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Classification tries to predict a class from a data item. Regression tries to predict a value. For example, we know the zip code
of a house, the square footage of its lot, the number of rooms and the square footage of the house, and we wish to predict
its likely sale price. As another example, we know the cost and condition of a trading card for sale, and we wish to predict a
likely profit in buying it and then reselling it. As yet another example, we have a picture with some missing pixels—perhaps
there was text covering them, and we want to replace it—and we want to fill in the missing values. As a final example, you
can think of classification as a special case of regression, where we want to predict either C1 or �1; this isn’t usually the
best way to classify, however. Predicting values is very useful, and so there are many examples like this.

Some formalities are helpful here. In the simplest case, we have a dataset consisting of a set of N pairs .xi; yi/. We want
to use the examples we have—the training examples—to build a model of the dependence between y and x. This model
will be used to predict values of y for new values of x, which are usually called test examples. We think of yi as the value
of some function evaluated at xi, but with some random component. This means there might be two data items where the xi

are the same, and the yi are different. We refer to the xi as explanatory variables and the yi as a dependent variable. We
regularly say that we are regressing the dependent variable against the explanatory variables.

13.1 Regression toMake Predictions

Now imagine that we have one independent variable. An appropriate choice of x and of model (details below) will mean that
the predictions made by this model will lie on a straight line. Figure 13.1 shows two regressions. The data are plotted with a
scatter plot, and the line gives the prediction of the model for each value on the x axis.

We cannot guarantee that different values of x produce different values of y. Data just isn’t like this (see the crickets
example Fig. 13.1). This means you can’t think of a regression as predicting the true value of y from x because usually there
isn’t one. Instead, you should think of a regression as predicting the expected value of y conditioned on x. Some regression
models can produce more information about the probability distribution for y conditioned on x. For example, it might be very
valuable to get both the mean and variance of the distribution of the likely sale value of a house from independent variables.

It should be clear that none of this will work if there is not some relationship between the training examples and the test
examples. If I collect training data on the height and weight of children, I’m unlikely to get good predictions of the weight of
adults from their height. We can be more precise with a probabilistic framework. We think of xi as IID samples from some
(usually unknown) probability distribution P.X/. Then the test examples should also be IID samples from P.X/, or, at least,
rather like them—you usually can’t check this point with any certainty.

A probabilistic formalism can help be precise about the yi, too. Assume another random variable Y has joint distribution
with X given by P.Y; X/. We think of each yi as a sample from P.Yj fX D xig/. Then our modelling problem would be: given
the training data, build a model that takes a test example x and yields EŒYj fX D xig�.
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Fig. 13.1 On the left, a regression of weight against length for perch from a Finnish lake (you can find this dataset, and the back story at http://
www.amstat.org/publications/jse/jse_data_archive.htm; look for “fishcatch” on that page). Notice that the linear regression fits the data fairly
well, meaning that you should be able to predict the weight of a perch from its length fairly well. On the right, a regression of air temperature
against chirp frequency for crickets. The data is fairly close to the line, meaning that you should be able to tell the temperature from the pitch of
cricket’s chirp fairly well. This data is from http://mste.illinois.edu/patel/amar430/keyprob1.html. The R2 you see on each figure is a measure of
the goodness of fit of the regression (Sect. 13.3.5)

Thinking about the problem this way should make it clear that we’re not relying on any exact, physical, or causal
relationship between Y and X. It’s enough that their joint probability makes useful predictions possible, something we
will test by experiment. This means that you can build regressions that work in somewhat surprising circumstances. For
example, regressing childrens’ reading ability against their foot size can be quite successful. This isn’t because having big
feet somehow helps you read. It’s because on the whole, older children read better, and also have bigger feet. Regression
isn’t magic. Figure 13.2 shows two regressions where the predictions aren’t particularly accurate.

13.2 Regression to Spot Trends

Regression isn’t only used to predict values. Another reason to build a regression model is to compare trends in data. Doing
so can make it clear what is really happening. Here is an example from Efron (“Computer-Intensive methods in statistical
regression”, B. Efron, SIAM Review, 1988). The table in the appendix shows some data from medical devices, which sit in
the body and release a hormone. The data shows the amount of hormone currently in a device after it has spent some time in
service, and the time the device spent in service. The data describes devices from three production lots (A, B, and C). Each
device, from each lot, is supposed to have the same behavior. The important question is: Are the lots the same? The amount
of hormone changes over time, so we can’t just compare the amounts currently in each device. Instead, we need to determine
the relationship between time in service and hormone, and see if this relationship is different between batches. We can do so
by regressing hormone against time.

Figure 13.3 shows how a regression can help. In this case, we have modelled the amount of hormone in the device as

a � (time in service) C b

for a, b chosen to get the best fit (much more on this point later!). This means we can plot each data point on a scatter plot,
together with the best fitting line. This plot allows us to ask whether any particular batch behaves differently from the overall
model in any interesting way.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html
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Longevity vs Thorax in Female Fruitflies
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Heart rate vs temperature in humans
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Fig. 13.2 Regressions do not necessarily yield good predictions or good model fits. On the left, a regression of the lifespan of female fruitflies
against the length of their torso as adults (apparently, this doesn’t change as a fruitfly ages; you can find this dataset, and the back story at http://
www.amstat.org/publications/jse/jse_data_archive.htm; look for “fruitfly” on that page). The figure suggests you can make some prediction of
how long your fruitfly will last by measuring its torso, but not a particularly accurate one. On the right, a regression of heart rate against body
temperature for adults. You can find the data at http://www.amstat.org/publications/jse/jse_data_archive.htm as well; look for “temperature” on
that page. Notice that predicting heart rate from body temperature isn’t going to work that well, either
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Fig. 13.3 On the left, a scatter plot of hormone against time for devices from Tables 13.1 and 13.1. Notice that there is a pretty clear relationship
between time and amount of hormone (the longer the device has been in service the less hormone there is). The issue now is to understand that
relationship so that we can tell whether lots A, B and C are the same or different. The best fit line to all the data is shown as well, fitted using
the methods of Sect. 13.3. On the right, a scatter plot of residual—the distance between each data point and the best fit line—against time for the
devices from Tables 13.1 and 13.1. Now you should notice a clear difference; some devices from lots B and C have positive and some negative
residuals, but all lot A devices have negative residuals. This means that, when we account for loss of hormone over time, lot A devices still have
less hormone in them. This is pretty good evidence that there is a problem with this lot

However, it is hard to evaluate the distances between data points and the best fitting line by eye. A sensible alternative is
to subtract the amount of hormone predicted by the model from the amount that was measured. Doing so yields a residual—
the difference between a measurement and a prediction. We can then plot those residuals (Fig. 13.3). In this case, the plot
suggests that lot A is special—all devices from this lot contain less hormone than our model predicts.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
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Definition 13.2 (Regression) Regression accepts a feature vector and produces a prediction, which is usually a
number, but can sometimes have other forms. You can use these predictions as predictions, or to study trends in
data. It is possible, but not usually particularly helpful, to see classification as a form of regression.

13.3 Linear Regression and Least Squares

Assume we have a dataset consisting of a set of N pairs .xi; yi/. We want to use the examples we have—the training
examples—to build a model of the dependence between y and x. This model will be used to predict values of y for new
values of x, which are usually called test examples. The model needs to have some probabilistic component; we do not
expect that y is a function of x, and there is likely some error in evaluating y anyhow.

13.3.1 Linear Regression

We cannot expect that our model makes perfect predictions. Furthermore, y may not be a function of x—it is quite possible
that the same value of x could lead to different y’s. One way that this could occur is that y is a measurement (and so subject
to some measurement noise). Another is that there is some randomness in y. For example, we expect that two houses with
the same set of features (the x) might still sell for different prices (the y’s).

A good, simple model is to assume that the dependent variable (i.e. y) is obtained by evaluating a linear function of the
explanatory variables (i.e. x), then adding a zero-mean normal random variable. We can write this model as

y D xTˇ C �

where � represents random (or at least, unmodelled) effects. In this expression, ˇ is a vector of weights, which we must
estimate. We will always assume that � has zero mean, so that

EŒYj fX D xig� D xiˇ:

When we use this model to predict a value of y for a particular set of explanatory variables x�, we cannot predict the value
that � will take. Our best available prediction is the mean value (which is zero). Notice that if x D 0, the model predicts y D 0.
This may seem like a problem to you—you might be concerned that we can fit only lines through the origin—but remember
that x contains explanatory variables, and we can choose what appears in x. The two examples show how a sensible choice
of x allows us to fit a line with an arbitrary y-intercept.

Definition 13.3 (Linear Regression) A linear regression takes the feature vector x and predicts xTˇ, for some vector
of coefficients ˇ. The coefficients are adjusted, using data, to produce the best predictions.

Example 13.3 (A Linear Model Fitted to a Single Explanatory Variable) Assume we fit a linear model to a single
explanatory variable. Then the model has the form y D xˇ C � , where � is a zero mean random variable. For any value
x� of the explanatory variable, our best estimate of y is ˇx�. In particular, if x� D 0, the model predicts y D 0, which is
unfortunate. We can draw the model by drawing a line through the origin with slope ˇ in the x, y plane. The y-intercept
of this line must be zero.
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Example 13.4 (A Linear Model with a Non-Zero y-Intercept) Assume we have a single explanatory variable, which
we write u. We can then create a vector x D Œu; 1�T from the explanatory variable. We now fit a linear model to this
vector. Then the model has the form y D xTˇ C� , where � is a zero mean random variable. For any value x� D Œu�; 1�T

of the explanatory variable, our best estimate of y is .x�/Tˇ, which can be written as y D ˇ1u� C ˇ2. If x� D 0, the
model predicts y D ˇ2. We can draw the model by drawing a line through the origin with slope ˇ1 and y-intercept ˇ2

in the x, y plane.

13.3.2 Choosing ˇ

We must determine ˇ. We can proceed in two ways. I show both because different people find different lines of reasoning
more compelling. Each will get us to the same solution. One is probabilistic, the other isn’t. Generally, I’ll proceed as if
they’re interchangeable, although at least in principle they’re different.

Probabilistic approach: we could assume that � is a zero mean normal random variable with unknown variance. Then
P.yjx; ˇ/ is normal, with mean xTˇ, and so we can write out the log-likelihood of the data. Write �2 for the variance of � ,
which we don’t know, but will not worry about right now. We have that

logL.ˇ/ D �
X

i

log P.yijxi; ˇ/

D 1

2�2

X

i

.yi � xT
i ˇ/2

C term not depending on ˇ

Maximizing the log-likelihood of the data is equivalent to minimizing the negative log-likelihood of the data. Furthermore,
the term 1

2�2 does not affect the location of the minimum, so we must have that ˇ minimizes
P

i.yi � xT
i ˇ/2, or anything

proportional to it. It is helpful to minimize an expression that is an average of squared errors, because (hopefully) this doesn’t
grow much when we add data. We therefore minimize

�
1

N

� X

i

.yi � xT
i ˇ/2

!
:

Direct approach: notice that, if we have an estimate of ˇ, we have an estimate of the values of the unmodelled effects �i

for each example. We just take �i D yi � xT
i ˇ. It is quite natural to make the unmodelled effects “small”. A good measure of

size is the mean of the squared values, which means we want to minimize

�
1

N

� X

i

.yi � xT
i ˇ/2

!
:

13.3.3 Solving the Least Squares Problem

We can write all this more conveniently using vectors and matrices. Write y for the vector

0

BB@

y1

y2

: : :

yn

1

CCA
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and X for the matrix
0

@
xT

1

xT
2

: : : xT
n

1

A :

Then we want to minimize
�

1

N

� �
y � Xˇ/T.y � Xˇ

�

which means that we must have

X TXˇ � X Ty D 0:

For reasonable choices of features, we could expect that X TX—which should strike you as being a lot like a covariance
matrix—has full rank. If it does, which is the usual case, this equation is easy to solve. If it does not, there is more to do,
which we will do in Sect. 13.4.4.

Remember this: The vector of coefficients ˇ for a linear regression is usually estimated using a least-squares
procedure.

13.3.4 Residuals

Assume we have produced a regression by solving

X TX Ǒ � X Ty D 0

for the value of Ǒ. I write Ǒ because this is an estimate; we likely don’t have the true value of the ˇ that generated the data
(the model might be wrong; etc.). We cannot expect that X Ǒ is the same as y. Instead, there is likely to be some error. The
residual is the vector

e D y � X Ǒ
which gives the difference between the true value and the model’s prediction at each point. Each component of the residual
is an estimate of the unmodelled effects for that data point. The mean square error is

m D eTe
N

and this gives the average of the squared error of prediction on the training examples.
Notice that the mean squared error is not a great measure of how good the regression is. This is because the value depends

on the units in which the dependent variable is measured. So, for example, if you measure y in meters you will get a different
mean squared error than if you measure y in kilometers for the same dataset. This is a serious nuisance, because it means that
the value of the mean squared error cannot tell you how good a regression is. There is an alternative measure of the accuracy
of a regression which does not depends on the units of y.

13.3.5 R-Squared

Unless the dependent variable is a constant (which would make prediction easy), it has some variance. If our model is of
any use, it should explain some aspects of the value of the dependent variable. This means that the variance of the residual
should be smaller than the variance of the dependent variable. If the model made perfect predictions, then the variance of the
residual should be zero.
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We can formalize all this in a relatively straightforward way. We will ensure that X always has a column of ones in it, so
that the regression can have a non-zero y-intercept. We now fit a model

y D Xˇ C e

(where e is the vector of residual values) by choosing ˇ such that eTe is minimized. Then we get some useful technical
results.

Useful Facts 13.1 (Regression)
We write y D X Ǒ C e, where e is the residual. For a vector v of N components, we write v D .1=N/1Tv. Assume X

has a column of ones, and Ǒ is chosen to minimize eTe. Then we have

1. eTX D 0, i.e. that e is orthogonal to any column of X . If e is not orthogonal to some column of e, we can increase
or decrease the Ǒ term corresponding to that column to make the error smaller. Another way to see this is to notice
that Ǒ is chosen to minimize 1

N eTe, which is 1
N .y � X Ǒ/T.y � X Ǒ/. Now because this is a minimum, the gradient

with respect to Ǒ is zero, so .y � X Ǒ/T.�X / D �eTX D 0.
2. eT1 D 0 (recall that X has a column of all ones, and apply the previous result).
3. eTX Ǒ D 0 (first result means that this is true).
4. 1T.y � X Ǒ/ D 0 (same as previous result).

5. y D X Ǒ (same as previous result).

Now y is a one dimensional dataset arranged into a vector, so we can compute mean .fyg/ and varŒy�. Similarly, X Ǒ is a
one dimensional dataset arranged into a vector (its elements are xT

i
Ǒ), as is e, so we know the meaning of mean and variance

for each. We have a particularly important result:

varŒy� D var
h
X ǑiC varŒe�:

This is quite easy to show, with a little more notation. Write y D .1=N/.1Ty/1 for the vector whose entries are all mean .fyg/;
similarly for e and for X Ǒ. We have

varŒy� D .1=N/.y � y/T.y � y/

and so on for varŒei�, etc. Notice from the facts that y D X Ǒ. Now

varŒy� D .1=N/
�h

X Ǒ � X ǑiC Œe � e�
�T �h

X Ǒ � X ǑiC Œe � e�
�

D .1=N/

�h
X Ǒ � X ǑiT h

X Ǒ � X ǑiC 2 Œe � e�T
h
X Ǒ � X ǑiC Œe � e�T Œe � e�

�

D .1=N/

�h
X Ǒ � X ǑiT h

X Ǒ � X ǑiC Œe � e�T Œe � e�

�

because e D 0 and eTX Ǒ D 0 and eT1 D 0

D var
h
X ǑiC varŒe�:

This is extremely important, because us allows us to think about a regression as explaining variance in y. As we are better at
explaining y, varŒe� goes down. In turn, a natural measure of the goodness of a regression is what percentage of the variance
of y it explains. This is known as R2 (the r-squared measure). We have

R2 D
var
h
xT

i
Ǒi

varŒyi�
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which gives some sense of how well the regression explains the training data. Notice that the value of R2 is not affected by
the units of y (exercises)

Good predictions result in high values of R2, and a perfect model will have R2 D 1 (which doesn’t usually happen). For
example, the regression of Fig. 13.3 has an R2 value of 0.87. Figures 13.1 and 13.2 show the R2 values for the regressions
plotted there; notice how better models yield larger values of R2. Notice that if you look at the summary that R provides
for a linear regression, it will offer you two estimates of the value for R2. These estimates are obtained in ways that try to
account for (a) the amount of data in the regression, and (b) the number of variables in the regression. For our purposes, the
differences between these numbers and the R2 I defined are not significant. For the figures, I computed R2 as I described in
the text above, but if you substitute one of R’s numbers nothing terrible will happen.

Remember this: The quality of predictions made by a regression can be evaluated by looking at the fraction of the
variance in the dependent variable that is explained by the regression. This number is called R2, and lies between zero
and one; regressions with larger values make better predictions.

Procedure 13.1 (Linear Regression Using Least Squares) We have a dataset containing N pairs .xi; yi/. Each xi is a
d-dimensional explanatory vector, and each yi is a single dependent variable. We assume that each data point conforms
to the model

yi D xT
i ˇ C �i

where �i represents unmodelled effects. We assume that �i are samples of a random variable with 0 mean and unknown
variance. Sometimes, we assume the random variable is normal. Write

y D
0

@
y1

: : :

yn

1

A and X D
0

@
xT

1

: : :

xT
n

1

A :

We estimate Ǒ (the value of ˇ) by solving the linear system

X TX Ǒ � X Ty D 0:

For a data point x, our model predicts xT Ǒ. The residuals are

e D y � X Ǒ:

We have that eT1 D 0. The mean square error is given by

m D eTe
N

:

The R2 is given by

var
�n

xT
i

Ǒo�

var .fyg/ :

Values of R2 range from 0 to 1; a larger value means the regression is better at explaining the data.
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13.4 Producing Good Linear Regressions

Linear regression is useful, but it isn’t magic. Some regressions make poor predictions (recall the regressions of Figure 13.2).
As another example, regressing the first digit of your telephone number against the length of your foot won’t work.

We have some straightforward tests to tell whether a regression is working. You can look at a plot for a dataset with one
explanatory variable and one dependent variable. You plot the data on a scatter plot, then plot the model as a line on that
scatterplot. Just looking at the picture can be informative (compare Figs. 13.1 and 13.2).

You can check if the regression predicts a constant. This is usually a bad sign. You can check this by looking at the
predictions for each of the training data items. If the variance of these predictions is small compared to the variance of the
independent variable, the regression isn’t working well. If you have only one explanatory variable, then you can plot the
regression line. If the line is horizontal, or close, then the value of the explanatory variable makes very little contribution to
the prediction. This suggests that there is no particular relationship between the explanatory variable and the independent
variable.

You can also check, by eye, if the residual isn’t random. If y�xTˇ is a zero mean normal random variable, then the value
of the residual vector should not depend on the corresponding y-value. Similarly, if y � xTˇ is just a zero mean collection
of unmodelled effects, we want the value of the residual vector to not depend on the corresponding y-value either. If it does,
that means there is some phenomenon we are not modelling. Looking at a scatter plot of e against y will often reveal trouble
in a regression (Fig. 13.7). In the case of Fig. 13.7, the trouble is caused by a few data points that are very different from the
others severely affecting the regression. We will discuss such points in more detail below. Once they have been removed, the
regression improves markedly (Fig. 13.8).

Remember this: Linear regressions can make bad predictions. You can check for trouble by: evaluating R2; looking at
a plot; looking to see if the regression makes a constant prediction; or checking whether the residual is random. Other
strategies exist, but are beyond the scope of this book.

13.4.1 Transforming Variables

Sometimes the data isn’t in a form that leads to a good linear regression. In this case, transforming explanatory variables,
the dependent variable, or both can lead to big improvements. Figure 13.4 shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The dataset for this figure consists of counts
of the number of time a word occurred for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting questions, including an attempt to assess
how many words Shakespeare knew. This is hard, because he likely knew many words that he didn’t use in his works, so one
can’t just count. If you look at the plot of Fig. 13.4, you can see that a linear regression of count (the number of times a word
is used) against rank (how common a word is, 1–100) is not really useful. The most common words are used very often,
and the number of times a word is used falls off very sharply as one looks at less common words. You can see this effect
in the scatter plot of residual against dependent variable in Fig. 13.4—the residual depends rather strongly on the dependent
variable. This is an extreme example that illustrates how poor linear regressions can be.

However, if we regress log-count against log-rank, we get a very good fit indeed. This suggests that Shakespeare’s word
usage (at least for the 100 most common words) is consistent with Zipf’s law. This gives the relation between frequency f
and rank r for a word as

f / 1

r

s

where s is a constant characterizing the distribution. Our linear regression suggests that s is approximately 1:67 for this data.
In some cases, the natural logic of the problem will suggest variable transformations that improve regression performance.

For example, one could argue that humans have approximately the same density, and so that weight should scale as the cube
of height; in turn, this suggests that one regress weight against the cube root of height. Figure 13.5 shows the result of this
transformation on the fish data, where it appears to help a lot. Generally, shorter people tend not to be scaled versions of taller
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Fig. 13.4 On the left, word count plotted against rank for the 100 most common words in Shakespeare, using a dataset that comes with R (called
“bard”, and quite likely originating in an unpublished report by J. Gani and I. Saunders). I show a regression line too. This is a poor fit by eye,
and the R2 is poor, too (R2 D 0:1). On the right, log word count plotted against log rank for the 100 most common words in Shakespeare, using a
dataset that comes with R (called “bard”, and quite likely originating in an unpublished report by J. Gani and I. Saunders). The regression line is
very close to the data

people, so the cube root might be too aggressive. The body mass index (BMI: a controversial but not completely pointless
measure of the relationship between weight and height) uses the square root.

Remember this: The performance of a regression can be improved by transforming variables. Transformations can
follow from looking at plots, or thinking about the logic of the problem

13.4.2 ProblemData Points Have Significant Impact

Outlying data points can significantly weaken the usefulness of a regression. For some regression problems, we can identify
data points that might be a problem, and then resolve how to deal with them. One possibility is that they are true outliers—
someone recorded a data item wrong, or they represent an effect that just doesn’t occur all that often. Another is that they
are important data, and our linear model may not be good enough. If the data points really are outliers, we can drop them
from the data set. If they aren’t, we may be able to improve the regression by transforming features or by finding a new
explanatory variable.

When we construct a regression, we are solving for the ˇ that minimizes
P

i.yi � xT
i ˇ/2, equivalently for the ˇ that

produces the smallest value of
P

i e2
i . This means that residuals with large value can have a very strong influence on the

outcome—we are squaring that large value, resulting in an enormous value. Generally, many residuals of medium size will
have a smaller cost than one large residual and the rest tiny. As Fig. 13.6 illustrates, this means that a data point that lies far
from the others can swing the regression line significantly (which affects the residual, Fig. 13.7).

This creates a problem, because data points that are very different from most others (sometimes called outliers) can also
have the highest influence on the outcome of the regression. Figure 13.8 shows this effect for a simple case. When we have
only one explanatory variable, there’s an easy method to spot problem data points. We produce a scatter plot and a regression
line, and the difficulty is usually obvious. In particularly tricky cases, printing the plot and using a see-through ruler to draw
a line by eye can help (if you use an opaque ruler, you may not see some errors).
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Fig. 13.5 Two variable transformations on the perch dataset. On the top left, weight predicted from length cubed; on the top right, cube root of
weight predicted from length. On the bottom corresponding plots transformed to weight-length coordinates (you need to look very closely to see
the differences). The non-linear transformation helps significantly

These data points can come from many sources. They may simply be errors. Failures of equipment, transcription errors,
someone guessing a value to replace lost data, and so on are some methods that might produce outliers. Another possibility
is your understanding of the problem is wrong. If there are some rare effects that are very different than the most common
case, you might see outliers. Major scientific discoveries have resulted from investigators taking outliers seriously, and trying
to find out what caused them (though you shouldn’t see a Nobel prize lurking behind every outlier).

What to do about outliers is even more fraught. The simplest strategy is to find them, then remove them from the data.
For low dimensional models, you can do this by plotting data and predictions, then looking for problems. There are other
methods, but they are too complicated for us. You should be aware that this strategy can get dangerous fairly quickly, whether
you use a simple or a sophisticated method. First, you might find that each time you remove a few problematic data points,
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Fig. 13.6 On the left, a synthetic dataset with one independent and one explanatory variable, with the regression line plotted. Notice the line is
close to the data points, and its predictions seem likely to be reliable. On the right, the result of adding a single outlying datapoint to that dataset.
The regression line has changed significantly, because the regression line tries to minimize the sum of squared vertical distances between the data
points and the line. Because the outlying datapoint is far from the line, the squared vertical distance to this point is enormous. The line has moved
to reduce this distance, at the cost of making the other points further from the line

Weight against height, all points

Height

W
ei

gh
t

30 40 50 60 70 80 100 150 200 250

10
0

15
0

20
0

25
0

30
0

35
0

−
50

0
50

10
0

15
0

Residuals against fitted values, weight against height,
all points

Fitted values

R
es

id
ua

ls

Fig. 13.7 On the left, weight regressed against height for the bodyfat dataset. The line doesn’t describe the data particularly well, because it
has been strongly affected by a few data points (filled-in markers). On the right, a scatter plot of the residual against the value predicted by the
regression. This doesn’t look like noise, which is a sign of trouble

some more data points look strange to you. This process is unlikely to end well. Second, you should be aware that throwing
out outliers can increase your future prediction error, particularly if they’re caused by real effects. An alternative strategy is
to build methods that can either discount or model the effects of outliers.
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Fig. 13.8 On the left, weight regressed against height for the bodyfat dataset. I have now removed the four suspicious looking data points,
identified in Fig. 13.7 with filled-in markers; these seemed the most likely to be outliers. On the right, a scatter plot of the residual against the value
predicted by the regression. Notice that the residual looks like noise. The residual seems to be uncorrelated to the predicted value; the mean of
the residual seems to be zero; and the variance of the residual doesn’t depend on the predicted value. All these are good signs, consistent with our
model, and suggest the regression will yield good predictions

Remember this: Outliers can affect linear regressions significantly. Usually, if you can plot the regression, you can
look for outliers by eyeballing the plot. Other methods exist, but are beyond the scope of this text.

13.4.3 Functions of One Explanatory Variable

Imagine we have only one measurement to form explanatory variables. For example, in the perch data of Fig. 13.1, we have
only the length of the fish. If we evaluate functions of that measurement, and insert them into the vector of explanatory
variables, the resulting regression is still easy to plot. It may also offer better predictions. The fitted line of Fig. 13.1 looks
quite good, but the data points look as though they might be willing to follow a curve. We can get a curve quite easily. Our
current model gives the weight as a linear function of the length with a noise term (which we wrote yi D ˇ1xi C ˇ0 C �i).
But we could expand this model to incorporate other functions of the length. In fact, it’s quite surprising that the weight of a
fish should be predicted by its length. If the fish doubled in each direction, say, its weight should go up by a factor of eight.
The success of our regression suggests that fish do not just scale in each direction as they grow. But we might try the model
yi D ˇ2x2

i Cˇ1xi Cˇ0 C�i. This is easy to do. The i’th row of the matrix X currently looks like Œxi; 1�. We build a new matrix
X .b/, where the i’th row is Œx2

i ; xi; 1�, and proceed as before. This gets us a new model. The nice thing about this model is that
it is easy to plot—our predicted weight is still a function of the length, it’s just not a linear function of the length. Several
such models are plotted in Fig. 13.9.

You should notice that it can be quite easy to add a lot of functions like this (in the case of the fish, I tried x3
i as well).

However, it’s hard to decide whether the regression has actually gotten better. The least-squares error on the training data
will never go up when you add new explanatory variables, so the R2 will never get worse. This is easy to see, because you
could always use a coefficient of zero with the new variables and get back the previous regression. However, the models that
you choose are likely to produce worse and worse predictions as you add explanatory variables. Knowing when to stop can
be tough, though it’s sometimes obvious that the model is untrustworthy (Fig. 13.9).
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Fig. 13.9 On the left, several different models predicting fish weight from length. The line uses the explanatory variables 1 and xi; and the curves
use other monomials in xi as well, as shown by the legend. This allows the models to predict curves that lie closer to the data. It is important to
understand that, while you can make a curve go closer to the data by inserting monomials, that doesn’t mean you necessarily have a better model.
On the right, I have used monomials up to x10

i . This curve lies very much closer to the data points than any on the other side, at the cost of some
very odd looking wiggles in between data points (look at small lengths; the model goes quite strongly negative there, but I can’t bring myself to
change the axes and show predictions that are obvious nonsense). I can’t think of any reason that these structures would come from true properties
of fish, and it would be hard to trust predictions from this model

Remember this: If you have only one measurement, you can construct a high dimensional x by using functions of that
measurement. This produces a regression that has many explanatory variables, but is still easy to plot. Knowing when
to stop is hard. An understanding of the problem is helpful.

13.4.4 Regularizing Linear Regressions

When we have many explanatory variables, some might be significantly correlated. This means that we can predict, quite
accurately, the value of one explanatory variable using the values of the other variables. This means there must be a vector
w so that Xw is small (exercises). In turn, that wTX TXw must be small, so that X TX has some small eigenvalues. These
small eigenvalues lead to bad predictions, as follows. The vector w has the property that X TXw is small. This means that
X TX . Ǒ C w/ is not much different from X TX Ǒ (equivalently, the matrix can turn large vectors into small ones). All this
means that .X TX /�1 will turn some small vectors into big ones. A small change in X TY can lead to a large change in the
estimate of Ǒ.

This is a problem, because we can expect that different samples from the same data will have somewhat different values
of X TY. For example, imagine the person recording fish measurements in Lake Laengelmavesi recorded a different set of
fish; we expect changes in X and Y. But, if X TX has small eigenvalues, these changes could produce large changes in our
model (Figs. 13.10 and 13.11).

The problem is relatively easy to control. When there are small eigenvalues in X TX , we expect that Ǒ will be large
(because we can add components in the direction of w without changing all that much), and the largest components in Ǒ
might be very inaccurately estimated. If we are trying to predict new y values, we expect that large components in Ǒ turn into
large errors in prediction (exercises).
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Fig. 13.10 On the left, cross-validated error estimated for different choices of regularization constant for a linear regression of weight against
height for the bodyfat dataset, with four outliers removed. The horizontal axis is log regression constant; the vertical is cross-validated error. The
mean of the error is shown as a spot, with vertical error bars. The vertical lines show a range of reasonable choices of regularization constant (left
yields the lowest observed error, right the error whose mean is within one standard error of the minimum). On the right, two regression lines on a
scatter plot of this dataset; one is the line computed without regularization, the other is obtained using the regularization parameter that yields the
lowest observed error. In this case, the regularizer doesn’t change the line much, but may produce improved values on new data (notice how the
cross-validated error is fairly flat with low values of the regularization constant)

An important and useful way to suppress these errors is to try to find a Ǒ that isn’t large, and also gives a low error. We
can do this by regularizing, using the same trick we saw in the case of classification. Instead of choosing the value of ˇ that
minimizes �

1

N

�
.y � Xˇ/T.y � Xˇ/

we minimize

�
1

N

�
.y � Xˇ/T.y � Xˇ/ C �ˇTˇ

Error C Regularizer

Here � > 0 is a constant (the regularization weight, though it’s pretty widely known as �) that weights the two requirements
(small error; small Ǒ) relative to one another. Notice also that dividing the total error by the number of data points means
that our choice of � shouldn’t be affected by changes in the size of the data set.

Regularization helps deal with the small eigenvalue, because to solve for ˇ we must solve the equation

��
1

N

�
X TX C �I

	
Ǒ D

�
1

N

�
X Ty

(obtained by differentiating with respect to ˇ and setting to zero) and the smallest eigenvalue of the matrix .
�

1
N

�
.X TX C�I/

will be at least � (exercises). Penalizing a regression with the size of ˇ in this way is sometimes known as ridge regression.
The value of � that is most helpful depends on the dataset. Typically, one sets up a range of values, then searches, using
cross-validation to estimate the error.
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Fig. 13.11 Regularization doesn’t make outliers go away. On the left, cross-validated error estimated for different choices of regularization
constant for a linear regression of weight against height for the bodyfat dataset, with all points. The horizontal axis is log regression constant; the
vertical is cross-validated error. The mean of the error is shown as a spot, with vertical error bars. The vertical lines show a range of reasonable
choices of regularization constant (left yields the lowest observed error, right the error whose mean is within one standard error of the minimum).
On the right, two regression lines on a scatter plot of this dataset; one is the line computed without regularization, the other is obtained using the
regularization parameter that yields the lowest observed error. In this case, the regularizer doesn’t change the line much, but may produce improved
values on new data (notice how the cross-validated error is fairly flat with low values of the regularization constant)

Worked example 13.1 (Predicting the Weight of a Fish with Regularized Linear Regression) We have already
seen how to predict the weight of a fish using different powers of its length (Sects. 13.4.1 and 13.4.3; Fig. 13.9).
Section 13.4.3 showed that using too many powers would likely lead to poor predictions on test data. Show that
regularization can be used to control this problem.

Solution The main point of this example is how useful good statistical software can be, and to draw your attention to
an excellent package. The package I use for regressions, glmnet, will choose a good range of regularization weights
(�’s) and compute estimates of the mean and standard deviation of the squared cross-validated error for various values
in that range. It then prepares a nice plot of this information, which makes the impact of the regularization clear. I’ve
shown such a plot in Fig. 13.12. In this problem, quite a large value of the regularization constant produces the best
result. I’ve also show a plot of the predictions made, with the coefficients of each power of length used in the regression
for the best value of the regularization constant. You should notice that the coefficient of length and its square are fairly
high, there’s a small value of the coefficient for the cube of length, and for higher powers the coefficients are pretty
tiny. If you’re careful, you’ll check that the coefficients are small compared to the scale of the numbers (because the
10’th power of 20, say, is big). The curve has no wiggles in it, because these coefficients mean that high powers make
almost no contribution to its shape.

We choose � in the same way we used for classification; split the training set into a training piece and a validation piece,
train for different values of �, and test the resulting regressions on the validation piece. The error is a random variable,
random because of the random split. It is a fair model of the error that would occur on a randomly chosen test example
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Fig. 13.12 Regularization can be a significant help when there are many predictors. On the left, the glmnet plot of cross-validated prediction error
against log regularization coefficient for the perch data of Fig. 13.9. The set of independent variables includes all powers of length up to 10 (as in
the wiggly graph on the right of Fig. 13.9). Notice that the regularization coefficient that yields the smallest error is quite large (the horizontal axis
is on a logarithmic scale). On the right, the curve of predicted values. The cross-validated error chooses a regularization constant that discourages
wiggles; inspecting the coefficients, shown in the inset, shows that high powers of length are firmly suppressed

(assuming that the training set is “like” the test set, in a way that I do not wish to make precise yet). We could use multiple
splits, and average over the splits. Doing so yields both an average error for a value of � and an estimate of the standard
deviation of error.

Statistical software will do all the work for you. I used the glmnet package in R; this package is available in Matlab,
too. There are likely other such packages. Figure 13.10 shows an example, for weight regressed against height. Notice the
regularization doesn’t change the model (plotted in the figure) all that much. For each value of � (horizontal axis), the method
has computed the mean error and standard deviation of error using cross-validation splits, and displays these with error bars.
Notice that � D 0 yields poorer predictions than a larger value; large Ǒ really are unreliable. Notice that now there is now no
� that yields the smallest validation error, because the value of error depends on the random splits used in cross-validation.
A reasonable choice of � lies between the one that yields the smallest error encountered (one vertical line in the plot) and
the largest value whose mean error is within one standard deviation of the minimum (the other vertical line in the plot).

All this is quite similar to regularizing a classification problem. We started with a cost function that evaluated the errors
caused by a choice of ˇ, then added a term that penalized ˇ for being “large”. This term is the squared length of ˇ, as a
vector. It is sometimes known as the L2 norm of the vector.

Remember this: The performance of a regression can be improved by regularizing, particularly if some explanatory
variables are correlated. The procedure is similar to that used for classification.

13.5 Exploiting Your Neighbors for Regression

Nearest neighbors can clearly predict a number for a query example—you find the closest training example, and report its
number. This would be one way to use nearest neighbors for regression, but it isn’t terribly effective. One important difficulty
is that the regression prediction is piecewise constant (Fig. 13.13). If there is an immense amount of data, this may not present
major problems, because the steps in the prediction will be small and close together. But it’s not generally an effective use
of data.
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Fig. 13.13 Different forms of nearest neighbors regression, predicting y from a one-dimensional x, using a total of 40 training points. Top left:
reporting the nearest neighbor leads to a piecewise constant function. Top right: improvements are available by forming a weighted average of the
five nearest neighbors, using inverse distance weighting or exponential weighting with three different scales. Notice if the scale is small, then the
regression looks a lot like nearest neighbors, and if it is too large, all the weights in the average are nearly the same (which leads to a piecewise
constant structure in the regression). Bottom left and bottom right show that using more neighbors leads to a smoother regression

A more effective strategy is to find several nearby training examples, and use them to produce an estimate. This approach
can produce very good regression estimates, because every prediction is made by training examples that are near to the query
example. However, producing a regression estimate is expensive, because for every query one must find the nearby training
examples.

Write x for the query point, and assume that we have already collected the N nearest neighbors, which we write xi. Write
yi for the value of the dependent variable for the i’th of these points. Notice that some of these neighbors could be quite far
from the query point. We don’t want distant points to make as much contribution to the model as nearby points. This suggests
forming a weighted average of the predictions of each point. Write wi for the weight at the i’th point. Then the estimate is

ypred D
P

i wiyiP
i wi

:

A variety of weightings are reasonable choices. Write di D jj.x � xi/jj for the distance between the query point and the
i’th nearest neighbor. Then inverse distance weighting uses wi D 1=di. Alternatively, we could use an exponential function
to strongly weight down more distant points, using
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wi D exp

��d2
i

2�2

�
:

We will need to choose a scale � , which can be done by cross-validation. Hold out some examples, make predictions at the
held out examples using a variety of different scales, and choose the scale that gives the best held-out error. Alternatively, if
there are enough nearest neighbors, we could form a distance weighted linear regression, then predict the value at the query
point from that regression.

Each of these strategies presents some difficulties when x has high dimension. In that case, it is usual that the nearest
neighbor is a lot closer than the second nearest neighbor. If this happens, then each of these weighted averages will boil
down to evaluating the dependent variable at the nearest neighbor (because all the others will have very small weight in the
average).

Remember this: Nearest neighbors can be used for regression. In the simplest approach, you find the nearest
neighbor to your feature vector, and take that neighbor’s number as your prediction. More complex approaches smooth
predictions over multiple neighbors.

13.5.1 Using Your Neighbors to Predict More than a Number

Linear regression takes some features and predicts a number. But in practice, one often wants to predict something more
complex than a number. For example, I might want to predict a parse tree (which has combinatorial structure) from a
sentence (the explanatory variables). As another example, I might want to predict a map of the shadows in an image (which
has spatial structure) against an image (the explanatory variables). As yet another example, I might want to predict which
direction to move the controls on a radio-controlled helicopter (which have to be moved together) against a path plan and the
current state of the helicopter (the explanatory variables).

Looking at neighbors is a very good way to solve such problems. The general strategy is relatively simple. We find a
large collection of pairs of training data. Write xi for the explanatory variables for the i’th example, and yi for the dependent
variable in the i’th example. This dependent variable could be anything—it doesn’t need to be a single number. It might be a
tree, or a shadow map, or a word, or anything at all. I wrote it as a vector because I needed to choose some notation.

In the simplest, and most general, approach, we obtain a prediction for a new set of explanatory variables x by (a) finding
the nearest neighbor and then (b) producing the dependent variable for that neighbor. We might vary the strategy slightly by
using an approximate nearest neighbor. If the dependent variables have enough structure that it is possible to summarize a
collection of different dependent variables, then we might recover the k nearest neighbors and summarize their dependent
variables. How we summarize rather depends on the dependent variables. For example, it is a bit difficult to imagine the
average of a set of trees, but quite straightforward to average images. If the dependent variable was a word, we might not
be able to average words, but we can vote and choose the most popular word. If the dependent variable is a vector, we can
compute either distance weighted averages or a distance weighted linear regression.

Remember this: Nearest neighbors can be used to predict more than numbers.

13.6 You Should

13.6.1 Remember These Definitions

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308



324 13 Regression

13.6.2 Remember These Terms

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
training examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
test examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
dependent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
mean square error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Zipf’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
regularization weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
L2 norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

13.6.3 Remember These Facts

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

13.6.4 Remember These Procedures

To regress using least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Appendix: Data

Table 13.1 A table showing the amount of hormone remaining and the time in service for devices from lot A, lot B and lot C

Batch A Batch B Batch C

Amount of Time in Amount of Time in Amount of Time in

hormone service hormone service hormone service

25.8 99 16.3 376 28.8 119

20.5 152 11.6 385 22.0 188

14.3 293 11.8 402 29.7 115

23.2 155 32.5 29 28.9 88

20.6 196 32.0 76 32.8 58

31.1 53 18.0 296 32.5 49

20.9 184 24.1 151 25.4 150

20.9 171 26.5 177 31.7 107

30.4 52 25.8 209 28.5 125

The numbering is arbitrary (i.e. there’s no relationship between device 3 in lot A and device 3 in lot B). We expect that the amount of hormone goes
down as the device spends more time in service, so cannot compare batches just by comparing numbers. This data appeared in “Computer-Intensive
methods in statistical regression”, B. Efron, SIAM Review, 1988, and is used for Fig. 13.3
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Fig. 13.14 A regression of
blood pressure against age, for 30
data points
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Fig. 13.15 A regression of the
number of breeding pairs of
kittiwakes against the area of an
island, for 22 data points
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Problems

13.1 Figure 13.14 shows a linear regression of systolic blood pressure against age. There are 30 data points.

(a) Write ei D yi � xT
i ˇ for the residual. What is the mean .feg/ for this regression?

(b) For this regression, var .fyg/ D 509 and the R2 is 0.4324. What is var .feg/ for this regression?
(c) How well does the regression explain the data?
(d) What could you do to produce better predictions of blood pressure (without actually measuring blood pressure)?

13.2 At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset collected by D.K. Cairns in 1988 measuring
the area available for a seabird (black-legged kittiwake) colony and the number of breeding pairs for a variety of different
colonies. Figure 13.15 shows a linear regression of the number of breeding pairs against the area. There are 22 data points.

(a) Write ei D yi � xT
i ˇ for the residual. What is the mean .feg/ for this regression?

(b) For this regression, var .fyg/ D 16;491;357 and the R2 is 0.62. What is var .feg/ for this regression?
(c) How well does the regression explain the data? If you had a large island, to what extent would you trust the prediction

for the number of kittiwakes produced by this regression? If you had a small island, would you trust the answer more?

http://www.statsci.org/data/general/kittiwak.html


326 13 Regression

Population vs log area for kittiwake colonies
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Fig. 13.16 Left: A regression of the number of breeding pairs of kittiwakes against the log of area of an island, for 22 data points. Right: A
regression of the number of breeding pairs of kittiwakes against the log of area of an island, for 22 data points, using a method that ignores two
likely outliers
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Fig. 13.17 Left: A regression of the concentration of sulfate in the blood of Brunhilda the baboon against time. Right: For this regression, a plot
of residual against fitted value

13.3 At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset collected by D.K. Cairns in 1988 measuring
the area available for a seabird (black-legged kittiwake) colony and the number of breeding pairs for a variety of different
colonies. Figure 13.16 shows a linear regression of the number of breeding pairs against the log of area. There are 22 data
points.

(a) Write ei D yi � xT
i ˇ for the residual. What is the mean .feg/ for this regression?

http://www.statsci.org/data/general/kittiwak.html
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(b) For this regression, var .fyg/ D 16;491;357 and the R2 is 0.31. What is var .feg/ for this regression?
(c) How well does the regression explain the data? If you had a large island, to what extent would you trust the prediction for

the number of kittiwakes produced by this regression? If you had a small island, would you trust the answer more? Why?
(d) Figure 13.16 shows the result of a linear regression that ignores two likely outliers. Would you trust the predictions of

this regression more? Why?

13.4 At http://www.statsci.org/data/general/brunhild.html, you will find a dataset that measures the concentration of a
sulfate in the blood of a baboon named Brunhilda as a function of time. Figure 13.17 plots this data, with a linear regression
of the concentration against time. I have shown the data, and also a plot of the residual against the predicted value. The
regression appears to be unsuccessful.

(a) What suggests the regression has problems?
(b) What is the cause of the problem, and why?
(c) What could you do to improve the problems?

13.5 Assume we have a dataset where Y D Xˇ C � , for some unknown ˇ and � . The term � is a normal random variable
with zero mean, and covariance �2I (i.e. this data really does follow our model).

(a) Write Ǒ for the estimate of ˇ recovered by least squares, and OY for the values predicted by our model for the training
data points. Show that

OY D X �X TX ��1 X TY

(b) Show that
EŒOyi � yi� D 0

for each training data point yi, where the expectation is over the probability distribution of � .
(c) Show that

E
h
. Ǒ � ˇ/

i
D 0

where the expectation is over the probability distribution of � .

13.6 In this exercise, I will show that the prediction process of Chap. 2 (see page 42) is a linear regression with two
independent variables. Assume we have N data items which are 2-vectors .x1; y1/; : : : ; .xN ; yN/, where N > 1. These could
be obtained, for example, by extracting components from larger vectors. As usual, we will write Oxi for xi in normalized
coordinates, and so on. The correlation coefficient is r (this is an important, traditional notation).

(a) Assume that we have an xo, for which we wish to predict a y value. Show that the value of the prediction obtained using
the method of page 43 is

ypred D std .y/

std .x/
r.x0 � mean .fxg// C mean .fyg/

D
�

std .y/

std .x/
r

�
x0 C

�
mean .fyg/ � std .x/

std .y/
mean .fxg/

�
:

(b) Show that

r D mean .f.x � mean .fxg//.y � mean .fyg//g/
std .x/std .y/

D mean .fxyg/ � mean .fxg/mean .fyg/
std .x/std .y/

:

(c) Now write

http://www.statsci.org/data/general/brunhild.html
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X D

0

BB@

x1 1

x2 1

: : : : : :

xn 1

1

CCA and Y D

0

BB@

y1

y2

: : :

yn

1

CCA :

The coefficients of the linear regression will be Ǒ, where X TX Ǒ D X TY. Show that

X TX D N

�
mean

�˚
x2

�

mean .fxg/
mean .fxg/ 1

�

D N

�
std .x/2 C mean .fxg/2 mean .fxg/
mean .fxg/ 1

�

(d) Now show that

X TY D N

�
mean .fxyg/
mean .fyg/

�

D N

�
std .x/std .y/r C mean .fxg/mean .fyg/
mean .fyg/

�
:

(e) Now show that
�X TX ��1 D 1

N

1

std .x/2

�
1 �mean .fxg/
�mean .fxg/ std .x/2 C mean .fxg/2

�

(f) Now (finally!) show that if Ǒ is the solution to X TX Ǒ � X TY D 0, then

Ǒ D
 

r std.y/

std.x/

mean .fyg/ �
�

r std.y/

std.x/

�
mean .fxg/

!

and use this to argue that the process of page 42 is a linear regression with two independent variables.

13.7 This exercise investigates the effect of correlation on a regression. Assume we have N data items, .xi; yi/. We will
investigate what happens when the data have the property that the first component is relatively accurately predicted by the
other components. Write xi1 for the first component of xi, and xi;O1 for the vector obtained by deleting the first component of
xi. Choose u to predict the first component of the data from the rest with minimum error, so that xi1 D xT

iO1u C wi. The error

of prediction is wi. Write w for the vector of errors (i.e. the i’th component of w is wi). Because wTw is minimized by choice
of u, we have wT1 D 0 (i.e. the average of the wi’s is zero). Assume that these predictions are very good, so that there is
some small positive number � so that wTw � �.

(a) Write a D Œ�1; u�T . Show that
aTX TXa � �:

(b) Now show that the smallest eigenvalue of X TX is less than or equal to �.
(c) Assume that Ǒ is the solution to X TX Ǒ D X TY. Show that there is a unit vector v such that

.X TY � X TX . Ǒ C v//T.X TY � X TX . Ǒ C v//

is bounded above by
�2

(d) Use the last sub exercises to explain why correlated data will lead to a poor estimate of Ǒ.
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13.8 This exercise explores the effect of regularization on a regression. Assume we have N data items, .xi; yi/. We will
investigate what happens when the data have the property that the first component is relatively accurately predicted by the
other components. Write xi1 for the first component of xi, and xi;O1 for the vector obtained by deleting the first component of
xi. Choose u to predict the first component of the data from the rest with minimum error, so that xi1 D xT

iO1u C wi. The error

of prediction is wi. Write w for the vector of errors (i.e. the i’th component of w is wi). Because wTw is minimized by choice
of u, we have wT1 D 0 (i.e. the average of the wi’s is zero). Assume that these predictions are very good, so that there is
some small positive number � so that wTw � �.

(a) Show that X TX is positive semi-definite, and so all its eigenvalues are non-negative.
(b) Show that, for any vector v,

vT
�X TX C �I� v � �vTv

and use this to argue that the smallest eigenvalue of
�X TX C �I� is greater than �.

(c) Write b for an eigenvector of X TX with eigenvalue �b. Show that b is an eigenvector of
�X TX C �I� with eigenvalue

�b C �.
(d) Assume that X TX is positive definite and has no repeated eigenvalues (this doesn’t affect the point of this exercise,

but it greatly simplifies the reasoning). Recall X TX is a d � d matrix which is symmetric, and so has d orthonormal
eigenvectors. Write bi for the i’th such vector, and �bi for the corresponding eigenvalue. Show that

X TXˇ � X TY D 0

is solved by

ˇ D
dX

iD1

�
YTXbi

�
bi

�bi

:

(Hint: an easy way to do this is to show that the eigenvectors are an orthonormal basis for d dimensional space, and that�X TXˇ � X TY
�

bi D 0 for any i.)
(e) Using the notation of the previous sub exercise, show that

.X TX C �I/ˇ � X TY D 0

is solved by

ˇ D
dX

iD1

�
YTXbi

�
bi

�bi C �
:

Use this expression to explain why a regularized regression may produce better results on test data than an unregularized
regression.
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13.9 At http://www.statsci.org/data/general/brunhild.html, you will find a dataset that measures the concentration of a sulfate
in the blood of a baboon named Brunhilda as a function of time. Build a linear regression of the log of the concentration
against the log of time.

(a) Prepare a plot showing (a) the data points and (b) the regression line in log-log coordinates.
(b) Prepare a plot showing (a) the data points and (b) the regression curve in the original coordinates.
(c) Plot the residual against the fitted values in log-log and in original coordinates.
(d) Use your plots to explain whether your regression is good or bad and why.

13.10 At http://www.statsci.org/data/oz/physical.html, you will find a dataset of measurements by M. Larner, made in 1996.
These measurements include body mass, and various diameters. Build a linear regression of predicting the body mass from
these diameters.

http://www.statsci.org/data/general/brunhild.html
http://www.statsci.org/data/oz/physical.html
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(a) Plot the residual against the fitted values for your regression.
(b) Now regress the cube root of mass against these diameters. Plot the residual against the fitted values in both these cube

root coordinates and in the original coordinates.
(c) Use your plots to explain which regression is better.

13.11 At https://archive.ics.uci.edu/ml/datasets/Abalone, you will find a dataset of measurements by W. J. Nash, T. L.
Sellers, S. R. Talbot, A. J. Cawthorn and W. B. Ford, made in 1992. These are a variety of measurements of blacklip
abalone (Haliotis rubra; delicious by repute) of various ages and genders.

(a) Build a linear regression predicting the age from the measurements, ignoring gender. Plot the residual against the fitted
values.

(b) Build a linear regression predicting the age from the measurements, including gender. There are three levels for gender;
I’m not sure whether this has to do with abalone biology or difficulty in determining gender. You can represent gender
numerically by choosing one for one level, 0 for another, and -1 for the third. Plot the residual against the fitted values.

(c) Now build a linear regression predicting the log of age from the measurements, ignoring gender. Plot the residual against
the fitted values.

(d) Now build a linear regression predicting the log age from the measurements, including gender, represented as above.
Plot the residual against the fitted values.

(e) It turns out that determining the age of an abalone is possible, but difficult (you section the shell, and count rings). Use
your plots to explain which regression you would use to replace this procedure, and why.

(f) Can you improve these regressions by using a regularizer? Use glmnet to obtain plots of the cross-validated prediction
error.

https://archive.ics.uci.edu/ml/datasets/Abalone
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