n

p+ i − 1 if i ≡ 0 (mod 4) and 1 ≤ i ≤ n;

If n is odd,

g(xi) =

⎧
⎪⎨

⎪⎩

p+ i if i ≡ 1, 0 (mod 4) and 1 ≤ i ≤ n

p+ i+ 1 if i ≡ 2 (mod 4) and 1 ≤ i ≤ n

p+ i − 1 if i ≡ 3 (mod 4) and 1 ≤ i ≤ n.

Thus for the induced edge labeling we get

g′(uv) = f ′(vu), v ∈ V (G);

for 1 ≤ i ≤ n,

g′(wxi) = 0 if (p is odd, n is even and i ≡ 1, 0 (mod 4)) or
(p is even, n is even and i ≡ 2, 3 (mod 4)) or
(p is odd, n is odd and i ≡ 1, 2 (mod 4)) or
(p is even, n is odd and i ≡ 3, 0 (mod 4));

g′(wxi) = 1 if (p is odd, n is even and i ≡ 2, 3 (mod 4)) or
(p is even, n is even and i ≡ 1, 0 (mod 4)) or
(p is odd, n is odd and i ≡ 3, 0 (mod 4)) or
(p is even, n is odd and i ≡ 1, 2 (mod 4));

for 1 ≤ i ≤ n − 1,

g′(xixi+1) =

{
1 if (n is even and i is odd) or (n is odd and i is even)
0 if (n is even and i is even) or (n is odd and i is odd).

Let us denote by e∗
g′(k) number of edges wxi, xixi+1 labeled with k, where

k = 0, 1.
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Then

|eg′(1) − eg′(0)| = ∣
∣(ef ′(1) − e∗

g′(1)) − (ef ′(0) − e∗
g′(0))

∣
∣

=
∣
∣ef ′(1) − ef ′(0) + e∗

g′(1) − e∗
g′(0)

∣
∣ .

Thus, if n is even and q is even then

|eg′(1) − eg′(0)| = |q
2

− q

2
+ n − (n − 1)| = 1;

if n is even, q is odd and ef ′(1) = q−1
2 then

|eg′(1) − eg′(0)| = |q − 1
2

− q + 1
2

+ n − (n − 1)| = 0;

if n is odd, q is even and p is odd then

|eg′(1) − eg′(0)| = |q
2

− q

2
+ (n − 1) − n| = 1;

if n is odd, q is even and p is even then

|eg′(1) − eg′(0)| = |q
2

− q

2
+ n − (n − 1)| = 1;

if n is odd, q is odd, p is odd and ef ′(1) = q+1
2 then

|eg′(1) − eg′(0)| = |q + 1
2

− q − 1
2

+ (n − 1) − n| = 0;

if n is odd, q is odd, p is even and ef ′(1) = q−1
2 then

|eg′(1) − eg′(0)| = |q − 1
2

− q + 1
2

+ n − (n − 1)| = 0.

Lemma 6. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 1. The graph obtained by identifying a
vertex w in G and a vertex of degree n in Fn admits a SD-prime cordial labeling
if one of the following conditions holds:

1. n is even and q is even,
2. n is even, q is odd, p is even and ef ′(1) = q−1

2 ,
3. n is odd and q is even,
4. n is odd, q is odd, p is even and ef ′(1) = q+1

2 ,
5. n is odd, q is odd, p is odd and ef ′(1) = q−1

2 .

Proof. Let f be a SD-prime cordial labeling of a graph G of order p and size q.
That is the vertices of g are labeled with numbers {1, 2, · · · , p} and

|ef ′(1) − ef ′(0)| ≤ 1.
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Let w ∈ V (G) be such that f(w) = 1. Let us denote by H the graph obtained
by identifying a vertex w in G and a vertex of degree n in Fn.
We define a vertex labeling g of H such that

g(v) = f(v), v ∈ V (G);

If n is even,

g(xi) =

⎧
⎪⎨

⎪⎩

p+ i if i ≡ 1, 2 (mod 4) and 1 ≤ i ≤ n

p+ i+ 1 if i ≡ 3 (mod 4) and 1 ≤ i ≤ n

p+ i − 1 if i ≡ 0 (mod 4) and 1 ≤ i ≤ n;

If n is odd,

g(xi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p+ i if i = 1
p+ i+ 1 if i = 2
p+ i − 1 if i = 3
p+ i if i ≡ 1, 2 (mod 4) and 4 ≤ i ≤ n

p+ i+ 1 if i ≡ 3 (mod 4) and 4 ≤ i ≤ n

p+ i − 1 if i ≡ 0 (mod 4) and 4 ≤ i ≤ n.

Using the above labeling and similar method of Lemma 5, one can easily verify
that the graph obtained by identifying a vertex w in G and a vertex of degree n
in Fn admits a SD-prime cordial labeling.

Theorem 3. Let f be a SD-prime cordial labeling of a graph G of order p and
size q. Let w ∈ V (G) be such that f(w) = 2s, where s = 0, 1, 2, · · · . The graph
obtained by identifying a vertex w in G and a vertex of degree n in Fn admits a
SD-prime cordial labeling.

Proof. The proof follows from Lemmas 5 and 6.

Conjecture 1. Let f be a SD-prime cordial labeling of a graph G1 of order p
and size q. Let w ∈ V (G1) be such that f(w) = 2s, where s = 0, 1, 2, · · · . The
graph obtained by identifying a vertex w in G1 and any one of the vertices in
any graph G2 admits a SD-prime cordial labeling.
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Abstract. A vertex coloring C = {V1, V2, . . . , Vk} of a graph G is called
a dominator coloring of G if every vertex v of G is adjacent to all the
vertices of at least one color class Vi. The dominator chromatic number
χd(G) is the minimum number of colors required for a dominator color-
ing. In this paper we determine the dominator chromatic number of the
generalized Petersen graph P (n, k) where 1 ≤ k ≤ 3.

Keywords: Dominator coloring · Dominator chromatic number ·
Generalized petersen graph

1 Introduction

By a graph G = (V,E), we mean a finite undirected graph with neither loops
nor multiple edges. The order |V | and the size |E| of G are denoted by n and
m respectively. For graph theoretic terminology we refer to Chartrand and Les-
niak [4].

Graph coloring and domination are two major areas in graph theory that have
been well studied. The concept of dominator coloring which was introduced by
Hedetniemi et al. [10] has flavour of both these concepts.

Gera et al. [8] also studied this concept. Several results on dominator colorings
are given in [1,5,8,9]. Algorithmic aspects of dominator colorings problem have
been investigated in Arumugam et al. [2].

Let G = (V,E) be graph and let v ∈ V. The open neighborhood N(v)
and the closed neighborhood N [v] are defined by N(v) = {u ∈ V : uv ∈ E}
and N [v] = N(v) ∪ {v}. A subset S of V is called a dominating set of G if
N(v)∩ S �= ∅ for all v ∈ V − S. The minimum cardinality of a dominating set of
G is called the domination number of G and is denoted by γ(G). For an excellent
treatment of fundamentals of domination we refer to [11].

A vertex coloring of G is an assignment of colors to the vertices of G such
that adjacent vertices receive distinct colors. The minimum number of colors
required for a coloring of G is called the chromatic number of G and is denoted
by χ(G).

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 144–151, 2017.
DOI: 10.1007/978-3-319-64419-6 19
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Definition 1.1 [8,10]. Let G = (V,E) be a graph, S ⊆ V and let v ∈ V. We say
that v dominates S if v is adjacent to all the vertices in S. A vertex coloring C =
{V1, V2, . . . , Vk} is called a dominator coloring of G if every vertex v dominates at
least one color class Vi. The dominator chromatic number χd(G) is the minimum
number of colors required for a dominator coloring of G. A dominator coloring
of G using χd colors is called a χd-coloring of G.

Observation 1.2. Let C be a χd-coloring of G. Since any closed neighborhood
N [v] contains a color class from C, it follows that χd(G) ≥ k where k is the
maximum number of disjoint closed neighborhoods in G. Further, if χ1 = χ(H)
where H is the subgraph of G induced by the set of vertices of G not covered by
the above k color classes, then χd(G) ≥ k + χ1.

Theorem 1.3 [9]. For any graph G, we have max{χ(G), γ(G)} ≤ χd(G) ≤
χ(G) + γ(G). In particular, if G is bipartite, then γ(G) ≤ χd(G) ≤ γ(G) + 2.

Definition 1.4. The Cartesian product G�H of two graphs G and H is the
graph with V (G�H) = V (G)× V (H) and E(G�H) = {(g1, h1)(g2, h2) : g1 = g2
and h1h2 ∈ E(H) or h1 = h2 and g1g2 ∈ E(G)}.

Definition 1.5 [13]. Let n and k be positive integers with n ≥ 3 and k ≤
n − 1. The generalized Petersen graph P (n, k) is the graph with V (P (n, k)) =
{u1, u2, u3, . . . , un} ∪{v1, v2, v3, . . . , vn} and E(P (n, k)) = {vivi+1 : 1 ≤ i ≤
n} ∪ {viui : 1 ≤ i ≤ n} ∪ {uiui+k : 1 ≤ i ≤ n} where addition in the suffix is
modulo n.

Domination in generalized Petersen graphs have been investigated in several
papers [3,6,7].

In this paper we determine the dominator chromatic number of the general-
ized Petersen graph P (n, k) where 1 ≤ k ≤ 3.

We need the following theroems.

Theorem 1.6. The generalized Petersen graph P (n, k) is bipartite if and only
if n is even and k is odd.

Theorem 1.7 [12]. Let G = P (n, 1), n ≥ 3. Then

γ(G) =
{

n
2 + 1 if n ≡ 2(mod 4)⌈
n
2

⌉
otherwise.

Theorem 1.8 [12]. Let G = P (n, 2), n ≥ 5. Then γ(G) =
⌈
3n
5

⌉
.

Theorem 1.9 [12]. Let G = P (n, 3), n ≥ 7. Then

γ(G) =

⎧⎨
⎩

n
2 + 1 n ≡ 2(mod 4)⌈
n
2

⌉
n ≡ 1, 0(mod 4)orn = 11⌈

n
2

⌉
+ 1 n ≡ 3(mod 4), n �= 11.
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2 Main Results

The generalized Petersen graph P (n, 1) is isomorphic to the Cartesian product
Cn�K2. We now proceed to determine χd(P (n, 1)). We start with the following
lemma.

Lemma 2.1. Let G = Pn�K2 and let (u1, u2, . . . , un) and (v1, v2, . . . , vn) be the
two copies of Pn in G with uivi ∈ E(G). Let G1 = G−{u1, vn}, if n ≡ 1(mod 4)
and G2 = G − {u1, un}, if n ≡ 3(mod 4). Then χd(G1) = χd(G2) =

⌊
n
2

⌋
+ 2.

Proof. Let �1 = {N [u4i] : 1 ≤ i ≤ n−1
4 } ∪ {N [v4i−2] : 1 ≤ i ≤ n−1

4 } if
n ≡ 1(mod 4) and let �2 = {N [u4i] : 1 ≤ i ≤ n−3

4 } ∪ {N [v4i−2] : 1 ≤ i ≤
n−3
4 + 1} if n ≡ 3(mod 4). Then both �1 and �2 are two sets of disjoint closed

neighbourhoods in G1 and G2 respectively with |�1| = |�2| =
⌊
n
2

⌋
. It follows

from Observation 1.2 that χd(G1) ≥ ⌊
n
2

⌋
+ 2 and χd(G2) ≥ ⌊

n
2

⌋
+ 2.

Now, let C1 = {{u4i} : 1 ≤ i ≤ n−1
4 } ∪ {{v4i−2} : 1 ≤ i ≤ n−1

4 } ∪
{{v1, v3, . . . , vn−2, u2, u6, . . . , un−3}}∪ {{v4, v8, . . . , vn−1, u3, u5, . . . , un}} if n ≡
1(mod 4) and let C2 = {{u4i} : 1 ≤ i ≤ n−3

4 } ∪ {{v4i−2} : 1 ≤ i ≤ n−3
4 +

1} ∪ {{v1, v3, . . . vn, u2, u6, . . . , un−1}} ∪ {{v4, v8, . . . , vn−3, u3, u5, . . . , un−2}} if
n ≡ 3(mod 4). Clearly Ci is a dominator coloring of Gi, for i = 1,2 and
|C1| = |C2| =

⌊
n
2

⌋
+ 2.

Thus χd(G1) = χd(G2) =
⌊
n
2

⌋
+ 2.

Corollary 2.2. If C is a dominator coloring of G1 or G2 with {v1} ∈ C, then
|C| ≥ ⌊

n
2

⌋
+ 3.

Proof. Since �1 and �2 defined in Lemma 2.1 are
⌊
n
2

⌋
disjoint closed neighbour-

hoods of G1−v1 and G2−v1 respectively, and C−{{v1}} is a dominator coloring
of G1 − v1 or G2 − v1, we have |C − {v1}| ≥ ⌊

n
2

⌋
+ 2. Hence |C| ≥ ⌊

n
2

⌋
+ 3.

Corollary 2.3. Let C be a χd-coloring of G1 or G2. Then for each closed neigh-
bourhood in �1 or �2, its central vertex is a color class in C.

Proof. Since v1 is a pendent vertex of G1 and G2, either {v1} or {v2} is a color
class in C. Also, since |C| = ⌊

n
2

⌋
+2, it follows from Corollary 2.2 that {v1} /∈ C.

Hence {v2} ∈ C. Let H1 = 〈N [v2]〉. Now let C1 = {C ∩ (V (G1)−V (H1)) : C ∈ C
and C �= {v2}}. Clearly C1 is a dominator coloring of G − V (H1) and |C1| =⌊
n
2

⌋
+1. Since u3 is a pendent vertex of V (G1)− V (H1), it follows that {u3} or

{u4} is a color class in C1. By Corollary 2.2, {u3} /∈ C1 and hence {u4} ∈ C1. Thus
{u4} ∈ C. By a similar argument the central vertex of each closed neighbourhood
in �1 or �2 is a color class in C.
Theorem 1. For the generalized Petersen graph G = P (n, 1) = Cn�K2, we
have

χd(G) =

⎧⎨
⎩

3 if n = 3⌈
n
2

⌉
+ 3 if n ≡ 2(mod 4)⌈

n
2

⌉
+ 2 otherwise.
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Proof. The result is obvious if n = 3. Now, let n = 4k + j where k ≥ 1 and
0 ≤ j ≤ 3. Let (v1, v2, . . . , vn, v1) and (u1, u2, . . . , un, u1) be the two copies of Cn

in G and let uivi ∈ E(G). Let � = {N [v4i−3] : 1 ≤ i ≤ k} ∪ {N [u4i−1] : 1 ≤ i ≤
k}. Then � is a family of 2k disjoint closed neighbourhoods in G and it follows
from Observation 1.2 that χd(G) ≥ 2k + 2. To prove the reverse inequality we
consider the following cases:

Case 1: j = 0.
In this case � covers all the vertices of G and C = {{v4i−3} : 1 ≤
i ≤ k} ∪ {{u4i−1} : 1 ≤ i ≤ k} ∪ {{v2, v4, . . . , vn, u1, u5, . . . , un−3}} ∪
{{v3, v7, . . . , vn−1, u2, u4, . . . , un} is a dominator coloring of G. Thus χd(G) ≤
|C| = 2k + 2. Hence, χd(G) = 2k + 2 =

⌈
n
2

⌉
+ 2.

Case 2: j = 1.
In this case, � is a collection of 2k disjoint closed neighbourhoods in G and
the vertices un and vn−1 are not covered by these neighbourhoods. Now, by
Corollary 2.3 in any dominator coloring of G using 2k + 2 colors, the central
vertices of the closed neighbourhoods are sigleton color classes and the vertices
un and vn−2 do not dominate any of the above color classes.

So, χd(G) ≥ 2k + 3 =
⌈
n
2

⌉
+ 2. Hence, χd(G) = 2k + 3 =

⌈
n
2

⌉
+ 2.

Case 3: j = 2.
In this case, C = {{v4i−3} : 1 ≤ i ≤ k} ∪ {{u4i−1} : 1 ≤ i ≤ k} ∪
{v2, v4, . . . , vn−2, vn, u1, u5, . . . , un−5} ∪ {v3, v7, . . . , vn−3, u2, u4, . . . , un−2, un} ∪
{un−1} ∪ {vn−1} is a dominator coloring of G. Thus χd(G) ≤ |C| = 2k + 4 =⌈
n
2

⌉
+ 3. On the other hand, let C be a dominator coloring of G. Let D = {C ∈

C : C is dominated by at least one vertex in G }. Now C is dominated by four
vertices of G if and only if |C| = 1. Since |V (G)| = 8k + 4, it follows that
|D| ≥ 2k + 1 and |D| = 2k + 1 if and only if |C| = 1 for all C ∈ D and there
exist 2k+1 disjoint closed neighbourhoods in G. However the number of disjoint
closed neighbourhoods in G is 2k and hence it follows that |D| ≥ 2k + 2. Thus
|C| ≥ 2k + 4 =

⌈
n
2

⌉
+ 3. Hence χd(G) = |C| = 2k + 4 =

⌈
n
2

⌉
+ 3.

Case 4: j = 3.
In this case, N [v4k+1]∪� is a collection of 2k+1 disjoint closed neighbourhoods
in G and the vertices un−1 and un are not covered by these neighbourhoods.
Now, by Corollary 2.3 in any dominator coloring of G using 2k + 3 colors, the
central vertices of the closed neighbourhoods are sigleton color classes and the
vertices un−1 and un do not dominate any of the above color classes.

So, we need atleast one more color and we have χd(G) ≥ 2k + 4 =
⌈
n
2

⌉
+ 2.

Hence, χd(G) = 2k + 4 =
⌈
n
2

⌉
+ 2.

Lemma 2.4. Let G be the graph of order 2n with V (G) = {u1, u2, . . . , un} ∪
{v1, v2, . . . , vn} given in Fig. 1 and let n ≡ 0(mod 5) and n = 5k where k ≥ 1.
Then χd(G) = 3k + 2. Further if C is any χd-coloring of G, then {ui} ∈ C for
all i ≡ 2 or 4(mod 5) and {vi} ∈ C for all i ≡ 3(mod 5).
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� � � � � �

� � � � � � � � � � � �

� � � �

v2 v4 v6 v8 v10 v12

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 v3 v5 v9�v7 �
v11

Fig. 1. Graph of Lemma 2.4.

Proof. Let C1 = {{v5i−2} : 1 ≤ i ≤ k} ∪ {{u5i−3} : 1 ≤ i ≤ k} ∪ {{v5i−1} :
1 ≤ i ≤ k}. Since V (G) − S where S is the set of vertices not covered by C1

is bipartite, V (G) − S can be colored with two color classes V1 and V2. Hence
C = C1 ∪ {V1, V2} is a dominator coloring of G and χd(G) ≤ |C| = 3k + 2.

Now let Hi be the subgraph of G induced by the set Si = {u5i−4, . . . , u5i,
v5i−4, . . . , v5i}, where 1 ≤ i ≤ k. Clearly, {Si : 1 ≤ i ≤ k} forms a partition of
V (G). Now, let C be any χd-coloring of G and let � = {D ∈ C : D is dominated
by a vertex v}. Clearly |D| ≤ 3 for all D ∈ �. If |D| = 2 or 3, then exactly
one vertex of V dominates the color class D. Also if |D| = 1 and D = {v}, then
deg v+1 vertices dominate the color class D. Let r be the number of color classes
D in � with |D| ≥ 2 and let s be the number of color classes D in � with |D| = 1.
If we choose one vertex from each color class in �, then the set of all choosen
vertices is a dominating set of G. Hence |�| = r + s ≥ γ(G) = 3k. Further at
most 3r + s vertices are colored by the color classes in � and we need at least
two colors for coloring the remaining vertices. Hence χd(G) ≥ |�| + 2 ≥ 3k + 2.
Thus χd(G) = 3k + 2.

We now claim that

� ∩ V (Hi) = {{v5i−2}, {u5i−3}, {u5i−1}} for all i, 1 ≤ i ≤ k (1)

The proof is by induction on k. Let k = 1. Then G = H1 and χd(G) = 5.
If |D| ≥ 2 for some D ∈ �, then exactly one vertex dominates D and for
the remaining nine vertices we need at least three color classes for domination.
Hence |C| ≥ 6 which is a contradiction. Thus |D| = 1 for each D ∈ � ∩ V (H1).
If D = {v2} or {u1} or {v1} or {v5} or {u5} or {u4}, then exactly two vertices
dominate D and for the remaining seven vertices we need at least three color
classes for domination. If D = {u3} then three vertices dominate D and for
the remaining vertices we need at least three classes for domination. Thus in all
cases |C| ≥ 6, giving a contradiction. Hence (1) follows when k = 1. We now
assume that the result is true for k − 1 and let H = H1 ∪ H2 ∪ · · · ∪ Hk−1.
By our assumption no vertex of Hk dominates a color class in H. Hence there
exist three color classes in Hk such that every vertex of Hk dominates one of
these color classes and these three color classes are necessarily {v5k−2}, {u5k−3}
and {u5k−1}.
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Theorem 2.5. Let G = P (n, 2) with n ≥ 5. Then χd(G) =
⌈
3n
5

⌉
+ 2.

Proof. Let V (G) = {v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} and let uivi ∈ E(G). Let
n = 5k+j where k ≥ 1 and 0 ≤ j ≤ 4. Let C1 = {{v5i−3} : 0 ≤ i ≤ n

5 }∪{{u5i−2} :
1 ≤ i ≤ n

5 } ∪ {{v5i−1} : 0 ≤ i ≤ n
5 }}.

If j = 0, let V1 = {v1, v3, v6, v8, . . . , vn−4, vn−2, u4, u5, u9, u10, . . . , un−1, un}
and V2 = {u1, u2, u6, u7, . . . , un−4, un−3, v5, v10, . . . , vn} and C = C1 ∪ {V1, V2}.

If j = 1, let V1 = {v1, v3, v6, v8, . . . , vn−3,u4, u5, u9, u10, . . . , un−2, un−1} and
V2 = {u1, u2, u6, u7, . . . , un−5, un−4, v5, v10, . . . , vn−1} and C = C1 ∪ {V1, V2} ∪
{un} ∪ {vn}.

If j = 2, let V1 = {v1, v3, v6, v8, . . . ,vn−4, vn−1,u4, u5, u9, u10, . . . , un−3, un−2}
and V2 = {u1, u2, u6, u7, . . . , un−6, un−5, v5, v10, . . . , vn−2, vn} and C = C1 ∪
{V1, V2} ∪ {un−1} ∪ {un}.

If j = 3, let V1 = {v3, v6, v8, . . . , vn−5, vn−2, u1, u4, u5, u9, u10, . . . , un−4,
un−3} and V2 = {u2, u6, u7, . . . , un−2, un−1, v1, v5, v10, . . . , vn−3} and C = C1 ∪
{V1, V2} ∪ {vn−1} ∪ {un}.

If j = 4, let V1 = {v1, v3, v6, v8, . . . , vn−3, vn−1, u4, u5, u9, u10, . . . , un−5,
un−4, un} and V2 = {u1, u2, u6, u7, . . . , un−3, un−2, v5, v10, . . . , vn−4} and
C = C1 ∪ {V1, V2} ∪ {vn} ∪ {un−1} ∪ {vn−2}.

Clearly C is a dominator coloring of G. Thus χd(G) ≤ ⌈
3n
5

⌉
+ 2. We now

prove the reverse inequality. Let Si = {u5i−4, . . . , u5i, v5i−4, . . . , v5i}, 1 ≤ i ≤ k
and let Hi be the subgraph of G induced by Si. We consider the following cases.

Case 1. j = 0
In this case Si covers all the vertices of G and by Lemma 2.4, each Hi contains

at least three color classes. Since we need at least two colors for the remaining
vertices, χd(G) ≥ 3

⌊
n
5

⌋
+ 2 =

⌈
3n
5

⌉
+ 2.

Case 2. j = 1
In this case two vertices ui and vi are not covered by Si. By Lemma 2.4

each Hi has at least three color classes such that each vertex of Hi dominates
one of these color classes. Further we need at least one color class which is to
be dominated by the vertices not covered by Hi. Hence χd(G) ≥ 3

⌊
n
5

⌋
+ 3 =⌈

3n
5

⌉
+ 2.

Case 3. j = 2
In this case four vertices are not covered by Si. It follows from Lemma 2.4 that
χd(G) ≥ 3

⌊
n
5

⌋
+ 4 =

⌈
3n
5

⌉
+ 2.

Case 4. j = 3
In this case six vertices are not covered by Si. It follows from Lemma 2.4 that
χd(G) ≥ 3

⌊
n
5

⌋
+ 4 =

⌈
3n
5

⌉
+ 2.

Case 5. j = 4
In this case eight vertices are not covered by Si. It follows from Lemma 2.4 that
χd(G) ≥ 3

⌊
n
5

⌋
+ 5 =

⌈
3n
5

⌉
+ 2.
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Theorem 2.6. Let G = P (n, 3). Then

χd(G) =
{⌈

n
2

⌉
+ 2 if n ≡ 0(mod4) or n ≡ 1(mod4) or n = 11⌈

n
2

⌉
+ 3 otherwise.

Proof. Let n = 4k+ j where k ≥ 1 and 0 ≤ j ≤ 3. Let V (G) = {v1, v2, . . . , vn}∪
{u1, u2, . . . , un} and let uivi ∈ E(G). Let C1 = {{v4i−2} : 1 ≤ i ≤ k} ∪ {{u4i} :
1 ≤ i ≤ k}.

If j = 1 or n = 11, let V1 = {v1, v3, . . . , vn−4, vn−1, u2, u6, . . . , un−3, un−2}
and V2 = {u1, u3, . . . , un−8, un−6, un−4, v4, v8, . . . , vn−5, vn−2, vn} and C = C1 ∪
{V1, V2} ∪ {un}.

If j = 3 and n �= 11, let V1 = {v1, v3, . . . , vn−6, vn−3, u2, u6, . . . , un−5,
un−4, un} and V2 = {u1, u3, . . . , un−6, un−1, v4, v8, . . . , vn−7, vn−4, vn−2, vn} and
C = C1 ∪ {V1, V2} ∪ {v2} ∪ {un−2}.

Clearly C is a dominator coloring of G. Thus

χd(G) ≤
{⌈

n
2

⌉
+ 2 if n ≡ 1(mod 4) or n = 11⌈

n
2

⌉
+ 3 if n ≡ 3(mod 4), n �= 11

If j = 0 or j = 2, it follows from Theorem 1.6 that G is bipartite. Hence by
Theorems 1.3 and 1.9 we have

χd(G)] ≤
{⌈

n
2

⌉
+ 2 if n ≡ 0(mod 4)⌈

n
2

⌉
+ 3 if n ≡ 2(mod 4)

To prove the reverse inequality, we consider the following cases.

Case 1. j = 0
In this case there exist 2k disjoint closed neighbourhoods in G. Hence χd(G) ≥
2k + 2 = n

2 + 2.

Case 2. j = 1
In this case there exist 2k−1 disjoint closed neighbourhoods in G and six vertices
are not covered by these neighbourhoods. Now, let C be a χd-coloring of G. Let
� = {C ∈ C : C is dominated by at least one vertex in G}. Since each color
class C ∈ � is dominated by at most four vertices in G and |V (G)| = 8k + 2, it
follows that |�| ≥ 2k + 1 Hence χd(G) ≥ 2k + 3 =

⌈
n
2

⌉
+ 2.

Case 3. j = 2
In this case there exist 2k disjoint closed neighbourhoods in G and four vertices
are not covered by these neighbourhoods. Since |V (G)| = 8k + 4 it follows that
|�| ≥ 2k+1 and |�| = 2k+1 if and only if |C| = 1 for all C ∈ � and there exist
2k + 1 disjoint closed neighbourhoods in G. However the maximum number of
disjoint closed neighbourhoods in G is 2k and hence it follows that |�| ≥ 2k+2.
Hence χd(G) ≥ 2k + 4 =

⌈
n
2

⌉
+ 3.

Case 4. j = 3
In this case there exist 2k+1 disjoint closed neighbourhoods in G and two vertices
are not covered by these neighbourhoods. The corresponding 2k+1 color classes
dominate all the vertices of these neighbourhoods if and only if the center vertices
of each neighbourhood is a singleton color and the two uncovered vertices do not
dominate any of these color classes. Hence, χd(G) ≥ 2k + 5 =

⌈
n
2

⌉
+ 3.
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3 Conclusion

In this paper we have determined the value of χd(G) when G = P (n, k) where
1 ≤ k ≤ 3. The problem remains open for P (n, k) where k ≥ 4 and results for
these cases will be reported in a subsequent paper.
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Abstract. For a graph G = (V,E), a bijection g from V (G)∪E(G) into
{1, 2, . . . , |V (G)|+ |E(G)|} is called (a, d)-edge-antimagic graceful label-
ing of G if the edge-weights w(xy) = |g(x) + g(y) − g(xy)|, xy ∈ E(G),
form an arithmetic progression starting from a and having a common
difference d. An (a, d)-edge-antimagic graceful labeling is called super
(a, d)-edge-antimagic graceful if g(V (G)) = {1, 2, . . . , |V (G)|}. We study
super (a, d)-edge-antimagic graceful labelings of disconnected graphs,
mCn, mKn and mPn.

Keywords: Edge-antimagic graceful labeling · Super edge-antimagic
graceful labeling

2010 Mathematical Subject Classification Number: 05C

1 Introduction

We consider finite undirected nontrivial graphs with neither loops nor multiple
edges. We denote by V (G) and E(G) the set of vertices and the set of edges of
a graph G, respectively. Let |V (G)| = p and |E(G)| = q be the order and size of
G respectively. General references for graph-theoretic notions are [2,21].

A labeling of a graph is any function that carries some set of graph elements to
numbers. Kotzig and Rosa [12,13] introduced the concept of edge-magic labeling.
For more information on edge-magic and super edge-magic labelings, see [8].

Hartsfield and Ringel [9] introduced the concept of antimagic labeling. An
antimagic labeling of a (p, q) graph G as a bijection f from E(G) to the set
{1, 2, . . . , q} such that the sums of label of the edges incident with each vertex
v ∈ V (G) are distinct. The concept of (a, d)-edge-antimagic total labeling was
introduced by Simanjuntak et al. in [19]. This labeling is the extension of the
notion of edge-magic labeling, see [12,13].

For a graph G = (V,E), a bijection g from V (G) ∪ E(G) into {1, 2, . . . ,
|V (G)|+|E(G)|} is called an (a, d)-edge-antimagic total labeling of G if the edge-
weights w(xy) = g(x)+g(y)+g(xy), xy ∈ E(G), form an arithmetic progression
starting from a and having a common difference d. The (a, 0)-edge-antimagic
total labeling is usually called edge-magic total lableing [7,12,13]. An (a, d)-edge
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 152–155, 2017.
DOI: 10.1007/978-3-319-64419-6 20
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antimagic total labeling is called super if the smallest possible labels appear on
the vertices.

All cycles and paths have a (a, d)-edge antimagic total labeling for some val-
ues of a and d, see [19]. In [1], Baca et al. proved the (a, d)-edge-antimagic prop-
erties of certain classes of graphs. Ivanco and Luckanicova [10] described some
constructions of super edge-magic total (super (a, 0)-edge-antimagic total) label-
ings for disconnected graphs, namely, nCk ∪mPk and K1,m ∪K1,n. Super edge-
amtimagic total labelings of mKn are given in [5]. Super (a, d)-edge-antimagic
labelings for Pn ∪ Pn+1, nP2 ∪ Pn and nP2 ∪ Pn+2 have been described by
Sudarsana et al. in [20].

In [6], Dafik et al. proved super edge-antimagicness of a disjoint union of m
copies of Cn and m copies of Pn. For most recent research in the subject, refer
to [3,4,11,14,16–18].

A (p, q) graph G is called edge magic graceful if there exists a bijection
g : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that |g(x) + g(y) − g(xy)| = k, a
constant for any edge xy of G. The graph G is said to be super edge magic
graceful if further g(V (G)) = {1, 2, . . . , p}.

In [15] Marimuthu et al. presented some properties of super edge magic grace-
ful graphs and proved that some classes of graphs are super edge magic graceful.

An (a, d)-edge-antimagic graceful labeling is defined as a bijection from
V (G) ∪ E(G) to {1, 2, 3, . . . , p + q} so that the set of edge-weights of all edges
in G is equal to {a, a + d, a + 2d, . . . , a + (q − 1)d}, for two integers a ≥ 0 and
d ≥ 0.

An (a, d)-edge-antimagic graceful labeling g is called super (a, d)-edge-
antimagic graceful if g(V (G)) = {1, 2, . . . , p}. A graph G is called (a, d)-edge-
antimagic graceful or super (a, d)-edge-antimagic graceful if there exists an (a, d)-
edge-antimagic graceful or a super (a, d)-edge-antimagic graceful labeling of G.

In this paper we study super (a, d)-edge-antimagic graceful labelings of cer-
tain classes of graphs including mCn, mKn and mPn.

2 Main Results

We first consider super edge-antimagic gracefulness of mCn, disjoint union of m
copies of Cn, where m > 1. Let V (mCn) = {xj

i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and
E(mCn) = {xj

ix
j
i+1 : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m} ∪ {xj

nx
j
1 : 1 ≤ j ≤ m}.

Theorem 1. The graph mCn has a super (0, 1) -edge-antimagic graceful labeling
for every m ≥ 2 and n ≥ 3.

Proof. Define f : V (mCn) ∪ E(mCn) → {1, 2, . . . , 2mn} as follows:

f(xj
i ) = i + (j − 1)n, if 1 ≤ i ≤ n, 1 ≤ j ≤ m

f(xj
ix

j
i+1) = mn + j + i + (n − 1)(j − 1), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m

f(xj
nx

j
1) = (m + 1)n − (n − 1) + n(j − 1) if 1 ≤ j ≤ m.
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The edge-weights of mCn, under the labeling f are given by W = W 1
f ∪ W 2

f

where

W 1
f = {W 1

f (xj
ix

j
i+1) = mn − i − n(j − 1) : 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m}

and W 2
f = {W 2

f (xj
nx

j
1) = mn − nj : 1 ≤ j ≤ m}.

Clearly W = {0, 1, 2, . . . ,mn − 1}. Thus f is a super (0, 1)-edge-antimagic
graceful labeling.

Theorem 2. The graph mKn, where m ≥ 2 and n ≥ 2 is super (a, 1)-edge-
antimagic graceful.

Proof. Let {xj
1, x

j
2, . . . , x

j
n} be the vertex set of the jth copies of Kn where 1 ≤

j ≤ m. Define f : V (mKn) ∪ E(mKn) → {1, 2, . . . , mn(n+1)
2 } as follows.

f(xj
i ) = m(n − i + 1) − j + 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ m

f(xj
ix

j
i+k) = m(n(k + 1) − k(k + 1)

2
+ 1 − i) + 1 − j for 1 ≤ i ≤ n − 1,

1 ≤ k ≤ n − i and 1 ≤ j ≤ m.

The edge-weight of xj
ix

j
i+k, is given by

w(xj
ix

j
i+k) = m(n(k − 1) − k(k + 1)

2
+ (k − 1) + i) − 1 + j where

1 ≤ i ≤ n − 1, 1 ≤ k ≤ n − i and 1 ≤ j ≤ m.

It can be easily verified that the set of edge-weights is {0, 1, 2, . . . , mn(n−1)
2 −1}.

Hence f is a super (a, 1)-edge-antimagic graceful labeling of mKn.

We now consider mPn, disjoint union of m copies of Pn. V (mPn) = {xj
i :

1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(mPn) = {xj
ix

j
i+1 : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m}.

Theorem 3. The graph mPn where m ≥ 2 and n ≥ 2 is super (a, 1)-edge-
antimagic graceful.

Proof. Define f : V (mPn)∪E(mPn) → {1, 2, . . . ,m(2n−1)} by f(xj
i ) = j+(i−

1)m and f(xj
ix

j
i+1) = nm + j + (i − 1)m where 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m.

The set of edge-weights consists of the consecutive integers {0, 1, 2, . . . ,
(m(n − 1) − 1} and hence f is a super (a, 1)-edge-antimagic graceful labeling
of mPn.
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Abstract. In image processing, mixed noise elimination from the image
is a difficult task since the noise distribution usually does not have a para-
metric model. The Additive White Gaussian Noise (AWGN) together
with impulse noise (IN) is one typical example of mixed noise. Most
of the noise removal methods detect the locations of impulse noise pix-
els and then removes mixed noise. The presence of strong mixed noise
leads to unwanted artifacts and to solve this issue a weighted encoding
with sparse nonlocal regularization (WESNR) method is available and it
removes mixed noise by soft impulse detection through weighted encod-
ing. In this work, WESNR is used to eliminate mixed noise. Reversible
Data Hiding (RDH) technique is used to encrypt denoised image and
hides data for the purpose of secure communication. Experimental results
showed that the proposed method can attain real reversibility after data
extraction without affecting image quality.

Keywords: Noise estimation · AWGN · IN · WESNR · RDH

1 Introduction

A major portion of information received by a human being from the environment
is visual. Hence processing visual information by computer has been drawing a
very significant attention of researchers over the last few decades. Removal of
noise is an essential and challenging operation in image processing. Before per-
forming any process in an image, it must be first restored because images may be
corrupted by noise during image acquisition and transmission. Nature of noise
removal depends on the type of noise which has corrupted the image. To remove
mixed noise there is a novel method which consists of two stages, namely detec-
tion of noise in image and elimination of noise from the image. The effect of
this process will be minimal and different type of noise in an image can increase
the strength of adaptive Gaussian noise and impulse noise [1]. The aim of this
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work is to introduce effective weighted encoding with sparse nonlocal regulariza-
tion for mixed noise removal. The chosen noise removal technique [2] is widely
used in areas such as medical imagery, military imagery and law forensics. The
image denoising technique can hide denoised images and data [3,7]. Denoising
has a broad spectrum of applications and it covers wide area of image processing
applications. The survey report [4] indicates a method of restoration of images
corrupted by Gaussian and uniform impulsive noise. The proposed blind in-
painting algorithm removes the noise in iteration basis and results in better
performance. The review article [5] presents two-phase approach of deblurring
images corrupted by impulse plus Gaussian noise. Restoration of blurred images
corrupted with impulse noise is a difficult problem. The image deblurring from
noisy data is a fundamental problem in image processing and in real applica-
tions, practical systems can sometimes suffer from few or more pixels, called
outliers that are much noisier than others. The developed method outperforms
them by at least 2 to 6 dB in PSNR and gives satisfactory results even if noise
level is high. The paper [6] deals with Switching Bilateral Filter (SBF) and Tex-
ture/Noise Detector for universal noise removal. The operation was carried out
in two stages, namely detection followed by filtering. For detection, sorted quad-
rant median vector (SQMV) scheme was used with features like edge or texture
information. The proposed SQMV was mainly used to edge/texture detection,
noise detection and switching bilateral filter. The edge detector, obtains a ref-
erence median value of noise detection, which detects impulse and Gaussian
noise and both detectors were based on robust estimators of SQMV. Many noise
removal algorithms, such as bilateral filtering, tendancy to treat impulse noise as
edge pixels end up with unsatisfactory results. In order to process impulse pixels
and edge pixels differently, two detectors were introduced based on SQMV in a
pixel of neighborhood. With regard to impulse detection rate and classification
rate, the noise detector shows a good performance in identifying noise even in
mixed noise models. In most of the noise model cases, proposed filter outper-
forms other filters, both in PSNR and visually. In [8] patch-based approach for
removing mixed Gaussian-impulse noise was explained and it was addressing the
problem of image restoration which have been affected by a mixture of Gaussian
and impulse noise. During the last fifteen years, great deal of image processing
techniques have been developed in order to take advantage of self-similarities
of images. The idea of restoration methods is simple and nice, since it relies on
assumption that a given patch can be found almost identically in different places.
The patch can be restored in two steps. In the first step corresponding patches in
an image are identified and trade-off between discriminative power and robust-
ness to noise for each patch is measured. In the second step the real underlying
patch behind the damaged versions is estimated [9]. Further investigation has
led to the conclusion that the patch based approach is efficient in removing mix-
tures of Gaussian and impulse noises. The obtained result was widely studied in
the particular case of gaussian noise as well extension to impulse degradations
of both the similarity measure between patches and statistical estimator of orig-
inal patches. The papers [10–12] deal with Reversible Data Hiding in Encrypted
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Image. In [12], a novel reversible data hiding scheme for encrypted image was
proposed. The scheme consists of three phases, namely, image encryption, data
embedding and data extraction /image recovery. The data of original image are
entirely encrypted by a stream cipher and a receiver can decrypt this encrypted
image containing embedded data, by using encryption key and the decrypted ver-
sion is similar to original image. According to data-hiding key, with the aid of
the spatial correlation in natural image, the embedded data can be correctly
extracted and original image can perfectly recovered. Although the knowledge
of encryption key can be used to obtain a decrypted image and detect presence of
hidden data using LSB-steganalytic methods and without data-hiding key, it is
still impossible to extract the additional data and recovery of original image. To
ensure correct data-extraction and perfect image recovery, the block side length
has to be a big value like 32, or error correction mechanism has to be introduced
before data hiding to protect additional data with a cost of payload reduction.
Existing mixed noise removal methods [13] are based on detection and it involves
two sequential steps, namely detection of IN pixels and removal of noise. The two
phase strategy will become less effective when the AWGN or IN is very strong.
The major difficulty of removal of IN and AWGN mixed noise lies in complex
distribution of mixed noise and it has heavy tail so that it cannot be readily
characterized by parametric model. In this connection the present study focuses
effective encoding based method for removal of mixed noise, namely, a weighted
encoding with sparse nonlocal regularization (WESNR). There is no explicit
impulse pixel detection in WESNR, and each noise-corrupted patch is encoded
over a pre-learned dictionary to remove IN and AWGN simultaneously in a soft
impulse pixel detection manner. In WESNR, the mixed noise is suppressed by
weighting encoding residual so that the final encoding residual tends to follow
Gaussian distribution. The weighted encoding and sparse nonlocal regulariza-
tion are unified into a variation framework and it removes the mixed noise. By
using this technique it is possible to have communication between sender and
receiver using denoised image and data which can be hidden in an image. So,
our proposed method has more security on images as well data.

2 Module Description

Proposed system includes Pre-processing, filtering, denoising transmitter side
and receiver side.

2.1 Pre-processing

In order to achieve the effective impact of mixed noise technique, as a preprocess-
ing step we add both additive noise and impulse noise to image. Addition of
additive white gaussian noise is done by adding a random value to image pixel.
Further impulse noise is added to image. There are two types of impulse noise,
namely, random valued impulse noise and salt and pepper impulse noise. The
impulse noise is added in an image by adding a function of Matlab.



Mixed Noise Elimination and Data Hiding for Secure Data Transmission 159

2.2 Filtering

The adaptive median filtering was used for filtering purpose. The adaptive
median filter performs spatial processing to determine an image pixel and it
has been affected by impulse noise. The adaptive median filter classifies pixels
as noise by comparing each pixel in image to its surrounding neighbor pixels.
The size of neighborhood is adjustable. A pixel that is different from a majority
of its neighbors, as well as being not structurally aligned with those similar pix-
els is labeled as impulse noise. These noise pixels were replaced by median and
neighborhood value of pixels and they have to pass noise labeling test.

2.3 Denoising

Five high-quality images were used (independent of test images used in this
paper) to train PCA dictionaries. A number of 876,359 patches (size: 7 × 7)
are extracted from the five images and they are clustered into 200 clusters by
using K-means clustering algorithm. For each cluster, a compact local PCA
dictionary is learnt. Meanwhile, centroid of each cluster is calculated. For a
given image patch, the euclidian distance between it and the centroid of each
cluster is computed, and the PCA dictionary associated with its closest cluster
is chosen to encode the given patch. In addition, final denoising results are not
sensitive to training images used in PCA dictionary learning.

2.4 Transmitter Side

After denoising, enough space is reserved on original image and the image is
converted into its encrypted version with encryption key. Then the data to
be embedded in the image is fixed in the image and embedded data is again
locked with other encrypted key. In addition the original content was unknown
to receiver end. Data-hider compresses least significant bits (LSB) of encrypted
image using a data-hiding key to create a sparse space to accommodate addi-
tional data. Since data embedding only affects LSB, a decryption with encryption
key can result in an image similar to original image.

2.5 Receiver Side

Data extraction and image recovery takes place at receiver side. Using data hid-
ing key the receiver can extract the data and original image by using encryption
key. In this connection there are mainly two cases:

• Extracting Data from Encrypted Images: The database manager gets data
hiding key, can decrypt LSB-planes and extract additional data by directly
reading decrypted version. The database manager can update information
through LSB replacement and encrypt updated information according to data
hiding key all over again.

• Extracting Data from Decrypted Images: The user wants to decrypt image
and for this it is necessary to extract the data from decrypted image.
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3 Proposed System Process Flow Diagram

The selected random image is added with addictive white gaussian noise, salt
and pepper impulse noise and the random image is turned into noisy image
(Figs. 1 and 2). The noisy image is passed through adaptive median filtering and
these noise pixels are then replaced by median pixel value of the pixels in the
neighborhood that have passed noise labeling test. The noisy image is passed
through adaptive filter image and it is divided into patches of denoising. The
divided patches are compared with patches and stored in dictionary. Iteratively
patches which are obtained from image and dictionary are combined by removing
noise in image Fig. 2.

Fig. 1. The selected image of “lena.bmp”

Fig. 2. Input image, noisy image and denoised image.
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The encryption key was given to encrypt the image and it was divided into
three main steps, namely, image partition, self reversible embedding and image
encryption. The encrypted image is used for data hiding, so that the sender can
provide data to be hidden and final PSNR and total elapsed time completion
for of the process. Further the data is given to sender with a data hiding key
to access hidden data and image. From these noise free images around 876,359
patches (size: 7 × 7) are extracted and they are clustered into 200 clusters by
using the K-means clustering algorithm (Fig. 3). Using PCA 200 clusters are
saved as dictionary and we search for similar patches in dictionary. The first
output is encrypted image with data hidden in the image. In the receiver side
the same data hidden key provided to sender will be given to open hidden data.

The next stage encryption key is used to get encrypted image and final image
was denoised image of sender side (Fig. 4).

The whole processing of the system is shown in Fig. 5.

Fig. 3. The flow diagram of dictionary used in process of denoising

Fig. 4. The final output of denoising image
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Fig. 5. The flow diagram of transmitting denoised image

The process flow diagram at receiver side is shown in Fig. 6.

Fig. 6. The flow diagram of receiver side

In the receiver side it will authenticate both encryption key and datahiding
key so as to ensure security of image as well as data. If authentication fails then
error message is displayed.

3.1 Results and Discussion

Noise elimination from an image is an important task and there is a need to find
whether local image variations are due to color, appearance, or brightness from
an image itself, or because of noise. The focus of this work is on the development
of algorithms for removal of mixed noise from digital images in spatial domain.
There are many types of noises present in images such as impulse noise, adaptive
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white gaussian noise, short noise, quantization noise, film grain and among these
one or more are coupled together to form a mixed noise. The additive white
gaussian noise (AWGN) coupled with impulse noise (IN) is one typical kind of
mixed noise. A scheme for the removal of mixed noises by weighted encoding
technique is proposed. The mixture of IN and AWGN, is a difficult problem
of denoising and this is because of different properties as well types of noises.
The proposed methodology focuses not only on image noise removal but also on
encryption of image and hiding data for the purpose of secure communication.
Here we used a Reversible Data Hiding (RDH) technique for encrypting image
and through this method the original image can be recovered and thus it is very
easy for data hider to reversibly embed data in encrypted image. This method is
useful to achieve real reversibility, data extraction and error free image recovery.
The observed experimental results showed that the WESNR method achieves
leading mixed noise removal performance in terms of both quantitative measures
and visual quality. The experimental results were highlighting that the PSNR,
quality of image and elapsed time are interconnected and the proposed system
is showing high PSNR value. Experiment carried out in our proposed system
indicates that the quality of image increases as PSNR value increases. In the
proposed system a range of 0–25 AWGN values and 0.3–0.5 SP values were
used. From the obtained results it was clear that the noise intensity of image
increases by increasing the value of AWGN and SP. Hence the conclusion is
PSNR, intensity of noise and total time taken to remove noise all are linked, and
details are included in Table 1.

Table 1. PSNR values with different amount of noise

AWGN S.P Initial PSNR Final PSNR Elapsed time

0 0.3 10.659 35.119 67.245

0.5 8.443 33.753 83.9410

05 0.3 10.654 34.763 67.339

0.5 8.438 33.277 66.430

10 0.3 10.630 33.304 65.698

0.5 8.431 32.2634 66.207

15 0.3 10.546 31.884 86.34

0.5 8.409 30.929 86.58

20 0.3 10.427 30.957 86.155

0.5 8.352 29.980 86.31

25 0.3 10.350 30.126 106.021

0.5 8.307 28.906 105.42

4 Conclusion

In any communication system the noise occurrence is unavoidable. However,
by using filters noise can be removed. When the noise presence is strong we
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need other techniques to remove the same. One kind of noise is called mixed
noise. The removal this noise from natural images is a challenging task as well
noise distribution usually does not have a parametric model and has a heavy
tail. Using weighted encoding technique, noise is removed simultaneously and
this technique does it without detecting the type of noise in image. Moreover,
the proposed system has taken the image with mixed noise like additive white
gaussian noise and impulse noise. The proposed system not only removes noises
but also encrypts image and data to be hidden in the image.
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Abstract. Noise in digital images is the major cause of severe arti-
facts. Filter design for denoising applications can also be addressed with
optimization techniques as conventional filters incur in this. Exploration
and Exploitation capability features of the Meta Heuristic Optimization
Techniques make them applicable to noise reduction in digital images.
An increasing number of Meta Heuristic Optimization algorithms make
it suitable for designing FIR filters. In the proposed method, Particle
Swarm Optimization, a global optimizer algorithm was used in calculat-
ing the appropriate coefficients for 2D FIR Filter. The proposed filter was
applied to standard test images for testing its noise suppression capabil-
ity. Indicators of performance, such as Peak signal to noise ratio (PSNR)
values and Structural Content (SC) were used in accessing the efficiency
of the proposed method and to the adaptability of the method for remov-
ing different noise types. Thus a brief comparison for noise suppression
in digital images with both multiplicative and additive noise types using
PSO optimized 2D FIR filter is addressed in this paper.

Keywords: 2D FIR filter · Particle Swarm Optimization · Peak signal
to noise ratio · Meta Heuristic Optimization · Structural Content

1 Introduction

Noise in digital images is unavoidable in all imaging modalities as the instru-
mentation facilities and the environmental factors in which the images captured
interfere with the internal attributes of the image [4]. All noise types either mul-
tiplicative or additive in nature conduce for the degradation of the image almost
in all cases. Due to the prevalence of modern imaging facilities it becomes essen-
tial to limit or remove the noise signals present in it. In this study the efficiency
of the noise elimination scheme using a two dimensional Finite Impulse Response
filter based on Particle Swarm Optimization algorithm together with a median
c© Springer International Publishing AG 2017
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filter for removing additive and multiplicative noise present in the image is stud-
ied and the ability to recover its noiseless form is discussed. The preliminary
step to identify the noise present in the image is to analyze the histogram. The
basic difference between the additive and multiplicative noise is that, assume
a variable x(t) following a stochastic differential equation. If the corresponding
random term in the stochastic differential equation of a variable x(t) does not
reckon on the state of the system x(t), we call it additive noise. If the random
term in the stochastic differential equation depends on the state of the system
x(t), then the noise is assumed to be multiplicative in nature. The goal for a
denoising filter consists of suppressing the noise while preserving all the useful
features such as edges and textural features. In conventional filters the removal
of additive and multiplicative noise will result in the blurring and distorted fea-
tures in the filtered image. The use of population based optimization techniques
eliminates the need of performing local statistics and diffusion based methods
that was computationally high [9,13]. Optimization techniques do not have the
need to have prior knowledge about the amount of noise present.

2 Previous Works

Hithertomore number of studies have been performed on image denoising in the lit-
erature. Denoising process in wavelet domain and frequency domain requires opti-
mal threshold and cut-off frequency as their basic components. A few important
and recent notable works in the denoising field is discussed in this section. Ratha
Jeyalakshmi and Ramar used to modify the morphological image filtering algo-
rithm with arbitrary structuring elements for speckle reduction [10]. Andria and
his team produced a denoising scheme using simlet 5 mother function, which are fil-
tered with linear phase. It also involves processing of horizontal, vertical, diagonal
andapproximationdenoised images [2].Behrenbruch reviewedfiltering approaches
on the post processing scenario that clarifies the misconception in filtering tech-
niques [4]. Vikrant Bhateja and his team modified the diffusion equation of Perona
and Malik by replacing the diffusion coefficient with a non-linear function of coef-
ficient of variations. Noise reduction is achieved in his work by summing up the
weighted Laplacian images [16]. In another work Vikrant Bhateja and his research
group suppressed thenoise content byprocessing thenon-homogenous regionswith
the application of modified average filtering templates on it [17]. Team of members
headed by Nagashettappa Biradar combined fuzzy filters with triangular mem-
bership function and conventional SRAD filter in homomorphic domain and non-
homomorphic domain for noise reduction [5]. Fatma Latifoglu used artificial bee
colony optimization algorithm for determining the optimal co-efficients of the 2D
FIR filter [11]. Gupta used soft thresholding process and multiscale decomposition
for denoising that is computationally hard [7].

3 Two Dimensional FIR Filter

Two dimensional FIR filter is used for image processing in various applications.
Two dimensional Finite Impulse Response filter was always characterized by
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their filter coefficients h(m,n) [6,8]. The frequency response of the 2D Filter is
therefore given by Eq. (1).

H(ωu, ωv) =
M∑

m=−M

N∑

n=−N

h(m,n)e−j(mωu+nωv) (1)

where ωu = 2Πu
M and ωv = 2Πv

N .
In this equation h(m,n) were the filter coefficients which will be found iter-

atively with the help of optimization algorithm. The stability condition of a two
dimensional filter is given in the following Eq. (2).

X∑

m=−x

X∑

n=−x

|h(m,n)| < X (2)

where X is the number of elements from the origin in the mask size of the
filter coefficients. In this study the effect of filter coefficients with appropriate
zero locations in the complex plane produced using particle swarm optimization
algorithm is analyzed for suppression of Gaussian and speckle noise present in
images.

4 Median Filter

Median filter is one of the conventional filters that is extensively used in the
spatial filtering process due to its non-linear property. It is widely used in image
processing algorithm with the intention of noise reduction and in pre-processing
[12]. The process of median filtering is accomplished by placing median of a
window as a value instead of its original value. While calculating the median
value the following procedure is adopted. All the values in the mask will be sorted
in numerical order and the middle value in the sorted order will be considered
as the value to be replaced. Thus the property of median filter is achieved.

5 Additive and Multiplicative Noise in Images

5.1 Additive Noise

Gaussian Noise. A probability density function (PDF) of the Gaussian noise
will resemble the normal distribution. Thus the noise value are Gaussian dis-
tributive in nature. The prime cause of Gaussian noise in images occurs during
capture e.g. noise due to improper illumination and/or due to abrupt changes
in temperature, and/or during transmission e.g. noise of electronic circuit. Most
commonly Gaussian noise can be suppressed using a spatial filtering approach,
despite the smoothing of image, an unwanted outcome may end up in the blur-
ring of edges and details as they will be processed in the task of blocking high
frequencies. Traditional spatial filtering approach for noise reduction comprises:



168 V. Muneeswaran and M. Pallikonda Rajasekaran

mean filtering technique, median filtering technique and Gaussian smoothing
technique for a random variable z its probability density function P is given by
Eq. (3).

PG(Z) =
1

σ
√

2π
e− (z−μ)2

2σ2 (3)

where Z is the gray level present in the image, μ and σ are the mean and standard
deviation respectively.

Salt and Pepper Noise. An image is considered to be getting exposed to salt
and pepper noise only if it has random occurrences of white and black pixels.
It is observed that over heated imaging components may cause salt and pepper
noise.

5.2 Multiplicative Noise

Speckle Noise. Images that are formed with coherent energy sources and imag-
ing systems impose a serious threat of speckle noise. It is often termed as domi-
nant multiplicative noise. Removing speckle noise becomes harder as its intensity
varies with the image intensity [14]. Speckle noise in rare cases may contain use-
ful texture information. As speckle noise is multiplicative in nature it is modeled
only with the random value multiplications as given in Eq. (4).

J = I + n ∗ I (4)

where J is the speckle affected image, I is noiseless input image and n is the
noisy image of variance v.

6 Particle Swarm Optimization

Optimization is the process of finding the best available values from the input
values [13]. Particle Swarm Optimization is a mathematical modelling of social
behavior of certain animals within their team. Particle Swarm Optimization is
often preferred for its robustness in finding the global best location of parti-
cles [1]. For a iteration l the velocity of the particle i is calculated by sum of
global best solution gbest, its current best value pbest and its current velocity vl.
Considering vl=0

i = 0 the new velocity vector is calculated by the Eq. (5).

vl
i + 1 = W ∗ vl

i + α ∗ C1 ∗ [gi
best − xl

i] + β ∗ C2 ∗ [pi
best − xl

i] (5)

The tradeoff between pbest and gbest is controlled by W the inertial weight para-
meter. The relative attraction between pbest and gbest is indicated by C1 and C2.
α and β are random values between 0 and 1. The new position is calculated as

xl+1
i = xl

i + vl+1
i (6)

The range of vi lies between [vmin, vmax]. When the new position is calculated
the particle will shift to it and at the last iteration the gbest becomes the optimal
solution found.
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7 Design Formulation

In the given scheme two image signals were used on the input side such as the
noiseless image Iorg(n) and Inoisy(n) is the noisy image contaminated by either
additive and multiplicative noise. The 2D FIR filter system with optimization
using Particle Swarm Optimization together with median filter will produce the
denoised image. The objective of the optimization process is to reduce the Mean
Square Error value that results as a difference between noisy image and 2D FIR
filter output [11] as shown in Fig. 1.

Fig. 1. Proposed denoising scheme.

Coefficients of filter were adjusted by minimization of the Mean Square Error
value between filter output and Iorg(n) and is given as

MSE =
1

KL

K−1∑

k=0

L−1∑

l=0

[Iorg(k, l) − INoisy(k, l)]2 (7)

In this proposed methodology, Particle Swarm Optimization is used in finding
optimal coefficients. The steps of PSO based 2D-FIR are given below

1. Set the number of population(window size of filter), learning parameter
(C1, C2).

2. Generate the swarm with the condition given in Eq. (2).
3. Update the variables pbest and gbest at the current iteration based upon the

fitness function The fitness function for this problem is given is given in
Eq. (7).

4. Generate new pbest and gbest (values) with fitness values and compute the
velocity and position using Eq. (5).

5. Look up for the termination condition and repeat steps 3–5 till the opti-
mum value of gbest is reached or upto the termination condition (Number of
iterations is set as 100 in this case).
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8 Results and Discussion

The simulated test image, as shown in Fig. 2 in its JPG format with 128 × 28
pixels was used in the experiments. For its noisy version the standard image is
corrupted with additive and multiplicative noise at different noise level and it
is shown in Fig. 3. Consciously degrading an image with noise will allow us to
validate the effectiveness of an image denoising operator to noise and assess its
performance as shown in Tables 1, 3 and 4.

It can be seen that from Fig. 4 the amount of the additive and multiplica-
tive noise is reduced on the application of the proposed denoising scheme and
the visualization of the filtered images is also improved to a great extent when
compared with the noisy form in Fig. 3. The quality of the denoised images

Fig. 2. Simulated image

Fig. 3. Noised form of simulated image

Table 1. 3× 3 Mask

a00 a01 a02

0.0621 0.1024 0.0616

a10 a11 a12

0.1021 0.2736 0.1026

a20 a21 a22

0.0614 0.1022 0.0621
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Fig. 4. Denoised form of simulated image

Table 2. Quality metrics

Metrics Gaussian noise S & P noise Speckle noise

Mask size Mask size Mask size

3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

PSNR 13.48 12.23 10.34 17.46 17.23 15.03 15.63 15.11 13.54

MSE 0.022 0.026 0.030 0.010 0.010 0.012 0.014 0.016 0.024

SC 1.703 1.792 1.890 0.932 0.972 1.239 1.375 1.484 1.643

ENL 6.994 6.843 6.544 9.223 9.094 8.564 7.512 7.012 6.843

Table 3. 5× 5 Mask

a00 a01 a02 a03 a04

0.0238 0.0281 0.0137 0.0092 0.0784

a10 a11 a12 a13 a14

0 0.0390 0.0268 0.0153 0.0602

a20 a21 a22 a23 a24

0.0569 0.0609 0.1260 0.0885 0.0429

a30 a31 a32 a33 a34

0.0635 0.0497 0.0782 0.0582 0.0403

a40 a41 a42 a43 a44

0.0079 0.0373 0.0510 0 0.0119

were evaluated by standard metrics such as Peak Signal to Noise ratio (PSNR)
[8], Mean square error (MSE) [3], Structural Content (SC) [15] and Equivalent
Number of Looks (ENL) [18]. It is evident that there is very less blurring in the
filtered image with 3× 3 window mask and the value of quality metrics for dif-
ferent window size supports the aforementioned fact. The limit on window size
reduces the computational complexity as well as effect of blurring in the resultant
images. The obtained results are above compromising level even at high noise
densities without much iterative application of the filtering algorithm. It is seen
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Table 4. 7× 7 Mask

a00 a01 a02 a03 a04 a05 a06

0.0525 0.0122 0.0497 0.0516 0.0136 0.0391 0

a10 a11 a12 a13 a14 a15 a16

0.0399 0.0685 0.0524 0.1058 0.0748 0.0767 0

a20 a21 a22 a23 a24 a25 a26

0 0.0224 0 0.0082 0 0.0801 0.0076

a30 a31 a32 a33 a34 a35 a36

0 0.1031 0.0916 0.0076 0.0431 0.0325 0.0007

a40 a41 a42 a43 a44 a45 a46

0.0713 0.0282 0 0.0545 0.0430 0.0061 0.0120

a50 a51 a52 a53 a54 a55 a56

0 0.0397 0.0048 0 0.0884 0.0456 0

from Table 2, that the coefficients for 3× 3 mask performs well in the following
hierarchy of removing noise, it efficiently removes salt and pepper noise in the
images, whereas the ability to remove the speckle content and salt and pepper
noise content in the images was relatively low. The effect of increasing window
size is also clearly illustrated in Table 2. It is clearly seen with the augumentation
in window size the quality of the image decreases which is clearly illustrated in
Table 2. Thus the 3× 3 mask can be preferred for denoising applications such as
Ultrasound Images, SAR Images etc.

9 Conclusion

We have proposed a optimization based filtering technique for image denoising
process. In this proposed denoising technique, the qualitative and quantitative
aspect of filtering are discussed. It is clearly realized that the filter coefficients
produced by the mask size 3 is more suited in purging salt and pepper noise,
whereas the same values when applied for removing speckle noise and Gaussian
noise performs relatively low. The performance of the optimization based filter-
ing technique was illustrated with efficient quality indicators. Hence the proposed
optimization technique based FIR filter can be used for noise elimination process.
Future work includes the development of noise elimination schemes using differ-
ent meta-heuristic optimization algorithms. Filter coefficients that can suppress
both the additive and multiplicative noise can also be a future work.
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Abstract. Let G = (V, E) be a connected graph of order n ≥ 3. Let
f : E → {1, 2, ..., k} be a function and let the weight of a vertex v
be defined by ω(v) =

∑

v∈V

f(v). Then f is called an irregular labeling

if all the vertex weights are distinct. The irregularity strength s(G) is
the smallest positive integer k such that there is an irregular labeling
f : E → {1, 2, ..., k}. In this paper we determine the irregularity strength
of corona G ◦ H where G = Pn or Cn and H = mK1 or K2 or K3.

Keywords: Irregular labeling · Irregularity strength · Corona

1 Introduction

Let G = (V,E) be a connected graph of order n ≥ 3. Let f : E → {1, 2, ..., k}
be a function and let the weight of a vertex v be defined by ω(v) =

∑

v∈V

f(v).

Then f is called an irregular labeling if all the vertex weights are distinct. The
irregularity strength s(G) is the smallest positive integer k such that there is
an irregular labeling f : E → {1, 2, ..., k}. The irregularity strength of a graph
was introduced by Chartrand et al. [4]. Further they proved the following lower
bound for s(G).

Proposition 1. If G is a connected graph of order at least 3 containing pi ver-
tices of degree i, for some positive integer i, then s(G) ≥ pi−1

i + 1.

Aigner and Triesh [1] proved that s(G) ≤ n − 1 if G is a connected graph
of order n, and s(G) ≤ n + 1 otherwise. Nierhoff [11] refined their method and
showed that s(G) ≤ n − 1 for all graphs with finite irregularity strength, except
for K3. This bound is tight, for example star K1,n. Faudree and Lehel [6] showed
that if G is d-regular and d ≥ 2, then

⌈
n+d−1

d

⌉ ≤ s(G) ≤ ⌈
n
2

⌉
+ 9, and they

conjectured that s(G) ≤ ⌈
n
d

⌉
+ c for some constant c. Przybylo in [12] proved

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 175–181, 2017.
DOI: 10.1007/978-3-319-64419-6 23
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that s(G) ≤ 16n
d + 6. Kalkowski et al. [9] showed that s(G) ≤ 6n

δ + 6, where δ
is the minimum degree of G. Currently Majerski and Przybylo [10] proved that
s(G) ≤ (4 + o(1))n

δ + 4 for graphs with minimum degree δ ≥ √
n ln n. Other

interesting results on the irregularity strength can be found in [2,3,5–8].

Theorem 1 [8]. If G = H ◦K2, where H is graph with p ≥ 3 vertices such that
δ(H) ≥ 2, then s(G) = p + 1.

2 Main Results

Definition 1. The corona G1 ◦ G2 of two graphs G1 and G2 is the graph G
obtained by taking one copy G1 which has n vertices and n copies of G2 and
then joining ith vertex of G1 to every vertex in the ith copy of G2.

Theorem 2. Let Pn be the path on n vertices. Then s(Pn ◦ mK1) = mn.

Proof. Let G = Pn ◦ mK1. Let V (G) = {ui : 1 ≤ i ≤ n} ∪ {vj
i : 1 ≤ i ≤ n, 1 ≤

j ≤ m} and E(G) = {uiui+1 : 1 ≤ i ≤ n − 1} ∪ {uiv
j
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Define f : E(G) → {1, 2, 3, ...,mn} as follows.

f(uiui+1) = mn for 1 ≤ i ≤ n − 1 and

f(uiv
j
i ) = n(j − 1) + i for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Hence weights of the vertices of G are

ω(vj
i ) = n(j − 1) + i for all i and j,

ω(ui) =

{
nm(m+1)

2 + im if i = 1, n
nm(m+3)

2 + im if 2 ≤ i ≤ n − 1.

Since the weights of all vertices of G are distinct and f is an irregular labeling,
s(G) ≤ mn. By Proposition 1, s(G) ≥ mn. Hence s(G) = mn.

Theorem 3. Let Cn be the cycle on n vertices. Then s(Cn ◦ mK1) = mn.

Proof. Let G = Cn ◦ mK1. Let V (G) = {ui : 1 ≤ i ≤ n} ∪ {vj
i : 1 ≤ i ≤ n, 1 ≤

j ≤ m} and E(G) = {ei = uiui+1 : 1 ≤ i ≤ n − 1} ∪ {en = unu1} ∪ {uiv
j
i : 1 ≤

i ≤ n, 1 ≤ j ≤ m}.
Define f : E(G) → {1, 2, 3, ...,mn} as follows.

f(ei) = mn for 1 ≤ i ≤ n and

f(uiv
j
i ) = n(j − 1) + i for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Hence weights of the vertices are given by

ω(vj
i ) = n(j − 1) + i for all i and j and

ω(ui) =
nm(m + 3)

2
+ im for 1 ≤ i ≤ n.

Since the weights of all vertices of G are distinct and f is an irregular labeling,
s(G) ≤ mn. By Proposition 1, s(G) ≥ mn. Hence s(G) = mn.
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Theorem 4. Let Pn be the path on n vertices. Then s(Pn ◦ K2) = n + 1.

Proof. Let G = Pn ◦K2. Let V (G) = {ui : 1 ≤ i ≤ n}∪{vj
i : 1 ≤ i ≤ n, j = 1, 2}

and E(G) = {uiui+1 : 1 ≤ i ≤ n − 1} ∪ {uiv
j
i : 1 ≤ i ≤ n, j = 1, 2} ∪ {v1

i v2
i : 1 ≤

i ≤ n}.
Define f : E(G) → {1, 2, 3, ..., n + 1} as follows.

f(uiui+1) = n + 1 for 2 ≤ i ≤ n − 2,

f(uiv
1
i ) = i for 1 ≤ i ≤ n,

f(uiv
2
i ) = i + 1 for 1 ≤ i ≤ n,

f(v1
i v2

i ) =
{

i if 1 ≤ i ≤ �n+1
2 	

i + 1 if �n+1
2 	 < i ≤ n,

for n 
= 5,

f(u1u2) = f(un−1un) =
{

n if n is odd
n + 1 if n is even,

for n = 5, f(u1u2) = 5, f(u4u5) = 6.
Hence weights of the vertices are given by

ω(v1
i ) =

{
2i if 1 ≤ i ≤ �n+1

2 	
2i + 1 if �n+1

2 	 < i ≤ n,

ω(v2
i ) =

{
2i + 1 if 1 ≤ i ≤ �n+1

2 	
2i + 2 if �n+1

2 	 < i ≤ n,

ω(u1) =
{

n + 3 if n is odd
n + 4 if n is even.

For n = 3, ω(u2) = 11.
For n > 3,

ω(u2) =
{

2n + 6 if n is odd
2n + 7 if n is even.

For n > 3,

ω(un−1) =
{

4n if n is odd and n 
= 5
4n + 1 if n is even orn = 5.

For n ≥ 2,

ω(un) =
{

3n + 1 if n is odd and n 
= 5
3n + 2 if n is even or n = 5

and ω(ui) = 2(n + i) + 3 for 2 < i < n − 1.
Since the weights of all vertices of G are distinct and f is an irregular labeling,

s(G) ≤ n + 1. By Proposition 1, s(G) ≥ n + 1. Hence s(G) = n + 1.
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Theorem 5. Let Cn be the cycle on n vertices. Then s(Cn ◦ K2) = n + 1.

Proof. By Theorem 1, s(Cn ◦ K2) = n + 1.

Theorem 6. Let Pn be the path on n vertices. Then s(Pn ◦ K3) = n + 1.

Proof. Let G = Pn ◦ K3. Let V (G) = {ui : 1 ≤ i ≤ n} ∪ {vj
i : 1 ≤ i ≤

n, j = 1, 2, 3} and E(G) = {uiui+1 : 1 ≤ i ≤ n − 1} ∪ {uiv
j
i : 1 ≤ i ≤ n, j =

1, 2, 3} ∪ {v1
i v2

i , v2
i v3

i , v3
i v1

i : 1 ≤ i ≤ n}.
Define f : E(G) → {1, 2, 3, ..., n + 1} as follows.
For n = 2,

f(u1v
1
1) = f(v1

1v
2
1) = f(v2

1v
3
1) = f(v3

1v
1
1) = f(u2v

1
2) = 1,

f(u1v
2
1) = f(v1

2v
2
2) = f(v2

2v
3
2) = 2,

f(u1u2) = f(u1v
3
1) = f(u2v

2
2) = f(u2v

3
2) = f(v3

2v
1
2) = 3.

For n = 3,

f(u1v
1
1) = f(v1

1v
2
1) = f(v2

1v
3
1) = f(v3

1v
1
1) = 1,

f(u1v
2
1) = f(u2v

1
2) = f(v1

2v
2
2) = f(v2

2v
3
2) = f(v3

2v
1
2) = f(u3v

1
3) = 2,

f(u1u2) = f(u1v
3
1) = f(u2v

2
2) = f(u3v

2
3) = 3,

f(u2u3) = f(u2v
3
2) = f(u3v

3
3) = f(v1

3v
2
3) = f(v2

3v
3
3) = f(v3

3v
1
3) = 4.

For n = 4,

f(u1v
1
1) = f(v1

1v
2
1) = f(v2

1v
3
1) = f(v3

1v
1
1) = 1,

f(u1v
2
1) = f(u2v

1
2) = f(v1

2v
2
2) = f(v2

2v
3
2) = f(v3

2v
1
2) = f(u3v

1
3) = 2,

f(u1u2) = f(u1v
3
1) = f(u2v

2
2) = f(u3v

2
3) = f(u4v

1
4) = 3,

f(u2u3) = f(u2v
3
2) = f(u3v

3
3) = f(v1

3v
2
3) = f(v2

3v
3
3) = f(v3

3v
1
3) = f(u4v

2
4) = 4,

f(u3u4) = f(u4v
3
4) = f(v1

4v
2
4) = f(v2

4v
3
4) = f(v3

4v
1
4) = 5.

For n ≥ 5,

f(v1
i v2

i ) = f(v2
i v3

i ) = f(v3
i v1

i ) =
{

1 if 1 ≤ i ≤ �n+1
3 �

i + 1 if �n+1
3 � < i ≤ n,

f(u1v
j
1) = j for j = 1, 2, 3,

f(uiv
1
i ) =

{
i + 2 if 2 ≤ i ≤ �n+1

3 �
i − 1 if �n+1

3 � < i ≤ n,

f(uiv
2
i ) =

{ �n+4
3 � + i if 2 ≤ i ≤ �n+1

3 �
i if �n+1

3 � < i ≤ n,

f(uiv
3
i ) =

{
2�n+1

3 � + i if 2 ≤ i ≤ �n+1
3 �

i + 1 if �n+1
3 � < i ≤ n,

f(u1u2) = 3(�n + 1
3

� − 1) for all n ≥ 5 and
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if n ≡ 0(mod 3), then

f(uiui+1) =
{

n if 2 ≤ i ≤ �n+1
3 �

n + 1 if �n+1
3 � < i ≤ n − 1,

if n ≡ 1(mod 3), then

f(uiui+1) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 1 if 2 ≤ i ≤ �n+1
3 � + 1

n if �n+1
3 � + 1 < i ≤ n − 2

n − 1 if i = n − 1 and n 
= 7
n if i = n − 1 and n = 7,

if n ≡ 2(mod 3), then

f(uiui+1) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 1 if 2 ≤ i ≤ �n+1
3 �

n if �n+1
3 � + 1 < i ≤ n − 1

n + 1 if i = �n+1
3 � + 1 and n = 5

n if i = �n+1
3 � + 1 and n 
= 5.

Clearly the weights of the vertices of G are distinct for n = 2, 3, 4.
For n ≥ 5 the weights of the vertices of G are given below.

ω(vj
1) = j + 2 for j = 1, 2, 3,

ω(v1
i ) =

{
i + 4 if 2 ≤ i ≤ �n+1

3 �
3i + 1 if �n+1

3 � < i ≤ n,

ω(v2
i ) =

{ �n+4
3 � + i + 2 if 2 ≤ i ≤ �n+1

3 �
3i + 2 if �n+1

3 � < i ≤ n,

ω(v3
i ) =

{
2�n+1

3 � + i + 2 if 2 ≤ i ≤ �n+1
3 �

3i + 3 if �n+1
3 � < i ≤ n,

ω(u1) = 3
(⌊

n + 1
3

⌋

+ 1
)

,

ω(u2) =
{

5�n+1
3 � + �n+4

3 � + n + 5 if n ≡ 0(mod 3)
5�n+1

3 � + �n+4
3 � + n + 6 if n ≡ 1, 2(mod 3),

ω(un) =

⎧
⎨

⎩

4n + 1 if n ≡ 0(mod 3)
4n − 1 if n ≡ 1(mod 3) and n 
= 7
4n if n ≡ 2(mod 3) and if n = 7,

if n ≡ 0(mod 3), then

ω(ui) =

⎧
⎨

⎩

2�n+1
3 � + �n+4

3 � + 2n + 3i + 2 if 2 < i ≤ �n+1
3 �

2n + 3i + 1 if i = �n+1
3 � + 1

2n + 3i + 2 if �n+1
3 � + 1 < i ≤ n − 1,
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if n ≡ 1(mod 3), then

ω(ui) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2�n+1
3 � + �n+4

3 � + 2n + 3i + 4 if 2 < i ≤ �n+1
3 �

2n + 3i + 2 if i = �n+1
3 � + 1

2n + 3i + 1 if i = �n+1
3 � + 2

2n + 3i if �n+1
3 � + 2 < i ≤ n − 2

2n + 3i − 1 if i = n − 1 and n 
= 7
2n + 3i if i = n − 1 and n = 7,

if n ≡ 2(mod 3), then

ω(ui) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2�n+1
3 � + �n+4

3 � + 2n + 3i + 4 if 2 < i ≤ �n+1
3 �

2n + 3i + 2 if i = �n+1
3 � + 1 and n = 5

2n + 3i + 1 if i = �n+1
3 � + 1 and n 
= 5

2n + 3i + 1 if i = �n+1
3 � + 2 and n = 5

2n + 3i if i = �n+1
3 � + 2 and n 
= 5

2n + 3i if �n+1
3 � + 2 < i ≤ n − 1.

Since the weights of all vertices of G are distinct and f is an irregular labeling,
s(G) ≤ n + 1. By Proposition 1, s(G) ≥ n + 1. Hence s(G) = n + 1.

Theorem 7. Let Cn be the cycle on n vertices. Then s(Cn ◦ K3) = n + 1.

Proof. Let G = Cn ◦ K3. Let V (G) = {ui : 1 ≤ i ≤ n} ∪ {vj
i : 1 ≤ i ≤ n, j =

1, 2, 3} and E(G) = {ei = uiui+1 : 1 ≤ i ≤ n − 1} ∪ {en = unu1} ∪ {uiv
j
i : 1 ≤

i ≤ n, j = 1, 2, 3} ∪ {v1
i v2

i , v2
i v3

i , v3
i v1

i : 1 ≤ i ≤ n}.
Define f : E(G) → {1, 2, 3, ..., n + 1} as follows.

f(uiv
2
i ) = f(v2

i v3
i ) = f(ei) = n + 1 for 1 ≤ i ≤ n,

f(uiv
1
i ) = f(v3

i v1
i ) = 1 for 1 ≤ i ≤ n,

f(uiv
3
i ) = f(v1

i v2
i ) = i for 1 ≤ i ≤ n.

The weights of the vertices of G are given by

ω(v1
i ) = i + 2 for 1 ≤ i ≤ n,

ω(v2
i ) = 2n + i + 2 for 1 ≤ i ≤ n,

ω(v3
i ) = n + i + 2 for 1 ≤ i ≤ n,

ω(ui) = 3n + i + 4 for 1 ≤ i ≤ n,

Since the weights of all vertices of G are distinct and f is an irregular labeling,
s(G) ≤ n + 1. By Proposition 1, s(G) ≥ n + 1. Hence s(G) = n + 1.

3 Conclusion and Scope

In this paper we have determined the irregularity strength of Pn ◦ Km and
Cn ◦ Km when 1 ≤ m ≤ 3. The problem remains open for m ≥ 4.
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Abstract. Let G = (V, E) be a connected graph of order n ≥ 3. Let
f : E → {1, 2, ..., k} be a function and let the weight of a vertex v
be defined by ω(v) =

∑

v∈V

f(v). Then f is called an irregular labeling

if all the vertex weights are distinct. The irregularity strength s(G) is
the smallest positive integer k such that there is an irregular labeling
f : E → {1, 2, ..., k}. In this paper we prove that for some families of
graphs, irregularity strength and r-distant irregularity strength are equal.
Further exact value of 1-distant irregularity strength of some classes of
graphs are determined.

Keywords: Irregular labeling · Irregularity strength · 1-Distant
irregularity strength

1 Introduction

Let G = (V,E) be a connected graph of order n ≥ 3. Let f : E → {1, 2, ..., k}
be a function and let the weight of a vertex v be defined by ω(v) =

∑

v∈V

f(v).

Then f is called an irregular labeling if all the vertex weights are distinct. The
irregularity strength s(G) is the smallest positive integer k such that there is an
irregular labeling f : E → {1, 2, ..., k}.

The irregularity strength of a graph was introduced by Chartrand et al.
[1], and the irregularity strength of many graphs were determined in [1], e.g.,
s(Kn) = 3, n ≥ 3. Further the irregularity strength of a graph was studied by
numerous authors see [2–4,6,7]. Ebert et al. [2] proved that

s(Wn) =
{ �n+1

3 � if n ≥ 6,
�n+1

3 � + 1 if n = 4 or 5.

Kathiresan et al. [7] proved that s(Fn) = n+1. Two more characteristics, namely
total vertex irregularity strength and total edge irregularity strength were intro-
duced by Baca et al. [5]. Also the characteristic neighbour-distinguishing k-total
c© Springer International Publishing AG 2017
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weighting was introduced by Przybylo et al. [8]. The bounds for k was found
by many authors. The bound was improved to k = 5 by Kalkowski et al. [9].
The r-distant irregularity strength of a graph was introduced by Przybylo [10].
In this paper we prove that for some families of graphs, irregularity strength
and r-distant irregularity strength are equal. Further exact value of 1-distant
irregularity strength of some classes of graphs are determined.

Theorem 1 [3]. If G is an d-regular graph of order n with d ≥ n
2 , then s(G) ≤

�n
2 � + 1.

Theorem 2 [3]. s(Km,n) = 3 if 1 < n
2 ≤ m < n.

Definition 1. Let G = (V,E) be a graph. A labeling f : E(G) → {1, 2, 3, ..., k}
is called r-distant irregular, if for every v ∈ V , the weights of the vertices in
Nr[v] (the set of all vertices which are at distance less than or equal to r from
v) are pairwise distinct, where the weight of the vertex is the sum of the labels of
the edges which are incident with that vertex. The minimum k for which there
exists an r-distant irregular labeling of G, is called r-distant irregularity strength
sr(G) of the graph G.

Proposition 1. For any graph G, distance irregularity strength chain s1(G) ≤
s2(G) ≤ ... ≤ sdiam(G)(G) = s(G) holds.

Proof. For any vertex v in G, N1[v] ⊆ N2[v] ⊆ ... ⊆ Ndiam(G)[v] = V (G).
Therefore s1(G) ≤ s2(G) ≤ ... ≤ sdiam(G)(G) = s(G).

Proposition 2. If G is a graph of order n and Δ(G) = n−1, then sr(G) = s(G)
for all r.

Proof. Let degv = n − 1. Then Nr[v] = V (G) for all r. Therefore the weights of
all vertices in G are distinct. Hence, sr(G) = s(G) for all r.

Corollary 1. sr(Kn) = s(Kn) = 3 for all n ≥ 3.

Corollary 2. Let K1,n be the star with n pendant vertices. Then sr(K1,n) =
s(K1,n) = n.

Corollary 3. Let Wn, n ≥ 3 be the wheel on n vertices. Then

sr(Wn) = s(Wn) =
{ �n+1

3 � if n ≥ 6,
�n+1

3 � + 1 if n = 4 or 5.

Corollary 4. Let Fn, n ≥ 2 be the friendship graph on 2n + 1 vertices. Then
sr(Fn) = s(Fn) = n + 1.

Converse of the Proposition 2 is not true. That is if sr(G) = s(G) for all
r, then Δ(G) need not be equal to n − 1. For example, in the following graph
G, sr(G) = s(G) for all r, but there is no vertex of degree n − 1 (Fig. 1).
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4 4

Fig. 1. A graph with sr(G) = s(G) and Δ(G) < n − 1.

2 1-Distant Irregularity Strength of Certain Families
of Graphs

Theorem 3. Let Pn, n > 2 be the path on n vertices. Then

s1(Pn) =
{
2 if n ≤ 5,
3 if n > 5.

Proof. Let Pn = (v1, e1, v2, e2, ..., en−1, vn).
Define f : E(Pn) → {1, 2, 3} is as follows.
For P3 : f(e1) = 1, f(e2) = 2.
For P4 : f(e1) = 1, f(e2) = 2, f(e3) = 2.
For P5 : f(e1) = 1, f(e2) = 1, f(e3) = 2, f(e4) = 2.
For n > 5,

f(ei) =

⎧
⎨

⎩

1 if i ≡ 1(mod 3),
2 if i ≡ 2(mod 3),
3 if i ≡ 0(mod 3), for 1 ≤ i < n − 4,

f(en−3) =
{
2 if n ≡ 2(mod 3),
3 if n 
≡ 2(mod 3),

f(en−2) =
{
3 if n ≡ 2(mod 3),
1 if n 
≡ 2(mod 3),

and f(en−1) = 1.

Since the weights of all vertices of Pn are distinct and f is an 1-distant irregular
labeling,

s1(Pn) =
{
2 if n ≤ 5,
3 if n > 5.
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Theorem 4. Let Cn be the cycle on n vertices. Then s1(Cn) = 3.

Proof. Let Cn = (v1, e1, v2, e2, v3, ..., vn, en, v1).
Define f : E(Cn) → {1, 2, 3} as follows.
If n 
≡ 2(mod 3), then

f(ei) =

⎧
⎨

⎩

1 if i ≡ 1(mod 3),
2 if i ≡ 2(mod 3),
3 if i ≡ 0(mod 3).

If n ≡ 2(mod 3), then for 1 ≤ i ≤ n − 2,

f(ei) =

⎧
⎨

⎩

1 if i ≡ 1(mod 3),
2 if i ≡ 2(mod 3),
3 if i ≡ 0(mod 3),

and f(en−1) = 3, f(en) = 1.
Since the weights of all vertices of Cn are distinct and f is an 1-distant

irregular labeling, s1(Cn) = 3.

Theorem 5. Let G be a d-regular graph on n vertices. Then s1(G) = s(G) ≤
�n
2 � + 1 if d ≥ n

2 .

Proof. Since d ≥ n
2 , for every vertex v in G, N1[v] must contain at least n

2 + 1
vertices. Hence for any two arbitrary vertices vi and vj , N1[vi]∩ N1[vj ] 
= φ. Let
v ∈ N1[vi] ∩ N1[vj ], then vi, vj ∈ N1[v]. Hence weights of vi, vj are distinct for
all i and j. Thus, s1(G) = s(G). By Theorem 1, s1(G) ≤ �n

2 � + 1.

Theorem 6. Let Km,n be the complete bipartite graph. Then s1(Km,n) =
s(Km,n) for all m and n. Also s1(Km,n) = 3 if 1 < n

2 ≤ m < n.

Proof. Let Km,n be the complete bipartite graph with bipartition (V1, V2) and
let |V1| = m, |V2| = n. Since every vertex of V1 is adjacent to all the vertices of
V2, V2 ⊂ N1[x] for all x in V1. Therefore the weights of all vertices in V2 ∪ {x}
are distinct for all x in V1. Similarly the weights of all vertices in V1 ∪ {y} are
distinct for all y in V2. Hence the weights of all vertices of Km,n are distinct,
and so s1(Km,n) = s(Km,n) for all m and n. By Theorem 2, s1(Km,n) = 3 if
1 < n

2 ≤ m < n.

Theorem 7. Let G = Pn�K2, where � denotes the Cartesian product. Then
s1(G) = 3.

Proof. Construct the graph G by joining the two paths Pn : v1e1v2e2v3...vn−1

en−1vn and P ′
n : v′

1e
′
1v

′
2e

′
2v

′
3...v

′
n−1e

′
n−1v

′
n with the edges viv

′
i, i = 1, 2, 3, ..., n.

Define f : E(G) → {1, 2, 3} as follows.
An optimal 1-distant irregular labelings for n = 2, 3 are shown in Fig. 2.
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Fig. 2. Optimal 1-distant irregular labelings for n = 2, 3

For n > 3,

f(ei) =

⎧
⎨

⎩

1 if i ≡ 1(mod 2),
2 if i ≡ 2(mod 4),
3 if i ≡ 0(mod 4), for 1 ≤ i < n − 2,

f(en−2) =
{
2 if n ≡ 0, 3(mod 4),
3 if n ≡ 1, 2(mod 4),

f(en−1) =
{
1 if n 
≡ 1(mod 4),
2 if n ≡ 1(mod 4),

f(e′
i) =

{
1 if i ≡ 0(mod 4),
2 if i 
≡ 0(mod 4), for 1 ≤ i ≤ n − 1,

f(viv′
i) =

{
1 if i ≡ 0(mod 2),
3 if i ≡ 1(mod 2), for 2 ≤ i ≤ n − 1,

and f(v1v′
1) = f(vnv′

n) = 1.

Since the weights of all vertices of G are distinct and f is an 1-distant irregular
labeling, s1(G) = 3.

Theorem 8. Let G = Cn�K2, n ≥ 3. Then s1(G) = 3.

Proof. The graph G consists of two cycles Cn = (v1, e1, v2, e2, ..., vn, en, v1) and
C ′

n = (v′
1, e

′
1, v

′
2, e

′
2, ..., v

′
n, e′

n, v′
1) with the edges viv

′
i, i = 1, 2, 3, ..., n.

Define f : E(G) → {1, 2, 3} as follows.
For n = 3,

f(e1) = f(e2) = f(e3) = f(v1v′
1) = 1,

f(e′
1) = f(e′

2) = f(e′
3) = f(v3v′

3) = 3 and f(v2v′
2) = 2.

For n = 5,

f(e1) = f(e5) = f(e′
2) = f(e′

3) = 1,
f(viv′

i) = 1 for 1 ≤ i ≤ 5,
f(e2) = f(e′

4) = 2, f(e3) = f(e4) = f(e′
1) = f(e′

5) = 3.
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For n = 4 or n ≥ 6,

f(ei) =
{
1 if i ≡ 0, 1(mod 4),
2 if i ≡ 2, 3(mod 4), for 1 ≤ i ≤ n − 3,

f(en−1) = f(en−2) =
{
2 if n ≡ 0(mod 4),
1 if n 
≡ 0(mod 4),

and f(en) = 1.

f(e′
1) =

{
3 if n ≡ 0(mod 4),
2 if n 
≡ 0(mod 4),

f(e′
i) =

{
2 if i ≡ 2(mod 4),
3 if i 
≡ 2(mod 4), for 2 ≤ i ≤ n − 4,

f(e′
n−2) =

{
2 if n ≡ 0(mod 4),
3 if n 
≡ 0(mod 4),

f(e′
n−1) =

{
2 if n ≡ 1, 2(mod 4),
3 if n ≡ 0, 3(mod 4),

and f(e′
n) = f(e′

n−3) = 3.

f(viv′
i) =

{
1 if i ≡ 1, 2(mod 4),
3 if i ≡ 0, 3(mod 4), for 1 ≤ i ≤ n − 4,

f(vn−3v
′
n−3) =

⎧
⎨

⎩

1 if n ≡ 0(mod 4),
2 if n ≡ 1(mod 4),
3 if n ≡ 2, 3(mod 4),

f(vn−2v
′
n−2) =

{
1 if n ≡ 0, 3(mod 4),
3 if n ≡ 1, 2(mod 4),

f(vn−1v
′
n−1) =

{
3 if n ≡ 0(mod 4),
2 if n 
≡ 0(mod 4),

and f(vnv′
n) = 3.

Since the weights of all vertices of G are distinct and f is an 1-distant irregular
labeling, s1(G) = 3.

Theorem 9. Let Tn, n ≥ 2 be the fan graph obtained by joining each vertex of
the path Pn to a vertex x by an edge. Then

s1(Tn) = s(Tn) =
{
3 if n = 2,
�n+1

3 � if n > 2.

Proof. Let V (Tn) = {vi : 1 ≤ i ≤ n} ∪ {x} and E(Tn) = {ei = vivi+1 : 1 ≤
i ≤ n − 1} ∪ {xvi : 1 ≤ i ≤ n}. Since degree of x is n, by Proposition 2,
s1(Tn) = s(Tn). Now define f : E(Tn) → {1, 2, 3, ..., �n+1

3 �} as follows.
For n = 2, 3 the labelings are shown in Fig. 3.
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Fig. 3. 1-Distant irregular labelings for n = 2, 3

For n > 3, define

f(ei) =
⌈

i + 1
3

⌉

for 1 ≤ i ≤ n − 1,

f(xv1) = 1,

f(xvi) =
⌈

i − 1
3

⌉

for 2 ≤ i ≤
⌊
2n − 4

3

⌋

and i = n,

f(xvi) =
⌈

i + 2
3

⌉

for
⌊
2n − 4

3

⌋

< i < n.

By the above labeling we have s1(Tn) ≤ �n+1
3 �, for n > 2. Since the weights

of v1, v2, v3, ..., vn and x are distinct, the maximum weight of the vertices
v1, v2, v3, ..., vn is at least n + 1. Since degree of these vertices are 2 or 3, at
least one of the label is greater than or equal to n+1

3 . Therefore s1(Tn) ≥ �n+1
3 �

for n > 2. Hence s1(Tn) = �n+1
3 � for n > 2. Further we cannot label T2 with

fewer than 3 labels. Hence we have

s1(Tn) =
{
3 if n = 2,
�n+1

3 � if n > 2.

Definition 2. A caterpillar is a graph derived from a path by hanging any num-
ber of leaves from the vertices of the path.

Theorem 10. Let G = Pr ◦ Kk, where ◦ denotes corona. Then

s1(G) =

⎧
⎪⎪⎨

⎪⎪⎩

2 if k = 1,
2 if k = 2 and r ≤ 5,
3 if k = 2 and r > 5,
k if k > 2.

Proof. Let V (G) = {ci : 1 ≤ i ≤ r} ∪
r⋃

i=1

{xj
i : 1 ≤ j ≤ k} and E(G) = {cici+1 :

1 ≤ i ≤ r − 1} ∪
r⋃

i=1

{cix
j
i : 1 ≤ j ≤ k}.

Define f : E(G) → {1, 2, 3, ..., k} as follows.

Case 1. k = 1.
If r = 3, then f(c1c2) = f(c1x1

1) = f(c2x1
2) = f(c3x1

3) = 1, f(c2c3) = 2.
If r > 3, then for 1 ≤ i ≤ r − 1,

f(cici+1) = f(cix1
i ) =

{
1 if i ≡ 1, 2(mod 4),
2 if i ≡ 0, 3(mod 4),
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and

f(crx1
r) =

{
1 if r 
≡ 0(mod 4),
2 if r ≡ 0(mod 4).

Case 2. k = 2 and r ≤ 5.
Assign label f(cix1

i ) = 1, f(cix2
i ) = 2 for 1 ≤ i ≤ r

If r = 3, then f(c1c2) = 1, f(c2c3) = 2.
If r = 4, then f(c1c2) = 1, f(c2c3) = f(c3c4) = 2.
If r = 5, then f(c1c2) = f(c2c3) = 1, f(c3c4) = f(c4c5) = 2.

Case 3. k = 2, r > 5 or k > 2.
Assign label f(cix

j
i ) = j for 1 ≤ i ≤ r, 1 ≤ j ≤ k.

If r ≡ 1(mod 3), then for 1 ≤ i ≤ r − 4,

f(cici+1) =

⎧
⎨

⎩

1 if i ≡ 1(mod 3),
2 if i ≡ 2(mod 3),
3 if i ≡ 0(mod 3),

and f(cr−3cr−2) = 3, f(cr−2cr−1) = f(cr−1cr) = 1.
If r 
≡ 1(mod 3), then for 1 ≤ i ≤ r − 1,

f(cici+1) =

⎧
⎨

⎩

1 if i ≡ 1(mod 3),
2 if i ≡ 2(mod 3),
3 if i ≡ 0(mod 3).

Since the weights of all vertices of G are distinct and f is an 1-distant irregular
labeling,

s1(G) =

⎧
⎪⎪⎨

⎪⎪⎩

2 if k = 1,
2 if k = 2 and r ≤ 5,
3 if k = 2 and r > 5,
k if k > 2.

3 Conclusion and Scope

The determination of r-distant irregularity strength of path, cycle, ladder graph,
fan graph and caterpillar for r ≥ 2 are still open.
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Abstract. The benefits of cloud computing are measured services,
unlimited and automatic access and release of resources. But, data secu-
rity issues such as stealing credentials, unauthorized exposure of data
may scare businesses away. Many popular security techniques try to pro-
tect data in cloud. Still, various state-of-art techniques are emerging as
new types of attacks are being exposed. This paper proposes a scheme
that is based on partitioning the plain text into different data parts, gen-
erating multiple cipher texts for each part and each cipher text is stored
in different centers of cloud storage. Decryption of a data part is done
with all cipher texts of each data part and a private key. By obtaining
all plain texts data parts by this method, the original text is delivered
to authorized user while preserving confidentiality and integrity.

Keywords: Cloud computing · Cloud data security · Data partition ·
Multiple cipher texts · Confidentiality · Integrity

1 Introduction

Cloud computing is a combination of technologies such as Service Oriented Archi-
tecture (SOA), virtualization and networking. The Cloud is classified into three
types such as Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) based on the service it offers and into four
types namely, Private Cloud, Public Cloud, Community Cloud and Hybrid Cloud
based on deployment. Maddineni and Ragi emphasized that essential charac-
teristic, for example flexibility, measured services continue to enticing ventures
to receive Cloud computing [13]. But security issues, particularly data security
issues backtrack to adopt this state of art technique. Some of the real time situ-
ations and some proposed solutions for data security issues are presented below.
Now-a-days, data theft and cyber breach are every day events around the world.
Yahoo Inc. reported one of the largest cyber-attacks recently. This situation
emphasized the importance of precautionary measures to be taken by customers
of Cloud and in turn the Cloud Service Provider (CSP) by tightening the control
over their customers data, by screening the employees now and then and check-
ing the background of users who access the data. Sun et al. proposed that the
major issues in Cloud are resource security, resource administration, resource
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 191–196, 2017.
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monitoring and data security [7]. Hashizume et al. and Grobaver et al. recorded
distinctive analysis of data security issues in SaaS, PaaS and IaaS, for exam-
ple data leakage due to multitenancy, data theft due to flaws in application in
Cloud and legal and compliance issues due to exposure of data to various regions
of the world [4,5]. Tumulak suggested that amazing Cloud security solution
has to encompass data lockdown, access policies and security intelligence [14].
Yakonbov et al. discussed some precise cryptographic techniques such as homo-
morphic encryption, verifiable computation and multi party computation which
are some modes of security in Cloud [6]. Esporito et al. and Paillier explained
Paillier homomorphic crypto system which create more cipher texts for a single
plaintext and cipher texts that are randomly chosen used for decryption and
not only this, Pairing-Based, Identity-Based encryption techniques, ABE, Dig-
ital signature and secure routing were also discussed [2,11]. Gomathisankaran
et al. described HORNs, a scheme in which Residue Number System is used
to obtain homomorphic encryption on data shares, a way of protecting data in
cloud [3]. The authors addressed data security issues of confidentiality, integrity
and cloud collusion and propose some realistic solutions too. Zhou et al. dis-
cussed how RBE could be applied for effective consumer revocation and RBAC
is utilized to segregate data to public or private cloud depending upon the level
of sensitivity [9]. Shaikh and Sasikumar studied data classification as a method of
attaining cloud data security [6]. Wang et al. and Balu, Kuppusamy focused key
escrow and inexpressiveness of attribute as problems in making use of CP-ABE
scheme for Cloud data security, but they furnished a way to the above prob-
lems through enforcing an improved key issuing protocol and weighted attribute
procedure which ensures the security proof of data confidentiality and privacy
[1,8]. Thilakanathan et al. pointed out varieties of assaults on the Cloud, motives
of malicious customers and the way ABE and Proxy Re-encryption facilitates
secure and confidential data sharing in the Cloud [10].

2 Proposed Scheme

Security methods presented in the above section are supposed to preserve con-
fidentiality, integrity or authenticate the access to rights for information, appli-
cations and other resources or to preclude the malicious insiders of the organi-
zation from having entry to access to customers data. Though, the above secu-
rity procedures possess some merits and demerits, they are supposed to redress
some vulnerabilities and attacks as aforementioned. This paper proposes yet
another novel data/information protection technique based on partitioning of
data/information, prime numbers and a secret key.

2.1 Algorithm for Encryption

1. Let M be the information/data, for example a file to be secured.
2. Partition M by reading the file into M1,M2, . . . ,Mn where n is the number

of data parts.
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3. Generate 2n prime numbers where n is the number of data parts. Number of
prime numbers to be generated depends on the number of cipher texts to be
produced for each part Mi. With a pair of prime numbers 4 encrypted parts
will be produced for each data part and with 4 prime numbers 8 cipher texts
will be formed.

4. Arrange 2n prime numbers into n number of pairs such as [Pi, Qi]where Pi

and Qi are two consecutive prime numbers. Here Qi is nothing but Pi+1.
5. Define P c

i = 2p − Pi, Q
c
i = 2p −Qi, where p is the size of the prime number.

6. Generate a set of very large integers D1,D2, . . . , Dn and split each Di into 4
parts d1, d2, d3 and d4. This partition may depend on the number of prime
numbers to be taken to encrypt each data part. In this scheme, for a pair of
primes and their prime complements, four partitions are required.

7. Define cipher texts Ci1 to Ci4 for each Mi

f1 (Mi, Pi, Qi, d1),
f2 (Mi, Pi, Q

c
i , d2),

f3 (Mi, P
c
i , Qi, d3) and

f4 (Mi, P
c
i , Q

c
i , d4)

8. Each cipher text Cij is intended to be stored in different folders of a Cloud
storage.

2.2 Algorithm for Decryption

1. Get Mi = Ci1 + Ci2 + Ci3 + Ci4 −Di and omit the extra zeros.
2. Get the plaintext M , by changing each Mi into original format from the

format at the time of partitioning.

3 Implementation and Testing

This scheme has been developed in Java. The results of the scheme have been
tested with a system of processor Intel(R) Core (TM)2 Duo CPU, 4 GB of
RAM and Windows7 as the platform. A JPEG file has been taken as an input.
Partition the file by changing the format and produce multiple cipher texts for
all data parts. Create as many number of folders in Cloud storage as the number
of cipher texts for each data part. First set of cipher texts is stored in one of
the folder of Cloud storage. Successive sets of cipher texts are stored different
folders of Cloud storage.

Figure 1 is the image that was taken as an input to test our implementation.
The size of the Fig. 1 image is 21.1 KB, which is a JPEG image of .jpg exten-
sion. The image format of Fig. 1 is converted to byte array. Figure 2 shows the
screenshot of the converted byte array format.

The byte array format of the image is changed to a series of integers and the
obtained series is given below.

−2555936; 1067590; 1229324289;16777217;65536; −2424700; 591367; 303174165;
320017174; 353703704; 387454744; 387389210; 387258904; 404231960;404231962;
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Fig. 1. Image taken for testing

Fig. 2. Byte array form of the input image.

489168920; 488972055; 404828449; 657009454; 774772767; 859321132;
925379886; 721488394; 168693006; 454037530; 757407014; 758066479;757935405
(repeated 10 times); 791489837; 757989312; 1116160; −520036093; 19005442;
285278993; 19005442; 285278993; 33539072; 452984834;50397441; 0; 0; 1029;
33752576; 17301444.

To encrypt the given data/information, a set of prime numbers has been
generated. Again for encryption, complement of each prime number is required.
Complement of a prime can be calculated using the formula 2p- (a prime
number).

To enhance the security of data a set of keys consisting of very large integers
are to be generated. Each large integer is to be split into parts. Figure 3 shows
the generation of very large integers. These will act as a key to decryption. The
data owner will give this set of keys to authorized users.

The first set of split of very large integers is used to create first set of cipher
texts. Similarly, the three other sets of split of very large integers take part
to create second, third and fourth sets of cipher texts. The four sets of cipher
texts thus generated are stored in the successive folders of Cloud storage. The
proposed algorithm decrypts the encrypted shares successfully (Fig. 4).
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Fig. 3. Generation of large integers which acts as keys

Fig. 4. Image created by decrypted set of integers

4 Conclusion

Bring Your Own Cloud (BYOC) is now becoming the trend of an IT field.
But, data security issues such as data leakage, data loss, unauthorized access
and modification of data are challenging the adoption of cloud technology by
government agencies and business enterprises. The scheme proposed in this paper
preserves the privacy of data owner by ensuring confidentiality and integrity.
The data to be secured is partitioned and encrypted and each encrypted form
is supposed to be stored in various data centers of Cloud storage entirely in
different format. So, the proposed design preserves the confidentiality. As long
as, the data in data centers of Cloud remain unchanged, decryption is possible.
So, the above scheme checks the integrity of data too.

5 Future Work

In future, our plan is to improve the implementation by encrypting files of
larger size and of all formats and to do crypt-analysis of the proposed design.
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Furthermore, the CSP with which the cipher texts to be stored is assumed to be
trust-worthy. In the worst case scenario, CSP can act as a malicious insider. So,
our next design would encrypt the encrypted cipher texts to be stored in cloud.

Acknowledgment. The first author is thankful to the management of Kalasalingam
University for providing fellowship. The authors thank the referee for the valuable
suggestions which resulted in the present form of the paper.
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Abstract. A majority dominating function of a graph G = (V, E) is
a function g : V → {−1, 1} such that g(N [v]) ≥ 1, for at least half
of the vertices v ∈ V , where N [v] is the closed neighborhood of v and
g(N [v]) =

∑

u∈N [v]

g(u). The weight of g is defined by g(V ) =
∑

v∈V

g(v).

The majority domination number γmaj(G) is the minimum weight of
a majority dominating function of G. The maximum cardinality of a
minimal majority dominating function of G is called the upper majority
domination number of G and is denoted by Γmaj(G). In this paper we
initiate a study of this parameter and present several basic results.

Keywords: Majority domination · Majority domination number ·
Upper majority domination number

1 Introduction

By a graph G = (V,E) we mean a finite undirected graph with neither loops nor
multiple edges. The order |V | and the size |E| are denoted by n and m respec-
tively. For graph theoretic terminology we refer to Chartrand and Lesniak [7].
One of the major areas within graph theory is the study of domination and
related subset problems. For an excellent treatment of fundamentals of domina-
tion we refer to the book by Haynes et al. [5]. Survey of general advanced topics
in domination is given in the book edited by Haynes et al. [6]. Several domina-
tion related concepts have been formulated in terms of functions satisfying the
condition that the closed neighborhood sum of any vertex is at least one. For a
survey of results on several topics dealing with domination related functions we
refer to Chaps. 1, 2, 3, 4 and 5 of [6]. Dunbar et al. [2] introduced the concept
of minus dominating function.

Let G = (V,E) be any graph and let v ∈ V . The open neighborhood N(v)
of v is the set of vertices adjacent to v. The closed neighborhood N [v] of v is
N [v] = N(v) ∪ {v}. For a set S of vertices, we define N(S) = ∪

v∈S
N(v) and

N [S] = N(S) ∪ S. A subset S of V is called a dominating set of G if N [S] = V .
The domination number γ(G) of a graph G is the minimum cardinality of a
dominating set in G. For any real valued function g : V → R and S ⊆ V , let
g(S) =

∑

u∈S

g(u). A minus dominating function is defined in [2] as a function

c© Springer International Publishing AG 2017
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g : V → {−1, 0, 1} such that g(N [v]) ≥ 1 for all v ∈ V . A minus dominating
function is minimal if and only if for every vertex v ∈ V with g(v) ≥ 0, there
exists a vertex u ∈ N [v] with g(N [u]) = 1. The minus domination number of G
is defined by γ−(G) =min{g(V ) : g is a minus dominating function of G}. The
concept of signed dominating function was introduced by Dunbar et al. [3]. A
function g : V → {−1, 1} is called a signed dominating function of G for every
vertex v ∈ V , g(N [v]) ≥ 1. The signed domination number γs(G) =min{g(V ) : g
is a signed dominating function of G}. Broere et al. [1] introduced the concept
of majority domination in graphs.

Definition 1.1. A function g : V → {−1, 1} is called a majority dominating
function if g(N [v]) ≥ 1 for at least half of the vertices v ∈ V . The majority dom-
ination number of graph G is γmaj(G) =min{g(V ) : g is a majority dominating
function of G}.
Definition 1.2. A majority dominating function g of G is called a minimal
majority dominating function, if there does not exist a majority dominating func-
tion h : V → {−1, 1} such that h �= g and h(v) ≤ g(v) for every v ∈ V .

Theorem 1.3 [1]. For any integer n ≥ 1,

γmaj(Kn) =
{
1 if n is odd
2 if n is even.

Theorem 1.4 [1]. For any integer n ≥ 2,

γmaj(K1,n) =
{
1 if n is even
2 if n is odd.

Theorem 1.5 [1]. For t ≥ s ≥ 2,

γmaj(Ks,t) =
{
2 − t if s is even
3 − t if s is odd.

Proposition 1.6 [1]. A majority dominating function g of a graph G is minimal
only if for every vertex v ∈ V with g(v) = 1, there exists a vertex u ∈ N [v] with
g(N [u]) ∈ {1, 2}.
Lemma 1.7 [4]. A signed dominating function g of a graph G is minimal if and
only if for every vertex v ∈ V with g(v) = 1, there exists a vertex u ∈ N [v] with
g(N [u]) ∈ {1, 2}.
Definition 1.8 [4]. The upper signed domination number of a graph G, denoted
by Γs(G), is defined as Γs(G) = max{g(V ) : g is a minimal signed dominating
function on G}.
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2 Upper Majority Domination

Throughout this paper we use the following notation.
Let g : V → {−1, 1} be a majority dominating function of G. Let

P = {v ∈ V : g(v) = 1},

M = {v ∈ V : g(v) = −1} and
S = {v ∈ V : g(N [v]) ≥ 1}.

Since g is a majority dominating function, |S| ≥ n
2 . For any v ∈ P , let s(v) =

{w ∈ N [v] : g(N [w]) = 1 or 2}. Let k(v) = |s(v) | and k = min
v∈P

k(v).

Theorem 2.1. A majority dominating function g of a graph G is minimal if
and only if |S| − k < 	n

2 
.
Proof. Suppose |S| − k < 	n

2 
. Let f : V → {−1, 1} be a function such that
f < g. Hence there exists v ∈ V such that g(v) = 1 and f(v) = −1. Let
S1 = {u ∈ V : f(N [u]) ≥ 1}. Then |S1| ≤ |S| − k < 	n

2 
. Hence f is not a
majority dominating function of G. Thus g is a minimal majority dominating
function of G.

Conversely, let g be a minimal majority dominating function of G and let
g(v) = 1. Define h : V → {−1, 1} by h(v) = −1 and h(w) = g(w), for all w �= v.
Let S2 = {v ∈ V : h(N [v]) ≥ 1}. Now for any w ∈ N [v] with g(N [w]) = 2 or 1,
we have f(N [w]) = 0 or −1. Hence |S2| = |S| − k < 	n

2 
.
Definition 2.2. The upper majority domination number Γmaj(G) of G is
defined by Γmaj(G) =max{g(V ) : g is a minimal majority dominating function
of G}.
It follows from the definition that γmaj(G) ≤ Γmaj(G). We now proceed to
determine the upper majority domination number of some standard graphs,
which in turn gives several class of graphs for which γmaj(G) = Γmaj(G).

Theorem 2.3. For any integer n ≥ 2,

Γmaj(Kn) =
{
1 if n is odd
2 if n is even.

Proof. Let V (Kn) = {v1, v2, . . . , vn}. Any function g : V → {−1, 1} is a majority
dominating function of Kn if and only if |P | ≥ 	n+1

2 
. Further if |P | > 	n+1
2 
,

then g(N [vi]) ≥ 3 for all vi ∈ V . Hence k(vi) = 0 for all vi ∈ V , so that k = 0.
Also |S| = n and hence |S| − k > 	n

2 
. Thus it follows from Theorem2.1 that
g is not a minimal majority dominating function of Kn. Hence g is a mini-
mal majority dominating function of Kn if and only if |P | = 	n+1

2 
. Therefore
for any minimal dominating function of Kn, g(V ) =

{
1 if n is odd
2 if n is even . Hence

Γmaj(Kn) =
{
1 if n is odd
2 if n is even.
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Corollary 2.4. γmaj(Kn) = Γmaj(Kn).

Proof. Follows from Theorems 1.3 and 2.3.

Theorem 2.5. For any integer n ≥ 2,

Γmaj(K1,n−1) =
{
1 if n is odd
2 if n is even.

Proof. Let G = K1,n−1. Let V (G) = {v, v1, v2, . . . , vn−1} and d(v) = n. Let
g : V → {−1, 1} be a majority dominating function of G. If g(v) = −1, then
g(N [vi]) ≤ 0 for all i, 1 ≤ i ≤ n − 1, which is a contradiction. Hence g(v) = 1.
Now g(N [vi]) ≥ 1 if and only if g(vi) = 1 for atleast 	n−1

2 
 vertices vi. Thus
v ∈ P and |P | ≥ 	n−1

2 
 + 1. Also if |P | > 	n−1
2 
 + 1, then g(N [v]) ≥ 2, for

all v ∈ P . Thus k = 1 and |S| > 	n−1
2 
 + 1. Hence |S| − k > 	n

2 
 and by
Theorem2.1, g is not a minimal majority dominating function of G. Therefore g
is a minimal majority dominating function of G if and only if |P | = 	n+1

2 
 and

hence Γmaj(K1,n−1) = g(V ) =
{
1 if n is odd
2 if n is even.

Corollary 2.6. γmaj(K1,n−1) = Γmaj(K1,n−1).

Proof. Follows from Theorems 1.3 and 2.5.

Theorem 2.7. Let G be the complete bipartite graph Km,n with 2 ≤ m ≤ n.
Then

Γmaj(G) =

⎧
⎨

⎩

0 if m and n are even
2 if m and n are odd
1 otherwise.

Proof. Let U = {u1, u2, . . . , um} and W = {w1, w2, . . . , wn} be the bipartition
of G. Let g : V → {−1, 1} be any function. Let PU = {ui ∈ U : g(ui) = 1},
PW = {wi ∈ W : g(wi) = 1}, SU = {ui ∈ U : g(N [ui]) ≥ 1} and SW = {wi ∈
W : g(N [wi]) ≥ 1}.

Then SU =

⎧
⎨

⎩

U if |PW | ≥ 	n
2 
 + 1

PU if |PW | = 	n
2 


∅ if |PW | < 	n
2 
.

Similarly SW =

⎧
⎨

⎩

W if |PU | ≥ 	m
2 
 + 1

PW if |PU | = 	m
2 


∅ if |PU | < 	m
2 
.

Hence it follows that g is a minimal majority dominating function if one of the
following holds:

(i) |PU | = 	m
2 
 and |PW | = 	n

2 
.
(ii) |PU | = 	m

2 
 and |PW | ≥ 	n
2 
 + 1.

(iii) |PU | ≥ 	m
2 
 + 1 and |PW | = 	n

2 
.
(iv) |PU | ≥ 	m

2 
 + 1 and |PW | ≥ 	n
2 
 + 1.
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(v) |PU | ≥ 	m
2 
 + 1 and |PW | < 	n

2 
.
(vi) |PU | < 	m

2 
 and |PW | ≥ 	n
2 
 + 1 and m = n.

Further g is a minimal majority dominating function if and only if either (i) holds
or (v) holds with |PU | = 	m

2 
+1 and |PW | = 0 or (vi) holds with |PW | = 	n
2 
+1

and |PU | = 0. Hence g satisfying (i) gives a minmal majority dominating function

with g(V ) = Γmaj(G) =

⎧
⎨

⎩

0 if m and n are even
2 if m and n are odd
1 otherwise.

Theorem 2.8. Let G denote the friendship graph with t triangles (u0, ui,
ui+t, u0), where 1 ≤ i ≤ t. Then Γmaj(G) = 1.

Proof. Clearly n = |V (G)| = 2t + 1 and hence
⌈
n
2

⌉
= t + 1.

Define g : V → {−1, 1} as follows.

g(ui) = g(ui+t) = 1 if 1 ≤ i ≤ 	 t

2



g(ui) = 1 if t is even and i = 	 t

2

 + 1

g(v) = −1 for all the remaining vertices.

Then |S| =
{

t + 1 if t is even
t + 2 if t is odd

and k =
{
1 if t is even
3 if t is odd.

Clearly |S| − k < 	n
2 
 and hence g is a minimal majority dominating function

on G. Thus Γmaj ≥ ∑

ui∈V

g(ui) = 1. Now, let f : V → {−1, 1} be any minimal

majority dominating function on G with
∑

ui∈V

f(ui) = Γmaj(G). Hence |S| ≥ t+1

and k > 0.
Now, suppose f(N [u0]) = Γmaj(G) ≥ 3. Then |P | ≥ t+2. Since f(N [u0]) ≥ 3

and k > 0, we have f(u0) = −1. Hence f(N [ui]) = 1 for all ui ∈ P. Thus
|S| ≥ t + 3 and k ≤ 2. Now |S| − k > t + 1, which is a contradiction. Hence
Γmaj(G) ≤ 1. Thus Γmaj(G) = 1.

3 Conclusion and Scope

In this paper we have introduced the concept of upper majority domination
number of a graph. Results connecting upper majority domination number and
upper signed domination number may be reported in a subsequent paper.

Acknowledgments. The first author is thankful to the management of Kalasalingam
University for providing fellowship.
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Abstract. An (a,d)-edge antimagic total labeling of a (p, q)-graph G is
bijection f : V ∪ E → {1, 2, 3, . . . , p + q} with the property that the
edge-weights w(uv) = f(u) + f(v) + f(uv) where uv ∈ E(G) form an
arithmetic progression a, a+ d, . . . , a+ (q − 1)d, where a > 0 and d ≥ 0
are two fixed integers. If such a labeling exists, then G is called an (a,d)-
edge antimagic total graph. If further the vertex labels are the integers
{1, 2, 3, . . . , p}, then f is called a super (a,d)-edge antimagic total labeling
of G ((a, d)-SEAMT labeling) and a graph which admits such a labeling
is called a super (a,d)-edge antimagic total graph ((a, d)-SEAMT graph).
If d = 0, then the graph G is called a super edge-magic graph. In this
paper we investigate the existence of super (a, 3)-edge antimagic total
labelings for union of two stars.

Keywords: Total labeling ·Antimagic total labeling · Super antimagic ·
Total labeling

1 Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops
nor multiple edges. The order and size of G are denoted by n and m respectively.
For graph theoretic terminology we refer to Chartrand and Lesniak [3].

An (a,d)-edge antimagic total labeling of a (p, q)-graph G is bijection f :
V ∪ E → {1, 2, 3, . . . , p + q} with the property that the edge-weights w(uv) =
f(u) + f(v) + f(uv) where uv ∈ E(G) form an arithmetic progression a, a +
d, . . . , a + (q − 1)d, where a > 0 and d ≥ 0 are two fixed integers. If such a
labeling exists, then G is called an (a,d)-edge antimagic total graph. If further
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the vertex labels are the integers {1, 2, 3, . . . , p}, then f is called a super (a,d)-
edge antimagic total labeling of G ((a, d)-SEAMT labeling) and a graph which
admits such a labeling is called a super (a,d)-edge antimagic total graph ((a, d)-
SEAMT graph). If d = 0 then the graph G is called a super edge-magic graph.

Let f : V ∪E → {1, 2, 3, . . . , p+ q} be an (a, d)-edge antimagic total labeling
of a graph G = (V,E). Then W = {w(uv) : w(uv) = f(u) + f(v) + f(uv), uv ∈
E(G)} = {a, a + d, . . . , a + (q − 1)d}. In the computation of the edge-weights
of G each edge label is used once and each label of the vertex v is used deg(v)
times. Thus the following equation holds.

∑

v∈V (G)

deg(v)f(v) +
∑

e∈E(G)

f(e) =
∑

e∈E(G)

w(e) (1)

This equation was first observed by Bača and Youssef [2], which we repeat-
edly use.

We now present some basic results on super (a, d)-edge antimagic total label-
ing of graphs.

Theorem 1.1 [5]. Let G be a (a, d)-SEAMT graph with p vertices and q edges.
Let f be an (a, d)-SEAMT labeling of G. Then the labeling f defined by

f(v) = p+ 1 − f(v) for all v ∈ V and

f(e) = 2p+ q + 1 − f(e) for all e ∈ E

is a (4p+ q + 3 − a − (q − 1)d, d)-SEAMT labeling of G.

Super edge-antimagicness of disjoint union of two stars have been investigated
by Dafik et al. [4]. Let G = K1,m∪K1,n withm ≥ n. Dafik et al. [4] have observed
that if G = K1,m ∪K1,n admits an (a, d)-SEAMT labeling, then d ≤ 3+ 2

m+n−1 .
Hence if m+n ≥ 4, then d ≤ 3. They have proved the existence of (a, d)-SEAMT
labelings with d ≤ 2. If m+ n is odd, m ≥ n ≥ 2 and m is a multiple of n+ 1,
then G has a (a, 1)-SEAMT labeling. Further if m ≥ n ≥ 2 and m is a multiple of
n+1, then G has an (a, 2)-SEAMT labeling. They have also proved the existence
of (4m+6, 1)-SEAMT labeling and (2m+7, 3)-SEAMT labeling for K1,m∪K1,n,
where m = n ≥ 2. They posed the following problem.

Problem 1.2 [4]. For the graph K1,m ∪ K1,n, m > n ≥ 2 determine if there is
an (a, 3)-SEAMT labeling.

In [1] Arumugam and Nalliah proved that the graph K1,m ∪K1,n, m ≥ n+2,
has no (a, 3)-SEAMT labeling except when n = 2 and m = 4 and hence the
Problem 1.2 reduces to the following:

Problem 1.3 [1]. Determine the values of n for which the graph K1,n+1∪ K1,n

admits an (a, 3)-SEAMT labeling.

It has also been proved in [1] that the graph K1,n+1 ∪ K1,n admits an (a, 3)-
SEAMT labeling if 1 ≤ n ≤ 16, n �= 5, 8, 11, 14. Further a = 2n+ 8 if n �= 2 and
a = 13 when n = 2.
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In this paper we continue with the investigation of Problem 1.3 and present
further results on the existence and nonexistence of (a, 3)-SEAMT labelings.

2 Main Results

Theorem 2.1. The graph G = K1,6 ∪ K1,5 has no (a, 3)-SEAMT labeling.

Proof. The order and size of G are given by p = 13 and q = 11. Let
V (G) = {c1, u1, u2, . . . , u6}∪{c2, v1, v2, . . . , v5} where c1 and c2 are respectively
the central vertices of K1,6 and K1,5. Suppose there exists an (a, 3)-SEAMT
labeling f : V ∪E → {1, 2, 3, . . . , 24} for G. Let f(c1) = i1 and f(c2) = i2. Since
deg c1 = 6, deg c2 = 5 and deg v = 1 for all v ∈ V − {c1, c2}, Eq. (1) gives

a =
5i1 + 4i2 + 135

11
(2)

Since the minimum possible edge-weight is 17, we have a ≥ 17. Also the max-
imum possible edge-weight is at most 48, which implies that a ≤ 19. Thus
17 ≤ a ≤ 19. Let e1 and e2 denote the edges in G with minimum and maximum
weight respectively.

Case 1. a = 17.
Substituting the value a in Eq. (2), we get,

5i1 + 4i2 = 52 (3)

Suppose e2 is incident with c1. Then f(c1) = i1 ∈ {13, 12, 11, 10} and f(c2) =
i2 ∈ {1, 2}. For any of these values of i1 and i2 the value of 5i1+4i2 is greater than
52, which is a contradiction. A similar contradiction arises, if f(c1) = i1 ∈ {1, 2}
and f(c2) = i2 ∈ {13, 12, 11, 10}.
Case 2. a = 19.
If f is a (19, 3)-SEAMT labeling ofG, then by Theorem 1.1, f is a (17, 3)-SEAMT
labeling, which does not exist by Case 1.

Case 3. a = 18.
Substituting the value a in Eq. (2), we get,

5i1 + 4i2 = 63 (4)

Suppose e2 is incident with c1. Then f(c1) = i1 ∈ {13, 12, 11} and f(c2) = i2 ∈
{1, 2, 3}. Hence Eq. (4) is satisfied only when i1 = 11 and i2 = 2. Similarly if e1
is incident with c2, Eq. (4) is satisfied only when i1 = 3 and i2 = 12.

Subcase i. i1 = 11 and i2 = 2.
Then f(c1) = 11 and f(c2) = 2. Also the set of edge-weights is given by W =
{18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}. Let e1 = c2v1 and e2 = c1u6 be the edges
with w(e1) = 18 and w(e2) = 48. Then f(e1) = 15, f(v1) = 1 f(c2) = 2 and
f(e2) = 24, f(u6) = 13, f(c1) = 11. Now for any edge e of K1,5 we have w(e) ≤
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2+12+23 = 37. Also for any edge e ofK1,6 we have w(e) ≥ 11+3+14 = 28.Hence
the set W1 of all edge-weights of K1,5 is a subset of {18, 21, 24, 27, 30, 33, 36}.
Also the setW2 of all edge-weights ofK1,6 is a subset of {30, 33, 36, 39, 42, 45, 48}.
Hence we may assume without loss of generality that if e3 = c1v5, then w(e3) ∈
{30, 33, 36}.

If w(e3) = 30 then we have 21 + 24 + 27 + 30 =
5∑

i=2

[f(vi) + f(ei)] + 8 and

hence
5∑

i=2

[f(vi) + f(ei)] = 94. Now, we need four vertex labels of K1,5 from

the set A = {3, 4, 5, 6, 7, 8, 9, 10, 12} and four edge labels of K1,5 from the set
B = {14, 16, 17, 18, 19, 20, 21, 22, 23} such that the sum of these four vertex labels
and four edge labels is 94. There exist 19 possible such sets of 8 elements, denoted
by Ci = Ai ∪Bi, where Ai ⊆ A and Bi ⊆ B, 1 ≤ i ≤ 19, which are given below.

C1 = {3, 4, 5, 6, 16, 17, 20, 23}
C2 = {3, 4, 5, 7, 14, 18, 20, 23}
C3 = {3, 4, 5, 8, 14, 17, 20, 23}
C4 = {3, 4, 6, 9, 14, 16, 19, 23}
C5 = {3, 4, 6, 9, 16, 17, 19, 20}
C6 = {3, 4, 9, 10, 14, 16, 18, 20}
C7 = {3, 5, 6, 7, 14, 16, 20, 23}
C8 = {3, 5, 6, 7, 14, 17, 19, 23}
C9 = {3, 5, 7, 10, 14, 17, 18, 20}
C10 = {3, 5, 7, 9, 14, 16, 17, 23}
C11 = {3, 5, 7, 9, 14, 17, 19, 20}
C12 = {3, 6, 7, 9, 14, 16, 19, 20}
C13 = {3, 6, 7, 10, 14, 16, 18, 20}
C14 = {3, 6, 9, 10, 14, 16, 17, 19}
C15 = {4, 5, 6, 7, 14, 17, 18, 23}
C16 = {4, 5, 6, 9, 14, 16, 17, 23}
C17 = {3, 7, 8, 9, 14, 16, 17, 20}
C18 = {4, 5, 6, 7, 14, 17, 20, 21} and
C19 = {4, 5, 6, 10, 14, 17, 18, 20}.

Also we have 33 + 36 + 39 + 42 + 45 =
5∑

i=1

[f(ui) + f(ei)] + 55 and hence

5∑
i=1

[f(ui) + f(ei)] = 140. Now, we need five vertex labels of K1,6 from the set

A′ = {1, 2, . . . , 14} − {{1, 2, 11, 13} ∪ Ai, 1 ≤ i ≤ 19}. Further we need five edge
labels ofK1,6 from the set B′ = {14, 15, . . . , 24}−{{15, 24}∪Bi, 1 ≤ i ≤ 19} such
that the sum of these five vertex labels and five edge labels is 140. There exist
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19 possible such sets of 10 elements, denoted by Di = A′
i ∪ B′

i where A′
i ⊆ A′

and Bi ⊆ B′, 1 ≤ i ≤ 19, which are given below.

D1 = {7, 8, 9, 10, 12, 14, 18, 19, 21, 22}
D2 = {6, 8, 9, 10, 12, 16, 17, 19, 21, 22}
D3 = {6, 7, 9, 10, 12, 16, 18, 19, 21, 22}
D4 = {5, 7, 8, 10, 12, 17, 18, 20, 21, 22}
D5 = {5, 7, 8, 10, 12, 14, 18, 21, 22, 23}
D6 = {5, 6, 7, 8, 12, 17, 19, 21, 22, 23}
D7 = {4, 8, 9, 10, 12, 17, 18, 19, 21, 22}
D8 = {4, 8, 9, 10, 12, 16, 18, 20, 21, 22}
D9 = {4, 6, 8, 9, 12, 16, 19, 21, 22, 23}
D10 = {4, 6, 8, 10, 12, 18, 19, 20, 21, 22}
D11 = {4, 6, 8, 10, 12, 16, 18, 21, 22, 23}
D12 = {4, 5, 8, 10, 12, 17, 18, 21, 22, 23}
D13 = {4, 5, 8, 9, 12, 17, 19, 21, 22, 23}
D14 = {4, 5, 7, 8, 12, 18, 20, 21, 22, 23}
D15 = {3, 8, 9, 10, 12, 16, 19, 20, 21, 22}
D16 = {3, 7, 8, 10, 12, 18, 19, 20, 21, 22}
D17 = {4, 5, 6, 10, 12, 18, 19, 21, 22, 23}
D18 = {3, 8, 9, 10, 12, 16, 18, 19, 22, 23} and
D19 = {3, 7, 8, 9, 12, 16, 19, 21, 22, 23}.

Let Si = {C1 ∪ Di, 1 ≤ i ≤ 19}. If S1 is used for getting the edge-weights
21, 24, 33, 36, 39, 42 and 45, then there is no edge with weight 27 or 30, which is
a contradiction. A similar contradiction arises for Si, 2 ≤ i ≤ 19.

If w(e3) = 33, then we have 21 + 24 + 27 + 33 =
5∑

i=2

[f(vi) + f(ei)] + 8 and

hence
5∑

i=2

[f(vi) + f(ei)] = 97. Now, we need four vertex labels of K1,5 from

the set A = {3, 4, 5, 6, 7, 8, 9, 10, 12} and four edge labels of K1,5 from the set
B = {14, 16, 17, 18, 19, 20, 21, 22, 23} such that the sum of these four vertex labels
and four edge labels is 97. There exist 4 possible such sets of 8 elements, denoted
by Ci = Ai ∪ Bi, where Ai ⊆ A and Bi ⊆ B, 1 ≤ i ≤ 4, which are given below.

C1 = {3, 4, 6, 8, 16, 17, 20, 23}
C2 = {4, 5, 6, 8, 14, 17, 20, 23}
C3 = {3, 4, 6, 10, 16, 17, 20, 21} and
C4 = {4, 5, 6, 10, 14, 17, 20, 21}.



208 M. Nalliah and S. Arumugam

Also we have 30 + 36 + 39 + 42 + 45 =
5∑

i=1

[f(ui) + f(ei)] + 55 and hence

5∑
i=1

[f(ui) + f(ei)] = 137. Now, we need five vertex labels of K1,6 from the set

A′ = {1, 2, . . . , 14} − {{1, 2, 11, 13} ∪ Ai, 1 ≤ i ≤ 4} and five edge labels of K1,6

from the set B′ = {14, 15, . . . , 24} − {{15, 24} ∪ Bi, 1 ≤ i ≤ 4} such that the
sum of these five vertex labels and five edge labels is 137. There exist 4 pos-
sible such sets of 10 elements, denoted by Di = A′

i ∪ B′
i where A′

i ⊆ A′ and
B′

i ⊆ B′, 1 ≤ i ≤ 4 which are given below.

D1 = {5, 7, 9, 10, 12, 14, 18, 19, 21, 22}
D2 = {3, 7, 9, 10, 12, 16, 18, 19, 21, 22}
D3 = {5, 7, 8, 9, 12, 14, 18, 19, 22, 23} and
D4 = {3, 7, 8, 9, 12, 16, 18, 19, 22, 23}.

Let Si = {Ci ∪ Di, 1 ≤ i ≤ 4}. If S1 is used for getting the edge-weights 21, 24,
27, 30, 36, 39, 42 and 45, then there is no edge with weight 33. If S2 is used for
getting the edge-weights 21, 24, 30, 36, 39, 42 and 45, then there is no edge with
weight 27 or 33. If S3 or S4 is used for getting the edge-weights 21, 30, 36, 39,
42 and 45, then there is no edge with weights 24, 27 and 33.

If w(e3) = 36, then we have
5∑

i=2

[f(vi) + f(ei)] = 100. Hence there is no

possible set of 8 elements of weights {21, 24, 27, 36} for K1,5. Also, we have
5∑

i=1

[f(ui) + f(ei)] = 134 and hence there is no possible set of 10 elements of

weights {30, 33, 39, 42, 45} for K1,6. Thus the case i1 = 11 and i2 = 2 leads to a
contradiction in all possibilities.

A similar argument can be used to prove that i1 = 3 and i2 = 4 leads to a
contradiction. Hence G does not admit an (a, 3)-SEAMT labeling.

Theorem 2.2. If n = 3(2r+3 − 3), r ≥ 1, then G = K1,n+1 ∪ K1,n admits an
(2n+ 8, 3)-SEAMT labeling.

Proof. Let n = 3(2r+3 − 3), r ≥ 1. Let k = 2r − 1, I1 = 3k+1
2 and Is+1 =

3k+1−
s∑

i=1
2i

2s+1 where 1 ≤ s ≤ r − 1.
We define a bijection g : V ∪ E → {1, 2, 3, . . . , 4n+ 4} as follows:

g(c2) = 2,

g(c1) = 2n+ 1,

g(vi) = 2i − 1, 1 ≤ i ≤ n,

g(ui) = 2i+ 2, 1 ≤ i ≤ n,

g(un+1) = 2n+ 3,

g(c2vi) = 2n+ 4 + i, 1 ≤ i ≤ n,

g(c1un+1) = 4n+ 4,
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g(c1un+1−i) = 4n+ 3 − i, 1 ≤ i ≤ n − 1

2
,

g
(
c1un+1

2

)
= 2n+ 4,

g (c1ui) = 3n+ 5 + i, 1 ≤ i ≤ n − 3

4
,

g
(
c1un+1

4

)
= 4n+ 3,

g
(
c1un+1

4 +3i−2

)
= 3n+ 4 +

n − 3

4
+ 3i, if 1 ≤ i ≤ n − 15

24
,

g
(
c1un+1

4 +3i−1

)
= 3n+ 8 +

n − 3

4
+ 3i, if 1 ≤ i ≤ n − 15

24
,

g
(
c1un+1

4 +3i

)
= 3n+ 3 +

n − 3

4
+ 3i, if 1 ≤ i ≤ n − 15

24

g

(
c1u

3
(

n+1
8

)
−1

)
= 3n+ 7 +

n − 3

4
+

n − 15

8
,

g

(
c1u

3
(

n+1
8

)

)
= 3n+ 5,

g

(
c1u

3
(

n+1
8

)
+1

)
= 27

(
n − 15

8

)
+ 54,

g

(
c1u

3
(

n+1
8

)
+1+I1

)
= 78k + 56,

g

(
c1u

3
(

n+1
8

)
+I1

)
= 81k + 56 +

3k + 1

2
,

g

(
c1u

3
(

n+1
8

)
+1+3i−2

)
= 81k + 55 + 3i,

g

(
c1u

3
(

n+1
8

)
+1+3i−1

)
= 81k + 59 + 3i,

g

(
c1u

3
(

n+1
8

)
+1+3i

)
= 81k + 54 + 3i,where 1 ≤ i ≤ k − 1

2
.

For 1 ≤ s ≤ r − 1.

g

⎛
⎝c1u

3
(

n+1
8

)
+1+

s∑

t=1
(It+1)

⎞
⎠ = 81k + 54 +

s∑
t=1

(It + 1),

g

⎛
⎜⎝c1u

3
(

n+1
8

)
+

s+1∑

t=1
(It+1)

⎞
⎟⎠ = 81k + 59 +

s∑
t=1

(It + 1) − 2(Is+1 + 1),

g

⎛
⎜⎝c1u

3
(

n+1
8

)
−1+

s+1∑

t=1
(It+1)

⎞
⎟⎠ = 81k + 55 +

s+1∑
t=1

(It + 1),

g

⎛
⎝c1u

3
(

n+1
8

)
+1+

s∑

t=1
(It+1)+3i−2

⎞
⎠ = 81k + 55 + 3i+

s∑
t=1

(It + 1),
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Fig. 1. A (86, 3)-SEAMT labeling of K1,40 ∪ K1,39.
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g

(
c1u

3(n+1
8 )+1+

s∑

t=1
(It+1)+3i−1

)
= 81k + 59 + 3i+

s∑

t=1

(It + 1),

g

(
c1u

3(n+1
8 )+1+

s∑

t=1
(It+1)+3i

)
= 81k + 54 + 3i+

s∑

t=1

(It + 1),

where 1 ≤ i ≤ Is+1 − 2
3

g

⎛

⎝c1u
3(n+1

8 )+1+
1≤s≤r∑

t=1
(It+1)

⎞

⎠ = 84k + 54.

It can be verified that the set of edge weights induced by g is an arithmetic
progresssion with a = 2n+ 8 and d = 3 and we omit the details.

Example 2.3. A (86, 3)-SEAMT labeling of K1,40 ∪ K1,39 is given in Fig. 1.

3 Conclusion and Scope

The problem of determining whether the union of two stars K1,n+1∪K1,n admits
an (a, 3)-SEAMT labeling for the remaining values of n not covered in the above
two theorems is still open.
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Abstract. In a simple graph, Laplacian matrix and signless Lapla-
cian matrix are derived from both adjacency matrix and degree matrix.
Although, determinant of Laplacian matrix is always zero, yet we express
it using only the adjacency matrix and square of its adjacency matrix.
Likewise, we express the determinant of signless Laplacian matrix using
only the diagonal elements provided the signless Laplacian matrix is
equal to the square of its adjacency matrix.

Keywords: Laplacian matrix · Signless Laplacian matrix · Adjacency
matrix · Determinant

1 Introduction

A graph G = (V,E) consists of a finite set of vertices V and a set of edges E [1].
Let us denote the vertex set and the edge set of a graph G as V (G) and E(G)
respectively. A simple graph is without loops or multiple edges. An unweighted
graph is a weighted graph in which each of the edges has weight 1 [2].

Let G be a simple graph with finite number of vertices V (G) = {1, ..., n}.
The adjacency matrix A of G is the n × n matrix where aij is given by

aij =

{
1 if there is an edge from vi to vj

0 otherwise.

We denote det(A) to be the determinant of the adjacency matrix and is given by

det(A) =
n∑

i=1

(−1)ei2ci

where ei is the number of even components of G and ci is the number of com-
ponents of G containing more than two points, consisting of a single undirected
cycle. The adjacency matrix is a (0,1)-matrix for the case of a finite simple graph
with zeros on its diagonal. If the graph is undirected, the adjacency matrix
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 212–217, 2017.
DOI: 10.1007/978-3-319-64419-6 28
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is symmetric which has a complete set of real eigenvalues and an orthogonal
eigenvector basis such that

∑
λi = tr(A) = 0. The adjacency matrix can also

determine if the graph is connected or not. In algebraic graph theory, adjacency
matrix is useful when the nonzero elements are replaced with algebraic variables
[3,12].

Let D be the Degree matrix of graph G. Then D is a diagonal matrix (valency
matrix) [4], where

dij =

{
deg(vi) if i = j

0 otherwise.

The adjacency matrix and degree matrix play the role in expressing Laplacian
matrix and signless Laplacian matrix. However, we are interested in express-
ing the determinant of the matrices without the degree matrix using solely the
adjacency matrix and its square.

The remaining part of this paper is developed and presented as follows: Sect. 2
provides the basic knowledge of Laplacian matrix and signless Laplacian matrix,
their representations and uses. In Sect. 3, we give the proposition about deter-
minant of Laplacian matrix, conjecture of the determinant of signless Laplacian
matrix and as well raise a question.

2 Laplacian Matrix and Signless Laplacian Matrix

Let G be a graph with adjacency matrix A(G) and let D(G) be the n × n
diagonal matrix of G. Denote the Laplacian matrix of G as L(G) and the Signless
Laplacian matrix as Q(G). Then Laplacian matrix of G is

L(G) = D(G) − A(G).

Hence, (i, j)th entry Li,j is given by

Li,j =

⎧⎪⎨
⎪⎩

deg(vi) if i = j

−1 if i �= j and vi is adjacent to vj

0 otherwise.

The Signless Laplacian matrix of G is

L(G) = D(G) + A(G).

Hence (i, j)th entry Qi,j is given by

Qi,j =

⎧⎪⎨
⎪⎩

deg(vi) if i = j

1 if i �= j and vi is adjacent to vj

0 otherwise.

where deg(vi) is degree of the vertex i [9].
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A standout amongst the majority imperative and helpful grid representations
of a graph is the combinatorial graph Laplacian matrix or Kirchhoff matrix or
admittance matrix. The spectral properties of the Laplacian matrix is used to
examine numerous combinatorial properties of a graph. Further the number of
spanning trees of a simple graph is equal to any cofactor of the Laplacian matrix
[8,19]. The set of non-negative eigenvalues of a graph is the spectrum of the
graph. Among all eigenvalues of Laplacian of a graph, the algebraic connectivity
of a graph is the second smallest eigenvalue of L, μ = μ(G). The eigenvectors
corresponding to μ are called Fiedler vectors of the graph G and the smallest
nonzero eigenvalue of L is called the Fiedler value or Spectral gap. Thus if the
connectivity is different from zero then the graph is connected [7]. The Laplacian
is useful in the study of Markov chain, spectral clustering, graph partitioning,
random walks, coordination of multi-agent systems, formation control and syn-
chronization, see [10,11,13,17,20].

Laplacian matrix is a class of Z- matrices, particularly M-matrix - diagonally
dominant. The Laplacian matrix is positive semi-definite. Also row sum of a
matrix is the sum of all the elements in a row and the column sum is defined
similarly. Obviously, Laplacian matrix is symmetric with zero row and column
sums. The multiplicity of the eigenvalue 0 is the number of connected components
of the graph. The determinant of a matrix that is obtained by deleting any single
row and any column of the Laplace matrix is, except possibly for the sign, the
number of spanning trees of the corresponding graph [15].

For regular graphs the existing theory of spectral of the adjacency matrix
and of the Laplacian matrix is exactly assigned to the signless Laplacian [5]. The
signless Laplacian matrix appears to be suitable for studying graph properties.
Also signless Laplacian matrix is a positive semi-definite matrix [16]. The trace
of the signless Laplacian matrix is equal to the sum of vertex degrees of G [6].

3 Determinant of Laplacian Matrix and Signless
Laplacian Matrix

In Laplacian matrix and signless Laplacian matrix, degree matrix and adjacency
matrix are needed. The link to express determinant of Laplacian matrix using
only the adjacency matrix together with the square of the adjacency matrix and
without the degree matrix is now fully discussed. We therefore explain the link
as follows: We observe that

diag(L) = diag(A2) = diag(D).

If i �= j, then the entry in position (i, j) of A2 is the number of common neigh-
bours of vi and vj . The matrix multiplication puts into position (i, j) the product

of row i and column j; that is
n∑

k=1

ai,kak,j . When G is simple, the entries in A

are 1 or 0, depending on whether the corresponding vertices are adjacent. Hence
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ai,kak,j = 1, if vk is a common neighbour of vi and vj ; otherwise, the contribu-
tion is 0. Thus the number of contributions of 1 to entry (i, j) is the number
of common neighbours of vi and vj [18]. If i = j the degree deg(vi) of a vertex
sums the (0, 1) in each row and represented in a degree matrix D. Therefore,

diag(D) = diag[A2(
n∑

k=1

ai,kak,j)]

=
n∑

k=1

(a2
i,i + ai,kak,j)

The diagonal deg(vi) of Laplacian matrix can hence be replaced to have elements
of L. This has successfully linked the diagonal of square of adjacency matrix with
diagonal of the Laplacian matrix, thereby eliminating the need of degree matrix
to evaluate the determinant of Laplacian matrix. Though A2 cannot be used to
express the entries in Laplacian matrix solely but at least it contains part of the
information of Laplacian matrix. For an unweighted adjacency matrix of simple
graph, the determinant of A2 is always equal to square of determinant of A [14].

Proposition 1. Let L and A be Laplacian matrix and adjacency matrix respec-
tively. Then

det(L) = (−1)det(A)[det(A)]2 − (−1)det(A
2)det(A2)

Proof. Let det(A) = x, thus det(A2) = x2 for x ∈ Z. Then

det(L) = (−1)xx2 − (−1)x
2
x2

= x2[(−1)x − (−1)x
2
]

Vividly, if the value of x is odd then

det(L) = x2[−1 + 1] = 0

Also, if the value of x is even we have

det(L) = x2[1 − 1] = 0.

Irrespective of the value of x the determinant of the Laplacian matrix is still
zero.

Example 1. Given adjacency matrix A =

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ of a simple graph.

We need to verify the diagonal of L, A2 and D are the same, where

D =

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦
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L = D − A =

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦ −

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ =

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦

A2 =

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ ×

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ =

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦

Since diag[L(2, 2, 2)] = diag[A2(2, 2, 2)] = diag[D(2, 2, 2)]. Now

det(L) = (−1)det(A)[det(A)]2 − (−1)det(A
2)det(A2)

= (−1)222 − (−1)44
= 0

The square of adjacency matrix for the type of signless Laplacian matrix
considered here need to have a constant scalar in its diagonal, hence the diagonal
matrix D is in fact a scalar matrix.

Conjecture 1. Let Q and A be signless Laplacian matrix and adjacency matrix
respectively. Then

det(Q) = (d − 1)dn−1

provided Q = A2, where d is the element in diagonal entry of A2.

Example 2. Given adjacency matrix A =

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ of a simple graph.

Then

Q = D + A =

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦ +

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ =

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦

and

A2 =

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ ×

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ =

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦

Now d = 2 and det(Q) = (d − 1)dn−1 = (2 − 1)23−1 = 4.

We now pose the following question which, of course, mainly arise from the
Conjecture (1).

Question 1. Is there any n×n signless Laplacian matrix of a simple graph which
is equal to the square of its adjacency matrix with vertices n > 3?

4 Conclusion

We have given a conjecture about the determinant of Signless Laplacian matrix
as well as a question. We have shown the importance of square of adjacency
matrix and further studies may unveil the need for square of adjacency matrix
in determinant of signless Laplacian matrix.
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Abstract. For a graph G = (V, E), a set M ⊆ E is called a match-
ing in G if no two edges in M share a common vertex. A matching M
in G is called an uniquely restricted matching in G if there is no other
matching of the same cardinality in the graph induced on the vertices
saturated by M . An uniquely restricted matching M is called maximal
if M is not properly contained in any uniquely restricted matching of G.
The minimum maximal uniquely restricted matching (Min-UR-Matching)
problem is the problem of finding a minimum cardinality maximal
uniquely restricted matching. In this paper, we initiate the study of the
Min-UR-Matching problem. We prove that the decision version of the
Min-UR-Matching problem is NP-complete for general graphs. In par-
ticular, this answers an open question posed by Hedetniemi [AKCE
J. Graphs. Combin. 3(1)(2006) 1–37] regarding the complexity of the
Min-UR-Matching problem. We also prove that this problem remains NP-
complete for bipartite graphs with maximum degree 7. Next, we show
that the Min-UR-Matching for bipartite graphs cannot be approximated
within a factor of n1−ε for any positive constant ε > 0 unless P = NP .
Finally, we prove that the Min-UR-Matching problem is linear-time solv-
able for chain graphs, a subclass of bipartite graphs.

Keywords: Matching · Uniquely restricted matching · Bipartite
graphs · Graph algorithm · NP-complete

1 Introduction

Let G = (V,E) be a graph. For a set S ⊆ V of the graph G = (V,E), the
subgraph of G induced by S is defined as G[S] = (S,ES), where ES = {xy ∈
E|x, y ∈ S}. A set of edges M ⊆ E is a matching in G if no two edges of M are
incident on a common vertex. Vertices incident to the edges of a matching M
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are saturated by M . A matching M in G is called uniquely restricted matching,
if there is no other matching of the same cardinality in G[S], where S is the
set of vertices saturated by M . The concept of uniquely restricted matching was
first introduced by Golumbic et al. in 2001 [2]. They also gave a characterization
of uniquely restricted matching on arbitrary graphs using alternating cycles. A
matching M in a graph G is uniquely restricted if and only if G does not contain
an alternating cycle with respect to M [2].

A uniquely restricted matching M is maximal if no other uniquely restricted
matching in G contains M . A maximal uniquely restricted matching of maximum
cardinality is known as maximum maximal uniquely restricted matching. We also
call it maximum uniquely restricted matching. The maximum uniquely restricted
matching is well studied in literature, see [2,5–8].

A maximal uniquely restricted matching of minimum cardinality is called
minimum maximal uniquely restricted matching. The Minimum maximal
uniquely restricted matching (Min-UR-Matching) problem is to find a mini-
mum maximal uniquely restricted matching in a given graph. In this paper,
we initiate the study of the Min-UR-Matching problem. The minimum maximal
uniquely restricted matching number of G is the cardinality of a minimum max-
imal uniquely restricted matching in G, and is denoted by μ′

r(G). A minimum
maximal uniquely restricted matching is a maximal uniquely restricted matching
that contains μ′

r(G) edges. The minimum maximal uniquely restricted matching
problem and its decision version are defined as follows:

Min-UR-Matching problem (MUMP)

Instance: A graph G = (V,E).
Solution: A maximal uniquely restricted matching M in G.
Measure: Cardinality of the set M .

Min-UR-Matching-Decision problem(MUMDP)

Instance: A graph G = (V,E) and a positive integer k ≤ |E|.
Question: Does there exist a maximal uniquely restricted matching M in G

such that |M | ≤ k?

The motivation for studying minimum maximal uniquely restricted match-
ing comes from the minimum maximal matching problem. Note that maxi-
mum matching problem can be solved in polynomial time. However, the min-
imum maximal matching problem is NP-hard [1]. Here we show that the
Min-UR-Matching-Decision problem is NP-complete. This also answers a ques-
tion posed by Hedetniemi [3]. Also, the minimum maximal matching problem
admits a 2-approximate solution. But here we show an interesting result that the
Min-UR-Matching problem is hard to approximate even for bipartite graphs.

The rest of the paper is organized as follows. In Sect. 2, some pertinent defi-
nitions and some preliminary results are discussed. In Sect. 3, we show that the
Min-UR-Matching-Decision problem is NP-complete for general graphs and
even for bipartite graphs with maximum degree 7. In Sect. 4 we prove that the
Min-UR-Matching problem for bipartite graphs is hard to approximate within
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a factor of n1−ε for any positive constant ε > 0 unless P = NP . In Sect. 5, we
present a linear-time algorithm to solve the Min-UR-Matching problem in chain
graphs, a subclass of bipartite graphs. Finally, Sect. 6 concludes the paper.

2 Preliminaries

Let G = (V,E) be a simple undirected graph with a vertex set V and an edge
set E. The vertex set and edge set of a graph G may also be denoted by V (G)
and E(G), respectively. For v ∈ V , the sets NG(v) = {u ∈ V |uv ∈ E} and
NG[v] = NG(v)∪{v} denote the open neighborhood and the closed neighborhood
of v in G, respectively. The degree of a vertex v ∈ V , denoted by dG(v), is
the number of neighbors of v, that is, dG(v) = |NG(v)|. The minimum degree
and maximum degree of a graph G is defined by δ(G) = minv∈V dG(v) and
Δ(G) = maxv∈V dG(v), respectively. A graph G is said to be complete if every
pair of distinct vertices of G are adjacent in G, and a complete graph on n
vertices is denoted by Kn. A graph G = (V,E) is said to be bipartite if V (G)
can be partitioned into two disjoint sets X and Y such that every edge of G
joins a vertex in X to another vertex in Y , and such a partition (X,Y ) of V is
called a bipartition. A bipartite graph with bipartition (X,Y ) of V is denoted
by G = (X,Y,E). A bipartite graph G = (X,Y,E) is complete if each vertex of
X is adjacent to all the vertices of Y . A complete bipartite graph G = (X,Y,E)
with |X| = p and |Y | = q is denoted by Kp,q. Let n and m denote the number of
vertices and number of edges of G, respectively. In this paper, we only consider
connected graphs with at least two vertices.

A matching M in G is said to be maximal if there is no other matching in G
which properly contains M . A maximum maximal matching (maximum match-
ing) is a maximal matching of maximum cardinality, and a minimum maximal
matching is a maximal matching of minimum cardinality. Let μ(G) denote the
cardinality of a maximum matching in G, and ρ(G) denote the cardinality of a
minimum maximal matching in G. Similarly, let μr(G) denote the cardinality of
maximum uniquely restricted matching in G, and μ′

r(G) denote the cardinality
of minimum maximal uniquely restricted matching in G. Note that the difference
between the cardinality of minimum maximal matching and the cardinality of
minimum maximal uniquely restricted matching can be arbitrary. For example,

ρ(Kn) = �n
2 � μ′

r(Kn) = 1
ρ(Kn,n) = n μ′

r(Kn,n) = 1.

3 NP-completeness Results

In this section we first prove that the Min-UR-Matching-Decision problem
is NP-complete for general graphs and then prove that it remains NP-complete
for bipartite graphs as well as for bipartite graphs with maximum degree at
most 7.
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Fig. 1. The subgraph Fi.

We prove the NP-completeness of the Min-UR-Matching-Decision prob-
lem for graphs by proposing a polynomial time reduction from 3-SAT, a well
known NP-complete problem.
3-SAT

Fig. 2. The subgraph Hj .

Instance: A collection C = {c1, c2, . . . , cm} of clauses over a set X = {x1, x2,
. . . , xp} of boolean variables such that |cj | = 3 and cj = lj,1 ∨ lj,2 ∨ lj,3, lj,i ∈
X ∪ X, for j = 1, 2, . . . ,m, i = 1, 2, 3, where X = {x : x ∈ X}.

Question: Is there a truth assignment for X that satisfies all the clauses in C?

Theorem 1. The Min-UR-Matching-Decision problem is NP-complete for
graphs.

Proof. Clearly, the Min-UR-Matching-Decision problem is in NP. To show the
hardness, we give a polynomial time reduction from 3-SAT. Let (C,X), where
C = {c1, c2, . . . , cm} and X = {x1, x2, . . . , xp} be an instance of 3-SAT. We
construct the graph G(C,X) in the following way:

– For each variable xi we construct the graph Fi as follows. First take a cycle
on six vertices, Ci = (xi, yi, xi, wi, vi, zi, xi). Take four more vertices ri, ni,
pi and qi and add the edges: rini, xiri, yini, rixi, pixi, pixi, piqi, qiyi. The
graph Fi is shown in Fig. 1.

– For each clause cj , we construct a graph Hj on two vertices cj and dj with
the unique edge cjdj , where cj is called the clause vertex. The graph Hj is
shown in Fig. 2.

– If q, r, s are the indices of literals in clause cj , then join dj with yq, yr and ys.
– clause vertex cj is connected to three literal vertices corresponding to literals

in clause cj .

The graph G(C,X) associated with the instance (C,X) of 3-SAT, where C =
{c1 = (x1 ∨ x2 ∨ x3)} and X = {x1, x2, x3} is shown in Fig. 3.
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Fig. 3. The graph G(C,X) for (C, X), where C = {c1 = (x1 ∨ x2 ∨ x3)} and X =
{x1, x2, x3}.

It is easy to see that G(C,X) can be constructed in polynomial time in m = |C|
and p = |X|. To complete the proof, it now suffices to show that the following
claim is true.

Claim. There exists a satisfying truth assignment for C if and only if G(C,X)

has a maximal uniquely restricted matching of size k = 2p.

Proof. First, suppose that there exists a truth assignment satisfying C. We con-
struct a maximal uniquely restricted matching M in G as follows. If xi is assigned
the value 1, then include the edges xiyi and xiwi in M ; otherwise include the
edges xiyi and zixi in M . Clearly M is a maximal uniquely restricted matching
of size 2p.

Conversely, suppose that M is a maximal uniquely restricted matching of
size 2p. Note that each maximal uniquely restricted matching in G contains at
least two edges of each subgraph Fi. Since |M | = 2p, we have |M ∩ Fi| = 2 for
each i, 1 ≤ i ≤ p and M contains no other edges of G.

Since cjdj /∈ M , either cj is adjacent to some xi and xiyi ∈ M or cj is adjacent
to some xi and xiyi ∈ M . The edge corresponding to a literal xi(respectively, xi)
is xiyi(respectively, xiyi). M cannot contain both xiyi and xiyi. We can define
a satisfying truth assignment to C setting a literal to be true if and only if the
corresponding edge is in M . This completes the proof of our claim.

Note that the constructed graph G(C,X) is clearly a bipartite graph and
(V1, V2) is a bipartition of its vertex set, where V1 and V2 are:

V1 = {xi, xi, ni, qi : i = 1, 2, . . . , p} ∪ {dj : j = 1, 2, . . . ,m}
V2 = {wi, zi, pi, ri, yi : i = 1, 2, . . . , p} ∪ {cj : j = 1, 2, . . . ,m}

Hence we have the following corollary.

Corollary 1. The Min-UR-Matching-Decision problem is NP-complete for
bipartite graphs.
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Also, note that the modified version of 3-SAT, 3-SAT in which every clause
contains at most three literals and every variable appears, negated or not, at most
three times, is also NP-complete. If we take an instance (C,X) of the modified
3-SAT and construct the graph G(C,X), then deg(x) ≤ 7 for all x ∈ V (G(C,X)).
So we have the following corollary to the above theorem.

Corollary 2. The Min-UR-Matching-Decision problem is also NP-complete for
bipartite graphs with maximum degree 7.

4 Hardness of Approximating Min-UR-Matching

In this section, we show that the Min-UR-Matching problem is hard to approx-
imate even for bipartite graphs.

First we construct a bipartite graph from an instance of 3-SAT according to
the following construction rule:

Construction Rule R: For given an instance (C,X) of 3-SAT with a set C
of m clauses and a set X of p variables, and for a given integer t ≥ 2, we can
construct a bipartite graph G(C,X),t on 10p+ tp(p+2m) vertices in the following
way:

We construct the graph G = G(C,X),t with vertex set C ′ ∪ D ∪ X ′ ∪ Y ∪ R ∪
R′∪P ∪P ′∪Z∪W ∪M ′, where X ′ = {xi, xi, 1 ≤ i ≤ p}, Z = {zi, zi : 1 ≤ i ≤ p},
R = {ri, 1 ≤ i ≤ p}, R′ = {ri, 1 ≤ i ≤ p},
P = {pi, 1 ≤ i ≤ p}, P ′ = {pi, 1 ≤ i ≤ p},
Y = {yi, 1 ≤ i ≤ p},
W = {wi, 1 ≤ i ≤ p},
C ′ = {cj,k, 1 ≤ j ≤ m, 1 ≤ k ≤ tp},
D = {dj,k, 1 ≤ j ≤ m, 1 ≤ k ≤ tp},
M ′ = {mi,k, 1 ≤ i ≤ p, 1 ≤ k ≤ tp}
are disjoint sets. The edges of G = G(C,X),t are such that:

– The set X ′ ∪ Y ∪ Z ∪ W induces p cycles Ci = (xi, yi, xi, zi, wi, zi, xi), each
of length 6.

– The set C ′ ∪ D induces a matching {cj,kdj,k, 1 ≤ j ≤ m, 1 ≤ k ≤ tp}.
– For each vertex yi, introduce tp edges yimi,k, k = 1, 2, . . . , tp between Y and

M in G.
– In addition, take the edges xipi, pipi, piyi, yiri, riri, rixi, for each i =

1, 2, . . . , p.
– For each clause cj = l1j ∨ l2j ∨ l3j , introduce three edges cj,kl1j , cj,kl2j , cj,kl3j ,

k = 1, 2, . . . , tp, between C ′ and X ′ in G.
– For each clause cj , introduce three edges dj,kyl, dj,kyq, dj,kyr, k = 1, 2, . . . , tp,

(where l, q and r are the indices of literals present in the clause cj) between
D and Y in G.

The graph G(C,X),t associated with the instance (C,X) of 3-SAT, where
C = {c1 = (x1 ∨ x2 ∨ x3)}, X = {x1, x2, x3} and t = 2 is shown in Fig. 4.
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Fig. 4. The graph G(C,X),t corresponding to the instance (C, X), where C = {c1 =
(x1 ∨ x2 ∨ x3)}, X = {x1, x2, x3} and t = 2.

Note that G(C,X),t is a bipartite graph as (C ′ ∪ Y ∪ R ∪ P ∪ Z,D ∪ X ′ ∪ P ′ ∪
R′ ∪ W ) is a bipartition of V (G(C,X),t).

Lemma 1. For each instance (C,X) of 3-SAT with a set C of m clauses and
a set X of p variables, and for each integer t ≥ 2, there exists a bipartite graph
G = G(C,X),t on 10p+ tp(p+2m) vertices such that the following property holds
for the minimum maximal uniquely restricted matching number:

μ′
r(G) =

{≤ 2p, if C is satisfiable
> tp, if C is not satisfiable

Proof. Let C = {c1, c2, . . . , cm} and X = {x1, x2, ....., xp} be an instance of 3-
SAT, and let t ≥ 2 be an integer. We construct the graph G = G(C,X),t according
to the Construction Rule R.

Now, by assuming that there exists a truth assignment satisfying C, we will
construct a uniquely restricted matching M consisting of 2p edges. So, μ′

r(G) ≤
2p in this case.

On the other hand, by assuming that C is not satisfiable. We will show that
μ′

r(G) > tp. The details of the proof have been deferred to the longer version of
the paper.

We are now in a position to present the main theorem.
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Theorem 2. The Min-UR-Matching problem for bipartite graphs cannot be
approximated within a factor of n1−ε for any constant ε > 0 unless P = NP ,
where n denotes the number of vertices in the input graph.

Proof. Give the constant ε > 0, we define k = max{2, �3 /ε�}. Given an instance
(C,X) of 3-SAT with |C| = m and |X| = p, we set t = 2pk−2. Now we construct
the graph G = G(C,X),t using the Construction Rule R.

Claim. Approximating μ′
r(G) for G = G(C,X),t within a factor of pk−2 is NP-

hard.

Proof. The proof of the claim have been deferred to the longer version of the
paper. �
Now we estimate t = 2pk−2 in terms of n = |V (G)| = 10p + 2pk−1(2m + p). We
may assume that p ≥ 16 and p ≥ m. Indeed, 3-SAT remains NP-complete under
these additional restrictions. We have n ≥ pk. Using the assumption p ≥ m, we
obtain

pk−2 =
n − 10p

2(p2 + 2mp)
≥ n − 10p

6p2
≥ n − 10p

6n2/k
≥ n1−2/k

16
≥ n1−3/k

According to the above claim, approximating μ′
r(G) within a factor of n1−ε is

NP-hard, since pk−2 ≥ n1−3/k ≥ n1−ε.

5 Chain Graphs

We have already seen that the Min-UR-Matching problem is even hard to approx-
imate for bipartite graphs. In this section, we show that the Min-UR-Matching
problem can be solved in linear time for chain graphs, a subclass of bipartite
graphs.

A bipartite graph G = (X,Y,E) is called a chain graph if the neighborhoods
of the vertices of X form a chain, that is, the vertices of X can be linearly
ordered, say x1, x2, . . . , xp, such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp). If
G = (X,Y,E) is a chain graph, then the neighborhoods of the vertices of Y
also form a chain [10]. An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y
is called a chain ordering if NG(x1) ⊆ NG(x2) ⊆ · · · ⊆ NG(xp) and NG(y1) ⊇
NG(y2) ⊇ · · · ⊇ NG(yq). It is well known that every chain graph admits a chain
ordering [4,10].

Theorem 3. Let G = (X,Y,E) be a connected chain graph and α =
(x1, x2, . . . , xp, y1, y2, . . . , yq) is chain ordering of X ∪Y . Then M = {xpy1} is a
maximal uniquely restricted matching in G. Furthermore, M is also a minimum
maximal uniquely restricted matching in G, and μ′

r(G) = 1.

Proof. The proof is easy and hence is omitted.
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Since, a chain ordering of a chain graph G = (X,Y,E) can be computed in
linear time [9], we have the following result as the corollary of the above theorem.

Corollary 3. A minimum maximal uniquely restricted matching of a chain
graph can be computed in O(n + m) time.

Note that for a chain graph G, ρ(G) = μ′
r(G) = 1, but μ(G) and μr(G) can

be arbitrary large. Consider a chain graph G∗ = (X,Y,E) with |X| = |Y | =
p, and a chain ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yp). Also assume that
|NG∗(x1)| = 1 and |NG∗(xi) \ NG∗(xi−1)| = 1 for each i, 2 ≤ i ≤ p. Then
μ(G∗) = μr(G∗) = p. Even the difference between μ(G) and μr(G) can also be
arbitrary large. Consider a complete bipartite graph Kn,n. Clearly Kn,n is also
a chain graph, and μ(Kn,n) = n, but μr(Kn,n) = 1.

6 Conclusion

In this paper, we initiated the study of the Min-UR-Matching problem. We
proved that the Min-UR-Matching-Decision problem is NP-complete for general
graphs, and it remains NP-complete even for bipartite graphs with maximum
degree 7. We have also shown that the Min-UR-Matching problem for bipartite
graphs is hard to approximate within a factor of n1−ε for any positive constant
ε > 0 unless P = NP . Finally, we proved that the Min-UR-Matching problem
is linear-time solvable for chain graphs, a subclass of bipartite graphs. It will be
an interesting problem to study the complexity status of the Min-UR-Matching
problem for other important subclasses of bipartite graphs, for example bipartite
permutations graphs, convex bipartite graphs, and chordal bipartite graphs.
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Abstract. A proper k-coloring of G = (V, E) is an assignment of k col-
ors to vertices of G such that no two adjacent vertices receive the same
color. A proper k-coloring of a graph G = (V, E) partitions V into inde-
pendent sets or color classes V1, V2, . . . , Vk. A vertex v ∈ Vi is a Grundy
vertex if it is adjacent to at least one vertex in each color class Vj for
every j < i. A coloring is a partial Grundy coloring if every color class
has at least one Grundy vertex in it and the partial Grundy number,
δΓ (G) of a graph G is the maximum number of colors used in a partial
Grundy coloring. Given a graph G and an integer k(1 ≤ k ≤ n), the
Partial Grundy Number Decision problem is to decide whether δΓ (G) ≥
k. It is known that the Partial Grundy Number Decision problem is NP-
complete for bipartite graphs. In this paper, we strengthen this result by
proving that this problem remains NP-complete even for perfect elim-
ination bipartite graphs, a proper subclass of bipartite graphs. On the
positive side, we propose a linear time algorithm to determine the partial
Grundy number of a chain graph, a proper subclass of perfect elimina-
tion bipartite graphs. It is also known that the Partial Grundy Number
Decision problem is NP-complete for (disconnected) chordal graphs. We
strengthen this result by proving that the Partial Grundy Number Deci-
sion problem remains NP-complete even for (connected) doubly chordal
graphs, a proper subclass of chordal graphs. On the positive side, we pro-
pose a linear time algorithm to determine the partial Grundy number of
split graphs, a well known subclass of chordal graphs.

Keywords: Partial Grundy coloring · Perfect elimination bipartite
graphs · NP-completeness · Polynomial time algorithms

1 Introduction

A proper k-coloring of G = (V,E) is an assignment of k colors to vertices of G
such that no two adjacent vertices receive the same color. A k-coloring of a graph
G = (V,E) partitions the vertex set V into k independent sets or color classes.
A vertex v ∈ Vi is a Grundy vertex if it is adjacent to at least one vertex in each
color class Vj for every j < i. A coloring is a partial Grundy coloring if every color
class has at least one Grundy vertex in it and the partial Grundy number, δΓ (G)
c© Springer International Publishing AG 2017
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of a graph G is the maximum number of colors used in a partial Grundy coloring.
A Grundy k-coloring is a k-coloring if every vertex is a Grundy vertex. The
Grundy number, denoted as Γ (G), is the largest integer k such that there exist a
Grundy k-coloring of G. Grundy coloring was introduced by Christen and Selkow
[3] in 1979. Recently, the concept of partial Grundy coloring was introduced by
Erdös et al. in 2003 [5]. Note that every Grundy coloring is a partial Grundy
coloring and so for any graph G, χ(G) ≤ Γ (G) ≤ δΓ (G) ≤ Δ(G) + 1. Recently
in 2015, Balakrishnan and Kavaskar [1] proved that the partial Grundy coloring
admits an interpolation theorem similar to the one for the Grundy coloring, that
is, for any graph G and any integer k, χ(G) ≤ k ≤ δΓ (G), there exists a partial
Grundy coloring of G using k colors.

The Partial Grundy Number Decision Problem is stated as follows.
Partial Grundy Number Decision Problem:
Instance: A graph G = (V,E) and a positive integer k
Question: Does G have a partial Grundy coloring with at least k colors?

From a computational point of view, Zhengnan Shi et al. [9] in 2005 showed
that the Partial Grundy Number Decision Problem is NP-complete for
chordal graphs and bipartite graphs. They have also given a linear time algorithm
to determine the partial Grundy number of trees [9]. Very recently, Effantin
et al. [4] proved that given a fixed integer k, it can be checked in polynomial
time whether δΓ (G) ≥ k. In this paper, we study the computational complex-
ity of Partial Grundy Number Decision Problem for some subclasses of
bipartite graphs and chordal graphs.

The contributions of the paper are summarized as below.

1. We prove that the Partial Grundy Number Decision Problem remains
NP-complete for perfect elimination bipartite graphs.

2. We propose a linear time algorithm to compute the Partial Grundy number
of chain graphs, a subclass of perfect elimination bipartite graphs.

3. We show that the Partial Grundy Number Decision Problem remains
NP-complete for doubly chordal graphs.

4. We show that partial Grundy number of a split graph can be computed in
linear time.

2 Preliminaries

All the graphs considered in this paper are simple and undirected. For a graph
G = (V,E), the sets N(v) = {u ∈ V (G)|uv ∈ E} and N [v] = N(v) ∪ {v} denote
the open neighborhood and closed neighborhood of a vertex v, respectively. For
a set S ⊆ V , the sets N(S) = ∪u∈SN(u) and N [S] = N(S) ∪ S denote the open
neighborhood and the closed neighborhood of S, respectively. The degree of a
vertex v is |N(v)| and is denoted by d(v). If d(v) = 1, then v is called a pendant
vertex. An edge incident on some pendant vertex is called a pendant edge. A set
I ⊆ V is called an independent set if no two vertices in I are adjacent in G. A
set C ⊆ V is called a clique if there is an edge between any pair of vertices in
S. The size of the clique S is |S|, that is the number of vertices in S. The clique
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number of G, denoted as ω(G), is the largest size of a clique present in G. For
S ⊆ V , let G[S] denote the subgraph induced by G on S. A graph G = (V,E)
is said to be bipartite if V (G) can be partitioned into two disjoint sets X and
Y such that every edge of G joins a vertex in X to another vertex in Y . Such a
partition (X,Y ) of V is called a bipartition. A bipartite graph with bipartition
(X,Y ) of V is denoted by G = (X,Y,E).

3 Partial Grundy Coloring in Perfect Elimination
Bipartite Graph

It is known that Partial Grundy Number Decision Problem is NP-
complete for bipartite graphs [9]. In this section, we prove that Partial Grundy
Number Decision Problem remains NP-complete even for perfect elimination
bipartite graphs, a proper subclass of bipartite graphs.

Let G = (X,Y,E) be a bipartite graph. An edge e = xy is called a
bisimplicial edge if G[N(x) ∪ N(y)] is a complete bipartite graph. Let σ =
(x1y1, x2y2, . . . , xkyk) be a sequence of pairwise nonadjacent edges of G. Denote
Sj = {x1, x2, . . . , xj} ∪ {y1, y2, . . . , yj} and let S0 = ∅. Then σ is said to be a
perfect edge elimination scheme for G if each edge xj+1yj+1 is bisimplicial in
G[(X ∪ Y ) \ Sj ] for j, 0 ≤ j ≤ k − 1 and G[(X ∪ Y ) \ Sk] has no edge. A graph
for which there exists a perfect edge elimination scheme is a perfect elimination
bipartite graph [8].

Theorem 1. It is NP-complete to decide whether δΓ (G) = Δ(G)+1 for perfect
elimination bipartite graphs.

Proof. Given a proper coloring f of G, it can be checked in polynomial time
whether f is partial Grundy (Δ(G)+1)-coloring of G. Hence Partial Grundy
Number Decision Problem is in NP. To show that it is NP-complete, we
present a reduction from the NP-complete problem, 3-colorability of a graph
with degree bounded by 4 [7], which asks whether a graph G of maximum degree
at most 4 can be properly colored using at most 3 colors. Let G = (V,E) be an
arbitrary graph of maximum degree bounded by 4 with n vertices and m edges.
We construct the graph G′ from G as follows:

1. Construct the vertex-edge incidence graph I(G) of G, that is, the bipartite
graph with vertex set V (I) = V (G) ∪ E(G) and edge set E(I) = {ve| where
edge e is incident on the vertex v in G}.

2. Add a vertex si and add an edge eisi for each i, 1 ≤ i ≤ m.
3. For vertex em, add the vertices u1, u2, . . . , um−1 and make them adjacent

with em.
4. For each vertex ei, 2 ≤ i ≤ m− 1, add the edge eiuj for all j, m+1− i ≤ j ≤

m − 1.
5. Add a vertex w and add an edge between w and each ei, where 1 ≤ i ≤ m.
6. Add a P4 = x1, y1, x2, y2 and make w adjacent with x1 and x2 and add two

new vertices, x3 and x4 and add the pendant edges wx3 and wx4.
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Fig. 1. An example of the Construction of G′ from a given graph G

7. Add a vertex z and make z adjacent with y1 and y2 and add (m+1) vertices
z1, z2, . . . , zm+1 and m + 1 edges zzi, 1 ≤ i ≤ m.

The construction of G′ from G is illustrated in Fig. 1. Note that the
constructed graph is a perfect elimination bipartite graph, and σ =
(s1e1, s2e2, . . . , smem, wx3, zz1, x1y1, x2y2) is a perfect edge elimination scheme
of G′.
Observe that,
For each i, 1 ≤ i ≤ m, d(ei) = i + 3.
For each i, 1 ≤ i ≤ m − 1, d(ui) = i.
d(z) = m + 3, d(w) = m + 4 and d(vj) ≤ 4 for all j, 1 ≤ j ≤ n.
Thus, Δ(G′) = m + 4 and vertex w is the only vertex of degree Δ(G′). �	
Claim. G is 3-colorable graph if and only if δΓ (G′) = Δ(G′) + 1 = m + 5.

Proof. The proof of the claim will appear in the journal version of the paper.
So, it is NP-complete to decide whether δΓ (G) = Δ(G) + 1 for perfect elim-

ination bipartite graphs NP-complete.

The following corollary follows immediately.

Corollary 1. Partial Grundy Number Decision Problem is NP-complete
even for perfect elimination bipartite graphs.
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4 Grundy Coloring in Chain Graph

A bipartite graph G = (X,Y,E) with |X| = n1 and |Y | = n2, is a chain graph
if the neighborhoods of the vertices of X form a chain, that is, the vertices
of X can be linearly ordered, say x1, x2, . . . , xn1 such that N(x1) ⊆ N(x2) ⊆
· · · ⊆ N(xn1). If G = (X,Y,E) is a chain graph, then the neighborhoods of the
vertices of Y also form a chain. An ordering σ = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2)
of X ∪ Y is called a chain ordering if N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1) and
N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yn2). It is known that every chain graph admits a
chain ordering. A chain ordering of a chain graph can be computed in linear
time [10].

Define a relation R on X by xiRxj if and only if N(xi) = N(xj). Note
that R is an equivalence relation on X and hence partitions X into disjoint
equivalence classes, say X1,X2, . . . , Xk1 , k1 ≥ 1. Therefore, a, b ∈ Xi implies
N(a) = N(b). Note that a, b ∈ X implies either N(a) ⊆ N(b) or N(b) ⊆ N(a).
Hence d(a) = d(b) if and only if aRb and hence a, b ∈ Xi for some i. We
call X1,X2, . . . , Xk1 , k1 ≥ 1, the distinct degree classes of X. Similarly, let
Y1, Y2, . . . , Yk2 be the distinct degree classes of Y such that y1 ∈ Y1 and yn2 ∈ Yk2 .
The number of distinct degree classes in a partite set X (or Y ) is equal to the
number of vertices in X (or in Y ) of distinct degrees.

Proposition 1. Let G = (X,Y,E) be a chain graph. Then X and Y have the
same number of distinct degree classes.

Proof. We prove that X and Y have the same number of distinct degree classes
by induction on the number of distinct degree classes of X. Let G = (X,Y,E)
be a chain graph such that X has exactly one degree class. So d(a) = d(b) for
every a, b ∈ X. So, G is a complete bipartite graph and hence the number of
distinct degree classes of Y is also 1. Assume that the proposition is true for
all chain graphs G = (X,Y,E) with the number of distinct degree classes of X
equals to k, k > 1. Let G = (X,Y,E) be a chain graph such that X has k + 1
distinct degree classes. Let Xi, 1 ≤ i ≤ k + 1 and Yi, 1 ≤ i ≤ k2 be the distinct
degree classes of X and Y , respectively such that y1 ∈ Y1 and yn2 ∈ Yk2 . Let
G′ = G\X1. Note that G′ = (X\X1, Y, E′) is a chain graph and Xi, 2 ≤ i ≤ k+1
and Y ′

i , 2 ≤ i ≤ k2 are the distinct degree classes of X \ X1 and Y , respectively,
where Y ′

2 = Y1∪Y2 and Y ′
j = Yj , 3 ≤ j ≤ k2. By induction hypothesis, k = k2−1.

So, k + 1 = k2. Hence, the number of distinct degree classes of X is equal to
the number of distinct degree classes of Y . Hence, by induction principle, the
proposition is true.

Proposition 2. Let G = (X,Y,E) be a chain graph and C be a partial Grundy
k-coloring of G. If xi, xj ∈ X with i < j and yk, yl ∈ Y with k < l, are the
Grundy vertices then C(xi) ≤ C(xj) and C(yk) ≥ C(yl).

Proof. Let us assume that i < j and C(xi) > C(xj). Since xi is a Grundy
vertex, xi has a neighbor of color c′ such that c′ = C(xj)<C(xi). Since i < j,
by the chain property in X, N(xi) ⊆ N(xj). So xj also has a neighbor of color
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c′ (c′ = C(xj)), which is a contradiction to the fact that C is a proper coloring.
Hence, C(xi) ≤ C(xj). Similarly, because of the chain property in Y , k < l
implies N(yk) ⊇ N(yl) and hence C(yk) ≥ C(yl).

Lemma 1. Let G = (X,Y,E) be a chain graph and C be a partial Grundy k-
coloring of G. Then there exists a partial Grundy k-coloring C ′ of G such that
every Grundy vertex of color greater than 1 with respect to C ′ belongs to the
partite set X.

Proof. The proof of the lemma will appear in the journal version of the paper.�	
Theorem 2. Let G = (X,Y,E) be a chain graph and k be the number of distinct
degree classes in X(or Y ). Then δΓ (G) = k + 1.

Proof. Let us assume that δΓ (G) ≥ k + 2. Then by Lemma 1, there exists a
partial Grundy δΓ (G)-coloring C such that all the Grundy vertices of color
greater than 1 belongs to same partite set, say X. Since there are at least
k + 1 Grundy vertices in X and X has k distinct degree classes, by Pigeon hole
principle, there exists a distinct degree class Xi of X, 1 ≤ i ≤ k such that there
are two Grundy vertices of different colors xj , xl ∈ Xi where 1 ≤ j < l ≤ n1.
Without loss of generality C(xj)<C(xl). There exists a vertex y ∈ N(xl) such
that C(y) = C(xj), since xl is a Grundy vertex. But xj and xl have same neigh-
borhood as they belong to same distinct degree class, that is, yxj ∈ E(G). But
C(y) = C(xj), which is a contradiction to the fact that C is a proper coloring.
Hence δΓ (G) ≤ k + 1.

Next, we will show that δΓ (G) ≥ k + 1. Let Xi, 1 ≤ i ≤ k and Yi, 1 ≤ i ≤ k
be the distinct degree classes of X and Y , respectively such that y1 ∈ Y1 and
yn2 ∈ Yk. Define a coloring C ′ on X ∪Y such that for every x ∈ Xi, C ′(x) = i+1
and for every y ∈ Yi, C ′(y) = i for each 1 ≤ i ≤ k. Figure 2 illustrates the coloring
C ′ of the chain graph G.

2 3 3 4 4 5

4 43 321

X1 X2 X4X3

Y2Y1 Y3 Y4

Fig. 2. An example of a chain graph G and the optimal partial Grundy coloring C′

We claim that the coloring C ′ is a partial Grundy (k + 1)-coloring. The
coloring C ′ is a proper coloring, since N(Xi) ⊆ Y1 ∪ Y2 ∪ · · · ,∪Yi for each
1 ≤ i ≤ k and clearly C ′ uses (k+1) colors. We can easily verify that the vertices
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belongs to Xi are the Grundy vertex of color (i + 1) for all 1 ≤ i ≤ k and every
vertex of color 1 is a Grundy vertex vacuously. Therefore, C ′ is a partial Grundy
(k + 1)-coloring. This implies that δΓ (G) ≥ k + 1. Hence δΓ (G) = k + 1. �	

All the distinct degree classes of X and Y of a chain graph G = (X,Y,E)
can be computed in O(n+m) time. So, an optimal partial Grundy coloring of a
chain graph can be computed in O(n + m) time. In view of the above, we have
the following result.

Corollary 2. The optimal partial Grundy coloring of a chain graph can be com-
puted in O(n + m) time.

5 Partial Grundy Coloring in Subclasses of Chordal
Graphs

A graph G is said to be a chordal graph if every cycle in G of length at least four
has a chord, that is, an edge joining two non-consecutive vertices of the cycle. A
graph G = (V,E) is a split graph if V can be partitioned into two sets I and C
such that C is a clique and I is an independent set. Note that a split graph is a
chordal graph. A vertex v ∈ V (G) is a simplicial vertex of G if NG[v] is a clique
of G. An ordering α = (v1, v2, . . . , vn) is a perfect elimination ordering (PEO)
of G if vi is a simplicial vertex of Gi = G[{vi, vi+1, . . . , vn}] for all i, 1 ≤ i ≤ n.
It is characterized that a graph G is chordal if and only if it has a PEO [6]. A
vertex u ∈ NG[v] is a maximum neighbor of v in G if NG[w] ⊆ NG[u] for all
w ∈ NG[v]. A vertex v in G is called doubly simplicial if it is simplicial and has
a maximum neighbor in G. An ordering α = {v1, v2, . . . , vn} of vertices of G is
a doubly perfect elimination ordering (DPEO) if vi is doubly simplicial vertex
in the induced subgraph G[{vi, vi+1, . . . , vn}] for each i, 1 ≤ i ≤ n. A graph is
doubly chordal if it admits a doubly perfect elimination ordering (DPEO) [2].

The Partial Grundy Number Decision Problem is known to be NP-
complete for (disconnected)chordal graphs [9]. In this section, we strengthen this
result by showing that the Partial Grundy Number Decision Problem
remains NP-complete for doubly chordal graphs, a proper subclass of chordal
graphs. We also propose a polynomial time algorithm to find an optimal Grundy
coloring of split graphs.

Theorem 3. The Partial Grundy Number Decision Problem is NP-
complete for doubly chordal graphs.

Proof. Given a function f : V → {1, 2, 3, . . . , k}, it can be checked in polynomial
time whether f is a partial Grundy coloring of a given doubly chordal graph G.
So, Partial Grundy Number Decision Problem for doubly chordal graph
is in NP. Next we produce a polynomial reduction from the Partial Grundy
Number Decision Problem for chordal graphs, which is known to be NP-
complete [9], to the Partial Grundy Number Decision Problem for doubly
chordal graphs.
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Given a chordal graph G = (V,E) and an integer k, we construct a doubly
chordal graph G′ as follows. Take a new vertex x and add the edges xv for all
v ∈ V (G). Formally, G′ = (V ′, E′), where V ′ = V ∪ {x}, x /∈ V , and E′ =
E ∪ {xv|v ∈ V }. Since G is chordal, there exists a PEO α = (v1, v2, . . . , vn) of
G. Now β = (v1, v2, . . . , vn, x) is a DPEO of G′. Also f is a partial Grundy k-
coloring of G if and only f ′, defined by f ′(v) = f(v), v ∈ V (G) and f ′(x) = k+1,
is a Grundy (k + 1)-coloring of G′.

Hence, Partial Grundy Number Decision Problem remains NP-
complete for doubly chordal graphs. �	
Next, we propose a O(n + m) time algorithm for computing the partial Grundy
number of a split graph.

Theorem 4. For a split graph G with clique number ω(G), ω(G) ≤ δΓ (G) ≤
ω(G) + 1.

Proof. Let (R,S) be the partition of V (G) such that R is an independent set and
S is a clique of size ω(G). If possible, let us suppose that δΓ (G) ≥ ω(G)+2. Let
f be an optimal partial Grundy coloring of G. Since |S| = ω(G) and δΓ (G) ≥
ω(G) + 2, there exists at least two different colored Grundy vertices, say vc and
vc′ with color c and c′ respectively, where 1 ≤ c < c′ ≤ δΓ (G), in R such that
these colors are not assigned to any vertex in S. We know that, every vertex in R
has neighbors in S only and color c is not assigned to any vertex in S. Therefore,
vc′ does not have any neighbor with color c, contradicting the fact that vc′ is
a Grundy vertex. Hence, δΓ (G) ≤ ω(G) + 1. We know that, ω(G) ≤ χ(G) and
χ(G) ≤ δΓ (G). Hence, ω(G) ≤ δΓ (G) ≤ ω(G) + 1. �	
Lemma 2. Let (R,S) be a partition of the vertex set of the split graph G such
that S is a clique of size ω(G) and R is an independent set. Then δΓ (G) = ω(G)
if and only if there exists a vertex x ∈ S such that x is not adjacent to any vertex
in R.

Proof. Necessity: Given that δΓ (G) = ω(G). We have to show that there exist
a vertex x ∈ S such that x is not adjacent to any vertex in R. If possible, every
vertex x in S has a neighbor in R. Let S = {x1, x2, . . . , xω(G)}. Consider the
coloring f : V (G) → {1, 2, . . . , ω(G) + 1} such that f(x) = 1 for x ∈ R and
f(xi) = i + 1, 1 ≤ i ≤ ω(G). One can easily verify that this coloring f is a
partial Grundy (ω(G)+1)-coloring of G. This is a contradiction to the fact that
δΓ (G) = ω(G). Hence, there exists a vertex x ∈ S such that x is not adjacent
to any vertex in R.

Sufficiency: Supposed that there exists a vertex x ∈ S such that x is not
adjacent to any vertex in R. We will show that δΓ (G) = ω(G). Let f be an
optimal partial Grundy coloring of G. We have to show that the coloring f uses
ω(G) colors. This will imply that δΓ (G) = ω(G). If possible, suppose that the
coloring f uses ω(G) + 1 colors. Let v be a Grundy vertex of color ω(G) + 1. So
v must have neighbors with colors 1 through ω(G). Now we have the following
two cases to consider.
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Case I: v ∈ R.
Since v ∈ R, v has its neighbors in S only. Since |S| = ω, v must be adjacent

to every vertex in S. This contradicts the fact that there exists a vertex x ∈ S
such that x is not adjacent to any vertex in R. So this case is not possible.

Case II: v ∈ S.
Since |S| = ω(G) and f(v) = ω(G) + 1, S does not contain a neighbor u of v

of some color c, 1 ≤ c ≤ ω(G). Since v is adjacent to every vertex of S, S does not
contain a vertex of color c. Hence S does not contain a Grundy vertex of color
c. Let i be the largest color such that 1 ≤ i ≤ ω(G)+1 and S does not contain a
Grundy vertex of color i. So S contains Grundy vertex of color j for each j, i+1 ≤
j ≤ ω(G)+1. Let w ∈ R be a Grundy vertex of color i. So, w has neighbors, say,
y1, y2, . . . , yi−1 in S such that f(yj) = j, 1 ≤ j ≤ i−1. Let zj be a Grundy vertex
in S of color j, i+1 ≤ j ≤ ω(G). Now {v, zi+1, zi+2, . . . , zω(G), y1, y2, . . . , yi−1} ⊆
S. Since |{v, zi+1, zi+2, . . . , zω(G), y1, y2, . . . , yi−1}| = |S| = ω(G), {v, zi+1, zi+2,
. . . , zω(G), y1, y2, . . . ,yi−1} = S. Since, zj is a Grundy vertex of color j, i + 1 ≤
j ≤ ω(G), there exists a vertex uj ∈ R of color i which is adjacent to zj for each
j, i + 1 ≤ j ≤ ω(G). Also v has a neighbor u in R and yj has the neighbor w in
R. So, each vertex in S has a neighbor in R. This is a contradiction to the fact
that there is a vertex in S which is not adjacent to any vertex in R. So this case
is also not possible. Hence, the sufficiency is also true. �	

If each vertex in S has a neighbor in R, then the coloring f given in the proof
of the necessity part of Lemma 2 is a partial Grundy (ω(G)+1)-coloring of G and
this is an optimal partial Grundy coloring of G by Theorem 4. If there is a vertex
which is not adjacent to any vertex in R, then by Theorem 4, δΓ (G) = ω(G),
and f1 : V → {1, 2, . . . , ω(G)} defined by f1(xi) = i, 1 ≤ i ≤ ω(G) and f1(x) =
f1(xj), where S = {x1, x2, . . . , xω(G)}, x ∈ R and xj ∈ S has no neighbors in R
is an optimal Grundy ω(G)-coloring of G.

In view of this, we have the following result.

Theorem 5. The optimal partial Grundy coloring of a split graph can be com-
puted in O(n + m) time.

6 Conclusion

The Partial Grundy Number Decision problem is known to be NP-complete for
bipartite graphs. In this paper, we strengthened this result by proving that this
problem remains NP-complete even for perfect elimination bipartite graphs, a
proper subclass of bipartite graphs. On the positive side, we proposed a linear
time algorithm to determine the partial Grundy number of a chain graph, a
proper subclass of perfect elimination bipartite graphs. It is also known that the
Partial Grundy Number Decision problem is NP-complete for (disconnected)
chordal graphs. We strengthened this result by proving that the Partial Grundy
Number Decision problem remains NP-complete even for (connected) doubly
chordal graphs, a proper subclass of chordal graphs. On the positive side, we
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proposed a linear time algorithm to determine the partial Grundy number of
split graphs, a well known subclass of chordal graphs. It would be interesting to
investigate the complexity of partial Grundy number problem on other important
subclasses of bipartite graphs and chordal graphs.
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Abstract. A graph G is a prime distance graph if its vertices can be
labeled with distinct integers in such a way that for any two adjacent
vertices, the absolute difference of their labels is a prime number. It
is known that cycles and bipartite graphs are prime distance graphs.
In this paper we derive certain general results concerning prime distance
labeling. We also investigate prime distance labeling of some cycle related
graphs in the context of some graph operations, namely, power, fusion,
duplication and vertex switching in cycle Cn.

1 Introduction

All graphs considered in this paper are simple, connected and undirected. The
distance graph, first introduced by Eggleton et al. [3–5], is motivated by the well-
known Hadwiger-Nelson plane coloring problem which asks for the minimum
number of colors needed to color all points of the plane such that points at
unit distance receive distinct colors. Motivated by the plane coloring problem,
one can consider the analogue to the one-dimensional case by investigating the
chromatic numbers of distance graphs on the real line R and the integer set Z.

If D is a subset of the set of positive integers, then the integer distance
graph G(Z,D) is defined to be the graph with vertex set Z, where two vertices
u and v are adjacent if and only if |u − v| ∈ D. A particularly interesting
problem is determining the chromatic number of G(Z,D) for a given set D.
The chromatic number of integer distance graphs, denoted χ(G(Z,D)) has been
studied extensively for different families of distance sets D. The prime distance
graph Z(P ) is the distance graph with D = P , the set of all primes. Research
in prime distance graphs has since focused on the chromatic number of Z(D)
where D is a non-empty proper subset of P . Note that these graphs are all
infinite (non-induced) subgraphs of Z(P ).

In this paper we consider finite subgraphs of Z(P ). In [7] Laison et al. have
defined a graph G to be a prime distance graph if there exists a one-to-one
labeling of its vertices given by L : V (G) → Z such that for any two adjacent
vertices u and v, the integer |L(u) − L(v)| is a prime and L is called a prime
distance labeling of G.

We need the following theorem.

Theorem 1 [7]. Every cycle is a prime distance graph.
c© Springer International Publishing AG 2017
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2 Main Results

If H is a subgraph of G and H is not a prime distance graph, then G is not a
prime distance graph. In particular the square of any non-prime distance graph
is again a non-prime distance graph.

Definition 1. Let G = (V,E) be a graph and let v ∈ V . Let H be the graph
obtained from G by adding two vertices v′, v′′ and the edges v′v′′, v′v and v′′v.
Then H is called the graph obtained by duplication of v.

Conjecture 1. (The Twin Prime Conjecture) [2] There are infinitely many pairs
of primes that differ by 2.

Theorem 2. The graph obtained by duplication of every vertex by an edge in any
prime distance graph H is a prime distance graph if the Twin prime conjecture
is true.

Proof. Let V (H) = {v1, v2, ..., vn}. Let f be a prime distance labeling and let
f(vj) = max

1≤i≤n
f(vi). Let G be the graph obtained by duplication of every vertex

vk by an edge v′
kv

′′
k for k = 1, 2, ..., n. Then G is a graph with 3n vertices and

having n vertex disjoint cycles each of length three. Now we define a labeling
f ′ : V (G) → Z as follows: Let f ′(vi) = f(vi) for all i. Let p1 and p′

1 be any
twin primes sufficiently larger than f(vj). Let f ′(v′

j) = f(vj) + p1 and f ′(v′′
j ) =

f(vj) + p′
1. Next let p2, p

′
2 be any twin primes sufficiently larger than f ′(v′′

j ).
Now let f(vl) = max

1≤i≤n,i �=j
f(vi). Let f ′(v′

l) = f(vl) + p2 and f ′(v′′
l ) = f(vl) + p′

2.

Continuing this process for all the vertices of G, we obtain prime distance labeling
of G as there are infinitely many pairs of primes that differ by 2 by the Twin
prime conjecture.

Definition 2. Let G = (V,E) be a graph and let S ⊆ V . A vertex-switching Gs

of G is obtained by deleting from G all edges of G with exactly one end in S,
and adding to G all edges of the complement of G with exactly one end in S.

It has been proved in [8] that the fan graph Fn for n ≥ 12 admits no prime
distance labeling. Now for n ≥ 14, the graph obtained by switching a vertex in
Cn contains F12 as a subgraph and hence it is not a prime distance graph.

Fusing of two distinct vertices u and v in a graph G is the process of replacing
u and v by a new vertex w such that N(w) = N(u) ∪ N(v).

Theorem 3. The graph obtained by fusing any two vertices vi and vj , where
d(vi, vj) ≥ 3, of Cn is a prime distance graph.

Proof. Let Cn = {v1, v2, ..., vn, v1}. Without loss of generality, let the vertex v1
be fused with vm where m ≤ �n

2 	. We denote the resultant graph as G. Then
|V (G)| = n−1 and G is a connected graph which includes two edge disjoint cycles
Cm−1 and Cn−m+1. It follows from Theorem 1 that Cm−1 and Cn−m+1 are prime
distance graphs. Let f ′ be a prime distance labeling of Cm−1 with f ′(v1) = 0
and let f ′′ be a prime distance labeling of Cn−m+1 with f ′′(vm) = 0. Now the
labeling f : V (G) → Z defined by f(Cm−1) = f ′(Cm−1) and f(Cn−m+1) =
−f ′′(Cn−m+1) is a prime distance labeling of G.
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Definition 3. Let G = (V,E) be a graph and let v ∈ V . The duplication of
v gives the graph G1 obtained from G by adding a new vertex v1 such that
N(v1) = N(v).

Conjecture 2. Goldbach’s Conjecture [1,6] Every even number greater than 2
is the sum of two primes.

Theorem 4. Let Cn = {u1, u2, ..., un, u1} be a cycle with n ≥ 6. Let G be the
graph obtained from Cn by duplicating un. Then G admits a prime distance
labeling if Goldbach’s conjecture is true.

Proof. Let V (G) = V (Cn) ∪ {u′
n} where N(u′

n) = N(un) = {u1, un−1}. Define
f : V (G) → Z+ as follows: f(ui) = 2(i − 1) for 1 ≤ i ≤ n − 1. If Goldbach’s
conjecture is true, then f(un−1) can be expressed as the sum of two primes. Let
f(un−1) = p1 + p2. Now let f(un) = p1 and f(u′

n) = p2. Then f is a prime
distance labeling of G.

Definition 4. The graph G obtained from m copies of the cycle Cn by joining
a vertex in the ith copy of Cn to a vertex in the (i + 1)th copy of Cn where
1 ≤ i ≤ m − 1, is called the joint sum of m copies of Cn.

Theorem 5 (Vinogradov′s Theorem). Every sufficiently large odd number
is the sum of three primes.

Theorem 6. The joint sum G of any number of copies of Cn admits a prime
distance labeling.

Proof. Let Cn = (v1, v2, . . . , vn, v1). Let f be a prime distance labeling of Cn,
which exists by Theorem 1. Let p be a prime number large enough such that
p+2n−8 can be written as the sum of three primes, say p+2n−8 = p1+p2+p3.
By Theorem 5 such a prime exists. We also assume that p > 4n and p1 ≥ p2 ≥ p3,
so that p1 > 2n−8. Then Cn can be labelled with labels 0, 2, . . . , 2n−8, p+2n−
8, p1+p2, and p1 in cyclic order. Let the joint sum of m copies of Cn be G so that
V (G) = {vi

j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(G) = mE(Cn) ∪ {vi
1v

i+1
1 : 1 ≤ i ≤

m−1}. Define a one-to-one labeling f∗ : V (G) → Z as follows. f∗(v1
j ) = f(vj) for

1 ≤ j ≤ n. Next let f∗(v1
k) = max

1≤i≤n
{f∗(v1

i )} and let p∗
1 be any prime larger than

f∗(v1
k). Let f∗(v2

j ) = f∗(v1
j ) + p∗

1 for 1 ≤ j ≤ n. Proceedings in this manner, let
f∗(vm−1

k ) = max
1≤i≤n

{f∗(vm−1
i )} and let p∗

m−1 be any prime larger than f∗(vm−1
k ).

Let f∗(vm
j ) = f∗(vm−1

j ) + p∗
m−1 for 1 ≤ j ≤ n. It is clear that f∗ is a prime

distance labeling of G.
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Abstract. A dominator coloring C of a graph G is a proper coloring of G
such that closed neighborhood of each vertex of G contains a color class
of C. The minimum number of colors required for a dominator coloring
of G is called the dominator chromatic number of G, denoted by χd(G).
In this paper we obtain the exact value of χd for some classes of graphs,
such as Km × Kn, Km(n) × Kr(s), (Kr ◦ K1) × Ks, Kn�Qr+2, where
×, � and ◦ denote the tensor product, Cartesian product and corona of
graphs, respectively, and Km(n) denotes the complete m-partite graph
in which each partite set has n vertices. Also we present an upper bound
for χd(G × Km) in terms of χd(G) and γt(G), where γt(G) is the total
domination number of G.

Keywords: Dominator coloring · Tensor product · Cartesian product ·
Corona of a graph

Mathematics Subject Classification (2000): 05C15, 05C69.

1 Introduction

All graphs G = (V,E) considered here are finite, undirected simple graphs.
The open neighborhood of v and the closed neighborhood of v are defined by
N(v) = {u ∈ V : uv ∈ E} and N [v] = N(v) ∪ {v}, respectively. For S ⊆ V (G),
the open and closed neighborhoods of S are defined by N(S) =

⋃
v∈S N(v) and

N [S] =
⋃

v∈S N [v].
A subset S of V is called a dominating set (resp. total dominating set) of G

if every vertex in V −S (resp. in V ) is adjacent to a vertex in S. The domination
number, γ(G), (resp. total domination number γt(G)) is the minimum cardinality
of a dominating set (resp. total dominating set) of G. The minimum cardinality
of a dominating set (resp. total dominating set) is called a γ-set (resp. γt-set) of
G. The corona G ◦ K1 is the graph obtained from the graph G by adding a new
vertex v′ to each vertex v of G and make v adjacent to v′.

A proper vertex coloring of a graph G is an assignment of colors to the
vertices of G such that no two adjacent vertices receive the same color. The
chromatic number, χ(G), is the minimum number of colors required for a proper
coloring of G. Gera [6] introduced the concept of dominator coloring of a graph.
c© Springer International Publishing AG 2017
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A dominator coloring of a graph G is a proper coloring C = {C1, C2, . . . , Ck} of
G in which each vertex of G dominates a color class Ci in C, that is, for each
v ∈ V (G), there exists an i, such that Ci ⊂ N [v]. The minimum number of
colors required for a dominator coloring of G is called the dominator chromatic
number of G and its denoted by χd(G). If Ci ⊂ N [v], then we say that the vertex
v dominates the color class Ci or the color class Ci is dominated by the vertex
v. A dominator coloring of G using χd(G) colors is called a χd-coloring of G.

If {C1, C2, . . . , Cχd
} is a χd-coloring of G and if vi ∈ Ci, then S =

{v1, v2, . . . , vχd
} is a dominating set of G. Also if S is a γ-set of G, then

C′ ∪ {{v} : v ∈ S}, where C′ is a proper coloring of G − S, gives a domina-
tor coloring of G. This observation leads to the following bounds for χd(G),
see [6]; max {χ(G), γ(G)} ≤ χd(G) ≤ χ(G) + γ(G). Consequently, χd(G) ∈
{γ(G), γ(G) + 1, γ(G) + 2} for a bipartite graph G. Further, the class of bipar-
tite graphs for which χd(G) = γ(G) has been completely characterized in [7]. In
general, the decision problem corresponding to the dominator coloring is proved
to be NP-complete. Even if we consider the split graph, it is known to be NP-
complete; see [1]. However, polynomial time algorithm exists for a graphs with
χd(G) = 3; see [5]. Also for a P4-free graph G, polynomial time algorithm exists
to find χd(G); see [5]. For related results see [2,3,8–10]. For graph theoretic
terminology we refer to Chartrand and Lesniak [4].

Let G and H be two graphs. We define two fundamental products, namely,
Cartesian product and tensor product of graphs G and H, denoted by G�H and
G × H, respectively. These graphs have their vertex sets as V (G) × V (H) and
their edge sets are defined as follows:

E(G�H) = {(g, h)(g′, h′)| g = g′ and hh′ ∈ E(H) or, gg′ ∈ E(G) and h =
h′}, and E(G × H) = {(g, h)(g′, h′)| gg′ ∈ E(G) and hh′ ∈ E(H)}. Let
{u1, u2, . . . , um} and {v1, v2, . . . , vn} be the vertex sets of G and H respectively.
We call ui × V (H) (resp. V (G)× vj) as the ith-row (resp. jth-column) of G ∗ H,
where ∗ represents the tensor product or the Cartesian product; see Fig. 1.

Fig. 1. Cartesian product and tensor product of the graphs C3 and P4 are shown in
the figure. Here La denotes the vertex set a × V (P4) and Cu denotes the vertex set
V (C3) × u.
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2 Dominator Chromatic Number of the Tensor Product
of Graphs

In this section, we obtain the exact value of χd for tensor product graphs, such
as Km × Kn, Km(n) × Kr(s), (Kr ◦ K1) × Ks. One can observe that the graph
Km ×Kn is isomorphic to the complement of the graph Km�Kn. The following
theorem gives an upper bound for dominator chromatic number of G × Km in
terms of the chromatic number and the total domination number of G.

Theorem 1. For a graph G, χd(G × Km) ≤ 2γt(G) + χ(G − S), where S is a
γt-set of G such that χ(G − S) is minimum among all γt-sets S of G.

Proof. Let V (G) = {u1, u2, . . . , un} and V (Km) = {v1, v2, . . . , vm}. Then V (G×
Km) = {(ui, vj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Clearly, the subset ui × V (Km), 1 ≤
i ≤ n, which we call a row of G×Km, is an independent set of G×Km. Let S =
{x1, x2, . . . , xr} be a γt-set of G as in the statement of the theorem. Let χ(G −
S) = k and let {V1, V2, . . . , Vk} be a χ-coloring of G−S. As Vi is an independent
set of G−S, each subset Vi×V (Km), 1 ≤ i ≤ k, is an independent set of G×Km.
Now we present a dominator coloring C of G × Km using 2γt(G) + χ(G − S)
colors as follows: let C = {A1, A2, . . . , Ak, B1, B2, . . . , Br, C1, C2, . . . , Cr}, where
Ai = {Vi × V (Km)}, 1 ≤ i ≤ k, Bj = {(xj , v1)}, 1 ≤ j ≤ r and, Cl = {(xl ×
V (Km)) \ (xl, v1)}, 1 ≤ l ≤ r. Clearly C is a proper coloring of G × Km.

Next we claim that each vertex in V (G×Km) dominates a color class in C. Let
y ∈ V (G − S). As S is a total dominating of G, there exists an xi ∈ S such that
yxi ∈ E(G). Clearly, (y, v1) dominates the color class {(xi × V (Km)) \ (xi, v1)}
and each of the vertices in (y × V (Km)) \ (y, v1) dominates the color class
{(xi, v1)}. Hence each vertex in y × V (Km) dominates a color class of C. Let
xj ∈ S, for some j. As S is a total dominating set of G, there exists an xk, k 	= j,
in S such that xjxk ∈ E(G). As above, each vertex in xj × V (Km) dominates
either the color class {(xk, v1)} or {(xk × V (Km)) \ (xk, v1)} in C. Hence C is a
dominator coloring of G × Km using 2r + k = 2γt(G) + χ(G − S) colors. Thus
χd(G × Km) ≤ 2γt(G) + χ(G − S).

As χ(G − S) ≤ χ(G), Theorem1 yields the following corollary giving an
upper bound for χd(G × Km) in terms of χ(G) and γt(G) :

Corollary 1. For any graph G, χd(G × Km) ≤ 2γt(G) + χ(G).

Sharpness of the bound in Theorem1 can be seen from the following theorem:

Theorem 2. For m,n ≥ 3, χd(Km × Kn) = min {m + 2, n + 2}.

Proof. Let G = Km × Kn. Let V (Km) = {u1, u2, . . . , um} and V (Kn) =
{v1, v2, . . . , vn}. Then V (Km × Kn) = {(ui, vj) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. As
the tensor product is commutative, without loss of generality we assume that
m ≤ n. It is enough to show that χd(G) = m+2. The upper bound follows from
Theorem 1, since γt(Km) = 2 and, χ(Km − S) = m − 2, where S is any γt-set
of Km.
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Next we shall prove that χd(G) ≥ m + 2. Suppose that χd(G) = m + 1. Let
C be a χd-coloring of G using m + 1 colors. Observe that any color class of C
is a subset of a row or a column, since any two vertices which do not lie on a
common row or column are adjacent in G.

We claim that there exists a color class Ci ∈ C such that Ci is a proper subset
of either a row or a column of G. Suppose not, then every color class Ci is either
a row or a column of G, as two vertices which are not lie on a common row or a
column are adjacent. Since each vertex of G can be adjacent to at most m − 1
vertices of each row and at most n − 1 vertices of each column of G, no vertex
in G dominates a color class of C, which is a contradiction. This completes the
proof of the claim.

Without loss of generality, we assume that there exists a color class, say,
Cm+1, which is a proper subset of the first column of G, if necessary rela-
bel the vertices of Kn. Clearly, Cm+1 (see Fig. 2) can be assumed to be
{(u1, v1), (u2, v1), . . . , (ui, v1)} where i < m, if necessary relabel the vertices
of Km.

We observe that S = {(ui, vm+1−i) : 1 ≤ i ≤ m}, see Fig. 2, induces a
clique of size m in G. Without loss of generality, we assume that the vertex
(ui, vm+1−i), 1 ≤ i ≤ m, in S, receives the color i, as χd(G) = m + 1, Cm+1 is a
proper subset of the first column vertices of G and (um, v1) 	∈ Cm+1.

Fig. 2. In this figure, Li = ui×V (Km) represents the ith row of G and Cj = V (Km)×vj
represents the jth column of G. The first i consecutive vertices of column 1 represents
the color class Cm+1, the m − 2 consecutive vertices beginning from the second vertex
of the first row denotes the set B and the m − 1 consecutive vertices beginning from
the second vertex of the mth column is A. The set S′ is shown in two different portions.
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Let A = {(ui, vm) : 2 ≤ i ≤ m}, that is, all the vertices of mth column except
its first vertex. Let B = {(u1, vj) : 2 ≤ j ≤ m−1}, that is, the m−2 consecutive
vertices beginning from the second vertex of the first row; see Fig. 2.

Now we claim that {(u1, vm)} is not in C, that is, the color class containing
(u1, vm) is not a singleton set in C. Suppose that C1 = {(u1, vm)} ∈ C. It is
clear that S′ = {(u1, v2), (u2, v3), . . . , (um−1, vm), (um, v1)} induces a clique of
size m in G, as no two of these vertices lie on a common column or row; see
Fig. 2 (Note that the set S′ is shown in two portions). To color all the vertices
of S′, we need m colors besides the colors 1 and m + 1, since C1 = {(u1, vm)}
is a singleton color class having the color 1, and the first column contains the
color class Cm+1. It follows that |C| ≥ m + 2, which is a contradiction to the
assumption |C| = m + 1. Hence {(u1, vm)} cannot be a singleton color class of
C. If the color 1 assigned to (u1, vm) is neither in A nor in B, then the vertices
of the clique S2 = 〈{(u1, v2), (u2, v3), . . . , (um−1, vm), (um, v1)}〉 must receive m
colors besides 1 and m+1. Thus χd(G) ≥ m+2, which is again a contradiction
to the assumption |C| = m + 1. Hence the color of (u1, vm), namely 1, appears
more than once in A or B.

Case (i) A vertex, say, (ui, vm) ∈ A receives the color of (u1, vm), namely, 1.
Choose an arbitrary vertex (u1, vj) ∈ B. We claim that (u1, vj), in B, and

(um+1−j , vj), in S, receive the same color, namely, m+1− j (note that we have
already assigned the color m + 1 − j to the vertex (um+1−j , vj)). As (u1, vj) is
adjacent to all the vertices of S1 = {(ui, vm)} ∪ (S \ {(u1, vm), (um+1−j , vj)}), it
cannot receive the colors assigned to the vertices of S1. Also Cm+1 is a proper
subset of the first column, the vertex (u1, vj) must receive the same color of
(um+1−j , vj) ∈ S, namely, m + 1 − j, since all other colors are assigned to the
neighbors of (u1, vj).

From this we conclude that all the vertices of B are assigned distinct colors,
namely, m − 1,m − 2, . . . , 2, in order. Thus the column j, 2 ≤ j ≤ m, receives
the color m + 1 − j at least twice, since the vertices of S receive m distinct
colors 1, 2, . . . ,m. It follows that the first column vertices which are not in Cm+1

must receive the color m, since these vertices are adjacent to all the vertices
of the set {(u1, vm)} ∪ B, which receives the colors {1, 2, 3, . . . ,m − 1} and the
color m + 1 cannot be assigned by the choice of Cm+1. Consequently, the ver-
tices (u2, v2), (u2, v3), . . . , (u2, vm) must receive the colors m − 1,m − 2, . . . , 1,
respectively, since each one of them is adjacent to vertices of other color classes.
Now the vertex (u2, v1) does not dominate any of the color classes of C, since the
row containing (u2, v1) contains the vertices of colors 1, 2, . . . ,m−1, the column
containing (u2, v1) contains the vertices of colors m and m + 1 and (u2, v1) is
nonadjacent to all the vertices of the column and row in which it lies. Conse-
quently the neighbors of (u2, v1) misses at least one vertex of each of the color
classes of C, which is a contradiction.

Case (ii) A vertex, say, (u1, vj), 2 ≤ j ≤ m − 1, in B, receives the color of
(u1, vm), namely, 1.

Clearly, the vertex (u2, vm) ∈ A is adjacent to all the vertices of S2 =
S \ {(u1, vm), (u2, vm−1)}, which are assigned the colors 3, 4, . . . ,m, in order.
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Further, (u2, vm) is adjacent to the vertex (u1, vj) in B of color 1, by assump-
tion, and the vertex (u2, vm) cannot be assigned the color m + 1, by the choice
of Cm+1. Hence the color of (u2, vm) must be 2. By similar arguments we can
conclude that each vertex (uj , vm) ∈ A, 3 ≤ j ≤ m, must receive the color j.

As the ith row, 1 ≤ i ≤ m, of G contains at least two vertices, namely
(ui, vm+1−i) and (ui, vm), having the same color i, all the vertices in the row i,
except the vertices in the color class Cm+1, must receive the color i, since each
one of them is adjacent to vertices of other color classes. It follows that (u1, v2)
does not dominate any color class in C, which is again a contradiction. Hence
χd(G) ≥ m+2. Already we have shown that χd(G) ≤ m+2. Thus χd(G) = m+2.

Let Km(n) denote the complete m-partite graph in which each partite set has
n vertices. Let the partite sets of Km(n) (resp. Kr(s)) be U1, U2, . . . , Um (resp.
V1, V2, . . . , Vr). Let G = Km(n) × Kr(s). Clearly, V (G) = V (Km(n) × Kr(s)) =⋃
(Ui × Vj), i = 1, 2, . . . ,m, j = 1, 2, . . . , r. Let Bi,j = Ui × Vj ; then |Bi,j | = ns.

Lemma 1. Let G = Km(n) × Kr(s), n, s ≥ 3. Then any χd-coloring of G can
be transformed to a χd-coloring of it in which all the vertices of Bi,j receive the
same color.

Proof. Let C be a χd-coloring of G. Let x, y, z ∈ Bi,j (it is possible as n, s ≥ 3).

Case (i) {x}, {y} and {z} are singleton color classes in C.
Let the colors of x, y and z be 1, 2 and 3, respectively. Now we obtain a

dominator coloring of G using |C| − 1 colors which contradicts that C is a χd-
coloring of G.

Recoloring the vertices of G as follows: assign the color 1 to all the vertices
of Bi,j and choose any vertex in N(x), say a, and recolor the vertex a by color 2.
Rest of the colors of the vertices of G are retained as in C. The resulting coloring,
say C′, is also a dominator coloring of G; for each vertex in Bi,j dominates the
color class {a} and if a vertex dominates a color class either {x} or {y} or
{z} in C, then that vertex dominates the color class {Bi,j} in C′. Hence C′ is
a dominator coloring of G using |C| − 1 colors, that is the color 3 is not used,
which is a contradiction for the minimality of |C|.
Case (ii) {x} and {y} are singleton color classes in C.

By Case (i), {z} cannot be a singleton color class in C.
Let z dominate a color class Ck in C. Then Ck ⊆ N(z)(= N(x) = N(y)).

Now recolor all the vertices of Bi,j − {x} by the color of x and the colors of the
rest of the vertices of G are retained as in C. Let the resulting coloring be C′′.
Note that C′′ does not use the color of y. By the similar argument as in Case (i),
C′′ is a dominator coloring using |C| − 1 colors, which is again a contradiction.

Case (iii) {x} ∈ C.
By Cases (i) and (ii), {y}, {z} 	∈ C.
Clearly the vertices y and z dominate a color class Ck ⊆ N(y). In this case

simply recolor all the vertices of Bi,j by the color of x and retain the colors of
the other vertices of G. The resulting coloring C′′′ is a dominator coloring of G
using |C| colors in which all the vertices of Bi,j receive the same color.
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Case (iv) Bi,j does not contain a singleton color class of C.
Fix a color, say k, of a vertex in Bi,j . Replace the color of every other vertex

in Bi,j with the color k and retain the colors of the other vertices of G. The
resulting coloring is a χd-coloring of G.

By successively applying Cases (iii) and (iv) (since Cases (i) and (ii) are not
possible) to each Bi,j , we get a χd-coloring of G such that all the vertices of Bi,j

have a common color.

Theorem 3. For n, s ≥ 3, χd(Km(n) × Kr(s)) = min {m + 2, r + 2}.

Proof. Let G = Km(n) × Kr(s). We first claim that χd(G) ≤ min {m+2, r+2}.
Without loss of generality, we assume that m ≤ r.

We obtain a dominator coloring using m + 2 colors as follows. Let C =
{{B1,1}, {⋃r

i=2 B1,i}, {⋃m
i=2 Bi,1}, {⋃r

j=2 B2,j}, {⋃r
j=2 B3,j}, . . . , {⋃r

j=2 Bm,j}},

where the B
′s
i,j are as defined just above the Lemma 1. Clearly C is proper

coloring of G. Also each vertex in B1,1 dominates the color class {⋃r
j=2 B2,j},

each vertex in
⋃r

i=2 B1,i dominates the color class {⋃m
i=2 Bi,1} and vice versa

and, the remaining all vertices dominate the color class {B1,1}. Hence C is a
dominator coloring using m + 2 colors. Thus χd(G) ≤ m + 2.

Next we claim that χd(G) ≥ m+2. Let C be a χd-coloring of G such that all
the vertices of Bi,j receive the same color, by Lemma 1. Now we identify each
Bi,j into a vertex vi,j and join vi,j and vk,l by an edge if and only if 〈Bi,j ∪Bk,l〉
is a complete bipartite graph Kns,ns. We can check that the resulting graph,
say, G′ is isomorphic to Km × Kr. Clearly, by Theorem 2, min {m+2, r +2} =
χd(G′) ≤ χd(G). If χd(G) ≤ m + 1, then it would imply χd(G′) ≤ m + 1,
that is, by assigning the color of the vertices in Bi,j to the vertex vi,j of G′, a
contradiction to Theorem 2. Hence χd(G) ≥ m+2. Already we have shown that
χd(G) ≤ m + 2. Hence χd(G) = χd(Km(n) × Kr(s)) = m + 2.

Theorem 4. Let G = (Kr ◦ K1) × Ks, r, s ≥ 3, r ≤ s. Then χd(G) = 2r + 1.

Proof. Let H = Kr ◦ K1. Let V (H) = {x1, x2, . . . , xr, y1, y2, . . . , yr}, where
〈{x1, x2, . . . , xr}〉 = Kr, 〈{y1, y2, . . . , yr}〉 = Kr, xiyi ∈ E(H), and xiyj 	∈
E(H), i 	= j. Then the vertex set of G can be partitioned into 2r vertex disjoint
subsets, namely xi×V (Ks), where xi ∈ V (H) and degH(xi) = r and, yi×V (Ks),
where yi ∈ V (H) and degH(yi) = 1.

Let Ai = xi×V (Ks) = {ui
1, u

i
2, . . . , u

i
s}, 1 ≤ i ≤ r, and let Bi = yi×V (Ks) =

{vi
1, v

i
2, . . . , v

i
s}, 1 ≤ i ≤ r. It is clear that each of the induced subgraphs 〈{Ai ∪

Aj}〉, 1 ≤ i 	= j ≤ r, and 〈{Ai ∪ Bi}〉, 1 ≤ i ≤ r, are isomorphic to Ks,s − I,
where I is a perfect matching in Ks,s.

Since N [v1
1 ], N [v2

2 ], . . . , N [vr
r ] are r-vertex disjoint closed neighborhoods of G,

every dominator coloring of G contains at least one of its color class in each of
these closed neighborhoods. Clearly the subgraph 〈V (G)\(⋃r

i=1 N [vi
i ])〉 contains

a subgraph which is isomorphic to Kr = 〈{u1
1, u

2
2, . . . , u

r
r}〉. As seen above, each

N [vi
i ], i = 1, 2, . . . , r, contains a color class and to color all the vertices of the

complete subgraph 〈{u1
1, u

2
2, . . . , u

r
r}〉, we need another r new colors and hence

χd(G) ≥ 2r.
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Now we claim that χd(G) > 2r. Suppose χd(G) = 2r and let C =
{V1, V2, . . . , V2r} be a χd-coloring of G. Observe that the number of color
classes in C which are dominated by vertices of each subset Bi(= yi × Ks)
is at least 2. Hence each closed neighborhood N [Bi], 1 ≤ i ≤ r, con-
tains at least two color classes of C. Also since χd(G) = 2r and each
〈{Ai ∪ Bi}〉 induces a non-trivial bipartite graph, it follows that C =
{{A1}, {A2}, . . . , {Ar}, {B1}, {B2}, . . . , {Br}}. Now each vertex in Bj , 1 ≤ j ≤
r, does not dominate any color class in C, which is a contradiction. Hence
χd(G) ≥ 2r + 1.

Now we claim that χd(G) ≤ 2r+1, by giving a dominator coloring using 2r+1
colors as follows: C′ = {{u1

1}, {u2
2}, . . . , {ur

r}, {A1 \ {u1
1}}, {A2 \ {u2

2}}, . . . , {Ar \
{ur

r}}, {⋃r
i=1 Bi}} is a dominator coloring of G, since each vertex vi

i dominates
the color class {Ai \ {ui

i}}, 1 ≤ i ≤ r and remaining all vertices dominates any
one of the color class from {{u1

1}, {u2
2}, . . . , {ur

r}}. Hence χd(G) = 2r + 1.

3 Dominator Chromatic Number of the Cartesian
Product of Graphs

In this section, we obtain the exact value of χd for the graph Kn�Qr+2, where
Qr+2 = K2�K2� · · · �K2︸ ︷︷ ︸

r+2 times

is the hypercube.

Theorem 5. Let n and r be two integers such that n ≥ 2r+2. Then
χd(Kn�Qr+2) = 2r+2 + n − 1, where r ≥ 0.

Proof. Let G = Kn�Qr+2. First we claim that χd(G) ≤ 2r+2 + n − 1. One can
easily see, using the definition of Cartesian product of graphs, G is obtained
by replacing each vertex of Qr+2 by a copy of Kn and if there is an edge join-
ing two vertices x and y of Qr+2, then there is a perfect matching joining the
corresponding vertices of the respective copies of Kn corresponding to x and y.

Let V (Qr+2) = {x1, x2, . . . , x2r+2}. Let Ai = {x1
i , x

2
i , . . . , x

n
i } denote the

vertices of G corresponding to the ith vertex xi of Qr+2. Let us consider the first
vertex of each Ai, 1 ≤ i ≤ 2r+2, namely, S1 = {x1

1, x
1
2, . . . , x

1
2r+2}.

Let G′ = G − S1. Clearly G′ = Kn−1�Qr+2. Then χ(G′) =
max {χ(Kn−1), χ(Qr+2)} = n − 1; see Theorem 26.1 of [9]. Let this coloring
of G′ be C′.

A χd-coloring C of G can be obtained by extending the coloring C′ of G′ to
G by assigning 2r+2 new colors to the vertices of S1. Clearly these 2r+2 colors of
the vertices in S1 give us 2r+2 singleton color classes in C. As each copy of Kn,
corresponding to a vertex of Qr+2, contributes one vertex to S1, each vertex of
this Kn dominates a color class of C. Thus C = C′ ∪{{v} : v ∈ S1} is a dominator
coloring of G and hence χd(G) ≤ 2r+2 + n − 1.

Now we claim that χd(G) ≥ 2r+2 + n − 1. Let C′′ be a χd-coloring of G.

Case (i) There exists an i, 1 ≤ i ≤ 2r+2, such that Ai contains no singleton
color class in C′′.
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Since any two vertices of Ai do not have a common neighbor in V (G) \ Ai,
and there is no singleton color class in Ai, no two vertices of Ai can dominate
a common color class in C′′. Hence C′′ contains at least n color classes which
are dominated by the vertices of Ai. It is clear that the union of the above n
color classes must be in N [Ai], the closed neighborhood of Ai. It is clear that the
induced subgraph 〈V (G) \ N [Ai]〉 contains a subgraph which is isomorphic to
Aj = Kn, for some j 	= i, 1 ≤ j ≤ 2r+2. Hence C′′ contains another n new colors
to color these vertices of Kn. It follows that χd(G) ≥ 2n = n + n ≥ n + 2r+2,
since n ≥ 2r+2.

Case (ii) Each Ai, 1 ≤ i ≤ 2r+2, contains a singleton color class in C′′, say
{xi}.

Since 〈Ai − {xi}〉 = Kn−1, we need another n − 1 colors to color the vertices
of 〈Ai − {xi}〉. Hence χd(G) ≥ 2r+2 + n − 1, as there are 2r+2 singleton color
classes, by assumption. Thus χd(G) = 2r+2 + n − 1.

4 Conclusion

In this paper we discuss about the dominator coloring for tensor product and
Cartesian product of complete graphs and complete multipartite graphs. Similar
results may be obtained for wreath and strong products of graphs.
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Abstract. A Fractal based Neural Network Radial Basis Function
(FNNRBF) for image compression is proposed through this work. Gen-
erally, a large amount of data are required to represent digital images
where the transmission and storage of such images are time consuming
and unrealizable. Hence, image compression technique can be used to
reduce the storage and transmission costs. In order to overcome the dif-
ficulties a Hybrid Fractal with NNRBF image compression techniques
FNNRBF is proposed. The implementation of this technique shows the
effectiveness in terms of compression of medical images. Also, a com-
parative synthesis is performed to prove that the proposed system is
capable of compressing the images effectively in terms of Compression
Ratio (CR), Peak Signal to Noise Ratio (PSNR) and memory space.

Keywords: Image compression · Hybrid · Fractal NNRBF and NNRBF

1 Introduction

Compression refers to the process of reducing the file size by rearranging the
information in the file. Compressing the images is different from zipping the files.
Image compression changes the system and content of the information within
a file. Image compressions may be used to rearrange the data to achieve the
desired compression level, depending on the preferred compression ratio. The
Loss of the data may or may not be noticeable. The quantity of the image com-
pression can be influenced by the type of the images. Higher compression ratio
can be achieved in the portions of the image that have similar tones, such as
water area that has the same shade. The Images acquired need to be stored or
transmitted over long distances. An untreated image occupies more memory and
hence it needs to be compressed. Due to the demand for high quality video on
mobile platforms, there is a need to compress the untreated images and repro-
duce the images without any degradation. Lossy compression is used to compress
the images and the video files. Lossless compression permits the genuine data to
be perfectly reconstructed from the compressed data. The superfluous informa-
tion is removed in compression and added during decompression. Almost every
lossless compression program does two things in sequence, the first step gener-
ates a statistical framework for the input information and the second step uses
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 251–261, 2017.
DOI: 10.1007/978-3-319-64419-6 33
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this framework to map input information to bit sequences in such a way that the
“probable” (e.g. frequently encountered) information will make shorter output
than the “improbable” information.

2 Related Works

In the case of hybrid wavelet transform, the image size of 256256 is produced.
It can be generated by utilizing two component transforms of size 88 and 3232
respectively, Larger the size of first component transform, more the global fea-
tures of an image. Larger the sizes of second component transform, local fea-
tures are focused more [9]. FNNRBF using hybrid fuzzy clustering approach
which concerns the structure of clusters in multidimensional feature space. To
attain this task, these papers use a transition scheme from fuzzy mode. This
transition is carried out through analytical conditions that are extracted by the
minimization of a specialized objective function [11]. In the Image compression
problem, the original 256256 gray image is divided into overlapping non blocks
of 44 pixels. For training the Neural Network (NN), the connection weights and
the thresholds are initially set in the range [−1, 1] and the maximal epochs as
250 [13]. The learning rate of the back propagation is set as 0.001. Compres-
sion Ratio (CR), Signal to Noise Ratio (SNR) and Peak Signal to Noise Ratio
(PSNR) are used to assess the quality of the reconstructed image [7]. The origi-
nal meaning of the Fractal is the similarity between the local and global, that is,
the portion of the image is the result through affine transformation of a whole
image, but as mentioned earlier, the natural image of this local and the whole
image is its self-similarity [15] Number of neurons in any neural network are
represented by M-N-P where, M, N, P indicate the number of neurons in the
input layer, hidden layer and output layer respectively. In case of a multi layered
perception type feed forward neural network, the number of connections between
any two layers are obtained by summing the number of bias connections. [16].
Fuzzy Logic has been used to develop a transfer function that modifies the input
image into a new form that provides higher Compression Ratio (CR). The only
possible solution to achieve increased CR is to decrease the contrast of the input
image while keeping the contrast information of the original image unaltered
[5]. Hybrid coding refers to the techniques which combines transform coding
and spatial coding techniques. This technique combines the advantage of hard-
ware simplicity of spatial coding and the good performance of transform coding
with respect to its low sensitivity to channel error [3]. The KLT is the optimal
linear orthogonal transform and provides higher decorrelation and energy com-
paction than wavelet transforms [4]. Fractal image compression is used in the
compression of medical and color images. Fractal compression, a lossy method
is a technique used for decomposing the images color separation, edge detection,
and spectrum and texture analysis [14]. The Fractal image compression is based
on the fractals of various images. The merits of converting the images to frac-
tal data are (1) Reduced memory space requirement of the compressed image.
(2) Quantification of parameters like CR, PSNR, Bits Per Pixel (BPP) and
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others [10]. An Adaptive Fractal Image Compression (AFIC) algorithm acceler-
ates the encoding action and attains a higher CR, with little decline in the quality
of the reproduced image. So, AIFC performs better than other methods [2]. This
technique uses the universal approximation characteristics of generalized Neural
Networks Radial Basis Function (NNRBF) to approximate the empirical kernel
map associated to the Kernel based Principal Components Analysis (KPCA) or
SV machines Support vector machines (SVM) [17]. The number of RBFs used
to encode a sub image is much lower than the number of data points that result
in reduction of data size [1]. RBF networks configure a neural network archi-
tecture that is extensively used for modeling and controlling nonlinear systems
[6]. The goal of image compression is to minimize the time of uploading to the
website and downloading from there on the internet and saving large amount of
data [18]. There are two key steps in the machine-learning-based image compres-
sion model: choosing the most informative color pixels and learning to prefigure
the color values. They are sculptured and solved with two standard machine
learning methods: active learning and semi supervised learning respectively [8].
The unique high spectral resolution has been used in a broad range of scien-
tific research such as terrain classification, agricultural monitoring, and military
surveillance. Therefore, compression of hyper spectral image is necessary to facil-
itate the storage and transmission [3].

In the existing Fractal Algorithm, Compression Ratio (CR) is good but Mean
Square Error (MSE) is high and Peak Signal to Noise Ratio (PSNR) value is
low. But the proposed RBFNN takes small convergence time during the training
period. New hybrid approach combining the working principles of Fractal and
RBFNN is implemented here. The comparisons of existing algorithms are also
exhibited.

3 Methodologies for Medical Image Compression

3.1 Fractal Algorithm

A fractal is a model which represents using similar patterns that occur in many
different sizes. The term fractal was first used by Benoit Mandelbrot to describe
the repeated patterns that he noticed occurring in many different structures.
Fractal encoding is a mathematical technique used to encode the bitmaps con-
sidering an original image as a set of mathematical data that explains the fractal
properties of the image.

3.2 Radial Basis Function Neural Network (RBFNN) for Image
Compression

In ANN every neuron in a MLP (Multilayer Perception) holds a weighted sum of
its input values. That is, every input value is multiplied by a coefficient and all
the outcomes are summed up. A single MLP neuron is a plain linear classifier,
but the difficult non-linear classifiers can be constructed by introducing these
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neurons into a network. RBFN method is more spontaneous than the MLP. To
classify a fresh input, every neuron estimates the Euclidean distance between the
model and the input. Figure 1 shows the general structure of NNRBF Algorithm.
An input vector x is employed as input to all radial basis functions with different
properties. Each RBF neuron compares to the input model, and outputs a value
in range [0, 1] which measures the similarity. If the input is identical to the
model, then the RBF neuron’s output will be 1. As the distance between the
model and input increases, the output falls off exponentially towards 0. RBF
neuron’s output resembles a bell curve. The output of the network is composed
of a set of nodes. Every output node calculates a score for the linked class. The
score is calculated by taking a weighted total of the activation values from each
RBF neuron. By weighted total we mean that an output node links a weight
value with every RBF neuron, and multiplies the neuron’s activation by this
weight before adding it to the total output.

Fig. 1. General structure of Radial Basis Function Neural Network

3.3 Hybrid Image Compression

Figure 2 shows the proposed Hybrid image compression using FNNRBF. The
NN-RBF algorithm is used to improve the transformation process, which
increases the edge threshold. At the same time, the fractal coding and NN-
RBF algorithm are combined to obtain hybrid FNNRBF coding, in order to get
better quality in image compression.
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Fig. 2. Hybrid image compression using Fractal and Radial Basis Function Neural
Network

4 Performance Parameters

Compression methods can be compared based on various parameters. Efficiency
of Compression Algorithm (CA) is measured in terms of parameters such as Com-
pression Ratio (CR), Peak Signal Noise Ratio (PSNR), Bits Per Pixel (BPP),
Mean Square Error (MSE) and Testing and Training Time.

Mean Squared Error (MSE): Mean Squared Error is given by;

MSE =
1

m× n

m−1∑

i=0

n−1∑

j=0

[I(i, j) −K(i, j)]2 (1)

Where I(i,j) is the original image, K(i, j) is the compressed image and the image
is represented as an m n matrix. Low value of MSE implies low error values
(PSNR).

Peak Signal to Noise Ratio (PSNR): Peak Signal to Noise Ratio is a mea-
sure of the peak error.

PSNR = 10 log{MAX2
I

MSE
} (2)

Here MAXI represents the maximum possible pixel value of the image. Pixels
are represented as eight bits per sample. Logically, a greater value of PSNR is
good because it indicates that the ratio of Signal to Noise is greater. Here, the
‘signal’ is the genuine image and the ‘noise’ is the error due to reconstruction.

Compression Ratio (CR): It is the ratio of the size of the genuine image to
the size of the compressed image.

CR =
(

Uncompressed file size
Compressed file size

)
(3)
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CR can be used to judge the compression efficiency. The lower CR means
better compression.

Bits Per Pixel (BPP): BPP is defined as the number of bits used to encode
each pixel value. Selected values of BPP should be able to enhance the storage
level [12].

5 Results

Images with the compression tables are also included. Figures 3, 4, 5 and 6 show
the original and compressed images by using Fractal, and Hybrid Fractal with
Neural Network Radial Basis Function. All the input images used in this work
are of 512 × 512 image size.

5.1 Compression Ratio

Table 1 shows CR obtained using NNRBF, Fractal and Hybrid FNNRBF. CR is
better with Hybrid FNNRBF.

Table 1. Compression results of multi modal medical images using three different
algorithms

Images Input memory
size (KB)

Fractal NNRBF Hybrid Fractal &
NNRBF

CT image 1 46.4 43.2 43.6 41.5

CT image 2 86.2 25 24.5 24.8

MR image 3 61.3 26.4 25.7 24.1

MR image 4 126 23 25.4 20.5

MR image 5 124 25.1 27.4 23.4

MR image 6 106 20.5 21.9 18.7

MR image 7 19.4 15.9 71.5 18.8

MR image 8 47.1 28.2 41.4 27.4

PET image 9 46.9 14.3 18.7 20.7

5.2 PSNR

Table 2 shows PSNR for NNRBF, Fractal and Hybrid FNNRBF. Here PSNR is
higher with Hybrid FNNRBF.
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Table 2. PSNR results of multi modal medical images using three different algorithms

Images Fractal NNRBF Hybrid Fractal & NNRBF

CT image 1 35.8632 30.6855 34.7694

CT image 2 38.9335 19.5331 23.1454

MR image 3 41.796 22.9515 25.7061

MR image 4 39.049 22.3658 27.4178

MR image 5 42.3063 29.9071 36.3128

MR image 6 43.6769 24.6009 31.6895

MR image 7 41.3458 35.7803 32.3152

MR image 8 3.427 1.1379 22.5682

PET image 9 43.9157 24.4163 27.1644

5.3 Memory

Table 3 shows the Memory Usage of NNRBF, Fractal and Hybrid FNNRBF.
Here the Compressed Image Size is much less in Hybrid FNNRBF.

Table 3. Memory usage of multi modal medical images results using three different
algorithms

Images Input memory
size (KB)

Fractal NNRBF Hybrid Fractal
& NNRBF

CT image 1 46.4 43.2 43.6 41.5

CT image 2 86.2 25 24.5 24.8

MR image 3 61.3 26.4 25.7 24.1

MR image 4 126 23 25.4 20.5

MR image 5 124 25.1 27.4 23.4

MR image 6 106 20.5 21.9 18.7

MR image 7 19.4 15.9 71.5 18.8

MR image 8 47.1 28.2 41.4 27.4

PET image 9 46.9 14.3 18.7 20.7

Fig. 3. Sample input images
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Figure 3 show input (medical) images, Fig. 4 show compressed medical images
obtained using Fractal, Fig. 5 show compressed medical images obtained using
NNRBF and Fig. 6 show compressed medical images obtained using Hybrid Frac-
tal and NNRBF algorithms.

Fig. 4. Output obtained from Fractal

Fig. 5. Output obtained from NNRBF

Fig. 6. Output obtained from Hybrid Fractal and NNRBF compression algorithms

Figure 7 shows that the Compression Ratio of three different algorithms
namely Neural Network Radial Basis Function, Fractal and Hybrid Fractal and
NNRBF. It is evident that Hybrid Fractal and NNRBF provide better CR values.

Figure 8 shows the PSNR for three different algorithms NNRBF, Fractal and
Hybrid Fractal and NNRBF. Here Hybrid Fractal and NNRBF achieve better
PSNR values.

Figure 9 shows the memory usage of three different algorithms namely,
NNRBF, Fractal and Hybrid Fractal and NNRBF. It is noticed that Hybrid
Fractal and NNRBF use less memory for image compression.
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Fig. 7. Compression Ratio expressed in percentage

Fig. 8. PSNR expressed in decibel

Fig. 9. Memory expressed in kilo byte

6 Conclusion and Future Work

In this paper, three different approaches such as Fractal, Radial Basis Function
Neural Network and Hybrid Fractal & NNRBF are applied to medical image
compression and the results compared. Here, MR and CT images are considered
as Quality parameters such as Compression Ratio (CR), Peak Signal to Noise
Ratio (PSNR), Execution time and Memory usage. It is observed that Hybrid
approach has low CR and high PSNR values and is more efficient than Fractal
and NNRBF methods.
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Abstract. In a connected graph G, the status of a vertex is the sum
of the distances of that vertex to each of the other vertices in G. The
subgraph induced by the vertices of minimum (maximum) status in G is
called the median (anti-median) of G. A bipartite graph G is symmetric
if for a bi-partition (X,Y ) of G, there is a map f from X onto Y such
that if (u, f(v)) ∈ E(G), then (v, f(u)) ∈ E(G), where u, v ∈ X. In this
paper we show, by construction, that any symmetric bipartite graph is a
median (anti-median, center) of another symmetric bipartite graph. We
also obtain results on median and anti-median problem on square graphs
of bi-partite graphs with equal partitions.

Keywords: Distance · Median · Anti-median · Symmetric bipartite

1 Introduction

Let G = (V,E) be a graph on n vertices with vertex set V and edge set E. A
graph is bipartite if its vertex set can be partitioned into two nonempty subsets
X and Y such that each edge of G has one end in X and the other in Y . A
bipartite graph G is symmetric if for a bi-partition (X,Y ) of G, there is a map f
from X onto Y such that for every edge (u, f(v)) in G, there is an edge (v, f(u))
in G, where u, v ∈ X. Such a partition (X,Y )f is called a symmetric bi-partition
of G. The ladder graph Ln = {xi, yi}ni=1 on 2n vertices is obtained by taking
two paths x1, . . . , xn and y1, . . . , yn on n vertices and making xi and yi adjacent
for each i = 1, . . . , n. The square G2 of a graph G has the same vertex set as G
and two vertices u, v ∈ V (G2) are adjacent if dG(u, v) ≤ 2.

The degree of a vertex v, d(v), is the number vertices adjacent to v and
by N(v) we denote the neighbor set of v. When H is a subgraph of G and
u, v ∈ V (H), the set of common neighbors of u and v in H is denoted by
N∗

H(u, v).
The distance between two vertices u and v is the number of edges on a

shortest path between u and v, and it is denoted by d(u, v). The eccentricity
of u is e(u) = max

v
d(u, v). The center C(G) of a graph G is the subgraph of G

induced by the vertices of minimum eccentricity. The status of a vertex v ∈ V (G),
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 262–270, 2017.
DOI: 10.1007/978-3-319-64419-6 34
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denoted by S(v), is the sum of the distances from v to all other vertices in G.
The subgraph induced by the vertices of minimum (maximum) status in G is
known as the median (anti-median) of G, denoted by M(G) (AM(G)). The
status difference [5] in a graph G is SD(G) = max

u,v∈V (G)
(S(u) − S(v)).

Given a graph G the problem of finding a graph H such that M(H) ∼= G is
referred to as the median problem. In [8], it is shown that any graph G = (V,E)
is the median of some connected graph. In [3] the notion of anti-median of a
graph was introduced and proved that every graph is the anti-median graph of
some graph. The problem of simultaneous embedding of median and anti-median
is discussed in [1]. Another construction, which generalises all the previously
mentioned constructions, can be seen in [6].

The median vertices represent facility locations with minimum average dis-
tance. In network theory the median problem is significant as it is related to the
optimization problems involving the placement of network servers, the core of
the entire networks, specially in very large interconnection networks. However,
the median constructions for general graphs cannot be directly applied to many
networks as their underlying graph belong to different classes of graphs. Most
of the analysis in network communities are done using preference networks [4],
which are modelled using bipartite graphs. The study of the median operators
for some classes of graphs is in [5,7,9].

In this paper we show, by construction, that any symmetric bipartite graph is
a median (or anti-median) of another symmetric bipartite graph. In addition, we
provide constructions to embed another symmetric graph as center in both the
constructions. Together with the additional properties of these constructions, we
show that these constructions can be extended to any arbitrary graph and hence
we prove some general results. As another application of these constructions,
we provide the results on median and anti-median problem on square graphs of
bi-partite graphs with equal partitions.

2 Median Problem on Symmetric Bipartite Graphs

Consider a ladder graph Ln = {xi, yi}ni=1. Let XL = {xi : i is odd} ∪ {yi :
i is even} and YL = Ln \ XL, then (XL, YL)f is a symmetric bi-partition of Ln,
where f(xi) = yi, when i is odd, and f(yi) = xi, when i is even (Fig. 1).

Lemma 1. Given a symmetric bipartite graph G, there exists a connected sym-
metric bipartite graph G′ such that G is an induced subgraph of G′ and all the
vertices of G in G′ have equal status in G′.

Proof. Let (X,Y )f be a symmetric bi-partition of G. Let X ′, Y ′ be the copy
of X,Y such that v′ denote the copy of a vertex v ∈ V (G). Consider two new
vertices vx and vy. Let A = X ∪X ′ ∪{vx} and B = Y ∪Y ′ ∪{vy}. Define a map
g from A to B such that g(v) = f(v), g(v′) = f(v)′, ∀v ∈ X and g(vx) = vy.

Then, make vy adjacent to all the vertices in A and vx adjacent to all vertices
of B. Also, for each v ∈ X (Y ) make v′ adjacent to Y \N(v)∪{g(v)} (X\N(v)∪
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Fig. 1. An L5 and a symmetric bi-partite representation of L5.

{g−1(v)}). Call this graph G′. It now follows that (A,B)g is a symmetric bi-
partition of G′ and SG′(v) = 4n + 1, for all v ∈ V (G).

The graph G′ is called the symmetric bipartite gadget graph of G.

Theorem 1. Given two symmetric bipartite graphs G and J there exists a sym-
metric bipartite graph H such that M(H) ∼= G and C(H) ∼= J .

Proof. The proof is by construction. Let G′ be the symmetric bipartite gadget
graph of G with symmetric bi-partition (A,B)f and (R,S)g be a symmetric bi-
partition of J . For k ≥ 3, introduce two ladder graphs {xi, yi}k−1

i=1 and {ui, vi}k+1
i=1

with symmetric bi-partitions (X1, Y1)f1 and (X2, Y2)f2 respectively.
Make x1 adjacent to X ∪ {vx}, y1 to Y ∪ {vy}, xk−1 to R, yk−1 to S, u1

to R and v1 to S. Denote this graph by H0. Introduce s copies of K2 and let
aibi, i = 1, . . . , s be the edges in sK2. Make {ai}si=1 adjacent to all the vertices
in X and {bi}s1 adjacent to all the vertices in Y . Denote this new graph by H.
Clearly C(H) ∼= J with e(v) = k + 2, for all v ∈ V (J) and S(x) = S(y) =
4n + 1 + (2k + 1)(2k + 2 + |R|) + 3s, for all x ∈ X, y ∈ Y .

For a vertex u ∈ V (H), let S∗(u) = d(u, am) + d(u, bm), where ambm be an
edge in the s copies of K2 in H. Then, S∗(u) = 3, u ∈ V (G) and S∗(u) ≥ 5,
u ∈ V (H\G)\{am, bm}. Hence M(H) = G, when s > SD(H0)/2.

When k is even, let A′ = A∪X1∪X2∪R∪{bi} and B′ = H \A′. Let h be the
function defined on A′ by h(x) = f(x), when x ∈ A, h(x) = g(x), when x ∈ R,
h(x) = fi(x), when x ∈ Xi, i = 1, 2, and h(bi) = ai, 1 ≤ i ≤ s. It is clear that
(A′, B′)h is a symmetric bi-partition of H. When k is odd, the elements in R
and S are interchanged in the bi-partition (A′, B′). Re-defining h(x) = g−1(x),
for the vertices x ∈ S, (A′, B′)h becomes a symmetric bi-partition of H (Fig. 2).

Lemma 2. Given a symmetric bi-partite graph G, there exists a symmetric
bipartite graph H such that AM(H) = G.

Proof. Let G′ be the symmetric bipartite gadget graph of G and let (A,B)f be
a symmetric bi-partition of G′. Introduce a complete bipartite graph Kr,r with
symmetric bi-partition (C,D)g. Make each vertex in C adjacent to Y ′ ∪ {vy}
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Fig. 2. A construction of H as in Theorem 1. Here the vertices of G are colored black
and the vertices of J are colored grey.

and each vertex in D adjacent to X ′ ∪ {vx}. Call this graph H. We can see
that SH(u) = SG′(u) + 5r, when u ∈ V (G) and SH(u) = SG′(u) + 3r, when
u ∈ V (H \ G). Choosing r > SD(G′)/2, we get AM(H) = G.

Let P = A ∪ C and Q = H \ P . Define h on P by h(x) = g(x), when x ∈ A,
and h(x) = g(x), when x ∈ C. Then, (P,Q)h is a symmetric bi-partition of H.

Theorem 2. Given two symmetric bipartite graphs G and J there exists a sym-
metric bipartite graph H such that AM(H) ∼= G and C(H) ∼= J .

Proof. The proof is by construction. Let H be the graph constructed in Lemma 2
with symmetric bi-partition (P,Q)h and let (R,S)g be a symmetric bi-partition
of J . For k ≥ 3, introduce two ladder graphs {xi, yi}k−1

i=1 and {ui, vi}k+1
i=1 with

symmetric bi-partitions (X1, Y1)f1 and (X2, Y2)f2 respectively.
Make x1 adjacent to P , y1 to Q, x2 to D and y2 to C, xk−1 to R, yk−1 to S,

u1 to R, v1 to S. Denote this graph by H0.
Introduce a complete bipartite graph Ks,s with symmetric bi-partition

(E,F )f . Make each vertex in E adjacent to R ∪ {u2} and each vertex in F
adjacent to S ∪ {v2}. Call this graph H. Clearly C(H) ∼= J with e(v) = k + 2,
for all v ∈ V (J) and S(x) = S(y) = 4n + 5r + (2k + 1)(2k + R + s) + 2s.

For a vertex u ∈ V (H), let S∗(u) = d(u, e) + d(u, f), where ef is an edge
in Ks,s. Then, S∗(u) = 13, u ∈ V (G′) and S∗(u) ≤ 11, u ∈ V (H \ G′) \ {e, f}.
Since ef is an arbitrary edge in Ks,s and by Lemma 2, SG′(x) < SG′(y), for
every x ∈ V (G), y ∈ V (G′ \G), for r > SD(H0)/2, it follows that AM(H) = G.

When k is even, let A′ = P ∪X1 ∪X2 ∪R∪E and B′ = H \A′. Let t be the
function defined on A′ by t(x) = h(x), when x ∈ P , t(x) = g(x), when x ∈ R,
t(x) = fi(x), when x ∈ Xi, i = 1, 2, and t(x) = f(x), when x ∈ E. It is clear that
(A′, B′)h is a symmetric bi-partition of H. When k is odd, the elements in R
and S are interchanged in the bi-partition (A′, B′). Re-defining h(x) = g−1(x),
for the vertices x ∈ S, (A′, B′)h becomes a symmetric bi-partition of H (Fig. 3).
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Fig. 3. A construction of H as in Theorem 2. Here the vertices of G are colored black
and the vertices of J are colored grey.

3 Bipartite Graph of a Graph

The bipartite graph B(G) of a graph G can be constructed as follows [2]. For
each vertex v ∈ V , form v′ ∈ X and v′′ ∈ Y and let N(v′) = {u′′ ∈ Y : u ∈ N [v]}
and N(v′′) = {u′ ∈ X : u ∈ N [v]}.

Lemma 3. Let G be a connected symmetric bipartite graph. Then G ∼= B(H)
for some graph H if and only if there is a symmetric bi-partition (X,Y )f of G
such that uf(u) is an edge for all u ∈ X.

Remark 1. Consider the graphs G and B(G). Let u, v ∈ V (G). If d(u, v) is odd,
then d(u′, v′′) = d(u′′, v′) = d(u, v) and d(u′, v′) = d(u′′, v′′) = d(u, v)+1. Also, if
d(u, v) is even, then d(u′, v′′) = d(u′′, v′) = d(u, v)+1 and d(u′, v′) = d(u′′, v′′) =
d(u, v).

In the following theorem we prove that, for a connected graph, the operator
B(·) commute with both M(·) and AM(·).
Theorem 3. For any connected graph G, B(M(G)) ∼= M(B(G)) and
B(AM(G)) ∼= AM(B(G)).

Proof. Let H = B(G). For a vertex v ∈ V (G), let Ov and Ev be the set of
vertices respectively at odd distance and even distance from v. By Remark 1,
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∑

u∈Ov

dH(v′, u′′) =
∑

u∈Ov

dG(v, u)

∑

u∈Ov

dH(v′, u′) =
∑

u∈Ov

dG(v, u) + |Ov|
∑

u∈Ev

dH(v′, u′) =
∑

u∈Ev

dG(v, u)

∑

u∈Ev

dH(v′, u′′) =
∑

u∈Ev

dG(v, u) + |Ev|.

Thus SH(v′) = 2SG(v) + n and similarly SH(v′′) = 2SG(v) + n.
Now, for each vertex v of a graph G, the status of the vertices v′ and v′′

in B(G) depends only on SG(v) so that the analogous median properties are
preserved. Hence M(B(G)) ∼= B(M(G)) and AM(B(G)) ∼= B(AM(G)).

Corollary 1. For any connected graph G, B(·) commute with C(·).
Corollary 2. Let G′ ∼= B(G) and J ′ ∼= B(J) be two connected graphs. Then the
following results hold.

1. There exist graphs H1 and H ′
1 such that M(H ′

1) = G′ and C(H ′
1) = J ′ and

H ′
1

∼= B(H1).
2. There exist graphs H2 and H ′

2 such that AM(H ′
2) = G′ and C(H ′

2) = J ′ and
H ′

2
∼= B(H2).

Proof. From Theorems 1 and 2, we can see that all the symmetric bipartite
graphs introduced in these constructions satisfy the conditions of Lemma 3.
Hence, starting with symmetric bipartite graphs G′ and J ′ which are also bipar-
tite graphs of some graphs, we obtain H ′

1 and H ′
2 satisfying the required condi-

tions in the assertion.

We now show that a general solution of median and anti-median problems
can be obtained from the results on symmetric bi-partite graphs.

Theorem 4. Let G and J be two connected graphs. Then,

1. There exist a graph H1 such that M(H1) ∼= G and C(H1) ∼= J .
2. There exist a graph H2 such that AM(H2) ∼= G and C(H2) ∼= J .

Proof. 1. Let G′ and J ′ are the graphs such that B(G) = G′ and B(J) = J ′.
From Corollary 2, we can see that there exists a graph H1 such that H ′

1
∼=

B(H1) with M(H ′
1) = G′ and C(H ′

1) = J ′. Using Theorem 3, M(H1) =
B−1BM(H1) = B−1MB(H1) = B−1M(H ′

1) = B−1(G′) = G. See Fig. 4 for
an illustration.

2. The proof can be obtained using the similar arguments as in (1).
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Fig. 4. Illustration of Theorem 4.

4 The Median Problem on Square of Bipartite Graphs

Lemma 4. For a vertex u ∈ V (G), SG2(u) = 1
2 (SG(u) + |Ou|), where |Ou| is

the number of vertices at odd distance from u in G.

Proof. For a vertex u ∈ V (G), let Ou be the set of all vertices at odd distance
from u. Then

SG2(u) =
∑

v∈Ou

dG2(u, v) +
∑

v/∈Ou

dG2(u, v)

=
∑

v∈Ou

1
2
dG(u, v) +

∑

v/∈Ou

1
2
(dG(u, v) + 1)

=
1
2
(SG(u) + |Ou|)

Remark 2. If |Ou| is a constant for all the vertices in V (G), then it is immediate
that the median set of G and G2 are the same.

Definition 1. A subgraph H of G is a square-subgraph of G if H2 ∼= G2[V (H)].

Not all subgraphs of a graph are square-subgraphs. For, P4 is not a square-
subgraph of C5 since P 2

4
∼= K4 − e is not induced in C2

5
∼= K5. The following

result characterises square-subgraphs of graphs (Fig. 5).

Lemma 5. H is square-subgraph of G if and only if for every non-adjacent
vertices u, v ∈ V (H) with dG(u, v) = 2, N∗

H(u, v) �= ∅.
Proof. Let H be a subgraph of G. Then, it is clear that E(H2) ⊆ E(G2[V (H)]).
Let u, v be two non-adjacent vertices of H such that dG(u, v) = 2. That is,
uv ∈ E(G2[V (H)]). Then H is square-subgraph of G if and only if uv is an edge
in H2 if and only if dH(u, v) = 2 if and only if N∗

H(u, v) �= ∅.

Theorem 5. Let G be a graph such that |Ou| is a constant for all u ∈ V (G).
If M(G) and AM(G) are square-subgraphs of G, then M(G2) = (M(G))2 and
AM(G2) = (AM(G))2.
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Fig. 5. Illustration of Definition 1.

Proof. Since M(G) is a square-subgraph of G, M(G)2 is induced in G2. By
Remark 2, the median sets of G and G2 are the same.

Remark 3. We can see that the earlier constructions on symmetric bi-partite
graphs are also valid for bipartite graphs with bi-partition (X,Y ) and |X| = |Y |.
Hence the following results holds.

Corollary 3. Let G be a bipartite graph with bi-partition (X,Y ) and |X| = |Y |,
then there are bipartite graphs H1 and H2 such that Median set of H2

1 is G2 and
Anti-median set of H2

2 is G2.

Proof. The proof is by construction. By Remark 3, we apply the construction
in Theorem 1 for symmetric bipartite graphs to obtain a graph H1 such that
M(H1) = G. It is clear by the construction that H1 is bi-partite with bi-partition
(X ′, Y ′) and |X ′| = |Y ′|. Now by Remark 2, Median set of H2

1 is G2. Similarly
using the construction in Theorem 2, the second part of the assertion also follows.
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Abstract. In this paper, we review an intuitionistic fuzzy finite state
automaton which assigns a membership and nonmembership values in
which there is a unique membership and unique nonmembership transi-
tion on an input symbol (IFAUMN) and also prove that there exists a
complete IFAUMN for a given incomplete IFAUMN for the same fuzzy
language.

Keywords: Intuitionistic · Complete

1 Introduction

The concept of a fuzzy set was first initiated by Zadeh [14,15]. Fuzzy set the-
ory has been shown to be a useful tool to describe situations in which the data
are imprecise or vague. Fuzzy sets handle such situations by attributing and
degree to which a certain object belongs to a set. The fuzzy algebraic structures
play a prominent role in mathematics with wide applications in many other
branches such as theoretical Physics, Computer Science, Coding Theory, Topo-
logical Spaces, Logic, Set Theory, etc., In view of a fuzzy finite state automaton
there may be more than one fuzzy state transition from a state on an input sym-
bol with a given membership value given by Santos, Wee and Fu [11,13]. This
development was followed by the postulation called deterministic fuzzy finite
state automaton as in Malik and Mordeson [9], in which there can be atmost
one fuzzy transition on a input symbol, which can be constructed equivalently
from a fuzzy finite state automaton. However, it only acts as a deterministic
fuzzy recognizer and a fuzzy regular languages accepted by the fuzzy finite state
automaton and deterministic fuzzy finite automata need not necessarily be equal.
(i.e., the degree of a string need not be same). Rajaretnam and Ayyaswamy [10]
introduced fuzzy finite state automaton with unique membership transition on
an input symbol, one kind of determinism of a given fuzzy finite automaton in
which the membership value of any recognized string in both the system are
the same.

Atanassov [1–5] initiated the concept of an intuitionistic fuzzy set (IFS). An
Atanassov intuitionistic fuzzy set is considered as a generalization of fuzzy set
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 271–280, 2017.
DOI: 10.1007/978-3-319-64419-6 35
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and has been found to be useful to deal with vagueness. In the sense of Atanassov
an IFS is characterized by a pair of functions valued in [0, 1], the membership
function and the nonmembership function. Using the notions of intuitionistic
fuzzy sets, Jun [6–8] introduced the concept of intuitionistic fuzzy finite state
machines. In intuitionistic fuzzy automata with unique membership transition
was introduced to reduce the length of uncertainty. We discussed Intuitionistic
fuzzy finite state automata with unique membership transition on an input sym-
bol (IFAUM) in [12]. In this paper, authors consider an intuitionistic fuzzy finite
automaton with unique membership and unique nonmembership transition on
an input symbol and also prove that there exists a complete IFAUMN for a given
incomplete IFAUMN for the same fuzzy language.

1.1 Basic Definitions

Definition 1. An Intuitionistic fuzzy sets (IFS) A∗ in a nonempty set Σ is an
object having the form A∗ = {(x, μA(x), νA(x)) | x ∈ Σ}, where the functions
μA : Σ → [0, 1] and νA : Σ → [0, 1] denote the degree of membership and nonmem-
bership of each element x ∈ Σ to the set A respectively, and 0 ≤ μA(x)+νA(x) ≤ 1
for each x ∈ Σ. For the sake of simplicity, we use the notation A∗ = (μA, νA)
instead of A = {(x, μA(x), νA(x)) | x ∈ Σ}.
Definition 2. An Intuitionistic fuzzy finite automaton (IFAUM) is an ordered
5-tuple A = (Q,Σ,A, i, f), where

1. Q is a finite nonempty set of states.
2. Σ is a finite nonempty set of input symbols.
3. A = (μA, νA), each is an intuitionistic fuzzy subset of Q × Σ × Q.

(a) the fuzzy subset μA : Q×Σ ×Q → [0, 1] denotes the degree of membership
such that μA(p, a, q) = μA(p, a, q′) for some q, q′ ∈ Q then q = q′.

(b) νA : Q × Σ × Q → [0, 1] denotes the degree of nonmembership is a fuzzy
subset of Q.

4. i = (iμA
, iνA

), each is an intuitionistic fuzzy subset of Q, i.e., iμA
: Q → [0, 1]

and iνA
: Q → [0, 1] called the intuitionistic fuzzy subset of initial states.

5. f = (fμA
, fνA

), each is an intuitionistic fuzzy subset of Q, i.e., fμA
: Q → [0, 1]

and fνA
: Q → [0, 1] called the intuitionistic fuzzy subset of final states.

Definition 3. Let A = (Q,Σ,A, i, f) be an IFAUM. Then the fuzzy behavior
of IFAUM is LA = (LμA

, LνA
).

Definition 4. Let A = (Q,Σ,A, i, f) be an IFAUM. Define an IFS
A∗ = (μ∗

A, ν∗
A) in Q × Σ∗ × Q as follows: ∀p, q ∈ Q,x ∈ Σ∗, a ∈ Σ.

μ∗
A(p, λ, q) =

{
1, if p = q

0, if p �= q
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ν∗
A(p, λ, q) =

{
0, if p = q

1, if p �= q

μ∗
A(p, xa, q) = ∨{μ∗

A(p, x, r) ∧ μA(r, a, q)|r ∈ Q}
ν∗

A(p, xa, q) = ∧{ν∗
A(p, x, r) ∨ νA(r, a, q)|r ∈ Q}

Definition 5. Let A = (Q,Σ,A, i, f) be an IFAUM and x ∈ Σ∗. Then x is
recognized by A if ∨{

iμA
(p)∧μ∗

A(p, x, q)∧fμA
(q) | p, q ∈ Q

}
> 0 and ∧{

iνA
(p)∨

ν∗
A(p, x, q) ∨ fνA

(q) | p, q ∈ Q
}

< 1.

2 Unique Membership and Unique Non Membership
Transitions

Definition 6. An Intuitionistic fuzzy finite automaton with unique membership
and unique nonmembership transition on an input symbol is an ordered 5-tuple
(IFAUMN) A = (Q,Σ,A, i, f), where [(i)]

1. Q is a finite nonempty set of states.
2. Σ is a finite nonempty set of input symbols.
3. A = (μA, νA), each is an intuitionistic fuzzy subset of Q × Σ × Q.
4. the fuzzy subset μA : Q × Σ × Q → [0, 1] and νA : Q × Σ × Q → [0, 1]

denotes the degree of membership and degree of nonmembership such that
μA(p, a, q) = μA(p, a, q′) and νA(p, a, q) = νA(p, a, q′)for some q, q′ ∈ Q then
q = q′.

5. i = (iμA
, iνA

), each is an intuitionistic fuzzy subset of Q, i.e., iμA
: Q → [0, 1]

and iνA
: Q → [0, 1] called the intuitionistic fuzzy subset of initial states.

6. f = (fμA
, fνA

), each is an intuitionistic fuzzy subset of Q, i.e., fμA
: Q → [0, 1]

and fνA
: Q → [0, 1] called the intuitionistic fuzzy subset of final states.

Theorem 1. Let A = (Q,Σ,A, i, f) be an intuitionistic fuzzy automata IFA
and LA be an intuitionistic fuzzy behaviour of A . Then there exists an intuition-
istic fuzzy finite automaton with unique membership and nonmembership transi-
tion on an input symbol IFAUMN A1 = (Q1, Σ,A1, i1, f1) such that LA1 = LA .

Proof. Let A = (Q,Σ,A, i, f) be an IFA with A = (μA, νA), i = (iμA
, iνA

),
f = (fμA

, fνA
) and LA be an intuitionistic fuzzy behaviour of A . Let

Q1 = P (Q), the set of all subsets of Q, every state in Q1 is of the form
{p1, p2, . . . , pr}, r ≥ 1, pi ∈ Q, i = 1, 2, . . . , r.

Define μA1 : Q1 × Σ × Q1 → [0, 1] and νA1 : Q1 × Σ × Q1 → [0, 1] by

μA1(S, a, S′) =

{
m, if S′ = {q ∈ Q | μA(p, a, q) = m, p ∈ S}
0, if S′ = φ

and

νA1(S, a, S′) =

{
n, if S′ = {q ∈ Q | νA(p, a, q) = n, p ∈ S}
1, if S′ = φ
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Define iμA1
: Q1 → [0, 1] and iνA1

: Q1 → [0, 1] by

iμA1
(S) =

{
∨{iμA

(p) | p ∈ S}, if S �= φ

0, if S = φ

iνA1
(S) =

{
∧{iνA

(p) | p ∈ S}, if S �= φ

1, if S = φ

Define fμA1
: Q1 → [0, 1] and fνA1

: Q1 → [0, 1] by

fμA1
(S) =

{
∨{fμA

(p) | p ∈ S}, if S �= φ

0, if S = φ

fνA1
(S) =

{
∧{fνA

(p) | p ∈ S}, if S �= φ

1, if S = φ

Define A1 = (Q1, Σ,A1, i1, f1). Let S, S1, S2 ∈ Q1, μA1(S, a, S1) = μA1(S, a, S2)
implies that S1 = {q ∈ Q | μA(p, a, q) = m, p ∈ S} and S2 = {q ∈ Q | μA

(p, a, q) = m, p ∈ S}.
Similarly, νA1(S, a, S1) = νA1(S, a, S2) implies that S1 = {q ∈ Q | νA

(p, a, q) = n, p ∈ S} and S2 = {q ∈ Q | νA(p, a, q) = n, p ∈ S}.
Therefore, S1 = S2. Hence A1 is an IFAUMN.
Now, we prove for μ∗

A(p, x, q) = μ∗
A1

({p}, x, S), q ∈ S. The result is proved by
induction on |x| = n. Let |x| = 1, x = λ. If p �= q, then the result is trivial. Let
p = q. Therefore, μA(p, λ, q) = 1. Let S = {q ∈ Q | μA(p, λ, q) = 1}. Therefore
S = {p}, p = q ∈ S, implies that μA1({p}, λ, S) = μA1({p}, λ, {p}) = 1, p ∈ S.
Therefore, the result is true for |x| = 0. Assume that the result is true for any
x ∈ Σ∗, |x| ≤ n. Let |x| = n, x = ya, |y| = n − 1, a ∈ Σ. For p, q ∈ Q,

μ∗
A(p, x, q) = μ∗

A(p, ya, q)
= ∨{μ∗

A(p, y, q′) ∧ μA(q′, a, q) | q′ ∈ Q} (1)

By induction μ∗
A(p, y, q′) = μ∗

A1
({p}, y, S′), q′ ∈ S′. Let μA(q′, a, q) = m,

S = {r ∈ Q | μA(s, a, r) = m, s ∈ S′}. Therefore, q′ ∈ S′, μA(q′, a, q) = m
implies that q ∈ S. Therefore μA1(S

′, a, S) = m, q′ ∈ S′. (1) implies that

μ∗
A(p, x, q) = ∨{μ∗

A1
({p}, y, S′) ∧ μA1(S

′, a, S) | S′ ⊂ Q1}
= μ∗

A1
({p}, ya, S)

= μ∗
A1

({p}, x, S), q ∈ S.

Therefore, μ∗
A(p, x, q) = μ∗

A1
({p}, x, S), q ∈ S.

Similarly, we prove for ν∗
A(p, x, q) = ν∗

A1
({p}, x, S), q ∈ S. The result is proved

by induction on |x| = n. Let |x| = 0, x = λ. If p �= q, then the result is trivial. Let
p = q. Therefore, νA(p, λ, q) = 1. Let S = {q ∈ Q | νA(p, λ, q) = 1}. Therefore
S = {p}, p = q ∈ S, implies that νA1({p}, λ, S) = νA1({p}, λ, {p}) = 1, p ∈ S.
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Therefore, the result is true for |x| = 0. Assume that the result is true for any
x ∈ Σ∗, |x| ≤ n. Let |x| = n, x = ya, |y| = n − 1, a ∈ Σ. For p, q ∈ Q,

ν∗
A(p, x, q) = ν∗

A(p, ya, q)
= ∧{ν∗

A(p, y, q′) ∨ νA(q′, a, q) | q′ ∈ Q} (2)

By induction ν∗
A(p, y, q′) = ν∗

A1
({p}, y, S′), q′ ∈ S′. Let νA(q′, a, q) = n, S = {r ∈

Q | νA(s, a, r) = n, s ∈ S′}. Therefore, q′ ∈ S′, νA(q′, a, q) = n implies that
q ∈ S. Therefore νA1(S

′, a, S) = n, q′ ∈ S′. (2) implies that

ν∗
A(p, x, q) = ∧{ν∗

A1
({p}, y, S′) ∨ νA1(S

′, a, S) | S′ ⊂ Q1}
= ν∗

A1
({p}, ya, S)

= ν∗
A1

({p}, x, S), q ∈ S.

Therefore, ν∗
A(p, x, q) = ν∗

A1
({p}, x, S′), q ∈ S.

Let LA1(x) be an intuitionistic fuzzy behaviour of A1. Now for x ∈ Σ∗,

LμA
(x) = ∨{iμA

(p) ∧ μ∗
A(p, x, q) ∧ fμA

(q) | q ∈ Q | p ∈ Q}
= ∨{iμA1

({p}) ∧ μ∗
A1

({p}, x, S) ∧ (∨fμA1
(q) | q ∈ S) | p ∈ Q}

= ∨{iμA1
({p}) ∧ μ∗

A1
({p}, x, S) ∧ fμA1

(S) | S ∈ Q | {p} ∈ Q1}
= LμA1

(x).

LνA
(x) = ∧{iνA

(p) ∨ ν∗
A(p, x, q) ∨ fνA

(q) | q ∈ Q | p ∈ Q}
= ∧{iνA1

({p}) ∨ ν∗
A1

({p}, x, S) ∨ (∧fνA1
(q) | q ∈ S) | p ∈ Q}

= ∧{iνA1
({p}) ∨ ν∗

A1
({p}, x, S) ∨ fνA1

(S) | S ∈ Q | {p} ∈ Q1}
= LνA1

(x).

Therefore LA1 = LA

Example 1. Consider an IFA A = (Q,Σ,A, i, f) where Q = {q1, q2, q3},
Σ = {a, b}, A = (μA, νA) where μA : Q → [0, 1] and νA : Q → [0, 1] are define as

μA(q1, a, q1) = 0.8
μA(q1, b, q1) = 0.7
μA(q1, a, q2) = 0.8
μA(q1, b, q3) = 0.6
μA(q1, b, q2) = 0.6
μA(q2, a, q3) = 0.5
μA(q3, b, q3) = 0.4

νA(q1, a, q1) = 0.2
νA(q1, b, q1) = 0.2
νA(q1, a, q2) = 0.2
νA(q1, b, q3) = 0.4
νA(q1, b, q2) = 0.4
νA(q2, a, q3) = 0.2
νA(q3, b, q3) = 0.5

The initial and final values are given by (iμA
, iνA

)(q1) = 0.3/0.6, (iμA
, iνA

)
(q2) = 0.2/0.5, (fμA

, fνA
)(q3) = 0.5/0.4. The intuitionistic fuzzy behaviour of

A is LμA
: Σ∗ → [0, 1] and LνA

: Σ∗ → [0, 1] such that
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L(μA , νA )(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.3/0.6, if x ∈ {a, b}∗aa{a, b}∗

0.3/0.6, if x ∈ {a, b}∗b{a, b}∗

0.3/0.6, if x ∈ {a, b}∗ba{a, b}∗

0.2/0.5, if x ∈ a{a, b}∗

0, otherwise

From the above theorem, we obtain the following IFAUMN A1 = (Q1, Σ,A, i, f)
where Q1 = {{q1}, {q2}, {q3}, {q1, q2}, {q2, q3}}. The fuzzy transition diagram of
A1 is shown in the following Fig. 1.

Fig. 1. Intuitionistic fuzzy finite automaton with unique membership and unique non-
membership transitions

For (iμA , iνA)(q1) = 0.3/0.6, (iμA , iνA)(q2) = 0.2/0.5, (fμA , fνA)(q3) = 0.5/0.4.

The fuzzy behaviour of A1 is the same as LA .

3 Complete Intuitionistic Fuzzy Automaton with Unique
Membership and Unique Nonmembership Transitions

Definition 7. Let A = (Q,Σ,A, i, f) be an IFAUMN. A is called complete if for
all p ∈ Q, a ∈ Σ, there exists q ∈ Q such that μA(p, a, q) > 0 and νA(p, a, q) < 1.

Theorem 2. Let A = (Q,Σ,A, i, f) be an incomplete IFAUMN, then there exist
an IFAUMN A c which is the completion of A such that fuzzy regular behaviour
accepted by A and A c are equal.

Proof. Let A = (Q,Σ,A, i, f) be an incomplete IFAUMN and the fuzzy behav-
iour accepted by it be LA . Let Qc = Q ∪ {t}, where t is a new state such
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that t /∈ Q. Choose m,n such that 0 < m ≤ 1, 0 < n ≤ 1 and m ≥ ∨{μA

(p, a, q) | p, q ∈ Q}, n ≤ ∧{νA(p, a, q) | p, q ∈ Q}.
Define A c = (Qc, Σ,Ac, ic, fc), where Ac = (μc

A, νc
A) such that μc

A : Qc ×
Σ × Qc → [0, 1] and νc

A : Qc × Σ × Qc → [0, 1] are defined as follows: for all
p, q ∈ Q, a ∈ Σ.

1. μc
A(p, a, q) = μA(p, a, q) if μA(p, a, q) > 0

νc
A(p, a, q) = νA(p, a, q) if νA(p, a, q) < 1

2. μc
A(p, a, t) = m and νc

A(p, a, t) = n
if ∨{μA(p, a, q) | q ∈ Q} = 0
μc

A(p, a, t) = νc
A(p, a, t) = 0

if ∨{μA(p, a, q) | q ∈ Q} > 0
3.

μc
A(t, a, p) =

{
m, if p = t

0, if p �= t

νc
A(t, a, p) =

{
n, if p = t

1, if p �= t

icμA
: Qc → [0, 1] and icνA

: Qc → [0, 1] are defined as

iμc
A
(p) =

{
iμA

(p), if p ∈ Q

0, otherwise

iνc
A
(p) =

{
iνA

(p), if p ∈ Q

1, otherwise

fc
μA

: Qc → [0, 1] and fc
νA

: Qc → [0, 1] are defined as

fμc
A
(p) =

{
fμA

(p), if p ∈ Q

0, otherwise

fνc
A
(p) =

{
fνA

(p), if p ∈ Q

1, otherwise

Clearly A c is a complete IFAUMN. Let LA c be the fuzzy behaviour accepted by
A c. Next we prove, LA = LA c . (i.e.) to prove LA (x) = LA c(x)∀x ∈ Σ∗.
Case(i). LμA

(x) = 0.
LμA

(x) = ∨{iμA
(p) ∧ μ∗

A(p, x, q) ∧ fμA
(q) | p, q ∈ Q} LμA

(x) = 0 implies
iμA

(p) = 0 ∀p ∈ Q or μ∗
A(p, x, q) = 0 or fμA

(q) = 0.
If iμA

(p) = 0 ∀p ∈ Q then icμA
(p) = 0 ∀p ∈ Qc, therefore Lc

μA
(x) = 0.

Suppose iμA
(p) �= 0, iνA

(p) �= 1 and μ∗
A(p, x, q) �= 0, ν∗

A(p, x, q) �= 1. Let
x = a1a2, . . . , an, μ∗

A(p, x, q) = μA(p, a1, p1) ∧ μA(p2, a2, p3) · · · μA(pn, an, q)
implies for some ak, 1 ≤ k ≤ n, there is no move in A . Let j be the small-
est integer such that 1 ≤ j ≤ n and there is no move in A on aj from pj . From
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the construction of A c, the automaton enters into the dead state t on aj with
membership and nonmembership value mpj

, npj
, Thereafter A c halts at t by

reading the remaining input symbols. But fc
μA

(t) = 0 and fc
νA

(t) = 1. Similarly,
the converse can be proved.

If fμA
(q) = 0 ∀q ∈ Q then fc

μA
(q) = 0 ∀q ∈ Qc, therefore Lc

μA
(x) = 0.

Similarly,LνA
(x) = ∧{iνA

(p) ∨ ν∗
A(p, x, q) ∨ fνA

(q) | q ∈ Q | p ∈ Q} LνA
(x) = 1

implies iνA
(p) = 1∀p ∈ Q or ν∗

A(p, x, q) = 1 or fνA
(q) = 1.

If iνA
(p) = 1 ∀p ∈ Q then icνA

(p) = 1 ∀p ∈ Qc, therefore Lc
νA

(x) = 1.
If fνA

(q) = 1 ∀q ∈ Q then fc
νA

(q) = 1 ∀q ∈ Qc, therefore Lc
νA

(x) = 1.
Therefore LA (x) = Lc

A (x).
If LνA

(x) < 1 implies iνA
(p) < 1 and ν∗

A(p, x, q) < 1 and fνA
(q) < 1

iνA
(p) < 1 implies icνA

(p) = iνA
(p)∀p ∈ Q fνA

(q) < 1 implies fc
νA

(q) = fνA
(q)∀q ∈

Q ν∗
A(p, x, q) < 1 implies ν∗

A(p, x, q) ≥ νc
A

∗(p, x, q)

LνA
(x) ≥ icνA

(p) ∨ νc
A

∗(p, x, q) ∨ fc
νA

(q)
≥ ∧{icνA

(p) ∨ νc
A

∗(p, x, q) ∨ fc
νA

(q) | q ∈ Qc | p ∈ Qc}
= Lc

νA
(x).

Therefore, LνA
(x) ≥ Lc

νA
(x), Similarly we get Lc

νA
(x) ≥ LνA

(x).
Hence LνA

(x) = Lc
νA

(x).
Case(ii). LμA

(x) > 0,
LμA

(x) = ∨{iμA
(p) ∧ μ∗

A(p, x, q) ∧ fμA
(q) | q ∈ Q | p ∈ Q}. Since Q is finite,

there exists p, q ∈ Q such that
LμA

(x) = iμA
(p) ∧ μ∗

A(p, x, q) ∧ fμA
(q)

LμA
(x) > 0 implies iμA

(p) > 0, μ∗
A(p, x, q) > 0, fμA

(q) > 0.
iμA

(p) > 0 implies icμA
(p) = iμA

(p), p ∈ Qc

fμA
(q) > 0 implies fc

μA
(q) = fμA

(q), q ∈ Qc

μ∗
A(p, x, q) > 0 from definition of A c, μc

A
∗(p, x, q) = μ∗

A(p, x, q). Thus

LμA
(x) = icμA

(p) ∧ μc
A

∗(p, x, q) ∧ fc
μA

(q)

≤ ∨{icμA
(p) ∧ μc

A
∗(p, x, q) ∧ fc

μA
(q) | q ∈ Qc | p ∈ Qc}

= Lc
μA

(x).

Hence LμA
(x) ≤ Lμc

A
(x) . (3)

Now Lc
μA

(x) = ∨{icμA
(p) ∧ μc

A
∗(p, x, q) ∧ fc

μA
(q) | q ∈ Qc | p ∈ Qc}. If

Lc
μA

(x) = 0, then Lc
μA

(x) ≤ LμA
(x). Let Lc

μA
(x) > 0. Since Qc is finite, there

exists p, q ∈ Qc such that
Lc

μA
(x) = icμA

(p) ∧ μc
A

∗(p, x, q) ∧ fc
μA

(q)
Lc

μA
(x) > 0 implies icμA

(p) > 0, μc
A

∗(p, x, q) > 0, fc
μA

(q) > 0
icμA

(p) > 0 implies iμA
(p) > 0 and p ∈ Q

fc
μA

(q) > 0 implies fμA
(q) > 0 and q ∈ Q

μc
A

∗(p, x, q) > 0 and fc
μA

(q) > 0 implies that q �= t, thereforeA c never enters into
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the dead state t in the sequence of moves. Therefore μc
A

∗(p, x, q) = μ∗
A(p, x, q).

We have

Lc
μA

(x) = iμA
(p) ∧ μ∗

A(p, x, q) ∧ fμA
(q), p, q ∈ Q

≤ ∨{iμA
(p) ∧ μ∗

A(p, x, q) ∧ fμA
(q) | q ∈ Q | p ∈ Q}

= LμA
(x).

Therefore Lc
μA

(x) ≤ LμA
(x) . (4)

Similarly, LνA
(x) = ∧{iνA

(p) ∨ ν∗
A(p, x, q) ∨ fνA

(q) | q ∈ Q | p ∈ Q}. Since Q is
finite, there exists p, q ∈ Q such that
LνA

(x) = iνA
(p) ∨ ν∗

A(p, x, q) ∨ fνA
(q)

LνA
(x) < 1 implies iνA

(p) < 1, ν∗
A(p, x, q) < 1, fνA

(q) < 1
iνA

(p) < 1 implies icνA
(p) = iνA

(p), p ∈ Qc,
fνA

(q) < 1 implies fc
νA

(q) = fνA
(q), q ∈ Qc

ν∗
A(p, x, q) < 1 from definition of A c, νc

A
∗(p, x, q) = ν∗

A(p, x, q)

LνA
(x) = icνA

(p) ∨ νc
A

∗(p, x, q) ∨ fc
νA

(q)
≥ ∧{icνA

(p) ∨ νc
A

∗(p, x, q) ∨ fc
νA

(q) | q ∈ Qc | p ∈ Qc}
= Lc

νA
(x).

Hence LνA
(x) ≥ Lνc

A
(x) . (5)

Now Lc
νA

(x) = ∧{icνA
(p) ∨ νc

A
∗(p, x, q) ∨ fc

νA
(q) | q ∈ Qc | p ∈ Qc}.

If Lc
νA

(x) < 1, Since Qc is finite, there exists p, q ∈ Qc such that
Lc

νA
(x) = icνA

(p) ∨ νc
A

∗(p, x, q) ∨ fc
νA

(q)
Lc

νA
(x) < 1 implies icνA

(p) < 1, νc
A

∗(p, x, q) < 1, fc
μA

(q) < 1.
icνA

(p) < 1 implies icνA
(p) = iνA

(p)
fc

νA
(q) < 1 implies fc

νA
(q) = fνA

(q) νc
A

∗(p, x, q) < 1 and fc
μA

(q) < 1 implies that
q �= t, therefore A c never enters into the dead state t in the sequence of moves.
Therefore νc

A
∗(p, x, q) = ν∗

A(p, x, q). We have

Lc
νA

(x) = iνA
(p) ∨ ν∗

A(p, x, q) ∨ fνA
(q), p, q ∈ Q

≥ ∧{iνA
(p) ∨ ν∗

A(p, x, q) ∨ fνA
(q) | q ∈ Q | p ∈ Q}

= LνA
(x).

Therefore Lc
νA

(x) ≥ LνA
(x) (6)

From Eqs. (3), (4), (5) and (6) LA (x) = Lc
A (x)

4 Conclusion

In this paper, the authors have made an attempt to study an Intuitionistic
fuzzy finite state automaton with unique membership and unique nonmember-
ship transition on an input symbol and also proved that there exists a complete
IFAUMN for a given incomplete IFAUMN for the same fuzzy language. We have
made a humble beginning in this direction, however, many concepts are yet to
be fuzzyfied in the context of IFAUMN.
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Independent 2-Point Set Domination in Graphs
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Abstract. A set D of vertices in a connected graph G is said to be an
independent 2-point set dominating set (or in short i-2psd set) of G if
D is an independent set and for every subset S ⊆ V − D there exists
a non-empty subset T ⊆ D containing at most 2 vertices such that the
induced subgraph 〈S ∪ T 〉 is connected. In this paper we explore graphs
which possess an i-2psd set.

Keywords: Independent set · 2-point set domination

1 Introduction

By a graph G we mean a finite, undirected, connected and non-trivial graph with
neither loops nor multiple edges. The order |V (G)| and the size |E(G)| of G are
denoted by n and m respectively. For graph theoretic terminology we refer to
West [9]. For the terms related to the concept of domination we refer to Haynes
et al. [6].

In [8], Gupta and Jain define 2-point set domination in a graph as follows:

Definition 1. A set D ⊆ V (G) is a 2-point set dominating set (or, in short,
2-psd set) of G if for every subset S ⊆ V − D there exists a non-empty subset
T ⊆ D containing at most 2 vertices such that 〈S ∪T 〉 is connected. The 2-point
set domination number of G, denoted by γ2ps(G), is the minimum cardinality of
a 2-psd set of G.

Definition 2. A 2-psd set D of a graph G which is also independent is said to
be an independent 2-psd set (abbreviated henceforth as i-2psd set) of G.

The theory of independent domination was formalized by Berge [3] and
Ore [7]. The independent domination number and the notation i(G) were intro-
duced by Cockayne and Hedetniemi in [4,5]. It is well know that every finite
graph has an independent dominating set. However, such a statement is not true
in the case of 2-psd sets in graphs. For example, the cycle C7 has no independent
2-psd set.

We call a graph to be an i-2psd graph if it possesses an independent 2-psd
set and a non i-2psd graph otherwise. Obviously, if G is a graph with a vertex
of full degree, then G possesses an i-2psd set. Further, every complete bipartite
graph Km,n is an i-2psd graph. The main aim of this paper is to explore graphs
which possess an independent 2-psd set.
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 281–288, 2017.
DOI: 10.1007/978-3-319-64419-6 36



282 P. Gupta and D. Jain

In [1], Acharya and Gupta define a set D of vertices in a connected graph G
to be an independent point-set dominating set (or in short i-psd set) of G if D
is independent and for every subset S ⊆ V − D there exists a vertex v ∈ D such
that the subgraph 〈S ∪ {v}〉 is connected. A graph having an i-psd set is called
an i-psd graph. A detailed study of graphs possessing i-psd sets has been done
in [1,2]. Clearly by definition every i-psd graph is an i-2psd graph.

2 Basic Results

The following proposition is an immediate consequence of the definition of
i-2psd set.

Proposition 1. For any graph G, an independent subset D ⊆ V is an i-2psd
set of G if and only if for every independent subset S ⊆ V − D there exists a
subset T ⊆ D such that |T | ≤ 2 and 〈S ∪ T 〉 is connected.

Theorem 1. Let G be a separable graph. If an i-2psd set D is such that V (B) ⊆
V − D for some block B of G, then V − D = V (B), B is complete and each
vertex of B is a cut-vertex.

Proof. Let D be an i-2psd set of G such that V (B) ⊆ V − D for some block
B of G. Let z ∈ (V − D) − V (B) and let x ∈ V (B) be such that distance of z
from x is least amongst all vertices of B. Then for any vertex y ∈ V (B) − {x},
the z-y path passes through x and x /∈ D. Hence D is not a 2-psd set of G, a
contradiction. Thus V − D = V (B).

Now since each vertex of V − D is adjacent to some vertex in D, each vertex
of B is a cut-vertex of G. Next, if x, y ∈ V (B) are such that xy /∈ E(G),
then D being a i-2psd set there exists a vertex d ∈ D(= V (G) − V (B)) such
that x, y ∈ N(d) which implies that d ∈ V (B). This is a contradiction to our
hypothesis that V (B) ⊆ V − D. Thus, B is complete.

Theorem 2. Let G be a separable graph. Let D be an i-2psd set such that V −
D � V (B) for some block B of G and V (B) ∩ D is not an i-2psd set of B. Let

P (B,D) := {x ∈ V − D : N(x) ∩ V (B) ∩ D = φ and N(x) ∩ (D − V (B)) 	= φ}.

Then P (B,D) is non-empty, every vertex of P (B,D) is adjacent to every other
vertex of V − D and V (B) ∩ D is an i-2psd set of 〈V (B) − P (B,D)〉.
Proof. If an i-2psd set D of G is such that V − D � V (B) for some block B of
G and V (B) ∩ D is not an i-2psd set of B, then there exists a vertex u ∈ V − D
such that N(u) ∩ V (B) ∩ D = φ and N(u) ∩ (D − V (B)) 	= φ. Thus, P (B,D) is
non-empty.

Next we show that each vertex of P (B,D) is adjacent to all other vertices
of V − D. Suppose there exist vertices u ∈ P (B,D) and z ∈ (V − D) − {u}
such that uz /∈ E(G). Since D is an i-2psd set of G, there exists a vertex w ∈ D
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such that u, z ∈ N(w) which implies w ∈ D ∩ V (B), a contradiction to the fact
u ∈ P (B,D). Hence the claim.

Lastly, we show that V (B) ∩ D is an i-2psd set of 〈V (B) − P (B,D)〉. By
definition of P (B,D), every vertex of (V − D) − P (B,D) is adjacent to some
vertex of V (B) ∩ D. Also for every independent subset S(|S| ≥ 2) of (V − D) −
P (B,D), there exists a set W ⊆ D such that |W | ≤ 2 and 〈S ∪W 〉 is connected.
Since S ⊆ V (B), W is a subset of V (B). Therefore V (B) ∩ D is an i-2psd set of
〈V (B) − P (B,D)〉.
Observation 1. If D is an i-2psd set of a graph G, then for any two vertices
x, y ∈ V − D, d(x, y) ≤ 2, since for any two non-adjacent vertices x, y ∈ V − D,
there exists a vertex w ∈ D such that x, y ∈ N(w).

We give an upper bound on the diameter of a graph for being an i-2psd
graph.

Theorem 3. For an i-2psd graph G, diam(G) ≤ 4.

Proof. Let D be an i-2psd set of G. Let x, y ∈ V (G) be two non-adjacent vertices.
If x, y ∈ V −D then d(x, y) ≤ 2. If x ∈ D and y ∈ V −D, then there exists a vertex
z ∈ V − D such that xz ∈ E(G) and therefore, d(x, y) ≤ d(x, z) + d(z, y) ≤ 3. If
x, y ∈ D, then there exist z1, z2 ∈ V −D such that xz1, yz2 ∈ E(G) and therefore
d(x, y) ≤ d(x, z1) + d(z1, z2) + d(z2, y) ≤ 4. Hence the theorem.

We observe that converse of Theorem 3 is not true. For example, C7 has diameter
3 but fails to possess an i-2psd set.

In [1], Acharya and Gupta proved that a tree T is an i-psd graph if and only
if diam(T ) ≤ 4. Since every i-psd graph is an i-2psd graph, we have the following
theorem.

Theorem 4. A tree T is an i-2psd graph if and only if diam(T ) ≤ 4.

Theorem 5. Let G be a graph which is not a tree and let girth(G) ≥ 7. Then
G is not a i-2psd graph.

Proof. Let Cg be a cycle of length g in G. For any independent subset D of G,
|(V − D) ∩ V (Cg)| ≥ � g

2�. Hence there exists a pair of vertices x, y ∈ (V − D) ∩
V (Cg) such that d(x, y) ≥ 3. Thus, it follows from Observation 1 that G is not
an i-2psd graph.

However, not every graph with girth less than 7 is i-2psd. For example, the
corona C4 ◦ K1 has girth 4 but is not an i-2psd graph.

Problem 1. Characterize i-2psd graphs with maximum possible girth.

The independence number of a graph G, denoted by β0(G), is the maximum
cardinality of an independent subset of G. Since every i-2psd set is a 2-psd set,
we have the following theorem.
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Theorem 6. A necessary condition for a graph to be an i-2psd graph is β0(G) ≥
γ2ps(G).

For the corona G = Kn ◦ K1, we have β0(G) = n = γ2ps(G). Also for each
positive integer n ≥ 6, C̄n is i-2psd and β0(C̄n) = 2 = γ2ps(C̄n).

Problem 2. Characterize i-2psd graphs G satisfying β0(G) = γ2ps(G).

Based on Theorem 6, we have the following corollary giving some classes of
non i-2psd graphs.

Corollary 1. a. A cycle Cn is an i-2psd graph if and only if n ≤ 6.
b. Cn × K2 (n ≥ 5) is not an i-2psd graph.
c. Pn × Pm (n ≥ 4,m ≥ 4) is not an i-2psd graph.

Note that C4 ◦ K1 is a graph which satisfies all three necessary conditions
given in Theorems 3, 5 and 6 but is not an i-2psd graph. Thus, all these three
conditions together are not sufficient for a graph to be an i-2psd graph.

We now proceed to investigate separable graphs which are i-2psd graphs.
The set of all blocks of a separable graph G is denoted by B(G) and the set

of all blocks at a cut-vertex w in G is denoted by Bw(G).

Theorem 7. If a separable graph G is i-2psd, then each block of G is i-2psd.

Proof. Let G be a separable i-2psd graph and B ∈ B(G) be such that B is not an
i-2psd block. Let D ∈ Di2ps(G). If V (B) ∩ D = φ, then by Theorem 1, V − D =
V (B) and B is complete which implies B is an i-2psd block, a contradiction
to our choice of the block B. Hence V (B) ∩ D 	= φ. Since D is independent,
V (B) ∩ (V − D) 	= φ.

Suppose V − D � V (B). Let F = V (B) ∩ D. Since B is not an i-2psd
block, F is not a 2-psd set of B and therefore by Theorem 2, P (B,D) 	= φ. Let
V1 = P (B,D) and V2 = (V − D) − P (B,D). Then again by Theorem2, 〈V1〉
is complete, F is a 2-psd set of 〈F ∪ V2〉 and for each x ∈ V1, N(x) ∩ V2 =
V2 and N(x) ∩ F = φ. For any x ∈ V1, the set F ∪ {x} is independent and
V (B) − [F ∪ {x}] ⊆ N(x). This implies F ∪ {x} is an i-2psd set of B, which
contradicts our choice of block B.

Next, suppose V − D � V (B). Choose a vertex y ∈ (V − D) ∩ V (B′) for
some block B′ (B′ 	= B). Let x ∈ (V −D)∩V (B) be such that xy /∈ E(G) (This
is always possible, otherwise B ∼= K2 and hence an i-2psd block). Since D is an
i-2psd set of G, there exists a vertex w ∈ D such that x, y ∈ N(w). We shall
show that (V − D) ∩ V (B) ⊆ N(w). Suppose z ∈ (V − D) ∩ V (B) is such that
z /∈ N(w). Then there exists w′ ∈ D (w′ 	= w) such that z, y ∈ N(w′). This yields
a z-x path (z, w′, y, w, x) containing vertices outside B, a contradiction. Thus,
(V − D) ∩ V (B) ⊆ N(w). Now if |(V − D) ∩ V (B)| = 1, then clearly V (B) ∩ D
is an i-2psd set of B and if |(V − D) ∩ V (B)| ≥ 2, then (V − D) ∩ V (B) ⊆ N(w)
implies that w ∈ V (B) and therefore V (B) ∩ D is an i-2psd set of B. In both
cases we get a contradiction to our assumption that B is not an i-2psd block.
Hence every block of an i-2psd separable graph is an i-2psd block.
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The converse of Theorem 7 is not true. For example, consider a separable
graph G obtained by identifying a vertex of C5 with a vertex of C3. Both C5

and C3 are i-2psd graphs but G is not an i-2psd graph.
In next section we give some classes of i-2psd graphs by using the properties

discussed in this section.

3 Some Classes of i-2psd Graphs

In this section we characterizes i-2psd cactus, i-2psd generalized theta graphs
and i-2psd block graphs. Since we have discussed i-2psd cycles and trees, we
consider separable cactus which contains at least one cycle.

Theorem 8. Let G be a separable cactus with at least one cycle. Then G is an
i-2psd graph if and only if one of the following holds:

a. G has a unique cycle Cn, where 3 ≤ n ≤ 6 and V (G) − V (Cn) consists of
pendant vertices with their support in V (Cn) − F where F is a maximum
independent subset of V (Cn).

b. All cycles of G are of length at most 4 and are at a single cut-vertex, w and
all vertices of V (G)−⋃

B∈Bw(G) V (B) are pendant vertices with their support
in N(w).

Proof. Necessity: Let G be a separable cactus with at least one cycle. Since
each block of an i-2psd separable graph is i-2psd, each non-trivial block of G is
isomorphic to a cycle of length 6 or less. Let D be an i-2psd set of G.

If V − D = V (B) for some block B of G, then by Theorem 1, B is complete
and each vertex of B is a cut-vertex. Therefore, B ∼= C3 or B ∼= K2. In this
case D = V (G) − V (B). Since D is independent, each vertex of V (G) − V (B)
is pendant with its support in V (B). If B ∼= K2, then G is a double star and
therefore non-acyclic. Therefore, B ∼= C3 and G has pendant vertices adjacent
to each vertex of C3. Thus G satisfies (b) where G has only C3 as a non-trivial
block, w ∈ V (C3) and all vertices of V (G) − ∪B∈Bw(G)V (B) are pendant with
their support in V (C3) − {w}.

Next, if V − D � V (B), then D ∩ V (B) 	= φ. Let F = D ∩ V (B). Since
V (G) − V (B) ⊂ D, it is independent and consists of pendant vertices with their
support in V (B) − F . Therefore if B ∼= C3 or C5 or C6, then G satisfies (a).
If B ∼= C4 and |F | = 1, then G satisfies (b) where G has only C4 as a non-
trivial block, C4 has a cut-vertex w, F � N(w) and V (G)−⋃

B∈Bw(G) V (B) are
pendant with their support in V (C4) ∩ N(w). If B ∼= C4 and |F | = 2, then G
satisfies (a).

Lastly, suppose V − D � V (B) for any block B of G. Let x, y ∈ V − D be
two non-adjacent vertices from different blocks of G. Since D is an i-2psd set of
G, there exists w ∈ D such that x, y ∈ N(w). This implies that w is a cut-vertex
of G and all x-y paths pass through w. We shall show that V − D ⊆ N(w).
Suppose there exists a vertex z ∈ V − D such that z /∈ N(w). Since x and y
belong to two different blocks of G, vertex z can be adjacent to at most one of x
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and y. In either case, D being a 2-psd set, we get a x-y path passing through z
and not containing w, a contradiction. Therefore, V − D = N(w). This implies
V (G) − N(w) = D and is independent. This implies all non-trivial blocks are
at a common cut-vertex w and are isomorphic to C3 or C4, and all vertices
of V (G) − (

⋃
B∈Bw(G) V (B)) are pendant vertices with their support in N(w).

Hence in this case G satisfies (b).

Sufficiency: If G satisfies (a), then F ∪{V (G)−V (Cn)} is an i-2psd set of G and
if G satisfies (b), then V (G) − N(w) is an i-2psd set of G. Hence the theorem.

A generalized theta graph Θs1,...,sk consists of k internally disjoint u-v paths
of lengths s1, ..., sk.

Theorem 9. A generalized theta graph Θs1,s2,...,sk(k ≥ 3) is an i-2psd graph if
and only if one of the following holds:

a. 1 ≤ si ≤ 3 for each i.
b. There exists exactly one j ∈ {1, 2, ..., k} such that sj = 4 and si ≤ 2 for all

i 	= j.

Proof. Let G be a generalized theta graph and let P1, P2, ..., Pk be the internally
disjoint u-v paths of lengths s1, s2, ..., sk respectively.

Necessity: Suppose G is an i-2psd graph and let D be an i-2psd set of G. It
follows from Observation 1 that si ≤ 4 for each i.

Now suppose Pj be a u-v path of length 4. We claim that si ≤ 2 for all i,
i 	= j.

Suppose si > 2 for some i, i 	= j. Since length of each u-v path is at most
four, si = 3 or 4. In either case there exist vertices x ∈ V (Pj) ∩ (V − D)
and y ∈ V (Pi) ∩ (V − D) such that x, y /∈ N(w) for any w ∈ D, which is a
contradiction to the fact that D is an i-2psd set of G. Thus si ≤ 2 for all i 	= j.

Thus, each u-v path Pi is of length at most four and if there exists a path
of length four then all other u-v paths are of length two or less. This proves the
necessity.

Sufficiency: Suppose G satisfies condition (a). If si = 1 for some i, then V (G) −
N(u) is an i-2psd set of G, if si = 3 for some i, then V (G) − {N(u) ∪ {v}} is an
i-2psd set of G and if si = 2 for each i, then {u, v} is an i-2psd set of G.

Now suppose G satisfies condition (b) and sj = 4 for some j. Let w ∈ V (Pj) be
such that d(u,w) = 2 = d(v, w). If si = 1 for some i, i 	= j, then V (G)−{u, v, w}
is an i-2psd set of G and if si 	= 1 for any i, i 	= j, then {u, v, w} is an i-2psd set
of G. Hence the theorem.

Theorem 10. For a graph G, if there exists a vertex w ∈ V (G) such that
V (G)−N(w) is independent then V (G)−N(w) is an i-2psd set of G and there-
fore G is an i-2psd graph.

Theorem 10 gives a sufficient condition for a graph to be an i-2psd graph and
provides us with several classes of i-2psd graphs. Some classes are given by the
following corollaries.
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Corollary 2. Every complete bipartite graph Km,n(m,n ≥ 1) is an i-2psd graph.

Corollary 3. Every split graph is an i-2psd graph.

The condition given by Theorem10 is not necessary for an i-2psd graph in
general but in case of block graphs it is necessary as well as sufficient.

A block graph is a graph in which every block is complete. We know that a
complete graph is an i-2psd graph; here we characterize separable i-2psd block
graphs.

Theorem 11. A separable block graph G is an i-2psd graph if and only if there
exists a vertex w such that V (G) − N(w) is independent.

Proof. Necessity: If G has no non-trivial block then G is a tree and therefore
by Theorem 4, diam(G) ≤ 4. In this case G clearly satisfies the condition of
the theorem where w is a vertex in the center of G. Now we assume G has a
non-trivial block, say B. Let D be an i-2psd set of G. If D ∩ V (B) = φ, then
by Theorem 1, V − D = V (B) and each vertex of B is a cut-vertex. Since D =
V (G)−V (B) and is independent, all vertices of V (G)−V (B) are pendant vertices
with their support in V (B). Hence G satisfies the condition of the theorem with
unique non-trivial block B and w be any vertex in V (B).

Now if D ∩ V (B) 	= φ, then |D ∩ V (B)| = 1. Let D ∩ V (B) = {w}. We shall
show that V − D = N(w). Suppose there exists a vertex z ∈ V − D such that
z /∈ N(w). Then z ∈ V (B′) for some block B′, B′ 	= B. Now z can be adjacent
to at most one vertex of B. Suppose z is adjacent to some vertex y ∈ V (B).
Choose a vertex x ∈ V (B)−{w} such that xz /∈ E(G). Since D is an i-2psd set,
for the set {x, z} there exists w′ ∈ D such that x, z ∈ N(w′). Thus we get a cycle
(x, y, z, w′) containing vertices of different blocks, a contradiction. Therefore, z is
not adjacent to any vertex of B. Then for any x, y ∈ V (B), there exist w′, w′′ ∈ D
such that x, z ∈ N(w′) and y, z ∈ N(w′′). If w′′ = w′, then x, y ∈ N(w′) implies
that w′ ∈ V (B), a contradiction to the fact that D∩V (B) = {w} and if w′′ 	= w′,
then we get a cycle (x,w′, z, w′′, y, x) containing vertices of different blocks,
again a contradiction. Thus V − D = N(w) and therefore D = V (G) − N(w) is
independent. Since D is independent and each block is complete, every vertex
in V (G) − N [w] is a pendant vertex.

Sufficiency: If a block graph G satisfies the condition of the theorem, then V (G)−
N(w) is an i-2psd set of G and hence G is an i-2psd graph.

4 Conclusion

As seen in Theorem 11, for a separable i-2psd block graph G there exists a vertex
w such that D = V (G) − N(w) is independent and is an i-2psd set. Since D is
independent and each block of G is complete, we may note that every vertex in
V (G) − N [w] is a pendant vertex with its support in N(w). We will continue
with our study of characterizing i-2psd graphs in our subsequent papers.
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Abstract. Let G = (V, E) be a finite graph. A graphoidal cover Ψ of G
is a collection of paths (not necessary open) in G such that every vertex
of G is an internal vertex of at most one path in Ψ and every edge of G
is in exactly one path in Ψ. The graphoidal covering number η of G is
the minimum cardinality of a graphoidal cover of G. The length glΨ (G)
of a graphoidal cover Ψ of G is defined to be min{l(P ) : P ∈ Ψ} where
l(P ) is the length of the path P. The graphoidal length gl(G) is defined
to be max{glΨ (G) : Ψ is a graphoidal cover of G}. For any graph G of
size q, gl(G) ≤ q and this bound is attained if and only if G is either a
path or a cycle. Further if gl(G) �= q, then gl(G) ≤ �q/2�. In this paper
we characterize graphs having graphoidal length �q/2�. In the process
we obtain that there are exactly 12 non homomorphic graphs having
graphoidal covering number two.

Keywords: Graphoidal length · Graphoidal covering number ·
Graphoidal cover

1 Introduction

We consider finite, connected, undirected graphs without loops and multiple
edges. The order and size of a graph G are denoted by p and q respectively. For
terminology we refer to Chartrand and Lesniak [12], unless explicitly defined
otherwise.

A graphoidal cover of a graph G is a collection Ψ of non-trivial paths in G
are not necessarily open, such that every vertex of G is an internal vertex of at
most one path in Ψ and every edge of G is in exactly one path in Ψ.

The set E of its edges is a graphoidal cover of G, called trivial graphoidal
cover of G. A graphoidal cover Ψ of a graph containing at least one path of length
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greater than one is called a non-trivial graphoidal cover. Clearly any graph of
size at least 2 possesses a non-trivial graphoidal cover.

The concept of graphoidal covers [4] was introduced by Acharya and
Sampathkumar as a close variant of another emerging discrete structure called
semigraphs [18]. Many interesting notions based on the concept of graphoidal
covers such as graphoidal covering number [4], graphoidal labeling [17], etc.
were introduced and are being studied extensively. In particular, the notion
of graphoidal covering number of a graph has attracted many researchers and
numerous work is present in literature [7–10,14,15]. Acharya and Gupta in 1999
extended the concept of graphoidal covers to infinite graphs and introduced the
notion of graphoidal domination in graphoidally covered graphs [1–3]. In 2016 the
authors using the concept of graphoidal covers introduced a new graph invariant
called graphoidal length of a graph [6]. A detailed study of graphoidal covers is
given in [3,5].

Definition 1 [6]. The length of a graphoidal cover Ψ of a non-trivial graph G,
denoted by glΨ (G), is defined as glΨ (G) = min{l(P ) : P ∈ Ψ}, where l(P ) is
the length of the path P.

Definition 2 [6]. The graphoidal length of graph G, denoted by gl(G), is
defined by

gl(G) = max
{
glΨ (G) : Ψ ∈ GG

}
.

For any graphoidal cover Ψ of G, gl(G) ≥ glΨ (G). A graphoidal cover Ψ with
glΨ (G) = gl(G) is called a gl-graphoidal cover of G.

By definition of the graphoidal length, for any graph G, 1 ≤ gl(G) ≤ q
and gl(G) = q if and only if G is a path or a cycle. Further for the star
K1,n(n ≥ 3), gl(K1,n) = 1. Hence the above bounds are sharp. If further
gl(G) �= q for any graph G of size q, then every graphoidal cover Ψ of G contains
at least two paths, whence length of at least one path in Ψ is less than or equal
to �q/2�. Thus if gl(G) �= q then length of every graphoidal cover of G is less
than or equal to �q/2�. It follows that gl(G) ≤ �q/2� whenever gl(G) �= q.

Proposition 1. If G � Pn, Cn, then 1 ≤ gl(G) ≤ �q/2�.
In this paper we characterize graphs G for which graphoidal length gl(G) =

�q/2�, where q is the size of the graph. For this purpose, we need some
terminology.

1.1 Terminology and Notation

Definition 3. A subdivision of an edge uv is obtained by removing edge uv,
adding a new vertex w and adding edges uw and vw. Any graph derived from a
graph G by a sequence of edge subdivisions is called a subdivision of G.
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Definition 4 [13]. Two graphs G1 and G2 are homomorphic if there exists a
graph G such that both G1 and G2 are subdivisions of G. We write G1 ∼ G2 if
the two graphs G1 and G2 are homomorphic.

Example 1. The graphs G1, G2 and G3 in Fig. 1 are the only mutually non homo-
morphic cycles with exactly two chords.

Fig. 1. Non homomorphic cycles with two chords

Definition 5 [11]. A generalized theta graph or k-theta graph, denoted by
Θl1,l2,...,lk consists of two vertices joined by k internally disjoint paths of lengths
l1, l2, ..., lk.

Definition 6. A guitar graph is a graph obtained by identifying an end vertex of
path Pn+1 with a vertex of k-theta graph Θl1,l2,...,lk . If the k-degree vertex is iden-
tified then it is denoted by Gn,l1,l2,...,lk . If 2-degree vertex on path of length li at a
distance r from the k-degree vertex is identified, then it is denoted by rD

li
n,l1,...,lk

or simply Dn,l1,...,lk if the position of the identified vertex is ineffectual.

Definition 7. A generalized tadpole or tadpole with k-tails, denoted by
Γn,l1,l2,...,lk , is a graph obtained by identifying a vertex of the cycle Cn with
a pendant vertex of each of the paths Pl1+1, Pl2+1, ..., Plk+1.

Definition 8. A spider with k-legs, denoted by Sl1,l2,,...,lk , is a tree obtained by
identifying an end vertex of each of the paths Pl1+1, Pl2+1, ..., Plk+1. Each path
is then called a leg of the spider Sl1,l2,,...,lk .

Thus a spider with k-legs is a tree homomorphic to K1,k or subdivision of
K1,k.

Definition 9. A double cycle, denoted by Cm,n is a graph obtained by identifying
a vertex of a cycle Cm and a vertex of a cycle Cn.

Definition 10 [16]. The bull is the connected graph consisting of a triangle and
two nonadjacent pendant edges. A generalized bull is a graph homomorphic to
the bull graph.

A generalized bull can be partitioned into four internally disjoint paths of
length l1, l2, l3, l4, where paths of lengths l1, l2 are between vertices of degree 3
and paths of length l3, l4 are between a 3-degree vertex and a pendant vertex.
Hence based on this partition we denote a generalized bull as Bl1,l2,l3,l4 .
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Notation 1 [9]. If P = (v0, v1, ..., vn) and Q = (vn = w0, w1, ..., wm) are two
paths in G, then the walk obtained by concatenating P and Q at vn is denoted
by P o Q and the path (vn, vn−1, ..., v1, v0) is denoted by P−1.

Definition 11 [4]. The graphoidal covering number of a graph G, denoted by
η(G), is the minimum cardinality of a graphoidal cover of G. A graphoidal cover
Ψ of a graph G is called an η-graphoidal cover if |Ψ | = η(G).

Proposition 2. If G and H are homomorphic graphs, then η(G) = η(H).

Proposition 3 [3]. Let G be any graph and let Ψ be any graphoidal cover of G.
Then for any P and Q in Ψ , |V (P )∩V (Q)| ≤ 4. If one of P or Q is closed, then
|V (P )∩V (Q)| ≤ 3. Further, if both P and Q are closed then |V (P )∩V (Q)| ≤ 2.

Observation 1. Let Ψ be any graphoidal cover of a (p, q)-graph G.

1. Every vertex of odd degree must be an end vertex of some open path in Ψ .
If further G has k vertices of odd degree, then at least 
k/2� paths in Ψ are
open.

2. If |Ψ | = 2, then at most two vertices in G can have degree 4 and corresponding
to each 4-degree vertex, there is a closed path in Ψ .

2 Graphs with Graphoidal Length �q/2�
In this section we characterize graphs with graphoidal length �q/2�. For this
purpose, we first give two lemmas.

Lemma 1. If G is a graph with gl(G) = �q/2�, then η(G) = 2.

Proof. Since gl(G) = �q/2�, 3 ≤ Δ(G) ≤ 4 and G has a graphoidal cover
Ψ consisting of two paths (may be closed) of lengths �q/2� and 
q/2�. Since
Δ(G) ≥ 3, η(G) ≥ 2. Also, by definition, η(G) ≤ |Ψ | = 2. Hence it follows that
η(G) = 2.

Lemma 2. Let G be any graph. Then η(G) = 2 if and only if G is homomorphic
to one of the twelve graphs in Fig. 2.

Proof. Let G be homomorphic to one of the graphs in Fig. 2. Then by
Proposition 2, η(G) = 2. Conversely, let η(G) = 2 and let Ψ = {P,Q} be an η-
graphoidal cover of G. It follows from Proposition 3 that 1 ≤ |V (P )∩V (Q)| ≤ 4.

Case I. |V (P ) ∩ V (Q)| = 1.
Let V (P ) ∩ V (Q) = {v}. If both P and Q are open, then v must be an end

vertex of one path and an internal vertex of the other and hence G ∼ K1,3 and
we are through. If both P and Q are closed, then G ∼ C3,3. Now, suppose P is
closed and Q is open. If v is an end vertex of Q, then G ∼ Γ3,1. If v is internal
to Q, then it must be the coincident end vertex of P and hence G ∼ Γ3,1,1.
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Fig. 2. η-graphoidal cover of every graph is shown.

Case II. |V (P ) ∩ V (Q)| = 2.
If both P and Q are open, then either G ∼ B2,1,1,1 or Γ3,1. If both P and

Q are closed, then G ∼ Θ2,2,2,1. If exactly one of P or Q is open, then either
G ∼ Θ2,2,1 or G ∼ G1,2,2,1.

Case III. |V (P ) ∩ V (Q)| = 3.
Since |V (P )∩ V (Q)| = 3, both P and Q cannot be closed (Proposition 3). If

exactly one of them is closed, then one common vertex must be coincident end
vertex of the closed path and internal of the open and the other two common
vertices must be end vertices of the open path and internal to closed path.
Clearly, in this case G ∼ G1. If both P and Q are open, then without loss in
generality we can assume that two common vertices are end vertices of P and
the remaining common vertex an end vertex of Q. The other end vertex of Q,
thus, must be a pendant vertex of G. Hence it follows that G ∼ D1,2,2,1.

Case IV. |V (P ) ∩ V (Q)| = 4.
Since |V (P )∩V (Q)| = 4, both P and Q must be open. Further, two common

vertices are end vertices of P and internal vertices of Q and the remaining two
are end vertices of Q and internals to P . Then there are only two possible
configuration for G i.e., G ∼ G2 or G ∼ G3.

Thus in all the possible cases, we arrive at the conclusion that G is homo-
morphic to one of the graphs listed in Fig. 2.

Notation 2. Let F denote the family of all graphs G with η(G) = 2. Then in
view of Lemma 2, F = ∪5

i=1Fi, where
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F1 = {G : G ∼ Θ2,2,1 or G ∼ Θ2,2,2,1}
F2 = {G : G ∼ G1,2,2,1 or G ∼ D1,2,2,1}
F3 = {G : G ∼ Γ3,1 or G ∼ Γ3,1,1}
F4 = {G : G ∼ C3,3 or G ∼ K1,3 or G ∼ B2,1,1,1}
F5 = {G : G ∼ G1 or G ∼ G2 or G ∼ G3}.

Lemmas 1 and 2 indicate that if graph G satisfies gl(G) = �q/2�, then G ∈ F .
But not every graph in F is a graph with graphoidal length �q/2�. For example
θ2,2,4,6,G2,2,5,7 and Γ3,1 are all in F and yet does not satisfy gl(G) = �q/2�. Let
F∗ be the subset of F consisting of those graphs G for which gl(G) = �q/2�.
Then F∗ = ∪5

i=1F∗
i , where for each i (1 ≤ i ≤ 5), F∗

i = Fi ∩ F∗.

Theorem 1. For a (p, q)-graph G, gl(G) = �q/2� if and only if G ∈ F∗.

Thus to characterize graphs G with graphoidal length gl(G) = �q/2�, we
need to characterize graphs in F∗. Hence we shall characterize graphs in F∗

i

separately for each i ∈ {1, 2, 3, 4, 5}.

3 Characterization of Graphs in F∗

Theorem 2. A graph G ∈ F∗
1 if and only if one of the following holds:

(a). G ∼= Θl1,l2,l3

(b). G ∼= Θl1,l2,l3,l4 and the length of the paths is such that |(li+lj)−(lr+ls)| ≤ 1
for some distinct i, j, r, s ∈ {1, 2, 3, 4}.

Proof. If G ∈ F∗
1 , then gl(G) = �q/2� and either G ∼= Θl1,l2,l3 or Θl1,l2,l3,l4 . If

G ∼= Θl1,l2,l3 , then (a) holds. Thus let G ∼= Θl1,l2,l3,l4 and Ψ = {A1, A2} be a gl-
graphoidal cover of G. Since G has two vertices of degree 4, from Observation 1
both A1 and A2 are closed with coincident end vertices u and v, respectively.
Consequently, l(A1) = li+lj and l(A2) = lr+ls for distinct i, j, r, s. Consequently,
|(li + lj) − (lr + ls)| = |l(A1) − l(A2)| ≤ 1. Thus (b) holds.

Conversely, suppose the hypothesis holds. Since G has a vertex of degree
at least three, gl(G) ≤ �q/2�. Hence it s enough to show the existence of a
graphoidal cover Ψ such that glΨ (G) = �q/2�.

If (a) holds then G has two vertices u and v of degree 3 and three
internally disjoint paths P,Q,R of lengths l1, l2, l3 respectively. Let P =
(u0, u1, ...., ul1), Q = (v0, v1, ...., vl2) and R = (w0, w1, ...., wl3), where u = u0 =
v0 = w0 and v = ul1 = vl2 = wl3 . Without loss of generality assume that
l1 ≥ l2 ≥ l3. Let

r =
⌊

l1 + l2 − l3 + 2
2

⌋
.

By the choice of r, �q/2� = r + l3 − 1 and r < l1. Then the graphoidal cover
Ψ = {A1, A2} of G, where A1 = Q o (u0, u1...., ur) and A2 = R o (ul1 , ...., ur),
is such that l(A1), l(A2) ≥ �q/2� and consequently glΨ (G) = �q/2�.
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Suppose (b) holds i.e., G ∼= Θl1,l2,l3,l4 and |(li + lj) − (lr + ls)| ≤ 1 for
some distinct i, j, r, s ∈ {1, 2, 3, 4}. Let u and v be the two vertices of degree
4 in G and P,Q,R, S be internally disjoints paths joining u to v of respective
lengths li, lj , lr, ls. Consider the graphoidal cover Ψ = {A1, A2} of G, where
A1 = P o Q−1 is closed path with coincident end vertex u and A2 = R−1 o S is
closed path with coincident end vertex v. By the hypothesis, |l(A1)− l(A2)| ≤ 1
and consequently l(A1), l(A2) ≥ �q/2�. Thus glΨ (G) = �q/2�.
Theorem 3. A graph G ∈ F∗

2 if and only if one of the following holds:

(a). G ∼= Gn,l1,l2,l3 and |(n + li) − (lj + lk)| ≤ 1 for some distinct i, j, k ∈ [3].
(b). G ∼= rD

li
n,l1,l2,l3

(1 ≤ i ≤ 3) and one of the following holds:
1. |(n + 2r + lj) − (li + lk)| ≤ 1
2. |(n + li + lj) − (2r + lk)| ≤ 1.

where {i, j, k} = {1, 2, 3}
Proof. If G ∈ F∗

2 , then gl(G) = �q/2� and G ∼= Gn,l1,l2,l3 or rD
li
n,l1,l2,l3

. If
G ∼= Gn,l1,l2,l3 , then G has a pendant vertex u, a 3-degree vertex v, a 4-degree
vertex w and all other vertices of degree 2. Let Ψ be a gl-graphoidal cover
of G. Since |Ψ | = 2, from Observation 1, w must be coincident end vertex of
a closed path P in Ψ and internal vertex of the other path Q in Ψ . Also, u
and v are end vertices of Q and v is an internal vertex of P . Then for some
i, j, k, Q = Pn+1 o Pli+1 and P = Plj+1 o Plk+1 and hence l(Q) = n + li and
l(P ) = lj + lk. Since |l(Q) − l(P )| ≤ 1, it follows that |(n + li) − (lj + lk)| ≤ 1.
Thus (a) holds.

If G ∼= rD
li
n,l1,l2,l3

, then G has 3 vertices of degree 3, one pendant vertex and
all other vertices of degree 2. Also G has internally disjoint paths Q1, Q2, Q3

and Q4 of lengths l1, l2, l3 and n, respectively. Let Qi = (ui0 , ui1 , ..., uili
)

for i = 1, 2, 3, where u10 = u20 = u30 and u1l1
= u2l2

= u3l3
. Since

G has four vertices of odd degree, both the paths in a gl-graphoidal cover
Ψ = {A1, A2} must be open with odd degree vertices as end vertices. Thus for
some j, k either A1 = Q4 o (u1r , ..., u10) o Qj and A2 = (u1r , ..., u1l1

) o (Qk)−1

or A1 = Q4 o (u1r , ..., u1l1
) o (Qj)−1 and A2 = (u1r , ..., u10) o Qk. Since

|l(A1)−l(A2)| ≤ 1, either |(n+2r+lj)−(l1+lk)| ≤ 1 or |(n+l1+lj)−(2r+lk)| ≤ 1
holds. Hence (b) holds.

Conversely, suppose the hypothesis holds. Then gl(G) ≤ �q/2�. If (a) holds,
then the graphoidal cover Ψ = {A1, A2} of G where A1 is the closed Ψ -edge
consisting of paths Plj+1 and Plk+1 with vertex of degree 4 as its coincident
vertex and A2 consists of paths Pli+1, Pln+1. Clearly, glΨ (G) = �q/2�.

If (b) holds, then again G has four internally disjoints paths Qi, Qj , Qk

and Q of lengths li, lj , lk and n respectively. If (1) is true, then for A1 =
Q o (uir , ..., ui0) o Qj and A2 = (uir , ..., uili

) o (Qk)−1, Ψ = {A1, A2} is a
graphoidal cover of G such that glΨ = �q/2�. If (2) holds, then Ψ = {A1, A2} is
a graphoidal cover of length �q/2�, where A1 = Q o (uir , uir+1 , ..., uili

) o Q−1
j

and A2 = (uir , uir−1 , ..., ui0) o Qk.
Hence in either case we get a graphoidal cover of length �q/2� and the theorem

follows.
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Theorem 4. A graph G ∈ F∗
3 if and only if one of the following holds:

(a). G ∼= Γn,l1 and l1 ≤ n + 1.
(b). G ∼= Tn,l1,l2 and |n − (l1 + l2)| ≤ 1.

Proof. If G ∈ F∗
3 , then either G ∼= Γn,l1 or G ∼= Tn,l1,l2 . Let Ψ = {A1, A2} be a gl-

graphoidal cover of G. Without loss of generality assume that V (A1)∩V (Cn) �= φ
and V (A2) ∩ V (Pl1+1) �= φ. Then l(A1) ≤ n and l(A2) ≥ l1. Consequently,

l1 ≤ l(A2) ≤ l(A1) + 1 ≤ n + 1.

If G ∼= Γn,l1 , then we are through. Thus let G ∼= Tn,l1,l2 . Then Ψ = {A1, A2},
where A1 = Cn and A2 = (Pl1+1)−1 o Pl2+1, is the unique graphoidal cover of
G with cardinality two. Since |l(A1) − l(A2)| ≤ 1, we have |n − (l1 + l2)| ≤ 1.

Conversely, suppose the hypothesis holds. If (a) holds, then G has a
3-degree vertex u and a pendant vertex. Let Pl1+1 = (u0, u1, ..., ul1) and
Cn = (v0, v1, ..., vn−1, v0) be such that u0 = v0 = u. Since l1 ≤ n + 1,
it follows that �q/2� ≤ n. Let k = �q/2�, A1 = (v0, v1, ..., vk) and A2 =
(vk, ..., vn−1, v0 = u0, u1, ..., ul1). Then Ψ = {A1, A2} is a graphoidal cover of
G having glΨ (G) = �q/2�. Hence we have gl(G) = �q/2�. If (b) holds, then
Ψ = {Cn, P−1

l1+1 o Pl2+1} is the graphoidal cover of G with glΨ (G) = �q/2�,
whence gl(G) = �q/2�.
Theorem 5. A graph G ∈ F∗

4 if and only if one of the following holds:

(a). G ∼= Sl1,l2,l3 and |li − (lj + lk)| ≤ 2 for some distinct i, j, k ∈ [3].
(b). G ∼= Cm,n and |n − m| ≤ 1.
(c). G ∼= Bl1,l2,l3,l4 and one of the following holds:

1. |(li + lr) − (lj + ls)| ≤ 1
2. |(li) − (lj + lr + ls)| ≤ 1

where {i, j} = {1, 2} and {r, s} = {3, 4}.
Proof. Let G ∈ F∗

4 , then G ∼= Sl1,l2,l3 or Cm,n or Bl1,l2,l3,l4 . Let Ψ = {A1, A2}
be a gl-graphoidal cover of G. If G ∼= Sl1,l2,l3 , then G has a 3-degree vertex
which is internal to one path in Ψ (say) A2. Then for some i, j, k, A1 = Pli+1.
But then A2 = (Plj+1)−1 o Plk+1. Thus

|li − (lj + lk)| = |l(A1) − l(A2)| ≤ 1.

If G ∼= Cm,n, then both A1 and A2 must be closed paths in Ψ and hence A1 = Cn

and A2 = Cm. Consequently, |n − m| ≤ 1.
If G ∼= Bl1,l2,l3,l4 , then G has four vertices of odd degree and four internally

disjoints paths Q1, Q2, Q3 and Q4 of lengths l1, l2, l3 and l4 respectively. Since G
has four vertices of odd degree, both the paths A1 and A2 in Ψ must be open and
with end vertices of odd degree. Thus either A1 = Qr o Qi and A2 = Qs o (Qj)−1

or A1 = Qi and A2 = Qr o Qj (Qs)−1, for some i, j, r, s such that {i, j} = {1, 2}
and {r, s} = {3, 4}. Since |l(A1) − l(A2)| ≤ 1, either |(li + lr) − (lj + ls)| ≤ 1 or
|(li) − (lj + lr + ls)| ≤ 1 holds.
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Conversely, suppose the hypothesis hold. If (a) is true, then the graphoidal
cover Ψ = {A1, A2} of G, where A1 = Pli+1 and A2 = (Plj+1)−1 o Plk+1, is such
that glΨ (G) = �q/2�. Hence it follows that gl(G) = �q/2�. If (b) is true, then
the graphoidal cover Ψ = {Cn, Cm} is such that glΨ (G) = min{m,n}. Since
|n − m| ≤ 1, it follows that glΨ (G) = �q/2�. Consequently, gl(G) = �q/2�.

Let (c) holds and Qi, Qj , Qr and Qs be the four internally disjoints paths of
lengths li, lj , lr and ls respectively, where {i, j} = {1, 2} and {r, s} = {3, 4}. If
(1) holds, then for A1 = Qr o Qi and A2 = Qs o (Qj)−1, Ψ = {A1, A2} is a
graphoidal cover of G such that glΨ (G) = �q/2�. If (2) is true, then Ψ = {A1, A2},
where A1 = Qi and A2 = Qr o Qj (Qs)−1, is a graphoidal cover of G such that
l(A1), l(A2) ≥ �q/2�. Thus in either case we get a graphoidal cover of length
glΨ (G) = �q/2�. Hence gl(G) = �q/2�.

We now proceed to characterize graphs in F∗
5 . If G ∈ F∗

5 , then G ∼ G1 or
G2 or G3, given in Fig. 2.

Let G be G1-subdivision graph with a vertex u of degree 4, two vertices v1
and v2 of degree 3 and all other vertices of degree 2. Let m and n be the lengths
of the two u-v1 paths which do not pass through v2. Similarly, let r and s be the
lengths of the two u-v2 paths which do not pass through v1. Let l be the length
of the v1-v2 path which do not pass through u. Then with these notations in
mind we denote the graph G by lA

r,s
m,n.

Let G be a G2-subdivision graph with four vertices u1, u2, v1 and v2 of degree
3 and all other vertices of degree 2. We denote G by k

l Br,s
m,n, where m and n are

lengths of the two u1-v1 paths which do not pass through u2 and v2, r and s
are lengths of the two u2-v2 paths which do not pass through u1 and v1 and k
and l are the respective lengths of u1-u2 path and v1-v2 path which do not pass
through v1 or v2 and u1 or u2 respectively.

Let G be a G3-subdivision graph with four vertices u1, u2, v1 and v2 of
degree 3 and all other vertices of degree 2. We denote G by k

l Cr,s
m,n, where m

and n are lengths of u1-v1 and u1-v2 paths which do not pass through u2 and v1
respectively, r and s are lengths of u2-v1 and u2-v2 paths which do not pass
through u1 and v1 respectively and k and l are the respective lengths of u1-u2

path and v1-v2 path which do not pass through v1 and u1 respectively.
The following three theorems give a characterization of graphs in F∗

5 and we
omit the proofs.

Theorem 6. Let G ∼= lA
n1,n2
m1,m2

be a graph. Then gl(G) = �q/2� if and only if
|(mi+nr)−(mj +ns+ l)| ≤ 1 for some i, j, r, s such that {i, j} = {r, s} = {1, 2}.
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Theorem 7. Let G ∼= l2
l1

Bn1,n2
m1,m2

be a graph. Then gl(G) = �q/2� if and only
if |(mi + nj + lk) − (mr + ns + lt)| ≤ 1 for some i, j, k, r, s, t such that {i, r} =
{j, s} = {k, t} = {1, 2}.
Theorem 8. Let G ∼= m6

m5
Cm3,m4

m1,m2
be a graph. Then gl(G) = �q/2� if and only

if |(mi + mj + mk) − (mr + ms + mt)| ≤ 1 for distinct i, j, k, r, s, t ∈ [6].

Theorems 1–8 completely characterize graphs G with gl(G) = �q/2�.
Following theorem summarizes all the above mentioned theorems.

4 Conclusion

In this paper graphs having graphoidal length �q/2� are characterized. Now if
H denote the set of all graphs having graphoidal length q or �q/2�, then for any
G /∈ H, gl(G) ≤ �q/3�. One may consider characterizing extremal graphs for this
bound. Also, as we noticed that gl(G) = �q/2� implied that η(G) = 2, similarly
can we say that η(G) = 3 is necessary for a graph G to have gl(G) = �q/3�.

References

1. Acharya, B.D., Purnima, G.: Further results on domination in graphoidally covered
graphs. AKCE Int. J. Graphs Comb. 4, 127–138 (2007)

2. Acharya, B.D., Purnima, G., Deepti, J.: On graphs whose graphoidal domination
number is one. AKCE Int. J. Graphs Comb. 12(2–3), 133–140 (2015)

3. Acharya, B.D., Purnima, G.: Domination in graphoidal covers of a graph. Discrete
Math. 206, 3–33 (1999)

4. Acharya, B.D., Sampathkumar, E.: Graphoidal covers and graphoidal covering
number of a graph. Indian J. Pure Appl. Math. 18, 882–890 (1987)

5. Arumugam, S., Acharya, B.D., Sampathkumar, E.: Graphoidal covers of a graph:
a creative review. In: Proceedings of Graph Theory and its Applications, pp. 1–28.
Tata McGraw-Hill, New Delhi (1997)

6. Arumugam, S., Purnima, G., Rajesh, S.: Bounds on graphoidal length of a graph.
Electron. Notes Discrete Math. 53, 113–122 (2016)

7. Arumugam, S., Pakkiam, C.: Graphoidal bipartite graphs. Graphs Combin. 10,
305–310 (1994)

8. Arumugam, S., Pakkiam, C.: Graphs with unique minimum graphoidal cover.
Indian J. Pure Appl. Math. 25, 1147–1153 (1994)

9. Arumugam, S., Rajasingh, I., Pushpam, P.R.L.: Graphs whose acyclic graphoidal
covering number is one less than its maximum degree. Discrete Math. 240, 231–237
(2001)

10. Arumugam, S., Suseela, J.S.: Acyclic graphoidal covers and path partitions in a
graph. Discrete Math. 190, 67–77 (1998)

11. Brown, J.I., Hickman, C., Sokal, A.D., Wagner, D.G.: On the chromatic roots of
generalized theta graphs. J. Combin. Theory Ser. B. 83(2), 272–297 (2001)

12. Chartrand, G., Lesniak, L.: Graphs & Digraphs. Chapman & Hall/CRC,
Boca Raton (2005)

13. Gross, J.L., Yellen, J., Zhang, P.: Handbook of Graph Theory. Discrete Mathemat-
ics and its Applications. CRC Press, Boca Raton (2014)



On Graphs Whose Graphoidal Length Is Half of Its Size 299

14. Pakkiam, C., Arumugam, S.: On the graphoidal covering number of a graph. Indian
J. Pure Appl. Math. 20, 330–333 (1989)

15. Purnima, G., Rajesh, S.: Domination in graphoidally covered graphs: least-kernel
graphoidal covers. Electron. Notes Discrete Math. 53, 433–444 (2016)

16. Reed, B., Sbihi, N.: Recognizing bull-free perfect graphs. Graphs Combin. 11(2),
171–178 (1995)

17. Sahul Hamid, I., Anitha, A.: On label graphoidal covering number-I. Trans. Comb.
1, 25–33 (2012)

18. Sampathkumar, E.: Semigraphs and their applications. Report on the DST Project
(2000)



Point-Set Domination in Graphs.
VIII: Perfect and Efficient PSD Sets

Purnima Gupta1, Alka2(B), and Rajesh Singh2

1 Department of Mathematics, Sri Venkateswara College,
University of Delhi, New Delhi 110021, Delhi, India

purnimachandni1@gmail.com
2 Department of Mathematics, University of Delhi,

New Delhi 110007, Delhi, India
09alka01@gmail.com, singh rajesh999@outlook.com

(Dedicated to Dr. B.D. Acharya on his 69th birthday.)

Abstract. A perfect dominating set in a graph G is a dominating set
D such that every vertex v in V − D is adjacent to a unique vertex u
in D. An efficient dominating set is a perfect dominating set D which is
independent as well. A point-set dominating set (or, psd-set, in short) is
a dominating set D for which every subset S of V −D has a vertex u ∈ D
such that the induced subgraph 〈S ∪ {u}〉 is connected. In this paper we
determine necessary conditions for a graph to possess an efficient psd-set.

Keywords: Perfect dominating set · Efficient dominating set · Point-set
dominating set

1 Introduction

For all terminology and notations in graph theory, we refer to West [12]. All
graphs considered in this note are non-trivial simple graphs, in the sense that
none of them contains a self-loop or a multiple edge and could be infinite unless
mentioned otherwise.

Given any graph G = (V,E), a subset D of V is called an independent set
in G if no two vertices of D are adjacent in G, a dominating set if every vertex
u of G is either in D or is adjacent to a vertex v in D, a perfect dominating set
[6,7] (or, ‘pd -set’ in short) if every vertex u of G is either in D or is adjacent to
exactly one vertex v in D, an efficient dominating set [5] if it is a dominating set
which is both independent and perfect; and a point set dominating set [1–4,10]
(or ‘psd -set’ in short) if for every subset S of V − D there exists a vertex u ∈ D
such that the induced subgraph 〈S ∪{u}〉 is connected. For a detailed treatment
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of various shades of the notion of domination in graphs, the reader is referred
to [8,9].

In this paper we characterize graphs possessing proper perfect psd-sets. We
also investigate the structure of graphs G for which there exists an efficient
psd-set.

2 Perfect and Efficient Psd-Sets

We shall now establish a necessary and sufficient condition for a dominating set
to be both a perfect psd-set.

Theorem 1. Let G = (V,E) be a graph and let D be a proper nonempty subset
of V. Then D is a perfect psd-set if and only if there exists a subset D′ =
{u1, u2, . . . , ut} of D such that {X1,X2, . . . , Xt} is a partition of V − D where
Xi ⊂ N(ui) and for distinct i, j ∈ t, each vertex of Xi is adjacent to each vertex
of Xj .

Proof. Sufficiency is obvious. Now, suppose there exists a proper perfect psd-
set D in G. Let D′ = {u ∈ D : (V − D) ∩ N(u) �= ∅}, where N(u) is the
open neighborhood of u. Since D is a perfect psd-set, the sets Xv := (V − D) ∩
N(v), v ∈ D′ form a partition of V − D. If D = {u} then N(u) = V − D
and the result is trivial. So, let |D| ≥ 2. Let x ∈ Xu and y ∈ Xv for distinct
u, v ∈ D. Since Xu ∩ Xv = ∅, we must have x �= y. If x and y are nonadjacent,
since D is a psd-set it follows that there must exist z ∈ D − {u, v} such that
x, y ∈ N(z). Hence x, y ∈ Xz. But, this contradicts the fact that Xz ∩ Xu = ∅
and Xz ∩ Xv = ∅. Thus each vertex of Xu is adjacent to each vertex of Xv.

Corollary 1. Let G = (V,E) be a graph and let D be a proper nonempty subset
of V. Then D is an efficient psd-set if and only if {N(u) : u ∈ D} is a partition
of V − D and for any two distinct vertices u, v ∈ D each vertex of N(u) is
adjacent to each vertex of N(v).

In 1979, Walkar et al. [11] proved the following interesting and fundamental
theorem.

Theorem 2. [11] For any finite graph G = (V,E) and for any dominating set
D of G, the following inequality holds:

|V − D| ≤
∑

u∈D

d(u).

Further, equality holds if and only if D is an efficient dominating set.

From the above theorem, the following characterization for efficient psd-sets
follows immediately.
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Theorem 3. For any graph G, D is an efficient psd-set if and only if D is a
psd-set of G satisfying

|V − D| =
∑

u∈D

d(u). (3)

Our next result reveals another special nature of efficient psd-sets in a graph.

Theorem 4. Every efficient psd-set of a graph G is a minimum psd-set of G.

Proof. Let D be any efficient psd-set of G. Then D is an independent dominating
set and hence D is a minimal dominating set of G. Now, suppose G possesses
a psd-set D1 such that |D1| < |D|. Then, (V − D1) ∩ D �= ∅. If there are
distinct vertices u, v ∈ D ∩ (V − D1), then there must exist w1 ∈ D1 such that
w1 ∈ N(u)∩N(v), a contradiction to the fact that, {N(u) : u ∈ D} is a partition
of V − D. Thus, |D ∩ (V − D1)| = 1 and hence D1 = D − {u} for some u ∈ V.
But, this is a contradiction to the minimality of D as a dominating set of G.
Hence the result follows.

We now proceed to investigate the structure of graphs possessing efficient
psd-sets.

Lemma 1. Let G be a connected graph having an efficient psd-set D of cardi-
nality at least two. Then G is a nontrivial block if and only if the degree of each
vertex in D is at least two.

Proof. Suppose d(u) ≥ 2 for every u ∈ D. Since D is an efficient psd-set, it
follows from Corollary 1, that {N(u) : u ∈ D} is a partition of V − D and for
any two distinct vertices u and v in D, every vertex of N(u) is adjacent to every
vertex of N(v). Further, as |N(w)| ≥ 2 for every w ∈ D, it is easy to see that
V −D is contained in a block B of G. But since |V −D| ∩N(u)| = |N(u)| ≥ 2 it
follows that u ∈ V (B) for every u ∈ D. Hence, V = D ∪ (V − D) ⊂ V (B) ⊂ V .
Thus, G must be a block. The converse is obvious.

Theorem 5. If a connected graph G has an efficient psd-set D, then exactly
one of the following holds:

1. G has a vertex of full degree,
2. G is non-trivial block having no vertex of full degree,
3. Either G ∼= P4 or G is a separable graph with exactly one nontrivial block B,

every vertex in V (G) − V (B) is a pendant vertex and each vertex of B is a
support to at most one vertex in V (G) − V (B).

Proof. Let D be an efficient psd-set. First suppose |D| = 1 and D = {u}, then
trivially u is a vertex of full degree. In this case, thus, (i) holds. Next, assume
that |D| ≥ 2. If d(u) ≥ 2 for every u ∈ D, then it follows Lemma 1 that G
must be a nontrivial block. Further, since D is independent and has at least two
vertices it follows that no vertex of D is of full degree. Also, since D is a perfect
dominating set; V − D does not contain a vertex of full degree too. Thus, (ii)
holds.
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Next, suppose that the set D1 = {u ∈ D : d(u) = 1} is nonempty. If D = D1

then since D is an efficient psd-set of G it follows from Corollary 1 that 〈V −D〉 is
a complete subgraph. Hence G = K+

|V −D|, the complete of order |V −D| together
with one pendent edge attached at each of its vertices. Hence if |D| = 2, then
G = P4. Now, suppose D �= D1. Since D1 ⊂ D it then follows that there must
exist w ∈ D such that d(w) ≥ 2. By Corollary 1, it follows that the induced
subgraph 〈(V − D) ∪ (D − D1)〉 must be a nontrivial block, say B. Since D is
an efficient psd-set of G the rest of the conclusions in condition (iii) follow.

Lastly, parallel to an ideal pursued by Acharya and Gupta [2], we examine
below when an efficient psd-set is unique in an isolate-free graph.

Theorem 6. Let G be a graph without isolated vertices. Then G has an unique
efficient psd-set D if and only if either G has exactly one vertex of full degree
or G is a nontrivial block in which u ∈ D implies that N(u) � N [x] for any
x ∈ N(u).

Proof. Let D be an unique efficient psd-set of G. If D = {u}, then u is the only
vertex of full degree in G. Now let |D| = 2. We claim that G is a nontrivial
block. If G is not a nontrivial block, then by Lemma 1, there exists w ∈ D
such that d(w) = 1. Let v be the support of the pendent edge vw. Clearly,
v ∈ V − D. Then, it follows from Theorem 4 that D1 = (D − {w}) ∪ {v} is also
an efficient psd-set of G, which is a contradiction. Thus, G must be a nontrivial
block. Now suppose there exist u ∈ D and x ∈ N(u) such that N(u) ⊂ N [x].
Then, (D − {u}) ∪ {x} is an efficient psd-set, which is again a contradiction.
Hence for any u ∈ D,N(u) �⊆ N [x] for any x ∈ N(u).

Conversely, let the conditions of the theroem be satisfied. If G has exactly
one vertex of full degree, say u, then D = {u} is the unique γp(G)-set. Hence,
let G be a nontrivial block in which u ∈ D =⇒ N(u) � N [x] for any x ∈ N(u).
Suppose there is another efficient psd-set D1. Then, |D ∩ D1| = |D| − 1. Let
(V − D1) ∩ D = {u}. If D1 = (D − {u}) ∪ {x} for some x ∈ V − D, then D1 is
a dominating set of G and x ∈ N(u). Hence u ∈ N(x). Since D is independent,
none of the vertices of N(u) can be adjacent to any vertex of D−{u}. Also, since
D is a pd-set we see that every vertex of N(u) must be adjacent to x. Thus,
N [u] ⊂ N(x), contradicting our assumption and the proof is complete.

3 Conclusion and Scope

Theorem 5, gives some necessary conditions for a graph to possess an efficient
psd-set. However, it is not difficult to see that the conditions are not sufficient and
hence the problem of characterizing graphs possessing efficient psd-sets is open.
Further, in view of condition 3 of Theorem 5, one may also try to characterize
separable graphs possessing efficient psd-sets. Another interesting problem is to
characterize graphs possessing perfect psd-sets.
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Abstract. Let G = (V, E) be a finite graph. A graphoidal cover Ψ of
G is a collection of paths (not necessary open) in G such that every
vertex of G is an internal vertex of at most one path in Ψ and every
edge of G is in exactly one path in Ψ. The graphoidal covering number η
of G is the minimum cardinality of a graphoidal cover of G. The length
glΨ (G) of a graphoidal cover Ψ of G is defined to be min{l(P ) : P ∈ Ψ}
where l(P ) is the length of the path P. The graphoidal length gl(G) is
defined to be max{glΨ (G) : Ψ is a graphoidal cover of G}. In this paper
we investigate the existence of graphs which admit a graphoidal cover Ψ
with |Ψ | = η(G) and glΨ (G) = gl(G).

Keywords: Graphoidal cover ·Graphoidal length ·Graphoidal covering
number

1 Introduction

Throughout this paper we consider only finite, undirected graphs with neither
loops nor multiple edges. For graph theoretic terminology we refer to Chartrand
and Lesniak [13].

A graphoidal cover of a graph G is a collection Ψ of non-trivial paths in G
are not necessarily open, such that every vertex of G is an internal vertex of at
most one path in Ψ and every edge of G is in exactly one path in Ψ.

The concept of graphoidal covers [4] was introduced by Acharya and Sam-
pathkumar as a close variant of another emerging discrete structure called sem-
igraphs [18]. Many interesting notions based on the concept of graphoidal cov-
ers such as graphoidal covering number [4], graphoidal labeling [17], graphoidal
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signed graphs [16], etc. were introduced and are being studied extensively. In
particular, the notion of graphoidal covering number of a graph has attracted
many researchers and numerous work is present in literature [7–9,11,12,14].
Acharya and Gupta in 1999 extended the concept of graphoidal covers to infi-
nite graphs and introduced the notion of graphoidal domination in graphoidally
covered graphs [1–3]. In 2016 the authors using the concept of graphoidal cov-
ers introduced a new graph invariant called graphoidal length of a graph [6]. A
detailed study of graphoidal covers is given in [3,5].

Definition 1 [6]. The length of a graphoidal cover Ψ of a non-trivial graph G,
denoted by glΨ (G), is defined as glΨ (G) = min{l(P ) : P ∈ Ψ}, where l(P ) is
the length of the path P.

Definition 2 [6]. The graphoidal length of graph G, denoted by gl(G), is
defined by

gl(G) = max
{
glΨ (G) : Ψ ∈ GG

}
.

For any graphoidal cover Ψ of G, gl(G) ≥ glΨ (G). A graphoidal cover Ψ with
glΨ (G) = gl(G) is called a gl-graphoidal cover of G.

It follows from the definition that gl(Pn) = n − 1 = l(Pn) and gl(Cn) = n
for all n ≥ 3. Also for any (p, q)-graph G, gl(G) ≤ min{p, q} and equality holds
if and only if G is either a path or a cycle.

For complete graph K4 with V (K4) = {a, b, c, d}, Ψ = {(a, b, c, d), (b, d, a, c)}
is a graphoidal cover of K4. Hence glΨ (K4) = 3. Thus gl(K4) ≥ glΨ (K4) = 3.
Also gl(K4) < min{p, q} = 4 and hence gl(K4) = 3.

Definition 3 [4]. The graphoidal covering number of G, denoted by η(G), is the
minimum cardinality of a graphoidal cover of G. A graphoidal cover of G with
cardinality η(G) is called an η-graphoidal cover.

Since gl(G) ≥ glΨ (G) for every graphoidal cover Ψ of a given graph G, in
particular, gl(G) ≥ glΦ(G) for every η-graphoidal cover Φ of G. In this paper
we investigate the following problem “Does every graph possess an η-graphoidal
cover Ψ such that gl(G) = glΨ (G)?”.

We start with some basic definitions and theorems which are used.

Definition 4 [5]. Let Ψ be a graphoidal cover of G. A vertex v of G is an interior
vertex of Ψ if v is an internal vertex of some path in Ψ . Any vertex which is not
an interior vertex of Ψ is called an exterior vertex of Ψ . The set of all exterior
vertices of Ψ is denoted by TΨ and its cardinality is denoted by tΨ .

Notation 1. Let t = min tΨ , where the minimum is taken over all graphoidal
covers Ψ of G. Clearly, for any graph G, t ≥ e, where e denotes the number of
pendant vertices in G. Also, let tg = min{tΨ : Ψ is a gl-graphoidal cover}.
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Theorem 1 [5]. For any (p, q)-graph G, η = q − p + t.

Pakkiam and Arumugum gave the following interesting and useful results on
graphoidal covering number of graphs.

Theorem 2 [14]. If G is a connected (p, q)-graph with δ(G) ≥ 3, then η(G) =
q − p.

Theorem 3 [14]. For any tree T one has η(G) = e(T )− 1, where e(T ) denotes
the number of pendant vertices in T .

Theorem 4 [15]. Let G be a unicyclic graph with unique cycle C. Let m be the
number of vertices of degree at least 3 on C and let e denote the number of
pendant vertices of G. Then

η(G) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if m = 0
e + 1 if m = 1 and d(v) = 3 where v is the unique vertex of

degree at least 3 on C,
e otherwise.

Corollary 1. If G is a unicyclic graph with e number of pendant vertices, then
e ≤ t ≤ e + 1.

Definition 5 [13]. A theta graph is a graph having two vertices of degree 3 and
three internally disjoint paths joining them, each of length at least 2.

Arumugam et al. worked on the problem of characterizing the class of graphs
with η(G) = q − p in [10] and in the process obtained the following characteri-
zation for a 2-edge connected graph with δ = 2 and η(G) = q − p.

Theorem 5 [10]. Let G be a 2-edge connected graph with δ = 2. Then η(G) �=
q − p if and only if every block of G is a cycle or a cycle with exactly one chord
or a theta graph and at most one block of G is not a cycle.

Theorem 6 [10]. Let G be a 2-edge connected graph with δ = 2. Then either
η(G) = q − p or η(G) = q − p + 1.

Arumugam et al. [10] determined the graphoidal length of a wheel.

Theorem 7 [6]. For the wheel Wn (n ≥ 3),

gl(Wn) =
⌊

q

η(G)

⌋
=

{
3 if n = 3,
2 if n ≥ 4.

2 Main Results

In this section we are going to give basic results that will prove quite crucial in
the development of the concept of graphoidal length of graphs.
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Lemma 1. Let G be a (p, q)-graph. Let Ψ1 and Ψ2 be two graphoidal covers of
G. Then |Ψ1| > |Ψ2| if and only if tΨ1 > tΨ2

Proof. Since tΨ1 = p − q + |Ψ1| and tΨ2 = p − q + |Ψ2| it follows that |Ψ1| > |Ψ2|
if and only if tΨ1 > tΨ2 . ��
Corollary 2. For any graphoidal cover Ψ of a (p, q)-graph G, |Ψ | = η(G) if and
only if tΨ (G) = t(G).

In the following lemma we show that if G is a graph having a cut edge x and
a component H of G − x such that every block of H is a cycle, then t ≥ 1.

Lemma 2. Let G be a graph having a cut edge x and let H be a component of
G − x such that every block of H is a cycle. Then for every graphoidal cover Ψ
of G at least one vertex of H is an exterior vertex of Ψ .

Proof. Let k(G,H) denote the number of cycles in the component H of G − x.
The proof is by induction on k(G,H). If k(G,H) = 1 then trivially for any
graphoidal cover Ψ of G at least one vertex of H is an exterior vertex of Ψ .
Suppose the result holds whenever k(G′,H ′) ≤ m, where G′ is any graph having
a cut edge y and H ′ is a component of G′ − y such that every block of H ′ is a
cycle.

Let k(G,H) = m + 1. Let C be a block of H having exactly one cut vertex
(say) v. Consider any graphoidal cover Ψ of G. If one of the vertices of V (C)−{v}
is an exterior vertex of Ψ , then we are through. Let every vertex in V (C) − {v}
be an internal vertex of Ψ . Then C must be a Ψ -edge with v as its coincident end
vertex. Let G1 = G−(V (C)−{v}) and H1 be the component of G1−x such that
H1 is a subgraph of H. Then every block of H1 is a cycle and k(G1,H1) = m,
therefore by induction hypothesis the graphoidal cover Ψ1 = Ψ −{C} of G1 must
have an exterior vertex (say) w in H1. Then w ∈ V (H) is also an exterior vertex
of graphoidal cover Ψ of G. Thus result is true for k(G,H) = m + 1. Hence
lemma follows by induction.

Consider the wheel Wn = Cn + {u}, where Cn = (v1, v2, . . . , vn, v1). Then
Ψ = {(u, v1, v2, v3, u), (u, v4, v3), ..., (u, vn−1, vn−2), (vn−1, vn, v1), (v2, u, vn)} is
graphoidal cover of Wn such that glΨ (Wn) = 2 and |Ψ | = n−1. From Theorems 2
and 7, it follows that Ψ is an η-graphoidal cover of Wn such that glΨ (G) = gl(G).
Thus for every wheel there exists a graphoidal cover Ψ such that glΨ (G) = gl(G)
and |Ψ | = η.

However there exists a graph G which has no graphoidal cover Ψ sat-
isfying glΨ (G) = gl(G) and |Ψ | = η. For example, consider the graph
G = C10,4,10 given in Fig. 1. Then Ψ = {(u,w1, v, v1, ..., v4), (v, w1, u, u1, ..., u4),
(u4, ..., u9, u), ((v4, ..., v9, v))} is a gl-graphoidal cover of G with glΨ (G) = 6.
Further for any η-graphoidal cover Φ, glΦ(G) = 4.

Thus not every graph possesses a graphoidal cover Ψ satisfying glΨ (G) =
gl(G) and |Ψ | = η. If in a graph G there exists a graphoidal cover Ψ satisfying
glΨ (G) = gl(G) and |Ψ | = η, then such a graphoidal cover (gl, η)-graphoidal
cover.
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Fig. 1. G = C10,4,10.

If G is a graph with graphoidal length gl(G) = 1, then length of every
graphoidal cover is 1. In particular, length of every η-graphoidal cover is 1.
In [6], it has been proved that if G is a (p, q)-graph with q > 2p, then gl(G) =
1. Thus every (p, q)-graph G with q > 2p possesses a (gl, η)-graphoidal cover.
Consequently, every complete graph Kp (p ≥ 6) and every complete bipartite
graph Km,n (n,m ≥ 5) possesses a (gl, η)-graphoidal cover.

We proceed to investigate this problem for graphs with q ≤ 2p. We first
consider trees.

Theorem 8. Every tree possesses a (gl, η)-graphoidal cover.

Proof. Let G be tree and let Ψ be a gl-graphoidal cover such that tΨ = tg =
min{tΦ : Φ is a gl-graphoidal cover}. We claim that tg = e.

Suppose tg > e. Then there exists a vertex x in V of degree at least 2 such
that x is an exterior vertex of Ψ . Hence there exist paths P and Q in Ψ with end
vertex x. Let Ψ ′ = Ψ ∪ {P ∪ Q} − {P,Q}, where P ∪ Q is the path in Ψ ′ with x
as internal vertex. Clearly, glΨ ′(G) = gl(G) and tΨ ′ < tΨ = tg, contradicting the
minimality of tg. Hence follows that tg = e and Ψ is a (gl, η)-graphoidal cover
of G.

We state without proof two theorems which give the existence of (gl, η)-
graphoidal cover for unicyclic graph and cactus in which no two cycles intersect.

Theorem 9. For any unicyclic graph G, there exists a graphoidal cover Ψ of G
such that glΨ (G) = gl(G) and |Ψ | = η(G).

Theorem 10. Let G be a cactus such that no two cycles intersect. Then there
exists an η-graphoidal cover Ψ such that glΨ (G) = gl(G).

Thus every tree, every unicyclic graph and every cactus having disjoint cycles
possesses a (gl, η)-graphoidal cover. But not every cactus possesses a (gl, η)-
graphoidal cover (for example the graph C10,4,10). In what follows we provide a
class of 2-edge connected cactus which does not possess any (gl, η)-graphoidal
cover. Let Cn,m,n (n,m ≥ 3) be a 2-edge connected cactus having 2-copies of
Cn and one copy of Cm with two non-adjacent vertices of degree 4 at distance
	m/2
 from each other and all other vertices are of degree 2.

Theorem 11. Let G = Cn,m,n where n ≥ 2m ≥ 8. Then G does not possess a
(gl, η)-graphoidal cover.
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Proof. Let x and y be the vertices of degree 4 in G. Let H1 = (v1, v2, . . . , vn, v1),
H2 = (w1, w2, . . . , wm, w1) and H3 = (u1, u2, . . . , un, u1) be the three cycles in
G with v1 = w1 = x and w�m/2�+1 = u1 = y.

Let P1 = (y, w�m/2�..., w2, x, v2, v3, ...vk), P2 = (vk, vk+1, ..., vn, v1), P3 =
(x,wm, wm−1, ..., w�m/2�+2, y, u2, ..., uk) and P4 = (uk, uk+1, ..., un, u1) where
2k = n + 2 − 	m/2
. Then by the choice of k,

l(Pi) ≥ 3 	m/2
 for i = 1, 2, 3, 4.

Thus Ψ = {P1, P2, P3, P4} is a graphoidal cover of G with glΨ ≥ 3 	m/2
. Hence
gl(G) ≥ 3 	m/2
.

Since any η-graphoidal cover Φ of G, contains the three cycles glΦ(G) = m
for any η-graphoidal cover Φ of G. Hence for any η-graphoidal cover Φ of G,
glΦ(G) < gl(G), so that G does not possess a (gl, η)-graphoidal cover.

3 Conclusion and Scope

In view of Theorem11, it would be interesting to characterize cactus having a
(gl, η)-graphoidal cover. Also, the general problem of characterizing graphs G
which admit a graphoidal cover Ψ with |Ψ | = η(G) and glΨ (G) = gl(G) is open.
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Abstract. Data is getting accumulated fast in various domains all over
the world and the data size varies from terabytes to yottabytes. Such
huge size data are known as Big Data. Extraction of meaningful infor-
mation from raw data using special patterns are called Data Mining and
sophisticated algorithms have been designed for this purpose. In this
paper, the time complexity for MapReduce-based data mining algorithm
is presented.

Keywords: Big Data · MapReduce · Hadoop · Datamining · Time
complexity

1 Introduction

The size of data, storage capacity, processing power and availability of data are
rising day by day. The traditional data warehousing and management systems
tools are not capable of dealing with huge data. The analytic methods used to
deal with huge data is referred to as Big Data analytics. Doug Laney was the
first one to discuss about 5 V’s in Big Data management [1], namely, volume,
variety, velocity, variability and veracity.

Some of the technologies to process big data are Hadoop HDFS, MapReduce,
Hive, HBase, Pig, Flume, Hadoop Mahout, Windows Azure etc. [1]. MapReduce
was first developed by Google but now it is incorporated by the Apache. In
Parallel, the large clusters of hardware are available to process huge amount of
data. It has two functions Map() and Reduce(). Map() is used for filtering and
sorting the data and Reduce() is used for summarizing the data [2] (Fig. 1).

The MapReduce process is depicted in Fig. 1. Here the input is application
specific while the output is a group of < key, value > pairs produced by the Map
function. In the mapping process, each single key-value input pair (key, value)
is mapped into several key-value pairs: [(l1, x1), . . . , (l1, xr)] with same key, but
different values. These key-value pairs are used for reducing the functions.

Data mining techniques are applied on raw data for extracting useful infor-
mation. The process of finding a model is to describe the data classes by using
a classification algorithm [3].

Before using the classification algorithm, preprocessing steps such as catego-
rization and feature selection are included. This process is helpful for getting an
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 312–317, 2017.
DOI: 10.1007/978-3-319-64419-6 40
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Fig. 1. MapReduce process

improved accuracy in the prediction. Categorization is the process of converting
the data into a categorical format. Based on the condition, the data is catego-
rized into a standard format. Feature selection is used to select the important
features of the data and to remove the irrelevant attributes. MapReduce concept
is used in the categorization and feature selection process.

Classification algorithm involves two steps, namely training set and testing
set. The training set is used to build a model with the training data. Testing set
is applied on the classification model and is used to check the accuracy [4].

A Decision tree is a classification model. It is mainly used to classify an
object to a predetermined class. CHAID, CART, ID3, C4.5, C5.0 are decision
tree algorithms and C5.0 is a widely used decision tree algorithm.

C5.0 algorithm handles continuous and categorical values. Feature selection
is the basic step to construct a decision tree. The decision tree algorithm C5.0
is used to access the data and has higher speed when compared to ID3 and
C4.5 [5]. MapReduce process is used to evaluate the data.

In this paper we discuss the time complexity for MapReduce – based C5.0
algorithm. MapReduce technique is a training model to be linked with perfor-
mance for processing huge data sets. MapReduce concept runs on a large cluster
of product machines and is highly scalable [6].

Matei Zaharia et al. proposed an improved scheduling algorithm that
decreases the Hadoop reply time and the performance by using MapReduce [7].

2 Implementation Scrutiny

MapReduce with Datamining algorithm is used for tera bytes of data [8]. Using
the categorization algorithm, attribute values can be grouped. Among catego-
rized data, relevant attribute has to be picked up. For this purpose, feature selec-
tion algorithm can be used. These two algorithms are used for the prediction of
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class labels. We fix one example for the purpose of illustration of all the concepts
presented here.

Example 1. Training data set and testing data set for prediction of mode of
transport are given in Tables 1 and 2 respectively.

Table 1. Training dataset

Gender Car owner Travel cost Income level Transportation mode

Male 0 50 10000 Bus

Male 1 50 50000 Bus

Female 1 50 50000 Train

Female 0 50 10000 Bus

Male 1 50 50000 Bus

Male 0 500 50000 Train

Female 1 500 50000 Train

Female 1 1000 100000 Car

Male 2 1000 50000 Car

Female 2 1000 100000 Car

Table 2. Testing dataset

Gender Car owner Travel cost Income level Transportation mode

Male 1 Standard High ?

Male 0 Cheap Medium ?

Female 1 Cheap High ?

2.1 Categorization

Categorization is the process of grouping objects into categories, usually for some
specific purpose. Generally, categorization algorithm has two parts. First is Map
part which is used to check the conditions of the attribute values and the second
is reduce part which changes the numerical values to categorized values [9].

The attribute values are changed into categorized format based on the con-
ditions. Finally the categorical values are stored in a new file.

For the case study given in Tables 1 and 2, for the categorization process,
the travel cost and Income level attributes are used and the conditions are as
follows.
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Condition for travel cost Condition for income level

if Travel cost == 500 then
Standard
else if Travel cost < 500 then
cheap
else
Expensive
end

if Income == 100000 then
high
else if Income < 50000 then
low
else
medium
end

2.2 Feature Selection

Feature selections is also called attribute selection or variable selection. After
categorization, the feature selection process is used to select a subset of relevant
attributes [10]. Chi-square (χ2) feature selection based on MapReduce concept is
used for finding the relevant attributes. It is one of the popular feature selection
methods. Statistical test is also used to decide whether observed frequencies are
much dissimilar from expected frequencies [11]. The χ2-filter is defined by

χ2 =
Σ(O − E)2

E
(1)

where for each attribute, O is the Observed Frequency and E is the Expected
Frequency.

The weight for each attribute is calculated by using (1). Attributes whose
weight is greater than a chosen threshold value are taken for further processing.

2.3 C5.0 Classifier

Classification is one of the major components in data mining and C5.0 is decision
tree based classification algorithm. It can handle continuous values, categorical
values and numerical attributes. Let C be a categorization of a set S of objects
into categories C1, C2, . . . , Cr. Let pi be the probability that an object in S is in
category Ci. The entropy of S is defined as

Entropy(S) = −
r∑

i=1

pi log2 pi.

The entropy measures the homogeneity of objects.
To determine the best attribute to be chosen for a node in a decision tree, we

use the concept of information gain. For any given attribute A, consider the set
V (A) of possible values of A. For any v ∈ V (A), let Sv be the set of all elements
of S having value v for the attribute A. The information gain of A with respect
to S is given by

Inf.Gain (S,A) = Entropy (S) −
∑

v∈V (A)

|Sv|
|S| Entropy (Sv).
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Thus the information gain measures the expected reduction in the entropy.
The attribute with highest information gain is taken as the root node in the

decision tree and the values of the attribute are its children nodes. Then using
the remaining attributes, the attribute with highest information gain is taken
as a child node and the process is repeated. If S(Vi) �= ∅, the tree constructed
is added as a new branch at vi. Each leaf node of the final decision tree gives a
rule for predicting the class label.

For the example given in Table 1, the probability of an individual travelling
by bus, car and train are respectively 0.4, 0.3 and 0.3. Hence the entropy value
is −(0.4 log2(0.4) + 0.3 log2(0.3) + 0.3 log2(0.3)) = 1.571.

For each of the attributes Gender, Car-owner ship, travel cost and income
the information gain in computed and the results are given in Table 3.

Table 3. Information gain result

Attribute Information gain

Gender 0.125

Car owner 0.21

Travel cost 1.21

Income level 0.695

The attribute with highest gain value is travel cost which is taken as the root
node and its branches are its values, namely, standard, expensive and cheap.

The next step computation of informations gain for the removing three
attributes is carried out. Table 4 gives the results for the attribute cheap.

Table 4. Information gain for the node “cheap”

Attribute Information gain

Gender 0.322

Car owner 0.171

Income level 0.171

In this way the process can be continued, giving the decision tree. From the
decision tree teh transportation mode can be predicted in terms of the attributes.
For example for the object with attributes female, car owner, cheap the predicted
transportation mode is bus.

3 Conclusion

The input for the MapReduce model is a set S of objects with |S| = n, attributes
A1, A2, . . . , Ak where the attribute Ai takes αi values and rules for categoriza-
tion. The complexity of categorization process is O(n). The complexity of feature
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selection is O(k). The complexity of C5.0 classifier is O(n2). Thus the overall
complexity of the algorithm is O(n2).
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Abstract. Sorghum bicolor is the fifth most important cereal crop
in the world after rice, wheat, barley and maize and is grown world-
wide in the semi-arid and arid regions. Functional identification of pro-
teins and a detailed study of protein-protein interactions in Sorghum
are very essential to understand the biological process underlying the
various traits of crops such as salt stress, yield and drought response.
The molecular mechanisms that exists among them are still unclear
due to the limited studies available in the literature and databases.
In this paper, salt stress tolerance responsive protein-protein interac-
tion network has been constructed using STRING database. A com-
prehensive bioinformatics analysis of this network has been performed
using Cytoscape, through the computation of centrality measures and
functional enrichment study. This study has resulted in the identifica-
tion of Sb02g023480.1, Sb01g040040.1, Sb09g027910.1, Sb03g031310.1,
Sb10g002460.1 as salt stress tolerant proteins in Sorghum bicolor.
However, experimental studies are required to confirm this observation.

Keywords: Sorghum bicolor · Computational approach · Salt stress
tolerant proteins · Centrality measures · Gene Ontology

1 Introduction

Agricultural production has to be increased considerably to meet the food and
feed demands of fast growing human population and livestock generation. Crop
protection plays a key role in crop productivity, but it is mainly affected by
environmental stresses such as drought, heat and salt [8]. Salt stress is a major
abiotic stress that limits the productivity as well as and the geographical distri-
bution of many crop species. Hence understanding the molecular mechanism of
cereal crops plays a major role.

Sorghum bicolor is the fifth most important cereal crop in the world after
rice, wheat, barley and maize and is grown worldwide in the semi-arid and arid
regions [10]. The molecular mechanisms behind them are still unclear due to the
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 318–325, 2017.
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limited studies available in the literature and databases. Functional identification
of proteins and a detailed study of protein-protein interactions in Sorghum are
very essential to understand the biological process underlying the various traits of
crops such as salt stress, yield and drought resistance. Proteomics technology has
developed considerably in recent years [3]. The combination of high-throughput
technique with bioinformatics tools and databases can be used for functional
identification of proteins. But the mechanism of salt-tolerance based on proteome
has not improved as most of these data were not validated [6]. Interpretation
and analysis of these data are time-consuming. Biological implications will facil-
itate the discovery and characterization of important physiological mechanisms
and pathways. Therefore, the obstacle in data analysis should be completely
overcome by evolving strategies through multi-disciplinary research. Currently,
several computational approaches for functional identification of proteins such
as sequence similarity, phylogenetic profiles, protein-protein interaction (PPI)
and gene expression are available [4]. The study of protein interactions is funda-
mental to understand how proteins function within the cell. Particularly, graph
theory has been used to identify important proteins in the PPI network and
the function of an unknown protein can be identified on the basis of their inter-
actions with known proteins [1]. For this purpose, centrality measures such as
degree, stress, betweenness, radiality, closeness, subgraph and eigenvector are
widely used.

A literature survey shows that SOD, CAT, GS and PEPC are Sorghum
bicolor salt stress tolerant proteins [5]. In this paper, a PPI network using
the proteins has been constructed from STRING database and a comprehen-
sive bioinformatics analysis of this network has been performed using Cytoscape
through the computation of centrality measures and functional enrichment study.
This study has resulted in the identification of Sb02g023480.1, Sb01g040040.1,
Sb09g027910.1, Sb03g031310.1, Sb10g002460.1 as salt stress tolerant proteins in
Sorghum bicolor and however experimental studies are required to confirm this
observation.

2 Materials and Methods

2.1 String Database

STRING is used for predicting protein-protein interactions. The interactions
include direct (physical) and indirect (functional) associations based on compu-
tational prediction, from knowledge transfer between organisms and from inter-
actions aggregated from DIP, BioGRID, IntAct, MINT and PDB databases.
Interactions in STRING are derived from five main sources: Genomic Context
Predictions, High-throughput Lab Experiments, (Conserved) Co-Expression,
Automated Text mining, and Previous Knowledge in Databases. We have
retrieved the interactions of four proteins with high confidence score (≥ 0.7)
to reduce the impact of false positive and false negative results. The other para-
meters were set to default.
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2.2 Cytoscape

Cytoscape is an open-source software package widely used to integrate and visu-
alize diverse data-sets in biology [12]. Salt-response proteins network in S.bicolor
was analyzed by Cytoscape Version 3.3.0. The PPI network contains 165 pro-
teins as nodes and 1484 edges as interactions. This network is shown in Fig. 1.
The target interactions and key proteins in this network are identified using the
plugins in the software such as Centiscape [11] and CytoNAC [15].

Fig. 1. Protein-protein interaction network constructed from string database

2.3 Topological Analysis

Graph theory is one of the most powerful tools for analyzing large networks.
It uses network centrality and node centrality indices. A network centrality
index informs about the overall nature of the network and node centrality index
describes the property of the nodes. For network centrality, various parameters
such as average distance, connectivity, diameter and clustering coefficient are
calculated. Node centrality indices such as degree, stress, betweenness, eccen-
tricity, radiality, closeness, eigenvector and subgraph are some of the centrality
measures which are often used to identify the important proteins. The higher
value for degree indicates that more number of edges (interactions) are incident
with that node (protein). Protein which holds the communication between other
proteins has higher value for radiality and stress. Betweenness explains the total
number of shortest paths passing through a given protein. Hence any protein
with highest score for these measures is important among all the proteins in the
network. For more details and definitions of various centrality measures, we refer
to [11].
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2.4 Functional Enrichment Analysis

Functional enrichment analysis including domain analysis, biological processes,
molecular functions, and pathways was performed using Gene Ontology Consor-
tium for the S.bicolor proteins. Gene Ontology (GO) is a structured and con-
trolled vocabulary, which identifies the functional annotation of proteins using
standardized terms such as biological process, molecular function, and cellular
components. This study was conducted only for the key nodes identified through
the topological analysis.

3 Results

Topological characteristics of the PPI network given in Fig. 1 are given below.
This reveals the organization of the network.

Number of nodes 165

Number of edges 1484

Diameter 5

Density 0.110

Clustering coefficient 0.509

Network heterogeneity 0.721

Characteristic path length 2.604

The network was found to have scale-free organization as their degree dis-
tribution followed power law. Clustering coefficient distribution is also used to
identify scale-free nature of the network, which decreases when node degree
increases. The average clustering coefficient of the network is 0.509. It suggests
that low degree nodes belong to dense subgraphs and these subgraphs are con-
nected to the hubs in the network which tend to possess scale-free nature and
small world property. Diameter of the network is found to be 5 which is the
maximum length of a shortest path between any pair of nodes. It reveals that
network is highly connected which also indicates the small world property of the
network. Other parameters such as network heterogeneity, density and charac-
teristic path length unveil the hierarchical modularity of the analyzed network.
Modular analysis of the network suggests that highly connected proteins may be
functionally related. Hence, the proteins which interact with the four salt stress
proteins may also contain the characteristics similar to them [7].

Seven node centrality indices namely degree, betweenness, stress, radiality,
closeness, eigenvector and subgraph, were calculated to identify the important
proteins of the network. For each of these seven parameters, the maximum value,
mean value and minimum value are computed and are given in Table 1.

For all measures, the mean value is taken as the threshold value. For a
given parameter, any protein whose value exceeds the threshold value is con-
sidered to be an important protein with respect to that parameter. For each
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Table 1. Seven centrality measures

Parameters Maximum value Mean value Minimum value

Degree 61 17.98 1

Betweenness 2981.604175 263.05 0

Stress 135684 18759 0

Radiality 4.164634146 3.396 2.719512

Subgraph 3.77187E+11 4.80E+10 1.32E+07

Closeness 0.5448505 0.39 0.304833

Eigenvector 0.218172981 0.051 0.001286

protein, its combined centrality score (CCS) is the average of the seven centrality
measures [2]. The proteins are arranged on the basis of CCS from high score to
low score. The top six proteins in this sorted list are taken as the most influential
proteins which are given in Table 2.

Among six proteins, it is already known that PEPC is salt stress tolerant.
Hence five proteins are identified as important proteins in the network. All of
them are interacting with PEPC. Two proteins are interacting with GS and both
PEPC and GS are known to be salt stress tolerant proteins. This implies that
the five identified proteins are functionally similar. To validate this property,
functional enrichment studies have been performed.

Table 2. The top six proteins with high scores

Proteins Betweenness Closeness Degree Eigen vector Radiality Stress Subgragh Average

PEPC 2809.390397 0.475362 57 0.218173 3.896341 96166 377187237888 53883905275

Sb02g023480.1 699.8880746 0.421594 37 0.152202 3.628049 55382 183566450688 26223786687

Sb01g040040.1 699.8880746 0.421594 37 0.152202 3.628049 55382 183566450688 26223786687

Sb09g027910.1 2981.604175 0.544851 61 0.149362 4.164634 93080 176794206208 25256328905

Sb03g031310.1 2981.604175 0.544851 61 0.149362 4.164634 93080 176794140672 25256319543

Sb10g002460.1 672.9164465 0.420513 36 0.148932 3.621951 55000 175764635648 25109241623

Further, gene ontology studies were conducted to identify molecular function,
biological process and cellular components. KEGG pathway, InterPro and Pfam
domain studies were also done. The investigation of functional enrichment of pro-
teins uncovers that proteins involved in the same cellular processes frequently
interact with each other. Proteins commonly have one or more functional regions,
termed domains. The identification of domains that occur within proteins can
therefore provide insights into their function. Pfam indicates eight statistically
significant domains with pfam id’s PF00113 (Enolase, C-terminal TIM barrel
domain), PF03952 (Enolase, N-terminal domain), PF14691 (Dihydroprymidine
dehydrogenase domain II, 4Fe-4S cluster), PF01493 (GXGXG motif), PF01645
(Conserved region in glutamate synthase), PF04898 (Glutamate synthase
central domain), PF00310 (Glutamine amido transferases class-II) and PF07992
(Pyridine nucleotide-disulphide oxidoreductase).
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KEGG analysis indicated that nine statistically significant pathways id’s
such as 1230 (biosynthesis of amino acids), 1120 (microbial metabolism in
diverse environments), 1110 (biosynthesis of secondary metabolites), 910 (nitro-
gen metabolism), 250 (alanine, aspartate and glutamate metabolism), 1100
(metabolic pathways), 3018 (RNA degradation), 10 (glycolysis/ gluconeogene-
sis) and 1200 (carbon metabolism) were associated with S.bicolor salt-response
proteins. Molecular function analysis revealed that most of the proteins are
involved in ion binding such as magnesium, iron and iron-sulfur cluster. Most
of the S.bicolor proteins have subcellular localization on cytoplasm and their
biological process are related to glycolytic process, glutamate biosynthetic process,
photosynthesis and carbon fixation source. These results are given in Table 3.

Table 3. Biosynthetic path way Enzyme analysis

Proteins Molecular function Biological process Cellular component

Sb02g023480.1 Magnesium ion binding,
phosphopyruvate,
hydratase activity

Glycolytic process,
response to cytokinin,
trichome morphogenesis

Chloroplast stroma,
phosphopyruvate
hydratase complex

Sb01g040040.1 Magnesium ion binding,
phosphopyruvate,
hydratase activity

Glycolytic process, Nucleus
phosphopyruvate
hydratase complex

Sb09g027910.1 FMN binding, flavin
adenine binding,
glutamate synthase
(NADH) activity, iron ion
binding, iron-sulfur
cluster binding

Ammonia assimilation
cycle, glutamate
biosynthetic process

Cytoplasm

Sb03g031310.1 FMN binding, flavin
adenine binding,
glutamate synthase
(NADH) activity, iron ion
binding, iron-sulfur
cluster binding

Ammonia assimilation
cycle, glutamate
biosynthetic process

Cytoplasm

Sb10g002460.1 Not yet identified Not yet identified Not yet identified

PEPC Phosphoenolpyruvate
carboxylase activity

Carbon fixation,
photosynthesis,
tricarboxylic acid cycle

Cytoplasm

4 Discussion

Although salt-tolerant proteins in S.bicolor have been studied in the past years,
there has been no systematic attempt to organize them in protein pathways.
Proteomics studies can significantly contribute to unravel the possible relation-
ships and interactions between protein abundance and plant stress. The network
indicates that there are 165 nodes, 1484 edges with average node degree of 17.8
with p-value 0. From the string network analysis, the expected numbers of edges



324 S. Rajeswari et al.

are found to be 43, but the number of actual edges is 1484 which is signifi-
cantly very high. This means that the proteins have more interactions among
themselves than what would be expected for a random set of proteins of similar
size, drawn from the genome. Such enrichment indicates that the proteins are
at least partially biologically connected, as a group. The results of the enriched
protein domains, KEGG pathways, molecular functions, and cell localizations
were comprehensive. Bioinformatics analysis indicated that most of the proteins
responsible to salt stress could be clustered into different function groups and
may be related to plant physiology.

Pfam (protein families) database is a large collection of protein families, each
protein being represented by multiple sequence alignments. Proteins are generally
composed of one or more functional regions, termed domains. Different combina-
tions of domains give rise to the diverse range of proteins found in nature. Pfam also
generates higher-level groupings of related entries, known as clans related by sim-
ilarity of sequence, structure or profile (pfam.xfam.org). Domain analysis showed
some significant enriched domains in the S. bicolor salt-response proteins.

InterPro is a powerful diagnostic tool and integrated resource as it combines
signatures from multiple, diverse databases to provide functional analysis of
protein sequences into families. Plants use signaling pathways to acclimate to
changing environmental conditions.

Salt stress reduces water availability and leads to the inhibition of plant
growth by increasing the threshold pressure for wall yielding in expanding cells or
inducing hydraulic limitations to water uptake [14]. Rigid cell wall protects plant
roots from dehydration [9]. The mechanism of structural molecules remodeling
in response to salt stress need to be further studied. In general, most salinity
induced genes are also induced by drought stress and many drought inducible
genes are also induced by abscisic acid [13].

Interestingly, among 41 salt responsive proteins, many of them also responded
to other stresses, such as bacterium stress, light stress, metal ion stress, radiation
stress, temperature stress, water stress, and wounding stress, which have wider
cross-talks, and revealed more potential biomarkers participating in signaling
and metabolism pathways. We assumed that the proteins responding to other
stresses may also associate with salt stress, and this would provide us a wider reg-
ulatory network to discover the salt response mechanisms. Salt-response proteins
have been located at more than one cell component, which possibly indicated
that they played different functions in various places and indicate the versatile
nature of the proteins. It is possible that the proteins responded to multiple
stresses and localized at multiple places.

5 Conclusion

This work has provided new insight into Sorghum bicolor salt-response mecha-
nisms and could urge scientists in this field to integrate all the existing data to
explore significant functions and pathways involved in salt stress response. Two
new understandings should be noted: one was that salt-response proteins might
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become potential biomarkers for other stresses and other stress-responsive pro-
teins might also participate in salt stress; the other one was that multiple cellular
localizations indicate that the protein functions under stress are versatile. Cross-
talk effects informed us that S.bicolor deals with salt stress and other stresses
in a reciprocal economic way. Further studies are necessary to substantiate the
enriched functions and pathways. Protein functional characterization helps us
to understand the processes of plant stress acclimatization and stress tolerance
acquisition in a better way.
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Abstract. A Roman dominating function (RDF) on a graph G = (V, E)
is a function f : V → {0, 1, 2} satisfying the condition that every vertex u
for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
A total Roman dominating function on a graph G = (V, E) is a Roman
dominating function f : V → {0, 1, 2} satisfying the condition that every
vertex u for which f(u) > 0 is adjacent to at least one vertex v for which
f(v) > 0. The weight of a total Roman dominating function is the value

f(V ) =
∑

u∈V

f(u). The minimum weight of a total Roman dominating

function on a graph G is called the total Roman domination number of
G and denoted by γtR(G). In this paper, we establish some bounds on
the Total Roman domination number in terms of its order and girth.

Keywords: Roman domination · Total domination

1 Introduction

By a graph G = (V,E), we mean a simple, finite, undirected, connected graph
with |V | = n. For graph theoretic terminology we refer to Charatrand and
Lesniak [3].

A set of vertices S is a dominating set if N [S] = V, or equivalently, every
vertex in V \ S is adjacent to at least one vertex in S. The domination number
γ(G) is the minimum cardinality of a dominating set in G and a dominating set
S of minimum cardinality is called a γ(G)-set. For fundamentals of domination
in graphs we refer to [6].

Cockayne et al. [4] defined a Roman dominating function (RDF) on a graph
G to be a function f : V → {0, 1, 2} satisfying the condition that every vertex
u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of f is f(V ) =

∑

v∈V

f(v). The Roman domination number, denoted by

The original version of this chapter was revised: The name of the second author
was corrected. An erratum to this chapter can be found at https://doi.org/10.1007/
978-3-319-64419-6 58
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γR(G) is the minimum weight of an RDF in G. An RDF of weight γR(G) is called
a γR(G)-function. This definition of a Roman dominating function was motivated
by an article in Scientific American by Ian Stewart [16]. Roman domination has
also been studied in [4,8–16].

The notion of total domination in graphs was introduced by Cockayne
et al. [5]. A set S ⊆ V is a total dominating set (TDS) of G if for any ver-
tex v ∈ V there exists a vertex u ∈ S such that uv ∈ E. The total domination
number of G, denoted by γt(G) is the minimum cardinality of a TDS in G; a
TDS of G of minimum cardinality is called a γt(G)-set.

Liu and Chang [7] defined a total Roman dominating function (TRDF) on
a graph G to be a Roman dominating function f : V → {0, 1, 2} satisfying
the condition that every vertex u for which f(u) > 0 is adjacent to at least one
vertex v for which f(v) > 0. The weight of a total Roman dominating function is
the value f(V ) =

∑

u∈V

f(u). The minimum weight of a total Roman dominating

function on a graph G is called the total Roman domination number of G and
denoted by γtR(G). This parameter has been further studied by Abdollahzadeh
Ahangar et al. [1]. Let (V0, V1, V2) be the ordered partition of V induced by f ,
where Vi = {v ∈ V : f(v) = i} for i = 0, 1, 2. Note that there exists a 1-1
correspondence between the function f : V → {0, 1, 2} and the ordered partition
(V0, V1, V2) of V . Thus, we write f = (V0, V1, V2). In this paper, we establish
some bounds on the Total Roman domination number in terms of its order and
girth.

2 Bounds on Total Roman Domination Number

Theorem 1 [2]. For a connected graph G, γt(G) ≥
⌈

n
Δ(G)

⌉
.

Theorem 2. If G is a graph of order n, n ≥ 3 with no isolated vertex, then
γtR(G) ≥ � n

�(G)� + 1 where �(G) is the maximum degree of the graph G. Also
equality holds if �(G) = n − 1.

Proof. Let f = (V0, V1, V2) be a total Roman dominating function of G. By
Theorem1, we have |V1| + |V2| ≥ γt(G) ≥

⌈
n

�(G)

⌉
.

Now

γtR(G) = |V1| + 2|V2|

≥
⌈

n

�(G)

⌉
+ |V2|

≥
⌈

n

�(G)

⌉
+ 1

When �(G) = n − 1,
⌈

n
�(G)

⌉
= 2 and γtR(G) = 3. Hence equality holds.
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Theorem 3. Let G be a graph with δ(G) = 1 and G 	= K1,n−1. Then γtR(G) ≤
n − l + s where l is the number of leaves and s is the number of support vertices
in G.

Proof. Let L denote the set of leaves of G and W denote the set of supports of
G. Define f = (V0, V1, V2) by V0 = L, V2 = W and V1 = V \ (V0 ∪ V2). Clearly f
is a TRDF of G of weight 2s+(n − l − s) = n − l+ s. Hence γtR(G) ≤ n − l+ s.

Abdollahzadeh Ahangar et al. [1] have proved that for paths Pn, γtR(Pn) = n.
Hence paths attain the upper bound n − l+ s. Now consider a tree T ∗ obtained
by joining the heads of two star by a path [Refer Fig. 1]. Then γtR(T ∗) = n.

Fig. 1. A tree T ∗ with γtR(T ∗) = n − l + s

In the following theorem, we characterize trees which are neither star, paths
nor isomorphic to T ∗ for which γtR(T ) = n−l+s. A vertex v is called an isolated
strong support vertex if v is adjacent to at least two leaf vertices and has exactly
one non-leaf neighbor which is not a support vertex.

Theorem 4. For any tree T , which is neither star, path nor isomorphic to T ∗,
γtR(T ) = n − l + s if and only if the following conditions hold:

1. Every non-leaf neighbour of a non-isolated strong support vertex is either a
support vertex or adjacent to an isolated strong support vertex.

2. For every non-support vertex u of T , at least deg(u) − 1 neighbours of u are
either a non isolated strong support vertices or adjacent to an isolated strong
support vertex.

Proof. Let f = (V0, V1, V2) be a γtR(T )-function. Let W and L denote the set of
supports and leaves of T respectively. Suppose γtR(T ) = n − l + s.

Suppose (i) is not true. Then there exists a non-isolated strong support u ∈ V
such that u has at least one non-leaf neighbour say w which is neither a support
nor adjacent to an isolated strong support. Let v ∈ N(w) \ {u}.

If v is a weak support, then there exists a vertex x ∈ N(v) \ {w}. We define
a function f : V → {0, 1, 2} by

f(z) =

⎧
⎪⎨

⎪⎩

2 if z ∈ W \ {v}
0 if z ∈ (L ∪ {w}) \ {x}
1 otherwise.
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Then f is a TRDF with f(V ) < n − l + s, which is a contradiction.
If v is not a support, then there exist two vertices say x, y such that v, x, y

form a path in that order. We define a function f : V → {0, 1, 2} by

f(z) =

⎧
⎪⎨

⎪⎩

2 if z ∈ W

0 if z ∈ (L ∪ {w})
1 otherwise.

Then f is a TRDF with f(V ) < n − l + s, which is a contradiction. Hence (i)
holds.

Suppose (ii) is not true. Then there exists a non-support vertex say u ∈ V
such that at most deg(u) − 2 neighbours of u are either a nonisolated strong
support vertices or adjacent to an isolated strong support vertex. Let u1 and u2

be the two neighbours of u such that u1 and u2 are neither non isolated strong
support vertices nor adjacent to an isolated strong support vertex. Therefore
there exist vertices x1, y1, x2 and y2 such that u1, x1, y1 and u2, x2, y2 form paths
in that order.

Now if y1, y2 are leaves, we define a function f : V → {0, 1, 2} by

f(z) =

⎧
⎪⎨

⎪⎩

2 if z ∈ (W \ {x1, x2}) ∪ {u}
0 if z ∈ (L \ {y1, y2}) ∪ {u1, u2}
1 otherwise.

Then f is a TRDF with f(V ) < n − l + s, which is a contradiction.
Now if y1, y2 are not leaves, we define a function f : V → {0, 1, 2} by

f(z) =

⎧
⎪⎨

⎪⎩

2 if z ∈ (W ∪ {u}
0 if z ∈ L ∪ {u1, u2}
1 otherwise.

Then f is a TRDF with f(V ) < n − l + s, which is a contradiction. Hence (ii)
holds.

Conversely, suppose the given conditions are satisfied. We define a function
f : V → {0, 1, 2} by

f(z) =

⎧
⎪⎨

⎪⎩

2 if z ∈ W

0 if z ∈ L

1 otherwise.

Then f is a γtR(T )-function and

γtR(T ) = 2|V2| + |V1|
= 2s + n − l + s = n − l + s.



330 P.R.L. Pushpam and S. Padmapriea

3 Bounds in Terms of Girth

In this section, we present bounds for total Roman domination number of a
graph G in terms of its girth. The following observation is immediate.

Observation 1. For a graph G of order n with g(G) ≥ 3, we have γtR(G) ≥ g(G).

Theorem 5. Let G be a graph with g(G) = 3. Then γtR(G) = 3 if and only if
�(G) = n − 1.

Proof. Let C = (v1v2v3v1) be a cycle in G. Suppose G has a vertex v1 of degree
n − 1. We define f : V → {0, 1, 2} by f(v1) = 2, f(v2) = 1 and f(x) = 0 for all
x ∈ V \ {v1, v2}. Then f is a TRDF and hence γtR(G) = 3.

Conversely, let γtR(G) = 3 and let f = (V0, V1, V2) be a γtR(G)-function.
Since γtR(G) = 3, one of the following holds.

(i) |V2| = 0 and |V1| = 3.
(ii) |V2| = 1 and |V1| = 1.

If |V2| = 0, |V1| = 3, clearly G = C3 and hence G has a vertex of degree n − 1.
Now, let |V2| = 1, |V1| = 1. Assume that V2 = {u} and V1 = {v}. Clearly

u and v are adjacent and every vertex x ∈ V \ {u, v} is adjacent to u. Hence
deg(u) = n − 1.

Theorem 6. For any graph G with g(G) = 4, γtR(G) = 4 if and only if G is a
bipartite graph with partite sets X and Y such that both X and Y have at least
one vertex of degree |Y | and degree |X| respectively.
Proof. Suppose that G satisfies the given conditions. Let deg(u) = |Y | and
deg(v) = |X| where u ∈ X and v ∈ Y . Now define f : V → {0, 1, 2} by
f(u) = f(v) = 2 and f(x) = 0 for all x ∈ V (G) \ {u, v}. Then f is γtR(G) -
function and hence γtR(G) = 4.

Conversely, let γtR(G) = 4 and f = (V0, V1, V2) be a γtR(G)-function. Since
γtR(G) = 4, one of the following holds.

(i) |V2| = 0 and |V1| = 4.
(ii) |V2| = 1 and |V1| = 2.
(iii) |V2| = 2 and |V1| = 0.

If |V2| = 0 and |V1| = 4, then G = C4 and hence G satisfies the given condition.
Suppose |V2| = 1 and |V1| = 2. Let V2 = {u} and V1 = {v, w}. Since γtR(G) =

4, u is adjacent to either v or w but not to both. Without loss of generality, let
u and w be non-adjacent vertices in G. Hence u and v are contained in exactly
one four cycle of G. Also every vertex in V \{u, v, w} is adjacent to u. Therefore
G is a bipartite graph with partite sets X = {u,w} and Y = V \ {u,w} and
hence G is of the required type.

Suppose |V2| = 2 ande |V1| = 0. Let V2 = {u, v}. Since γtR(G) = 4, u and v
are adjacent and every vertex in V \{u, v} is adjacent to either u or v but not to
both. Also no two members of N(u) or N(v) are adjacent. Hence G is a bipartite
graph with partite sets X = N(v) and Y = N(u) and hence G is of the required
type.
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Abstract. Let G = (V, E) be an arbitrary graph. For any subset X of
V , let B(X) be the set of all vertices in V − X that have a neighbour
in X. Mashburn et al. defined the differential of a set X to be ∂(X) =
|B(X)| − |X|, and the differential of a graph is max{∂(X)}, where the
maximum is taken over all subsets X of V . Motivated by this parameter
we define the restrained differential of graph as follows. For any subset
X of V , let B(X) be the set of all vertices in V −X that have a neighbor
in X and a neighbour in V − X. We define the restrained differential of
a set X to be ∂(X) = |B(X)| − |X| and the restrained differential of a
graph is max{∂(X)}, where the maximum is taken over all subsets X of
V . In this paper, we initiate a study of this parameter.

Keywords: Differential · Restrained domination number · Restrained
differentials

1 Introduction

For any subset S of V , the boundary B(S), of a set S is defined to be the set of
vertices in V −S dominated by vertices in S, that is B(S) = (V −S)∩N(S). The
differential ∂(S) of S equals the value ∂(S) = |B(S)| − |S|. The differential of a
graph of G is defined as ∂(G) = max{∂(S)|S ⊆ V }. The differential of a set was
defined by Hedetniemi and later studied by Mashburn et al. [6] and Goddard
and Henning [2]. The differential in certain classes of graphs is studied in [7]
and some bound on the differential in graphs are shown in [1]. The parameter
{∂(S)} is also considered in [8] and the minimum differential of an independent
set was also motivated by Zhang [9]. This parameter was studied in [4,5].

We define the restrained differential of a graph as follows. For any subset
X of V , let B(X) be the set of all vertices in V − X that have neighbour in
X and a neighbour in V − X. We define the restrained differential of a set X
to be ∂(X) = |B(X)| − |X| and the restrained differential of a graph equal the
max{∂(X)}, for any subset X and V . A subset X of V is said to be ∂− set
if ∂(G) = ∂(X). One can easily observe that ∂(G) ≤ ∂(G). In this paper, we
initiate a study of this parameter.
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 332–340, 2017.
DOI: 10.1007/978-3-319-64419-6 43
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2 Notations

Let G = (V,E) be a graph. For graph theoretical terminology not given here
refer to Harary [3]. For a vertex v ∈ V , the open neighbourhood of v is the
set N(v) = {u ∈ V |uv ∈ E} and the closed neighbourhood is the set N [v] =
N(v)∪{v}. For a set S ⊆ V , its open neighbourhood is N(S) =

⋃
v∈S N(v) and

the closed neighbourhood is N [S] = N(S) ∪ S. The degree of a vertex v in a
graph G is the number of edges of G incident with v and is denoted by deg(v).
A vertex of degree zero in G is called an isolated vertex, while a vertex of degree
one is called a leaf vertex or a pendant vertex of G. We denote δ(G) and Δ(G),
the minimum and maximum degree of the graph respectively. The sub graph
induced by a set S ⊆ V will be denoted by < S > and any vertex v ⊆ V (G), we
denote by NS(v), the set of neighbours that v has in S. The complement G of G
is defined to be the graph with the same vertex set as G and where two vertices
u and v adjacent precisely when they are not adjacent in G.

A graph G is bipartite if the vertex set can be partitioned into two disjoint
subsets A and B such that the vertices in A are only adjacent to vertices in B
and vice versa. Km,n denotes the complete bipartite graph where V = A ∪ B,
|A| = m, |B| = n, A and B are independent sets and every vertex in A is
adjacent to every vertex in B. This can be extended to a complete k-partite
graph Kn1,n2,...,nk

where the vertex set V is the disjoint union of k independent
sets Vi of size ni; (called the partite classes of Kn1,n2,...,nk

) and every vertex in
Vi is adjacent to every vertex in V − Vi. A complete bipartite graph is said to
be a star if |X|=1 and |Y | = n − 1 and is denoted by K1,n−1.

A split graph is a graph G = (V,E) whose vertices can be partitioned into
two sets X and Y where the vertices in X are independent and vertices in Y
form a complete graph.

For arbitrary graphs G and H, the cartesian product of G and H is defined
to be the graph G�H with vertices {(u, v)|u ∈ G, v ∈ H}. Two vertices (u1, v1)
and (u2, v2) are adjacent in G�H if and only if one of the following is true:
u1 = u2 and v1 is adjacent to v2 in H; or v1 = v2 and u1 is adjacent to u2 in G.
If G = Pm and H = Pn, then the cartesian product of G�H is called the m × n
grid graph.

A Complete binary tree is a rooted tree in which all leaves have the same
depth and all internal vertices have degree three except the root vertex which
is of degree two. If T is a complete binary tree with root vertex v, the set of all
vertices with depth k are called vertices at level k.

A support is a vertex which is adjacent to at least one leaf vertex. A weak
support is a vertex which is adjacent to exactly one leaf vertex. A strong support
is a vertex which is adjacent to at least two leaves.

For a positive integer t, a wounded spider is a star K1,t with at most t − 1
of its edges subdivided. Similarly for an integer t ≥ 2, a healthy spider is a star
K1,t with all of its edges subdivided. In a wounded spider, a vertex of degree t
will be called the head vertex and the vertices at a distance two from the head
vertex will be called the foot vertices.
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A caterpillar is a tree with the property that the removal of the end vertices
leaves a path called the spine of the caterpillar.

A restrained dominating set is a set S ⊆ V in which every vertex in V − S is
adjacent to a vertex in S as well as in V −S. The restrained domination number
of the graph is defined as the smallest cardinality of a restrained dominating set
of G. It is denoted as γr(G).

3 Restrained Differential Values of Some Standard
Graphs

In this section we determine the value of ∂(G) where G is a path, cycle, complete
graph, k-partite graph, complete binary tree and caterpillar.

Observation 1. For paths Pn, n ≥ 3,

∂(Pn) =

{⌊
n
3

⌋
n = 3k + 2

⌊
n
3

⌋ − 1 otherwise

Observation 2. For cycles Cn, ∂(Cn) =
⌊
n
3

⌋
.

Observation 3. For complete graph Kn, ∂(Kn) = n − 2.

Theorem 1. For any k-partite graph with partition (X1,X2, . . . , Xk), |Xi| =
mi, where i = 1, 2, . . . , k, ∂(G) ≤ max{N1 − 1, N2 − 1, Nk − 1, Ni + mi − 4},

where Nj =
k∑

i=1
i�=j

Mi, the bound is sharp when G is a complete k-partite graph.

Proof. If we take v ∈ X, and S = {v}, we have that ∂(S) ≤ N1 − 1 and it is
clear that even if we add one more vertex of X1 to S, then ∂(S) < N1 − 1. A
similar argument holds for every set Xi, 2 ≤ i ≤ k. Suppose u ∈ X1 and v ∈ X2

and S = {u, v}, we have ∂(S) ≤ N1 − 1 + m1 − 1 − 2 = N1 + m1 − 4. It is clear
that, if the graph is a complete bipartite graph, all the above inequalities are
equalities.

Theorem 2. For any caterpillar T of order n

∂(T ) =

{⌊
m
3

⌋ − 1 m = 3k and both ends are week supports
⌊
m
3

⌋
otherwise

where m denotes the number of vertices of the spine.

Proof. Clearly ∂(T ) ≤ ⌊
m
3

⌋
. If both ends of the spine are supports and m =

3k, then S1 = {v3, v6, v9, ..., vm−3} is a ∂-set of T . Hence |S1| =
m

3
− 1. If at

least end of the spine is a week support and m = 3k+1 or m = 3k+2, then
S2 = {v2, v5, v8, . . . , vm−2} is a ∂-set of T . Hence ∂(T ) =

⌊
m
3

⌋
. If both ends of

the spine are strong supports, then S = {v2, v5, v8, . . . , vk} is a ∂-set of T where
k = m − 1 when m ≡ 0 (mod 3), k = m − 2 when m ≡ 1 (mod 3) and k = m − 4
when m ≡ 2 (mod 3). In all cases ∂(T ) =

⌊
m
3

⌋
.
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Theorem 3. For any complete binary tree G,

∂(G) =

⎧
⎪⎨

⎪⎩

3(8)n−10
7 k = 3n

3(8)n−10
14 k = 3n − 1

3
7 (2(8)n − 1) k = 3n + 1

Proof. Let G be a complete binary tree with k levels. Let Si be the set of all
vertices in level i and |Si| = ni, then ni = 2i. Now nk > nk−1 > nk−2 > · · · > n0.
If k = 3n, then clearly Sk−2∪Sk−4∪· · ·∪S1 is ∂-set of G. If k = 3n−1, then clearly
Sk−2 ∪ Sk−4 ∪ · · · ∪ S2 is ∂-set of G. If k = 3n + 1, then clearly Sk−2 ∪ Sk−4 ∪ S1

is a ∂-set of G.
If k = 3n, then

∂(G) = (2k−1 + 2k−3 + 2k−4 + 2k−6 + 2k−7 + · · · 23 + 22)

− (2k−2 + 2k−5 + 2k−8 + · · · + 2)

= (2k−1 + 2k−2 + 2k−3 + 2k−4 + · · · 22 + 2)

− 2(2k−2 + 2k−5 + 2k−8 + · · · + 2)

=
2k

2

[

1 +
1
2

+
1
22

+ · · · +
1

2k−1

]

− 2(2k)
2

[

1 +
1
23

+
1
25

+ · · · +
1

2k/3−1

]

=
2k

2

([
1 − (1/2)k−1

1 − 1/2

]

−
[
1 − (1/8)n

1 − 1/8

])

=
2k

2

[

(2k − 2) − 4
7

(
2k − 1

2k

)]

=
3(2)k − 10

7

=
3(8)n − 10

7

If k = 3n − 1, then

∂(G) = (2k−1 + 2k−3 + 2k−4 + 2k−6 + 2k−7 + · · · 22 + 2)

− (2k−2 + 2k−5 + 2k−8 + · · · + 23 + 21)

=
2k

2

[
1 − (1/2)k

1 − 1/2

]

− 2(2k)
22

[
1 − (1/23)n

1 − 1/23

]

=
3(2)k − 5

7
=

3(8)n − 10
14

If k = 3n + 1, then

∂(G) = (2k−1 + 2k−3 + 2k−4 + 2k−6 + 2k−7 + · · · 23 + 2)

− (2k−2 + 2k−5 + 2k−8 + · · · + 25 + 2)

=
2k

2

[
1 − (1/2)k−1

1 − 1/2

]

− 2(2k)
2

[
1 − (1/23)
1 − 1/23

]
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=
2k

2

[
2k−1 − 1

2k−1
× 2 − 8

7

(
23n − 1

23n

)]

=
2k

2

[
2k−1 − 1

2k−1

] (
6
7

)

=
6
7

(
2(8)n − 1

2

)

=
3
7
(2(8)n − 1)

4 Bounds on ∂(G)

In this section we obtain some bounds for ∂(G).

Theorem 4. For any graph G, 0 ≤ ∂(G) ≤ n − 2.

Proof. Let S be any ∂-set of G, then by definition

∂(G) = |B(S)| − |S| ≤ n − 1 − 1 ≤ n − 2.

Theorem 5. For any graph G, ∂(G) + 2γr(G) ≥ n.

Proof. Let X be a any γr-set. Notice that,

∂(G) ≥ ∂(X) = |B(X)| − |X|
= (n − γr(G)) − γr(G)
= n − 2γr(G).

Theorem 6. For any two positive integers a and b with a < b, there exists a
graph G such that ∂(G) = a and ∂(G) = b.

Proof. Let a and b be any two positive integers with a < b. Consider the star
K1,b+2 and subdivide a + 1 edges, clearly ∂(G) = a and ∂(G) = b.

Theorem 7. Given any positive integer k and n and 0 ≤ k < n−2, there exists
a graph G on n vertices with ∂(G) = k.

Proof. We now construct a graph with ∂(G) = k. Consider a star on k + 2
vertices and subdivided all its edges. Clearly ∂(G) = k.

A set S ⊂ V is a minimum ∂-set if

|S| = min{|X| : X ⊂ V and ∂(X) = ∂(G)}.

Theorem 8. If S is a minimum ∂-set, then

(i) |B(S)| ≥ 2|S|
(ii) |S| ≤ n

3

(iii) |S| ≤ ∂(G)
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Proof. We know that every vertex in S is of degree at least two. Let v ∈ S, then
clearly, |epn(v, S)| ≥ 2 and hence |B(S)| ≥ 2|S|. Hence (i) holds.
Now to prove (ii), 3|S| = |S| + 2|S| ≤ |S| + |B(S)| = n. Hence (ii) holds.
Now to prove (iii), |S| ≤ 2|S| − |S| ≤ |B(S)| − |S| = ∂(G).

Theorem 9. Let G be any graph and S be a minimum ∂-set of G. Then

∂(G) + 1 ≤ |B(S)| ≤ 2∂(G).

Proof

|B(S)| = 2|B(S)| − |B(S)| ≤ 2|B(S)| − 2|S| ≤ 2∂(G)

∂(G) + 1 = |B(S)| − |S| + 1 = |B(S)| − (|S| − 1).

Hence ∂(G) + 1 ≤ |B(S)| ≤ 2∂(G).

Theorem 10. For any graph G, ∂(G) = 0 if and only if G is isomorphic to a
star or a bistar.

Proof. Suppose ∂(G) = 0. We claim that G is isomorphic to a star or a bistar.
Let v be a vertex in G such that deg(v) = Δ(G). First we claim that at most one
vertex in N(v) is of degree more than one. Suppose no vertex in N(v) is of degree
more than one, then G reduces to a star. Otherwise there exists two vertices x, y
in N(v) are of degree more than one. Then clearly ∂({v}) = 2 − 1 = 1, which
is a contradiction. Next we claim that each neighbour of x except v is of degree
one. Suppose there exists a vertex, say z in N(x) of degree more than one. Then
clearly ∂({x, v}) = 2 − 1 = 1, which is a contradiction. Hence G is isomorphic
to a star or a bistar. Converse is obvious.

Theorem 11. For any graph G, ∂(G) = n − 2, if and only if δ(G) > 1 and
there exists a vertex v ∈ V (G) with deg(v) = n − 1.

Proof. Let v ∈ V (G) be such that deg(v) = Δ(G). First we assume that ∂(G) =
n − 2. We claim that deg(v) = n − 1. Suppose there exists a vertex u such that
u 
∈ N(v) and ∂({v}) = |B(S)| − |S| ≤ (n − 1 − 1) − 1 = n − 3, which is a
contradiction. Next we claim δ(G) > 1. Suppose not. then v is a support. Let w
be the leaf which is adjacent to v. Then ∂(G) ≤ (n − 1 − 1) − 1 = n − 3, which
is a contradiction.

Conversely, Suppose there exist a vertex v ∈ V (G) with deg(v) = n − 1 and
δ(G) > 1, then ∂({v}) = n − 1 − 1 = n − 2.

Theorem 12. For any graph G, ∂(G) = n−3 if and only if there exists a vertex
v such that deg(v) = n − 1 or n − 2. Further if deg(v) = n − 1, then v is a weak
support, otherwise v is not a support.

Proof. First we assume that ∂(G) = n − 3. Let v ∈ V (G) with deg(v) = Δ(G).
First we claim that deg(v) = n − 1 or n − 2. Suppose not. Then there exists two
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vertices x, y ∈ V (G) such that x, y 
∈ N(v). Then, clearly ∂({v}) < (Δ−1−2)−
1 < n − 3, which is a contradiction. Next we claim that if deg(v) = n − 1, then
v is a weak support. Suppose not. Then v is adjacent to more than one pendant
vertices say m vertices. Then ∂({v}) = n−m−1−1 = n−m−2 < n−3, which
is a contradiction. If deg(v) = n−2, then v is not a support. For otherwise N(v)
contains m pendant vertices and ∂({v}) = (n − m − 2) − 1 < n − 3, which is a
contradiction.

Conversely if deg(v) = n − 1 and v is a week support, then ∂({v}) = (n −
1) − 1 − 1 = n − 3. If deg(v) = n − 2 and v is not a support, then ∂({v}) =
n − 2 − 1 = n − 3.

Theorem 13. For any graph G, with diam(G) = 2, 0 ≤ ∂(G) ≤ Δ(Δ − 2),
where Δ denotes the maximum degree of G.

Proof. If G is a wounded spider with exactly one foot vertex, then ∂(G) = 0,
hence ∂(G) ≥ 0. To prove the upper bound, we consider a vertex v ∈ V (G)
with deg(v) = Δ. Define A1 = {x|x ∈ N(v)}, A2 = {y|y ∈ N(A1)}. Since
diam(G) = 2, V (G) = A1 ∪ A2 ∪ {v} and the graph will have a maximum
restrained differential value if it is a Δ-regular graph. In this case A1 is a ∂-set.
Hence ∂(G) ≤ Δ(Δ − 1) = Δ(Δ − 1 − 1) = Δ(Δ − 2).

Theorem 14. For any graph G, with diam(G) = 3, 1 ≤ ∂(G) ≤ (Δ − 1)3 + 1.
where Δ denotes the maximum degree of G.

Proof. Since diam(G) = 3, clearly ∂(G) ≥ 1. For the upper bound, consider
a vertex v ∈ V (G), with deg(v) = Δ. Let A1, A2 be two sets as defined in
Theorem 13. Now define A3 = {z|z ∈ N(A3)}. Since diam(G) = 3, V (G) =
A1 ∪A2 ∪A3 ∪{v} and the graph will have the maximum restrained differential,
when it is a Δ-regular graph. We take all the vertices adjacent to N(v) as a
restrained differential set. Tthen ∂(G) ≤ Δ+Δ(Δ−1)2−Δ(Δ−1) = (Δ−1)3+1.

Theorem 15. Let G be any graph and v ∈ V (G) with deg(v) = Δ(G) and v
is not a support. Then ∂(G) ≥ Δ(G) − 1 and equality holds if and only if there
exists a ∂-set S satisfying the following conditions:

(i) For each w ∈ B(S) at most two vertices in NC(S)(w) has at least one
neighbour in C(S), where C(S) = V \(S ∪ B(S)).

(ii) Each component of C(S) is either a K1 or a star or a wounded spider with
at most two foot vertices. If there is a wounded spider with exactly two foot
vertices, then the corresponding w in B(S) has no neighbours in C(S).

(iii) < C(S) > has at most 2Δ(G) − 1 wounded spiders.

Proof. Let v ∈ V (G) be a non-support, such that deg(v) = Δ(G). It is obvious
that ∂(G) ≥ Δ(G) − 1. To prove equality, we assume that ∂(G) = Δ(G) − 1.
Let S be any ∂-set. First we claim that for each w ∈ B(S) at most two vertices
in NC(S)(w) has at least one neighbour in C(S). Suppose not. Then at least three
vertices in NC(S)(w) have more than one neighbour in C(S), which imply that
∂({v, w}) = Δ(G) − 1 + 3 − 2 = Δ(G) > Δ(G) − 1, which is a contradiction.
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Suppose x and y are two vertices in NC(S)(w) which have at least one neighbour in
C(S), then no vertex inC(S) is a commonneighbour of bothx and y. For, otherwise
∂({v, z}) = Δ(G)−1+2−1 = Δ(G) > Δ(G)−1, which is a contradiction, where
z ∈ N(x) ∩ N(y) ∩ C(S).

Further at most two neighbours of x have neighbours in C(S). For, otherwise
∂({v, x}) ≥ Δ(G) − 1 + 3 − 2 = Δ(G) > Δ(G) − 1, which is a contradiction.
Similarly, at most two neighbours of y have neighbour in C(S). Suppose y1, y2
be two neighbours of y having neighbours in C(S). Then we claim that no
vertex in C(S) is a common neighbour of both y1 and y2. Suppose not. Let u
be the vertex in C(S) which is a common neighbour of both y1 and y2. Then
∂({v, u}) = Δ(G) − 1 + 2 − 1 = Δ(G) > Δ(G) − 1, which is a contradiction.
Hence each component of C(S) is either a K1 or a star or a wounded spider
with at most two foot vertices. If a component of C(S) is a wounded spider
with two foot vertices, then we claim that corresponding w ∈ B(S) has no
neighbour in C(S). Suppose not. Let z 
= x be a neighbour of w in C(S), then
∂({x}) = Δ(G)+3−2 = Δ(G)+1 > Δ(G)−1, which is a contradiction. Finally
we claim that < C(S) > have at most 2Δ(G)−1 wounded spiders. Suppose not.
Then ∂({N2(v)}) ≥ 2Δ(G)−Δ(G) = Δ(G) > Δ(G)−1, which is a contradiction.

Conversely, let us assume that the given conditions hold, then clearly S = {v}
and ∂(G) = Δ(G) − 1. Hence proved.

Theorem 16. Let G be any bipartite graph with bipartition (X,Y ) and v ∈
V (G) with deg(v) = Δ(G) and v is not a support. Then ∂(G) = Δ(G) − 1, if
and only if the following conditions hold,

(i) Corresponding to each w ∈ N(v) at most two vertices in N(w) has neigh-
bours in Y − N(v).

(ii) At most two supports in Y −N(v) have a common neighbour. If two supports
have a common neighbour say two, then the vertex x ∈ N(v) ∩ N(z) is of
degree two.

(iii) At most 2Δ(G) vertices in Y − N(v) are supports.

Proof. Without loss of generality, let v ∈ X. Suppose ∂(G) = Δ(G) − 1. Condi-
tion (i) follows from Theorem 15. Next we claim that at most two supports in
Y − N(v) have a common neighbour. Suppose there exists three vertices which
are supports in Y − N(v) having a common neighbour say w, then ∂({v, w}) =
Δ(G) − 1 + 3 − 2 = Δ(G) > Δ(G) − 1, which is a contradiction. Further, if two
support have a common neighbour say z, then the vertex x in N(v) ∩ N(z) is of
degree two. Otherwise, ∂({v, z}) = Δ(G)− 1+3− 2 = Δ(G) > Δ(G)− 1, which
is a contradiction. Finally we claim that at most 2Δ(G) vertices in Y −N(v) are
supports. Suppose not. Let S1 be the set of all vertices in Y −N(v) such that each
x ∈ S1 in degree at least two. Then ∂(S1) = 2Δ(G)−Δ(G) = Δ(G) > Δ(G)−1,
which is a contradiction. Converse is obvious.

Theorem 17. Let G be a split graph with bipartition (X,Y ), where X is an
independent and Y is complete and |X| = m1, |Y | = m2. Let v1, v2, v3, . . . , vm
be the vertices in Y such that deg(v1) ≥ deg(v2) ≥ deg(v3) ≥ · · · ≥ deg(vm).
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Then ∂(G) = ∂(G) if and only v1 is not a support and at most two vertices of

NX(vi) −
⎡

⎣
i−1⋃

j=1

NX(vj)

⎤

⎦ are pendant vertices, where if 2 ≤ i ≤ m2.

Proof. We assume that ∂(G) = ∂(G). First we claim that v1 is not a support.
Suppose v1 is a support. Then clearly v1 belongs to every ∂ set. If NX(v1)
contains m pendant vertices then ∂({v}) = NX(v1) + (m2 − 1) − m − 1. But
∂({v}) = NX(v1) + (m2 − 1) − 1, which is a contradiction. Hence v1 is not a
support. Next we claim that at most two vertices of NX(vi) −

[⋃i−1
j=1 NX(vj)

]

are two pendent vertices. Suppose not. Let vi 
= v1 ∈ Y such that NX(vi) −
i−1⋃

j=1

NX(vj) contains more than two pendant vertices, then

∂({v1, vi}) ≥ |NX(v1)| − 1 + 3 − 2
= |NX(v1)|

∂({v1, vi}) = |NX(v1)| − 1 ≤ ∂({v1, vi})

which imply that ∂(G) 
= ∂(G) which is a contradiction.
Conversely, assume that the given conditions holds. To prove ∂(G) = ∂(G).

Let S be any ∂ set of G. By the given condition v1 ∈ S, and let S1 be the set
of all vertices in Y except v1 such that NX(vi) − ⋃i−1

j=1 NX(vj) has at least one
neighbour in X. Then S = {v1} ∪ S1 is also a ∂-set of G. Hence ∂(G) = ∂(G).
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The Distinguishing Number of Kronecker
Product of Two Graphs
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Abstract. The distinguishing number D(G) of a graph G is the least
integer d such that G has a vertex labeling with d labels that is preserved
only by a trivial automorphism. The Kronecker product G × H of two
graphs G and H is the graph with vertex set V (G) × V (H) and edge
set {{(u, x), (v, y)}|{u, v} ∈ E(G) and {x, y} ∈ E(H)}. In this paper we
study the distinguishing number of Kronecker product of two graphs.

Keywords: Distinguishing number · Kronecker product

1 Introduction

Let G = (V,E) be a simple graph of order n � 2. We use the following notations:
The set of vertices adjacent in G to a vertex of a vertex subset W ⊆ V is the
open neighborhood NG(W ) of W . The Aut(G) denotes the automorphism group
of G. A labeling of G, φ : V → {1, 2, . . . , r}, is said to be r-distinguishing, if
no non-trivial automorphism of G preserves all of the vertex labels. The point
of the labels on the vertices is to destroy the symmetries of the graph, that is,
to make the automorphism group of the labeled graph trivial. Formally, φ is
r-distinguishing if for every non-trivial σ ∈ Aut(G), there exists x in V such
that φ(x) �= φ(σ(x)). The distinguishing number of a graph G is defined by

D(G) = min{r : G has a labeling that is r-distinguishing}.

This number has defined by Albertson and Collins [1]. If a graph has no non-
trivial automorphisms, its distinguishing number is 1. In other words, D(G) = 1
for the asymmetric graphs. The other extreme, D(G) = |V (G)|, occurs if and
only if G = Kn. Also D(Pn) = 2 for every n � 3, and D(Cn) = 3 for n = 3, 4, 5,
D(Cn) = 2 for n � 6. A graph and its complement, always have the same auto-
morphism group while their graph structure usually differs, hence D(G) = D(G)
for every simple graph G. The distinguishing number of some graph products
has been studied in literature (see [2–4,9,10]). The Cartesian product of graphs
G and H is a graph, denoted G�H, whose vertex set is V (G) × V (H). Two
vertices (g, h) and (g′, h′) are adjacent if either g = g′ and hh′ ∈ E(H), or
gg′ ∈ E(G) and h = h′. Denote G�G by G2, and recursively define the k-th
Cartesian power of G as Gk = G�Gk−1. A non-trivial graph G is called prime
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 341–346, 2017.
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if G = G1�G2 implies that either G1 or G2 is K1. Two graphs G and H are
called relatively prime if K1 is the only common factor of G and H. We need
knowledge of the structure of the automorphism group of the Cartesian product,
which was determined by Imrich [8], and independently by Miller [13].

Theorem 1 [8,13]. Suppose ψ is an automorphism of a connected graph G with
prime factor decomposition G = G1�G2� . . . �Gr. Then there is a permutation
π of the set {1, 2, . . . , r} and there are isomorphisms ψi : Gπ(i) → Gi, i =
1, . . . , r, such that

ψ(x1, x2, . . . , xr) = (ψ1(xπ(1)), ψ2(xπ(2)), . . . , ψr(xπ(r))).

The Kronecker product is one of the (four) most important graph products
and seems to have been first introduced by K. Čulik, who called it the cardinal
product [6]. Weichsel [14] proved that the Kronecker product of two nontrivial
graphs is connected if and only if both factors are connected and at least one of
them possesses an odd cycle. If both factors are connected and bipartite, then
their Kronecker product consists of two connected components. The Kronecker
product G×H of graphs G and H is the graph with vertex set V (G)×V (H) and
edge set {{(u, x), (v, y)}|{u, v} ∈ E(G) and {x, y} ∈ E(H)}. The terminology is
justified by the fact that the adjacency matrix of a Kronecker graph product is
given by the Kronecker matrix product of the adjacency matrices of the factor
graphs; see [14] for details. However, this product is also known under several
different names including categorical product, tensor product, direct product,
weak direct product, cardinal product and graph conjunction. The Kronecker
product is commutative and associative in an obvious way. It is computed that
|V (G × H)| = |V (G)|.|V (H)| and |E(G × H)| = 2|E(G)|.|E(H)|. We recall that
graphs with no pairs of vertices with the same open neighborhoods are called
R-thin. In continue, we need the following theorem:

Theorem 2 [7]. Suppose ϕ is an automorphism of a connected non-bipartite R-
thin graph G that has a prime factorization G = G1 ×G2 × . . .×Gk. Then there
exists a permutation π of {1, 2, . . . , k}, together with isomorphisms ϕi : Gπ(i) →
Gi, such that

ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

2 Main Results

We begin with the distinguishing number of Kronecker product of complete
graphs.

Theorem 3. Let k, n, and d be integers so that d � 2 and (d − 1)k < n � dk.
Then

D(Kk × Kn) =
{

d if n � dk − �logdk� − 1
d + 1 if n � dk − �logdk� + 1

If n = dk − �logdk�, then D(Kk × Kn) is either d or d + 1.
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Proof. It is easy to see that Kk × Kn is the complement of Cartesian product

Kk�Kn. By Theorem 1.1 in [9], D(Kk�Kn) =
{

d if n � dk − �logdk� − 1
d + 1 if n � dk − �logdk� + 1 ,

so we have the result.

It is known that connected non-bipartite graphs have unique prime factor
decomposition with respect to the Kronecker product [12]. If such a graph G has
no pairs u and v of vertices with the same open neighborhoods, then the structure
of automorphism group of G depends on that of its prime factors exactly as in
the case of the Cartesian product. As said before graphs with no pairs of vertices
with the same open neighborhoods are called R-thin and it can be shown that
a Kronecker product is R-thin if and only if each factor is R-thin.

Theorem 4. Let G and H be two simple connected, relatively prime graphs,
non-bipartite R-thin graphs, then D(G × H) = D(G�H).

Proof. By hypotheses and Theorems 1 and 2, it can be concluded that Aut(G×
H) = Aut(G�H). Therefore D(G × H) = D(G�H).

Imrich and Klav̌zar in [10] proved that the distinguishing number of k-th
power with respect to the Kronecker product of a non-bipartite, connected, R-
thin graph different from K3 is two.

Theorem 5 [10]. Let G be a nonbipartite, connected, R-thin graph different
from K3 and ×Gk the k-th power of G with respect to the Kronecker product.
Then D(×Gk) = 2 for k � 2. For the case G = K3 we have D(K3 × K3) = 3
and D(×Kk

3 ) = 2 for k � 3.

Now we want to obtain the distinguishing number of Kronecker product of
two complete bipartite graphs. We need the following lemma:

Lemma 1 [11]. If G = (V0∪V1, E) and H = (W0∪W1, F ) are bipartite graphs,
then (V0 ×W0)∪ (V1 ×W1) and (V0 ×W1)∪ (V1 ×W0) are vertex sets of the two
components of G × H.

Proposition 1. If Km,n and Kp,q are complete bipartite graphs such that q � p
and m � n then the distinguishing number of Km,n × Kp,q is

D(Km,n × Kp,q) =
{

mq + 1 m = n, p = q
mq otherwise.

Proof. The Kronecker product Km,n × Kp,q is disjoint union of two complete
bipartite graphs Kmp,nq and Kmq,np by Lemma 1. Hence if m �= n and p �= q, then
Kmp,nq and Kmq,np are the two non-isomorphic graphs, and so D(Km,n×Kp,q) =
max{D(Kmp,nq),D(Kmq,np)} = mq. If m = n or p = q, then Kmp,nq and Kmq,np

are isomorphic to Kmp,mq or Kmp,np, respectively. In fact

Km,n × Kp,q =

⎧⎨
⎩

Kmp,mq ∪ Kmp,mq m = n, p �= q
Kmq,nq ∪ Kmq,nq m �= n, p = q
Kmq,mq ∪ Kmq,mq m = n, p = q.
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Thus using the value of the distinguishing number of complete bipartite
graphs we have

D(Km,n × Kp,q) =
{

mq m = n, p �= q or m �= n, p = q
mq + 1 m = n, p = q.

Therefore the result follows.

Corollary 1. Let m,n � 3 be two integers. The distinguishing number of Kro-
necker product of star graphs K1,n and K1,m is D(K1,n × K1,m) = mn.

The following result shows that the distinguishing number of Kronecker prod-
uct of complete bipartite graphs is an upper bounds for the distinguishing num-
ber of Kronecker product of bipartite graphs.

Corollary 2. If G = (V0 ∪ V1, E) and H = (W0 ∪ W1, F ) are bipartite graphs
such that |V0| = m, |V1| = n, |W0| = p, and |W1| = q, then D(G × H) �
D(Km,n × Kp,q).

Proof. It is sufficient to note that Aut(G × H) ⊆ Aut(Km,n × Kp,q), and G × H
and Km,n × Kp,q have the same size. Now we have the result by Proposition 1.

Before we prove the next result we need some additional information about
the distinguishing number of complete multipartite graphs. Let Ka1

j1 ,a2
j2 ,...,ar

jr

denotes the complete multipartite graph that has ji partite sets of size ai for
i = 1, 2, . . . , r and a1 > a2 > . . . > ar.

Theorem 6 [5]. Let Ka1
j1 ,a2

j2 ,...,ar
jr denote the complete multipartite graph

that has ji partite sets of size ai for i = 1, 2, . . . , r, and a1 > a2 > . . . > ar.
Then

D(Ka1
j1 ,a2

j2 ,...,ar
jr ) = min{p :

(
p

ai

)
� ji for all i}.

Theorem 7. If G and H are two simple connected, relatively prime graphs such
that G×H has ji R-equivalence classes of sie ai for i = 1, . . . , r, and a1 > a2 >
. . . > ar then

D(G�H) � D(G × H) � min{p :
(

p

ai

)
� ji for all i}.

Proof. Since Aut(G�H) ⊆ Aut(G × H), so D(G�H) ⊆ D(G × H). To prove
the second inequality, it is sufficient to consider each R-equivalence classes of
G × H as a partite set. Thus graph G × H can be considered as multipartite
graph that has ji partite sets of size ai such that every two partite sets of
this multipartite graph is complete bipartite or there exists no edge between
the two partite sets. So the automorphism group of this multipartite graph is
subset of the automorphism group of complete multipartite graph with the same
partite sets. Therefore D(G × H) � D(K

a
j1
1 ,...,ajr

r
), and the result follows from

Theorem 6.
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By using the concept of the Cartesian skeleton we can obtain an upper bound
for Kronecker product of R-thin graphs. For this purpose we need the following
preliminaries from [7]: The Boolean square of a graph G is the graph Gs with
V (Gs) = V (G) and E(Gs) = {xy | NG(x) ∩ NG(y) �= ∅}. An edge xy of the
Boolean square Gs is dispensable if it is a loop, or if there exists some z ∈ V (G)
for which both of the following statements hold:

(1) NG(x) ∩ NG(y) ⊂ NG(x) ∩ NG(z) or NG(x) ⊂ NG(z) ⊂ NG(y).
(2) NG(y) ∩ NG(x) ⊂ NG(y) ∩ NG(z) or NG(y) ⊂ NG(z) ⊂ NG(x).

The Cartesian skeleton S(G) of a graph G is the spanning subgraph of the
Boolean square Gs obtained by removing all dispensable edges from Gs.

Proposition 2 [7]. If H and K are R-thin graphs without isolated vertices, then
S(H × K) = S(H)�S(K).

Proposition 3 [7]. Any isomorphism ϕ : G → H, as a map V (G) → V (H), is
also an isomorphism ϕ : S(G) → S(H).

Now we are ready to give an upper bound for Kronecker product of R-thin
graphs.

Theorem 8. If G and H are R-thin graphs without isolated vertices, then D(G×
H) � D(S(G)�S(H)).

Proof. By Proposition 3 we have Aut(G × H) ⊆ Aut(S(G × H)), and so D(G ×
H) ⊆ D(S(G × H)). The result follows immediately from Proposition 2. �
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7. Hammack, R., Imrich, W., Klav̌zar, S.: Handbook of Product Graphs, 2nd edn.

Taylor & Francis group, New York (2011)
8. Imrich, W.: Automorphismen und das kartesische Produkt von Graphen, O ster-

reich. Akad. Wiss. Math.-Natur. Kl. S.-B. II, vol. 177, pp. 203–214 (1969)
9. Imrich, W., Jerebic, J., Klav̌zar, S.: The distinguishing number of cartesian prod-

ucts of complete graphs. Eur. J. Combin. 29(4), 922–929 (2008)
10. Imrich, W., Klav̌zar, S.: Distinguishing cartesian powers of graphs. J. Graph The-

ory. 53(3), 250–260 (2006)

http://arxiv.org/abs/1603.04005
https://arxiv.org/abs/1606.08184
https://arxiv.org/abs/1606.03751


346 S. Alikhani and S. Soltani

11. Jha, P.K.: Klav̌zar, S., Zmazek, B.: Isomorphic components of Kronecker product
of bipartite graphs. Discuss. Math. Graph Theory. 17(2), 301–309 (1997)

12. McKenzie, R.: Cardinal multiplication of structures with a reflexive relation. Fund
Math. 70, 59–101 (1971)

13. Miller, D.J.: The automorphism group of a product of graphs. Proc. Am. Math.
Soc. 25, 24–28 (1970)

14. Weichsel, P.M.: The Kronecker product of graphs. Proc. Am. Math. Soc. 13, 47–52
(1962)



Grammar Systems Based on Equal Matrix Rules
and Alphabetic Flat Splicing

G. Samdanielthompson, N. Gnanamalar David, and K.G. Subramanian(B)

Department of Mathematics, Madras Christian College,
Tambaram, Chennai 600059, India

samdanielthompson@gmail.com, ngdmcc@gmail.com, kgsmani1948@gmail.com

Abstract. Studies on the concept of splicing on words, established
important theoretical results on computational universality. A specific
kind of splicing, called flat splicing on strings and in particular, alpha-
betic flat splicing, were recently considered and studied for their proper-
ties. On the other hand, in the study of language-oriented modelling of
distributed complex systems, grammar systems were proposed. Here we
introduce a grammar system, called alphabetic flat splicing equal matrix
grammar system (AFSEMGS), as a new model of language generation,
based on the operation of alphabetic flat splicing on words and equal
matrix grammar (EMG) type of rules. The components of a AFSEMGS
generate in parallel words using the EMG rules while two different com-
ponents of the AFSEMGS “communicate” using the alphabetic flat
splicing operation on the words. We derive some comparison results that
bring out the generative power of AFSEMGS and as an application
construct a AFSEMGS to generate certain “chain code pictures”.

Keywords: Flat splicing · Formal Languages · Grammar systems ·
Equal matrix grammar

1 Introduction

When Adleman solved a 7-node instance of the directed Hamilton path prob-
lem [2] using DNA sequence and simple bio-operations, it signalled a significant
development in the field of DNA computing [11,19,20]. Formal language theory
based modelling of the DNA recombination process under the action of restric-
tion enzymes and a ligase was proposed by Head in his seminal work [12–14], by
introducing a new operation on words, called splicing. This operation was uti-
lized in developing theoretical models of computation in the framework of formal
language theory [9,17,21], which is considered to be the backbone of theoretical
computer science. A special kind of splicing, called flat splicing on words, was
recently introduced in [3] inspired by the splicing operation on circular words.
The idea of flat splicing on two words u = u1αβu2 and v = γwδ for some words
u1, u2, w, α, β, γ, δ, is to “insert” v with a specified “prefix” γ and a specified
“suffix” δ, into u between α and β. When α, β, γ, δ are letters of an alphabet,
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the flat splicing is referred to as alphabetic. Several properties associated with
flat splicing in the context of grammars and languages, have been studied in [3].

On the other hand, in the formal language based study of modelling of dis-
tributed complex systems, grammar systems [5] were proposed. The general
idea of a grammar system is to have components, each with a certain type
of grammar rules, and there are different types of communication between com-
ponents, allowing the generation of different classes of languages. In [8], splicing
grammar system is considered, with context-free or regular rules in the compo-
nents and communication between components achieved by the use of splicing on
words. Recently, using the flat splicing operation on words for the communica-
tion between components and context-free or regular rules in the components, a
variant called flat splicing grammar system has been introduced [4] and studied.

Different classes of grammars specified by control mechanisms have been
introduced in the theory of formal grammars and languages with a view to
regulate rewriting and thereby increase the language generative capability of
grammars [6,7]. One such control feature is known as matrix grammars [1]. A
special kind of matrix grammar, known as equal matrix grammar, was introduced
in [22] and an equivalent class called right-linear simple matrix grammar was
introduced in [15]. Here we consider equal matrix grammar in the components
of a flat splicing grammar system and alphabetic flat splicing for communication
between components. We thus introduce alphabetic flat splicing equal matrix
grammar system (AFSEMGS) as a new model of language generation. The
language class of AFSEMGS is compared with certain other language classes
and as an application we construct an AFSEMGS for describing “chain code
pictures” [18], which play an important role in different problems related to
images (see, for example, [10,16,23]).

2 Preliminaries

We refer to [21], for concepts and results related to formal grammars and lan-
guages. In this section, we recall some basic notions and results.

A word w is a finite sequence of symbols of a finite set Σ, referred to as an
alphabet in formal language theory. We denote by Σ∗, the set of all words over
Σ, including the empty word λ and V + = V ∗ − {λ}. The length |w| of a word
w is the number of symbols in w counting repetitions of symbols in w. Clearly,
|λ| = 0.

We now recall the notion of flat splicing on words [3]. The idea is that a
word with a specified “prefix” as well as a “suffix” is inserted into another
word in a pre-specified position. In formal terms, a flat splicing rule r is of
the form (α|γ − δ|β), where α, β, γ, δ are words over an alphabet Σ. For two
words u = xαβy; v = γzδ, an application of the flat splicing rule r = (α|γ − δ|β)
to the pair (u, v) yields the word w = xαγzδβy and we write (u, v) �r w. A flat
splicing rule r = (α|γ − δ|β), where α, β, γ, δ are letters in Σ or the empty word,
is called alphabetic.

A flat splicing system (FSS) [3] is a triple S = (Σ, I,R), where Σ is an
alphabet; I, called initial set, is a set of words over Σ, and R is a finite set of
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flat splicing rules [3]. The FSS S is respectively called finite, regular or context-
free according as I is a finite set, regular set or a context-free language. The
language L generated by S is the smallest language containing I and such that
for any two words u, v ∈ L, the word w is also in L, if (u, v) �r w. When all the
flat splicing rules are alphabetic, the FSS is called an alphabetic flat splicing
system (AFSS). The families of languages generated by FSS and AFSS are
respectively denoted by L(FSS,X) and L(AFSS,X) for X = FIN , REG or
CF according as the initial set is finite, regular or context-free.

We illustrate an alphabetic flat splicing system and its work with an example.

Example 1. Consider the alphabetic flat splicing system

Γ = ({a, c, x, y}, {a, c, xay}, {r1, r2})

where
r1 = (x|c − λ|a), r2 = (x|a − λ|c)

Initially, the rule r1 is applicable to the pair of words (xay, c). Application of the
rule r1 inserts c (the only axiom which begins with c ) between x and a in the
first word xay yielding xcay. Applying the rule r2 to the pair (xcay, a) yields
xacay. Thus, proceeding in this way, the words generated will be of the form
xa(ca)ny, n ≥ 0 or of the form x(ca)ny, n ≥ 1. The language generated by Γ is

L(Γ ) = {a, c} ∪ {xa(ca)ny|n ≥ 0} ∪ {x(ca)ny|n ≥ 1}.

Note that all the axiom words are in the language L(Γ ).

In formal language theory, in order to increase the generative power of
context-free grammars, additional mechanisms have been introduced under the
category of regulated rewriting. One such mechanism is the matrix grammar ini-
tially introduced in [1] in which a sequence [r1, r2, · · · , rn] of context-free rules
is specified and is referred to as a matrix rule. The application of such a matrix
rule to a word is done by applying the rules r1, r2, · · · , rn one after another in
the same order to constitute a single derivation step. A restricted class of matrix
grammars, known as simple matrix grammars of degree n ≥ 1 (n − SMG) was
introduced in [15] and have been investigated by many researchers. It is known
[15] that there is a hierarchy of classes of languages generated by simple matrix
grammars. More precisely, the family of languages generated by simple matrix
grammars of degree n ≥ 1 is denoted by n − SML. The n − EMG [22](or
equivalently n−right-linear simple matrix grammars [15]) constitute a subclass
of n−SMG. We now recall the definition of equal matrix grammar (EMG) [22].

Definition 1 [22]. An equal matrix grammar of degree n ≥ 1 (n − EMG) is
a construct of the form G = (N1, · · · , Nn, T, S,M) where Ni, 1 ≤ i ≤ n and
T pairwise disjoint alphabets; the elements of N = N1 ∪ N2 ∪ · · · ∪ Nn are
nonterminals and those of T are terminal symbols; S /∈ N ∪ T is the initial
symbol or start symbol. M consists of the following types of matrix rules:
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(i) a set of initial matrix rules of the form [S → w],w ∈ T ∗ or [S →
A1A2 · · · An] where Ai ∈ Ni, 1 ≤ i ≤ n;;

(ii) a set nonterminal equal matrix rules of the form [A1 → w1B1, · · · , Ak →
wnBn] where wi, 1 ≤ i ≤ n are elements of T ∗ and Ai, Bi ∈ Ni, 1 ≤ i ≤ n;

(iii) a set of terminal matrix rules of the form [A1 → w1, · · · , An → wn] where
wi, 1 ≤ i ≤ n are elements of T ∗.

A derivation starts with a matrix rule of type (i) of the form [S → A1A2 · · · An]
and can be continued by matrix rules of type (ii). The derivation can be termi-
nated by a matrix rule of type (iii). Note that an application of a matrix rule m
to a word ζ means that all the rules of m are applied one by one in the same
sequence in which they are given in m to constitute a single step of derivation
yielding a word η from ζ.

The language L(G) generated by G consists of all words w such that w is
derived from S in a finite number of steps. The family of languages generated by
n−EMGs is denoted by n−EML. It is known that n−EML ⊂ (n+1)−EML.

Note that 1−EML coincides with the class REG of regular sets of the Chomsky
hierarchy. Also the family n−EML is known to coincide with the family of right-
linear simple matrix languages considered in [15] but it is also known [15] that
there are context-free languages which cannot be generated by any equal matrix
grammar. We denote the class of context-free languages by CFL.

Example 2. Consider the 2−EMG G1 = (N1, N2, T, S,M) where Ni = {Ai}, i ∈
{1, 2}, T = {a, b, c} and

M = {m1 : [S → A1A2],m2 : [A1 → aA1, A2 → aA2],

m3 : [A1 → bA1, A2 → bA2],m4 : [A1 → cA1, A2 → cA2],

m5 : [A1 → a,A2 → a],m6 : [A1 → b, A2 → b],m7 : [A1 → c,A2 → c]}.

Then L(G1) = {ww|w ∈ T+}. A sample derivation generating the word bcabca
is as follows:

S ⇒ A1A2 ⇒ bA1bA2 ⇒ bcA1bcA2 ⇒ bcabca

where α ⇒ β means that the word β is derived from the word α. The sequence
of matrix rules used is m1,m3,m4,m5.

3 Alphabetic Flat Splicing Equal Matrix Grammar
Systems

Flat splicing grammar systems with context-free or regular rules in the compo-
nents have been considered in [4]. In fact essentially, alphabetic flat splicing rules
are considered in [4], although this is not explicitly mentioned. We refer to these
as alphabetic flat splicing context-free or regular grammar systems. When the
number of components is n, n ≥ 1, we denote the corresponding families of lan-
guages respectively by Ln(AFSCFGS) and Ln(AFSRGS). We now introduce
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a variant called alphabetic flat splicing equal matrix grammar system which has
equal matrix kind of rules in the components. Rewriting is done in parallel in
the components but two different components “communicate” by flat splicing
rules. We now formally define this grammar system.

Definition 2. An alphabetic flat splicing k−equal matrix grammar system
(AFSk-EMGS) of degree n is a construct

G = (N1, · · · , Nn, T, (S1,M1), · · · , (Sn,Mn), F )

where Ni, 1 ≤ i ≤ n and T pairwise disjoint alphabets; the elements of Ni, 1 ≤
i ≤ n, are nonterminals and those of T are terminal symbols; the k−equal matrix
grammars Gi = (Ni, T, Si,Mi) are called the component grammars of G; Si /∈
N ∪ T, 1 ≤ i ≤ n is the initial symbol or start symbol in the ith component,
where N = N1 ∪ · · · ∪ Nn; For 1 ≤ i ≤ n, Mi consists of the k−equal matrix
types of initial, nonterminal and/or terminal rules with the matrix rules in the
component involving nonterminals from Gi; F is a finite set of alphabetic flat
splicing rules.

A configuration in G is an n−tuple of words over N ∪ T , with the initial
configuration given by (S1, · · · , Sn). For two configurations u = (u1, · · · , un)
and v = (v1, · · · , vn), we define u ⇒G v (or simply, u ⇒ v ) if and only if one
of the following conditions holds:

(i) for each i, (1 ≤ i ≤ n), ui ⇒Gi
vi;

(ii) there exist some j, k (1 ≤ j ≤ n; 1 ≤ k ≤ n), and (α|γ − δ|β) ∈ F such that
uj = xjαβyj ; uk = γzδ and vj = xjαγzδβyj ; vi = ui for all i 
= j.

⇒∗ is the reflexive transitive closure of ⇒ . There is no priority in the application
of the rewriting equal matrix rules and alphabetic flat splicing rules. The language
generated by the ith component is given by

Li(G) = {vi|(S1, · · · , Sn) ⇒∗ (v1, · · · , vn), vj ∈ T ∗, 1 ≤ j ≤ n}.

Without loss of generality, we take the language generated by the first component
as the language of G. We denote by Ln(AFSk-EMGS), the family of languages
generated by alphabetic flat splicing equal matrix grammar systems with at most
n components and k−equal matrix type of rules in the components. Also an
alphabetic flat splicing equal matrix grammar system of degree n is an AFSk-
EMGS of degree n, for some k ≥ 1.

We give an example of AFS2 − EMGS of degree 2.

Example 3. Consider the alphabetic flat splicing 2−equal matrix grammar sys-
tem AFS2-EMGS of degree 2, given by

G2 = ({A,B}, {C,D}, {a, b, c}, (S1,M1), (S2,M2)}, F )

where M1 = {[S1 → AB], [A → aA,B → bB], [A → a,B → b]},
M2 = {[S2 → CD], [C → cC,D → D], [C → c,D → λ]} and F = {(a|λ − c|b)}
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Starting from S1 the first component generates AB using the initial rule. Then
by the application of the rule [A → aA,B → bB], (n − 1) times (n ≥ 1), the
word an−1Abn−1B can be generated. On applying the rule [A → a,B → b],
the generation terminates yielding the word anbn. Similarly, at the same time,
in the second component the word cn is generated. The alphabetic flat splicing
rule (a|λ − c|b) becomes applicable, generating the word ancnbn. The language
generated is L(G2) = {anbn|n ≥ 1} ∪ {ancnbn|n ≥ 1}. Note that the alphabetic
flat splicing rule is applicable only when in both the components, derivations
terminate together and so no other sequence of rule applications is successful.

Theorem 1. (i) REG = L1(AFS1-EMGS) ⊂ L1(AFS2-EMGS)
(ii) L2(AFS2-EMGS) \ L2(AFSRGS) 
= ∅
(iii) L2(AFS3-EMG) \ L2(AFSCFGS) 
= ∅
Proof. Since it is known that [15] the language family of 1 − EMGs is exactly
the family REG, the equality REG = L1(AFS1-EMGS) in statement (i) of
the theorem holds. Also, the inclusion L1(AFS1-EMGS) ⊆ L1(AFS2-EMGS)
in statement (i) follows as it is clear that a 1 − EMG can be modified into
a 2 − EMG without altering the language generated. In order to prove the
proper inclusion in L1(AFS1-EMGS) ⊂ L1(AFS2-EMGS), consider the one
component AFS2 − EMGS G3 = (N1, T, (S1,M1), F ) where N1 = {A,B},
T = {a, b}, M1 = {[S1 → AB], [A → aA,B → bB], [A → a,B → b]}, F = ∅. The
language generated by G3 is the non-regular language L(G3) = {anbn|n ≥ 1}.
This proves the proper inclusion as REG = L1(AFS1-EMGS). Note that there
is only one component in G3 and there are no alphabetic flat splicing rules and
the derivations start from S1 and yield the words in L(G3) with the application
of equal matrix rules in the first component, suitable number of times.

In order to prove statement (ii), consider the language L(G2) in Example 3
which is generated by G2, a AFS2 − EMGS of degree 2. This language cannot
belong to L2(AFSRGS). In fact in a AFSRGS, the components can have only
right-linear rules so that in a component only words of the form an or bn or cn

can be generated and so two components are not enough to generate the words
of the form ancnbn, n ≥ 1, as the alphabetic flat splicing rules can only insert
words generated in one component into words generated in another component.

In order to prove statement (iii), consider the language generated by the
AFS3-EMGS G4 = (N1, N2, T, (S1,M1), (S2,M2), F ) where N1 = {A,D,E},
N2 = {B,C, F}, T = {a, b, c, d, e} M1 = {[S1 → ADE], [A → aA,D → dD,E →
eE], [A → a,D → d,E → e]}, M2 = {[S2 → BCF ], [B → bB,C → cC, F →
F ], [B → b, C → c, F → λ]}, F = {(a|b − c|d)}. Then the language generated is
L(G4) = {andnen|n ≥ 1} ∪ {anbncndnen|n ≥ 1}. In fact in the first component
the 3−EMG rules generate a word andnen while at the same time, in the second
component the 3 − EMG rules generate a word bncn for the same n. At this
stage the flat splicing rule (a|b − c|d) is applicable and its application yields the
word anbncndnen. This language L(G4) can not be in L2(AFSCFGS) as in a
component the context-free rules can generate at the most only words of the
form anbn and so two components are not enough to generate words of the form
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anbncndnen as the alphabetic flat splicing rules can insert a word generated in
a component into another word generated in another component.

Theorem 2. L2(AFSn − EMGS) \ n − EML 
= ∅
Proof. Consider the AFSn − EMGS G5 = (N1, N2, T, (S1,M1), (S2,M2), F )
where N1 = {Ai | 1 ≤ i ≤ n}, N2 = {An+1, Fi | 1 ≤ i ≤ n − 1}, T = {ai | 1 ≤
i ≤ n + 1} ∪ {b},

M1 = {[S1 → A1A2 · · · An], [A1 → a1A1, · · · , An → anAn],

[A1 → a1, · · · , An → anb], }

M2 ={[S2 → An+1F1 · · · Fn−1], [An+1 → an+1An+1, F1 → F1, · · · , Fn−1 → Fn−1],

[An+1 → an+1, F1 → λ, · · · , Fn−1 → λ]}, F = (an|an+1 − λ|b).
The language generated by G5 is

L(G5) = {ak
1a

k
2 · · · ak

nb | k ≥ 1} ∪ {ak
1a

k
2 · · · ak

nak
n+1b | k ≥ 1}

since it can be shown that L(G5) cannot be generated by any n−EMG by closely
following the argument in [15] in showing that the language {ak

1a
k
2 · · · ak

nak
n+1 |

k ≥ 1} cannot be generated by any n − EMG.

Theorem 3. L3(AFSn − EMGS) \ n − SML 
= ∅
Proof. Consider the AFSn − EMGS

G6 = (N1, N2, N3, T, (S1,M1), (S2,M2), (S3,M3), F )

where N1 = {Ai | 1 ≤ i ≤ n}, N2 = {Ci | 1 ≤ i ≤ n}, N3 = {Di | 1 ≤ i ≤ n},
T = {ai, ci, b, d | 1 ≤ i ≤ n},

M1 = {[S1 → A1A2 · · · An], [A1 → a1A1, · · · An → anAn],

[A1 → a1, · · · An → and]}
M2 = {[S2 → CnCn−1Cn−2 · · · C1], [Cn → cnCn, · · · C1 → c1C1],

[Cn → cn, · · · C1 → c1]}
M3 = {[S3 → D1 · · · Dn], [D1 → bD1,D2 → D2, · · · ,Dn → Dn],

[D1 → b,D2 → λ, · · · ,Dn → λ]

F = {(an|cn − λ|d), (an|b − λ|cn)}. The language generated by G6 is

L(G6) = {ak
1 · · · ak

nd | k ≥ 1} ∪ {ak
1 · · · ak

nckn · · · ck1d|k ≥ 1}
∪{ak

1 · · · ak
nbkckn · · · ck1 | k ≥ 1}

since it can be shown that L(G6) cannot be generated by any n − SMG by
closely following the argument in [15] in showing that the language

{ak
1a

k
2 · · · ak

nbkcknckn−1 · · · ck1 | k ≥ 1}
cannot be generated by any n − SMG.
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4 Application

Pictures in the two-dimensional plane given by chain codes have been of interest
and investigation [16,18], since these chain-code pictures are described by the
well-developed Chomsky and other kinds of string grammars [21] and have appli-
cations in different problems [10,23]. A chain code picture [18] p is made of unit
horizontal and vertical lines in the two-dimensional plane and can be encoded by
words over the alphabet {l, r, u, d} with the symbols l, r, u, d respectively inter-
preted as instructions to draw a horizontal or vertical unit line to the left, right,
up or down directions from the present position in the chain code picture. A
chain code picture language is a set of chain code pictures. Here we provide
an example illustrating the application of flat splicing equal matrix grammar
system in generating chain code picture languages.

Fig. 1. A diamond shaped chain-code picture with four equal sized stairs

Consider the AFS2 − EMGS of degree 2, G7 = (N1, N2, T, (S1,M1),
(S2,M2), F ) where N1 = {A,B}, N2 = {C,D}, T = {r, l, u, d},

M1 = {[S1 → AB], [A → ruA,B → ulB],

[A → rrll, B → uu]}
M2 = {[S2 → CD], [C → drC,D → ldD],

[C → dd,D → λ]}
F = {(r|d − d|l)}. It can be seen that the language generated is

L(G7) = {(ru)nrrll(ul)nuu|n ≥ 1} ∪ {(ru)nrr(dr)ndd(ld)nll(ul)nuu|n ≥ 1}.

The words of this language correspond to “diamond shaped chain-code pictures
with four equal sized stairs”, one member of which is shown in Fig. 1 which
corresponds to n = 2.
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Abstract. A decomposition of λKn into cycles of length k is called
a λ-fold k-cycle system of λKn. A λ-fold k-cycle system of λKn is t-
simple, t < k, if any two cycles in the decomposition have at most t
vertices in common. We denote a t-simple λ-fold k-cycle system of λKn

by (n, k, λ, t)-cycle system. In this paper, it is shown that an (n, 5, 2, 3)-
cycle system exists, for n = 5r, 5r + 1 when (i) r ≡ 2 or 6 (mod 12) or
(ii) r ≡ 4 or 12 (mod 24).

Keywords: k-cycle system · t-simple

1 Introduction and Preliminaries

We denote the complete p-partite graph with m vertices in each partite set by
K(m, p). Define |i− j|n = min{|i− j|, n−|i− j|}. If D = {{1, 2, . . . , �mp

2 �}\{ip :
1 ≤ i ≤ �m

2 �}}, then K(m, p) ∼= 〈D〉mp, where 〈D〉mp is a graph with vertex set
Zmp and edge set {{i, j} : |i − j|mp ∈ D, for i, j ∈ Zmp}. The wreath product
of two graphs G and H is a graph G ⊗ H with vertex set V (G) × V (H), and
(u1, v1) is adjacent to (u2, v2) whenever (i) {u1, u2} ∈ E(G), or (ii) u1 = u2 and
{v1, v2} ∈ E(H). A graph G with edge-multiplicity λ is called λ-fold graph and
is denoted as G(λ). The notation rG denotes r copies of the graph G. A cycle of
length k is denoted by Ck. A decomposition of a graph G is a family H1, . . . , Hk

of subgraphs of G such that each edge of G is contained in exactly one member
of H1, . . . , Hk. We denote it by G = H1 ⊕ · · · ⊕ Hk and we say that H1, . . . , Hk

decompose G. For 1 ≤ i ≤ k, if Hi
∼= H, we say that G has a H-decomposition. A

balanced incomplete block design of block-size k and index λ (in short, (v, k, λ)-
BIBD) is a pair (X,B), where X is a set of v points, B is a collection of k-
subsets (called blocks) of X with the property that any pair of points of X
is contained in exactly λ blocks. In graph theoretical terminology, existence of
(v, k, λ)-BIBD is equivalent to the existence of Kk-decomposition of Kv(λ), k <
v and is denoted as (v, k, λ) Kk-design [15]. If G is a graph on k vertices, then
the existence of G-decomposition in Kv(λ) is denoted as (v, k, λ) G-design. If
G ∼= Ck, then it is called a (v, k, λ) Ck-design. A (v, k, λ)-BIBD (respectively,

c© Springer International Publishing AG 2017
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(v, k, λ) Ck-design) is said to be simple if any pair of blocks (respectively, Ck’s)
contains at most k − 1 elements (respectively, vertices) in common. A (v, k, λ)-
BIBD (respectively, (v, k, λ) Ck-design) is said to be super-simple if any pair of
blocks (respectively, Ck’s) contains at most two elements (respectively, vertices)
in common. Now we generalize this idea as follows: A (v, k, λ) Ck-design is said
to be t-simple if any pair of Ck’s in the decomposition has at most t vertices
in common. A t-simple (v, k, λ) Ck-design is also called (v, k, λ, t)-cycle system.
A (v, k, λ, t)-cycle system is simple or super-simple according as t = k − 1 or
t = 2. Further, a t-simple λ-fold k-cycle system of K(m, p)(λ) is denoted as
(m, p; k, λ, t)-multipartite cycle system. Super-simple designs were introduced
by Gronau and Mullin [8] in 1992. The existence of super-simple designs is an
interesting extremal problem by itself and also have useful applications. For
example, such designs are used in the construction of perfect hash families [14],
coverings [2] and superimposed codes [10,11], etc. The existence of super-simple
designs have been investigated by many authors [4–6,9]. But there are only few
results on the existence of super-simple cycle systems [1,7]. In 2007, Chen and
Wei [7] have proved the existence of an (n, 4, λ, 2)-cycle system for 7 ≤ n ≤ 41
and all admissible λ with few exceptions. Recently Billington et al. [1] have
proved the existence of an (n, 4, 2, 2)-cycle system. For the given n, k, λ, t, the
existence of an (n, k, λ, t)-cycle system is not guaranteed, even though it satisfies
the obvious edge divisibility condition, k|λ(n(n−1)

2 ). For example, an (n, 4, 2, 2)-
cycle system does not exist, when n = 5, 6 or 9, see [1]. Also an (n, 4, λ, 2)-
cycle system does not exist, when (n, λ) = (9, 3), (13, 5), see [7]. In this paper,
it is shown that an (n, 5, 2, 3)-cycle system exists for n = 5r, 5r + 1 when
(i) r ≡ 2 or 6 (mod 12) or (ii) r ≡ 4 or 12 (mod 24). For n ≡ 1 (mod 5),
let V (Kn) = Zn and σ = (0, 1, 2, 3, . . . , n − 2, n − 1) be the permutation on
Zn. For small values of n, we construct a set of cycles C, say starter, so that
{C, σ(C), σ2(C), . . . , σn−1(C)} gives the required (n, 5, 2, 3)-cycle system. We
have constructed the starter C, with the help of computer using C-Program. If
n ≡ 0 (mod 5), then take V (Kn) = Zn−1 ∪∞, and let τ = (0, 1, 2, . . . , n− 3, n−
2)(∞) be the permutation on Zn−1 ∪ ∞. Then {C, τ(C), τ2(C), . . . , τn−2(C)}
gives the required (n, 5, 2, 3)-cycle system. The following is the necessary and
sufficient condition for the existence of a C3-decomposition in Kn.

Lemma 1 [12]. Kn has a C3-decomposition if and only if n ≡ 1 or 3(mod 6).

2 Main Results

The following lemma shows the existence of an (n, 5, 2, 3)-cycle system, for some
small values of n.

Lemma 2. There exists an (n, 5, 2, 3)-cycle system when
n ∈ {10, 11, 15, 16, 20, 21}.
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Proof

(a) If n = 10, then V (K10) = Z9 ∪ ∞ and the starter set is C =
{(0, 1, 3, 7,∞), (0, 3, 6, 1, 2)}.

(b) If n = 11, then V (K11) = Z11 and the starter set is C =
{(0, 6, 1, 10, 3), (0, 2, 3, 4, 8)}.

(c) If n = 15, then V (K15) = Z14 ∪ ∞ and the starter set is C =
{(0, 4, 9, 1,∞), (0, 7, 5, 6, 8), (0, 1, 12, 2, 5)}.

(d) If n = 16, then V (K16) = Z16 and the starter set is C =
{(0, 1, 9, 4, 11), (0, 2, 5, 1, 3), (0, 6, 7, 3, 10)}.

(e) If n = 20, then V (K20) = Z19 ∪ ∞ and the starter set is C =
{(0, 6, 13, 14,∞), (1, 7, 2, 4, 11), (0, 4, 1, 3, 14), (0, 1, 11, 15, 12)}.

(f) If n = 21, then V (K21) = Z21 and the starter set is C =
{(0, 4, 1, 14, 3), (0, 1, 6, 14, 7), (0, 2, 11, 17, 12), (0, 2, 8, 7, 17)}.

Thus {C, σ(C), σ2(C), . . . , σn−1(C)} (respectively, {C, τ(C), τ2(C), . . . ,
τn−2(C)}) gives a required (n, 5, 2, 3)-cycle system when n ≡ 1 (mod 5) (respec-
tively, when n ≡ 0 (mod 5)).

Decomposition of Complete tripartite graphs into 5-cycles has been discussed
in [3,13]. The following lemma shows the existence of 3-simple 2-fold 5-cycle
decomposition of K(10, 3) and K(20, 3).

Lemma 3. There exists an (m, p; 5, 2, 3)-multipartite cycle system, when
(m, p) = (10, 3), (20, 3).

Proof

(a) If (m, p) = (10, 3), then V (K(10, 3)) = Z30 and the starter set is C =
{(0, 1, 6, 2, 13), (0, 2, 12, 5, 10), (0, 7, 5, 6, 14), (0, 13, 2, 10, 14)}.

(b) If (m, p) = (20, 3), then V (K(20, 3)) = Z60 and the starter
set is C = {(0, 29, 3, 28, 47), (0, 28, 2, 24, 1), (0, 17, 1, 15, 2), (0, 29, 1, 20, 4),
(0, 23, 1, 21, 4), (0, 25, 5, 12, 1), (0, 5, 15, 1, 8), (0, 11, 1, 6, 8)}.

Thus {C, σ(C), σ2(C), . . . , σmp−1(C)} gives a required (m, p; 5, 2, 3)-multipartite
cycle system.

One can check that the condition n = 5r or 5r+1 is necessary for the existence of
an (n, 5, 2, 3)-cycle system. Further, it is obvious that an (n, 5, 2, 3)-cycle system
does not exist, when n = 5 or 6, since the 3-simple property is not satisfied.
The following theorem shows the existence of (n, 5, 2, 3)-cycle system in certain
cases.

Theorem 1. An (n, 5, 2, 3)-cycle system exists, for n = 5r, 5r +1 when (i) r ≡
2 or 6 (mod 12) or (ii) r ≡ 4 or 12 (mod 24).

Proof. We split the proof in two cases.

Case 1. r ≡ 2 or 6 (mod 12).
Case 1(a). n = 5r.
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When r = 2, there exists an (10, 5, 2, 3)-cycle system by Lemma 2. When
r = 6, we write K30(2) = (K3 ⊗ K10)(2) ⊕ 3K10(2) = K(10, 3)(2) ⊕ 3K10(2). By
Lemma 3, a 3-simple 2-fold 5-cycle system exists in K(10, 3)(2). By Lemma 2,
a 3-simple 2-fold 5-cycle system exists in K10(2). Therefore, a 3-simple 2-fold
5-cycle system exists in K30(2).

When r ≥ 14, we write Kn(2) = (K r
2
⊗K10)(2)⊕ r

2K10(2) = ((C3⊕C3⊕· · ·⊕
C3)⊗K10)(2)⊕ r

2K10(2)(by Lemma 1) = K(10, 3)(2)⊕· · ·⊕K(10, 3)(2)⊕ r
2K10(2).

By Lemmas 2 and 3, we get the required cycle system.
Case 1(b). n = 5r + 1.

When r = 2, there exists an (11, 5, 2, 3)-cycle system by Lemma 2. When
r ≥ 6, we write Kn(2) = (K r

2
⊗ K10)(2) ⊕ r

2K11(2), see Fig. 1. By Lemmas 1, 2
and 3, we get the required cycle system.

...

1

2

3

r
2

Fig. 1. Kn(2) = (K r
2

⊗ K10)(2) ⊕ r
2
K11(2)

Case 2. r ≡ 4 or 12 (mod 24).
Case 2(a). n = 5r.

When r = 4, there exists an (20, 5, 2, 3)-cycle system by Lemma 2. When
r ≥ 12, we write Kn(2) = (K r

4
⊗ K20)(2) ⊕ r

4K20(2) = ((C3 ⊕ C3 ⊕ · · · ⊕ C3) ⊗
K20)(2) ⊕ r

2K20(2) (by Lemma 1) = K(20, 3)(2) ⊕ · · · ⊕ K(20, 3)(2) ⊕ r
2K20(2).

By Lemmas 2 and 3, we get the required cycle system.

Case 2(b). n = 5r + 1.
When r = 4, there exists an (21, 5, 2, 3)-cycle system by Lemma 2. When

r ≥ 12, we write Kn(2) = (K r
4

⊗ K20)(2) ⊕ r
4K21(2). By Lemmas 1, 2 and 3, we

get the required cycle system.
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Abstract. Regional Climate Models (RCM) applied to simulate future
climate parameters such as precipitation and temperature are reported
to suffer from bias. Bias correction is necessary for using such data for
climate change impact studies. In this study, a new ANN based bias
correction algorithm is suggested and is compared with other three
conventional methods, namely linear scaling, local intensity and power
transformation. The proposed method outperforms conventional meth-
ods with mean, standard deviation and the RMSE of bias corrected time
series more closely matches with that of the observed precipitation.

Keywords: Artificial Neural Network · Bias correction · Precipitation ·
Simulation · Climate change projection

1 Introduction

Precipitation is an important meteorological parameter which influences the
flood and drought situations of any country. Climate change is believed to have
perceptible effect on the occurrence of precipitation and its distribution and its
quantification is a direct concern of water resources managers. Conventionally,
future projected precipitation is simulated by Regional Climate Models (RCM)
for climate change scenarios suggested by Intergovernmental Panel on Climate
Change (IPCC). Precipitations simulated by RCMs are found to contain sys-
tematic error (also called as bias) due to inaccurate parameterization of the
climatic process during the model development [5]. Bias means, deviation of
statistics like the mean, variance, covariance of the model from the correspond-
ing observed value [9,13]. Such simulated information need to be bias corrected
before it can be used for any hydrological studies [1,4,7,14,18].

c© Springer International Publishing AG 2017
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Considerable research has already been done for bias correction. Some
authors compared existing methods to find the best method for their own
model [20], whereas other authors have proposed new bias correction methods
[16,17,19,21,28]. Teutschbein and Seibert in [27] reviewed different bias correc-
tion methods such as quantile mapping, power transformation, local intensity
and linear scale by comparing their performance both in terms of deviation from
the observed precipitation as well as end use application of stream flow sim-
ulation. The performance of quantile mapping and power function are found
to be the most robust. Some studies such as Tschoke et al., in [26] focused on
developing new methodologies for error reduction during dry periods. Methods
adopted in bias correction are seen to vary from very simple methods to advanced
methods. While simple methods are found to perform poorly in summer season,
the advanced methods offer difficulties in terms of long data length required to
calibrate [3].

In a recently reported work, Um et al., in [28] proposed a hybrid bias cor-
rection method and compared that with other two conventional methods viz.,
linear scaling and quantile mapping. While linear scaling yielded the best result
for estimating annual average precipitation, the hybrid method was reported to
be optimal for predicting the variation in annual precipitation.

The bias corrections also find many applications other than for precipitations.
For instance, Ahmed et al. [1] bias corrected a data set of daily maximum and
minimum temperature for direct use of climate change impact studies for the
future period of 2046–2065. Macias et al. [22] simulated the sea surface tempera-
ture using different ocean model and compared the result with satellite observed
data and identified the bias of different models. They also applied simple bias
correction to atmospheric variables of the model, to know the importance of
each variable and found that wind velocity is the most important variable to
bias correct.

Although the conventional bias correction methods are most popularly
adopted, of late, researchers started applying black box methods such as Artifi-
cial Neural Network (ANN). Sanaz Moghim, in [24] have applied ANN for bias
correction of Precipitation and Temperature. Also Chitra and Santhosh in [6]
used ANN to downscale the simulated data. They applied Delta Method for bias
correction.

To the author’s knowledge, the application of ANN for bias correction is
still in its inception with very few reported works. In this study we proposed
a new robust bias correction algorithm which while reducing the Root Mean
Squared Error(RMSE) between observed and simulated data, also tries to map
the mean and standard deviation of the observed precipitation. The results are
compared to the conventional methods of local intensity, linear scaling, and
power transformation.

2 Study Area and Data Set

The middle segment of Yarra River Catchment is used for this study (Fig. 1).
The water resources management is complex in this catchment due to the need
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of downstream supply for Melbourne as well as environmental flow provisions [2].
This catchment is the fourth highest productive in Victoria, even though its area
is comparatively less than other catchments [23].

Observed daily precipitation data from 1980 to 2012 are available for the
Yarra River Catchment, and are used in this study. Simulated data are obtained
from the Climate change Data for SWAT (CMIP3) [8] database for the year 1961
to 2000 using CCCMA CGCM3.1 model. For the bias correction analysis, only
the overlapping time period (1980 to 2000) is used for analysis.

For the analysis we considered two stations located within the middle segment
of Yarra River Catchment, which are Toolangi (S -37.57, E 145.5) and Black Spur
(S-37.59, E 145.62). The locations of these stations can be seen in Fig. 1. The
observed daily rainfall data of Toolangi and Black Spur and the nearest available
simulated data of the catchment is taken for this analysis.

Fig. 1. Location of study area

3 Methods

In this section, the methodologies of four bias correction methods used in this
study are explained. Three of them are conventional methods. The methodology
of the three conventional methods is explained based on [10,27].

3.1 Linear Scaling Method

This method is a mean based method which considerably reduces the deviation in
the mean of observed and simulated data. The observed precipitation is corrected
by a factor which is the ratio of long term monthly mean of observed and raw
simulated precipitations

Pcorrect(m)(d) = Praw(m)(d)

μ(Pobser)(m)

μ(Praw)(m)
(1)

Here, Pcorrect(m)(d) and Praw(m)(d), are the corrected and raw simulated pre-
cipitation for dth day of mth month respectively.
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μ(), represents mean operator. For example μ(Praw)(m) is the mean value of raw
precipitation for the given month.

3.2 Local Intensity Method

This method is an improved version of linear scaling which not only corrects the
monthly mean but also the wet day frequency and wet day intensity. The bias
correction is done as follows:

Initially a threshold Pthreshold(m) of simulated data is calculated such that
the number of days in a specified month which is more than the threshold pre-
cipitation equals the number of wet days (day of non zero precipitation) in the
observed data.

Then the corrected simulated data is calculated as follows.

Pcorrect(m)(d) =
{

0 ifPraw(m)(d) < Pthresold(m)

(Praw(m)(d)).(S) Otherwise

Here ‘S’ is a scaling factor considering only wet day of observed and wet day
of corrected simulated data and is calculated as follows,

S =
μ((Pobser)(m)(d) | (Pobser)(m)(d)>0))

μ((Praw)(m)(d) | (Praw)(m)(d)>(Pthreshold)(m))
(2)

3.3 Power Transformation

The power transformation method can correct the standard deviation which
is difficult to be ensured through linear scaling and local intensity methods.
However, this method uses the bias corrected data by local intensity as input.

Initially a parameter b is calculated for each month m by using coefficient of
variation (CV) of data corrected by local intensity and CV of observed data:

f(bm) = CVPobser(m) − (CVPcorrect(LOI)(m))
bm (3)

Here, bm is an exponent of mth month.
After the determination of ‘b′

m. ‘S’ is calculated as follows:

S =
μ(Pobser)(m)

μ(Pcorrect(LOI)(m))bm
(4)

The bias corrected value obtained by power transformation is calculated as
follows:

Pcorrect(m)(d) = (S).(Pcorrect(LOI)(m)(d))bm (5)

where Pcorrect(m)(d)andPcorrect(LOI) are the corrected data by Power Transfor-
mation and Local Intensity respectively
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3.4 ANN-based Bias Correction Algorithm

Fundamental Concepts of ANN: Artificial Neural Network (ANN) is a net-
work of many simple elements called neurons, each having a small amount of
local memory. The neurons are connected through communication channels or
connections which carry numeric data encoded by various means. Each neuron
operates only when it receives data through the communication channels. The
architecture of ANN is motivated by the structure of the human brain and nerve
cells. Historically, much of the inspiration to build ANNs came from the desire
to produce artificial systems capable of sophisticated computations similar to
those of the human brain.

Neural network modeling is based on the use of architecture and learning
paradigms which allow the extraction of statistical structure present in the data
set. This ‘connectionist’ philosophy is based on the idea that with a general
architecture, often biologically motivated and with no prior information about
the phenomenon of interest, it is possible to ’learn’ the underlying structure
of the data in an implicit form. The acquired information about the data is
‘stored’ at the connections between the elements of the neural architecture. The
architecture is initially not structured, and the learning algorithm is responsible
for the extraction of the regularities present in the data by finding a suitable set
of synapses during the process of observation of the examples. Thus, ANNs solve
problems by self-learning and self-organization. They derive their ‘intelligence’
from the collective behavior of simple computational mechanisms at individual
neurons.

Multilayer feed-forward network with back-propagation learning algorithm
is one of the most popular neural network architectures, which has been deeply
studied and widely used in many fields. The feed-forward architecture allows
connections only in one direction, that is, there is no back-coupling between
neurons, and the neurons are arranged in layers, starting from an input layer and
ending at the final output layer with one or more hidden layers. The information
passes from the input to the output side. Each layer is made-up several neurons,
and the layers are interconnected by a set of weights. The neurons in the input
layers receive input directly from the input variables. The neurons in the hidden
and output layers receive input from interconnections. Neurons operate on the
input and transform it to produce an analog output. More details on ANN can
be found in [11,12,15,25].

Model Development: Two different ANN models are employed in this study,
which are discussed below.

Model 1(ANN-M1): Since the aim is to determine the bias corrected precipitation
from the simulated precipitation, in the first model, a direct mapping is done with
simulated precipitation as the input and observed precipitation as the output.
It is desired to minimize the Root Mean Square Error (RMSE) of the corrected
precipitation besides ensuring a closer match with standard deviation and mean
of the observed precipitation. A three layer feed forward network with 11 hidden
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nodes gives the best output. Out of a total of 253 data of monthly precipitation,
108 is used for training, 24 for testing and remaining for verification.

Model 2(ANN-M2): Instead of directly mapping simulated and observed precip-
itation, it is desired to map the simulated precipitation to the absolute value
of difference between observed and simulated (i.e. error in the simulated and
observed precipitation, |Δe|). The number of training, testing and verification
data is kept same as that used in Model 1. The output from the training has to be
re-corrected to obtain the actual precipitation for which the following algorithm
is used:

Pcorrected =

{
Psim + Δe, if Psimε(Psim,i) − (Psim,j) and θ(Δe) > 50
Psim + Δe, Otherwise

(6)

where the (Psim,i) and (Psim,j) are the ranges adopted in this study is listed in
Table 1;Δe = (Pobs,i) − (Psim,i);θ(Δe) is the percentage of positive error in the
specified range i.e.(Psim,i) − (Psim,j)

This algorithm might induce significant error for those ranges of simulated
precipitation for which θ(Δe) is in the neighborhood of 50.

4 Results and Discussions

In this section, the bias corrected simulated precipitation by the methods of lin-
ear scaling, local intensity, power transformation, ANN-M1, ANN-M2 are com-
pared with the corresponding observed precipitation and is tabulated in Table 2.

Model 1 (ANN-M1): From Table 2, it is observed that the ANN-M1 has not only
the lowest RMSE when compared to all the other methods, but also the SD
for both the stations is also very low. Low SD indicates that the prediction has
failed in capturing the variations in the precipitation as seen from Figs. 2 and
3. The conventional methods perform almost equally well for both the stations
in terms of all the performance measure considered. Figures 2,3 indicates that

Fig. 2. Comparison of various methods for Black Spur Station
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Fig. 3. Comparison of various methods for Toolangi Station

Table 1. Applied error sign for various range

Station name (Psim,i) − (Psimj) θ(Δe) Error Sign (+/−)

Toolangi 0–30 5.55 +

30–60 11.42 +

60–90 12.50 +

90–120 28.57 +

> 120 76.92 −
Black Spur 0–30 10.52 +

30–60 18.42 +

60–90 19.23 +

90–120 33.33 +

> 120 88.00 −

power transformation method overestimates the peaks to a much higher degree.
This behavior can be reduced if RMSE can be reduced while maintaining the
mean and SD.

Model 2 (ANN-M2): As seen from Table 2, the proposed algorithm increases
the SD while reducing the RMSE. The RMSE is much less when compared to

Table 2. Results of various statistics for different bias correction methods

Station Statistics Observed

precipita-

tion

Simulated

precipita-

tion

Bias

corrected

by linear

scaling

Bias

corrected

by local

intensity

Bias

corrected by

power trans-

formation

Bias

corrected

by ANN

model 1

Bias

corrected

by ANN

model 2

Toolangi Mean 119.14 75.99 125.36 122.82 125.76 129.70 127.41

SD 58.48 44.00 78.44 78.13 70.54 0.82 34.69

RMSE 87.84 99.67 99.46 95.50 59.10 67.76

Black Spur Mean 115.27 85.96 117.41 114.36 110.70 121.63 127.20

SD 62.80 55.97 79.95 76.23 76.14 15.65 37.43

RMSE 89.53 95.94 94.90 95.31 64.28 70.22
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the conventional methods, and the SD has been considerably increased when
compared to ANN-M1. The effect of this can be clearly seen in Figs. 2 and 3 in
terms of mapping the peaks and other values more closely when compared to
the conventional methods.

5 Conclusions

Based on this study the following conclusions can be drawn:

(a) ANN seems to be a potential tool for bias correction
(b) The proposed algorithm is able to correct the simulated precipitation to map

more accurately with the observed value when compared to the conventional
methods of bias correction.
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Abstract. Generalized Mycielskian of a graph is the natural generaliza-
tion of the Mycielskian of a graph, which preserves some nice properties
of a good interconnection network. Diameter is an important parame-
ter for communication in an interconnection networks as it determines
maximum communication delay between any pair of components in the
network. In this paper, we study the diameter and its variability by the
addition and deletion of edges in the generalized Mycielskian of a graph.

Keywords: Mycielskian · Generalized Mycielskian · Diameter ·
Diameter variability

1 Introduction

The topological structure of an interconnection network can be modeled by a
connected graph, where the vertices represent components of the network and the
edges represent the communication links between them. The diameter of a graph
determines the maximum communication delay between any pair of processors
in a network. The fact that the diameter of a graph can be affected by the
addition or deletion of edges, give rise to the concept of diameter variability in
graphs. The study of diameter variability in a network becomes important as it
determines the communication efficiency when an addition or deletion of a link
occurs.

In a search for triangle-free graphs with arbitrarily large chromatic number,
Mycielski developed a graph transformation μ(G), called the Mycielskian of G.
A natural generalization of this transformation is the generalized Mycielskian
μm(G). In [12], it is observed that the Mycielskian produce large networks and
preserve some nice properties of networks such as fast multi-path communication,
high fault tolerance and reliable resource sharing.
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 371–382, 2017.
DOI: 10.1007/978-3-319-64419-6 48
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2 Background

In recent times, there has been an increasing interest in the study of the
Mycielskian and generalised Mycielskian of a graph. In [6], Fisher et al.
proved that if G is Hamiltonian, then so is μ(G) and diameter of μ(G) =
min(max(2, diam(G)), 4). Balakrishnan and Francis Raj determined the vertex
connectivity and edge connectivity of Mycielskian in [1]. In [10], L. Guo et al.
showed that for a connected graph G with |V (G)| ≥ 2, μ(G) is super connected
if and only if δ(G) < 2κ(G) and μ(G) is super edge connected if and only if
G � K2. Recently, Chithra M.R. studied the diameter variability of Mycielskian
in [5].

Several parameters of generalized Mycielskian such as circular clique number,
total domination number, open packing number and spectrum are determined
in [11]. Francis Raj [7] investigated the vertex connectivity and edge connectivity
of the generalised mycielskian of digraphs, which turned out to be a generalisa-
tion of the results due to Guo and Guo [9].

Graham and Harary [8] studied how the diameter of hypercubes (Qn, n ≥ 1)
can be affected by adding or deleting edges. They considered changing the diam-
eter with out considering the extent of the change and showed that D−1(Qn) =
2,D+1(Qn) = n − 1 and D+0(Qn) ≥ (n − 3)2n−1 + 2. Bouabdallah et al. [2]
improved the lower bound of D+0(Qn) and furthermore gave an upper bound.
Diameter variability of cycles and tori was determined by Wang et al. [13]. In [14],
authors studied the changing of the diameter of a diagonal mesh network. Diam-
eter variability of various graph products was studied in [4].

3 Preliminaries

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). A vertex
u ∈ V (G) is called a neighbor of a vertex v in G, if uv is an edge of G, and u �= v.
The set of all neighbors of v is called the neighbor set of v, and is denoted by
N(v). The degree of a vertex v, denoted by d(v), is the number of edges incident
at v. The minimum degree of G, denoted by δ(G), is min{d(v) : v ∈ V } and
the maximum degree of G, denoted by Δ(G), is max{d(v) : v ∈ V }. A vertex of
degree one is called a pendant vertex of G and the unique edge incident to such
a vertex of G is a pendant edge of G.

A path from u to v, given by u = x0 − x1 − x2 − · · · − xk = v, is a sequence
of distinct vertices such that xixi+1 is an edge for 0 ≤ i ≤ k − 1. The length
of a path is the number of edges in it. The distance between two vertices u and
v in G, denoted as dG(u, v), is the length of a shortest path joining u and v.
The maximum distance between any two vertices is called the diameter of G
and is denoted by diam(G). Two vertices in G which are at a distance equal to
the diameter of G are called diametral vertices. A graph in which every pair of
vertices are joined by a path is called a connected graph.

Let k be an arbitrary integer. The diameter variability arising from change
of edges of a graph G is defined as follows [13]:



Some Diameter Notions of the Generalized Mycielskian of a Graph 373

– D−k(G): the least number of edges whose addition to G decreases the diam-
eter by (at least) k;

– D+0(G): the maximum number of edges whose deletion from G does not
change the diameter;

– D+k(G): the least number of edges whose deletion from G increases the diam-
eter by (at least) k;

For example, consider the m−cycle Cm with vertex set {0, 1, 2, · · · ,m − 1}
and edge set {(i, i + 1)|0 ≤ i ≤ m − 1}, where addition is in integer mod-
ulo m. Then diam(Cm) =

⌊
m
2

⌋
. If Pm is the path on m vertices with vertex set

{0, 1, 2, · · · ,m−1} and edge set {(i, i+1)|0 ≤ i ≤ m−2}, then diam(Pm) = m−1.
It is easy to see that D−1(Pm) = D−2(Pm) = · · · = D−(m−1−�m

2 �)(Pm) = 1 and
D+1(Cm) = D+2(Cm) = · · · = D+(m−1−�m

2 �)(Cm) = 1.
For a graph G = (V,E), the Mycielskian of G [11] is the graph μ(G) with

the vertex set V (μ(G)) = V ∪ V ′ ∪ {z}, where V ′ = {u′ : u ∈ V } and the edge
set E(μ(G)) = E ∪ {uv′ : uv ∈ E} ∪ {v′z : v′ ∈ V ′}. The vertex v′ is called the
twin of the vertex v and vice versa. The vertex z is called the root of μ(G). For
n ≥ 2, μn(G) is defined iteratively by setting μn(G) = μ(μn−1(G)).

The generalized Mycielskian of a graph is defined as follows [11]:
Let G be a graph with vertex set V 0 = {v0

1 , v
0
2 , · · · v0

n} and edge set E0. Given
an integer m ≥ 1, the m- Mycielskian of G, denoted by μm(G) is the graph with
vertex set V 0∪V 1∪V 2 · · · V m∪{z}, where V i = {vi

j : v0
j ∈ V 0} is the ith distinct

copy of V 0 for i = 1, 2, · · · ,m and edge set E0 ∪
(⋃m−1

i=0 {vi
jv

i+1
j′ : v0

j v
0
j′ ∈ E0}

)
∪

{vm
j z : vm

j ∈ V m}. μ0(G) is defined to be the graph obtained from G by adding a
universal vertex z and the Mycielskian of G is simply μ1(G). We call the vertices
of V i as vertices of level i (Fig. 1).

Fig. 1. µ2(C6)

In this paper, we first determine the diameter of the generalized Mycielskian
of a graph. In the next sections, we investigate the effect of addition and deletion
of edges in the diameter of the generalized Mycielskian. All graphs considered
in this paper are simple, finite and undirected.
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4 Diameter of the Generalized Mycielskian

In this section, we determine the diameter of the generalized Mycielskian.

Theorem 1. Let G be a connected graph with diameter diam(G). Then diam-
eter of μm(G) is given by

diam (μm(G)) = min{max{m + 1, diam(G)}, 2(m + 1)}.

Proof. We prove this result by considering the following cases.

Case 1. diam(G) ≤ m + 1.
In this case, we claim that diam(μm(G)) = m + 1. For this, consider the

vertices v0
i and z and let v0

i v
0
i+1 ∈ E0. Then d(v0

i , z) = m+1 by taking the path
v0
i − v1

i+1 − v2
i −· · ·− vm

i (or vm
i+1)− z according as m is even (or odd). Therefore

diam(μm(G)) ≥ m + 1.
Next, we show that for any pair of vertices u and v, dµm(G)(u, v) ≤ m + 1.

Case 1a. u, v ∈ V i.
Let u = vi

j and v = vi
k. If u, v ∈ V 0, then the distance between u and v in

μm(G) is same as that in G. Hence dµm(G)(u, v) ≤ d(G) ≤ m + 1. For u, v ∈ V 1,
ifv0

j and v0
k are adjacent, then d(v1

j , v
1
k) is 3 by taking the path v1

j − v0
k − v0

j − v1
k.

If they are non adjacent, we consider the path v1
j − u0

1 − · · · − u0
n−1 − v1

k, where
v0
j − u0

1 − · · · − u0
n−1 − v0

k is a shortest v0
j − v0

k path in G. So dµm(G)(v1
j , v

1
k) =

dG(v0
j , v

0
k) and hence dµm(G)(u, v) ≤ diam(G) ≤ m + 1.

Now Let u = vi
j and v = vi

k, i > 1, then

dµm(G)(u, v) =
{

dG(v0
j , v

0
k) if dG(v0

j , v
0
k) is even,

min{2(m − i) + 2, 2i + 1} if dG(v0
j , v

0
k) is odd.

for, if dG(v0
j , v

0
k) is even, we take the path vi

j − ui+1
1 − ui

2 − · · · − vi
k, where

v0
j −u0

1 −u0
2 · · ·− v0

k is a shortest v0
j − v0

k path in G and if d(u, v) is odd, we have
to take either the path vi

j −ui−1
1 −· · ·−u0

j −u0
j+1−u1

j −· · ·−vi
k or the one which

pass through z namely vi
j − ui+1

1 − ui+2
2 − ui+3

3 − · · · − z − um
i − um−1

i±1 − · · · − vi
k.

This shows that d(vi
j , v

i
k) ≤ m + 1, i ≥ 1.

Case 1b. u ∈ V i, v = z.
Let u = vi

j and v0
j v

0
j+1be an edge in G. Then, there exists the path v0

j −
v1
j+1 − v2

j − · · · − vm
j (vm

j+1) − z of length m + 1 between v0
j and z. For all other

vi
j , i > 1 there exists the path vi

j − vi+1
j+1 − vi+2

j − · · · − vm
j (vm

j+1) − z of length
less than m + 1 between vi

j and z. Thus d(vi
j , z) ≤ m + 1.

Case 1c. u ∈ V i, v ∈ V j , i ≥ 0, j ≥ 1, i < j.

Case 1c(i). u = vi
k and v = vj

k.
It is easy to see that dµm(G)(v0

k, v
1
k) = 2. Now, consider d(vi

k, v
j
k), i ≥ 0, j > 1.

Let v0
k be adjacent to v0

l in G. If j − i is even, then we have the path vi
k − vi+1

l −
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vi+2
k − · · · − vj

k between vi
k and vj

k of length j − i. If j − i is odd, either we can
take the path vi

k − vi−1
l − vi−2

k · · · − v0
k(v

0
l ) − v0

l (v
0
k) − v1

k(v
1
l ) − v2

l (v
2
k) − · · · − vj

k

or we can take vj
k − vj+1

l − · · · vm
k (vm

l ) − z − vm
l (vm

k ) − vm−1
l (vm−1

k ) − · · · − vi
k.

Hence for i ≥ 0, j > 1, d(vi
k, v

j
k) ≤ min{i + j + 1, 2(m + 1) − (i + j)}. Thus, we

get d(vi
k, v

j
k) ≤ m + 1.

Case 1c(ii). u = vi
k and v = vj

l , k �= l.
If v0

k −u0
1 −u0

2 · · ·−u0
n−1 −v0

l is a path in G, then v0
k −u0

1 −u0
2 −· · · u0

n−1 −v1
l

is a path in μm(G) and hence d(v0
k, v

1
l ) ≤ diam(G). Now, consider the pair

(vi
k, v

j
l ), i ≥ 0, j ≥ 2. First suppose that v0

k and v0
l are adjacent. If j−i is odd, then

we have the path vi
k−vi+1

l −vi+2
k −vi+3

l · · ·−vj
l and hence d(vi

k, v
j
l ) ≤ j−i ≤ m+1.

If j − i is even, either we take vi
k − vi−1

l − vi−2
k − · · · − v0

k(v
0
l ) − v1

l (v
1
k) − · · · − vj

l

or we take vi
k −vi+1

l −vi+2
k −· · ·−vm

k (vm
l )−z −vm

l (vm
k )−· · ·−vn−1

k −vj
l . Hence

d(vi
k, v

j
l ) ≤ min{j + i + 1, 2(m + 1) − (j + i)}. If v0

k and vl
k are not adjacent in

G, then take a shortest v0
k − v0

l path say v0
k − u0

1 − u0
2 − · · · − u0

n−1 − v0
l in G.

Corresponding to this path, we have, the path say P = vi
k−ui+1

1 −ui+2
2 −· · ·−vj

l

of length d(u, v) in μm(G) if d(v0
k, v

0
l ) ≤ j− i. If j− i < d(v0

k, v
0
l ), instead of P we

have the path P ′ = vj
l −uj−1

n−1−· · ·−vr
k−ur−1

1 −· · ·−u0−u1
1−u2

2−· · ·−vi
k, where

r = j − i−d(u, v). Therefore d(vik, v
j
l ) ≤ m+1 and hence diam(μm(G)) ≤ m+1.

Case 2. m + 1 < diam(G) < 2(m + 1).
In this case, proceeding on similar lines as in case 1, we get d(u, v) ≤ diam(G),

u, v ∈ V (μm(G)). If v0
i and v0

j are the diametral vertices in G, then in μm(G) also,
we have v0

i and v0
j at distance diam(G) and hence it follows that diam(μm(G)) =

d(G).

Case 3. diam(G) ≥ 2(m + 1).
The diametral vertices in G in this case, are at a distance 2(m + 1) as the

shortest path between them is through z in μm(G). For every pair of vertices,
we can show that there exists a path of length less than or equal to 2(m + 1) as
in case 1. Hence diam(μm(G)) = 2(m + 1) in this case.

5 Diameter Variability

Here, we determine D+0(μm(G)),D+1(μm(G)),D−1(μm(G)).

Theorem 2. Let G be a connected graph such that G � K1,n−1 and m ≥ 1 be
an integer. Then

D+0(µm(G)) ≥

⎧
⎪⎨

⎪⎩

2e+ k − (n+ 1 +
∑k

i=1 ei), if diam(G) ≤ m+ 1,

t(2e+ k − (n+ 1 +
∑k

i=1 ei)), if diam (G) > m+ t, 1 ≤ t ≤ m,

max{m(2e+ k − (n+ 1 +
∑k

i=1 ei)), e}, if diam (G) ≥ 2(m+ 1).

where n is the number of vertices in G, e the number of edges in G and ei’s,
i = 1, 2, 3 · · · , k are the number of pendant edges attached to the vertex vi of G.
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Proof. If diam(G) ≤ m+1, then remove all the edges of the form ui −ui+1 from
the

⌈
m−1
2

⌉th level except the pendant edges, one edge from all but one vertex
with d(v) > 1 and two from one vertex with d(v) > 1. More specifically, let
v1 − v2 − · · · − vd be a diametral path in G where, ve1 , ve2 , · · · , vek are the k
vertices vi with ei pendant vertices. Then remove all the edges except one from
{v1, v2, · · · , vd} \ {ve1 , ve2 , · · · , vek , vd−1} and remove all the edges except two
from vd−1 (See Fig. 2). This removal of edges will not affect the shortest path
between the vertices in μm(G) is clear from the discussion of shortest paths in
the Sect. 4.

If diam(G) > m + t, 1 ≤ t ≤ m, these set of edges can be removed from t
levels m − 1,m − 2, · · · ,m − t. If diam(G) ≥ 2(m + 1), either the removal of the
edges of the above type from m levels or the removal of the edges from the copy
of G in μm(G) will not change the diameter of μm(G).

Illustration

Fig. 2. Dotted lines are the deleted edges

Theorem 3. Let G be any connected graph and m ≥ 2 be an integer. Then
D+1(μm(G)) = 1 if and only if diam (G) ≤ m + 1 and G has at least one
pendant edge.

Proof. First, suppose that G has at least one pendant edge and diam(G) ≤ m+1.
Then diam(μm(G)) = m + 1. Let v0

i − v0
j be a pendant edge in G. Consider the

pair of vertices (v1
j , z) in μm(G), which are at distance m. If the edge v2

i − v1
j is

deleted, then, d(v1
j , z) = m + 2 by the path v1

j − v0
i − v1

k − v2
i − v3

j − · · · − vm
i − z

or v1
j −v0

j −v1
k −v2

i −v3
j −· · ·−vm

j −z according as m is odd or even respectively
(Fig. 3). For all other vertices x in μm(G), d(v1

j , x) ≤ m + 2, since the distance
between any other pair is not affected by the removal of this edge. Therefore
D+1(μm(G)) = 1.

Conversely, assume that D+1(μm(G)) = 1. If possible, let diam(G) ≤ m + 1
and G has no pendant edges. Then, diam(μm(G)) = m+1. Let an edge v0

i −v0
i+1,
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Fig. 3.

be deleted. Then, d(v0
x, v

0
y) ≤ diam(G) by a path, v0

x − v0
(x+1) − v0

(x+2) · · · − v0
i −

v1
i+1−v0

i+2−· · ·−v0
y. Clearly, the distance between any other pair is not affected

by the removal of this edge. If an edge vi
k − vi+1

l is deleted, then d(vi
k, v

i+1
l )

is affected. Since, δ(G) ≥ 2, vi
k is adjacent to some other vertex vi+1

j , in the
i + 1th level. Thus, d(vi

k, v
i+1
l ) = 3, by a path, vi

k − vi+1
j − vi+2

k − vi+1
l . For any

other pair (vi
k, v

j
x), the edge vi

k − vi+1
l in any vi

k − vj
x path can be replaced by

the edge vi
k − vi+1

j for some vi+1
j ∈ N(vi

k) and hence d(vi
k, v

j
x) ≤ m + 1. The

removal of an edge vm
i −z also will not affect the diameter as it changes only the

distance between vm
i and z to 3. Thus we get a contradiction to the fact that

D+1(μm(G)) = 1 and therefore G has at least one pendant edge.
Next, suppose that diam(G) > m + 1 and G has pendant edges. Since

diam(G) > m + 1, diam(μm(G)) =diam(G). If any edge v0
x − v0

y is removed, the
distance is unaffected in μm(G) as alternate paths exist through the duals. Let
v0
k − v0

l be a pendant edge in G. If an edge of the form vi+1
k − vi

l is removed from
μm(G), then d(vi+1

k , vi
l) = 3 by the path vi

l −vi−1
k −vi

x −vi+1
k , where v0

x ∈ N(v0
k)

for i �= 0 and for i = 0, d(v1
k, v

0
l ) = 3 by the path v0

l − v0
k − v0

x − v1
k. Thus the

distance between v0
l and z becomes m+2 by the path v0

l −v0
k −v1

l −v2
k −· · ·−z.

For i > 0, d(vi
l , z) < m+2, by the path vi

l −vi−1
k −vi

x−vi+1
k −vi+2

l −· · ·−vm
k −z

or vi
l −vi−1

k −vi
x−vi+1

k −vi+2
l −· · ·−vm

l −z according as m is odd or even respec-
tively, where d(vi+1

k , vi
l ) = 3 and d(vi+1

k , z) < m − 1. The other edge removals
will not affect the distance as there are alternate paths. Thus the removal of any
single edge does not change the diameter and hence a contradiction.

Theorem 4. D+1(μm(G)) ≤

⎧
⎪⎪⎨

⎪⎪⎩

2δ(G) − 1 if diam (G) ≤ m + 1,
δ(G) if m + 1 < diam(G) < 2m + 1,
D1(G) if diam (G) = 2m + 1,
Δ(G) if diam (G) ≥ 2(m + 1).

Proof. To obtain this upper bound, we consider the following cases.

Case 1. diam(G) ≤ m + 1.
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In this case, diam(μm(G)) = m+1. Let v0
i be a vertex with minimum degree

in G. Then d(v0
i ) in μm(G) is 2δ(G). Delete all the edges incident with v0

i except
one that is adjacent to a vertex in level 0. This deletion will result in a graph
with d(v0

i , z) = m + 2.

Case 2. m + 1 < diam(G) < 2m + 1.
Since diam(μm(G)) = diam(G) in this case, If we delete all the edges inci-

dent on a vertex v0
i with minimum degree then d(v0

i , v
1
i ) = 2m + 1. Therefore,

D+1(μm(G)) ≤ δ(G).

Case 3. diam(G) = 2m + 1.
In this case, delete those edges that are deleted to increase the diameter of

G by at least 1 from level 0 of μm(G). This will clearly increase the diameter of
μm(G) by at least 1 and hence D+1(μm(G)) ≤ D+1(G).

Case 4. diam(G) ≥ 2(m + 1).
Here, the shortest paths are through z. Let u0, v0 be a pair of diametral

vertices in G and let d(u0) ≤ d(v0). Delete all the edges um
i − z, ui ∈ N(u0).

Then dµm(G)(u0, v0) > 2(m + 1). Hence D+1(μm(G)) ≤ d(u0) ≤ Δ(G).

Theorem 5. Let G be a connected graph with D−1(G) = 1, e = v0
i −

v0
j be an edge in G such that diam(G + e) = diam(G) − 1 and k =

min{dG(v0
i , v

0
x), dG(v0

j , v
0
x)}, where v0

x is an end point of any diametral path in
G.

Then D−1(μm(G)) = 1 if and only if m ≤{
k + diam (G)−1

2 if diam (G) is odd,

k + diam (G)−2
2 if diam (G) is even.

Proof. Let diam(G) be odd and consider the edge e = v0
i − v0

j in G such that
diam(G + e) = diam(G) − 1. Let k = min{dG(v0

i , v
0
x), dG(v0

j , v
0
x)}, where v0

x is
an end point of any diametral path in G. Let m ≤ k + diam(G)−1

2 . Then by
adding e to μm(G), dµm(G)(v

p
i , v

q
j ) ≤ diam(G) − 1, for k + 1 ≤ p, q ≤ m by

taking the path through z. For 1 ≤ p, q ≤ k, the shortest path between the
vertices vp

i and vq
j will be the path through level 0 which contains e and hence

dµm(G)(v
p
i , v

q
j ) ≤ diam(G) − 1 in this case also. Take a pair of diametral vertices

(v0
i′ , v

0
j′)in G. Then dµm(G)(v0

i′ , v
0
j′) = diam(G) − 1 by the path through level 0.

Hence it follows that D−1(μm(G)) = 1.
Conversely suppose that D−1(μm(G)) = 1. Then clearly diam(μm(G)) =

diam(G). If possible let m > k + diam(G)−1
2 . Consider the pair(vk+1

i′ , vk+1
j′ ) which

are the dual vertices in the k + 1th level of the diametral vertices vi′ and vj′

in G and let the edge e be added in μm(G). Then, Clearly the shortest path
between these vertices is through the level 0 given by vk+1

i′ − vk
1 − vk−1

2 · · · −
v0
k+1 − v0

k+2 − · · · − v0
diam(G)−2(k+1) − v1

diam(G)−2k−1 − · · · − vk
diam(G)−1 − v′k+1

j ,
where v0

i −v0
1 −v0

2 · · ·−v0
diam(G)−1−v0

j′ is the shortest path between v0
i′ and v0

j′ in
G. Thus by the definition of k, we have d(vk+1

i′ , vk+1
j′ ) = diam(G) in μm(G) + e.



Some Diameter Notions of the Generalized Mycielskian of a Graph 379

Now, if we add any other edge in μm(G), then the distance d(v0
i′ , v

0
j′) = diam(G).

Thus we get a contradiction to the fact that D−1(μm(G)) = 1.
Similarly we can prove the case, when diam(G) is even.

6 Diameter Minimality of the Generalized Mycielskian

A graph G is diameter minimal if d(G − e) > d(G) for any e ∈ G [3]. In this
section, we have obtained a characterization for the generalized Mycielskian of a
graph to be diameter minimal. Through out this section, we denote dµm(G)(vi, vj)
as d(vi, vj) for the sake of convenience.

Theorem 6. Let G be any connected graph. Then μm(G),m ≥ 1 is diameter
minimal if and only if G is K1,n.

Proof. Let G be K1,n, with d(vi) = n. Then, diam(μm(G)) = m + 1. To prove
μm(G) is diameter minimal, we consider the following possible cases of edge
deletions in μm(G).

Case 1. Let an edge v0
i − v0

j be deleted.
First, suppose that m is even. Consider the pair of vertices (v0

j , v
m
i ) in μm(G).

When the edge v0
j −v0

i is deleted, d(v0
j , v

m
i ) = m+2 by the path v0

j −v1
i −v2

j −v3
i −

· · ·−vm
j −z−vm

i , where d(v0
j , v

m
j ) = m and d(vm

j , vm
i ) = 2. The distance between

any other pair of vertices is not affected by the removal of this edge. When m is
odd, d(v0

j , v
m
j ) = m + 2 by the path v0

j − v1
i − v2

j − v − i3 − · · · − vm
i − z − vm

j ,
where d(v0

j , v
m
i ) = m and d(vm

i , vm
j ) = 2 and no other distance is affected by

this deletion.

Case 2a. Let an edge z − vm
j be deleted.

First, take m is even. Then, d(z, vm
j ) = 3 by the path z − vm

x − vm−1
y − vm

j ,
where v0

y ∈ N(v0
j ) and v0

x ∈ N(v0
y). d(vm

j , v1
j ) = m + 2 by the path vm

j − vm−1
i −

vm−2
j − vm−3

i − · · · − v1
i − v0

j − v0
i − v1

j . No other distance is affected by the
removal of this edge. Next, assume that m is odd. Then, d(z, vmj ) = 3 by the
path z−vm

x −vm−1
i −vm

j and d(vm
j , v1

i ) = m+2 by the path vm
j −vm−1

i −vm−2
j −

vm−3
i − · · · − v1

j − v0
i − v0

j − v1
i . Other distances are unaffected by this deletion.

Case 2b. Let an edge z − vm
i be deleted.

Then, d(z, vm
i ) = 2m by the path vm

i − vm−1
j − vm−2

i − · · · − v1
i − v0

j − v0
i −

v1
j − v2

i − · · · − vm
j − z. The distance between any other pair of vertices is less

than or equal to 2m.

Case 3. Let an edge vk
i − vk+1

j be deleted.
Then, d(vk

i , vk+1
j ) = 3 by the path vk

i − vk+1
x − vk+2

i − vk+1
j for k < m − 1

and by the path vk
i − vk+1

x − z − vk+1
j for k = m − 1. If m is even, consider the

pair of vertices (vk
j , vm−k

i ) in μm(G). Then d(vk
j , vm−k

i ) = m + 2 by the path
vk
j − vk+1

i − vk+2
j − v − ik+3 − · · · − vm

i − z − vm
j − vm−1

i − · · · − vm−k
i , where

d(vk
j , z) = (m + 1) − k and d(z, vm−k

j ) = k + 1. The distance between any two
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other vertices is at most m + 2. If m is odd, then d(vi
j , v

m−k
j ) = m + 2 by the

path vk
j −vk+1

i −v − jk+2 −vk+3
i −· · ·−vm

j − z −vm
i −vm−1

j −· · ·−vm−k
j , where

d(vk
j , z) = (m+1)−k and d(z, vm−k

j ) = k +1. The distance between other pairs
of vertices is at most m + 2.

Case 4. Let an edge vk
i − vk−1

j be deleted.
In this case, if m is even, d(vk−1

j , vm+1−k
j ) = m+2 by the path vk−1

j −vi−2
i −

· · ·−v0
i −v0

j −v1
j −v2

i −· · ·−vm−k
i −vm+1−k

j . If m is odd, d(vk−1
j , vm+1−k

i ) = m+2
by the path vk−1

j − vk−2
i − · · · − v0

i − v0
j − v1

j − v2
i · · · − vm+1−k

i . All the other
distances are at most m + 2. Hence it follows that μm(G) is diameter minimal.

Conversely, assume that μm(G) is diameter minimal and if possible let
δ(G) ≥ 2. Consider the following cases.

Case 1. diam(μm(G)) = diam(G).
Let an edge v0

i − v0
j , be deleted. Then, for any v0

x, v
0
y ∈ V 0, d(v0

x, v
0
y) ≤

diam(G) by the path, v0
x − v0

x+1 − v0
x+2 − · · · − v0

i − v1
j − · · · − v0

y. The distance
between any other pair of vertices remains same by the removal of this edge,
since δ(G) ≥ 2.

Case 2: diam(μm(G)) = m + 1.
When an edge z−vm

i is deleted, d(z, vm
i ) = 3 by the path, z−vm

a −vm−1
j −vm

i .
Since, δ(G) ≥ 2, d(z, vm−1

a ) = 2, (see Fig. 4). Hence, d(z, v0
a) = m+1, ∀v0

a ∈ V 0.

Fig. 4.

Case 3. diam(μm(G)) = 2(m + 1).
Let an edge v0

i − v0
j be deleted. Then, d(v0

x, v
0
y) ≤ 2(m + 1) by the path,

v0
x − v1

y − · · · − z − vm
k − · · · − v0

y. Also, the distance between any other pair is
not affected by the removal of this edge, since δ(G) ≥ 2.

Thus the above arguments, show that μm(G) can not be diameter minimal.
Therefore G must be a connected graph with at least one pendant edge.

Now, from the proof of Theorem 6, it is clear that deletion of an edge increases
the diameter of the generalized Mycielskian if and only if it is a pendant edge
and hence G must be K1,n.
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7 Some Bounds for D−k(µm(G))

In this section, let G be a connected graph and m ≥ 1 be an integer.

Lemma 1. If diam(G) < m + 1, then D−k(μm(G)) ≤ n, 1 ≤ k ≤ min{m
2 +

1,diam(G)}.
Proof. Add the edges v0

i − z in μm(G). Then d(vj
i , z) ≤ m

2 + 1 and hence the
bound.

Lemma 2. Let d′ be the diameter of G after adding D−k(G) edges to G and let
m + 1 ≤ diam(G) < 2(m + 1). Then D−k(μm(G)) ≤ (m − |E|)D−k(G) where
E = {i|2i ≤ d′}.
Proof. Let v0

i − v0
i′ , 1 ≤ i ≤ D−k(G) be the edges added in G to reduce the

diameter by at least k. Now, add vj
i − vj

i′ , j = 0, 1, · · · , |E| in μm(G). This will
clearly reduce the diameter of μm(G) by at least k.

Lemma 3. Let l = D−(2(m+1)−k)(G) and diam(G) ≥ 2(m + 1). Then
D−k(μm(G)) ≤ l, k < 2(m + 1).

Proof. If diam(G) ≥ 2(m + 1), then diam(μm(G)) = 2(m + 1) and hence all
shortest paths are the paths through z. Add those l edges which are used
to get D−(2(m+1)−k)(G) in the 0th level of μm(G). Then the distance reduces
by at least 2(m + 1) − k in the level 0 and hence the diameter of μm(G) reduces
by at least k, k < 2(m + 1).

Theorem 7

D−k(μm(G)) ≤

⎧
⎪⎪⎨

⎪⎪⎩

n if diam(G) < m + 1,
1 ≤ k ≤ min{m

2 + 1, diam(G)},
(m − |E|)D−k(G) if m + 1 ≤ diam(G) < 2(m + 1),
D−(2(m+1)−k)(G) if diam(G) ≥ 2(m + 1).

where E = {i|2i ≤ d′}, d′ the diameter of G after adding D−k(G) edges to G.

Proof. The proof follows from the previous lemmas.

8 Conclusion

In this paper, we have obtained the diameter of the generalized Mycielskian of a
graph. We have also considered the diameter variability problem arising from the
changes of edges for the generalized Mycielskian. Moreover, we could characterize
those generalized Mycielskian which are diameter minimal. The results obtained
in this paper also point towards a future study of other network topological
notions in the generalized Mycielskian of a graph.
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Abstract. The purpose of the present work is to introduce and study
the concept of minimal deterministic automaton with rough output
which recognizes the given rough languages. Specifically, we use two con-
cepts for such construction, one is based on Myhill-Nerode’s theory and
the other is on the basis of derivatives of the given rough language. Lastly,
we discuss monoid representations of the given rough languages.

Keywords: Deterministic automaton · Rough language · Homomor-
phism · Monoid representation

1 Introduction and Preliminaries

Rough set theory, firstly proposed by Pawlak [8] in 1982, is a mathematical app-
roach for the study of intelligent systems having insufficient and incomplete infor-
mation. Rough set theory has vide applications in both mathematics and com-
puter sciences e.g., artificial intelligence, cognitive sciences, particularly in the
areas of knowledge acquisition, decision analysis and information systems. In the
other direction, after the introduction of rough set theory by Pawlak, Kierczak [4]
in 1985 introduced the concept of grammar theory based on rough set theory in
terms of best lower and best upper approximation and discussed its relationship
with languages. Subsequently, to reduce the gap between formal languages and
natural languages, Paun et al. [7] introduced various kind of rough languages.
They also investigated that the lower and upper approximations of context-
free languages are regular languages. From the perspective of rough set, recently
Basu [1] in 2005 introduced the notion of rough finite-state automaton which can
recognize rough sets, considered as a generalization of nondeterministic finite-
state automaton. This finite-state automaton differs from its crisp and fuzzy
versions only in terms of return of transition map; specifically, in case of rough
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 383–391, 2017.
DOI: 10.1007/978-3-319-64419-6 49
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finite-state automaton, the transition map returns a rough set of states (rather
than a single state or a subset of states or a fuzzy (sub)set of states). In order
to enrich the algebraic study of rough finite-state automaton Tiwari and Sharan
have made great effort in their series of papers (cf., [9,10,12,13]). During the
recent years, the researchers paying attention on Myhill-Nerode’s theory, which
is a another significant branch of algebraic theory of languages and automata.
In this view, there are numerous works have been done by many authors in
many forms (cf., [2,5,6]), especially the recent one by Ignjatović et al. [3].
After that, Tiwari et al. ([11,14]) discussed the notions of Myhill-Nerode’s
type theory for the construction of minimal deterministic fuzzy automaton
and minimal monoid for representation of fuzzy languages in terms of category
theory.

Motivated by the work of Ignjatović et al. [3], in this paper we introduce and
study the concept of minimal deterministic automaton with rough output which
recognize rough language. One of such minimization is based on Myhill-Nerode’s
theory while another is based on derivatives of given rough languages. Lastly,
we discuss monoid representation of the given rough languages.

Now, we collect some concepts associated with rough set theory, which are
useful in the next sections. We start from the following concept of approximation
space.

Definition 1 [8]. An approximation space is a pair (X,R), where X is a
nonempty set and R is an equivalence relation on X.

If R is an equivalence relation on a nonempty set X and x ∈ X, then let [x] =
{y ∈ X : (x, y) ∈ R}, called an equivalence class or a block under R and
X/R = {[x] : x ∈ X}.

Definition 2 [8]. Given an approximation space (X,R) and A ⊆ X, the lower
approximation A of A and the upper approximation A of A are defined as:

A =
⋃

{[x] ∈ X/R : [x] ⊆ A}, and

A =
⋃

{[x] ∈ X/R : [x] ∩ A �= φ}.

The pair (A,A) is called a rough set.
For an approximation space (X,R), let A ⊆ X, then A and A are interpreted
as the collection of those elements of X that definitely and possibly belongs to
A, respectively. Further, A is called definable (or exact) in (X,R) iff A = A.
Equivalently, a definable set is a union of blocks under R. For any A ⊆ X, A
and A are definable sets in (X,R).

Let X∗ be the set of all ‘words’ on X (i.e., finite strings of elements of X),
including the empty word (which we shall denoted by e). Then X∗ forms a
monoid under the ‘concatenation’ operation (with e as identity).
We close this section by introducing the following concept of rough language.

Definition 3. Let (X∗, R) be an approximation space. A rough language in
X∗ is a map f : X∗ → D × D, where D is a definable set.
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2 Minimal deterministic automaton of a rough language

In this section, we introduce and study the concept of deterministic automaton
with rough output which recognizes the rough languages. Interestingly, we show
that this automaton is minimal for a given rough language.
We begin by introducing the following concept of deterministic automaton with
rough output.

Definition 4. A deterministic automaton with rough output is a 6-tuples
N = (Q,R,X, δ, q0, β), where

1. Q is a finite non-empty set of states,
2. R is an equivalence relation on Q,
3. X is the set of input variables,
4. δ : Q × X → Q is a map called transition map.
5. q0 ∈ Q is a fixed state called the initial state.
6. β : Q → D × D is a map called rough output map.

Proposition 1. For a given rough languages f : X∗ → D × D there exists a
deterministic automaton with rough output which recognizes f .

Proof. Define a relation R on X∗ by (u, v) ∈ R iff f(uw) = f(vw) and f(uw) =
f(vw),∀w ∈ X∗. Then R is an equivalence relation on X∗. For an equivalence
relation R on X∗, let Qf = X∗/R = {[u]R : u ∈ X∗}, where [u]R = {v ∈ X∗ :
(u, v) ∈ R} denotes an equivalence class of R determined by u. It is clear that
Rf = Q/R = {[p]R : p ∈ Q}, where [p]R = {q ∈ Q : (p, q) ∈ R} is an equivalence
relation on Qf . Now, we define the maps δf and βf as follows:

δf : Qf × X∗ → Qf such that δf ([u]R, v) = [uv]R, and
βf : Qf → D × D such that βf ([u]R) = f(u) and βf ([u]R) = f(u). (1)

Both the maps are well-defined as shown below:
Let u, v ∈ X∗ such that [u]R = [v]R. Then

(u, v) ∈ R ⇒ f(uw) = f(vw),∀w ∈ X∗

⇒ (f(uw), f(uw)) = (f(vw), f(vw))

⇒ f(uw) = f(vw) or f(uw) = f(vw)

⇒ βf ([u]R) = f(u) and βf ([u]R) = f(u),

whereby βf is well-defined.
Again, let u, v ∈ X∗ such that [u]R = [v]R. Then

(u, v) ∈ R ⇒ f(uw) = f(vw),∀w ∈ X∗

⇒ (f(uw), f(uw)) = (f(vw), f(vw))

⇒ (f(ux), f(ux)) = (f(vx), f(vx)),∀x ∈ X

⇒ f(ux) = f(vx) or f(ux) = f(vx)
⇒ (ux, vx) ∈ R

⇒ [ux]R = [vx]R
⇒ δf ([u]R, x) = δf ([v]R, x),



386 B.K. Sharma et al.

whereby δf is well-defined. Thus Nf = (Qf , Rf ,X, δf , [e]R, βf ) is a deterministic
automaton with rough output. Also, by induction it is easy to verify that δf can
be extended to δ∗

f : Qf × X∗ → Qf such that δ∗
f ([u]R, v) = [uv]R, ∀v ∈ X∗.

Finally, for all u ∈ X∗,

fNf
(u) = βf (δf ([e]R, u)) and fNf

(u) = βf (δf ([e]R, u))

⇒ fNf
(u) = βf ([u]R) and fNf

(u) = βf ([u]R)

⇒ fNf
(u) = f(u) and fNf

(u) = f(u)

Hence Nf recognizes f .

Definition 5. A deterministic automaton with rough output is called reach-
able, if for all q ∈ Q, there exists u ∈ X∗ such that δ(q0, u) = q.

Definition 6. A rough language f : X∗ → D × D is said to be accepted by a
reachable deterministic automaton N = (Q,R,X, δ, q0, β) with rough outputs β,
if for all u ∈ X∗

1. if (p, q) ∈ R for (u, v) ∈ R, then δ(q0, u) = p and δ(q0, v) = q, and
2. β(δ∗(q0, u) = f(u) and β(δ∗(q0, u) = f(u).

Proposition 2. The Nf = (Qf , Rf ,X, δf , [e]R, βf ) is a reachable deterministic
automaton with rough output βf .

Proof. For all u ∈ X∗, we have δ([e]R, u) = [u]R. Hence Nf is reachable deter-
ministic automaton with rough output βf .

Proposition 3. The reachable deterministic automaton with rough output
recognizes the rough language.

Proof. Let Nf = (Qf , Rf ,X, δf , [e]R, βf ) be a reachable deterministic automa-
ton with rough output βf . Then ∀u, v ∈ X∗, if ([p], [q]) ∈ Rf for (p, q) ∈ R,
δf ([e]R, u) = [p] and δf ([e]R, v) = [q]. Also, for all u ∈ X∗, βf (δ∗([q0], u)) = f(u),

and βf (δ∗([q0], u)) = f(u). Thus Nf recognizes a rough language f .

Analogous to the concept of homomorphism defined in [10], we now introduce
the same between deterministic automata with rough output.

Definition 7. Let N = (Q,R,X, δ, q0, β) and N ′ = (Q′, R′,X, δ′, q′
0, β

′) be
deterministic automata with rough output β and β′. A homomorphism from
N to N ′ is a map Ψ : Q → Q′ such that

1. (p, q) ∈ R ⇔ (Ψ(p), Ψ(q)) ∈ R′,∀p, q ∈ Q,
2. (Ψ(δ(p,w)), Ψ(δ(p,w))) ⊆ (δ′(Ψ(p), w), δ′(Ψ(p), w)),∀p ∈ Q and w ∈ X, and

3. β′ ◦ Ψ = β ⇔ (β′(Ψ(p)), β′(Ψ(p)) = (β(p), β(p)), ∀p ∈ Q.

Also, if Ψ is onto, N ′ is a homomorphic image of N .
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Proposition 4. For a rough language f : X∗ → D × D, the deterministic
automaton is a homomorphic image of any reachable deterministic automaton
with rough output which recognizes f .

Proof. Let N = (Q,R,X, δ, q0, β) be a reachable deterministic automaton which
recognizes rough language f . Then for all q ∈ Q there exists u ∈ X∗ such that
δ∗(q0, u) = q. We define a map Ψ : M → Mf , such that

Ψ(p) = [u]R, iff δ∗(q0, u) = p,

∀p ∈ Q and u ∈ X∗. Then Ψ is well defined as for p, q ∈ Q such that p = q,
there exists u, v ∈ X∗ such that δ∗(q0, u) = p, δ∗(q0, v) = q. Now, p = q ⇒
[p] = [q] ⇒ (p, q) ∈ R ⇒ (u, v) ∈ R ⇒ [u] = [v]. Thus Ψ is well defined.
Now, p = q ⇒ δ∗(q0, u) = δ∗(q0, v). Hence for any w ∈ X∗, we have f(uw) =
β(δ∗(q0, uw)) = β(δ∗(p,w)) = β(δ∗(q, w)) = δ∗(q0, vw) = f(vw), and f(uw) =
β(δ∗(q0, uw)) = β(δ∗(p,w)) = β(δ∗(q, w)) = δ∗(q0, vw) = f(vw).

Now, ∀[u] ∈ Qf , u ∈ X∗,∃ p ∈ Q such that δ(q0, u) = p and Ψ(p) = [u], showing
that Ψ is surjective.

Now, in order to show that Ψ is a homomorphism from N to Nf , we define a
relation Rf on Qf by (p, q) ∈ R iff ([p], [q]) ∈ Rf iff (Ψ(p), Ψ(q)) ∈ Rf . Then
∀w ∈ X∗, Ψ(δ∗(p,w)) = Ψ(δ∗(q0, uw)),= [uw] = δ∗

f ([u], w) = δ∗
f (Ψ(p), w), and

Ψ(δ∗(p,w)) = Ψ(δ∗(q0, uw)) = [uw] = δ∗
f ([u], w) = δ∗

f (Ψ(p), w).
Finally, we need to show that βf ◦ Ψ = β. Therefore βf (Ψ(p)) = βf ([u]) =

f(u) = β(δ∗(q0, u)) = β(p), and βf (Ψ(p)) = βf ([u]) = f(u) = β(δ∗(q0, u)) =
β(p), showing that βf ◦ Ψ = β. Thus Nf is homomorphic image of N .

Now we define minimal deterministic automaton with rough output as follows:

Definition 8. A deterministic automaton with rough output
N = (Q,R,X, δ, q0, β) is said to be a minimal deterministic automaton
with rough output β of a rough language f : X∗ → D × D, if it recognize f
and |N | ≤ |N ′|, for any deterministic automaton N ′ = (Q′, R′,X, δ′, q0, β′) with
rough output β′ which recognize f .

Now, we have following result.

Proposition 5. For a given rough language f : X∗ → D × D, the determinis-
tic automaton Nf = (Qf , Rf ,X, δf , [e], βf ) with rough output βf is a minimal
deterministic automaton.

Proof. Let N = (Q,R,X, δ, q0, β) be a deterministic automaton with rough out-
put β : Q → D × D, which recognize f , and let N ′ = (Q′, R′,X, δ′, q0, β′) be
another deterministic automaton such that Q′ ⊆ Q, where Q′ = {p : δ∗(q0, u) =
p, u ∈ X∗}, δ′ = δ/Q′×X and β = β′/Q′ . Now, from Proposition 4, the deter-
ministic automaton Nf with rough output βf is a homomorphic image of N ,
whereby |Nf | ≤ |N ′| ≤ |N |. Hence the deterministic automaton Nf with rough
output βf of a rough language f is minimal.
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3 The Derivative Automaton of a Rough Language

In this section, we introduce and study the concept of minimal derivative
automaton with rough output which recognizes the rough languages.

Definition 9. Let (X∗, R) be an approximation space. A rough language fu :
X∗ → D × D is called a derivative of rough language f : X∗ → D × D with
respect to u if fu = (f

u
, fu) such that

fu(v) = f(uv) and fu(v) = f(uv),∀v ∈ X∗ andu ∈ X.

Proposition 6. Let (X∗, R) be an approximation space and f : X∗ → D × D
be a given rough language, then there exists a reachable deterministic automaton
Mf which recognize f .

Proof. Let Qf = {fu : u ∈ X∗} be the set of all derivatives of a rough
language f . Define the maps

δf : Qf × X → Qf such that δf (fu, x) = fux,∀fu ∈ Qf , x ∈ X.

and

βf : Qf → D × D such that βf (fu) = fu(e) and βf (fu) = fu(e).

Also, define a relation Rf on Qf as (fu, fv) ∈ Rf iff (u, v) ∈ R. Then
Mf = (Qf , Rf ,X, δf , fe, βf ) is a derivative automaton with rough output βf .
Since ∀x ∈ X, δ(fe, x) = f(ex) = fx(e) = fx ∈ Qf , whereby, Mf is reachable
derivative automaton with rough output βf . Now, we have

βf (δf (fe, u)) = βf (feu) = βf (fu) = (fu(e)) = f(u),

and

βf (δf (fe, u)) = βf (f(eu) = βf (fu) = (fu(e)) = f(u).

Hence Mf recognize a rough language f .

Definition 10. A homomorphism from a deterministic automaton Mf =
(Qf , Rf ,X, δf , q0, βf ) with rough output βf to a derivative automaton M ′

f =
(Q′

f , R′
f ,X, δ′

f , fe, β
′
f ) with rough output β′

f is a map Φ : Mf → M ′
f , i.e.,

Φ : Qf → Q′
f such that

1. (fu, fv) ∈ R′
f ⇔ ((u, v) ∈ R ⇔ ([u], [v]) ∈ Rf ,

2. (Φ(δf (fu, w)), Φ(δf (fu, w))) ⊆ (δ′
f (Φ(fu), w), δ′

f (Φ(fu), w)),∀fu ∈ Qf and
w ∈ X, and

3. β′
f ◦ Φ = βf ⇔ (β′

f (Φ(fu)), β′
f (Φ(fu)) = (βf (fu), βf (fu)), ∀fu ∈ Qf .
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A bijective homomorphism Φ from a deterministic automaton Mf with rough
output to a derivative automaton M ′

f with rough output is called an isomor-
phism. If there is an isomorphism from Mf to M ′

f . Then Mf is said to be
isomorphic to Mf and is denoted by Mf

∼= M ′
f .

Now, we have following result.

Proposition 7. For any rough language fu : X∗ → D × D, the derivative
automaton M ′

f = (Q′
f , R′

f ,X, fe, δ
′
f , β′

f ) with rough output β′
f is a minimal deter-

ministic automaton with rough output which recognize fu.

Proof. To prove M ′
f is a minimal deterministic automaton with rough output β′

f ,
it is enough to show that M ′

f is isomorphic to Nf . Let Φ be a map from M ′
f → Nf

i.e., Φ : Q′
f → Qf , defined by Φ(fu) = [u], for all u ∈ X∗, i.e., δ′

f (fe, x) =
(fe, x) = fx ∈ Q′

f . Now we have (fu, fv) ∈ R′
f ⇒ ((u, v) ∈ R ⇒ ([u], [v]) ∈ Rf .

Then ∀w ∈ X, Φ(δ′∗
f (fu, w)) = Φ(δ′∗

f (fu, w)) = Φ(fuw) = [uw] = δ∗
f ([u], w) =

δ∗
f (Φ(fu, w), and Φ(δ′∗

f (q, w)) = Φ(δ′∗
f (fu, w)) = Φ(fuw) = [uw] = δ∗

f ([u], w) =

δ∗
f (Φ(fu, w)). Now, we need to show βf ◦Φ = β′

f . Therefore βf (Φ(fu) = βf ([u]) =

fu = β′
f (δ′

f (fe, u)) = β′
f (fu), and βf (Φ(fu)) = βf ([u]) = fu = β′

f (δ′
f (fe, u)) =

β′
f (fu).

Thus Φ is a homomorphism of M ′
f onto Nf . Now let fu, fv ∈ Q′

f ,∀u, v ∈ X∗,
such that

fu = fv ⇔ fu(e) = fv(e)
⇔ f(eu) = f(ev)
⇔ δ′∗

f (fe(u)) = δ′∗
f (fe(v)

⇔ [u] = [v]
⇔ Φ(fu) = Φ(fv),

whereby Φ is well defined and one-one. As for each [u] ∈ Qf ,∃ fu ∈ Q′
f , such that

Φ(fu) = [u], whereby Φ is onto. Hence Φ is well defined bijective homomorphism
from M ′

f to Nf , i.e., M ′
f is isomorphic to Nf .

4 Recognition of Rough Language by Monoid

In this section, we continue our study regarding to minimization and try to
develop a general theory of recognition of rough language by monoid.

We begin by introducing the following concept of monoid representation of
rough language.

Definition 11. A monoid representation of rough language f : X∗ →
D × D is fourtuple N = (S,R,X∗, Φ, α), where

1. X∗ and S are the monoid for rough language f , such that

f(u) = α(Φ(u)) and, f(u) = α(Φ(u))
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2. R is an equivalence relation on S,
3. Φ : X∗ → S is a map called transition map, and
4. α : S → D × D is a map called rough output map.

Definition 12. A rough language f : X∗ → D × D is said to be recognized
by a monoid S if there exist a homomorphism Φ : X∗ → S and α : S → D × D
such that ∀u ∈ X∗

f = α ◦ Φ and f = α ◦ Φ,

i.e., f(u) = α(Φ(u)) and, f(u) = α(Φ(u)).

Definition 13. For any rough language f : X∗ → D × D, we define a relation
πf on X∗, such that ∀u, v, x, y ∈ X∗,

(u, v) ∈ πf ⇔ f(xuy) = f(xvy) and f(xuy) = f(xvy)

This relation πf is called syntactic congruence of rough language f . The
factor monoid Nf = (Sf , Rf ,X∗, Φ, α), where Sf = X∗/R = {[u] : u ∈ X∗}, is
called syntactic monoid of rough language and is denoted by Syn(f).

Definition 14. The monoid representation Nf = (Sf , Rf ,X∗, Φ, α) with rough
output α of a rough language f is minimal, if Φ is onto.

Proposition 8. For any rough language f : X∗ → D×D, the syntactic monoid
Syn(f) is a minimal monoid of a rough language f .

Proof. Let Syn(f) = (Sf , Rf ,X∗, Φ, α) be a syntactic monoid. We define a map-
ping Φ : X∗ → M by Φ(u) = [u], ∀u ∈ X∗. Then for each [u] ∈ Sf ,∃u ∈ X∗,
such that Φ(u) = [u], showing that Φ is onto. Thus the monoid representation
Nf = (Sf ,X∗, Φ, α) with rough output α of a given rough language f is minimal.

Remark 1. The syntactic monoid Syn(f) of a rough language f is the smallest
monoid which recognize the rough language f .

Definition 15. The transition monoid of a derivative automaton denoted by
T (Mf ) and define as

(u, v) ∈ πf ⇔ δ(q, u) = δ(q, v),∀q ∈ Qf .

Then πf is equivalence relation and T (Mf ) = X∗/πf and T (Mf ) = {(δu, δu) :
u ∈ X∗} is a monoid with composition ◦ define by δu ◦ δv = δuv,∀u, v ∈ X∗.

Proposition 9. For any rough language f : X∗ → D×D, the syntactic monoid
Syn(f) is isomorphic to the transition monoid of the derivative automaton for
a rough language f .

Proof. Let Mf = (Qf , Rf ,X, fe, δf , βf ) the derivative automaton with rough
output βf , and let the transition function of Mf obtained by u, is represented
as (δu, δu),∀u ∈ X∗. We know that a mapping Φ : X∗ → T (Mf ), such that

Φ(u) = (δu, δu)
i.e., Φ(u, v) = δuv = δu ◦ δv = Φ(u) ◦ Φ(v)
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is a homomorphism of X∗ onto T (Mf ), thus T (Mf ) ∼= X∗/πf .
On the other side, for any u, v ∈ X∗, consider any arbitrary r ∈ Qf then

r = (f
u
, fu) ∀u ∈ X∗. Now,

δu = δv ⇔ δu(r) = δv(r),∀r ∈ Qf

⇔ ru = rv, ∀r ∈ Qf

⇔ (f
xu

, fxu) = (f
xv

, fxv), ∀x ∈ X∗

⇔ (f
xu

(y), fxu(y)) = (f
xu

(y), fxu(y)), ∀x, y ∈ X∗

⇔ (f(xuy), f(xuy)) = (f(xuy), f(xuy)), ∀x, y ∈ X∗

⇔ (u, v) ∈ πf

Therefore T (Mf ) ∼= X∗/πf = Syn(f). Hence the syntactic monoid Syn(f)
is isomorphic to the transition monoid of the derivative automaton for rough
language f .
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Abstract. Cyber attack is the most threatening factor of today’s dig-
ital world and this is virtually doubled year by year. During Febru-
ary 2016, Bangladesh central bank was attacked by hackers through
35 illegal transactions in which five transactions resulted in loss of $81
Millions. However, the bank saved $850 Millions by reviewing the remain-
ing thirty transactions. Later, Amazon.com was attacked by hackers
which resulted in leakage of 80,000 login credentials. Distributed Denial
of Service (DDoS) attack is one of the common forms of cyber attacks
which have grown in size, become sophisticated, dangerous and also hard
to detect. Tracing the source IP address of such an attack enables us to
control the Internet crimes. In this work, a statistical approach based on
metrics is presented to find the source of the attack. Six sigma approaches
are used to set the threshold value based on which attack sources are pre-
dicted.

Keywords: DDoS · Statistical · Variation · Cyber security

1 Introduction

A Distributed Denial of Service (DDoS) attack is a malicious trial to create
an internet service inaccessible by overwhelming it with traffic from multiple
sources. Their target is important resources, banks, news websites etc. and
presents a major challenge. The first major DDoS attack occurred at Interna-
tional Research Center of University of Minnesota in 1999 and affected the server
of the University and was unusable for several days. Such attacks are happening
more frequently across the world and it is hard to trace back since the source IP
address in a packet can be spoofed when an attacker wants to hide himself from
tracing [1]. The existing trace back methods by packet marking [20–23] are not
suitable for identifying the source of attack in the network which does not use
the router with the corresponding configuration. In this paper, a novel statistical
approach is proposed to trace the source of attack by monitoring the variations
in the data flow.

2 Related Works

Recent trends exhibit that Soft computing approaches are heavily used for DDoS
attack detection. These methods are well suited for known attacks. However,
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unavailability of suitable training data set often turns out to be a major bot-
tleneck for these methods. Knowledge based approaches are also used to iden-
tify the source of attack and employed in the victim side source network as
well as intermediate network. Likewise such methods [7–11] depend on packet
as well as information flow. Several security researchers have tried to handle
DDoS attack using other data mining and machine learning approaches [12–19].
Conventional trace back methods like Link Testing which includes Input Debug-
ging and Control Flooding [20], have emerged a decade ago. The packet marking
era came in the picture with Node append, Node sampling, Edge sampling mark-
ing methods etc.

Based on literature survey it is observed that statistical methods can detect
DDoS attack with high accuracy but it is not cost effective. Such methods are
purely based on user input parameters which are essential from the system over
and above user point of view. Knowledge-based methods [2,4] perform satisfacto-
rily and the detection accuracy and real-time performance are reasonable. Data
mining and machine learning methods fail to perform in real time. However it
detects the DDoS attacks with high accuracy and generally these methods can
be both supervised as well as unsupervised in nature. Statistical methods are
useful to detect attacks from normal traffic.

Existing trace back mechanisms have crushing system overload, high calcu-
lation overhead and furthermore substantial number of false positives. In this
paper we propose a new strategy of utilizing a measurable approach and our
strategies moderate the calculation overhead, decrease the system overload and
minimize false positives [24–26].

3 Trace Back Using Statistical Approach

Trace back using statistical approach method is superior to the Packet marking
methods, since it does not require update on routing software.

3.1 Variation

Different types of data flows are used to trace on attack. The normal flow and
attacking flow differentiation are known as Entropy Variation. Entropy variations
are calculated based on statistical approach with metrics. The process is as
follows:

• Difference between the non-attack and attack period is called Entropy Varia-
tion.

• The number of attack packets should not be less than the normal flow.
• Only one Distributed attack is continuing at a given time.
• The data flow for a certain router is same for both the attack cases and non-

attack cases.

For example, Normal user sends 2 or 3 packets consecutively. After that, they
wait for a while to receive the reply from receiver and then send the other packets.



394 T. Subburaj et al.

But generally, the attackers send packets continuously because they won’t stay
for such amount of time.

Entropy is a [3] thought perceived by Shannon. It plays an important role in
the detection methods of cyber attacks. It is particularly crucial in monitoring
these unusual behaviors. Let {x1, x2, . . . , xn} be the set of all goals of the packets
traveling in the network. Let x be a random variable with

P (X = xi) = number of packets going towards the goal xi

total number packets traveling in the network towards various goals

Let P (X = xi) = pi, so that 0 ≤ pi ≤ 1. (1)

Discrete random variable for the entropy is defined by

H(X) = −
n∑

i=1

pi ∗ (log2p(xi)) (2)

Entropy is used to find the variations in the activity features and can be
utilized to assess the irregularity of streams on a given router. Standardized
entropy estimation is given by H(x)

log2n0
, where n0 is the number of source hub.

The special flow monitoring algorithm is opted during the normal data flow
to calculate the Mean and the standard deviation. From the calculation the
threshold value is obtained. Threshold value is compared to the entropy value.
If the entropy value is less than the threshold value, then the flow is identified
as attack flow, otherwise it is normal flow.

3.2 Trace Back

The router stores [5,6] the upstream and downstream routers information, and
destination address of the flow packets. Once an attack is detected based on the
variations in the data flow, the router starts the trace back process and then it
defines the data flow in descending order. The router finds the upstream router
from where maximum data flow has occurred and passes this information to
that router. There again the same process is carried out until the attack source
is determined.

4 Simulation and Results

The environment setup is made with 3 sources, one intermediate router and one
destination node. The bandwidth of the genuine traffic is set as constant and the
attack is generated randomly from different sources. The packet flow variations
at the router is monitored and compared with the threshold values, which leads
to the decision as to whether the flow is attack flow or normal flow.
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4.1 Detection Example

Consider the example given in Fig. 1, where there are three flows F1, F2 and
F3 from three sources A, B and C respectively. R is the router and D is the
destination.

Fig. 1. Different packet flows

The attacker creates over traffic from the flows F2 and F3 on B and C after
2.0 s. The testing goes on for 2 s. We check out the number of packets got in
each 0.5 s [27] and Table 1 summarizes the traced data. The Flow of information
is demonstrated as follows: Flows are characterized as the number of packets
originating from the source.

The details of computation of entropy are given below:

Entropy : H(X) = −
n∑

i=1

p(xi) ∗ (log2P (xi)) (3)

Table 1. Sample packet flows

Time interval Normal flows Entropy Time interval Attack flows Entropy

A B C A B C

0.0–0.5 45 26 41 1.55 2.0–2.5 26 323 144 1.14

0.5–1.0 22 25 8 1.45 2.5–3.0 23 196 420 1.09

1.0–1.5 35 31 25 1.57 3.0–3.5 15 132 140 1.24

1.5–2.0 51 32 25 1.52 3.5–4.0 6 114 145 1.12
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Time: 0.0 to 0.5

H(X1) = −((45/112) log2(45/112) + (26/112) log2(26/112)
+ (41/116) log2(41/116))

= −((0.40)log2(0.40) + (0.23) log2(0.23) + (0.37) log2(0.37))
= −((0.40)(−1.32) + (0.23)(−2.11) + (0.37)(−1.45))
= 1.55

Time: 0.5 to 1.0

H(X1) = −((22/55) log2(22/55) + (25/55) log2(25/55) + (8/55) log2(8/55))
= −((0.40) log2(0.40) + (0.45) log2(0.45) + (0.15) log2(0.15))
= −((0.40)(−1.32) + (0.45)(−1.14) + (0.15)(−2.78))
= 1.45

Time: 1.0 to 1.5

H(X1) = −((35/91) log2(35/91) + (31/91) log2(31/91) + (25/91) log2(25/91))
= −((0.38) log2(0.38) + (0.34) log2(0.34) + (0.27) log2(0.27))
= −((0.38)(−1.38) + (0.34)(−1.55) + (0.27)(−1.86))
= 1.57

Time: 1.5 to 2.0

H(X1) = −((51/108)log2(51/108) + (32/108) log2(32/108)
+ (25/108) log2(25/108))

= −((0.47) log2(0.47) + (0.30) log2(0.30) + (0.23) log2(0.23))
= −((0.47)(−1.08) + (0.30)(−1.75) + (0.23)(−2.11))
= 1.52

Time: 2.0 to 2.5

H(X1) = −((26/493) log2(26/493) + (323/493) log2(323/493)
+ (144/493) log2(144/493))

= −((0.05) log2(0.05) + (0.66) log2(0.66) + (0.29) log2(0.29))
= −((0.05)(−4.25) + (0.66)(−0.61) + (0.29)(−1.78))
= 1.14

Time: 2.5 to 3.0

H(X1) = −((23/639) log2(23/639) + (196/639) log2(323/639)
+ (420/639) log2(420/639))

= −((0.04) log2(0.04) + (0.31) log2(0.31) + (0.66) log2(0.66))
= −((0.04)(−4.80) + (0.31)(−1.70) + (0.66)(−0.61))
= 1.09
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Time: 3.0 to 3.5

H(X1) = −(((15/287) log2(15/287) + (132/287) log2(132/287)
+ (140/287) log2(140/287)))

= −((0.05) log2(0.05) + (0.46) log2(0.46) + (0.49) log2(0.49))
= −((0.05)(−4.26) + (0.46)(−1.12) + (0.49)(−1.04))
= 1.24

Time: 3.5 to 4.0

H(X1) = −((6/265) log2(6/265) + (114/265)log2(114/265)
+ (145/265) log2(145/265))

= −((0.02) log2(0.02) + (0.43) log2(0.43) + (0.55) log2(0.55))
= −((0.02)(−5.46) + (0.43)(−1.22) + (0.55)(−0.87))
= 1.12

The significant test in the discovery approach is to settle on a choice of the
threshold value of entropy and entropy rate. Six-sigma approach is utilized to
determine the threshold value of the entropy and entropy rate. To discover Six-
sigma, figure sigma or standard deviation, duplicate by 6, and add or subtract
the outcome to the ascertained mean [27]. Six-Sigma approach is ascertained
utilizing the accompanying strategy:

Average Entropy (β) =
1
n

n∑

i=1

H(Xi) (4)

Standarddeviation& = σ

Six − Sigmavalue (η) = 6σ
Thresholdvalueoftheentropy& = β ± η

AverageEntropyofthenormalflows (β) =
1
4
(1.55 + 1.45 + 1.57 + 1.52)

= 1.52
Standard deviation (σ) = 0.053
Six − Sigma value (η) = 6σ = 0.315

Threshold value of the entropy = β ± η

= 1.52 − 0.315
Threshold value = 1.20

4.2 Flow Diagram

Figure 2 shows the entropy variations of flows at router R. The entropy value
decreases significantly after the attack traffic to the router R that is, after 2.0 s.
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Fig. 2. Entropy variations of flows at router

From Fig. 2, it is observed that at time duration 1 to 1.5, the Entropy value is
1.57 which is greater than the threshold value 1.20, and so it is marked as normal
flow. The following Entropy values are less than the threshold value and these
flows are decided as attack flows. After the identification of the attack flows the
source of packets is identified. This process is called trace back.

Once the attack has been detected, trace back is initiated by the router R
which has 3 incoming flows F1, F2 and F3. Entropy values are used to find the
maximum packets of the above flows and finally it is decided that F2 and F3 are
Attack flows and the router blocks the incoming packets from F2 and F3.

5 Conclusion and Scope

Distributed denial of service (DDoS) attacks against the enterprises in the world
continues as strong as ever. Based on latest data, 2016 has witnessed an increase
of DDoS attacks in frequency and size, particularly as attackers are increas-
ingly using DNS and DNSSEC to amplify attacks for greater impact against
their victims using fewer botnet resources. Tracing out the source IP address of
such attack enables us to control the Internet crimes. In this work, a statistical
approach based on metrics was studied with suitable example to determine the
source of attack. Six sigma approach is used to set the threshold value based
on which attack sources are predicted. From the results, this method does not
involve computational overhead on the switches. In addition, there is no stamp-
ing overhead for switches in trace back. In any case, the approach is not ready to
recognize and trace back the digital attacks which are isotropic in nature. The
reason is that the entropy diminishes just when one stream rules over different
streams in the system. This strategy is used to identify the fundamental assaults
and does not distinguish the low rate assault and high rate assaults. Trace back
the source IP address in low rate and high rate attacks is still an open issue.
When the network detects high rate attack, then that high rate is compared
with flash crowd. If it is flash crowd then the flow is normal; otherwise it is high
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rate attack and after identifying its source the same can be blocked. When the
network detects low rate attack, then after identifying the source the same can
be blocked.

Acknowledgment. The first author is thankful to the management of Kalasalingam
University for providing fellowship.

References

1. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network based defense mech-
anism countering the DoS and DDoS problems. Comput. J. ACM Comput. Surv.
39, 123–128 (2007)

2. Nguyen, H.V., Choi, Y.: Proactive detection of DDoS attacks utilizing k-NN clas-
sifier in an anti DDoS framework. Int. J. Electr. Comput. Syst. Eng. 4, 537–542
(2010)

3. Shanon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27,
623–656 (1948)

4. Gavrilis, D., Dermatas, E.: Real-time detection of distributed denial-of-service
attacks using RBF networks and statistical features. Comput. Netw. 48, 235–245
(2005)

5. Wu, Y.C., Tseng, H.R., Yang, W., Jan, R.H.: DDoS detection and trace back with
decision tree and grey relational analysis. Int. J. Ad-Hoc Ubiquit. Computing. 7,
121–136 (2011)

6. Karimazad, R., Faraahi, A.: An anomaly based method for DDoS attacks detection
using RBF neural networks. In: Proceedings of the International Conference on
Network and Electronics Engineering, vol. 11, pp. 44–48 (2011)

7. Jeyanthi, N., Iyengar, N.C.S.N.: An entropy based approach to detect and disinuish
DDoS aatacks from ash crowds in VoIP networks. Int. J. Netw. Secur. 14, 257–269
(2012)

8. Thomas, R., Mark, B., Johnson, T., Croall, J.: NetBouncer: Client-legitimacy-
based high performance filtering. In: Proceedings of the 3rd DARPA Information
Survivability Conference and Exposition, p. 111. IEEE Explore (2003)

9. Limwiwatkul, L., Rungsawang, A.: Distributed denial of service detection using
TCP/IP header and traffic measurement analysis. In: Proceedings of the IEEE
International Symposium Communications and Information Technology, pp. 605–
610. IEEE Explore (2004)

10. Zhang, G., Parashar, M.: Cooperative defense against DDoS attacks. J. Res. Pract.
Inf. Technol. 38, 69–84 (2006)

11. Wang, J., Phan, R.C.W., Whitely, J.N., Parish, D.J.: Augmented attack tree mod-
eling of distributed denial of services and tree based attack detection method. In:
Proceedings of the 10th IEEE International Conference on Computer and Infor-
mation Technology, 1009–1014. IEEE Explore (2010)

12. Hwang, K., Dave, P., Tanachaiwiwat, S.: NetShield: Protocol anomaly detection
with data-mining against DDoS attacks. In: Proceedings of the 6th International
Symposium on Recent Advances in Intrusion Detection, pp. 1–20 (2003)

13. Li, L., Lee, G.: DDoS attack detection and wavelets. Telecommun. Syst. 28, 435–
451 (2005)

14. Sekar, V., Duffield, N., Spatscheck, O., van der Merwe, J., Zhang, H.: LADS: large-
scale automated DDoS detection system. In: Proceedings of the Annual Conference
on USENIX Annual Technical Conference, p. 16 (2006)



400 T. Subburaj et al.

15. Gelenbe, E., Loukas, G.A.: Self-aware approach to denial of service defense. Com-
put. Netw. 51, 1299–1314 (2007)

16. Lee, K., Kim, J., Kwon, K.H., Han, Y., Kim, S.: DDoS attack detection method
using cluster analysis. Expert Syst. Appl. 34, 1659–1665 (2008)

17. Li, M., Li, M.: A new approach for detecting DDoS attacks based on wavelet
analysis. In: Proceedings of the 2nd International Congress on Image and Signal
Processing, pp. 1–5. IEE Explore (2009)
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Abstract. Let G = (V,E) be a connected graph. Let W =
{w1, w2, . . . , wk} be a subset of V with an order imposed on it. Then W
is called a resolving set for G if for every two distinct vertices x, y ∈ V (G),
there is a vertex wi ∈ W such that d(x,wi) �= d(y, wi). The minimum car-
dinality of a resolving set of G is called the metric dimension of G and is
denoted by dim(G). A subsetW is called an independent resolving set for
G ifW is both independent and resolving. The minimum cardinality of an
independent resolving set inG is called the independent resolving number
of G and is denoted by ir(G). In this paper we determine the independent
resolving number ir(G) for three classes of convex polytopes.

Keywords: Resolving set · Metric dimension · Independent resolving
set · Independent resolving number

1 Introduction

By a graph G = (V,E) we mean a finite, connected and undirected graph with
neither loops nor multiple edges. For graph theoretic terminology we refer to
Chartrand and Lesniak [1].

The distance d(u, v) between two vertices u and v in a connected graph G
is the length of a shortest path between u and v. Let W = {w1, w2, . . . , wk} be
a subset of V with an order imposed on it and let v ∈ V . The representation
r(v | W ) of v with respect to W is the k− tuple (d(v, w1), d(v, w2), . . . , d(v, wk)).
The set W is called a resolving set for G, if for any two distinct vertices u, v ∈ V ,
we have r(u | W ) �= r(v | W ). A resolving set of minimum cardinality is called a
basis for G. The number of vertices in a basis for G is called the metric dimen-
sion of G and is denoted by dim(G). Slater [11] introduced these ideas and used
the term locating set and location number instead of resolving set and metric
dimension. Harary and Melter [5] independently introduced these concepts and
used the term metric dimension. The concept of metric dimension has applica-
tions in different areas including coin weighing problem, drug discovery, robot
navigation, network discovery and verification, connected joins in graphs and
strategies for mastermind game. For a survey of results in metric dimension we
refer to Chartrand and Zhang [3].

Several types of resolving sets have been investigated by imposing condi-
tions on the subgraph induced by a resolving set. Saenpholphat and Zhang [7–9]
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 401–408, 2017.
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introduced the concept of connected resolvability [10]. Chitra and Arumugam [4]
introduced the concept of resolving sets without isolated vertices. Imran et al. [6]
considered three families of convex polytopes and proved that they have metric
dimension 3.

Chartrand et al. [2] introduced the concept of independent resolving number
of a graph.

Definition 1.1 [2]. A subset W ⊆ V in a connected graph G which is both
a resolving set and an independent set is called an independent resolving set of
G. The minimum cardinality of an independent resolving set of G is called the
independent resolving number of G and is denoted by ir(G).

It has been observed in [2] that there are several families of graphs such
as Kn, n ≥ 3,Km,n, where m,n ≥ 2 and C4 which do not have independent
resolving sets. They have also determined the value of ir(G) for several families
of graphs.

Imran et al. [6] considered three families of convex polytopes Sn, Tn and Un

proved that they have metric dimension 3.

Definition 1.2 [6]. The graph of convex polytope Sn consists of 2n 3-sided faces,
2n 4-sided faces and a pair of n-sided faces. We have V (Sn) = {ai; bi; ci; di : 1 ≤
i ≤ n} and E(Sn) = {aiai+1; bibi+1; cici+1; didi+1 : 1 ≤ i ≤ n} ∪ {aibi+1; aibi;
bici; cidi : 1 ≤ i ≤ n} where the suffix is taken modulo n.

The cycle induced by{ai : 1 ≤ i ≤ n} is the inner cycle, the cycle induced by
{bi : 1 ≤ i ≤ n} is the interior cycle, the cycle induced by {ci : 1 ≤ i ≤ n} is the
exterior cycle and the cycle induced by {di : 1 ≤ i ≤ n} is the outer cycle.

The graph of the convex polytope Sn is given in Fig. 1.

Fig. 1. The graph of convex polytope Sn
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Theorem 1.3 [6]. For n ≥ 6, let the graph of convex polytope be Sn, then
dim(Sn) = 3.

Definition 1.4 [6]. The graph of the convex polytope Tn consists of 4n 3-sided
faces, n 4-sided faces and a pair of n-sided faces. We have V (Tn) = {ai; bi; ci; di :
1 ≤ i ≤ n} and E(Tn) = {aiai+1; bibi+1; cici+1; didi+1 : 1 ≤ i ≤ n}∪{ai+1bi; aibi;
bici; cidi; ci+1di : 1 ≤ i ≤ n} where the suffix is taken modulo n.

The cycle induced by {ai : 1 ≤ i ≤ n} is the inner cycle, cycle induced by
{bi : 1 ≤ i ≤ n} is the interior cycle, cycle induced by {ci : 1 ≤ i ≤ n} is the
exterior cycle, cycle induced by {di : 1 ≤ i ≤ n} is the outer cycle.

The graph of the convex polytope Tn is given in Fig. 2.

Fig. 2. The graph of convex polytope Tn

Theorem 1.5 [6]. Let Tn denotes the graph of convex polytope, then dim(Tn) =
3 for every n ≥ 6.

Definition 1.6 [6]. The graph of the convex polytope Un consists of n 4-
sided faces, 2n 5-sided faces and a pair of n-sided faces. We have V (Un) =
{ai; bi; ci; di; ei : 1 ≤ i ≤ n} and E(Un) = {aiai+1; bibi+1; eiei+1 : 1 ≤ i ≤
n} ∪ {aibi; bici; cidi; diei; ci+1di : 1 ≤ i ≤ n} where the suffix is taken modulo n.

The cycle induced by {ai : 1 ≤ i ≤ n} is the inner cycle, the cycle induced by
{bi : 1 ≤ i ≤ n} is the interior cycle, the cycle induced by {ci : 1 ≤ i ≤ n} ∪ {di :
1 ≤ i ≤ n} is the exterior cycle and the cycle induced by {ei : 1 ≤ i ≤ n} is the
outer cycle.



404 B. Suganya and S. Arumugam

The graph of the convex polytope Un is given in Fig. 3.

Fig. 3. The graph of the convex polytope Un

Theorem 1.7 [6]. Let Un denotes the graph of convex polytope, then dim(Un) =
3 for every n ≥ 6.

The resolving set of W with |W | = 3 presented for Sn, Tn and Un in [6] is
not independent set.

Hence the following problem arises naturally

Problem 1.8. Does there exist an independent resolving set for each of the
convex polytopes Sn, Tn and Un?

In this paper we investigate the above problem.

2 Main Results

Theorem 2.1. The independent resolving number of the convex polytope Sn is
3 for all n ≥ 7.

Proof. Let k = �n
2 	 and let W = {a1, ak+1, an−1}. We claim that W is an

independent resolving set for Sn. The metric representations for the vertices of
Sn are given below.

r(ai | W ) =

⎧
⎪⎪⎨

⎪⎪⎩

(i − 1, k + 1 − i, i+ 1), if n is odd for 1 ≤ i ≤ k − 1
(i − 1, k − i, i+ 1), ifn is even for 1 ≤ i ≤ k − 1
(i − 1, k + 1 − i, n − 1 − i), ifn is odd for k ≤ i ≤ k + 1
(i − 1, i − k, n − 1 − i), ifn is even for k ≤ i ≤ k + 1

r(an | W ) =

{
(1, k, 1), ifn is odd
(1, k − 1, 1), ifn is even
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r(b1 | W ) =

{
(1, k + 1, 2), ifn is odd
(1, k, 2), ifn is even

r(bi | W ) =

{
(i − 1, k + 2 − i, i+ 1), ifn is odd for 2 ≤ i ≤ k − 1
(i − 1, k + 1 − i, k + 1), ifn is even for 2 ≤ i ≤ k − 1

r(bk | W ) =

{
(i − 1, k + 1 − i, k), ifn is even
(i − 1, k + 2 − i, k + 1), ifn is odd

r(bk+1 | W ) =

{
(k, 1, k), ifn is odd
(i − 1, k + 2 − i, n − i), ifn is even

r(bi | W ) =

{
(n+ 2 − i, i − k − 1, n − i), ifn is odd for k + 2 ≤ i ≤ n − 1
(n+ 2 − i, i − k, n − i), ifn is even for k + 2 ≤ i ≤ n − 1

r(bn | W ) = (2, k, 1)

r(c1 | W ) =

{
(2, k + 2, 3), ifn is odd
(2, k + 1, 3), ifn is even

r(ci | W ) =

{
(i, k + 3 − i, i+ 2), ifn is odd for 2 ≤ i ≤ k − 1
(i, k + 2 − i, i+ 2), ifn is even for 2 ≤ i ≤ k − 1

r(ck | W ) =

{
(i, k + 2 − i, k + 1), ifn is even
(i, k + 3 − i, k + 2), ifn is odd

r(ck+1 | W ) =

{
(k + 1, 2, k + 1), ifn is odd
(i, k + 3 − i, n − i+ 1), ifn is even

r(ci | W ) =

{
(n+ 3 − i, i − k, n+ 1 − i), ifn is odd for k + 2 ≤ i ≤ n − 1
(n+ 3 − i, i − k + 1, n − i+ 1), ifn is even for k + 2 ≤ i ≤ n − 1

r(cn | W ) = (3, k + 1, 2)

r(d1 | W ) =

{
(3, k + 3, 4), ifn is odd
(3, k + 2, 4), ifn is even

r(di | W ) = (i+ 1, k + 4 − i, i+ 3) if 2 ≤ i ≤ k − 1

r(dk | W ) =

{
(i+ 1, k + 3 − i, k + 2), ifn is even
(i+ 1, k + 4 − i, k + 3), ifn is odd

r(dk+1 | W ) =

{
(k + 2, 3, k + 2), ifn is odd
(i+ 1, k + 4 − i, n − i+ 2), ifn is even

r(di | W ) =

{
(n+ 4 − i, i − k + 1, n+ 2 − i), ifn is odd for k + 2 ≤ i ≤ n − 1
(n+ 4 − i, i − k + 2, n − i+ 2), ifn is even for k + 2 ≤ i ≤ n − 1

andr(dn | W ) = (4, k + 2, 3).

It can be easily verified that no two vertices of Sn have the same metric repre-
sentation. Hence ir(Sn) ≤ 3. Also by Theorem 1.3, ir(Sn) ≥ dim(Sn) = 3. Thus
ir(Sn) = 3.

Theorem 2.2. The independent resolving number of the convex polytope Tn is
3 for all n ≥ 7.

Proof. Let k = �n
2 	 and let W = {a1, ak+1, an−1}. We claim that W is an

independent resolving set for Tn. The metric representations for the vertices of
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Tn are given below.

r(ai | W ) = (i − 1, k − i+ 1, i+ 1) if 1 ≤ i ≤ k − 1

r(ak | W ) =

{
(k − 1, 1, k − 1), ifn is even
(k − 1, 1, k), ifn is odd

r(ak+1 | W ) =

{
(k, 0, k − 2), ifn is even
(k, 0, k − 1), ifn is odd

r(ai | W ) =

{
(n+ 1 − i, i − k − 1, n − 1 − i), ifn is even for k + 2 ≤ i ≤ n − 1
(n+ 1 − i, i − k, n − 1 − i), ifn is odd for k + 2 ≤ i ≤ n − 1

r(an | W ) =

{
(1, k − 1, 1), ifn is even
(1, k, 1), ifn is odd

r(b1 | W ) =

{
(1, k, 2), ifn is even
(1, k + 1, 2), ifn is odd

r(bi | W ) =

⎧
⎨

⎩

(i − 1, k − i+ 2, i+ 1), if 2 ≤ i ≤ k − 1
(i − 1, k − i+ 2, n − i), if k ≤ i ≤ k + 1
(n+ 2 − i, i − k − 1, n − i), if k + 2 ≤ i ≤ n − 1

r(bn | W ) =

{
(2, k − 1, 1), ifn is even
(2, k, 1), ifn is odd

r(c1 | W ) =

{
(2, k + 1, 3), ifn is even
(2, k + 2, 3), ifn is odd

r(ci | W ) =

⎧
⎨

⎩

(i, k − i+ 3, i+ 2), if 2 ≤ i ≤ k − 1
(i, k − i+ 3, n − i+ 1), if k ≤ i ≤ k + 1
(n+ 3 − i, i − k, n − i+ 1), if k + 2 ≤ i ≤ n − 1

r(cn | W ) =

{
(3, k, 2), ifn is even
(3, k + 1, 2), ifn is odd

r(di | W ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3, k + 2, 4), if i = 1
(i+ 1, k − i+ 3, i+ 3), if 2 ≤ i ≤ k − 1
(i+ 1, 3, n+ 1 − i), if k ≤ i ≤ k + 1
(n+ 3 − i, i − k + 1, n+ 1 − i), if k + 2 ≤ i ≤ n − 2
(n+ 3 − i, i − k + 1, 3), ifn − 1 ≤ i ≤ n

It can be easily verified that no two vertices of Tn have the same metric repre-
sentation. Hence ir(Tn) ≤ 3. Also By Theorem 1.5 ir(Tn) ≥ dim(Tn) = 3. Thus
ir(Tn) = 3.

Theorem 2.3. The independent resolving number of the convex polytope Un is
3 for all n ≥ 7.

Proof. Let k = �n
2 	 and let W = {a1, ak+1, an−1}. We claim that W is an

independent resolving set for Sn. The metric representations for the vertices of
Un are given below.

r(ai | W ) = (i − 1, k + 1 − i, i + 1) if 1 ≤ i ≤ k − 1
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r(ak | W ) =

{
(i − 1, k + 1 − i, n − i − 1), ifn is odd

(k − 1, 1, k − 1), ifn is even

r(ak+1 | W ) =

{
(i − 1, k + 1 − i, n − 1 − i), ifn is odd

(n − i + 1, i − k − 1, n − i − 1), ifn is even

r(ai | W ) =

⎧⎨
⎩

(n − i + 1, i − k − 1, n − i − 1), if k + 2 ≤ i ≤ n − 1

(1, k, 1), if i = n, n is odd

(1, k − 1, 1), if i = n, n is even

r(bi | W ) = (i, k + 2 − i, i + 2) if 1 ≤ i ≤ k − 1

r(bk | W ) =

{
(i, k + 2 − i, n − i), ifn is odd

(k, 2, k), ifn is even

r(bk+1 | W ) =

{
(i, k + 2 − i, n − i), ifn is odd

(n − i + 3, i − k + 1, n − i + 1), ifn is even

r(bi | W ) =

⎧⎨
⎩

(n + 2 − i, i − k, n − i), if k + 2 ≤ i ≤ n − 1

(2, k + 1, 2), if i = n, n is odd

(2, k, 2), if i = n, n is even

r(ci | W ) = (i + 1, k + 3 − i, i + 3) if 1 ≤ i ≤ k − 1

r(ck | W ) =

{
(i + 1, k − i + 3, n + 1 − i), ifn is odd

(k + 1, 3, k + 1), ifn is even

r(ck+1 | W ) =

{
(i + 1, k + 3 − i, n + 1 − i), ifn is odd

(n + 4 − i, i − k + 2, n − i + 2), ifn is even

r(ci | W ) =

⎧⎨
⎩

(n + 3 − i, i − k + 1, n + 1 − i), if k + 2 ≤ i ≤ n − 1

(3, k + 2, 3), if i = n, n is odd

(3, k + 1, 3), if i = n, n is even

r(di | W ) = (i + 2, k + 3 − i, i + 4) if 1 ≤ i ≤ k − 2

r(dk−1 | W ) =

{
(i + 2, k − i + 3, i + 4), ifn is odd

(i + 2, k − i + 3, n − i + 1), ifn is even

r(dk | W ) =

{
(i + 2, 3, n + 1 − i), ifn is odd

(i + 2, k − i + 3, n + 1 − i), ifn is even

r(dk+1 | W ) =

{
(i + 2, 3, n + 1 − i), if n is odd

(n − i + 3, i − k + 2, n − i + 1), ifn is even

r(di | W ) = (n + 3 − i, i − k + 2, n + 1 − i) if k + 2 ≤ i ≤ n − 2

r(dn−1 | W ) =

{
(4, k + 2, 3), ifn is odd

(4, k + 1, 3), ifn is even

r(dn | W ) =

{
(3, k + 3, 4), ifn is odd

(3, k + 2, 4), ifn is even

r(ei | W ) = (i + 3, k − i + 4, i + 5) if 1 ≤ i ≤ k − 2

r(ek−1 | W ) =

{
(i + 3, k − i + 4, i + 5), ifn is odd

(i + 3, k − i + 4, n − i + 2), ifn is even

r(ek | W ) =

{
(i + 3, 4, n + 2 − i), ifn is odd

(i + 3, k − i + 4, n − i + 2), ifn is even

r(ek+1 | W ) =

{
(i + 3, 4, n + 2 − i), ifn is odd

(n + 4 − i, i − k + 3, n − i + 2), ifn is even

r(ei | W ) = (n + 4 − i, i − k + 3, n + 2 − i) if k + 2 ≤ i ≤ n − 2

r(en−1 | W ) =

{
(5, k + 3, 4), ifn is odd

(5, k + 2, 4), ifn is even

r(en | W ) =

{
(4, k + 4, 5), ifn is odd

(4, k + 3, 5), ifn is even
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It can be easily verified that no two vertices of Un have the same metric repre-
sentation. Hence ir(Un) ≤ 3. Also by Theorem 1.7 ir(Un) ≥ dim(Un) = 3. Thus
ir(Un) = 3.

2.1 Conclusion and Scope

We have proved that for three families of convex polytopes, the independent
resolving number is a constant, namely 3. Characterizing the class of graphs
which admit an independent resolving set is an open problem.

Acknowledgments. The first author is thankful to the management of Kalasalingam
University for providing fellowship.

References

1. Chartrand, G., Lesniak, L.: Graphs and Digraphs, 5th edn. CRC Press, Boca Raton
(2005)

2. Chartrand, G., Saenpholphat, V., Zhang, P.: The independent resolving number
of a graph. Math. Bohemica 128, 379–393 (2003)

3. Chartrand, G., Zhang, P.: The theory and application of resolvability in graphs: a
survey. Congr. Numer. 160, 47–68 (2003)

4. Chitra, P.J.B., Arumugam, S.: Resolving sets without isolated vertices. Procedia
Comput. Sci. 74, 38–42 (2015)

5. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars. Combin. 318,
191–195 (1976)

6. Imran, M., Bokhary, S.A.U.H., Baig, A.Q.: On families of convex polytopes with
constant metric dimension. Comput. Math. Appl. 60, 2629–2638 (2010)

7. Saenpholphat, V., Zhang, P.: Some results on connected resolvability in graphs.
Congr. Number 158, 5–19 (2002)

8. Saenpholphat, V., Zhang, P.: On connected resolvability of graphs. Australas. J.
Comb. 28, 25–37 (2003)

9. Saenpholphat, V., Zhang, P.: Conditional resolvability in graphs: a survey. Int. J.
Math. Math. Sci. 2004, 1997–2017 (2004)

10. Saenpholphat, V., Zhang, P.: Connected resolvability of graphs. Czechoslov. Math.
J. 53, 827–840 (2003)

11. Slater, P.J.: Leaves of trees. Congr. Number 14, 549–559 (1975)



Signed Cycle Domination in Planar Graphs

M. Sundarakannan1(B) and S. Arumugam2

1 Department of Mathematics, SSN College of Engineering,
Kalavakkam, Chennai 603 110, Tamil Nadu, India

m.sundarakannan@gmail.com
2 Kalasalingam University,

Anand Nagar, Krishnankoil 626126, Tamil Nadu, India
s.arumugam.klu@gmail.com

Abstract. Let G = (V, E) be a graph. A function f : E → {−1, 1} is
called a signed cycle dominating function (SCDF) if

∑

e∈E(C)

f(e) ≥ 1 for

every induced cycle C in G. The signed cycle domination number σ(G)

is defined as σ(G) = min

{
∑

e∈E

f(e) : f is an SCDF of G
}

. In this paper,

we prove that for any positive integer � with n − 2 ≤ � ≤ 2n − 6, there
exists a maximal planar graph G of order n such that σ(G) = �. We
also prove that the problem of determining the signed cycle domination
number is NP-complete.

Keywords: Signed cycle dominating function · Planar graph

1 Introduction

By a graph G = (V,E) we mean a finite, undirected and connected graph with
neither loops nor multiple edges. The order and size of G are denoted by n and
m respectively. For graph theoretic terminology we refer to [2].

Let v ∈ V. The open neighborhood N(v) and the closed neighborhood N [v] are
defined by N(v) = {u ∈ V : uv ∈ E} and N [v] = N(v) ∪ {v}. For any subset S
of V, the subgraph of G induced by S is denoted by 〈S〉. A cycle C of G is an
induced cycle if 〈V (C)〉 = C. A planar graph G is called a maximal planar graph
if G is not a spanning subgraph of another planar graph. Clearly, every face of
a maximal planar graph is a triangle and m = 3n − 6. A graph G is outerplanar
if it has an embedding in the plane with every vertex on the boundary of the
unbounded face. An outerplanar graph G is called a maximal outerplanar graph
if G is not a proper spanning subgraph of an outerplanar graph. Every inner
face of a maximal outerplanar graph is a triangle and m = 2n − 3.

In [3], Xu introduced the concept of signed cycle domination of graphs
and obtained the following results for maximal planar graphs and maximal
outerplanar graphs.

Definition 1 [3]. Let G = (V,E) be a graph. A function f : E −→ {−1,+1}
is called a signed cycle dominating function (SCDF) of G if

∑
e∈E(C) f(e) ≥ 1

c© Springer International Publishing AG 2017
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holds for every induced cycle C of G. The signed cycle domination number of G
is defined as σ(G) = min

{∑
e∈E f(e) : f is a SCDF of G

}
.

Lemma 1 [3].

(i) Let G be a maximal outerplanar graph G of order n ≥ 3. Then σ(G) ≥ 1.
(ii) Let G be a maximal planar graph G of order n ≥ 3. Then σ(G) ≥ n − 2.

In [3] Xu also proposed the following conjecture.

Conjecture 1 If G is a maximal planar graph of order n ≥ 3, then σ(G) = n− 2.

Guan et al. [1] proved the following theorem.

Theorem 1 [1]. Let G be a maximal planar graph of order n ≥ 3. Then σ(G) =
n − 2 if and only if each induced cycle in G is a triangle.

Using Theorem 1 the following counterexample to Conjecture 1 was given
in [1]. The graph G given in Fig. 1. is a maximal planar graph and (x, y, z, a, x)
is an induced cycle of length 4. Hence by Theorem 1 σ(G) �= n − 2.

�

� �

�

� �

x

y

z

a

Fig. 1. Counterexample to Conjecture 1

In this paper we prove that for any two positive integers n and k with n ≥ 4
and n − 2 ≤ k ≤ 2n − 6, there exists a maximal planar graph G of order n with
σ(G) = k, which shows that the Conjecture 1 is not true. We also prove that the
problem of determining the signed cycle domination number is NP-complete.

2 Main Results

Theorem 2. Let G be a maximal outerplanar graph of order n ≥ 4. Let α
denote the number of vertices of degree 2. Then α − 1 ≤ σ(G) ≤ 2α − 3.
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Proof. Let S = {v ∈ V : deg v = 2}. Clearly S is an independent set and |S| = α.
Let g : E → {1,−1} be an SCDF of G. For each of the n − 2 triangular faces
ψ of G, we have

∑

e∈E(ψ)

g(e) ≥ 1. Further for any v ∈ S, for at most one edge

e1 incident at v, g(e1) = −1 and for the other edge e2 incident at v, g(e2) = 1.
Hence 2

∑

e∈E

g(e) ≥ (n − 2) + α − (n − α) = 2(α − 1).

Thus |g| ≥ α − 1 for every SCDF g of G and hence σ(G) ≥ α − 1. Now let
H = 〈V − S〉.

Define f : E → {1,−1} by

f(e) =
{−1 if e lies on the outerface of H
1 otherwise.

Clearly f is an SCDF of G and |f | = (2n − 3) − 2(n − α) = 2α − 3.
Hence σ(G) ≤ 2α − 3.

Corollary 1. Let G be a maximal outerplanar graph G of order n ≥ 4. Then
σ(G) = 1 if and only if G has exactly two vertices of degree 2.

Lemma 2. Let G be a maximal planar graph of order n ≥ 4. If G has a vertex
v ∈ V (G) with deg(v) = 3, then σ(G) = σ(G − v) + 1.

Proof. Let v ∈ V (G) with deg(v) = 3. Clearly G − v is a maximal planar graph.
Let g : E(G−v) −→ {+1,−1} be a minimum SCDF of G−v, so that σ(G−v) =∑

e∈E(G−v) g(e). Since G is a maximal planar graph, 〈N(v)〉 = 〈{a, b, c}〉 is a
triangle and σ(G) ≥ σ(G − v) + 1. Now, define f : E(G) −→ {−1,+1} by

f(e) =

⎧
⎨

⎩

+1 if e = va or e = vb,
−1 if e = vc,
g(e) otherwise.

Clearly f is a SCDF of G and
∑

e∈E

f(e) = σ(G−v)+1. Hence σ(G) = σ(G−v)+1.

Corollary 2. Let G be a maximal planar graph of order n ≥ 4. If every maximal
planar subgraph of G has minimum degree 3, then σ(G) = n − 2.

Theorem 3. Let n and k be positive integers such that n ≥ 4 and n − 1 ≤ k ≤
2n − 6. Then there exists a maximal planar graph of order n with σ(G) = k.

Proof. Let � = 6 + k − n. Since k ≥ n − 1, it follows that � = 5. Let H =
C�−2 + 2K1 where C�−2 = (v1, v2, . . . , v�−2, v1) and V (2K1) = {a, b}. We claim
that σ(H) = 2� − 6. Let r =

⌈
�−2
2

⌉
.

Define f : E(H) → {1,−1} by

f(vivi+1) =
{−1 if 1 ≤ i ≤ r − 1
1 otherwise

and f(avr) = −1, f(bvr+1) = −1 and for all other edges e incident with a or b,
f(e) = 1.
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The possible induced cycles in H are C�−2, triangles and cycles of length
4. Further no induced cycle of length 4 contains both the edge avr and bvr+1.
Hence it follows that f is an SCDF of G and |f | = 3� − 6 − (2r + 2) = 2� − 6.
Thus σ(H) ≤ 2� − 6.

Now, let g be any SCDF of H. If f(e) = −1 for two distinct edges avi and
avj incident with a.

Let C =
{
(a, vi, vj , a) if vi and vj are adjacent
(a, vi, b, vj , a) otherwise.

Clearly
∑

e∈E(C)

f(e) ≤ 0, which is a contradiction. Hence f(e) = −1 for at

most one edge incident with a. Similarly f(e) = −1 for at most one edge incident
with b. Further

∑

e∈E(Ce−2)

f(e) ≥ 1 or 2 according as � − 2 is odd or � − 2 is even.

Hence |f | ≥ 2� − 6, so that σ(H) ≥ 2� − 6. Thus σ(H) = 2� − 6.
Since k ≤ 2n − 6, it follows that � ≤ n. If � = n, let G1 = H. If � < n,

add a vertex v and join v to every vertex of the outer face of H. Clearly G1 is
maximal planar and σ(G1) = σ(H) + 1. Repeating this process n − � times, we
get a maximal planar graph G of order n such that σ(G) = σ(H) + (n − �) = k.

We now proceed to prove that the decision problem SIGNED CYCLE DOM-
INATION NUMBER is NP-complete. The reduction is from 3-SAT.

3-SAT

INSTANCE: A set X = {x1, x2, . . . , xr} of boolean variables and a set C =
{C1, C2, . . . , Cs} of 3-element sets called clauses, where each clause Ci contains
three distinct occurrences of either a variable xi or its complement x′

i.

QUESTION: Does C have a satisfying truth assignment?

SIGNED CYCLE DOMINATION NUMBER(SCDN)

INSTANCE. A graph G and a positive integer k.

QUESTION. Does G have a signed cycle dominating function g with∑

e∈E

g(e) ≥ k?

Theorem 4. SCDN is NP-complete.

Proof. The proof is by reduction from 3-SAT. Clearly SCDN is in NP. Let Hi

be the graph with its vertices labeled as in Fig. 2. There are three induced cycles
(xia, ai, bi, x

′
ia, xia), (xia, xib, x

′
ib, x

′
ia, xia) and (xib, di, x

′
ib, xib) in Hi.

Define f : E(Hi) → {−1, 1} by

f(e) =
{−1 if e ∈ {xiaxib, aibi, xibdi}
1 otherwise.
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�
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� �
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� x′
iaxia

xib

ai bi

x′
ib

di

Hi

Fig. 2. Graph H with its SCDF

Clearly f is an SCDF of Hi and hence σ(Hi) ≤ ∑

e∈E(Hi)

f(e) = 3. Now any SCDF

g of Hi contains at most three negative edges and hence
∑

e∈E(Hi)

g(e) ≥ 3. Thus

σ(Hi) ≥ 3 and so σ(Hi) = 3.
Now let I an instance of 3-SAT given by X = {x1, x2, . . . , xn} and C =

{C1, C2, . . . , Cj}. We construct an instance g(I) of SCDN as follows. For each
literal xi we take a copy of Hi with its vertices labeled as in Fig. 1. For each
clause Cr = {xk, xe, xm} we add an edge cj = vrv

′
r and join vr and v′

r with
xkb, x�b and xmb. Let G be the resulting graph and let k = 3n+ j. Now suppose
I has a satisfying truth assignment.

We define h : E(G) → {1,−1} as follows:

h(viv
′
i) = 1 for all i, 1 ≤ i ≤ j

h(xiaxib) =
{
1 if xi is assigned TRUE
−1 otherwise

h(x′
iax′

ib) =
{
1 if x′

i is assigned TRUE
−1 otherwise.

If Ci = {xk, x�, xm}, then h(vixkb) = h(vix�b) = h(vixmb) = 1 and h(v′
ixkb) =

h(v′
ix�b) = h(v′

ixmb) = −1. If Ci = {xk, x′
k, x�}, then h(vixkb) = h(v′

ix
′
kb) =

h(vix�b) = 1 and h(vix
′
kb) = h(v′

ixkb) = h(v′
ix�b) = −1. For all other edges e in

Hi, let h(e) = f(e). Clearly h is an SCDF of G and
∑

e∈E(Hi)

h(e) = σ(Hi) = 3 for

all i, 1 ≤ i ≤ k. Hence it follows that
∑

e∈E(G)

h(e) = 3k + j. Hence the instance

g(I) of SCDN has YES answer.
Conversely suppose g(I) has YES answer. Then there exists an SCDF h :

E(G) → {1,−1} with ∑

e∈E(G)

h(e) ≥ 3n + j. (1)

For each r with 1 ≤ r ≤ j, there exist seven edges in G incident with vr, v
′
r and

these edges lie on three triangles. Hence h(e) = −1 for at most three of these
seven edges, so that

∑
h(e) ≥ 1 where the summation is taken over the above

seven edges. Thus
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∑

e∈E(G)−
n⋃

i=1
E(Hi)

h(e) ≥ j (2)

Since h|v(Hi) is an SCFD of Hi and σ(Hi) = 3, it follows that
∑

e∈E(Hi)

h(e) ≥ 3. If
∑

e∈E(Hi)

h(e) > 3 for some i, then the SCDF obtained by replacing h|V (Hi) by f

also satisfies (1). Hence we may assume that
∑

e∈E(Hi)

h(e) = 3 for all i, 1 ≤ i ≤ n.

Since (xia, x′
ia, x′

ib, xib, xia) is an induced cycle of length 4, it follows that for
one of the edges xiaxib, x

′
iax′

ib receive 1 under h. We now define

g(xi) =
{

T if h(xiaxib) = 1
F if h(xiaxib) = −1.

Then g is a satistiable truth assignment for the instance I of 3-SAT.
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Abstract. Cloud computing is used for providing as well as handling
the services over the internet. The scheduling issue in cloud surroundings
is NP-hard problem. The existing Cuckoo search provides some arrang-
ing criteria which details the major difficulties of process scheduling in
the cloud. In this paper, we suggested a wizard known as Multi-Purpose
Cuckoo Seek Algorithm (MPCSA) to schedule the tasks in Cloud process-
ing. The main Purpose of MPCSA is to reduce the make span (overall
completion time) period and also improve the source usage. Sources are
assigned effectively in the cloud processing. We conduct experiments with
Cloud sim (with surpass) to evaluate MPCSA. Simulation results show
that our MPCSA algorithm can work efficiently compared with PSO
and CSA.

Keywords: Cloud computing · Cuckoo search · Multipurpose cuckoo
seek · NP-hard · Scheduling

1 Introduction

Cloud computing is internet based computing. If we put the data in the cloud
we can access the data from anywhere, at anytime, and from any device through
internet. Usually, Cloud Computing services will be tagged into 3 varieties:

1. PaaS-provider offers flat assisting floor for constructing applications
2. SaaS-provider provides licenses, packages to customers as a provider
3. IaaS-company gives uncooked calculating, garage, and network.

Cloud computing provides implementation ability, locality freelance, reserve
combining, large net entrance irresponsibleness and measurability, snap and easy
maintenance. Work could be a (computer-based) activity created by (more than
2, however, not plenty of) tasks that would need completely different process-
ing skills and will have different resource necessities and restrictions, sometimes
expressed among the task description. Every job could have varied parameters
like needed information, desired completion time, typically referred to as the

c© Springer International Publishing AG 2017
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point in time, expected execution time, job priority etc. Job is taken into account
as a private planning algorithmic program, which is typically associated in nurs-
ing abstract model that doesn’t specify the physical location of the tasks where it
were completed (executed) [2,4]. The population improvement algorithms such
as Genetic algorithms (GA), Particle Swarm Optimization (PSO), microorgan-
ism search (searching) Optimization (MSO) and Bat algorithmic program (BA)
use a population of individuals to unravel the issue [1] (Fig. 1).

Fig. 1. Cloud architecture

2 Task Scheduling

Process arrangement performs a key role to improve the versatility and stability
of systems. The primary purpose behind arranging the projects to the sources
depending on the time bound includes finding out a complete and best schedule
of various projects which can be implemented to give the best and acceptable
result to the user [5]. While handling the source in any form, such as firewall
program, network is always dynamically allocated according to the series and
the requirements of the tasks and subtasks. This leads to the reasoning for the
power problem that indicates no earlier described series may be useful during
handling of task. The disadvantages of the existing method are such as the
flow of task is unclear, performance routes are also unclear and at the same
time sources available are also unclear because there are a numerous number of
projects discussing them at the same time [2]. To overcome these disadvantages,
MPCSA algorithm is proposed.

In this method, the arrangement of projects in reasoning indicates choose
the best suitable resource available for performance of projects or to spend PC
devices to projects in such a manner that the finalization time is reduced as
much as possible. In arranging methods, the list of jobs is created based on
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various factors and the jobs are then selected according to their main concerns
and are allocated to available processor chips and PC devices which satisfy a
predetermined objective [2].

3 Algorithm Description

3.1 Cuckoo Search Algorithm

The Current suggested criteria known as Cuckoo Search Algorithm (CSA) rou-
tine the projects within Cloud computing. Each cuckoo gives single egg at an
instance, and places it within a home that is arbitrarily selected, as well as the
variety is able to find out an unfamiliar egg through a Pa [0, 1] possibility. The
rate as well as protection of the criteria becomes extremely great if the signifi-
cance of Pa is lower. Cuckoo Search (CS) criteria have been used to get over the
regional optima issue by amalgamating with the PSO criteria. CSA criteria are
in accordance with obliging family parasites actions of several cuckoo varieties
along by the Levy flight an action of a few birds as well as fruits go [3,4].

Disadvantage of this algorithm:

– Randomly selects the Particular Single Object and Process On it.
– Not Suitable for Multiple Objective Optimization.
– It will be more complex when executing a large number of task optimization

in cloud platform (Fig. 2).

Fig. 2. Cuckoo Search Algorithm
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3.2 Purpose Cuckoo Seek Algorithm: Proposed Work

The system suggested new transformative requirements which are known as sev-
eral purpose cuckoos, which look for requirements to schedule the projects in
Cloud Computing. A Multi-Purpose Cuckoo Search (MPCS) method has been
developed to deal with multi-criteria marketing problems. This approach uses
unique loads to merge several goals to a single purpose. As the loads differ
arbitrarily, Pareto methodologies can be found and the points can be allocated
differently over the methodologies (Fig. 3).

Advantage of this algorithm:

– Appropriate completion of the tasks into cloud.
– Resources utilization will be proper.
– Failure of the system is less.
– Load is minimized on different processors.
– Utilizing of resources from multiple centres.
– More Suitable when executing a large number of task optimization in cloud

platform.

Algorithm:
Input: population of n host nest.
Output: best solution (nest with quality solution).
Step 1: Initialization.
Step 2: Initialize a populace of n host nests xi (I =1, 2, n);
Step 3: Calculate the Individual fitness value for each task;
Step 4: Find the total fitness value for all task;
Step 5: Evaluate the distance from Maximum Fitness value;
Rank the best solution.
Step 6: Calculate the total turnaround time, execution time, speed.

Fig. 3. Multi-purpose cuckoo seek algorithm
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4 Working Methodology

As mentioned in the past area inhabitants, variety nests, fitness and place of the
nodes, finding possibility, and impose flight tickets must be described for any
MPCS. The first step in any MPCS is interpreting inhabitants and information
reflection. The inhabitants are initialized by a vector, in which the duration of
vector indicates the number of sources.

The successive actions of a cuckoo basically follow a power-law step-length
submission with a larger end type of a unique move procedure. For convenience,
we assume that every egg in a home symbolizes the remedy; whereas the cuckoo
egg also symbolizes a new way. The objective is to utilize the latest way and
possibly improved alternatives (cuckoos) towards substituting within the nests.
It is not so excellent remedy. So, here we use the easiest strategy where there will
be only one egg at each nest. Please always cancel any superfluous definitions
that are not actually used in your text. If you do not, these may conflict with
the definitions of the macro package, causing changes in the structure of the text
and leading to numerous mistakes in the proofs.

Fitness value. Health and fitness value reveals the solution how it fits, i.e.
whether it will be adjust in the direction of environment. For maximizing the
issue, the fitness value of a remedy can be proportionate to the values of a
purpose operate. For convenience, we assume that each and every egg in a home
symbolizes a remedy, and also the cuckoo egg symbolizes latest remedy.

S =
∑

Mn (1)

I =
∑ VM1...n

Mn
(2)

D = Mn − I(MIPS) (3)

where, S = Total fitness value
Mn = Sum of VM RAM
I = Individual Fitness value

VM1....n = Individual Fitness value
I(MIPS)1...n = Individual (million instruction per second)

D = distance.

4.1 Choose the Virtual Machine and Compare Fitness

The task, while processing is a well-known NP-hard problem. The complex and
challenging issue will be still more, where the fertilized groups are use to perform
a huge quantity of tasks in the reasoning processing system. Here, many heuris-
tics have been suggested, from the lower stage performance of projects in the
numerous processor chips toward the advanced stage performance of projects in
cloud computing.
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4.2 Ranking Best Solution and Find Current

MPCSA is based on the oblige family parasitic actions on some cuckoo varieties
along by the Impose journey actions of some parrots and fruit goes. Ecological
features and the migrants of cultures of cuckoos hopefully lead them to meet and
find the best environment for duplication. For the next creation levy journey
operate is conducted and decided new home. Then fitness operate is conducted
and the best home is selected.

5 Data Analysis

5.1 Experimental Evaluation

In this phase, we present consequences to assess the performance of the proposed
technique with the use of cloudsim (Table 1).

We mention the Comparison of CS and MPCSA. From that, execution time
of MPCS algorithm is less than the CSA (Tables 2, 3 and 4, Figs. 4 and 5).

Table 1. Comparison chart based on execution time

Number of
virtual machine

Number of cloud
lets

C.S.A execution
time (m.s)

M.P.C.S.A
execution time (m.s)

20 25 959 633

25 100 2959 2763

30 150 4499 4167

Table 2. Comparsion chart based on make span

Number of jobs P.S.O C.S.A M.P.C.S.A

50 28 25 20

100 61 57 47

150 98 82 76

Table 3. Comparison chart based on speed

Number of virtual
machine

Number of cloud lets C.S.A speed (m.s) M.P.C.S.A
execution speed

20 25 511 717

25 100 277 477

30 150 130 330
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Table 4. Comparsion chart based on turnaround time

Number of jobs P.S.O C.S.O C.S.A M.P.C.S.A

50 567 38 30 20

100 112 79 61 42

150 160 100 90 65

Fig. 4. Initialize numbers of data centers, virtual machines and cloudlets

Fig. 5. Optimized results



422 R. Sundarrajan and V. Vasudevan

5.2 Comparison Chart

From the above chart, we mention the Comparison of PSO, CS and MPCS. From
that, make span of MPCS algorithm is lesser than the PSO, CSA (Figs. 6, 7, 8
and 9).

Fig. 6. Comparison chart based on execution time

Fig. 7. Comparison chart based on makespan

Fig. 8. Comparison chart based on turnaround time

While comparing from the above chart, the Speed of the Multi Objective
cuckoo search algorithm will be very high. So the Coverage also will be very
higher to the cuckoo search algorithm.
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Fig. 9. Comparison chart based on speed

6 Explanation of Result

In this paper, we tend towards the tasks algorithmic rule to resolve task schedul-
ing drawback in Cloud computing. Our main objective of this project is to reduce
the makespan. Task arranging in reasoning processing is a very complicated prob-
lem. In order to effectively and price efficiently schedule the projects and data
of programs onto these cloud computing surroundings, program schedulers have
different guidelines that differ according to the purpose, function to reduce com-
plete performance time, to balance the fill on resources used and so forth. Using
the cuckoo search criteria for finding the maximum mixture is a very simple
approach. This algorithm is the superior resolution for scheduling in Cloud sim
console. As compared to the cuckoo search algorithm the speed and coverage of
this algorithm is very high. Here in this algorithm we use the cuckoo bird behav-
iour with a multi objective job at a single time, which will reduce the makespan.
In this scheduling it is very simple approach to find the optimal solution using
multipurpose cuckoo search algorithms.

7 Future Work

By using the hybrid concept we can reduce the execution time and turnaround
time. Resource Utilization can be improved. For example, we can combine some
of the algorithms that are PSO, CAT, BAT, FIREFLIES. We are going to use
the Fireflies algorithm with MPCS (Multi-purpose Cuckoo Seek) to avoid the
wastage of resource and we can also allocate large numbers of flies.

8 Conclusion

We proposed a new evolutionary algorithm named MPCS algorithm which will
reduce the total execution time, and minimize the turnaround time. As compared
to the existing algorithm, the speed and coverage of this algorithm become very
high. Here in this algorithm we use the cuckoo bird behaviour with a multi
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objective job at a single time, which will reduce the make span. In this schedul-
ing it is very simple approach to find the optimal solution using cuckoo search
algorithms.
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Abstract. Partition ofG into edge-disjoint H-factors is called an H-factorization
of G. In this paper, we show that the necessary conditions mn ≡ 0(mod 3) and
3(mn+m+n−3) ≡ 0(mod 8) for the existence of a P3-factorization of Km� Kn are
sufficient, where m and n are odd and � denotes triangulated Cartesian product of
graphs.

Keywords: Triangulated cartesian product · Cartesian product · Path
factorization

1 Introduction

A latin square of order n is an n × n array, such that each row and each column of the
array contains each of the symbols from {1, 2, . . . , n} exactly once. Two latin squares
L1 and L2 of order n are said to be orthogonal if for each (x, y) ∈ {1, 2, . . . , n} ×
{1, 2, . . . , n} there is exactly one cell (i, j), in which L1 contains the symbol x and L2

contains the symbol y. In other words, if L1 and L2 are superimposed, the resulting set
of n2 ordered pairs are distinct. The latin squares L1, L2, . . . , Lt of order n are said to
be mutually orthogonal latin squares (MOLS (n)) if for 1 ≤ a � b ≤ t, La and Lb are
orthogonal. N(n) denotes the maximum number of MOLS (n).

Partition of G into subgraphs G1, G2, . . . , Gr such that E(Gi) ∩ E(Gj) = ∅ for
i � j ∈ {1, 2, . . . , r} and E(G) = ∪ri=1E(Gi) is called a decomposition of G; In this case
we write G as G = G1 ⊕ G2 ⊕ . . . ⊕ Gr, where ⊕ denotes an edge-disjoint sum of
subgraphs. In particular, if each Gi, 1 ≤ i ≤ r, is isomorphic to some graph H then it is
called an H-decomposition of G and is denoted as H|G. Let Pk, Ck, Kk and Ik respec-
tively denote a path, cycle, complete graph and complement of complete graph (or inde-
pendent set) on k vertices. A k-regular spanning subgraph of G is called a k-factor of G.
A spanning subgraph of G is called a P3-factor of G if each component of it is a P3.We
say that G has a P3-factorization if G can be partitioned into edge-disjoint P3-factors;
existence of such path factorization is denoted by P3‖G. A Ck-factor of G is a 2-factor
in which each component is a Ck. Decomposition of G into Ck-factors is called a Ck-
factorization of G. A cycle containing all the vertices of G is called a Hamilton cycle.
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 425–434, 2017.
DOI: 10.1007/978-3-319-64419-6 54
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We say that G has a Hamilton cycle decomposition if it can be partitioned into edge-
disjoint Hamilton cycles. For an integer λ, λG and G(λ) respectively denote λ copies of
G and a multigraph G with uniform edge-multiplicity λ. The Cartesian product G�H,
the wreath product G ⊗ H and the strong product G � H of two graphs G and H are
defined as follows: V(G�H) = V(G ⊗ H) = V(G � H) = {(u, v) | u ∈ V(G), v ∈ V(H)}.
E(G�H) = {(u, v) (x, y) | u = x and v y ∈ E(H) or v = y and u x ∈ E(G)}, E(G ⊗ H) =
{(u, v) (x, y) | u = x and v y ∈ E(H) or u x ∈ E(G)} and E(G �H) = {(u, v) (x, y) | u = x
and v y ∈ E(H) or v = y and u x ∈ E(G) or u x ∈ E(G) and v y ∈ E(H)}. It is well known
that the Cartesian product is commutative. A graph G having partite sets V1, V2, . . . ,Vm

with |Vi| = n, 1 ≤ i ≤ m and E(G)={uv | u ∈ Vi and v ∈ Vj, ∀ i � j} is called complete
m-partite graph and is denoted by Km; n. Note that Km; n is isomorphic to Km ⊗ In.

Let
−→
G = (V, A) denote a digraph with vertex set V and arc set A. An arc of

−→
G

with head at v and tail at u is denoted as −→uv. The triangulated Cartesian Product of

two digraphs
−→
G and

−→
H, denoted as

−→
G �
−→
H, is defined as follows: V(

−→
G �
−→
H) = {(u, v) |

u ∈ V(
−→
G) and v ∈ V(

−→
H)}. A(

−→
G �

−→
H) = {−−−−−−−−−−→(u, v) (x, y) | u = x and −→v y ∈ A(

−→
H) or v =

y and −→u x ∈ A(
−→
G) or −→u x ∈ A(G) and −→v y ∈ A(H)}. The triangulated Cartesian product

of two graphs G and H is isomorphic to the underlying graph of (
−→
G �
−→
H), where

−→
G and−→

H are oriented graphs of G and H, for example see Fig. 1. The triangulated Cartesian

product of two regular graphs G and H is the underlying graph of (
−→
G �
−→
H), where

−→
G

and
−→
H are oriented graphs of G and H such that | d−(u) − d+(u) | ≤ 1 for all u ∈ V(

−→
G)

and V(
−→
H).

Fig. 1.
−→
P3 �

−→
P3 and its underlying graph

The underlying graph of (
−→
G �
−→
H) can be viewed as an edge-disjoint sum of G�H

and dE(G � H), where dE(G � H) represents the diagonal edges of G � H (see Fig. 2).
We mean the triangulated cartesian product of two complete graphs of odd order is
the same as the underlying graph of triangulated cartesian product of two diregular
complete digraphs of odd order.

Study on path factorization of graphs is not new. Many Mathematicians have worked
on path factorization of complete graphs, bipartite graphs and complete multipartite
graphs and Proved its existence in [5,8–11,13,14].

Typical finite-element grids are neither Cartesian nor strong products, but it resem-
bles a product structure like triangulated Cartesian product of paths, for example see
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Fig. 2. C3�C3 and its edge-disjoint sum

Fig. 3 and reference [1]. Baglivo and Graver [4] have described the applicability of
triangulated grid (triangulated Cartesian product of paths) for bracing an architectural
structure. Recently, Shehzad Afzal and Clemens Brand [1] have factorized graphs into
factors which are isomorphic to triangulated Cartesian product of two subgraphs. The
above facts motivate the authors [12] to consider the existence of a P3-factorization in
triangulated Cartesian product of complete graphs and obtained few results.

Fig. 3. (a) A simple finite-element grid; (b) Isomorphic structure of (a)

In this paper, we show that the necessary conditions mn ≡ 0 (mod 3) and 3(mn +
m + n − 3) ≡ 0 (mod 8) for the existence of a P3-factorization of Km � Kn, m and n
are odd are sufficient. In fact, the results of this paper together with the earlier results
of the authors [12] completely settle the problem of existence of a P3-factorization of
Km � Kn, when m and n are odd.

We require the following to prove our main results.

2 Preliminary Results

Theorem 1 [14]. The complete multigraph Kr(λ) has a Pk-factorization if and only if
r ≡ 0 (mod k) and λ(r − 1)k ≡ 0 (mod 2(k − 1)).

Theorem 2 (Walecki’s Construction [2]). For every positive integer m (m is odd), the
graph Km is Hamilton decomposable.

Theorem 3 [7]. There exists a pair of orthogonal latin squares of order n for every
n � 2, 6.
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Theorem 4 [3]. If q is a prime power, then there exist N(q) = q − 1.

Theorem 5 [6]. Let G be a graph with chromatic number χ(G). Then
(i) G | G ⊗ Im if χ(G) ≤ N(m) + 2 and (ii) G ‖ G ⊗ Im if χ(G) ≤ N(m) + 1.

Lemma 1 [12]. For m ≡ 3(mod 6) and n is odd, P3 ‖ dE[Ci
m � (C j

n ⊕ Ck
n)], where

Ci
m, 1 ≤ i ≤ (m − 1)/2 is the Hamilton cycle of Km obtained by Walecki’s construction.

Lemma 2 [12]. For m ≡ 9 (mod 12) and |V(G)| = 5, P3 ‖ dE(Cm � G) ⊕ mG.
Lemma 3 [12]. For m ≡ 9 (mod 12) and |V(G)| = 7, P3 ‖ dE(Cm � G) ⊕ mG.
Lemma 4 [12]. For m ≡ 9 (mod 12) and |V(G)| = 11, P3 ‖ dE(Cm � G) ⊕ mG.
Lemma 5 [12]. For m ≡ 9 (mod 12) and |V(G)| = 13, P3 ‖ dE(Cm � G) ⊕ mG.
Theorem 6 [12]. P3-factorization of Km � Kn exists if one of the following holds:

(i) m ≡ 9(mod 12), n = 5, 13 and 17,
(ii) m ≡ 9(mod 12), ns, s > 1, n = 5, 13 and 17,
(iii) m ≡ 9(mod 12), n = psqt for all s, t ≥ 1,

where p = 5, 13 and q = 13, 17, p � q
(iv) m ≡ 9(mod 12), n ≡ 9(mod 12).

Notation:
1. Let V(G) = {v1, v2, . . . , vm} and V(H) = {u1, u2, . . . , un}. We write V(G � H) =
⋃n

j=1 Uj, where Uj = {v j1, v j2, . . . , v jm} and v ji = (vi, u j). A path on m vertices

v j1, v
j
2, . . . , v

j
m with edges v j1 v

j
2, v

j
2 v

j
3, . . . , v

j
i v

j
i+1, . . . , v

j
m−1 v

j
m is denoted as

v j1 v
j
2 . . . v

j
m.

Note 1. Let
−→
G =
−→
G1⊕−→G2 and

−→
H =
−→
G1⊕−→G2⊕−→G3, where

−→
G1 = v1 v2 v3 v4 v5 . . . vp−1 vp v1,−→

G2

= v1 v3 v5 . . . vp v2 v4 v6 . . . vp−3 vp−1 v1 and
−→
G3 = v1 v5 v9 . . . vp−1 v3 v7 v11 . . . vp−3 v1

be three dicycles of length p. Throughout this paper, we always mean G =G1 ⊕G2 and

H = G1 ⊕G2 ⊕G3 are isomorphic to the underlying graphs of
−→
G and

−→
H. The graphs G

and H are shown in Figs. 4 and 5.

Fig. 4. G = G1 ⊕G2.

Remark 1. The Walecki’s construction [2], gives the Hamilton cycle decomposition
{C1

m, C
2
m, . . . , C

(m−1)/2
m } of Km (m is odd), where each Ci

m = v0 vi vi+1 vi−1 vi+2 vi−2 . . .
v[(m−1)/2]+i−1 v[(m−1)/2]+i+1 v[(m−1)/2]+i v0, i = 1, 2, . . . , (m − 1)/2 is a Hamilton cycle of
Km and we write Km = C1

m ⊕C2
m ⊕ . . . ⊕C(m−1)/2

m .
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Fig. 5. H = G1 ⊕G2 ⊕G3.

Remark 2 [12]. Let V(Kp)={v1, v2, . . . , vp}, p is a prime. For 1 ≤ i ≤ (p − 1)/2, let
Hi=v1 v2+(i−1) v3+[2(i−1)] v4+[3(i−1)] v5+[4(i−1)] . . . vp+[(p−1)(i−1)] v1, where the subscripts are
taken modulo p with residues 1, 2, 3, . . . , p. Note that Hi is a Hamilton cycle of Kp

and {H1, H2, . . . , H(p−1)/2} gives a Hamilton cycle decomposition of Kp, p is a prime.

Note: Whenever we consider the Hamilton cycle decomposition of Km, we use the
Walecki’s construction when m is odd and non prime and we use the construction of
Remark 2 when m is a prime.

Remark 3. Construction of G and H from Kp, p is a prime.
Let I = {1, 2, . . . , (p − 1)/2} and J = 2I.We define f : I → J by f (i) = 2i for all

i ∈ I. We write I as the union of disjoint sequences as follows: we start the sequence
with least available i ∈ I. If p − i ∈ J, then include f −1(p − i) as a second term of the
sequence, otherwise if f (i) ∈ I, then include f (i) as a second term of the sequence. If
p − i � J, and f (i) � I, then complete the sequence and start the new sequence with the
least element of I not in the sequences constructed earlier. Continue this process until
all the elements of I are included in some sequence. If two sequences end with a same
element of I, then join either with other in reverse order to form a single sequence.

As the elements of I are correspond to the Hamilton cycles of Kp, we group the
Hamilton cycles as follows: If the sequence contains odd number of terms, take first
3 in one group and the remaining consecutive pairs as other groups. If the sequence
contains even number of terms, take the consecutive pairs as groups. Note that, the
subgraphs of Kp induced by each group of Hamilton cycles will be isomorphic to either
G or H.

Example 1. By the Remark 2, each Hi, i ∈ I = {1, 2, . . . , 9}, is a Hamilton cycle of K19

and we write K19 as K19=H1 ⊕H2 ⊕ . . .⊕H9. Now we group the Hamilton cycles of K19

to form subgraphs which are isomorphic to the graphs G or H. By applying Remark 3,
we get the following sequences:

1 2

2 4

3 6

4 8

5 10

6 12

7 14

8 16

9 18

That is, S 1=(1, 9, 5, 7, 6), S 2= (2, 4, 8) and S 3=(3, 8). Here S 2 and S 3 end with
the same element 8, so join together to get either S ′1=(2, 4, 8, 3) or S ′1=(3, 8, 4, 2).
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Clearly S 1 and S ′1 are disjoint sequences of elements of I and their union is I. Since the
sequence S 1 contains odd number of terms, group first 3 consecutive terms and group
the remaining consecutive pairs. That is 1 ⊕ 9 ⊕ 5 and 7 ⊕ 6. Since the sequence S ′1
contains even number of terms, group the consecutive pairs, (i.e.) 2 ⊕ 4 and 8 ⊕ 3. As
the elements of I are correspond to the Hamilton cycles of Kp, we group the Hamilton
cycles as follows: H1 ⊕ H9 ⊕ H5, H7 ⊕ H6, H2 ⊕ H4 and H8 ⊕ H3. Clearly the grouped
Hamilton cycles of K19 form subgraphs of K19 which are isomorphic to either G or H.

Note that the triangulated Cartesian product of two complete graphs of odd order is
same as the underlying graph of triangulated Cartesian product of two diregular com-
plete digraphs of odd order. Also note that the triangulated Cartesian product of two

dicycles can be written as follows:
−→
Cm �

−→
Cn � Cm �Cn = Cm�Cn ⊕ dE(Cm �Cn), where

Cm �Cn is the underlying graph of
−→
Cm �

−→
Cn.

3 P3−Factorization of Km � Kn

Lemma 6. For m ≡ 9 (mod 12) and n = |V(G)| ≡ 17(mod 6), P3 ‖ dE(Cm � G) ⊕ mG.
Lemma 7. For m ≡ 9 (mod 12) and n = |V(G)| ≡ 19(mod 6), P3 ‖ dE(Cm � G) ⊕ mG.
Lemma 8. For m ≡ 9 (mod 12) and |V(H)| = 7, P3 ‖ dE(Cm � H) ⊕ mH.
Lemma 9. For m ≡ 9 (mod 12) and |V(H)| = 13, P3 ‖ dE(Cm � H) ⊕ mH.
Lemma 10. For m ≡ 9 (mod 12) and |V(H)| = 19, P3 ‖ dE(Cm � H) ⊕ mH.
Lemma 11. For m ≡ 9 (mod 12) and n = |V(H)| ≡ 25(mod 6), P3 ‖ dE(Cm � H)⊕mH.
Lemma 12. For m ≡ 9 (mod 12) and |V(G)| = |V(H)| ≡ 1(mod 6), there exists a
P3-factorization of dE(Cm � G) ⊕ mG and dE(Cm � H) ⊕ mH.
Lemma 13. For m ≡ 9 (mod 12) and |V(H)| = 11, P3 ‖ dE(Cm � H) ⊕ mH.
Lemma 14. For m ≡ 9 (mod 12) and n = |V(H)| ≡ 23(mod 12), P3 ‖ dE(Cm� H)⊕mH.
Lemma 15. For m ≡ 9 (mod 12) and |V(H)| = 17, P3 ‖ dE(Cm � H) ⊕ mH.
Lemma 16. For m ≡ 9 (mod 12) and n = |V(H)| ≡ 29(mod 12), P3 ‖ dE(Cm� H)⊕mH.
The proofs of the above Lemmas 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 are constructive.
Therefore we omitted.

Lemma 17. For m ≡ 9 (mod 12), |V(G)| ≡ 5(mod 6) and |V(H)| ≡ 11(mod 6), there
exists a P3-factorization of dE(Cm � G) ⊕ mG and dE(Cm � H) ⊕ mH.
Proof. Follows from Lemmas 2, 4, 6, 13, 14, 15 and 16.

Lemma 18. For m ≡ 9 (mod 12) and for all prime p, there exists a P3-factorization of
mKp ⊕ dE(Cm � Kp).
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Proof. Let m = 12r + 9, r ≥ 0. By Remark 3, we have a factorization of Kp into the
graphs isomorphic toG and H. So we can write mKp⊕dE(Cm� Kp) =m[(G1⊕G2⊕ . . . ⊕
Gs) ⊕ (H1⊕H2⊕ . . . ⊕Hs)] ⊕ dE[Cm� (G1⊕G2⊕ . . . ⊕Gs) ⊕ (H1⊕H2⊕ . . . ⊕Hs)],where
Gi’s and Hi’s are isomorphic to G and H. Then mKp ⊕ dE(Cm � Kp) = [mG1 ⊕ dE(Cm �
G1)] ⊕ [mG2 ⊕ dE(Cm � G2)] ⊕ . . . ⊕ [mGs ⊕ dE(Cm � Gs)] ⊕ [mH1 ⊕ dE(Cm � H1)] ⊕
[mH2⊕dE(Cm� H2)]⊕ . . . ⊕[mHs⊕dE(Cm� Hs)]. By Lemmas 12 and 17 we have a P3-
factorization of [mG1 ⊕ dE(Cm � G1)] and [mH1 ⊕ dE(Cm � H1)]. Since the remaining
subgraphs of mKp ⊕ dE(Cm � Kp) are isomorphic to either [mG1 ⊕ dE(Cm � G1)] or
[mH1 ⊕ dE(Cm � H1)], we have a P3-factorization of mKp ⊕ dE(Cm � Kp). Hence we
have a P3-factorization of mKp ⊕ dE(Cm � Kp), for all prime p.

Lemma 19. For all prime p and m ≡ 9 (mod 12), there exists a P3-factorization of
mKps ⊕ dE(Cm � Kps ), s > 1.

Proof. Let m = 12r + 9, r ≥ 0. Now Kps = pKps−1 ⊕ Kp; ps−1 , s > 1. Then mKps ⊕
dE(Cm� Kps ) =m(pKps−1⊕Kp; ps−1 )⊕dE[Cm� (pKps−1⊕Kp; ps−1 )] = (pmKps−1⊕mKp; ps−1 )⊕
p[dE(Cm� Kps−1 )]⊕dE[Cm� Kp; ps−1 ] = p[mKps−1⊕dE(Cm� Kps−1 )]⊕[mKp; ps−1⊕dE(Cm�
Kp; ps−1 )].

Case 1. Consider, mKp; ps−1 ⊕ dE(Cm � Kp; ps−1 ), s > 1. By Theorem 5, we have a Kp-
factorization of Kp; ps−1 . Corresponding to each Kp-factor of Kp; ps−1 , we have a mKp ⊕
dE(Cm�Kp)- factor of mKp; ps−1 ⊕ dE(Cm� Kp; ps−1 ). Hence a Kp-factorization of Kp; ps−1

implies a mKp⊕dE(Cm�Kp)- factorization of mKp; ps−1⊕ dE(Cm�Kp; ps−1 ).By Lemma 18,
we have a P3-factorization of mKp ⊕ dE(Cm � Kp). Thus we have a P3-factorization of
mKp; ps−1 ⊕ dE(Cm � Kp; ps−1 ), for all prime p.

Case 2. Consider, mKps ⊕ dE(Cm � Kps ) = p[mKps−1 ⊕ dE(Cm � Kps−1 )] ⊕ [mKp; ps−1 ⊕
dE(Cm � Kp; ps−1 )], s > 1.

(a) For s = 2, mKp2 ⊕ dE(Cm � Kp2 ) = p[mKp ⊕ dE(Cm � Kp)]⊕ [mKp; p ⊕ dE(Cm �
Kp; p)]. Now the existence of a P3-factorization of p[mKp ⊕ dE(Cm � Kp)] and mKp; p ⊕
dE(Cm � Kp; p) follows from Lemma 18 and Case 1 respectively.

(b) For s = 3, mKp3 ⊕ dE(Cm � Kp3 ) = p[mKp2 ⊕ dE(Cm � Kp2 )] ⊕ [mKp; p2 ⊕
dE(Cm � Kp; p2 )]. Now the existence of a P3-factorization of p[mKp2 ⊕ dE(Cm � Kp2 )]
and mKp; p2 ⊕ dE(Cm � Kp; p2 ) follows from Case 2(a) and Case 1 respectively.

By the induction hypothesis on s, we have a P3-factorization of p[mKps−1 ⊕dE(Cm�
Kps−1 )]. Hence combining all the above we have a P3-factorization of mKps ⊕ dE(Cm �
Kps ), s > 1.

Lemma 20. For m ≡ 9 (mod 12) and a prime p ≡ 1, 5(mod 12), there exists a P3-
factorization of mKp ⊕ dE(Km � Kp).

Proof. Let m = 12r + 9, r ≥ 0 and p ∈ {(12t + 1) or (12t + 5) | t ≥ 1}. Now mKp ⊕
dE(Km � Kp) = mKp ⊕ dE[(C1

m ⊕C2
m ⊕ . . . ⊕C(m−1)/2

m ) � Kp] = mKp ⊕ dE[(C1
m � Kp) ⊕

(C2
m � Kp) ⊕ . . . ⊕ (C(m−1)/2

m � Kp)] = mKp ⊕ dE(C1
m � Kp) ⊕ dE(C2

m � Kp) ⊕ . . . ⊕
dE(C(m−1)/2

m � Kp). By Lemma 18, we have a P3-factorization of mKp ⊕ dE(C1
m � Kp).

Further, dE(C2
m � Kp) = dE[C2

m � (C1
p ⊕C2

p ⊕ . . . ⊕C(p−1)/2
p )

︸����������������������������︷︷����������������������������︸
even

] = dE[C2
m � (C1

p ⊕C2
p)] ⊕
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dE[C2
m � (C3

p ⊕ C4
p)] ⊕ . . . ⊕ dE[C2

m � (C(p−3)/2
p ⊕ C(p−1)/2

p )]. By Lemma 1, we have a
P3-factorization of dE[C2

m � (C1
p ⊕ C2

p)] and the remaining subgraphs of dE(C2
m � Kp).

Also we have a P3-factorization of all the subgraphs isomorphic to dE(C2
m � Kp). Thus

combining all these we have a P3-factorization of mKp ⊕ dE(Km � Kp).

Lemma 21. For m ≡ 9 (mod 12) and a prime p ≡ 1, 5(mod 12), p � 5, 13, 17, there
exists a P3-factorization of Km � Kp.

Proof. Let m = 12r + 9, r ≥ 0 and p ∈ {(12t + 1) or (12t + 5) | t > 1}. Then Km � Kp

= (Km�Kp) ⊕ dE(Km � Kp) = mKp ⊕ pKm ⊕ dE(Km � Kp). Now the existence of a P3-
factorization of pKm and mKp ⊕ dE(Km � Kp) follows from Theorem 1 and Lemma 20
respectively. Hence we have a P3-factorization of Km � Kp.

Lemma 22. For m ≡ 9 (mod 12) and ps ≡ 1, 5(mod 12), p � 5, 13, 17 and p is a
prime, there exists a P3-factorization of Km � Kps , s > 1.

Proof. Let m = 12r + 9, r ≥ 0 and for s > 1, ps ∈ {(12t + 1) or (12t + 5) | t ≥ 1}. Then
Km � Kps = Km�Kps ⊕ dE[Km � Kps ] = psKm ⊕ mKps ⊕ dE[Km � Kps ]. By Theorem 1,
we have a P3-factorization of psKm.

Now, mKps ⊕dE[Km�Kps ] = mKps ⊕dE[(C1
m⊕C2

m⊕ . . . ⊕C(m−1)/2
m )�Kps ] = mKps ⊕

dE[(C1
m� Kps )⊕ (C2

m� Kps )⊕ . . . ⊕ (C(m−1)/2
m � Kps )] = mKps ⊕dE(C1

m� Kps )⊕dE(C2
m�

Kps ) ⊕ . . . ⊕ dE(C(m−1)/2
m � Kps ). By Lemma 19, we have a P3-factorization of mKps ⊕

dE(C1
m� Kps ).Now for odd n = ps, dE(C2

m� Kn) = dE[C2
m� (C1

n ⊕C2
n ⊕ . . . ⊕C(n−1)/2

n )
︸����������������������������︷︷����������������������������︸

even

]

= dE[C2
m � (C1

n ⊕ C2
n)] ⊕ dE[C2

m � (C3
n ⊕ C4

n)] ⊕ . . . ⊕ dE[C2
m � (C(n−3)/2

n ⊕ C(n−1)/2
n )].

By Lemma 1, we have a P3-factorization of dE[Ci
m � (C j

n ⊕ Ck
n)]. Thus we have a P3-

factorization of dE(C2
m � Kps ). Also we have a P3-factorization of all the subgraphs

isomorphic to dE(C2
m � Kps ). Thus we have a P3-factorization of mKps ⊕ dE[Km � Kps ].

Hence combining all the above we have a P3-factorization of Km � Kps , s > 1.

Lemma 23. For m ≡ 9 (mod 12), there exists a P3-factorization of mKps· qt ⊕ dE(Cm �
Kps· qt ), s, t ≥ 1, p, q are primes and p < q.

Proof. Let m = 12r + 9, r ≥ 0. Now we write, Kps· qt = pKps−1· qt ⊕ Kp; (ps−1· qt), s, t ≥ 1.
Then, mKps· qt ⊕ dE(Cm � Kps· qt ) = m[pKps−1· qt ⊕ Kp; (ps−1· qt)] ⊕ dE[Cm � (pKps−1· qt ⊕
Kp; (ps−1· qt))] = p[mKps−1· qt ⊕ dE(Cm � Kps−1· qt )] ⊕ [mKp; (ps−1· qt) ⊕ dE(Cm � Kp; (ps−1· qt))].

Case 1. Consider, mKp; (ps−1· qt) ⊕ dE[Cm � Kp; (ps−1· qt)], s, t ≥ 1. By Theorem 5, we
have a Kp-factorization of Kp; (ps−1· qt). Corresponding to each Kp-factor of Kp; (ps−1· qt),
we have a mKp⊕dE(Cm�Kp)- factor of mKp; (ps−1· qt)⊕ dE[Cm� Kp; (ps−1· qt)].Hence a Kp-
factorization of Kp; (ps−1· qt) implies a mKp ⊕ dE(Cm �Kp)- factorization of mKp; (ps−1· qt) ⊕
dE[Cm � Kp; (ps−1· qt)]. By Lemma 18, we have a P3-factorization of mKp ⊕dE(Cm � Kp).
Thus we have a P3-factorization of mKp; (ps−1· qt) ⊕ dE[Cm � Kp; (ps−1· qt)], for all primes
p, q.

Case 2. Consider, mKps· qt ⊕ dE(Cm � Kps· qt ) = p[mKps−1· qt ⊕ dE(Cm � Kps−1· qt )] ⊕
[mKp; (ps−1· qt) ⊕ dE(Cm � Kp; (ps−1· qt))], s, t ≥ 1.
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(a) For s = 1, t = 1, mKp· q ⊕ dE(Cm � Kp· q) = p[mKq ⊕ dE(Cm � Kq)] ⊕ [mKp; q ⊕
dE(Cm � Kp; q)]. Now the existence of a P3-factorization of p[mKq ⊕ dE(Cm � Kq)] and
mKp; q ⊕ dE(Cm � Kp; q) follows from Lemma 18 and Case 1 respectively.

(b) For s = 1, t = 2, mKp· q2 ⊕dE(Cm� Kp· q2 ) = p[mKq2 ⊕dE(Cm� Kq2 )]⊕ [mKp; q2 ⊕
dE(Cm � Kp; q2 )]. Now the existence of a P3-factorization of p[mKq2 ⊕ dE(Cm � Kq2 )]
and mKp; q2 ⊕ dE(Cm � Kp; q2 ) follows from Lemma 19 and Case 1 respectively.

(c) For s = 1, t ≥ 3, mKp· qt ⊕ dE(Cm � Kp· qt ) = p[mKqt ⊕ dE(Cm � Kqt )]⊕ [mKp; qt ⊕
dE(Cm � Kp; qt )]. Now the existence of a P3-factorization of p[mKqt ⊕ dE(Cm � Kqt )]
and mKp; qt ⊕ dE(Cm � Kp; qt ) follows from Lemma 19 and Case 1 respectively.
Case 3.(a) For s = 2, t = 1, mKp2· q ⊕ dE(Cm � Kp2· q) = p[mKp· q ⊕ dE(Cm � Kp· q)] ⊕
[mKp; (p· q) ⊕ dE(Cm � Kp; (p· q))]. Now the existence of a P3-factorization of p[mKp· q ⊕
dE(Cm � Kp· q)] and mKp; (p· q) ⊕ dE[Cm � Kp; (p· q)] follows from Case 2(a) and Case 1
respectively.

(b) For s = 2, t = 2, mKp2· q2 ⊕ dE(Cm � Kp2· q2 ) = p[mKp· q2 ⊕ dE(Cm � Kp· q2 )] ⊕
[mKp; (p· q2)⊕dE(Cm� Kp; (p· q2))]. Now the existence of a P3-factorization of p[mKp· q2 ⊕
dE(Cm � Kp· q2 )] and mKp; (p· q2) ⊕ dE(Cm � Kp; (p· q2)) follows from Case 2(b) and Case
1 respectively.

(c) For s = 2, t ≥ 3, mKp2· qt ⊕ dE(Cm � Kp2· qt ) = p[mKp· qt ⊕ dE(Cm � Kp· qt )] ⊕
[mKp; (p· qt) ⊕ dE(Cm � Kp; (p· qt))]. Now the existence of a P3-factorization of p[mKp· qt ⊕
dE(Cm � Kp· qt )] and mKp; (p· qt) ⊕ dE(Cm � Kp; (p· qt)) follows from Case 2(c) and Case 1
respectively.

By the induction hypothesis on s, we have a P3-factorization of p[mKps−1· qt ⊕
dE(Cm � Kps−1· qt )]. Hence combining all the above we have a P3-factorization of
mKps· qt ⊕ dE(Cm � Kps· qt ), s, t ≥ 1.

Lemma 24. For m ≡ 9 (mod 12) and ps. qt ≡ 1, 5(mod 12) (except p = 5, 13 and
q = 13, 17, p � q) where p, q are primes, there exists a P3-factorization of Km� Kps· qt ,
for all s, t ≥ 1 and p < q.

Proof. Let m = 12r + 9, r ≥ 0 and for s, t ≥ 1, ps. qt ∈ {(12v + 1) or (12v + 5) | v ≥ 1}.
Then for s, t ≥ 1, Km � Kps· qt = Km�Kps· qt ⊕ dE[Km � Kps· qt ] = (ps · qt)Km ⊕ mKps· qt ⊕
dE[Km � Kps· qt ]. By Theorem 1, we have a P3-factorization of (ps · qt)Km.

Now, mKps· qt ⊕dE[Km�Kps· qt ] = mKps· qt ⊕dE[(C1
m⊕C2

m⊕ . . . ⊕C(m−1)/2
m )�Kps· qt ] =

mKps· qt ⊕dE(C1
m� Kps· qt )⊕dE(C2

m� Kps· qt )⊕ . . . ⊕dE(C(m−1)/2
m � Kps· qt ). By Lemma 23,

we have a P3-factorization of mKps· qt ⊕ dE(C1
m � Kps· qt ).

Now for odd n = (ps · qt), dE(C2
m � Kn) = dE[C2

m � (C1
n ⊕C2

n ⊕ . . . ⊕C(n−1)/2
n )

︸����������������������������︷︷����������������������������︸
even

] =

dE[C2
m� (C1

n⊕C2
n)]⊕dE[C2

m� (C3
n⊕C4

n)]⊕ . . .⊕dE[C2
m� (C(n−3)/2

n ⊕C(n−1)/2
n )].By Lemma 1,

we have a P3-factorization of dE[Ci
m � (C j

n ⊕ Ck
n)]. Thus we have a P3-factorization of

dE(C2
m � Kps· qt ). Also we have a P3-factorization of all the subgraphs isomorphic to

dE(C2
m � Kps· qt ). Thus we have a P3-factorization of mKps· qt ⊕ dE[Km � Kps· qt ].

Hence combining all the above we have a P3-factorization of Km � Kps· qt , for all
s, t ≥ 1.

Theorem 7. There exists a P3-factorization of Km � Kn, m and n are odd if and only if
mn ≡ 0 (mod 3) and 3(mn + m + n − 3) ≡ 0 (mod 8).
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Proof. Necessity. Follows by counting the number of edges and vertices of the graph
Km � Kn, m and n are odd.

Sufficiency. Follows from Theorems 6 and Lemmas 21, 22 and 24.

Conclusion: The results of Section 3 partially answer the problem of existence of a
P3-factorization of Km � Kn when m and n are odd. Results of this paper together with
the earlier results of the authors [12] completely solve the problem of existence of a
P3-factorization of Km � Kn when m and n are odd. Existence of a P3-factorization of
Km � Kn for the other parity of m and n is unknown.
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Abstract. The domination game is a two-player game played on a finite,
undirected graph G. During the game, the players alternately choose a
vertex of G such that each chosen vertex dominates at least one previ-
ously undominated vertex. One player, called Dominator, tries to finish
the game within few moves, while the second player, Staller, tries to
make it last for as long as possible. The game domination number γg(G)
is the total number of moves in the game when Dominator starts and
both players play optimally. The Staller start game domination number
γ′
g(G) is defined similarly when Staller starts the game. The behaviour

of the game domination number on the removal of a vertex and an edge
so as that no heredity is possible, in contrast with what is happening
for domination. In this paper we consider the special case of no-minus-
graphs.

Keywords: Domination game · Game domination number · No-minus
graphs

1 Introduction

The game domination number was introduced by Brešar et al. [4]. This parameter
is to domination what the game chromatic number is to graph colourings (see
e.g. [1]).

Recall that a vertex is said to dominate itself and its neighbours. In the
domination game, two players, named Dominator and Staller, alternate turns
choosing a vertex in a finite, undirected graph G, and adding it to a set of
vertices S. Whenever a player chooses a vertex to add to S, the vertex must
dominate at least one vertex not yet dominated by the vertices of S. The game
ends when no move is possible, that is when S is a dominating set of the graph.
The total number of chosen vertices is called the score of the game. The two
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players have opposite goals, Dominator tries to minimize the final score while
Staller tries to maximize it.

Two graph parameters relative to this game were introduced in [4]. Assuming
both players play optimally, the game domination number γg(G) is the score of
the game on G when Dominator starts (we say in Game 1), and the Staller start
game domination number γ′

g(G) is the score when Staller starts (in Game 2).
Both parameters are studied in parallel since many results hold for both of them.
We thus may refer to them on the game domination numbers.

The first and the most natural question is to try to find bounds for the game
domination number of a graph. In terms of the order n of the graph, Kinnersley
et al. [8] conjectured that γg(G) is bounded above by 3n

5 . Early results on this
question for trees can be found in [3,6].

A natural technique to find bounds for the game domination number would
be to find some heredity property: find a graph operation that involves a monoto-
nous behaviour of the game domination number of the graphs. A first natural
way of finding heredity is to consider the game within its course, and to have
some vertices partially dominated. Given a subset S of vertices in a graph G,
we denote by G|S the graph where the vertices of S are considered already
dominated. Kinnersley et al. [8] observed that whatever the set S of already
dominated vertices, the game last no longer on G|S than on G. More generally,

Theorem 1 (Continuation principle [8]). Let G be a graph and A,B ⊆ V (G).
If B ⊆ A then γg(G|A) ≤ γg(G|B) and γ

′
g(G|A) ≤ γ

′
g(G|B).

This result together with earlier observations [4] on the problem allowed to
deduce that the Staller start and the Dominator start game domination number
may differ by at most one:

Theorem 2. [4,8] For any graph G and subset S of vertices, |γg(G|S) −
γ′
g(G|S)| ≤ 1

Another early consideration of heredity for the game domination numbers
was made in [5], where the authors proved that the ratio of the game domination
number of a graph and of a spanning subgraph could not be bounded. Then, the
consequences of vertex and edge removal in a graph were considered in [2] and
it is proved that in both cases, the game domination number can either increase
or decrease.

Another main track of research on this topic is to compare the behaviour of
the Staller start and Dominator start game domination numbers. As mentioned
earlier, it is known that the difference is at most one, and that it can occur in both
directions. Naturally, it comes that Staller can have the game last longer when
she start the game, e.g. on a star; but it may also happen that she makes the game
finish earlier when starting, as e.g. on the 5-cycle. This second behaviour is more
surprising, and seems to happen on fewer graphs. It may not happen for example
on trees. In [7], a special family of graphs was introduced, called no-minus: a
graph G is no-minus if for any subset of vertices S ⊆ V , γg(G|S) ≤ γ′

g(G|S). In
that cases, it is never interesting for Staller to pass a move. It is known already
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that forests [8], tri-split and dually chordal graphs [7] are no-minus graphs. In the
following, we consider the case of no-minus graphs for earlier studied parameters,
such as edge and vertex deletion.

2 Edge and Vertex Removal in No-Minus Graphs

2.1 Edge Removal

Here, we prove that removing an edge from a no-minus graph can either increase
or decrease its game domination number by at most 1.

Theorem 3. If G is a no-minus graph and e ∈ E(G), then
∣
∣γg(G) − γg(G − e)

∣
∣ ≤ 1 and

∣
∣
∣γ

′
g(G) − γ

′
g(G − e)

∣
∣
∣ ≤ 1.

Proof. First we prove that γg(G) ≤ γg(G − e) + 1. It is enough to show that
Dominator has a strategy on G such that at most γg(G − e) + 1 moves will
be played. Both the players play a dominator start game on G, at the same
time Dominator imagines a dominator start game played on G − e with at most
γg(G − e) steps. Dominator’s strategy on G is as follows. He copies every move
of Staller in the real game to the imaginary game and responds optimally in
G− e. Each response in the imagined game is then copied back to the real game
in G. Let e = uv and if every move of Dominator and Staller are legal, then the
real game ends by at most γg(G − e) steps. Suppose at the kth step Dominator
chooses a vertex in the imagined game that is not a legal move in the real game.
This is possible only if Dominator chooses a vertex that dominates either u or
v itself and all other neighbours of that vertex are already dominated. Suppose
that it dominates v only which is already dominated in G. After this move, the
set of vertices dominated in both the graphs are same. At this stage the number
of moves in the real game is k − 1 and the next turn is that of Dominator.
Therefore γg(G) ≤ k − 1 + γg(G|D) where D denotes the set of vertices already
dominated in G. But in the imagined game, the next turn is that of Staller and
the number of moves at this stage is k. Since Staller did not play optimally in
G − e, k + γ

′
g(G − e|D) ≤ γg(G − e). So,

γg(G) ≤ k − 1 + γg(G|D)
= k − 1 + γg(G − e|D)
≤ k + γg(G − e|D)

≤ k + γ
′
g(G − e|D)

≤ γg(G − e).

Hence, in this case the real game ends in at most γg(G − e) steps.
Suppose, at the kth step Staller chooses a vertex in the real game and this is

not a legal move in the imagined game. This is possible only if Staller chooses
one of the end vertices of e and the other end vertex is the only vertex which
is newly dominated. Let v denote the newly dominated vertex. Let D denote
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the set of vertices dominated in the real game after the kth move, at this stage
the set of vertices dominated in the imagined game is D − v. In the real game,
k vertices are already selected by both the players and the next is Dominator’s
turn. Therefore, γg(G) ≤ k + γg(G|D). But in the imagined game both the
players selected k − 1 vertices and the next turn is that of Staller. Therefore
k − 1 + γ

′
g(G − e|D − v) ≤ γg(G − e). So,

γg(G) ≤ k + γg(G|D)
≤ k + γg(G − e|D)
≤ k + γg(G − e|D − v)

≤ k + γ
′
g(G − e|D − v)

= k − 1 + γ
′
g(G − e|D − v) + 1

≤ γg(G − e) + 1.

Hence γg(G) ≤ γg(G − e) + 1.
Now we prove that γg(G − e) − 1 ≤ γg(G). This proof is analogous to the

proof of γg(G− e) ≤ γg(G)+2 in [2] but we substitute the condition γg(G|D) ≤
γ

′
g(G|D) instead of γg(G|D) ≤ 1 + γ

′
g(G|D). In both the cases the proof is

independent of who moves the first. Hence this proof works for γ
′
g(G) also.

2.2 Vertex Removal

If a vertex from a graph G is removed, its game domination number either
increases arbitrary large or decreases by at most two [2]. However, if G is a
no-minus graph and v is a pendant vertex, we have the following lemma.

Lemma 1. If G is a no-minus graph and v is a pendant vertex, then

γg(G) − 1 ≤ γg(G − v) ≤ γg(G)

γ′
g(G) − 1 ≤ γ

′
g(G − v) ≤ γ

′
g(G).

Proof. First we prove that γg(G − v) ≤ γg(G|v). For that we need to show that
Dominator has a strategy on G−v that at most γg(G|v) moves will be played. The
strategy is as follows. Dominator and Staller play an ordinary Dominator start
game played on G − v and at the same time Dominator imagines another game
played on G|v. He copies every move of Staller in the real game to the imagined
game and respond optimally in the imagined game. He then copies back every
optimal response in the imagined game to the real game. Every move of Staller
in the real game is a legal move in the imagined game. Dominator never chooses
v in the imagined game, so every move of Dominator in the imagined game is a
legal move in the real game. Hence, the real game ends by at most γg(G|v) steps.
That is γg(G − v) ≤ γg(G|v). By the continuation principle γg(G|v) ≤ γg(G).
Hence γg(G − v) ≤ γg(G).
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Now, we prove that γg(G) ≤ γg(G − v) + 1. It is enough to show that Domi-
nator has a strategy on G such that at most γg(G− v)+1 moves will be played.
Dominator imagines a dominator start game played on G − v simultaneously
with the game played on G. He is copying every move of Staller in the real game
to the imaginary game and respond optimally in it. Every optimal response in
the imagined game is then copied back to the real game. If all the moves are legal
then γg(G) ≤ γg(G− v). Suppose at the kth step Staller chooses a vertex that is
not a legal move in G − v. This is possible only if Staller chooses a vertex whose
neighbours are already dominated except v. Let D denote the set of vertices
dominated in the real game after the kth step. But in the imagined game both
the players played k − 1 moves and the next move is that of Staller. Therefore
k − 1 + γ

′
g(G − v|D − v) ≤ γg(G − v) and hence

γg(G) ≤ k + γg(G|D)
≤ k + γg(G − v|D − v)

≤ k + γ
′
g(G − v|D − v)

≤ k − 1 + γ
′
g(G − v|D − v) + 1

≤ γg(G − v) + 1.

Hence, γg(G) − 1 ≤ γg(G − v) ≤ γg(G). The proof is independent of who moves
the first. So γ

′
g(G) − 1 ≤ γ

′
g(G − v) ≤ γ

′
g(G) also holds.

3 Examples of No-Minus Graphs Attaining Possible
Values

3.1 Edge Removal

Trees are no-minus graphs [8]. So, by Theorem 3,
∣
∣γg(T ) − γg(T − e)

∣
∣ ≤ 1 and

∣
∣
∣γ

′
g(T ) − γ

′
g(T − e)

∣
∣
∣ ≤ 1, for a tree T . Here, we show that all is possible except

for k = 1, 2.

Case 1. γg(T ) − γg(T − e) = 1.
For k = 1 , 2, there is no tree T with γg(T ) = k and γg(T − e) = k − 1.
For k = 3, let T be the graph obtained from P4 by attaching two vertices

at one of the end vertex of P4 and let e denote the middle edge of P4. Clearly
γg(T ) = 3 and γg(T − e) = 2.

For k = 4, let T be the graph obtained from P3 by attaching two vertices
at both end vertices of P3 and subdivide one of the added edge. If e is the edge
of P3 incident to the vertex attached to the subdivided edge. Clearly γg(T ) = 4
and γg(T − e) = 3.

For k ≥ 5, let e be an edge of the star K1,k−2 and attaching two vertices at
the pendant vertex incident to e. Let T be the graph obtained by subdividing
each edge incident to the center. Clearly γg(T ) = k and γg(T − e) = k − 1.
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Case 2. γg(T ) − γg(T − e) = −1.
For k = 1, let T be the star K1,t. Clearly γg(T ) = 1 and γg(T − e) = 2.
For k = 2, let T be the graph obtained from P3 by attaching two vertices

at one end vertex. Let e be the newly added edge of T . Clearly γg(T ) = 2 and
γg(T − e) = 3.

For k ≥ 3, let T be the graph obtained from the star K1,k by subdividing
each edge except one. Let e be the edge that is not subdivided in the star. Clearly
γg(T ) = k and γg(T − e) = k + 1.

Case 3. γg(T ) − γg(T − e) = 0
There is no tree T with an edge e such that γg(T ) = 1 and γg(T − e) = 1.

Any tree with γg(T ) = 1 is of the form K1,k and γg(K1,k − e) = 2.
Let e denotes the middle edge of P4 and γg(P4) = γg(P4 − e) = 2.
For k ≥ 3, Let T be the graph obtained from K1,k−1 by subdividing each

edge and e is any pendant edge of T . Clearly γg(T ) = γg(T − e) = k.

Case 4. γ
′
g(T ) − γ′

g(T − e) = 1
For k = 4, let T be the graph obtained from P4 by attaching three vertices at

one of the end points of P4 and let e be the middle edge of P4. Clearly γ
′
g(T ) = 4

and γ
′
g(T − e) = 3.

For k = 5, let T be the graph obtained from P4 and K1,t by connecting them
with an edge e in such a way that one end vertex of e is the degree two vertex
of P4 and the other end vertex is any pendant vertex of the star K1,k. Clearly
γ

′
g(T ) = 5 and γ

′
g(T − e) = 4.

For k ≥ 6, let e be an edge of the star K1,k−3 and let T be the graph obtained
from the star K1,k−3 by subdividing each of its edge and attach three vertices to
pendant vertex of the subdivided edge. Clearly γ

′
g(T ) = k and γ

′
g(T −e) = k−1.

Case 5. γ
′
g(T ) − γ′

g(T − e) = −1.
Let T be the graph obtained from K2 by removing its edge. Clearly γ

′
g(T −

e) = 2.
For k = 2, P4 is the graph with γ

′
g(P4) = 2 and let T be the graph obtained

from P4 by removing its pendant edge. Clearly γ
′
g(T − e) = 3.

For k = 3, let T be the graph obtained from P3 by attaching three vertices at
one of the end points of P3. Clearly γ

′
g(T ) = 3. If e is any pendant edge incident

to the highest degree vertex of T then γ
′
g(T − e) = 4.

For k ≥ 4, let T be the graph obtained from a star K1,k−2 by subdividing
each edge except one and attaching three vertices at the end vertex of the edge
which is not subdivided. In this case γ

′
g(T ) = k. Ife is the edge incident to one

of the new vertices attached. Clearly γ
′
g(T − e) = k + 1.

Case 6: γ
′
g(T ) − γ′

g(T − e) = 0
For k ≥ 2, let T be the graph obtained from K1,k−1 by subdividing each

edge. Clearly γ
′
g(T ) = k. If e is any pendant edge then γ

′
g(T − e) = k + 1.

For k = 1, there is no tree with γ
′
g(T ) = 1 and γ

′
g(T ) − γ′

g(T − e) = 0.
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3.2 Vertex Removal

Here, we consider the effect of vertex removal in trees. It may be noted that,
there are trees T whose game domination number becomes arbitrarily large after
removing a vertex from T . It is proved [2] that there is no graph G with γg(G) = k
and γg(G − v) = k − 2 for k ≤ 4. We give examples of trees with γg(T ) = k and
γg(T − v) = k − t for any t ∈ {0, 1, 2} and any integer k ≥ 5.

Proposition 1. For any k ≥ 5 there exists a tree T with a vertex v such that
γg(T ) = k and γg(T − v) = k − 2.

Proof. Let T be a tree obtained from K1,k−2 with v as its center in which each
edge is subdivided and two vertices are attached at an end vertex u of one
subdivided edge as in Fig. 1.

Fig. 1. A tree T with γg(T ) = 7 and γg(T − v) = 5

Dominator first chooses the vertex v. So γg(T ) ≤ 1 + γ
′
g(T − v|N(v)) and

γ
′
g(T − v|N(v)) = 2 + k − 3. Therefore γg(T ) ≤ k. Dominator never chooses a

pendant vertex in T . Suppose that Dominator first chooses a vertex other than v
and if it is u then Staller chooses the vertex adjacent to both u and v in T . In this
case the game ends with atleast k moves. Suppose that Dominator’s first turn is
neither u nor v in T . In this case, Staller chooses a pendant vertex adjacent to
u. If second move of Dominator is u then the game ends with atleast k moves.
If second move of Dominator is a vertex other than u, then Staller chooses the
other pendant vertex adjacent to u. In this case, the game ends with atleast k
moves and hence the game domination number of T is k. Dominator first chooses
the vertex u in T − v, after that Staller and Dominator alternately chooses a
vertex from each component. So, the game on T − v has k − 2 steps and hence
γg(T − v) = k − 2.

Proposition 2. For any k ≥ 1 there exists a tree T with γg(T ) = k and γg(T −
v) = k − 1 for some vertex v ∈ V (T ).

Choose T = Pn, n ≥ 1. This satisfies the above proposition, as mentioned in [2].
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Proposition 3. For any k ≥ 1 there exists a tree T with γg(T ) = k and γg(T −
v) = k for some vertex v ∈ V (T ).

Proof. Let k be a positive integer and let T ′ be an arbitrary tree with γg(T ′) = k
[4]. Let x be a first optimal move of Dominator in T ′. Let T be the tree obtained
from T ′ by attaching a vertex u to x [2]. In that case, T and T − u have the
same game domination number.

Proposition 4. For any k ≥ 1 there exists a tree T with γ
′
g(T ) = k and γ

′
g(T −

v) = k for some vertex v ∈ V (T ).

Proof. Let T be a tree obtained from the star K1,k−1 (k ≥ 2) by subdividing
each edge. Let v be an end vertex of any subdivided edge. Then γ

′
g(T ) = k and

γ
′
g(T − v) = k.

K2 satisfies the desired property for k = 1.

Proposition 5. For any k ≥ 1 there exists a tree T with γ
′
g(T ) = k and γ

′
g(T −

v) = k − 1

Proof. Consider the star K1,k−1 (k ≥ 2) and let v be the center of the star. Let
T be a tree obtained from this star by subdividing each edge. Clearly, γ

′
g(T ) = k

and γ
′
g(T − v) = k − 1.

K1 satisfies the desired property for k = 1.

Remark 1. It is proved [2] that there is no graph G with γ
′
g(G) = k and γ

′
g(G −

v) = k−2 for k < 4 and there exist graphs G with γ
′
g(G) = k and γ

′
g(G−v) = k−2

for k ≥ 4.

Proposition 6. There is no tree T with γ
′
g(T ) = 4 and γ

′
g(T − v) = 2 for any

vertex v ∈ T .

Proof. Assume the contradiction. Let T be a tree with a vertex v such that
γ

′
g(T ) = 4 and γ

′
g(T − v) = 2. First, consider the case that v is a pendant

vertex. Since T is a tree and tree is a no-minus graph [8], so γ
′
g(T ) − 1 ≤

γ
′
g(T − v) ≤ γ

′
g(T ). Therefore γ

′
g(T ) is at most 3 and this contradicts γ

′
g(T ) = 4.

Now, consider the case that v is a cut vertex. In this case T − v is disconnected
with exactly two components. If T − v has more than two components then
Staller start game domination number of T −v is at least 3. This is not possible.
So clearly T − v has exactly two components T1 and T2. Each component is
either K1 or K2, otherwise it contradicts that γ

′
g(T − v) is 2. Since T is a tree,

v is adjacent to exactly one vertex in each component. In this case γ
′
g(T ) is at

most 3. This contradicts that γ
′
g(T ) = 4.

Proposition 7. There is no tree with γ
′
g(T ) = 5 and γ

′
g(T − v) = 3 for any

vertex v in T .
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Proof. Assume the contradiction. Let T be a tree with a vertex v such that
γ

′
g(T ) = 5 and γ

′
g(T −v) = 3. Removal of a pendant vertex from a tree decreases

its game domination number by at most 1. So clearly v is a cut vertex and T −v
has at most 3 components. Now, we prove that the vertex v is not an optimal
first move of Staller in T . If possible let v be an optimal first move of Staller in
T . Then

γ
′
g(T ) = 1 + γg(T |N [v])

≤ 1 + γ
′
g(T |N [v])

= 1 + γ
′
g(T − v|N(v))

≤ 1 + γ
′
g(T − v).

Hence, Staller start game domination number of T − v is decreased by at most
1. First, we consider the case that T − v has 3 components. In this case each
component is either K1 or K2. Staller first chooses a vertex from any of the three
components and then Dominator chooses v. In this case the game is finished in
at most 4 steps. This contradicts that γ

′
g(T ) = 5.

Now consider the case that T − v has exactly two components say T1 and
T2. In this case one component say T1 has γ

′
g(T1) = 1 and the other component

T2 has γ
′
g(T2) = 2. So T1 is either K1 or K2 and there is a vertex in T2 which is

adjacent to all undominated vertices in T2 after the first move of Staller. Consider
a staller start game played on T and first optimal move of Staller is from either
T1 or T2. If the first optimal move is from T1 then Dominator chooses v after
that Staller chooses a vertex from T2 and Dominator chooses a vertex from T2

that dominates all the undominated vertices in T . So the game on T is finished
in at most 4 steps. This contradicts γ

′
g(T ) = 5. If the first optimal move is from

T2 then Dominator chooses a vertex which is adjacent to all the undominated
vertices in T2. After that, Staller chooses a vertex from T and if with this move
the game is not yet over, Dominator chooses a vertex in T2 which is adjacent to

Fig. 2. A tree T with γ
′
g(T ) = 8 and γ

′
g(T − v) = 6
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v. So, the game is finished in at most 4 steps. This is a contradiction. So there
is no tree with γ

′
g(T ) = 5 and γ

′
g(T − v) = 3.

Proposition 8. For any k ≥ 6 there exists a tree T with a vertex v such that
γ

′
g(T ) = k and γ

′
g(T − v) = k − 2.

Proof. Let T be the tree obtained from a K1,k−3 by subdividing each edge where
v as the center of K1,k−3 and attaching three vertices to one of the end points
say u of a subdivided edge as in Fig. 2. Clearly, γ

′
g(T ) = k and γ

′
g(T −v) = k−2.
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Abstract. Genetic Programming (GP) based modeling is suggested for
modeling the variation of Dissolved Oxygen (DO) under controlled condi-
tions in the presence and absence of toxicant. The results indicated that
GP is able to evolve robust physically meaningful models even with small
dataset by selecting the most relevant functions from the set of functions
given for the modeling. It is interesting to note that the evolved models
clearly reflect the underlying non-linearity of the process distinctly for
both the case studies.

Keywords: Genetic Programming · Dissolved Oxygen · Mathematical
Modeling

1 Introduction

Dissolved Oxygen (DO) in water bodies is essential for microorganisms and is
a significant indicator of the state of aquatic ecosystem [7]. A certain minimum
level of DO in water is required for aquatic life. DO can range between 0–18
parts per million (ppm) or milligram per litre (mg/l), but most natural water
systems require 5–6 mg/l to support a diverse population [5]. DO can vary within
a given ecosystem as a function of many interrelated complex parameters such as
presence of organic pollutants, water body temperature, the biological activities
of aquatic species etc. It is necessary, therefore, to develop models which can
efficiently predict the DO variation. In the past, researchers have attempted
both physical models as well as black box models for modeling DO. Radwan
et al. [13] used MIKE 11 for DO modeling using climate, soil and crop data.
AQUATOX is a commonly used simulation model for aquatic system and finds
many applications by various researchers [4,8,9,12]. However, application of such
models require many detailed information of the ecosystem being modeled which
in many cases may be difficult to obtain or define accurately.

Of late, Artificial Neural Networks (ANN) based models have found increas-
ing application in DO modeling due to its ability to model complex processes.
For instance, Areerachakul et al. [5] used pH, Biochemical Oxygen Demand
(BOD), Chemical Oxygen Demand (COD), Suspended Solids (SS), Total Kjeld-
hal Nitrogen (TKN), Ammonia Nitrogen(NH3N), Nitrite Nitrogen (NO2N),
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 445–452, 2017.
DOI: 10.1007/978-3-319-64419-6 56
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Nitrate Nitrogen (NO3N), Total Phosphorous(TP), Total Coliform as the inputs
to model DO with 269 training data set and 115 test set. Chen et al. [7] used
water temperature, pH, Electrical conductivity (EC), turbidity, Total Suspended
Solids (TSS), Total Hardness (TH), Alkalinity and Ammonium nitrogen (NH4N)
to model DO. A summary of ANN application for DO modeling by various inves-
tigators is given in Table 1. A variety of ANN training algorithm has been utilized
such as GRNN, BPNN, RNN etc. The input data is seen to vary in time horizon
from daily data to monthly data. It is reported that ANN performs well in the
DO modeling.

It is important to note that there is no common consensus on the inputs
being used with different researchers using different combination of inputs for
modeling. However, many a times, it may be of interest for designers and engi-
neers to know a quick estimate of DO variation in a given ecosystem without
considering all the detailed parameters which affect its changes. It will be ideally
more meaningful if such variations can be demonstrated through some simple
mathematical models or equations. This study is an attempt in this direction.
It is proposed to model the DO variation in a controlled ecosystem knowing
only the initial DO concentration in the presence and absence of an externally
induced toxicant as a function of time.

Genetic Programming (GP) is considered in this study in lieu of ANN. This
is because, although ANN has a demonstrated potential to model complex non-
linear processes, it doesn’t reveal the nature of non-linearity [14]. GP, however,
can evolve mathematical models clearly reflecting the non-linearity of the system
[11,15,16]. To the authors’ knowledge, this is the first attempt of GP in DO
modeling of an ecosystem.

2 Experimental Setup and Tools Used

2.1 Experimental Setup

Two experimental tanks circular in size are created under controlled conditions
(Figs. 1 and 2).

(DO)t−1 (DO)tPond water+Duckweed

Fig. 1. Block diagram for Case Study 1

In first case, 15g duckweed is spread in 15 litre pond water. In second case,
0.5g glyphosate toxicant is added in 15 litre pond water containing 15 g duck-
weed. DO is measured daily in the two tanks using Winkler’s method. The
experimental case studies are run for 10 days without additional inflow loading.
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Table 1. Review of Dissolved Oxygen model

S.No Tools used Input parameters Time horizon Data
length

Training algorithm References

1 ANN pH, BOD, COD,TSS,
TKN, NH3N, NO2N,
NO3N, TP, Total Col-
iform

269 records train-
ing set 115 records
test set

2006–2008
3 years

MLP was used with the
Levenberg- Marquardt
algorithm is used to
train the ANN

Areerachakul
et al. [5])

2 ANN pH, EC, Ca2+,TA,
TH,,Cl-, NO3N, NH3N

100-Training set,
32-Testing set,
32-Vaidation set

2003–2008 A three-layer back-
propagation ANN was
used with the Bayesian
regularization training
algorithm

Wen et al. [17]

3 ANN and
MLR

T, pH, EC, Turbidity,
SS, TH, TA, NH4N

280 -Training sets,
120- Testing sets

1993
to 2011

Two ANN models
including BPNN and
ANFIS approaches and
MLR model

Chen et al. [7]

4 ANN Water flow, pH, T, EC monthly or semi-
monthly

2004–2009 GRNN, BPNN and
RNN

Antanasijevic
et al. [2]

5 ANN T, pH, HCO3-, SO42-
, NO3-N, TH, Na, Cl-,
EC, PO4, Ca, Mg, TH,
TSS, CO2, K. BOD
and TA

Each month at 17
different sites

9 years GRNN. Uncertainty
analysis of model
results using the Monte
Carlo Simulation
(MCS) technique

Antanasijevic
et al. [3]

6 ANN Q, T, pH, BOD, DO Monthly dataset 1990–1996 Feed Forward error
back Propagation
algorithm

Archana
Sarkar &
Prashant
Pandey [1]

7 ANN,
MLR

pH, Q, T, EC, DO Daily dataset 6828
samples

MLP, RBNN, MLR Murat Ay &
Ozgur Kisi [6]

GRNN - General Regression Neural Network Q - Discharge

MLP - Multi layer Perceptron DO - Dissolved Oxygen

RBNN- Radial Based Neural Network COD- Chemical Oxygen Demand

MLR-Multi Linear Regression TSS-Total uspended Solids

RNN- Recurrent Neural Network TKN-Total Kjeldahl Nitrogen

ANFIS-Adaptive neural-based fuzzy inference system NH3N -Ammonia Nitrogen

EC-Electrical Conductivity NO2N -Nitrite Nitrogen

Cl−- Chloride NO3N -Nitrate Nitrogen

SO4 -Sulphate TP- Total Phosphorous

TH-Total Hardness NH4N -Ammonium Nitrogen

TA-Total Alkalinity T-Water temperature

2.2 Genetic Programming

In this study, Genetic Programming (GP) is used to model DO. GP is very sim-
ilar to Genetic Algorithm (GA), an evolutionary algorithm based on Darwinian
theories of natural selection and survival of the fittest. However, GP operates
on parse trees, rather than on bit strings as in a GA, to approximate the equa-
tion (in symbolic form) that best describes how the output relates to the input
variables. The algorithm considers an initial population of randomly generated
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(DO)t−1 (DO)tPond water+Duckweed

Pollutant

Fig. 2. Block diagram for Case Study 2

programs (equations), derived from the random combination of input variables,
random numbers and functions. The functions can include arithmetic operators
(plus, minus, multiply, divide), mathematical functions (sin, cos, exp, log), logi-
cal/comparison functions (OR/AND) etc., which have to be appropriately chosen
based on some understanding of the process. This population of potential solu-
tions is then subjected to an evolutionary process and the ‘fitness’ (a measure of
how well they solve the problem) of the evolved programs are evaluated. Individ-
ual programs that best fit the data are then selected from the initial population.
The programs that best fit are selected to exchange part of the information
between them to produce better programs through ‘crossover’ and ‘mutation’,
as used in GAs (to mimic the natural reproduction process). Here, exchanging
the parts of best programs with each other is called crossover, copied exactly
into the next generation s called reproduction and randomly changing programs
to create new programs is called mutation [10]. The user must decide a num-
ber of GP parameters before applying the algorithm to model the data, such as
population size, number of generations, crossover and mutation probability, etc.
The programs that fitted the data less well are discarded. This evolution process
is repeated over successive generations and is driven towards finding symbolic
expressions describing the data, which can be scientifically interpreted to derive
knowledge about the process being modeled [15]. GP is implemented in this
study using Discipulus software.

3 Performance Measure

RMSE value is taken as the performance measure to check the performance of
GP as shown in Eq (1).

RMSE =

√
√
√
√

1
n

n∑

i=1

[(Xm)i− (Xs)i]2 (1)

where X is any variable that is being modeled; the subscripts m and s represent
the observed and simulated values.
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4 Results and Discussions

The results obtained from experimental studies and the development of mathe-
matical model is described as below:

Training Data Set and Modeling Function. In order to evolve model which
is more generic in nature, it is desired to model the percentage of residual DO at
any time ’t’ (rather than actual value of DO) with residual DO in the previous
time step. This can be functionally represented as

(DOR)t = f((DOR)t−1, t) (2)

where(DOR)t is the residual DO at time t (%);
(DOR)t−1 is the residual DO at previous time step t− 1 (%);
t= detention time (hours);

Table 2. Dissolved Oxygen (mg/l) variation as a function of time

Time ‘t’ in (hours) Case Study 1 Case Study 2

Initial 6.72 6.72

24 6.08 6.08

48 4.64 3.84

72 1.92 1.92

120 2 1.76

144 2.2 2.4

168 2.4 2.5

192 2.72 2.56

216 2.88 2.7

240 3.04 3.2

GP is run with the optimal parameter values (after trial and error) of pop-
ulation size of 500, cross over frequency at 50% and mutation frequency at 95%
for 100 generations. Since it is expected that DO might vary drastically in a
short time span, it is preferred to include exponential function besides using the
arithmetic function in the GP run. It is also preferred to include trigonometric
function (though it does not bear any direct relationship with the physics of the
process) so as to capture a small non-linearity which might be superimposed on
a predominantly linear process. Experiments are conducted for 10 days. Actual
DO value obtained during experimental period is shown in Table 2. Since DO
variation is a time dependent process, it is desired to use the first 4 data as
training set, the next 3 as testing set and the last 2 data set as validation set
(Table 3).
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Table 3. Training data used for Dissolved Oxygen model

Data Case Study 1 Case Study 2

(DOR)t−1 (%) Time ‘t’
(Hours)

(DOR)t (%) (DOR)t−1 (%) Time ‘t’
(Hours)

(DOR)t (%)

Training 100 24 90.5 100 24 90.5

90.5 48 69 90.5 48 57.2

69 72 28.5 57.2 72 28.6

28.5 120 29.7 28.6 120 26.2

Testing 29.7 144 32.7 26.2 144 35.7

32.7 168 35.7 35.7 168 37.2

35.7 192 40.4 37.2 192 38.0

Validation 40.4 216 42.8 38.0 216 40.2

42.8 240 45.2 40.2 240 47.6

Modeling of DO Using GP. The GP evolved mathematical model for DO is
shown in Table 4. For both the case studies, the nature of DO variation before
and after 3 days is different. While during the first 3 days, the variation is non-
linear, after 3 days, it is found to linearly vary with the residual DO in the
previous time step. A close observation also indicates that the nature of non-
linearity in Case Study 1 is different from that for Case Study 2 with residual
DO varying more sharply as a function of time in the Case Study 2. This can
be explained as due to the introduction of the toxicant. It can be interpreted
that the effect of toxicant is quickly neutralized by the ecosystem with duckweed
which reflects in terms of residual DO in the system becoming almost constant.
However, the residual DO gain in the tail end of the study (in Case Study 2)
is not reflected in the GP model due to lack of sufficient data. Whereas, in the
absence of the toxicant (in Case Study 1), the residual DO after 3 days is found
to marginally increase at the rate of 8% of the residual DO at the previous time
step.

Table 4. Dissolved Oxygen model

S.No Experimental
Case Study

(DOR)t model

1 Case Study 1 (DOR)t(%) =

⎧
⎪⎪⎨

⎪⎪⎩

Abs
{√

4
1.18(DOR)t−1−t

− 1.08
}

for t ≤ 3 days

∗(DOR)t−1(%),

1.08 ∗ (DOR)t−1(%), for t > 3 days

2 Case Study 2 (DOR)t(%) =

⎧
⎪⎪⎨

⎪⎪⎩

0.09
(DOR)2t−1

t
(%) + 0.452 for t ≤ 3 days

∗(DOR)t−1(%),

(DOR)t−1(%), for t > 3 days
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It is to be noted that although exponential and trigonometric functions
were included in the GP run, these functions do not appear in the final model.
Figures 3 and 4 shows the comparison of actual DO and that estimated by GP
evolved model. It can be seen that GP quite accurately models the two ecosystem
conditions.

Fig. 3. Comparision of Predicted DO vs Observed DO for Case Study 1

Fig. 4. Comparision of Predicted DO vs Observed DO for Case Study 2

5 Conclusions

Based on this study, the following conclusions have been arrived at:

(a) The nature of non-linearity is easily modeled in GP which is difficult in
ANN.

(b) GP quite accurately models a natural ecosystem even with very less training
data set, and hence can be used for modeling of aquatic systems.

(c) It is recommended to carry out more detailed research with additional
parameters governing the ecosystem to have a deeper understanding of the
physics of the ecosystem.



452 S. Vanitha et al.

References

1. Archana, S., Prashant, P.: River water quality modelling using artificial neural
network technique. Aquat. Procedia 4, 1070–1077 (2015)

2. Antanasijevic, D., Pocajt, V., Povrenović, D., Perić-Grujić, A., Ristić, M.: Mod-
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Abstract. Cryptography plays an important role in securing data
against malicious attacks. Cryptography can be applied in designing and
developing block ciphers and stream ciphers to protect data from intrud-
ers and unauthorized users. Based on usage of keys, cryptography is clas-
sified into symmetric cryptography and asymmetric cryptography. Asym-
metric key based cryptosystems and block ciphers usually take more
time to encrypt/decrypt data and hence found not suitable for real time
applications. Symmetric key based cryptosystems and stream ciphers
are generally recommended for securing data in real time. In this paper
we propose a new stream cipher which can be used to encrypt/decrypt
data in real time. As an application; we encrypt DVD content, play-
back the DVD content in real time by decrypting and integrating with
a customized media player with no saving or copying possibilities.

1 Introduction

Every human activity is being digitized day in and day out. World is moving
towards paperless arena. Be it audio, text, image, video all are digitized. Multi-
media applications are entering into every sphere of activity. But with it carries
lot of challenges, one such most important challenge is the Safety and Security of
the data. We hear in every day report the data leakage, data theft and hacking of
personal data, business data and governmental data. The reason being thieves
and hackers are cleverer and hardworking than normal people. Protection of
DATA is the biggest challenge of the present day digitized world. Cryptography
is found to be the best tool to face the challenge of protecting data. It has given
number of Block ciphers and Stream ciphers, some based on asymmetric keys and
some based on symmetric keys. DES, 3-DES, AES, IDEA, RC2, RC5, Blowfish,
Cast and Gost are some of the well known block ciphers and A5/I and RC4 are
well known stream ciphers. Twofish, Serpant, AES, Blowfish, RC4, Grasshopper,
3-DES and IDEA are some of the well known symmetric key algorithms, and
RSA, El Gamal and Elliptic curve cryptography are well known asymmetric key
algorithms.

Arul Jothi and Venkatesulu [1–4] have presented a few schemes for data
security. The first scheme uses only row and column XORing with the help of
key, to increase confusion and diffusion in the resultant cipher text. Another
scheme is presented which includes shifting and XORing with neighborhood
bits and to further increase the efficiency of the encryption one more scheme is
proposed which also performs rotation and substitution.
c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 453–456, 2017.
DOI: 10.1007/978-3-319-64419-6 57
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Radha and Venkatesulu [5–9] have given the analysis of block ciphers AES,
RC6 and IDEA in video streaming, also a block cipher algorithm which provides
non-linear substitution and permutation components through the binary tree
structure and random shifting row/column wise in a circular fashion in a square
matrix, another block cipher algorithm which encrypts and decrypts a block of
512 bits based on primitive operation XOR, shuffler function and a chaotic map
with non-linear transformation functions, and yet another block cipher algorithm
using the shuffler operator and a binary tree which provides confusion and dif-
fusion components for the round operations. They also present a block cipher
design incorporating the ‘bit-level’ primitive GRP instruction and architecture
for the processor instruction SHUFF to improve the performance of bit -level
mappings.

Vidhya Saraswathi and Venkatesulu [10–12] present a few block ciphers; the
first block cipher encryption for protecting multimedia data while transmitting
through the network, the second encryption and decryption process in which
chaotic maps are used for generating two keys, K1 and K2 of length 64 bits from
the 128 bit master key, a third Image Encryption scheme for color images using
chaotic maps and a fourth Block Cipher based on Boolean Matrices using Bit
level Operations by generating lower triangular matrix as session key, performing
GRP operation in encryption scheme, and UNGRP operation and inverse of
lower triangular matrices in decryption scheme.

In this paper, we propose a new stream cipher to protect data in real time.
As an application, the stream cipher is used to encrypt the DVD contents in
off-line mode and to decrypt the encrypted DVD in real time to playback the
contents. The decryption is integrated with the media player in such a way that
no saving or copying is possible during playback mode.

2 Algorithm

Step 1: (Key Selection): Choose a binary string K of size 4n, where n =
4, 8, 16, 32, 64, . . . , 512, etc.

Step 2: (Session Key generation): Choose a random permutation π of integers
{1, 2, . . . , n, . . . , 2n, . . . , 3n, . . . , 4n}.
Let π = {p1, p2, . . . , pn, . . . , p2n, . . . , p3n, . . . , p4n}. Take a sub per-
mutation P of π, say, P = {p1, p2, . . . , pn}.

Step 3: (Key stream generation): Arrange the elements of P in ascending order,
say, Q1 < Q2 < · · · < Qn. Then Pn = Qs for some between 1 and n.
Let d1 = Q2 − Q1, d2 = Q3 − Q2, . . . , dn−1 = Qn − Qn−1. Let the
initial Vector: Q = {Q1, Q2, . . . , Qn} Define initial key stream bit b1 =
Q1 XOR Q2 XOR Q3,. . . , Qn−1 XOR Qn. Subsequent key stream bits
generation (j > 1):new Q1= old Qs +1. new Ql =(new Ql−1 +dl )mod
4n, for l = 2, . . . , n− 1, bj = (new Q1 ) XOR ( new Q2),. . . ,Qn−1 XOR
( new Qn ).

Step 4: (Encryption): Let M be the plain text converted into binary form,
say, M =a1, a2,. . . aj . . . ,an Encrypted text is given by C= (c1,c2. . . cj
. . . ,an), where cj = aj XOR bj .
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Step 5: (Decryption): The plain text M can be obtained from the cipher text
by XORing with the key bits stream, that is, cj XOR bj = aj .

3 Application for DVD Content Protection

Initial Key K = 1001010101010101, user’s random selection. Initial Permutation
π is pseudo-random (system) generated and sub permutation P is the first four
elements of π. The application was run on the i5-64 bit processor @ 2.4 GHz
speed with 8 GB RAM. The algorithm was implemented in C-Sharp using visual
studio 2010 under windows 10 environment. The video file size is 710 MB and has
taken just 1 min for encryption. The start-up delay for decryption and play-back
is just 20 s and then on the play-back is continuous.

4 Conclusion

In this paper we proposed a new stream cipher for multimedia encryption in
real time. As an application we encrypted DVD content and playback is done in
real time by decrypting the encrypted DVD and integrating the decryption with
customized media player with no saving and copying possibilities. In future, we
wish to employ the cipher in different applications and also do the crypt analysis
of the proposed cipher.
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the valuable suggestions which resulted in the present form of the paper.
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