
10Extracting Important Relationships in High Dimensions

Chapter 2 described methods to explore the relationship between two elements in a dataset. We could extract a pair of
elements and construct various plots. For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to deal with, and it is hard to plot d-dimensional
vectors.

To really get what is going on we need methods that can represent all relationships in a dataset in one go. These methods
visualize the dataset as a “blob” in a d-dimensional space. Many such blobs are flattened in some directions, because
components of the data are strongly correlated. Finding the directions in which the blobs are flat yields methods to compute
lower dimensional representations of the dataset. This analysis yields an important practical fact. Most high dimensional
datasets consist of low dimensional data in a high dimensional space (think of a line in 3D). Such datasets can be represented
accurately using a small number of directions. Finding these directions will give us considerable insight into the structure of
high dimensional datasets.

10.1 Summaries and Simple Plots

In this chapter, we assume that our data items are vectors. This means that we can add and subtract values and multiply values
by a scalar without any distress. This is an important assumption, but it doesn’t necessarily mean that data is continuous (for
example, you can meaningfully add the number of children in one family to the number of children in another family). It
does rule out a lot of discrete data. For example, you can’t add “sports” to “grades” and expect a sensible answer.

When we plotted histograms, we saw that mean and variance were a very helpful description of data that had a unimodal
histogram. If the histogram had more than one mode, one needed to be somewhat careful to interpret the mean and variance;
in the pizza example, we plotted diameters for different manufacturers to try and see the data as a collection of unimodal
histograms. In higher dimensions, the analogue of a unimodal histogram is a “blob”—a group of data points that clusters
nicely together and should be understood together.

You might not believe that “blob” is a technical term, but it’s quite widely used. This is because it is relatively easy to
understand a single blob of data. There are good summary representations (mean and covariance, which I describe below).
If a dataset forms multiple blobs, we can usually coerce it into a representation as a collection of blobs (using the methods
of Chap. 12). But many datasets really are single blobs, and we concentrate on such data here. There are quite useful tricks
for understanding blobs of low dimension by plotting them, which I describe below. To understand a high dimensional blob,
we will need to think about the coordinate transformations that places it into a particularly convenient form.

Notation: Our data items are vectors, and we write a vector as x. The data items are d-dimensional, and there are N of
them. The entire data set is fxg. When we need to refer to the i’th data item, we write xi. We write fxig for a new dataset made
up of N items, where the i’th item is xi. If we need to refer to the j’th component of a vector xi, we will write x.j/

i (notice this
isn’t in bold, because it is a component not a vector, and the j is in parentheses because it isn’t a power). Vectors are always
column vectors.
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226 10 Extracting Important Relationships in High Dimensions

10.1.1 TheMean

For one-dimensional data, we wrote

mean .fxg/ D
P

i xi

N
:

This expression is meaningful for vectors, too, because we can add vectors and divide by scalars. We write

mean .fxg/ D
P

i xi

N

and call this the mean of the data. Notice that each component of mean .fxg/ is the mean of that component of the data.
There is not an easy analogue of the median, however (how do you order high dimensional data?) and this is a nuisance.
Notice that, just as for the one-dimensional mean, we have

mean .fx � mean .fxg/g/ D 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

10.1.2 Stem Plots and Scatterplot Matrices

Plotting high dimensional data is tricky. If there are relatively few dimensions, you could just choose two (or three) of them
and produce a 2D (or 3D) scatterplot. Figure 10.1 shows such a scatterplot, for data that was originally four dimensional.
This is the famous Iris dataset, collected by Edgar Anderson in 1936, and made popular amongst statisticians by Ronald
Fisher in that year. I found a copy at the UC Irvine repository of datasets that are important in machine learning. You can
find the repository at http://archive.ics.uci.edu/ml/index.html.

Sepal.Length

P
et

al
.L

en
gt

h

1

2

3

4

5

6

7

5 6 7 8

setosa versicolor virginica

Sepal.Length
Petal.Width

Petal.Length

setosa versicolor virginica

Fig. 10.1 Left: a 2D scatterplot for the famous Iris data. I have chosen two variables from the four, and have plotted each species with a different
marker. Right: a 3D scatterplot for the same data. You can see from the plots that the species cluster quite tightly, and are different from one
another. If you compare the two plots, you can see how suppressing a variable leads to a loss of structure. Notice that, on the left, some crosses lie
on top of boxes; you can see that this is an effect of projection by looking at the 3D picture (for each of these data points, the petal widths are quite
different). You should worry that leaving out the last variable might have suppressed something important like this

http://archive.ics.uci.edu/ml/index.html
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Fig. 10.2 On the left, a stem plot of the mean of all data items in the wine dataset, from http://archive.ics.uci.edu/ml/datasets/Wine. On the right,
I have overlaid stem plots of each class mean from the wine dataset, from http://archive.ics.uci.edu/ml/datasets/Wine, so that you can see the
differences between class means

Another simple but useful plotting mechanism is the stem plot. This is can be a useful way to plot a few high dimensional
data points. One plots each component of the vector as a vertical line, typically with a circle on the end (easier seen than said;
look at Fig. 10.2). The dataset I used for this is the wine dataset, again from the UC Irvine machine learning data repository
(you can find this dataset at http://archive.ics.uci.edu/ml/datasets/Wine). For each of three types of wine, the data records the
values of 13 different attributes. In the figure, I show the overall mean of the dataset, and also the mean of each type of wine
(also known as the class means, or class conditional means). A natural way to compare class means is to plot them on top of
one another in a stem plot (Fig. 10.2).

Another strategy that is very useful when there aren’t too many dimensions is to use a scatterplot matrix. To build one,
you lay out scatterplots for each pair of variables in a matrix. On the diagonal, you name the variable that is the vertical axis
for each plot in the row, and the horizontal axis in the column. This sounds more complicated than it is; look at the example
of Fig. 10.3, which shows both a 3D scatter plot and a scatterplot matrix for the same dataset.

Figure 10.4 shows a scatter plot matrix for four of the variables in the height-weight dataset of http://www2.stetson.edu/~
jrasp/data.htm (look for bodyfat.xls at that URL). This is originally a 16-dimensional dataset, but a 16 by 16 scatterplot
matrix is squashed and hard to interpret. For Fig. 10.4, you can see that weight and adiposity appear to show quite strong
correlations, but weight and age are pretty weakly correlated. Height and age seem to have a low correlation. It is also easy
to visualize unusual data points. Usually one has an interactive process to do so—you can move a “brush” over the plot to
change the color of data points under the brush.

10.1.3 Covariance

Variance, standard deviation and correlation can each be obtained by performing a more general operation on data. We have
a dataset fxg of N vectors xi, and we are interested in relationships between the j’th and the k’th components. As with
correlation, we would like to know whether one component tends to be large (resp. small) when the other is large. Remember
that I write x.j/

i for the j’th component of the i’th vector.

Definition 10.1 (Covariance) We compute the covariance by

cov .fxg I j; k/ D
P

i

�
x.j/

i � mean
�˚

x.j/
��� �

x.k/
i � mean

�˚
x.k/

���

N

http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm
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Fig. 10.3 Left: the 3D scatterplot of the iris data of Fig. 10.1, for comparison. Right: a scatterplot matrix for the Iris data. There are four variables,
measured for each of three species of iris. I have plotted each species with a different marker. You can see from the plot that the species cluster
quite tightly, and are different from one another

Just like mean, standard deviation and variance, covariance can refer either to a property of a dataset (as in the definition
here) or a particular expectation (as in Chap. 4). From the expression, it should be clear we have seen examples of covariance
already. Notice that

std
�
x.j/

�2 D var
�˚

x.j/
�� D cov .fxg I j; j/

which you can prove by substituting the expressions. Recall that variance measures the tendency of a dataset to be different
from the mean, so the covariance of a dataset with itself is a measure of its tendency not to be constant. More important is
the relationship between covariance and correlation, in the box below.

Remember this:

corr
�˚

.x.j/; x.k//
�� D cov .fxg I j; k/

p
cov .fxg I j; j/

p
cov .fxg I k; k/

This is occasionally a useful way to think about correlation. It says that the correlation measures the tendency of fxg and
fyg to be larger (resp. smaller) than their means for the same data points, compared to how much they change on their own.

10.1.4 The Covariance Matrix

Working with covariance (rather than correlation) allows us to unify some ideas. In particular, for data items which are
d dimensional vectors, it is straightforward to compute a single matrix that captures all covariances between all pairs of
components—this is the covariance matrix.
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Fig. 10.4 This is a scatterplot matrix for four of the variables in the height weight dataset of http://www2.stetson.edu/~jrasp/data.htm. Each plot
is a scatterplot of a pair of variables. The name of the variable for the horizontal axis is obtained by running your eye down the column; for the
vertical axis, along the row. Although this plot is redundant (half of the plots are just flipped versions of the other half), that redundancy makes it
easier to follow points by eye. You can look at a column, move down to a row, move across to a column, etc. Notice how you can spot correlations
between variables and outliers (the arrows)

Definition 10.2 (Covariance Matrix) The covariance matrix is:

Covmat .fxg/ D
P

i.xi � mean .fxg//.xi � mean .fxg//T

N

Notice that it is quite usual to write a covariance matrix as †, and we will follow this convention.

Covariance matrices are often written as †, whatever the dataset (you get to figure out precisely which dataset is intended,
from context). Generally, when we want to refer to the j, k’th entry of a matrix A, we will write Ajk, so †jk is the covariance
between the j’th and k’th components of the data.

http://www2.stetson.edu/~jrasp/data.htm
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Useful Facts 10.1 (Properties of the Covariance Matrix)

• The j, k’th entry of the covariance matrix is the covariance of the j’th and the k’th components of x, which we write
cov .fxg I j; k/.

• The j, j’th entry of the covariance matrix is the variance of the j’th component of x.
• The covariance matrix is symmetric.
• The covariance matrix is always positive semi-definite; it is positive definite, unless there is some vector a such that

aT.xi � mean .fxig/ D 0 for all i.

Proposition
Covmat .fxg/jk D cov .fxg I j; k/

Proof Recall

Covmat .fxg/ D
P

i.xi � mean .fxg//.xi � mean .fxg//T

N

and the j, k’th entry in this matrix will be

P
i.x

.j/
i � mean

�˚
x.j/

��
/.x.k/

i � mean
�˚

x.k/
��

/T

N

which is cov .fxg I j; k/.

Proposition
Covmat .fxg/jj D †jj D var

�˚
x.j/

��

Proof

Covmat .fxg/jj D cov .fxg I j; j/

D var
�˚

x.j/
��

Proposition
Covmat .fxg/ D Covmat .fxg/T

Proof We have

Covmat .fxg/jk D cov .fxg I j; k/

D cov .fxg I k; j/

D Covmat .fxg/kj
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Proposition Write † D Covmat .fxg/. If there is no vector a such that aT.xi � mean .fxg// D 0 for all i, then for
any vector u, such that jjujj > 0,

uT†u > 0:

If there is such a vector a, then
uT†u � 0:

Proof We have

uT†u D 1

N

X

i

�
uT.xi � mean .fxg//� �

.xi � mean .fxg//Tu
�

D 1

N

X

i

�
uT.xi � mean .fxg//�2

:

Now this is a sum of squares. If there is some a such that aT.xi � mean .fxg// D 0 for every i, then the covariance
matrix must be positive semidefinite (because the sum of squares could be zero in this case). Otherwise, it is positive
definite, because the sum of squares will always be positive.

10.2 UsingMean and Covariance to Understand High Dimensional Data

The trick to interpreting high dimensional data is to use the mean and covariance to understand the blob. Figure 10.5 shows
a two-dimensional data set. Notice that there is obviously some correlation between the x and y coordinates (it’s a diagonal
blob), and that neither x nor y has zero mean. We can easily compute the mean and subtract it from the data points, and this
translates the blob so that the origin is at the mean (Fig. 10.5). The mean of the new, translated dataset is zero.

Notice this blob is diagonal. We know what that means from our study of correlation—the two measurements are
correlated. Now consider rotating the blob of data about the origin. This doesn’t change the distance between any pair
of points, but it does change the overall appearance of the blob of data. We can choose a rotation that means the blob
looks (roughly!) like an axis aligned ellipse. In these coordinates there is no correlation between the horizontal and vertical
components. But one direction has more variance than the other.

It turns out we can extend this approach to high dimensional blobs. We will translate their mean to the origin, then rotate
the blob so that there is no correlation between any pair of distinct components (this turns out to be straightforward, which
may not be obvious to you). Now the blob looks like an axis-aligned ellipsoid, and we can reason about (a) what axes are
“big” and (b) what that means about the original dataset.

10.2.1 Mean and Covariance Under Affine Transformations

We have a d dimensional dataset fxg. An affine transformation of this data is obtained by choosing some matrix A and vector
b, then forming a new dataset fmg, where mi D Axi C b. Here A doesn’t have to be square, or symmetric, or anything else;
it just has to have second dimension d.

It is easy to compute the mean and covariance of fmg. We have

mean .fmg/ D mean .fAx C bg/
D Amean .fxg/ C b;

so you get the new mean by multiplying the original mean by A and adding b.
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Translate center to origin

Fig. 10.5 On the left, a “blob” in two dimensions. This is a set of data points that lie somewhat clustered around a single center, given by the
mean. I have plotted the mean of these data points with a hollow square (it’s easier to see when there is a lot of data). To translate the blob to the
origin, we just subtract the mean from each datapoint, yielding the blob on the right

The new covariance matrix is easy to compute as well. We have:

Covmat .fmg/ D Covmat .fAx C bg/

D
P

i.mi � mean .fmg//.mi � mean .fmg//T

N

D
P

i.Axi C b � Amean .fxg/ � b/.Axi C b � Amean .fxg/ � b/T

N

D A �P
i.xi � mean .fxg//.xi � mean .fxg//T

�AT

N

D ACovmat .fxg/AT :

All this means that we can try and choose affine transformations that yield “good” means and covariance matrices. It is
natural to choose b so that the mean of the new dataset is zero. An appropriate choice of A can reveal a lot of information
about the dataset.

10.2.2 Eigenvectors and Diagonalization

Recall a matrix M is symmetric if M D MT . A symmetric matrix is necessarily square. Assume S is a d � d symmetric
matrix, u is a d � 1 vector, and � is a scalar. If we have

Su D �u

then u is referred to as an eigenvector of S and � is the corresponding eigenvalue. Matrices don’t have to be symmetric to
have eigenvectors and eigenvalues, but the symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there are d distinct eigenvectors that are normal
to one another, and can be scaled to have unit length. They can be stacked into a matrix U D Œu1; : : : ; ud�. This matrix is
orthonormal, meaning that UTU D I.
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This means that there is a diagonal matrix ƒ and an orthonormal matrix U such that

SU D Uƒ:

In fact, there is a large number of such matrices, because we can reorder the eigenvectors in the matrix U , and the equation
still holds with a new ƒ, obtained by reordering the diagonal elements of the original ƒ. There is no reason to keep track of
this complexity. Instead, we adopt the convention that the elements of U are always ordered so that the elements of ƒ are
sorted along the diagonal, with the largest value coming first. This gives us a particularly important procedure.

Procedure 10.1 (Diagonalizing a Symmetric Matrix) We can convert any symmetric matrix S to a diagonal form
by computing

UTSU D ƒ:

Numerical and statistical programming environments have procedures to compute U and ƒ for you. We assume that
the elements of U are always ordered so that the elements of ƒ are sorted along the diagonal, with the largest value
coming first.

Useful Facts 10.2 (Orthonormal Matrices are Rotations)
You should think of orthonormal matrices as rotations, because they do not change lengths or angles. For x a vector, R
an orthonormal matrix, and m D Rx, we have

uTu D xTRTRx D xTIx D xTx:

This means that R doesn’t change lengths. For y, z both unit vectors, we have that the cosine of the angle between
them is

yTx:

By the argument above, the inner product of Ry and Rx is the same as yTx. This means that R doesn’t change angles,
either.

10.2.3 Diagonalizing Covariance by Rotating Blobs

We start with a dataset of N d-dimensional vectors fxg. We can translate this dataset to have zero mean, forming a new
dataset fmg where mi D xi � mean .fxg/. Now recall that, if we were to form a new dataset fag where

ai D Ami

the covariance matrix of fag would be

Covmat .fag/ D ACovmat .fmg/AT

D ACovmat .fxg/AT :

Recall also we can diagonalize Covmat .fmg/ D Covmat .fxg/ to get

UTCovmat .fxg/U D ƒ:
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But this means we could form the dataset frg, using the rule

ri D UTmi D UT.xi � mean .fxg//:

The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat .frg/ D Covmat
�˚UTx

��

D UTCovmat .fxg/U
D ƒ;

where ƒ is a diagonal matrix of eigenvalues of Covmat .fxg/ that we obtained by diagonalization. We now have a very useful
fact about frg: its covariance matrix is diagonal. This means that every pair of distinct components has covariance zero, and
so has correlation zero. Remember that, in describing diagonalization, we adopted the convention that the eigenvectors of
the matrix being diagonalized were ordered so that the eigenvalues are sorted in descending order along the diagonal of ƒ.
Our choice of ordering means that the first component of r has the highest variance, the second component has the second
highest variance, and so on.

The transformation from fxg to frg is a translation followed by a rotation (remember U is orthonormal, and so a rotation).
So this transformation is a high dimensional version of what I showed in Figs. 10.5 and 10.6.

Useful Facts 10.3 (You Can Transform Data to Zero Mean and Diagonal Covariance)
We can translate and rotate any blob of data into a coordinate system where it has (a) zero mean and (b) diagonal
covariance matrix.

Rotate to diagonalize 
covariance

Fig. 10.6 On the left, the translated blob of Fig. 10.5. This blob lies somewhat diagonally, because the vertical and horizontal components are
correlated. On the right, that blob of data rotated so that there is no correlation between these components. We can now describe the blob by
the vertical and horizontal variances alone, as long as we do so in the new coordinate system. In this coordinate system, the vertical variance is
significantly larger than the horizontal variance—the blob is short and wide
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10.2.4 Approximating Blobs

The mean of frg is zero, and the covariance matrix of frg is diagonal. It is quite usual for high dimensional datasets to have a
small number of large values on the diagonal, and a lot of small values. These values give the variance of the corresponding
components of frg. Now imagine choosing a component of frg that has a small variance, and replacing that with zero.
Because this component has zero mean (like every other one), and small variance, replacing it with zero will not result in
much error.

If we can replace components with zero without causing much error, the blob of data is really a low dimensional blob in a
high dimensional space. For example, think about a blob lying along, but very close to the x-axis in 3D. Replacing each data
items y and z values with zero will not change the shape of the blob very much. As a visual example, look at Fig. 10.3; the
scatterplot matrix strongly suggests that the blob of data is flattened (eg look at the petal width vs petal length plot).

The data set frg is d-dimensional. We will try to represent it with an s dimensional dataset, and see what error we incur.
Choose some s < d. Now take each data point ri and replace the last d � s components with 0. Call the resulting data item
pi. We should like to know the average error in representing ri with pi.

This error is
1

N

X

i

�
.ri � pi/

T .ri � pi/
T�

:

Write r.j/
i for the j0 component of ri, and so on. Remember that pi is zero in the last d � s components. The error is then

1

N

X

i

2

4
jDdX

jDsC1

�
r.j/

i

�2

3

5 :

Because frg has zero mean, we have that 1
N

P
i

�
r.j/

i

�2

is the variance of the j’th component of frg. So the error is

jDdX

jDsC1

var
�˚

r.j/
��

which is the sum of the diagonal elements of the covariance matrix from s C 1; s C 1 to d; d. If this sum is small compared
to the sum of the first s components, then dropping the last d � s components results in a small error. In that case, we could
think about the data as being s dimensional. Figure 10.7 shows the result of using this approach to represent the blob we’ve
used as a running example as a 1D dataset.

This is an observation of great practical importance. As a matter of experimental fact, a great deal of high dimensional
data produces relatively low dimensional blobs. We can identify the main directions of variation in these blobs, and use them
to understand and to represent the dataset.

10.2.5 Example: Transforming the Height-Weight Blob

Translating a blob of data doesn’t change the scatterplot matrix in any interesting way (the axes change, but the picture
doesn’t). Rotating a blob produces really interesting results, however. Figure 10.8 shows the dataset of Fig. 10.4, translated
to the origin and rotated to diagonalize it. Now we do not have names for each component of the data (they’re linear
combinations of the original components), but each pair is now not correlated. This blob has some interesting shape features.
Figure 10.8 shows the gross shape of the blob best. Each panel of this figure has the same scale in each direction. You can
see the blob extends about 80 units in direction 1, but only about 15 units in direction 2, and much less in the other two
directions. You should think of this blob as being rather cigar-shaped; it’s long in one direction, but there isn’t much in the
others. The cigar metaphor isn’t perfect because there aren’t any four dimensional cigars, but it’s helpful. You can think of
each panel of this figure as showing views down each of the four axes of the cigar.

Now look at Fig. 10.9. This shows the same rotation of the same blob of data, but now the scales on the axis have changed
to get the best look at the detailed shape of the blob. First, you can see that blob is a little curved (look at the projection onto
direction 2 and direction 4). There might be some effect here worth studying. Second, you can see that some points seem to
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Project to x-axis

Fig. 10.7 On the left, the translated and rotated blob of Fig. 10.6. This blob is stretched—one direction has more variance than another. Setting
the y coordinate to zero for each of these datapoints results in a representation that has relatively low error, because there isn’t much variance in
these values. This results in the blob on the right. The text shows how the error that results from this projection is computed

lie away from the main blob. I have plotted each data point with a dot, and the interesting points with a number. These points
are clearly special in some way.

The problem with these figures is that the axes are meaningless. The components are weighted combinations of
components of the original data, so they don’t have any units, etc. This is annoying, and often inconvenient. But I obtained
Fig. 10.8 by translating, rotating and projecting data. It’s straightforward to undo the rotation and the translation—this takes
the projected blob (which we know to be a good approximation of the rotated and translated blob) back to where the original
blob was. Rotation and translation don’t change distances, so the result is a good approximation of the original blob, but
now in the original blob’s coordinates. Figure 10.10 shows what happens to the data of Fig. 10.4. This is a two dimensional
version of the original dataset, embedded like a thin pancake of data in a four dimensional space. Crucially, it represents the
original dataset quite accurately.

10.3 Principal Components Analysis

We have seen that a blob of data can be translated so that it has zero mean, then rotated so the covariance matrix is diagonal.
In this coordinate system, we can set some components to zero, and get a representation of the data that is still accurate.
The rotation and translation can be undone, yielding a dataset that is in the same coordinates as the original, but lower
dimensional. The new dataset is a good approximation to the old dataset. All this yields a really powerful idea: we can
represent the original dataset with a small number of appropriately chosen vectors.

10.3.1 The LowDimensional Representation

We start with a dataset of N d-dimensional vectors fxg. We translate this dataset to have zero mean, forming a new dataset
fmg where mi D xi � mean .fxg/. We diagonalize Covmat .fmg/ D Covmat .fxg/ to get

UTCovmat .fxg/U D ƒ

and form the dataset frg, using the rule

ri D UTmi D UT.xi � mean .fxg//:
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Fig. 10.8 A panel plot of the bodyfat dataset of Fig. 10.4, now rotated so that the covariance between all pairs of distinct dimensions is zero. Now
we do not know names for the directions—they’re linear combinations of the original variables. Each scatterplot is on the same set of axes, so you
can see that the dataset extends more in some directions than in others

We saw the mean of this dataset is zero, and the covariance is diagonal. We then represented the d-dimensional data set frg
with an s dimensional dataset, by choosing some r < d, then taking each data point ri and replacing the last d�s components
with 0. We call the resulting data item pi.

Now consider undoing the rotation and translation. We would form a new dataset fOxg, with the i’th element given by

Oxi D Upi C mean .fxg/

(you should check this expression). But this expression says that Oxi is constructed by forming a weighted sum of the first s
columns of U (because all the other components of pi are zero), then adding mean .fxg/. If we write uj for the j’th column
of U , we have

Oxi D
sX

jD1

r.j/
i uj C mean .fxg/:

What is important about this sum is that s is usually a lot less than d. The uj are known as principal components of the

dataset. You can easily derive an expression for r.j/
i from all this (exercises), but for reference, here it is:

r.j/
i D uT

j .xi � mean .fxg//:
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Fig. 10.9 A panel plot of the bodyfat dataset of Fig. 10.4, now rotated so that the covariance between all pairs of distinct dimensions is zero.
Now we do not know names for the directions—they’re linear combinations of the original variables. I have scaled the axes so you can see details;
notice that the blob is a little curved, and there are several data points that seem to lie some way away from the blob, which I have numbered

Remember this: Data items in a d dimensional data set can usually be represented with good accuracy as a weighted
sum of a small number s of d dimensional vectors, together with the mean. This means that the dataset lies on an
s-dimensional subspace of the d-dimensional space. The subspace is spanned by the principal components of the data.

10.3.2 The Error Caused by Reducing Dimension

We can easily determine the error in approximating fxg with fOxg. The error in representing frg by fpsg was easy to compute.
We had

1

N

X

i

�
.ri � pi/

T .ri � pi/
T� D 1

N

X

i

2

4
jDdX

jDsC1

�
r.j/

i

�2

3

5 :
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Fig. 10.10 The data of Fig. 10.4, represented by translating and rotating so that the covariance is diagonal, projecting off the two smallest
directions, then undoing the rotation and translation. This blob of data is two dimensional (because we projected off two dimensions), but is
represented in a four dimensional space. You can think of it as a thin pancake of data in the four dimensional space (you should compare to
Fig. 10.4 on page 229). It is a good representation of the original data. Notice that it looks slightly thickened on edge, because it isn’t aligned with
the coordinate system—think of a view of a plate at a slight slant

This was the sum of the diagonal elements of the covariance matrix of frg from s; s to d; d. If this sum is small compared to
the sum of the first s components, then dropping the last d � s components results in a small error.

The error in representing fxg with fOxg is now easy to get. Rotations and translations do not change lengths. This means
that

jjxi � Oxijj2 D jjri � pr;ijj2 D
dX

uDrC1

.r.u/
i /2

which is the sum of the diagonal elements of the covariance matrix of frg from s; s to d; d which is easy to evaluate, because
these are the values of the d �s eigenvalues that we decided to ignore. Now we could choose s by identifying how much error
we can tolerate. More usual is to plot the eigenvalues of the covariance matrix, and look for a “knee”, like that in Fig. 10.11.
You can see that the sum of remaining eigenvalues is small.
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Fig. 10.11 On the top left, the mean spectral reflectance of a dataset of 1995 spectral reflectances, collected by Kobus Barnard (at http://www.cs.
sfu.ca/~colour/data/). On the top right, eigenvalues of the covariance matrix of spectral reflectance data, from a dataset of 1995 spectral reflectances,
collected by Kobus Barnard (at http://www.cs.sfu.ca/~colour/data/). Notice how the first few eigenvalues are large, but most are very small; this
suggests that a good representation using few principal components is available. The bottom row shows the first three principal components. A
linear combination of these, with appropriate weights, added to the mean, gives a good representation of any item in the dataset

Procedure 10.2 (Principal Components Analysis) Assume we have a general data set xi, consisting of N d-
dimensional vectors. Now write † D Covmat .fxg/ for the covariance matrix.

Form U , ƒ, such that
†U D Uƒ

(these are the eigenvectors and eigenvalues of †). Ensure that the entries of ƒ are sorted in decreasing order. Choose
s, the number of dimensions you wish to represent. Typically, we do this by plotting the eigenvalues and looking for a
“knee” (Fig. 10.11). It is quite usual to do this by hand.
Constructing a low-dimensional representation: Write ui for the j’th column of U . Represent the data point xi as

Oxi D mean .fxg/ C
sX

jD1

�
uT

j .xi � mean .fxg//� uj

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
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10.3.3 Example: Representing Colors with Principal Components

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces include matte paint, many styles of
cloth, many rough materials (bark, cement, stone, etc.). One way to tell a diffuse surface is that it does not look brighter (or
darker) when you look at it along different directions. Diffuse surfaces can be colored, because the surface reflects different
fractions of the light falling on it at different wavelengths. This effect can be represented by measuring the spectral reflectance
of a surface, which is the fraction of light the surface reflects as a function of wavelength. This is usually measured in the
visual range of wavelengths (about 380 nm to about 770 nm). Typical measurements are every few nm, depending on the
measurement device. I obtained data for 1995 different surfaces from http://www.cs.sfu.ca/~colour/data/ (there are a variety
of great datasets here, from Kobus Barnard).

Each spectrum has 101 measurements, which are spaced 4 nm apart. This represents surface properties to far greater
precision than is really useful. Physical properties of surfaces suggest that the reflectance can’t change too fast from
wavelength to wavelength. It turns out that very few principal components are sufficient to describe almost any spectral
reflectance function. Figure 10.11 shows the mean spectral reflectance of this dataset, and Fig. 10.11 shows the eigenvalues
of the covariance matrix.

This is tremendously useful in practice. One should think of a spectral reflectance as a function, usually written �.�/.
What the principal components analysis tells us is that we can represent this function rather accurately on a (really small)
finite dimensional basis. This basis is shown in Fig. 10.11. This means that there is a mean function r.�/ and k functions
�m.�/ such that, for any �.�/,

�.�/ D r.�/ C
kX

iD1

ci�i.�/ C e.�/

where e.�/ is the error of the representation, which we know is small (because it consists of all the other principal
components, which have tiny variance). In the case of spectral reflectances, using a value of k around 3–5 works fine for
most applications (Fig. 10.12). This is useful, because when we want to predict what a particular object will look like under
a particular light, we don’t need to use a detailed spectral reflectance model; instead, it’s enough to know the ci for that
object. This comes in useful in a variety of rendering applications in computer graphics. It is also the key step in an important
computer vision problem, called color constancy. In this problem, we see a picture of a world of colored objects under
unknown colored lights, and must determine what color the objects are. Modern color constancy systems are quite accurate,
even though the problem sounds underconstrained. This is because they are able to exploit the fact that relatively few ci are
enough to accurately describe a surface reflectance.
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Fig. 10.12 On the left, a spectral reflectance curve (dashed) and approximations using the mean, the mean and 3 principal components, the mean
and 5 principal components, and the mean and 7 principal components. Notice the mean is a relatively poor approximation, but as the number of
principal components goes up, the error falls rather quickly. On the right is the error for these approximations. Figure plotted from a dataset of
1995 spectral reflectances, collected by Kobus Barnard (at http://www.cs.sfu.ca/~colour/data/)

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
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Fig. 10.13 On the left,the eigenvalues of the covariance of the Japanese facial expression dataset; there are 4096, so it’s hard to see the curve
(which is packed to the left). On the right, a zoomed version of the curve, showing how quickly the values of the eigenvalues get small

10.3.4 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity images, so there is a single intensity value
in each cell. You can turn the image into a vector by rearranging it, for example stacking the columns onto one another.
This means you can take the principal components of a set of images. Doing so was something of a fashionable pastime in
computer vision for a while, though there are some reasons that this is not a great representation of pictures. However, the
representation yields pictures that can give great intuition into a dataset.

Figure 10.14 shows the mean of a set of face images encoding facial expressions of Japanese women (available at http://
www.kasrl.org/jaffe.html; there are tons of face datasets at http://www.face-rec.org/databases/). I reduced the images to
64 � 64, which gives a 4096 dimensional vector. The eigenvalues of the covariance of this dataset are shown in Fig. 10.13;
there are 4096 of them, so it’s hard to see a trend, but the zoomed figure suggests that the first couple of dozen contain most
of the variance. Once we have constructed the principal components, they can be rearranged into images; these images are
shown in Fig. 10.14. Principal components give quite good approximations to real images (Fig. 10.15).

The principal components sketch out the main kinds of variation in facial expression. Notice how the mean face in
Fig. 10.14 looks like a relaxed face, but with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to remember one adjusts the mean towards a
data point by adding (or subtracting) some scale times the component. So the first few principal components have to do with
the shape of the haircut; by the fourth, we are dealing with taller/shorter faces; then several components have to do with the
height of the eyebrows, the shape of the chin, and the position of the mouth; and so on. These are all images of women who
are not wearing spectacles. In face pictures taken from a wider set of models, moustaches, beards and spectacles all typically
appear in the first couple of dozen principal components.

10.4 Multi-Dimensional Scaling

One way to get insight into a dataset is to plot it. But choosing what to plot for a high dimensional dataset could be difficult.
Assume we must plot the dataset in two dimensions (by far the most common choice). We wish to build a scatter plot in
two dimensions—but where should we plot each data point? One natural requirement is that the points be laid out in two
dimensions in a way that reflects how they sit in many dimensions. In particular, we would like points that are far apart in
the high dimensional space to be far apart in the plot, and points that are close in the high dimensional space to be close in
the plot.

http://www.kasrl.org/jaffe.html
http://www.kasrl.org/jaffe.html
http://www.face-rec.org/databases/
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Fig. 10.14 The mean and first 16 principal components of the Japanese facial expression dataset

10.4.1 Choosing LowD Points Using High D Distances

We will plot the high dimensional point xi at vi, which is a two-dimensional vector. Now the squared distance between points
i and j in the high dimensional space is

D.2/
ij .x/ D .xi � xj/

T.xi � xj/

(where the superscript is to remind you that this is a squared distance). We could build an N � N matrix of squared distances,
which we write D.2/.x/. The i, j’th entry in this matrix is D.2/

ij .x/, and the x argument means that the distances are between
points in the high-dimensional space. Now we could choose the vi to make

X

ij

�
D.2/

ij .x/ � D.2/
ij .v/

�2

as small as possible. Doing so should mean that points that are far apart in the high dimensional space are far apart in the
plot, and that points that are close in the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine it. Because translation does not change the
distances between points, it cannot change either of the D.2/ matrices. So it is enough to solve the case when the mean of the
points xi is zero. We can assume that

1

N

X

i

xi D 0:
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Fig. 10.15 Approximating a face image by the mean and some principal components; notice how good the approximation becomes with relatively
few components

Now write 1 for the n-dimensional vector containing all ones, and I for the identity matrix. Notice that

D.2/
ij D .xi � xj/

T.xi � xj/ D xi � xi � 2xi � xj C xj � xj:

Now write

A D
	

I � 1

N
11T




:

Using this expression, you can show that the matrix M, defined below,

M.x/ D �1

2
AD.2/.x/AT

has i, jth entry xi � xj (exercises). I now argue that, to make D.2/.v/ is close to D.2/.x/, it is enough to make M.v/ close to
M.x/. Proving this will take us out of our way unnecessarily, so I omit a proof.

We need some notation. Take the dataset of N d-dimensional column vectors xi, and form a matrix X by stacking the
vectors, so

X D

2

6
6
4

xT
1

xT
2

: : :

xT
N

3

7
7
5 :

In this notation, we have
M.x/ D XX T :

Notice M.x/ is symmetric, and it is positive semidefinite. It can’t be positive definite, because the data is zero mean, so
M.x/1 D 0.

We must now choose a set of vi that makes D.2/.v/ close to D.2/.x/. We do so by choosing a M.v/ that is close to M.x/.
But this means we must choose V D Œv1; v2; : : : ; vN �T so that VVT is close to M.x/. We are computing an approximate
factorization of the matrix M.x/.
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10.4.2 Factoring a Dot-Product Matrix

We seek a set of k dimensional v that can be stacked into a matrix V . This must produce a M.v/ D VVT that must (a) be as
close as possible to M.x/ and (b) have rank at most k. It can’t have rank larger than k because there must be some V which
is N � k so that M.v/ D VVT . The rows of this V are our vT

i .
We can obtain the best factorization of M.x/ from a diagonalization. Write write U for the matrix of eigenvectors of

M.x/ and ƒ for the diagonal matrix of eigenvalues sorted in descending order, so we have

M.x/ D UƒUT

and write ƒ.1=2/ for the matrix of positive square roots of the eigenvalues. Now we have

M.x/ D Uƒ1=2ƒ1=2UT D �Uƒ1=2
� �Uƒ1=2

�T

which allows us to write
X D Uƒ1=2:

Now think about approximating M.x/ by the matrix M.v/. The error is a sum of squares of the entries,

err.M.x/;A/ D
X

ij

.mij � aij/
2:

Because U is a rotation, it is straightforward to show that

err.UTM.x/U ;UTM.v/U/ D err.M.x/;M.v//:

But
UTM.x/U D ƒ

which means that we could find M.v/ from the best rank k approximation to ƒ. This is obtained by setting all but the k
largest entries of ƒ to zero. Call the resulting matrix ƒk. Then we have

M.v/ D UƒkU

and
V D Uƒ

.1=2/
k :

The first k columns of V are non-zero. We drop the remaining N � k columns of zeros. The rows of the resulting matrix are
our vi, and we can plot these. This method for constructing a plot is known as principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data points should cause some distortions. In
many cases, the distortions are tolerable. In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways to do this; the general problem is known
as multidimensional scaling.

Procedure 10.3 (Principal Coordinate Analysis) Assume we have a matrix D.2/ consisting of the squared differ-
ences between each pair of N points. We do not need to know the points. We wish to compute a set of points in r
dimensions, such that the distances between these points are as similar as possible to the distances in D.2/.

• Form A D �I � 1
N 11T

�
.

• Form W D 1
2
AD.2/AT .

• Form U , ƒ, such that WU D Uƒ (these are the eigenvectors and eigenvalues of W). Ensure that the entries of ƒ

are sorted in decreasing order.

(continued)
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• Choose r, the number of dimensions you wish to represent. Form ƒr, the top left r � r block of ƒ. Form ƒ
.1=2/
r ,

whose entries are the positive square roots of ƒr. Form Ur, the matrix consisting of the first r columns of U .

Then
VT D ƒ.1=2/

r UT
r D Œv1; : : : ; vN �

is the set of points to plot.

10.4.3 Example: Mapping withMultidimensional Scaling

Multidimensional scaling gets positions (the V of Sect. 10.4.1) from distances (the D.2/.x/ of Sect. 10.4.1). This means
we can use the method to build maps from distances alone. I collected distance information from the web (I used http://
www.distancefromto.net, but a google search on “city distances” yields a wide range of possible sources), then applied
multidimensional scaling. I obtained distances between the South African provincial capitals, in kilometers. I then used
principal coordinate analysis to find positions for each capital, and rotated, translated and scaled the resulting plot to check
it against a real map (Fig. 10.16).

One natural use of principal coordinate analysis is to see if one can spot any structure in a dataset. Does the dataset form
a blob, or is it clumpy? This isn’t a perfect test, but it’s a good way to look and see if anything interesting is happening. In
Fig. 10.17, I show a 3D plot of the spectral data, reduced to three dimensions using principal coordinate analysis. The plot
is quite interesting. You should notice that the data points are spread out in 3D, but actually seem to lie on a complicated
curved surface—they very clearly don’t form a uniform blob. To me, the structure looks somewhat like a butterfly. I don’t
know why this occurs (perhaps the universe is doodling), but it certainly suggests that something worth investigating is going
on. Perhaps the choice of samples that were measured is funny; perhaps the measuring instrument doesn’t make certain kinds
of measurement; or perhaps there are physical processes that prevent the data from spreading out over the space.

Our algorithm has one really interesting property. In some cases, we do not actually know the datapoints as vectors.
Instead, we just know distances between the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey people about breakfast foods (say, eggs,
bacon, cereal, oatmeal, pancakes, toast, muffins, kippers and sausages for a total of 9 items). We ask each person to rate
the similarity of each pair of distinct items on some scale. We advise people that similar items are ones where, if they were
offered both, they would have no particular preference; but, for dissimilar items, they would have a strong preference for one
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Fig. 10.16 On the left, a public domain map of South Africa, obtained from http://commons.wikimedia.org/wiki/File:Map_of_South_Africa.svg,
and edited to remove surrounding countries. On the right, the locations of the cities inferred by multidimensional scaling, rotated, translated and
scaled to allow a comparison to the map by eye. The map doesn’t have all the provincial capitals on it, but it’s easy to see that MDS has placed the
ones that are there in the right places (use a piece of ruled tracing paper to check)

http://www.distancefromto.net
http://www.distancefromto.net
http://commons.wikimedia.org/wiki/File:Map_of_South_Africa.svg
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Fig. 10.17 Two views of the spectral data of Sect. 10.3.3, plotted as a scatter plot by applying principal coordinate analysis to obtain a 3D set
of points. Notice that the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t a single blob. This suggests that further
investigation would be fruitful
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Fig. 10.18 Two views of a multidimensional scaling to three dimensions of the height-weight dataset. Notice how the data seems to lie in a flat
structure in 3D, with one outlying data point. This means that the distances between data points can be (largely) explained by a 2D representation

over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite dissimilar”, and “very dissimilar” (scales
like this are often called Likert scales). We collect these similarities from many people for each pair of distinct items, and
then average the similarity over all respondents. We compute distances from the similarities in a way that makes very similar
items close and very dissimilar items distant. Now we have a table of distances between items, and can compute a V and
produce a scatter plot. This plot is quite revealing, because items that most people think are easily substituted appear close
together, and items that are hard to substitute are far apart. The neat trick here is that we did not start with a X , but with just
a set of distances; but we were able to associate a vector with “eggs”, and produce a meaningful plot.

10.5 Example: Understanding Height andWeight

Recall the height-weight data set of Sect. 1.2.4 (from http://www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls at that
URL). This is, in fact, a 16-dimensional dataset. The entries are (in this order): bodyfat; density; age; weight; height;
adiposity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist. We know already that many of these entries
are correlated, but it’s hard to grasp a 16 dimensional dataset in one go. The first step is to investigate with a multidimensional
scaling (Fig. 10.18).

http://www2.stetson.edu/~jrasp/data.htm
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Fig. 10.19 A multidimensional
scaling to two dimensions of the
height-weight dataset. One data
point is clearly special, and
another looks pretty special. The
data seems to form a blob, with
one axis quite a lot more
important than another
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Fig. 10.20 The mean of the
bodyfat.xls dataset. Each
component is likely in a different
unit (though I don’t know the
units), making it difficult to plot
the data without being
misleading. I’ve adopted one
solution here, by plotting a stem
plot. You shouldn’t try to
compare the values to one
another. Instead, think of this plot
as a compact version of a table
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Section 1.2.4 shows a multidimensional scaling of this dataset down to three dimensions. The dataset seems to lie on
a (fairly) flat structure in 3D, meaning that inter-point distances are relatively well explained by a 2D representation. Two
points seem to be special, and lie far away from the flat structure. The structure isn’t perfectly flat, so there will be small
errors in a 2D representation; but it’s clear that a lot of dimensions are redundant. Figure 10.19 shows a 2D representation
of these points. They form a blob that is stretched along one axis, and there is no sign of multiple blobs. There’s still at least
one special point, which we shall ignore but might be worth investigating further. The distortions involved in squashing this
dataset down to 2D seem to have made the second special point less obvious than it was in Sect. 1.2.4.

The next step is to try a principal component analysis. Figure 10.20 shows the mean of the dataset. The components of
the dataset have different units, and shouldn’t really be compared. But it is difficult to interpret a table of 16 numbers, so
I have plotted the mean as a stem plot. Figure 10.21 shows the eigenvalues of the covariance for this dataset. Notice how
one dimension is very important, and after the third principal component, the contributions become small. Of course, I could
have said “fourth”, or “fifth”, or whatever—the precise choice depends on how small a number you think is “small”.

Figure 10.21 also shows the first principal component. The eigenvalues justify thinking of each data item as (roughly)
the mean plus some weight times this principal component. From this plot you can see that data items with a larger value of
weight will also have larger values of most other measurements, except age and density. You can also see how much larger;
if the weight goes up by 8.5 units, then the abdomen will go up by 3 units, and so on. This explains the main variation in the
dataset.
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Fig. 10.21 On the left, the eigenvalues of the covariance matrix for the bodyfat data set. Notice how fast the eigenvalues fall off; this means that
most principal components have very small variance, so that data can be represented well with a small number of principal components. On the
right, the first principal component for this dataset, plotted using the same convention as for Fig. 10.20
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Fig. 10.22 On the left, the second principal component, and on the right the third principal component of the height-weight dataset

In the rotated coordinate system, the components are not correlated, and they have different variances (which are the
eigenvalues of the covariance matrix). You can get some sense of the data by adding these variances; in this case, we get
1404. This means that, in the translated and rotated coordinate system, the average data point is about 37 D p

1404 units
away from the center (the origin). Translations and rotations do not change distances, so the average data point is about 37

units from the center in the original dataset, too. If we represent a datapoint by using the mean and the first three principal
components, there will be some error. We can estimate the average error from the component variances. In this case, the
sum of the first three eigenvalues is 1357, so the mean square error in representing a datapoint by the first three principal
components is

p
.1404 � 1357/, or 6:8. The relative error is 6:8=37 D 0:18. Another way to represent this information,

which is more widely used, is to say that the first three principal components explain all but .1404 � 1357/=1404 D 0:034,
or 3:4% of the variance; notice that this is the square of the relative error, which will be a much smaller number.

All this means that explaining a data point as the mean and the first three principal components produces relatively small
errors. Figure 10.22 shows the second and third principal component of the data. These two principal components suggest
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some further conclusions. As age gets larger, height and weight get slightly smaller, but the weight is redistributed; abdomen
gets larger, whereas thigh gets smaller. A smaller effect (the third principal component) links bodyfat and abdomen. As
bodyfat goes up, so does abdomen.

10.6 You Should

10.6.1 Remember These Definitions

Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.6.2 Remember These Terms

symmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
color constancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
principal coordinate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
multidimensional scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Likert scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10.6.3 Remember These Facts

Properties of the covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Orthonormal matrices are rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
You can transform data to zero mean and diagonal covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10.6.4 Use These Procedures

To diagonalize a symmetric matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
To construct a low-d representation with principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
To make a low dimensional map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10.6.5 Be Able to

• Create, plot and interpret the first few principal components of a dataset.
• Compute the error resulting from ignoring some principal components.

Problems

Summaries

10.1 You have a dataset fxg of N vectors, xi, each of which is d-dimensional. We will consider a linear function of this
dataset. Write a for a constant vector; then the value of this linear function evaluated on the i’th data item is aTxi. Write
fi D aTxi. We can make a new dataset ff g out of the values of this linear function.
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Fig. 10.23 Figure for the
question
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(a) Show that mean .ff g/ D aTmean .fxg/ (easy).
(b) Show that var .ff g/ D aTCovmat .fxg/a (harder, but just push it through the definition).
(c) Assume the dataset has the special property that there exists some a so that aTCovmat .fxg/a. Show that this means that

the dataset lies on a hyperplane.

10.2 On Fig. 10.23, mark the mean of the dataset, the first principal component, and the second principal component.

10.3 You have a dataset fxg of N vectors, xi, each of which is d-dimensional. Assume that Covmat .fxg/ has one non-zero
eigenvalue. Assume that x1 and x2 do not have the same value.

(a) Show that you can choose a set of ti so that you can represent every data item xi exactly

xi D x1 C ti.x2 � x1/:

(b) Now consider the dataset of these t values. What is the relationship between (a) std .t/ and (b) the non-zero eigenvalue
of Covmat .fxg/? Why?

Programming Exercises

10.4 Obtain the iris dataset from the UC Irvine machine learning data repository at http://https://archive.ics.uci.edu/ml/
machine-learning-databases/iris/iris.data.

(a) Plot a scatterplot matrix of this dataset, showing each species with a different marker.
(b) Now obtain the first two principal components of the data. Plot the data on those two principal components alone, again

showing each species with a different marker. Has this plot introduced significant distortions? Explain

10.5 Take the wine dataset from the UC Irvine machine learning data repository at https://archive.ics.uci.edu/ml/datasets/
Wine.

(a) Plot the eigenvalues of the covariance matrix in sorted order. How many principal components should be used to
represent this dataset? Why?

(b) Construct a stem plot of each of the first 3 principal components (i.e. the eigenvectors of the covariance matrix with
largest eigenvalues). What do you see?

(c) Compute the first two principal components of this dataset, and project it onto those components. Now produce a scatter
plot of this two dimensional dataset, where data items of class 1 are plotted as a ‘1’, class 2 as a ‘2’, and so on.

http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Wine
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10.6 Take the wheat kernel dataset from the UC Irvine machine learning data repository at http://archive.ics.uci.edu/ml/
datasets/seeds. Compute the first two principal components of this dataset, and project it onto those components.

(a) Produce a scatterplot of this projection. Do you see any interesting phenomena?
(b) Plot the eigenvalues of the covariance matrix in sorted order. How many principal components should be used to

represent this dataset? why?

10.7 The UC Irvine machine learning data repository hosts a collection of data on breast cancer diagnostics, donated by Olvi
Mangasarian, Nick Street, and William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/datasets/Breast+
Cancer+Wisconsin+(Diagnostic). For each record, there is an id number, 10 continuous variables, and a class (benign or ma-
lignant). There are 569 examples. Separate this dataset randomly into 100 validation, 100 test, and 369 training examples. Plot
this dataset on the first three principal components, using different markers for benign and malignant cases. What do you see?

10.8 The UC Irvine Machine Learning data archive hosts a dataset of measurements of abalone at http://archive.ics.uci.
edu/ml/datasets/Abalone. Compute the principal components of all variables except Sex. Now produce a scatter plot of the
measurements projected onto the first two principal components, plotting an “m” for male abalone, an “f” for female abalone
and an “i” for infants. What do you see?

10.9 Choose a state. For the 15 largest cities in your chosen state, find the distance between cities and the road mileage
between cities. These differ because of the routes that roads take; you can find these distances by careful use of the internet.
Prepare a map showing these cities on the plane using principal coordinate analysis for each of these two distances. How
badly does using the road network distort to make a map distort the state? Does this differ from state to state? Why?

10.10 CIFAR-10 is a dataset of 32 � 32 images in 10 categories, collected by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton. It is often used to evaluate machine learning algorithms. You can download this dataset from https://www.cs.toronto.
edu/~kriz/cifar.html.

(a) For each category, compute the mean image and the first 20 principal components. Plot the error resulting from
representing the images of each category using the first 20 principal components against the category.

(b) Compute the distances between mean images for each pair of classes. Use principal coordinate analysis to make a 2D
map of the means of each categories. For this exercise, compute distances by thinking of the images as vectors.

(c) Here is another measure of the similarity of two classes. For class A and class B, define E.A ! B/ to be the average
error obtained by representing all the images of class A using the mean of class A and the first 20 principal components
of class B. Now define the similarity between classes to be .1=2/.E.A ! B/ C E.B ! A//. Use principal coordinate
analysis to make a 2D map of the classes. Compare this map to the map in the previous exercise—are they different?
why?

http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Abalone
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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