
111© The Author(s) 2018
L. Moutinho, M. Sokele (eds.), Innovative Research Methodologies in Management,
https://doi.org/10.1007/978-3-319-64394-6_6

6
Incremental Optimization Mechanism
for Constructing a Balanced Very Fast

Decision Tree for Big Data

Hang Yang and Simon Fong

�Introduction

Big data is a popular topic that highly attracts attentions of researchers
from all over the world. How to mine valuable information from such
huge volumes of data remains an open problem. Although fast develop-
ment of hardware is capable of handling much larger volumes of data
than ever before, in the author’s opinion, a well-designed algorithm is
crucial in solving the problems associated with big data. Data stream
mining methodologies propose one-pass algorithms that are capable of
discovering knowledge hidden behind massive and continuously moving
data. Stream mining provides a good solution for such big data problems,
even for potentially infinite volumes of data.

H. Yang (*)
China Southern Power Grid,
Guangzhou, Guangdong, China

S. Fong
Department of Computer and Information Science,
University of Macau, Macau SAR, Zhuhai Shi, China

https://doi.org/10.1007/978-3-319-64394-6_6

112 

Decision tree learning is one of the most significant classifying tech-
niques in data mining and has been applied to many areas, including
business intelligence, health-care and biomedicine, and so forth. The
traditional approach to building a decision tree, designed by greedy
search, loads a full set of data into memory and partitions the data into
a hierarchy of nodes and leaves. The tree cannot be changed when new
data are acquired, unless the whole model is rebuilt by reloading the
complete set of historical data together with the new data. This approach
is unsuitable for unbounded input data such as data streams, in which
new data continuously flow in at high speed. A new generation of algo-
rithms has been developed for incremental decision tree, a pioneer of
which using a Hoeffding bound (HB) in node-splitting is so called Very
Fast Decision Tree (VFDT) (Pedro and Geoff 2000), which can build a
decision tree simply by keeping track of the statistics of the attributes of
the incoming data. When sufficient statistics have accumulated at each
leaf, a node-splitting algorithm determines whether there is enough sta-
tistical evidence in favor of a node-split, which expands the tree by
replacing the leaf with a new decision node. This decision tree learns by
incrementally updating the model while scanning the data stream on
the fly. In the past decade, VFDT has been extended to some improved
algorithms, inheriting the use of HB (see in section “Background”).
This powerful concept is in contrast to a traditional decision tree that
requires the reading of a full dataset for tree induction. The obvious
advantage is its real-time mining capability, which frees it from the
need to store up all of the data to retrain the decision tree because the
moving data streams are infinite.

On one hand, the challenge for data stream mining is associated with
the imbalanced class distribution. The term “imbalanced data” refers to
irregular class distributions in a dataset. For example, a large percentage
of training samples may be biased toward class A, leaving few samples
that describe class B. Both noise and imbalanced class distribution sig-
nificantly impair the accuracy of a decision tree classifier through confu-
sion and misclassification prompted by the inappropriate data. The size
of the decision tree will also grow excessively large under noisy data. To
tackle these problems, some researchers applied data manipulation tech-
niques to handle the imbalanced class distribution problems, including
under-sampling, resampling, a recognition-based induction scheme

  H. Yang and S. Fong

  113

(Nitesh et al. 2004), and a feature subset selection approach (Mladenic
and Grobelnik 1999).

On the other hand, despite the difference in their tree-building pro-
cesses, both traditional and incremental decision trees suffer from a phe-
nomenon called over-fitting when the input data are infected with noise.
The noise confuses the tree-building process with conflicting instances.
Consequently, the tree size becomes very large and eventually describes
noise rather than the underlying relationship. With traditional decision
trees, the under-performing branches created by noise and biases are com-
monly pruned by cross-validating them with separate sets of training and
testing data. Pruning algorithms (Elomaa 1999) help keep the size of the
decision tree in check; however, the majority are post-pruning techniques
that remove relevant tree paths after a whole model has been built from a
stationary dataset. Post-pruning of a decision tree in high-speed data
stream mining, however, may not be possible (or desirable) because of the
nature of incremental access to the constantly incoming data streams.
Incremental optimization seeks for solutions that evolve over time in
response to environmental changes. In general, there are three perfor-
mance metrics for incremental problems: ratio, sum, and demand (Hartline
2008). Ratio metric uses a worst-case measurement to determine the dis-
tance between the optimal solution and the solution made at each time
step. Sum metric is the expected value metric over all time steps. A weight
function while summing solution values can easily settle the problem of
natural bias for late-stage solution. Demand metric is a decision metric
measuring the degree of specific quantitative requirements satisfaction.

VFDT handles streaming data that tree structure keeps on updating
when new data arrive. It only requires reading some samples satisfying
the statistical bound (referring to the HB) to construct a decision tree.
Since it cannot analyze over the whole training dataset in one time, nor-
mal optimization methods using full dataset to search for an optima
between the accuracy and tree size do not work well here.

Our previous work has provided a solution for sustainable prediction
accuracy and regulates the growth of the decision tree to a reasonable
extent, even in the presence of noise. Moderated Very Fast Decision Tree
(MVFDT) is a novel extension of the VFDT model (Yang and Fong
2011) that includes optimizing the tree-growing process via adaptive tie-
breaking threshold instead of a user pre-defined value in VFDT.

  Incremental Optimization Mechanism for Constructing... 

114 

In this chapter, for optimizing VFDT, we devise a new version, so
called optimized VFDT (OVFDT), which can provide an incremental
optimization on prediction accuracy, tree size, and learning time. The
contributions of OVFDT are: (1) it contains four types of functional tree
leaf that improve the classification accuracy; (2) it inherits the mecha-
nism of MVFDT that uses an adaptive tie-breaking threshold instead of
a user pre-defined. To this end, it may suit for the aforementioned real
applications; (3) it contains an incremental optimization mechanism in
the node-splitting test that obtains an optimal tree structure as a result.
By running simulation experiments, the optimized value of adaptive tie
is proved to be ideal for constraining the optimal tree growth.

�Background

�Decision Tree in Data Stream Mining

A decision tree classification problem is defined as follows: N is a set of
examples of the form (X, y), where X is a vector of d attributes and y is a
discrete class label. k is the index of class label. Suppose a class label with
the k th discrete value is yk. Attribute Xi is the ith attribute in X, and is
assigned a value of xi1, xi2… xiJ, where 1 ≤ i ≤ d and J is the number of
different values Xi. The classification goal is to produce a decision tree
model from N examples, which predicts the classes of y in future exam-
ples with high accuracy. In data stream mining, the example size is very
large or unlimited, N→∞.

VFDT algorithm (Pedro and Geoff 2000) constructs an incremental
decision tree by using constant memory and constant time-per-sample.
VFDT is a pioneering predictive technique that utilizes the Hoeffding
bound. The tree is built by recursively replacing leaves with decision nodes.
Sufficient statistics nijk of attribute Xi with a value of xij are stored in each leaf
with a class label assigning to a value yk. A heuristic evaluation function H(⋅)
is used to determine split attributes for converting leaves to nodes. Nodes
contain the split attributes and leaves contain only the class labels. The leaf
represents a class according to the sample label. When a sample enters, it
traverses the tree from the root to a leaf, evaluating the relevant attributes at

  H. Yang and S. Fong

  115

every node. Once the sample reaches a leaf, the sufficient statistics are
updated. At this time, the system evaluates each possible condition based on
the attribute values; if the statistics are sufficient to support one test over the
others, then a leaf is converted to a decision node. The decision node con-
tains the number of possible values for the chosen attribute according to the
installed split test. The main elements of VFDT include, first, a tree-
initializing process that initially contains only a single leaf and, second, a
tree-growing process that contains a splitting check using a heuristic func-
tion H(⋅) and Hoeffding bound (HB). VFDT uses information gain as H(⋅).

The formula of HB is shown in (6.1). HB controls over errors in the
attribute-splitting distribution selection, where R is the range of classes’
distribution and n is the number of instances that have fallen into a leaf.
To evaluate a splitting-value for attribute Xi, it chooses the best two values.
Suppose xia is the best value of H(⋅) where xia = arg max H (xij); suppose xib
is the second best value where xib = arg max H (xij) ,  ∀ j ≠ a; suppose
ΔH (Xi) is the difference of the best two values for attribute Xi, where
ΔH (Xi) = ΔH (xia) − ΔH (xib). Let n be the observed number of instances,
HB is used to compute high confidence intervals for the true mean rtrue

of attribute xij to class yk that r − HB ≤ rtrue < r + HB where r n r
i

n
i= ()∑1 / .

If after observing nmin examples, the inequality r + HB < 1 holds, then
rtrue < 1, meaning that the best attribute xia observed over a portion of the
stream is truly the best attribute over entire stream. Thus, a splitting-
value xij of attribute Xi can be found without full attribute values even
when we don’t know all values of Xi. In other words, it does not train a
model from full data and the tree is growing incrementally when more
and more data come.

	
HB

R

n
=

()2 1

2

ln δ

	

In the past decade, several research papers have proposed different meth-
odologies to improve the accuracy of VFDT. Such incremental decision
tree algorithms using HB in node-splitting test are so called Hoeffding Tree
(HT). HOT (Pfahringer et al. 2007) proposes an algorithm producing

  Incremental Optimization Mechanism for Constructing... 

116 

some optional tree branches at the same time, replacing those rules with
lower accuracy by optional ones. The classification accuracy has been
improved significantly while learning speed is slowed because of the con-
struction of optional tree branches. Some of options are inactive branches
consuming computer resource. Functional tree leaf is originally proposed
to integrate to incremental decision tree in VFDTc (Gama et al. 2003).
Consequently, Naïve Bayes classifier on the tree leaf has improved classifi-
cation accuracy. The functional tree leaf is able to handle both continuous
and discrete values in data streams, but no direct evidence shows it can
handle such imperfections like noise and bias in data streams. FlexDT
(Hashemi and Yang 2009) proposes a Sigmoid function to handle noisy
data and missing values. Sigmoid function is used to decide what true
node-splitting value, but sacrificing algorithm speed. For this reason, the
lightweight algorithm with fast learning speed is favored for data streams
environment. CBDT (Stefan et al. 2009) is a forest of trees algorithm that
maintains a number of trees, each of which is rooted on a different attri-
butes and grows independently. It is sensitive to the concept-drift in data
streams according to the sliding-window mechanism. VFDR (Gama and
Kosina 2011) is a decision rule learner using HB. The same as VFDT,
VFDR proposes a rule-expending mechanism that constructs the decision
rules (ordered or unordered) from data stream on the fly.

There are two popular platforms for implementing stream-mining
decision tree algorithms. Very Fast Machine Learning (VFML) (Hulten
and Domingos 2003) is a C-based tool for mining time-changing high-
speed data streams. Massive Online Analysis (MOA) (Bifet et al. 2001) is
Java-based software for massive data analysis, which is a well-known open
source project extended from WEKA data mining. In both platforms, the
parameters of VFDT must be pre-configured. For different tree induc-
tion tasks, the parameter setup is distinguished.

MOA is an open source project with a user-friendly graphic interface.
It also provides several ways to evaluate algorithm’s performance. Hence,
some VFDT-extended algorithms have been built-in this platform. For
example, the VFDT algorithms embedded in MOA (released on Nov.
2011) are: Ensemble Hoeffding Tree (Oza and Russell 2001) is an online
bagging method with some ensemble VFDT classifiers. Adaptive Size
Hoeffding Tree (ASHT) (Bifet et al. 2009) is derived from VFDT adding

  H. Yang and S. Fong

  117

a maximum number of split nodes. ASHT has a maximum number of
split nodes. After one node splits, if the number of split nodes is higher
than the maximum value, then it deletes some nodes to reduce its size.
Besides, it is designed for handling concept-drift data streams AdaHOT
(Bifet et al. 2009) is also derived from HOT. Each leaf stored an estima-
tion of current error. The weight of node in voting process was propor-
tional to the square of inverse of error. AdaHOT combines HOT with a
voting mechanism on each node. It also extends the advantages using
optional trees to replace the tree branches of bad performance. Based on
an assumption “there has been no change in the average value inside the
window”, ADWIN (Bifet and Gavalda 2007) proposes a solution to
detect changes by a variable-length window of recently seen instances. In
this chapter, the OVFDT algorithm is developed on the fundamental of
MOA platform. All experiments are also run on MOA platform.

�Relationship Among Accuracy, Tree Size, and Time

When data contains noisy values, it may confuse the result of heuristic
function. The difference of the best two heuristic evaluation for attribute
Xi, where ∆H X H x H xi ia ib() = () − (), may be negligible. To solve this
problem, a fixed tie-breaking τ, which is a user pre-defined threshold for
incremental learning decision tree, is proposed as pre-pruning mecha-
nism to control the tree growth speed (Hulten et al. 2001). This thresh-
old constrains the node-splitting condition that ∆H Xi() ≤ <HB τ . An
efficient τ guarantees a minimum tree growth in case of tree size explo-
sion problem. τ must be set before a new learning starts; however, so far
there has not been a unique τ suitable for all problems. In other words,
there is not a single default value that works well in all tasks so far. The
choice of τ hence depends on the data and their nature. It is said that the
excessive invocation of tie breaking brings the performance of decision
tree learning declining significantly on complex and noise data, even with
the additional condition by the parameter τ.

A proposed solution (Geoffrey et al. 2005) to overcome this detrimen-
tal effect is an improved tie-breaking mechanism, which not only consid-
ers the best (xia) and the second best (xib) splitting candidates in terms of

  Incremental Optimization Mechanism for Constructing... 

118 

heuristic function but also uses the worst candidate (xic). At the same
time, an extra parameter is imported, α, which determines how many
times smaller the gap should be before it is considered as a tie. The
attribute-splitting condition becomes: when α × (H(xia) − H(xib)) <
(H(xib) − H(xic)), the attribution xia shall be split as a node. Obviously,
this approach uses two extra elements, α and xic, which bring extra com-
putation to the original algorithm.

In addition to the tie-breaking threshold τ, nmin is the number of
instances a leaf should observe between split attempts. In other words, τ
is a user-defined value to control the tree-growing speed, and nmin is a
user-defined value to control the interval time to check node-splitting.
The former is used to constrain tree size and the latter is used to constrain
the learning speed. In order to optimize accuracy, tree size, and speed for
decision tree learning, first of all, an example is given for demonstrating
the relationship among these three factors for data streams.

In this example, the testing datasets are synthetic added bias class. We
use MOA to generate the tested datasets. LED24 is the nominal data
structure and Waveform21 is the numeric data structure. Both datasets
share the origins with the sample generators donated by UCI machine
learning repository. LED24 problem uses 24 binary attributes to classify
10 different classes. The goal of Waveform21 task is to differentiate
between three different classes of waveform, each of which is generated
from a combination of two or three base waves. It has 21 numeric attri-
butes. The data stream problem is simulated by large number of instances,
which are as many as one million for both datasets. The accuracy, tree
size, and time are recorded with changing the pre-defined values of τ and
nmin. From Table 6.1, we can see that:

•	 In general, the bigger tree size brings a higher accuracy, even caused by
the over-fitting problem, but taking more learning time.

•	 τ is proposed to control the tree size growing. A bigger τ brings a faster
tree size growth, but longer computation time. But because the
memory is limited, the tree size does not increase while τ reaches a
threshold (τ = 0.7 for LED24; τ = 0.4 for Waveform21).

•	 nmin is proposed to control the learning time. A bigger nmin brings a
faster learning speed, but smaller tree size and lower accuracy.

  H. Yang and S. Fong

  119

Ta
b

le
 6

.1
 

C
o

m
p

ar
is

o
n

 o
f

V
FD

T
u

si
n

g
 d

if
fe

re
n

t
τ

an
d

 n
m

in

τ
0.

10
0.

20
0.

30
0.

40
0.

50
0.

60
0.

70
0.

80
0.

90
1.

00
LE

D
24

 (
n

m
in
 =

 2
00

)
A

cc
u

ra
cy

(%

)
75

.8
8

76
.9

7
77

.1
4

77
.4

2
77

.4
7

77
.5

0
77

.5
6

77
.5

6
77

.5
6

77
.5

6

#L
ea

f
14

3.
00

52
2.

00
11

24
.0

0
18

57
.0

0
26

18
.0

0
37

23
.0

0
37

43
.0

0
37

43
.0

0
37

43
.0

0
37

43
.0

0
Ti

m
e

(s
ec

)
8.

70
9.

91
10

.9
2

11
.5

1
11

.9
2

12
.7

8
12

.3
2

12
.3

2
12

.4
3

12
.4

5

W
av

ef
o

rm
21

 (
n

m
in
 =

 2
00

)
A

cc
u

ra
cy

85
.0

0
86

.5
3

86
.6

1
86

.7
2

86
.7

2
86

.7
2

86
.7

2
86

.7
2

86
.7

2
86

.7
2

#L
ea

f
50

6.
00

15
65

.0
0

24
92

.0
0

26
23

.0
0

26
23

.0
0

26
23

.0
0

26
23

.0
0

26
23

.0
0

26
23

.0
0

26
23

.0
0

Ti
m

e
17

.8
0

18
.5

0
18

.8
9

18
.6

9
18

.7
7

18
.7

2
18

.5
3

18
.7

2
18

.7
4

18
.7

2

n
m

in
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

LE
D

24
 (
τ

=
 0

.7
)

A
cc

u
ra

cy
77

.5
61

1
77

.5
86

7
77

.4
56

5
77

.3
47

2
77

.2
55

7
77

.1
41

7
77

.1
41

2
77

.0
84

7
76

.9
88

7
#L

ea
f

37
43

24
05

18
26

13
83

12
44

10
57

93
5

80
4

68
9

Ti
m

e
11

.6
68

87
10

.9
35

67
10

.4
05

27
10

.0
77

66
9.

46
92

61
9.

42
24

6
9.

03
24

58
9.

17
28

59
8.

64
24

55

W
av

ef
o

rm
21

 (
τ

=
 0

.4
)

A
cc

u
ra

cy
86

.7
21

8
86

.5
22

6
86

.3
02

8
85

.9
49

9
85

.9
11

9
85

.6
37

8
85

.6
70

7
85

.7
31

8
85

.2
16

5
#L

ea
f

26
23

18
00

13
63

11
03

94
0

80
6

70
3

64
4

57
2

Ti
m

e
18

.3
14

52
17

.7
06

11
17

.3
47

31
17

.0
35

31
16

.8
48

11
16

.5
82

91
16

.6
14

11
16

.6
14

11
16

.2
70

9

  Incremental Optimization Mechanism for Constructing... 

120 

However, the only way to detect the best tie-breaking threshold for a
certain task is trying all the possibilities in VFDT. It is impractical for
real-world applications. In this chapter, we propose the adaptive tie-
breaking threshold using the incremental optimization methodology.
The breakthrough of our work is the optimized node-splitting control,
which will be specified in the following sections.

�Incrementally Optimized Decision Tree

�Motivation and Overview

OVFDT, which is based on the original VFDT design, is implemented
on a test-then-train approach (Fig. 6.1) for classifying continuously
arriving data streams, even for infinite data streams. The whole test-
then-train process is synchronized such that when the data stream
arrives, one segment at a time, the decision tree is being tested first for
prediction output and training (which is also known as updating) of
the decision tree then occurs incrementally. The description of testing
process will be explained in section “OVFDT Testing Approach” in
detail, and the training process will be explained in section “OVFDT
Training Approach”. Ideally, the node-splitting test updates the tree
model in order to improve the accuracy, while a bigger tree model takes
longer computation time. The situation to do the node-splitting check

Fig. 6.1  A test-then-train OVFDT workflow

  H. Yang and S. Fong

  121

is when the number of instances in a leaf l is greater than the pre-
defined value nmin.

Imperfect data streams, including noisy data and bias class distribu-
tion, decline the performance of VFDT. Figure 6.2 shows the results of
accuracy, tree size, and computation time using VFDT, the same dataset
structure added with imperfect values. The ideal stream is free from noise
and has a uniform proportion of class samples, which is rare in real world.
From the experiment result comparing ideal data streams to imperfect
data streams, we conclude lemma 1:

Lemma 1  Imperfections in data streams worsen the performance of
VFDT. The tree size and the computation time are increased, but the accu-
racy is declined. In other words, the optimization goal is to increase the
accuracy but not enlarge the tree size, within an acceptable computation
time. Naturally a bigger tree size takes longer computation time. For this
reason, the computation time is dependent on the tree size.

Time
Accu
Size

90

80

70

60

50

40

30

20

10

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time
Accu
Size

100

120

140

80

60

40

20

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time
Accu
Size

100

120

140

160

80

60

40

20

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 6.2  VFDT performance for: (a) ideal data, (b) data with noise, (c) data with
noise and bias. X-axis presents the accuracy and y-axis the number of samples

  Incremental Optimization Mechanism for Constructing... 

122 

In the decision tree model, each path from the root to a leaf is consid-
ered as a way to present a rule. To ensure a high accuracy, there must be
sufficient number of rules, which is the number of leaves in the tree
model. Suppose Hoeffding Tree (HT) is the decision tree algorithm using
Hoeffding bound (HB) as the node-splitting test. Let Accu HT

mth() be
the accuracy function for the decision tree structure HT at the mth node-
splitting estimation, and let Size HT

mth() be the tree size, then:

	
Accu HT Size HT

m mth thR() = ()()
	

where R(⋅) is a mapping function of tree size to accuracy. Most incremen-
tal optimization functions can be expressed as the sum of several sub-
objective functions:

	
Φ x x

m

M

m() = ()
=
∑

1

Φ
	

where Φm : χ ⊂ ℝ p →ℝ is a continuously differentiable function whose
domain χ is a nonempty, convex and closed set. We consider the follow-
ing optimization problems:

	 maximize subjectΦ x to x() ∈χ 	

Based on Lemma 1, we propose a solution to optimize the decision
tree structure by improving the original VFDT that:

	

Φm
m m

m m

x
th th

th th

() = () − ()
() − ()

+

+

Accu HT Accu HT

Size HT Size HT
1

1 	

The tree model is updated when a node-splitting appears. Original
VFDT considers the HB as the only index to split node. However,
it is not enough. In terms of the above optimization goal, OVFDT

  H. Yang and S. Fong

  123

proposes an optimized node-splitting control during the tree-building
process.

�OVFDT Test-Then-Train Process

Data streams are open-ended problem that traditional sampling strategies
are not viable in the non-stopping streams scenario. OVFDT is an
improved version of the original VFDT and its extensions using HB to
decide the node-splitting. The most significant contribution is OVFDT
that can obtain an optimal tree structure by balancing the accuracy and
tree size. It is useful for data mining especially in the events of the tree size
explosion, when the decision tree is subject to imperfect streams includ-
ing noisy data and imbalanced class distribution.

HT algorithms run a test-then-train approach to build a decision tree
mode. When new stream arrives, it will be sorted from the root to a pre-
dicted leaf. Comparing the predictive class to the true class of this data
stream, we can maintain an error matrix for every tree leaf in the testing
process. In terms of the stored statistics matrix, the decision tree model is
being updated in the training process. Table 6.2 presents the differences
between OVFDT and HT algorithms (including the original VFDT and
its extensions). Figure 6.3 shows the input parameters and the output of
OVFDT and the approach presented as pseudo code.

Table 6.2  The comparison between VFDT and OVFDT

Approach Hoeffding Tree algorithms OVFDT

Testing Sort the new stream by
current HT

Update the sufficient statistics
Construct FTL, by MC, NB, or

ADP classifier
Assign a predicted class by FTL

Sort the new stream by current HT
Update the sufficient statistics
Construct FTL, by MC, NB, WNB, or

ADP classifier
Assign a predicted class by FTL
Update incremental

sequential-error
Training Check node-splitting by HB

Check node-splitting by fixed τ
HT update

Check node-splitting by HB
Check node-splitting by adaptive τ
Check node-splitting by

incremental sequential-error
HT update

  Incremental Optimization Mechanism for Constructing... 

124 

�OVFDT Testing Approach

Suppose X is a vector of d attributes, and y is the class with k different
values included in the data streams. For decision tree prediction learning
tasks, the learning goal is to induce a function of , where ŷk is
the predicted class by Hoeffding Tree (HT) according to a functional tree
leaf strategy Ƒ. When a new data stream (X, yk) arrives, it traverses from
the root of the decision tree to an existing leaf by the current decision tree
structure, provided that the root has existed initially. Otherwise, the heu-
ristic function is used to constructs a tree model with a single root node.

When new instance comes, it will be sorted from the root to a leaf by
the current tree model. The classifier on the leaf can further enhance the
prediction accuracy via the embedded Naïve Bayes classifier. OVFDT
embed four different classifiers  to improve the performance of predic-
tion. They are Majority Class (MC), Naïve Bayes (NB), Weighted Naïve
Bayes (WNB) and Adaptive (Adaptive).

Suppose ŷk the predicted class value and yk is actual class in data streams
with a vector of attribute X. A sufficient statistics matrix stores the num-
ber of passed-by samples, which contain attribute Xi with a value xij
belonging to a certain yk so far. We call this statistics table Observed Class
Distribution (OCD) matrix. The size of OCD is J × K, where J is the total
number of distinct values for attribute Xi and K is the number of distinct
class values. Suppose nijk is the sufficient statistic that reflects the number
of attribute Xi with a value xij belonging to class yk. Therefore, OCD on
node Xi is defined as:

Fig. 6.3  Pseudo code of input and the test-then-train approach

  H. Yang and S. Fong

  125

	

OCDX

i iJ

i K iJK

i

n n

n n

=
















11 1

1

�
� � �

�
	

For a certain leaf that attribute Xi with a value of xij:

	
OCDx ij ijKij

n n= …{ }1 	

Majority Class classifier chooses the class with the maximum value as
the predicted class in a leaf. Thus, MC predicts the class with a value
that:

	
argmax k n n nij ijk ijK= … …{ }1 	

Naïve Bayes classifier chooses the class with the maximum possibility
computed by Naïve Bayes, as the predictive class in a leaf. The formula of
Naïve Bayes is:

	

p
x y y

x
ijk

ij k k

ij

=
() ⋅ ()

()
P | P

P
	

OCD of leaf with value xij is updated incrementally. Thus, NB pre-
dicts the class with a value that:

	
argmax k p p pij ijk ijK= … …{ }1 	

Weighted Naïve Bayes classifier proposes to reduce the effect of
imbalanced class distribution. It chooses the class with the maximum
possibility computed by weighted Naïve Bayes, as the predictive class
in a leaf:

  Incremental Optimization Mechanism for Constructing... 

126 

	

p
x y y

x

n

n
ijk ijk

ij k k

ij

ijk
ijk

k

K

ijk

=
() ⋅ ()

()
=

=∑
ω ω

P | P

P
where

1 	

OCD of leaf with value xij is updated. Thus, WNB predicts the class
with a value that:

	
argmax k p p pij ijk ijK= … …{ }1 	

Adaptive classifier chooses the classifier with the least error from the
alternative MC , NB and WNB . For each time classifier is implemented
on the leaf, suppose γ is the index of classifier implementation on leaf
assigned to xij, and suppose Γ is the total number of implementation, where
Γ=

=∑ nijkk

K

1
. The error of a classifier  to class yk is calculated by:

	

Err , Error where Error
if

otherwise
 y

y y
k k k

k k() = = ≠

=

∑
γ

γ γ

1

1

0

Γ

,
,

,






 	

Therefore, Adaptive predicts the class with a value that is chosen by the
classifier  with minimum error:

	
argmin , ,   = () () (){ }Err , Err , Err ,MC NB WNBy y yk k k

	

After the stream traverses the whole HT, it is assigned to a predicted
class ŷk, which according to the functional
tree leaf Ƒ. Comparing the predicted class ŷk to the actual class yk, the
statistics of correctly CT and incorrectly CF prediction are updated imme-
diately. Meanwhile, the sufficient statistics nijk, which is a count of
attribute xi with value j belongs to class yk, are updated in each node. This
series of actions is so called a testing approach in this chapter. Figure 6.4
gives the pseudo code of this approach. According to the functional tree
leaf strategy, the current HT sorts a newly arrived sample (X, yk) from the

  H. Yang and S. Fong

  127

root to a predicted leaf yk
 . Comparing the predicted class yk

 to the
actual class yk, the sequential-error statistics of CT and CF prediction are
updated immediately.

To store OCD for OVFDT, MC , NB , and WNB require memory
proportional to O (N ⋅ I ⋅ J ⋅ K ), where N is the number of nodes in tree
model; I is the number of attributes; J is the maximum number of values
per attribute; K is the number of classes. OCD of NB and WNB are
converted from that of MC . In other words, we don’t require extra
memory to store three different OCD for Adaptive respectively. When
required, it can be converted from MC .

�OVFDT Training Approach

Right after the testing approach, the training follows. Node-splitting esti-
mation is used to initially decide if HT should be updated or not; that
depends on the amount of samples received so far that can potentially be
represented by additional underlying rules in the decision tree. In prin-
ciple, the optimized node-splitting estimation should apply on every
single new sample that arrives. Of course this will be too exhaustive, and
it will slow down the tree-building process. Instead, a parameter nmin is
proposed in VFDT that only do the node-splitting estimation when nmin
examples have been observed on a leaf. In the node-splitting estimation,
the tree model should be updated when a heuristic function H(⋅) chooses

Fig. 6.4  Pseudo code of testing approach

  Incremental Optimization Mechanism for Constructing... 

128 

the most appropriate attribute with highest heuristic function value H(xa)
as a node-splitting according to HB and tie-breaking threshold. The heu-
ristic function is implemented as an information gain here. This situ of
node-splitting estimation constitutes to the so-called training phase.

The node-splitting test is modified to use a dynamic tie-breaking
threshold τ, which restricts the attribute splitting as a decision node. The
τ parameter traditionally is pre-configured with a default value defined by
the user. The optimal value is usually not known until all of the possibili-
ties in an experiment have been tried. An example has been presented in
section “Relationship Among Accuracy, Tree Size, and Time”. Longitudinal
testing of different values in advance is certainly not favorable in real-time
applications. Instead, we assign a dynamic tie threshold, equal to the
dynamic mean of HB at each pass of stream data, as the splitting thresh-
old, which controls the node-splitting during the tree-building process.
Tie-breaking that occurs close to the HB mean can effectively narrow the
variance distribution. HB mean is calculated dynamically whenever new
data arrives.

The estimation of splits and ties is only executed once for every nmin (a
user-supplied value) samples that arrive at a leaf. Instead of a pre-
configured tie, OVFDT uses an adaptive tie that is calculated by incre-
mental computing. At the ith node-splitting estimation, the HB estimates
the sufficient statistics for a large enough sample size to split a new node,
which corresponds to the leaf l. Let Тl be an adaptive tie corresponding
to leaf l, within k estimations seen so far. Suppose μl is a binary variable
that takes the value of 1 if HB relates to leaf l, and 0 otherwise. Tl is
computed by:

	
Τl

i

k

l ik
HB= ×

=
∑1

1

µ
	

To constrain HB fluctuation, an upper bound ТlUPPER and a lower
bound ТlLOWER are proposed in the adaptive tie mechanism. The for-
mulas are:

	 Τl l
UPPER = argmaxΤ 	

  H. Yang and S. Fong

  129

	 Τl l
LOWER = argminΤ 	

For lightweight operations, we propose an error-based pre-pruning
mechanism for OVFDT, which stops non-informative split node before
it splits into a new node. The pre-pruning takes into account the node-
splitting error both globally and locally.

According to the optimization goal mentioned in section “Motivation
and Overview”, besides the HB, we also consider the global and local
accuracy in terms of the sequential-error statistics of CT and CF predic-
tion computed by functional tree leaf. Let ∆Cm be the difference
between CT and CF, and m is the index of testing approach. Then ∆Cm
is computed by (6.4), which reflects the global accuracy of the current
HT prediction on the newly arrived data streams. If ΔCm ≥ 0, the num-
ber of correct predictions is no less than the number of incorrect predic-
tions in the current tree structure; otherwise, the current tree graph
needs to be updated by node-splitting. In this approach, the statistics of
correctly CT and incorrectly CF prediction are updated. Suppose ∆Cm =
CT − CF, which reflects the accuracy of HT. If ∆C declines, it means the
global accuracy of current HT model worsens. Likewise, compare ∆Cm
and ∆Cm+1, the local accuracy is monitored during the node-splitting. If
∆Cm is greater than ∆Cm+1, it means the current accuracy is declining
locally. In this case, the HT should be updated to suit the newly arrival
data streams.

Lemma 2 Monitor Global Accuracy  The model’s accuracy varies whenever a
node splits and the tree structure is updated. Overall accuracy of current tree
model is monitored during node-splitting by comparing the number of cor-
rectly and incorrectly predicted samples. The number of correctly predicted
instances and otherwise is recorded as global performance indicators so far.
This monitoring allows the global accuracy to be determined.

Lemma 3 Monitor Local Accuracy  The global accuracy can be tracked by
comparing the number of correctly predicted samples with the number of
wrongly predicted ones. Likewise, comparing the global accuracy measured at
the current node-splitting estimation with the previous splitting, the increment

  Incremental Optimization Mechanism for Constructing... 

130 

in accuracy is being tracked dynamically. This monitoring allows us to check
whether the current node-splitting is advantageous at each step by comparing
with the previous step.

Figure 6.5 gives an example why our proposed pre-pruning takes into
account both the local and the global accuracy in the incremental prun-
ing. At the ith node-splitting estimation, the difference between correctly
and incorrectly predicted classes was ∆Ci, and ∆Ci+1 was at i+1th estima-
tion. (∆Ci − ∆Ci+1) was negative that the local accuracy of i+1th estima-
tion was worse than its previous one, while both were on a global
increasing trend. Hence, if accuracy is getting worse, it is necessary to
update the HT structure.

Combining the prediction statistics gathered in the testing phase,
Fig. 6.6 presents the pseudo code of the training phase in OVFDT in
building an upright tree. The optimized node-splitting control is pre-
sented in Fig. 6.6 Line 7. In each node-splitting estimation process, HB
value that relates to a leaf l is recorded. The recorded HB values are used

Fig. 6.5  Example of incremental pruning

  H. Yang and S. Fong

  131

to compute the adaptive tie, which uses the mean of HB to each leaf l,
instead of a fixed user-defined value in VFDT.

�Evaluation

�Evaluation Platform and Datasets

A Java package with OVFDT and an embedded MOA toolkit was con-
structed as a simulation platform for experiments. The running environ-
ment was a Windows 7 PC with Intel Quad 2.8GHz CPU and 8G
RAM. In all of the experiments, the parameters of the algorithms were
δ = 10−6 and nmin = 200, which are default values suggested by MOA. δ is
the allowable error in split decision and values closer to zero will take longer
to decide; nmin is the number of instances a leaf should observe between split
attempts. The main goal of this section is to provide evidence of the
improvement of OVFDT compared to the original VFDT.

Fig. 6.6  Pseudo code of training approach

  Incremental Optimization Mechanism for Constructing... 

132 

The experimental datasets, including pure nominal datasets, pure
numeric datasets, and mixed datasets, were either synthetics generated by
the MOA Generator or extracted from real-world applications that are
publicly available for download from the UCI repository. The descrip-
tions of each experimental dataset are listed in Table 6.3. The generated
datasets were also used in previous VFDT-related studies.

The testing ran using a test-then-train approach that is common in
stream mining. When a new instance arrived that represented a segment
of the incoming data stream, it was sorted by the tree model into a pre-
dicted class. This was the testing approach for deriving the predicted class
via the latest form of the decision tree. Compared to the actual class label
it belonged to, the tree model was updated in the training approach
because the prediction accuracy was known. The decision tree can typi-
cally take either form of incoming data instances; if the instances are
labeled they will be used for training or learning for the decision tree to
update itself. If unlabeled, the instances are taken as unseen samples and
a prediction is made in the testing phase. In our experiments, all instances
were labeled because our objective was to measure the performance of
model learning and prediction accuracy.

Synthetic Data  LED24 was generated by MOA. In the experiment, we
added 10% noisy data to simulate imperfect data streams. The LED24
problem used 24 binary attributes to classify 10 different classes. Waveform
was generated by the MOA Generator. The dataset was donated by David

Table 6.3  Description of experimental datasets

Name Nom# Num# Cls# Type Instance#

LED24 10% Noise 24 0 10 Synthetic 106

Waveform 21 0 21 3 Synthetic 106

Waveform 40 0 40 3 Synthetic 106

Random Tree Simple (RTS) 10 10 2 Synthetic 106

Random Tree Complex (RTC) 50 50 2 Synthetic 106

RBF Simple (RBFS) 0 10 2 Synthetic 106

RBF Complex (RBFC) 0 50 2 Synthetic 106

Connect-4 42 0 7 UCI 67,557
Person Activity Data (PAD) 2 3 11 UCI 164,860
Cover Type (COVTYPE 42 12 7 UCI 581,012
Nursery 8 0 5 UCI 12,960

  H. Yang and S. Fong

  133

Aha to the UCI repository. The goal of the task was to differentiate
between three different classes of Waveform. There were two types of
waveform: Wave21 had 21 numeric attributes and Wave40 had 40
numeric attributes, all of which contained noise. Random Tree (RTS and
RTC) was also generated by the MOA Generator. It built a decision tree
by choosing attributes to split randomly and assigning a random class
label to each leaf. As long as a tree was constructed, new samples were
generated by assigning uniformly distributed random values to attributes.
Those attributes determined the class label through the tree. Radial basis
Function (RBFS and RBFC) is a fixed number of random centroids gen-
erator. A random position, a single standard deviation, a class label and
weight are generated by a centroid.

UCI Data  Connect-4 contained all of the legal 8-ply positions in a
two-player game of Connect-4. In the game, the player’s next move
was not forced and the game was won once four chessmen were con-
nected. Personal activity data (PAD) recorded the data streams col-
lected from 4 sensors on the players’ bodies. Each sensor collected 3
numeric data. Cover Type was used to predict forest cover type from
cartographic variables. Nursery was from a hierarchical decision model
originally developed to rank applications for nursery schools. Because
of its known underlying concept structure, this dataset can be useful
for testing constructive learning induction and structure discovery
algorithms.

�Accuracy Comparison

Table 6.4 shows the comparison results of the accuracy tests. On average,
OVFDT obtained a higher accuracy for the pure nominal datasets than
the mixed datasets. For the numeric Waveform datasets, OVFDT also
displayed better accuracy than the other VFDTs. This phenomenon was
particularly obvious in OVFDT with the adaptive Functional Tree Leaf.
For each dataset, a detailed comparison of its accuracy with the new
arrival data streams is illustrated in the Appendix.

  Incremental Optimization Mechanism for Constructing... 

134 

Ta
b

le
 6

.4
 

A
cc

u
ra

cy
 (

%
)

co
m

p
ar

is
o

n

M
et

ho
ds

V
FD

T
ti

e
0.

05
V

FD
T

ti
e

0.
5

O
V

FD
T

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

D
at

as
et

s
LE

D
_N

P1
0

63
.7

81
73

.7
3

73
.5

5
73

.8
8

73
.6

8
72

.5
3

73
.7

1
73

.2
6

73
.6

36
73

.4
4

73
.8

2
73

.8
9

C
O

N
N

EC
T-

4
67

.3
72

.2
8

73
.4

8
73

.4
8

69
.0

1
72

.8
7

74
.2

6
74

.0
9

69
.0

1
73

.5
5

74
.5

8
74

.9
8

N
U

R
SE

R
Y

83
.7

8
88

.5
88

.2
1

89
.0

7
82

.0
9

89
.1

6
86

.8
1

89
.8

2
82

.7
5

89
.2

4
87

.5
6

90
.2

9
N

o
m

in
al

 A
V

G
71

.6
2

78
.1

7
78

.4
1

78
.8

1
74

.9
3

78
.1

9
78

.2
6

79
.0

6
75

.1
3

78
.7

4
78

.6
5

79
.7

2
W

A
V

E2
1

76
.3

6
83

.1
5

84
.5

5
83

.9
1

80
.9

82
.0

2
82

.5
9

82
.4

7
78

.6
83

.2
4

84
.4

7
84

.5
7

W
A

V
E4

0
76

.4
2

83
.1

4
84

.3
7

83
.7

5
80

.8
9

81
.3

1
81

.7
9

81
.9

0
79

.1
83

.1
6

84
.3

1
84

.7
7

R
B

FS
82

.6
2

85
.0

9
85

.5
8

86
.4

7
87

.7
1

89
.1

8
89

.4
3

89
.4

7
84

.8
7

85
.6

3
86

.6
8

87
.7

3
R

B
FC

80
.7

5
90

.0
1

90
.7

1
90

.7
4

88
.3

8
92

.7
2

92
.8

8
92

.8
2

78
.6

7
89

.0
9

89
.4

5
89

.3
2

N
u

m
er

ic
 A

V
G

79
.0

4
85

.3
5

86
.3

0
86

.2
2

84
.4

7
86

.3
1

86
.6

7
86

.6
7

80
.3

1
85

.2
8

86
.2

3
86

.6
0

R
TS

91
.7

8
94

.8
6

94
.2

4
94

.7
7

93
.1

6
95

.8
95

.5
2

95
.7

2
92

.4
1

95
.5

6
95

.1
95

.8
4

R
TC

95
.1

4
95

.6
2

95
.5

9
95

.6
3

95
.5

5
95

.7
2

95
.7

1
95

.7
4

95
.4

95
.6

7
95

.6
3

95
.7

6
C

O
V

TY
PE

67
.4

5
77

.1
6

78
.6

77
.7

7
74

.1
9

90
.7

6
95

.5
2

95
.7

1
92

.4
1

95
.5

5
95

.1
95

.8
4

PA
D

43
.7

5
61

.0
4

59
.6

9
61

.0
1

55
.9

72
.6

5
71

.5
6

71
.2

9
51

.2
2

71
.0

7
70

.0
5

72
.7

M
ix

ed
 A

V
G

74
.5

3
82

.1
7

82
.0

3
82

.3
0

79
.7

0
88

.7
3

89
.5

8
89

.6
2

82
.8

6
89

.4
6

88
.9

7
90

.0
4

A
V

G
75

.0
6

81
.9

0
82

.2
5

82
.4

4
79

.7
0

84
.4

1
84

.8
4

85
.1

1
79

.4
3

84
.5

0
84

.6
2

85
.4

5

N
o

te
: T

h
e

fi
g

u
re

s
in

 b
o

ld
 a

re
 t

h
e

g
re

at
es

t
n

u
m

b
er

s
o

b
ta

in
ed

 p
er

 r
o

w
 o

f
al

g
o

ri
th

m
s

ex
p

er
im

en
te

d
 w

it
h

 a
 s

p
ec

ifi
c

d
at

as
et

  H. Yang and S. Fong

  135

Our comparison of the four functional tree leaf strategies revealed that
OVFDTADP generally had the highest accuracy in the most experimental
datasets. An improvement comparison of functional tree leaf strategies is
given in Table 6.5. The majority class functional tree leaf strategy was
chosen as a benchmark. As a result, the adaptive functional tree leaf strat-
egy obtained the best accuracy, with ƑAdaptive≻ƑWNB≻ƑNB≻ƑMC. This
result appeared in both VFDT and OVFDT methods.

�Tree Size Comparison

For all of the datasets, a comparison of tree size is shown in Table 6.6. For
the pure nominal and mixed datasets, VFDT with a smaller τ generally
had smaller tree sizes, but OVFDT obtained the smallest tree size with
the pure numeric datasets. For each dataset, a detailed comparison of
accuracy with the new arrival data streams is illustrated in the Appendix.
The charts in the Appendix essentially show the performance on the
y-axis and the dataset samples on the x-axis.

�Tree Learning Time Comparison

A comparison of tree learning time is shown in Table 6.7. For all of the
datasets, the majority class functional tree leaf consumed the least time in
this experiment due to its simplicity. The computation times of the other
three Functional Tree Leaves, using the Naïve Bayes classifier, were close.

�Stability of Functional Tree Leaf in OVFDT

Stability is related to the degree of variance in the prediction results. A
stable model is translated into a useful model and its prediction accuracy
over the same datasets does not vary significantly, regardless of how many
times it is tested. To show the stability of different functional tree leaf
mechanisms in OVFDT, we ran the evaluation based on those synthetic
datasets ten times. In this experiment, the synthetic datasets were gener-
ated using different random seeds. Hence, the generated data streams had

  Incremental Optimization Mechanism for Constructing... 

136 

Ta
b

le
 6

.5
 

A
cc

u
ra

cy
 im

p
ro

ve
m

en
t

b
y

Fu
n

ct
io

n
al

 T
re

e
Le

af

M
et

h
o

d
s

V
FD

T
ti

e
0.

05
V

FD
T

ti
e

0.
5

O
V

FD
T

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

D
at

as
et

s
N

o
m

in
al

A
cc

u
ra

cy

%
71

.6
2

78
.1

7
78

.4
1

78
.8

1
74

.9
3

78
.1

9
78

.2
6

79
.0

6
75

.1
3

78
.7

4
78

.6
5

79
.7

2

FL
 Im

p
.

%
0.

00
9.

15
9.

49
10

.0
4

0.
00

4.
35

4.
44

5.
51

0.
00

9.
95

9.
82

11
.3

1

N
u

m
er

ic
A

cc
u

ra
cy

%

79
.0

4
85

.3
5

86
.3

0
86

.2
2

84
.4

7
86

.3
1

86
.6

7
86

.6
7

80
.3

1
85

.2
8

86
.2

3
86

.6
0

FL
 Im

p
.

%
0.

00
7.

98
9.

19
9.

08
0.

00
2.

18
%

2.
61

%
2.

60
0.

00
6.

19
7.

37
7.

83

M
ix

ed
A

cc
u

ra
cy

%

74
.5

3
82

.1
7

82
.0

3
82

.3
0

79
.7

0
88

.7
3

89
.5

8
89

.6
2

82
.8

6
89

.4
6

88
.9

7
90

.0
4

FL
 Im

p
.

%
0.

00
10

.2
5

10
.0

6
10

.4
2

0.
00

11
.3

3
12

.3
9

12
.4

4
0.

00
7.

97
7.

37
8.

66

  H. Yang and S. Fong

  137

Ta
b

le
 6

.6
 

Tr
ee

 s
iz

e
co

m
p

ar
is

o
n

M
et

h
o

d
s

V
FD

T
ti

e
0.

05
V

FD
T

ti
e

0.
5

O
V

FD
T

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

D
at

as
et

s
LE

D
_N

P1
0

46
46

46
46

24
40

24
40

24
40

24
40

37
0

22
7

21
9

17
2

C
O

N
N

EC
T-

4
23

23
23

23
43

7
43

7
43

7
43

7
14

1
96

92
94

N
U

R
SE

R
Y

72
72

72
72

13
13

13
13

21
13

13
13

N
o

m
in

al
 A

V
G

47
47

47
47

96
3

96
3

96
3

96
3

17
7

11
2

10
8

93
W

A
V

E2
1

16
0

16
0

16
0

16
0

35
57

35
57

35
57

35
57

26
3

19
7

18
1

17
8

W
A

V
E4

0
15

0
15

0
15

0
15

0
36

07
23

40
36

07
36

07
41

3
19

4
15

4
15

2
R

B
FS

42
0

42
0

42
0

42
0

27
23

27
23

27
23

27
23

39
8

37
2

38
9

39
1

R
B

FC
44

3
44

3
44

3
44

3
20

52
31

45
31

45
31

45
60

4
38

1
37

2
39

6
N

u
m

er
ic

 A
V

G
29

3
29

3
29

3
29

3
29

85
29

41
32

58
32

58
42

0
28

6
27

4
27

9
R

TS
16

80
16

80
16

80
16

80
26

83
26

83
26

83
26

83
19

40
16

91
18

12
17

39
R

TC
62

0
62

0
62

0
62

0
14

92
14

92
14

92
14

92
67

0
68

2
67

0
67

8
C

O
V

TY
PE

12
7

12
7

12
7

12
7

18
82

18
82

26
83

26
83

19
40

16
91

18
12

17
39

PA
D

16
7

16
7

16
7

16
7

18
29

16
14

16
14

16
14

90
5

95
0

85
5

95
3

M
ix

ed
 A

V
G

64
9

64
9

64
9

64
9

19
72

19
18

21
18

21
18

13
64

12
54

12
87

12
77

A
V

G
33

0
33

0
33

0
33

0
19

73
19

41
21

13
21

13
65

4
55

1
55

6
55

0

  Incremental Optimization Mechanism for Constructing... 

138 

Ta
b

le
 6

.7
 

Tr
ee

 le
ar

n
in

g
 t

im
e

co
m

p
ar

is
o

n

M
et

h
o

d
s

V
FD

T
ti

e
0.

05
V

FD
T

ti
e

0.
5

O
V

FD
T

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

D
at

as
et

s
LE

D
_N

P1
0

8.
25

13
.1

5
13

.2
3

14
.7

6
14

.1
3

18
.2

1
18

.0
8

19
.1

1
10

.5
8

23
.1

5
22

.8
2

20
.6

3
C

O
N

N
EC

T-
4

1.
28

1.
53

1.
48

1.
53

1.
67

1.
86

1.
83

1.
93

1.
50

1.
95

1.
97

2.
17

N
U

R
SE

R
Y

0.
34

0.
36

0.
36

0.
37

0.
33

0.
34

0.
34

0.
37

0.
37

0.
39

0.
39

0.
39

N
o

m
in

al
 A

V
G

3.
29

5.
01

5.
02

5.
55

5.
38

6.
80

6.
75

7.
14

4.
15

8.
50

8.
39

7.
73

W
A

V
E2

1
17

.1
3

23
.1

8
23

.0
6

26
.8

9
21

.5
4

24
.8

4
24

.9
6

26
.9

4
18

.0
8

34
.2

7
34

.3
8

42
.1

5
W

A
V

E4
0

30
.8

7
41

.9
0

42
.0

7
49

.3
4

38
.1

9
45

.0
5

45
.5

7
48

.6
1

33
.0

6
64

.2
3

63
.3

7
76

.7
0

R
B

FS
9.

39
11

.2
9

11
.3

7
12

.3
2

11
.0

1
12

.4
3

12
.4

5
13

.7
4

10
.0

6
15

.7
9

15
.8

0
17

.3
4

R
B

FC
38

.2
0

47
.9

4
47

.9
9

55
.4

3
44

.4
0

52
.2

0
51

.7
1

57
.2

8
42

.5
1

69
.4

0
69

.6
4

86
.3

2
N

u
m

er
ic

 A
V

G
23

.9
0

31
.0

8
31

.1
2

36
.0

0
28

.7
9

33
.6

3
33

.6
7

36
.6

4
25

.9
3

45
.9

2
45

.8
0

55
.6

3
R

TS
15

.4
3

17
.5

8
17

.8
3

18
.7

8
16

.8
0

18
.3

9
18

.3
0

19
.3

9
16

.1
9

21
.9

3
21

.8
4

22
.1

1
R

TC
64

.6
6

74
.6

0
75

.1
9

78
.7

4
67

.6
0

76
.4

7
77

.0
6

80
.6

1
67

.0
3

96
.5

8
96

.2
1

92
.8

4
C

O
V

TY
PE

11
.0

4
15

.2
4

15
.0

5
18

.3
6

12
.6

8
15

.2
3

18
.3

0
19

.3
9

16
.1

9
21

.9
3

21
.8

4
22

.1
1

PA
D

1.
31

2.
04

1.
97

2.
48

1.
53

1.
92

1.
90

2.
17

1.
56

2.
68

2.
78

3.
49

M
ix

ed
 A

V
G

23
.1

1
27

.3
7

27
.5

1
29

.5
9

24
.6

5
28

.0
0

28
.8

9
30

.3
9

25
.2

4
35

.7
8

35
.6

7
35

.1
4

A
V

G
16

.7
7

21
.1

5
21

.2
2

23
.7

1
19

.6
0

22
.8

1
23

.1
0

24
.7

2
18

.4
4

30
.0

7
29

.9
5

32
.8

3

  H. Yang and S. Fong

  139

exactly the same data formats, but different random values. The average
and its variance of accuracy in the testing are shown in Table 6.8.
Generally, datasets that only contained the homogenous attribute types
(numeric attributes only or nominal attributes only) had smaller vari-
ances. The proposed adaptive functional tree leaf obtained the least vari-
ances because it had more stable and comparable accuracy than the other
functional tree leaves.

�Optimal Tree Model

Figure 6.7 presents a comparison of the optima ratio, which was calcu-
lated by optimization function accuracy/tree size in (6.5). The higher this
ratio is, the better the optimal result. Comparing VFDT to OVFDT, the
ratios of OVFDT were clearly higher than those of VFDT. In other
words, the optimal tree structures were achieved in the pure numeric and
mixed datasets.

�Conclusion

Imperfect data stream leads to tree size explosion and detrimental accu-
racy problems. In original VFDT, a tie-breaking threshold that takes a
user-defined value is proposed to alleviate this problem by controlling the
node-splitting process that is a way of tree growth. But there is no single
default value that always works well and that user-defined value is static
throughout the stream mining operation. In this chapter, we propose an
extended version of VFDT which we called it Optimized-VFDT
(OVFDT) algorithm that uses an adaptive tie mechanism to automati-
cally search for an optimized amount of tree node-splitting, balancing the
accuracy, the tree size and the time, during the tree-building process. The
optimized node-splitting mechanism controls the attribute-splitting esti-
mation incrementally. Balancing between the accuracy and tree size is
important, as stream mining is supposed to operate in limited memory
computing environment and a reasonable accuracy is needed. It is a
known contradiction that high accuracy requires a large tree with many

  Incremental Optimization Mechanism for Constructing... 

140 

Ta
b

le
 6

.8
 

Th
e

av
er

ag
e

an
d

 v
ar

ia
n

ce
 o

f
ac

cu
ra

cy
 in

 f
o

u
r

ty
p

es
 o

f
Fu

n
ct

io
n

al
 T

re
e

Le
av

es

M
et

h
o

d

A
ve

ra
g

e
V

ar
ia

n
ce

M
C

N
B

W
N

B
A

D
P

M
C

N
B

W
N

B
A

D
P

D
at

a
Le

d
_n

p
10

73
.6

45
4

73
.4

98
7

73
.8

41
6

73
.9

08
0

0.
01

06
0.

00
67

0.
00

19
0.

00
27

Le
d

_n
p

15
61

.9
01

0
60

.7
58

7
61

.8
47

7
61

.9
78

5
0.

00
25

0.
02

55
0.

00
13

0.
00

14
Le

d
_n

p
20

51
.1

40
7

47
.5

27
8

50
.7

01
8

51
.0

75
2

0.
00

26
0.

11
13

0.
00

29
0.

00
11

Le
d

_n
p

25
41

.4
07

0
35

.7
71

3
39

.9
21

5
41

.1
29

4
0.

00
27

0.
11

18
0.

02
55

0.
00

29
A

V
G

.N
o

m
.

57
.0

23
5

54
.3

89
1

56
.5

78
2

57
.0

22
8

0.
00

46
0.

06
38

0.
00

79
0.

00
20

W
av

ef
o

rm
21

79
.0

60
4

83
.2

39
6

84
.5

73
9

84
.5

63
4

0.
07

85
0.

01
51

0.
00

25
0.

00
25

W
av

ef
o

rm
40

79
.0

79
1

83
.1

60
7

84
.3

69
8

84
.3

52
7

0.
06

97
0.

00
67

0.
00

51
0.

00
58

R
B

FS
89

.8
14

2
90

.8
91

1
91

.6
12

9
92

.4
02

9
2.

36
77

2.
03

08
2.

35
80

1.
75

88
R

B
FC

98
.1

27
0

98
.0

03
3

98
.3

04
6

98
.9

69
3

0.
07

10
0.

15
18

0.
10

20
0.

03
29

A
V

G
.N

u
m

.
86

.5
20

2
88

.8
23

7
89

.7
15

3
90

.0
72

1
0.

64
67

0.
55

11
0.

61
69

0.
45

00
R

TS
89

.9
29

0
93

.0
06

0
92

.4
38

2
93

.0
39

4
10

.0
79

0
9.

60
65

9.
77

57
9.

30
52

R
TC

89
.5

04
8

84
.9

35
2

87
.1

03
9

87
.4

00
2

44
.1

08
1

84
.7

36
1

80
.1

80
7

80
.7

94
9

A
V

G
.M

ix
.

89
.7

16
9

88
.9

70
6

89
.7

71
1

90
.2

19
8

27
.0

93
6

47
.1

71
3

44
.9

78
2

45
.0

50
1

  H. Yang and S. Fong

  141

Homogeneous Data: Nominal only

Homogeneous Data: Numeric only

Mixed Data

vfdt_mc

vfdt_nb

vfdt_wnb

vfdt_adp

ovfdt_mc

ovfdt_nb

ovfdt_wnb

ovfdt_adp

10
9
8
7
6
5
4
3
2
1
0

LED_NP10

CONNECT-4

NURSERY

WAVE21

WAVE40

RBFS

RBFC

RTS

RTC

COVTYPE

PAD

vfdt_mc

vfdt_nb

vfdt_wnb

vfdt_adp

ovfdt_mc

ovfdt_nb

ovfdt_wnb

ovfdt_adp

10
9
8
7
6
5
4
3
2
1
0

vfdt_mc

vfdt_nb

vfdt_wnb

vfdt_adp

ovfdt_mc

ovfdt_nb

ovfdt_wnb

ovfdt_adp

10
9
8
7
6
5
4
3
2
1
0

Fig. 6.7  Comparison of optimal tree structures between VFDT and OVFDT

  Incremental Optimization Mechanism for Constructing... 

142 

decision paths, and too sparse the decision tree results in poor accuracy.
The experiment results show that OVFDT meet the optimization goal
and achieve a better performance gain ratio in terms of high prediction
accuracy and compact tree size than the other VFDTs. That is, with the
minimum tree size, OVFDT can achieve the highest possible accuracy.
This advantage can be technically accomplished by means of simple
incremental optimization mechanisms as described in this chapter. They
are light-weighted and suitable for incremental learning. The contribu-
tion is significant because OVFDT can potentially be further modified
into other variants of VFDT models in various applications, while the
best possible (optimal) accuracy and minimum tree size can always be
guaranteed.

Acknowledgment  The authors are thankful for the financial support from the
research grants “Temporal Data Stream Mining by Using Incrementally
Optimized Very Fast Decision Forest (iOVFDF)”, Grant no. MYRG2015-
00128-FST offered by the University of Macau, FST, and RDAO, and “A scal-
able data stream mining methodology: stream-based holistic analytics and
reasoning in parallel”, Grant no. FDCT-126/2014/A3, offered by FDCT Macau.

Reference

Bifet, A., & Gavalda, R. (2007). Learning from Time-Changing Data with
Adaptive Windowing. In Proceedings of SIAM International Conference on
Data Mining (pp. 443–448).

Bifet A., Geoff, H., Bernhard, P., Jesse, R., Philipp, K., Hardy, K., Timm, J., &
Thomas, S. (2001). MOA: A Real-Time Analytics Open Source Framework.
In Machine Learning and Knowledge Discovery in Databases (pp. 617–620).
Lecture Notes in Computer Science, Volume 6913/2011.

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavalda, R. (2009). New
Ensemble Methods for Evolving Data Streams. In Proceedings 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 139–147). New York: ACM.

Elomaa, T. (1999). The Biases of Decision Tree Pruning Strategies, Advances in
Intelligent Data Analysis (pp. 63–74). Lecture Notes in Computer Science,
Volume 1642/1999. Berlin/Heidelberg: Springer.

  H. Yang and S. Fong

  143

Gama, J., & Kosina, P. (2011). Learning Decision Rules from Data Streams. In
T. Walsh (Ed.), Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence – Volume Two (Vol. 2, pp. 1255–1260). Menlo Park:
AAAI Press.

Gama J, Rocha R., & Medas P. (2003). Accurate Decision Trees for Mining
High-Speed Data Streams. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(pp. 523–528). ACM, New York.

Geoffrey H., Richard K., & Bernhard P. (2005). Tie Breaking in Hoeffding
Trees. In Proceedings Workshop W6: Second International Workshop on
Knowledge Discovery in Data Streams (pp. 107–116).

Hartline J. R. K. (2008). Incremental Optimization (PhD Thesis). Faculty of the
Graduate School, Cornell University.

Hashemi, S., & Yang, Y. (2009). Flexible Decision Tree for Data Stream
Classification in the Presence of Concept Change, Noise and Missing Values.
Data Mining and Knowledge Discovery, 19(1), 95–131.

Hulten G., & Domingos P. (2003). VFML – A Toolkit for Mining High-Speed
Time-Changing Data Streams. http://www.cs.washington.edu/dm/vfml/

Hulten G., Spencer L., & Domingos P. (2001). Mining Time-Changing Data
Streams. In Proceedings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 97–106).

Mladenic D., & Grobelnik M. (1999). Feature Selection for Unbalanced Class
Distribution and Naive Bayes, In Proceeding ICML ‘99 Proceedings of the
Sixteenth International Conference on Machine Learning (pp. 258–267). ISBN
1-55860-612-2, Morgan Kaufmann.

Nitesh, C., Nathalie, J., & Alek, K. (2004). Special Issue on Learning from
Imbalanced Data Sets. ACM SIGKDD Explorations, 6(1), 1–6.

Oza N., & Russell S. (2001). Online Bagging and Boosting. In Artificial
Intelligence and Statistics (pp. 105–112). San Mateo: Morgan Kaufmann.

Pedro D., & Geoff H. (2000). Mining High-Speed Data Streams. In Proceeding
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 71–80).

Pfahringer B., Holmes G., & Kirkby R. (2007). New Options for Hoeffding
Trees. In Proceedings in Australian Conference on Artificial Intelligence
(pp. 90–99).

Stefan H., Russel P., & Yun S. K. (2009). CBDT: A Concept Based Approach to
Data Stream Mining (pp. 1006–1012). Lecture Notes in Computer Science,
Volume 5476/2009.

  Incremental Optimization Mechanism for Constructing... 

http://www.cs.washington.edu/dm/vfml/

144 

Yang H., & Fong S. (2011). Moderated VFDT in Stream Mining Using
Adaptive Tie Threshold and Incremental Pruning. In Proceedings of the 13th
International Conference on Data Warehousing And Knowledge Discovery
(pp. 471–483). Berlin/Heidelberg: Springer-Verlag.

  H. Yang and S. Fong

	6: Incremental Optimization Mechanism for Constructing a Balanced Very Fast Decision Tree for Big Data
	 Introduction
	 Background
	 Decision Tree in Data Stream Mining
	 Relationship Among Accuracy, Tree Size, and Time

	 Incrementally Optimized Decision Tree
	 Motivation and Overview
	 OVFDT Test-Then-Train Process
	 OVFDT Testing Approach
	 OVFDT Training Approach

	 Evaluation
	 Evaluation Platform and Datasets
	 Accuracy Comparison
	 Tree Size Comparison
	 Tree Learning Time Comparison
	 Stability of Functional Tree Leaf in OVFDT
	 Optimal Tree Model

	 Conclusion
	Reference

