
Collective-k Optimal Location Selection

Fangshu Chen1, Huaizhong Lin1(B), Jianzhong Qi2, Pengfei Li1,
and Yunjun Gao1

1 College of Computer Science and Technology,
Zhejiang University, Hangzhou, People’s Republic of China

youyou chen@foxmail.com, {linhz,gaoyj}@zju.edu.cn, lpff1218@sina.com
2 School of Computing and Information Systems,
University of Melbourne, Melbourne, Australia

jianzhong.qi@unimelb.edu.au

Abstract. We study a novel location optimization problem, the
Collective-k Optimal Location Selection (CkOLS) problem. This problem
finds k regions such that setting up k service sites, one in each region,
collectively attracts the maximum number of customers by proximity.
The problem generalizes the traditional influence maximizing location
selection problem from searching for one optimal region to k regions. This
increases the complexity of the problem. We prove that the CkOLS prob-
lem is NP-hard, and propose both precise and approximate algorithms to
solve this problem. The precise algorithm uses a brute-force search with a
pruning strategy. The approximate algorithm adopts a clustering-based
approach, which restricts the combinational search space within repre-
sentative regions of clusters, and has a bounded approximation ratio.
Extensive experiments show that the approximate algorithm is effective
and efficient, and its output results are close to optimal.

Keywords: BRNN · k optimal location · Clustering

1 Introduction

Given a set of service sites P and a set of customer points O, for a service
site p ∈ P , a Bichromatic Reverse Nearest Neighbor (BRNN) query finds all
customer points o ∈ O whose nearest neighbor in P is p. The set of BRNN
points of p is called the influence set of p, and the cardinality of this set is called
the influence value of p. Influence maximization has been a common goal in
traditional location optimization problems. A basic problem is the MaxBRNN
problem [2–6,13–15], which finds a region S in which all the points have the
maximum influence value, i.e., setting up a new service site within this region
will attract the maximum number of customers by proximity. Here, a point is
said to attract a customer if a service site set up at this point will become the
new nearest neighbor of the customer.

This work is partially done when Fangshu is visiting the University of Melbourne.

c© Springer International Publishing AG 2017
M. Gertz et al. (Eds.): SSTD 2017, LNCS 10411, pp. 339–356, 2017.
DOI: 10.1007/978-3-319-64367-0 18

340 F. Chen et al.

We generalize the MaxBRNN problem to find k regions such that setting up k
new service sites, one in each region, collectively attract the maximum number
of customers by proximity. We call our generalized problem the Collective-k
Optimal Location Selection (CkOLS) problem. The distinctive feature of this
problem is that it optimizes the combined impact of k selected points rather than
the impact of any single point. As a result, we need to check every combination
of k regions to find the optimal result, which leads to a much higher computation
complexity than that of the traditional MaxBRNN problem. Although there are
existing algorithms for MaxBRNN [4–6,13–15], a straightforward adaptation
of these solutions is inefficient for CkOLS because there are too many region
combinations to be considered.

Meanwhile, CkOLS has many real life applications in service site planning
and emergency scheduling. For example, consider a food truck chain which wishes
to deploy a number of food trucks in the city CBD. It is preferable to deploy
the food trucks within the regions which collectively attract the largest number
of customers possible.

Fig. 1. An example of CkOLS Fig. 2. An example of regions cov-
ered by NLCs

To define and compute the optimal regions, we make use of a concept called
the Nearest Location Circle (NLC) [14]. An NLC is a circle centered at a customer
point o with the radius being the distance from o to its nearest service site. For
any customer point o, if we build a new service site p outside the NLC of o,
p cannot attract o for that there already exists a service site closer to o. As a
result, to attract more customer points, the new service site should be located
within as many NLCs as possible. The objective of CkOLS then becomes finding
k regions covered by the maximum number of NLCs.

For example, in Fig. 1, there are 8 customer points denoted by o1, o2, ..., o8
and 6 existing service sites denoted by p1, p2, ..., p6. The NLC of each customer is
represented by the circle enclosing the customer point. The NLCs partition the
space into regions. Three shaded regions s1, s2, and s3 are covered by multiple
NLCs. Region s2 is covered by 4 NLCs. A new service site in s2 will attract the
4 corresponding customers {o2, o3, o4, o7}. Similarly, each of regions s1 and s3
are covered by 3 NLCs and a new service site in them will attract 3 customers.

Collective-k Optimal Location Selection 341

Assuming that we want to build 2 new service sites in 2 different regions. The
optimal result in this case is {s1, s3} which attracts 6 customer points together:
{o1, o2, o3, o4, o5, o7}. In comparison, the combination {s1, s2} attracts 5 cus-
tomer points, {o1, o2, o3, o4, o7}; and {s2, s3} also attracts 5 customer points. As
we can see from Fig. 1, the single optimal region is s2 (attracts 4 customer points
which is more than any other regions). This region, however, is not part of the
optimal regions for the CkOLS problem when k = 2.

To solve the CkOLS problem, we propose two algorithms. The first algo-
rithm is a precise algorithm. It computes all intersection points of NLCs, and
obtain the influence value of each intersection point (i.e., number of customers
whose NLCs encloses the intersection point). Then, these intersection points are
used to represent the corresponding intersection regions. The algorithm sorts the
intersection points in descending order of their influence value, and enumerate
all combinations of k intersection points to find the optimal combination. We
choose the point with largest influence value first to form a combination. During
the process of checking all combinations, we can prune the combinations that are
unpromising. The second algorithm adopts an approximate strategy to reduce
the computation complexity. The algorithm also computes all the intersection
points first, but then adopts a clustering method to find a small set of candi-
date representative points (one from each cluster). At last, it chooses the optimal
combination of k representative points to form the final result. Our contributions
are summarized as follows:

1. We propose and formulate the CkOLS problem, and prove that the problem
is NP-hard.

2. We propose both a precise and an approximate algorithm to solve the CkOLS
problem. The precise algorithm uses a brute-force search with a pruning strat-
egy. The approximate algorithm adopts a clustering-based approach, which
restricts the combinational search space within representative regions of clus-
ters, and has a bounded approximation ratio.

3. We conduct extensive experiments over both real and synthetic datasets to
evaluate the proposed algorithms. Experimental results verify the effective-
ness and efficiency of the proposed algorithms.

The rest of the paper is organized as follows. Section 2 discusses related work.
Problem statement is presented in Sect. 3. Sections 4 and 5 describe the proposed
algorithms and analyze their complexity. Section 6 presents experimental results
and Sect. 7 concludes the paper.

2 Related Work

The MaxBRNN problem was first introduced by Cabello et al. in [2,3]. They
call it MaxCOV and propose an algorithm in two-dimensional Euclidean space.

Wong et al. propose the MaxOverlap algorithm to solve the MaxBRNN prob-
lem [14]. MaxOverlap uses region-to-point transformation to reduce the opti-
mal region search problem into an optimal intersection point search problem.

342 F. Chen et al.

The intersection points are computed by the NLCs of customer points, and the
optimal intersection points are those covered by the largest number of NLCs. In
another paper [13], Wong et al. extend the MaxOverlap algorithm to Lp-norm in
two- and three-dimensional space. An algorithm called MaxFirst is presented by
Zhou et al. [15] to solve the MaxBRNN problem. MaxFirst partitions the data
space into quadrants, computes the upper and lower bounds of each quadrant’s
BRNN, and recursively partitions the quadrants with the largest upper bound
until the upper bound and lower bound of some quadrants come to the same
value. Liu et al. propose an algorithm called MaxSegment [5] for the MaxBRNN
problem where the Lp-norm is used. Lin et al. present an algorithm called OptRe-
gion [6] to solve the MaxBRNN problem. The algorithm employs the sweep line
technique and a pruning strategy based on upper bound estimation to improve
the search performance.

The maximum coverage problem is a similar problem, which computes a
group of locations p ∈ P (where P is a given candidate service site set) that
maximizes the total weight of the clients attracted [10,12]. This problem differs
from ours in that, it dose not consider the existing facilities, and hence the
solutions are not suitable to our problem.

Another similar problem is the Top-k MaxBRNN query [5,11]. The Top-k
MaxBRNN problem simply ranks the regions by the number of BRNNs attracted
and returns the Top-k regions. Although it also returns a group of k regions such
that setting up a new service site within each region attracts a large number of
customers, the Top-k regions may shared many customers attracted, which is
different from our CkOLS problem. However, the algorithm proposed for Top-k
MaxBRNN can also be considered as an approximate method for CkOLS. We
will compare the proposed approximate algorithm with Top-k MaxBRNN query
in the experiment section. Qi et al. conducted a series of studies [7–9] on the Min-
dist location selection problems. They find a service site location to minimize the
average distance between the service sites and the customers they are serving.
This is a different optimization goal and the studies will not be discussed further.

3 Preliminaries and Problem Statement

3.1 Problem Statement

Given a set of customer points O and a set of service sites P , each customer point
o is associated with a weight w(o), which indicates the number of customers at
o. For a point p ∈ P , BRNN (p,O, P) represents the set of customer points that
take p as their nearest neighbor in P . For a point s /∈ P , BRNN (s,O, P ∪ {s})
represents the set of points that take s as their nearest neighbor if s is added
into P . In order to describe the attracted customer points of a new service site,
we define influence set, influence list and influence value in Definitions 1 and 2.

Definition 1 (Influence set/value of a single service site). Given a service
site s, we define the influence set of s to be BRNN(s,O, P ∪{s}). The influence
value of s is equal to

∑
o∈BRNN(s,O,P∪{s}) w(o).

Collective-k Optimal Location Selection 343

Definition 2 (Influence list/value of k points). Let S be a set of k new service
sites. The influence list of S is the union of BRNN(s, O, P) for every service site
s ∈ S. We denote this list by U , U = ∪s∈SBRNN(s,O, P ∪ S). The influence
value of S is the sum of the weights of the customers in U , i.e.,

∑
o∈U w(o).

CkOLS: Given a set of customer points O and a set of service sites P in a two-
dimensional Euclidean space, the CkOLS problem finds k optimal regions, such
that setting up k new service sites, one in each region, will collectively attract
the maximum number of customers.

3.2 Region-to-Point Transformation

Wong et al. transform finding optimal regions to finding optimal points for the
MaxBRNN problem [14]. We also use this transformation for the CkOLS prob-
lem. We use the intersection points of NLCs (intersection points, for short) to
represent regions. We say that a region is determined by the intersection points
of the NLC arcs enclosing the region.

Notice that, the influence set of q1 is {o1, o4} (as shown in Fig. 2), which
is different from that of q2 and q3, while q2, q3, q4 share the same influence set
{o1, o2, o4}, and region s1 is not an optimal region of CkOLS, since s2 attracts
more customers. We can see that, if a region is determined by intersection points
with different influence sets, it cannot be the optimal region. This is because, a
region’s influence value is always bounded by the intersection point with the low-
est influence value among all the intersection points that determine this region.
Next, we introduce Theorem 1 to help us find the optimal region efficiently.

Theorem 1. Any optimal region for CkOLS must be determined by the inter-
section points with the same influence set.

Proof. For any region s that is determined by intersection points p1, p2, ..., pn

with different influence list, we assume that p is the one with largest influence
value in p1, p2, ..., pn. Thus there must exist some other intersection points (not
in p1, p2, ..., pn) with the same influence list as p. The region s0, which is deter-
mined by p and the intersection points with the same influence list as p, must be
a better region than s for the CkOLS problem (s0 attracts more customer points
than s). This means that the region determined by intersection points with dif-
ferent influence list cannot be the optimal region of CkOLS. Therefore, it can
be deduced that the optimal region of CkOLS problem must be determined by
the intersection points with the same influence list.

According to Theorem 1, we can prune a large number of regions which
cannot be the optimal regions of CkOLS. We only need to deal with the regions
determined by intersection points with the same influence set. Since any point
inside s has the same influence set, we use just one intersection point pi in
p1, p2, ..., pn to represent s. Adopting this region-to-point transformation, the
CkOLS problem becomes finding k intersection points, with the objective that
the influence value of the k intersection points is maximum.

344 F. Chen et al.

3.3 NP-hardness of CkOLS

Next, we show that the CkOLS problem is NP-hard by reducing an existing NP-
complete problem called the Maximum Coverage Problem to CkOLS in polyno-
mial time.

Maximum Coverage Problem: Given a number t and a collection of sets
S = {S1, S2, S3, ..., Sm}, the objective is to find a subset S ′ ⊂ S such that
|S ′| ≤ t and the number of covered elements |∪Si∈S′Si| is maximum. In the
weighted version, every element has a weight, and the objective is to find a
collection of coverage sets which has the maximum sum of weight.

We reduce the Maximum Coverage Problem to CkOLS as follows. Sets
S1, S2, S3, ..., Sm correspond to the influence sets of the intersection points. The
collection of sets S is equal to the collection of the influence sets of all intersec-
tion points, and t is equal to k. It is easy to see that this transformation can
be constructed in polynomial time, and it can be easily verified that when the
problem is solved in the transformed CkOLS problem, the original Maximum
Coverage Problem is also solved. Since the Maximum Coverage Problem is an
NP-complete problem, CkOLS is NP-hard.

Theorem 2. The CkOLS problem is NP-hard.

4 Precise Algorithm

In this section, we propose a precise algorithm which is a brute-force enumeration
based algorithm. We call the algorithm CkOLS-Enumerate. Using the intersec-
tion points to represent regions, we compute all the intersection points and check
the total combinations of k intersection points to obtain the optimal result of
CkOLS. We divide the precise algorithm into two phases.

Phase 1. We compute all intersection points of NLCs, and obtain the influence
set of each intersection point. In order to obtain the NLC of each customer
point, we use kd-tree [15] to perform nearest neighbor query. We build a kd-
tree of service sites and use the algorithm ANN [1] to find the nearest service
sites over the kd-tree. The influence set of each intersection point is the set of
customer points whose NLCs cover the intersection point.

Phase 2. We sort the intersection points in descending order of their influence
values, and the point with the largest influence value is processed first. We
enumerate to check all combinations of k intersection points to get the optimal
result of CkOLS. The algorithm is summarized in Algorithm 1.

4.1 Enumeration Algorithm

We adopt a recursive algorithm in Algorithm 1. The main idea is to choose
one point from all intersection points and choose m − 1 (m is the number of
points need to be added into one combination, and initially m = k) points

Collective-k Optimal Location Selection 345

from the remaining intersection points. During the process of enumeration, we
add the intersection point one by one into a combination of k points. Lines
7–9 check whether we have added k points into one combination. Lines 12–14
prune the combinations which are unnecessary to check. We will elaborate this
pruning strategy in the next subsection. Keeping the intersection points in a
sorted list, lines 15–17 choose the next point to add into one combination, and
iteratively choose m − 1 points from the remaining n − i − 1 (n is the number
of intersection points) intersection points. After having added k points into one
combination, lines 18–23 verify whether the influence value of this combination is
larger than the maximum influence value ever found, and update the maximum
influence value if necessary. Finally, we obtain the optimal result after checking
all combinations of k intersection points.

Algorithm 1. CkOLS-Enumerate algorithm
Input: k: number of optimal regions, IP : set of sorted intersection points
Output: k optimal points
1: n: number of intersection points; i = 0
2: m := k /*number of points to be added into one combination */
3: maxV alue := 0 /* the largest combination influence value already found */
4: optCombination := ∅ /* the optimal combination */
5: cV alue := 0 /* combination influence value of added points in one combination */
6: procedure Combination(n, IP , m)
7: if m == 0 then
8: return optCombination
9: end if

10: while i < n − m do
11: value := influence value of the ith point
12: if m · value + cV alue < maxV alue then
13: break
14: end if
15: Add i into this combination
16: m := m − 1, update cV alue
17: Combination(n − i − 1,IP ,m)
18: if m == 0 then
19: if cV alue > maxV alue then
20: maxV alue := cV alue
21: update optCombination
22: end if
23: end if
24: i := i + 1
25: end while
26: end procedure

346 F. Chen et al.

4.2 Pruning Strategy

In this subsection, we introduce our pruning strategy exploited by the enumera-
tion algorithm (Lines 12–14 in Algorithm 1). Using the sorted intersection point
list IP , we choose the point with larger influence value earlier to add into one
combination. During the process of checking any combination C, we assume that
there are m points to be added into C. The influence value of the k − m added
points of C is cV alue. The point with the largest influence value left in IP
is maxP (which is the very first point left in IP), and the influence value of
maxP is maxPV alue. The influence value of set C cannot be larger than the
sum of the influence value of each intersection point. Therefore, after adding
the remaining m points into C, the influence value of C cannot be larger than
m · maxPV alue + cV alue. Let maxV alue be the maximal influence value of
combinations already found. As long as m ·maxPV alue+ cV alue < maxV alue,
combination C can be pruned.

4.3 Time Complexity of CkOLS-Enumerate

First, we discuss the time complexity to compute all intersection points. In order
to compute the NLC of each customer point, we use the All Nearest Neighbor
algorithm [1], which requires O(log |P |) time. The time complexity of the construc-
tion of a kd-tree for P is O(|P | log |P |). Then, it takes O(|P | log |P | + |O| log |P |)
time to get NLCs of all customer points in O. After obtaining NLCs, we use MBR
of NLCs to compute the intersection points of NLCs. Suppose that, for each NLC,
its MBR intersects with at most d MBRs. Then it takes O(d) time to process each
NLC. Therefore, the total time complexity to compute the intersection points is
O(|P | log |P |+|O| (log |P |+d)). In addition, we need to sort the intersection points
IP , which requires O(|IP | log |IP |) time.

Second, as we can see that the enumeration algorithm is a brute-force algo-
rithm. In the worst case, let N be the number of intersection points, the enu-
meration algorithm will check

(
k
N

)
combinations to get the optimal result. Let

m be the maximum size of influence set of points in the intersection points list.
The time complexity of checking each combination is O(k2 ·m). Thus, the worst-
case time complexity of the enumeration algorithm is O(k2 · m · (k

N

)
). With the

increase of the data volumes, the enumeration algorithm degrades rapidly.

5 Approximate Algorithm

In the enumeration algorithm, with the growth of the cardinality of intersection
points, the combinatorial number of k intersection points would be very large.
As a result, it would take a long running time. In order to reduce the cost of
enumeration, we aim to reduce the number of intersection points to be checked.
Towards this aim, we propose a clustering based approach.

As we can see, there are many intersection points whose influence sets are
similar to each other. For two intersection points with largely overlapping influ-
ence sets, the influence value of the combination of the two intersection points

Collective-k Optimal Location Selection 347

may not be much larger than the influence value of either point. Putting the
two points in a combination is less desired. Hence, we partition the intersection
points into clusters according to the similarity of their influence sets. We choose
a representative point of each cluster, and use the representative point to rep-
resent all the other points inside the cluster. Afterwards, we only need to check
the combinations of the representative points to obtain the approximate optimal
result. Since the number of representative points is much smaller than that of
the entire set of intersection points, the enumeration cost can be greatly reduced.
We call the clustering-based approximate algorithm CkOLS-Approximate. The
approximate algorithm also runs in two phases. The first phase clusters the inter-
section points and compute the representative points. The second phase checks
the combination of the representative points in the same way as the precise algo-
rithm. We omit the full pseudo-code of CkOLS-Approximate, and only describe
Clustering algorithm here.

5.1 Clustering Algorithm

In order to cluster the intersection points according to the similarity between
their influence sets, we propose the concept of Discrepancy. For ease of discussion,
we first define a new operation in Definition 3.

Definition 3 (Operation 〈〉). Given an influence set N , 〈N〉 =
∑

o∈N w(o).
Point o is a customer point in N , and w(o) is the weight of o.

Definition 4 (Discrepancy). Given two service sites s1 and s2, let N1 and
N2 denote the influence sets of s1 and s2. We define the discrepancy of s2 to
s1 as d(s1, s2), d(s1, s2) = 〈N2−N1〉

〈N1〉 . Notice that d(s2, s1), which denotes the
discrepancy of s1 to s2, is not equal to d(s1, s2).

We cluster the intersection points as follows. First, we sort the intersection
point list L in decreasing order of influence value. Second, we pick the point
p with the largest influence value in L as the representative point of a new
cluster cl, and remove p from L. Third, after building a new cluster, we need
to add the points with discrepancy to p less than α into cl, and remove these
points from L as well. We say that the points in one cluster are represented by
the representative point of this cluster. We repeat the second and third steps
until L becomes empty. When finishing clustering, the influence value of any
representative point is larger than that of any other point in the same cluster.

As described in Algorithm 2, lines 3–5 get the point p with the largest influ-
ence value in L to build a new cluster cl. Point p is the representative point of
cl. Since L is sorted by decreasing order of influence value, the top point of L is
just the one with the largest influence value. We say that, an intersection point
cp is represented by p if d(p, cp) < α. Lines 6–12 get the candidate points that
could probably be represented by p, check all these points, and add these points
into cl. The procedure stops when every intersection point has been partitioned
into a cluster.

348 F. Chen et al.

Algorithm 2. Clustering algorithm
Input: L: sorted intersection point list
Output: C: set of clusters of intersection points
1: procedure Clustering(L)
2: while L is not empty do
3: p := top point of L
4: remove p from L
5: build a new cluster cl
6: cl.clusterCenter := p
7: Cand := GetCandidate(p)
8: for cp ∈ Cand do
9: if d(p, cp) < α then

10: add cp into cl
11: remove cp from L
12: end if
13: end for
14: end while
15: end procedure
16:
17: procedure GetCandidate(p)
18: set := influence set of p
19: maxRadius := get maximum NLC radius of point in set
20: Cand := the points with distance to p smaller than 2 · maxRadius
21: return Cand
22: end procedure

Table 1 shows a part of intersection points and clustering result of Fig. 1.
Points q1, ..., q10 are intersection points of NLCs of o1, ..., o4. The clustering algo-
rithm partitions q1, ..., q10 into clusters cl1 and cl2, and cl1 = {q1, q2, q3, q7, q8},
cl2 = {q4, q5, q6, q9, q10}. Point q1 (q4) is the representative point of cl1 (cl2). The
discrepancies of the other points in cl1 (cl2) to q1 (q4) are all 0. The discrepancy
of q4 to q1 is 0.33. As a result, q4 cannot be partitioned into the cluster of q1 if
α equals 0.2. We list some examples of discrepancy in Table 2.

5.2 Getting Candidate Represented Points

In the process of getting represented points of any representative point, it will
take much time if we check all points in the intersection point list. Considering
the principle of locality, given an intersection point p, the intersection points
that are closer to p are more likely to be represented by p. Next, we will describe
how to get the candidate represented points in Lines 17–22 of Algorithm 2 by
the explanation of Theorem 3.

Theorem 3. Given two intersection points p and q, let maxRadius be the max-
imum NLC radius of points in p’s influence set; let N1 and N2 be the influence
set of p and q. If dist(p, q) (distance from p to q) is larger than 2 · maxRadius,
and 〈N2〉 > 〈N1〉 · α, then the discrepancy of q to p must be larger than α.

Collective-k Optimal Location Selection 349

Table 1. An example of intersection points

Intersection point Influence set Cluster

q1 {o1, o2, o4} cl1

q2 {o1, o2, o4} cl1

q3 {o1, o2, o4} cl1

q4 {o2, o3, o4} cl2

q5 {o2, o3, o4} cl2

q6 {o2, o3, o4} cl2

q7 {o1, o2} cl1

q8 {o1, o4} cl1

q9 {o2, o3} cl2

q10 {o3, o4} cl2

Table 2. Discrepancy value

Discrepancy Value

(q1, q2) 0

(q1, q3) 0

(q1, q4) 0.33

(q1, q7) 0

(q1, q9) 0.33

Proof. Since dist(p, q) > 2 · maxRadius, p and q cannot be covered by any
NLC simultaneously. If there is an NLC c that covers p and q at the same time,
let r be the radius of c, then dist(p, q) must be smaller than 2r. As we have
discussed in Sect. 3, the influence set of p equals the set of points whose NLC
covers s. Thus r must be smaller than maxRadius, and we get the contradiction
that dist(p, q) < 2 · maxRadius. Therefore, there is no intersection of p and q’s
influence sets. This means that N2 − N1 = N2. Then we can get that d(p, q) =
〈N2〉
〈N1〉 . Under the condition that 〈N2〉 > 〈N1〉 · α, we can prove that d(p, q) > α.

Let c be the circle centered at p with radius equals 2 · maxRadius, then
the candidate represented points of p are all the intersection points inside c.
According to Theorem 3, we can get limited candidate represented points of p
instead of checking every point in L, and this helps saving lots of time while
clustering the intersection points. In this paper, we traverse the influence set
of the representative points to get maxRadius, and construct a kd-tree [15]
of intersection points to help us get the candidate represented points. Given
an representative point p, we do a range query on kd-tree to obtain the other
intersection points that are within the distance of 2 · maxRadius to p.

As shown in Fig. 3, given four intersection points q1, ..., q4, c1, ..., c4 are the
NLCs of points in q1’s influence set. MaxRadius is the maximum NLC radius of
q1’s influence set, which is the radius of c3 in this example. Since dist(q1, q2) >
2 · maxRadius, there cannot be any NLC that covers q1 and q2 simultaneously.
According to Theorem 3, we can easily get the candidate represented points set
of q1, which is {q3, q4}. During the second phase of the approximate algorithm,
we adopt the same enumeration process as the CkOLS-Enumerate algorithm.
We simply check the overall combinations of representative points, and finally
obtain an approximate optimal k points.

350 F. Chen et al.

Fig. 3. An example of Theorem 3

5.3 Accuracy of CkOLS-Approximate

Next, we will prove the accuracy of algorithm CkOLS-Approximate.

Theorem 4. The accuracy of CkOLS-Approximate is at least 1+α
1+k·α .

Proof. We suppose that the optimal result of CkOLS is {a1, a2, a3, ..., ak}, each
ai indicates the intersection point. The corresponding representative point of ai

is bi. For convenience, we use Ai and Bi to indicate the influence set of ai and
bi. Next, we will prove that 〈B1∪B2∪B3∪,...,∪Bk〉

〈A1∪A2∪A3∪,...,∪Ak〉 > 1+α
1+k·α .

Let ΔBi = Ai − Bi, we can easily see that Ai ⊂ Bi ∪ ΔBi, then

〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉
〈A1 ∪ A2 ∪ A3∪, ...,∪Ak〉

≥ 〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉
〈(B1 ∪ ΔB1) ∪ (B2 ∪ ΔB2) ∪ (B3 ∪ ΔB3)∪, ...,∪(Bk ∪ ΔBk)〉

≥ 〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉
〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉 + 〈ΔB1 ∪ ΔB2 ∪ ΔB3∪, ...,∪ΔBk〉

=
1

1 + 〈ΔB1∪ΔB2∪ΔB3∪,...,∪ΔBk〉
〈B1∪B2∪B3∪,...,∪Bk〉

(1)

With the precondition that the discrepancy of ai to bi is less than 1 − α,
ΔBi must be less than 〈Bi〉 · α. Supposing that bj is the point with the largest
influence value in {b1, b2, b3, ..., bk}, then

〈ΔB1 ∪ ΔB2 ∪ ΔB3∪, ...,∪ΔBk〉
≤ 〈ΔB1〉 + 〈ΔB2〉 + 〈ΔB3〉 + ... + 〈ΔBk〉

≤ 〈B1〉 · α + 〈B2〉 · α + 〈B3〉 · α + ... + 〈Bk〉 · α

≤ 〈Bj〉 · α · k

(2)

Knowing that bj has the largest influence value, there must exist a certain
point bm in {b1, b2, b3, ..., bk}, that satisfies d(bm, bj) > α(bi 	= bm). If not, it

Collective-k Optimal Location Selection 351

means that all of {b1, b2, b3, ..., bk} can be partitioned into the same cluster as
bj , which means that {b1, b2, b3, ..., bk} cannot be the result of the approximate
algorithm. As a result, 〈Bj ∪ Bm〉 = 〈Bj〉+〈Bm − Bj〉 > 〈Bj〉·(1+α). Therefore,
〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉 must be larger than 〈Bj〉 · (1 + α), then

〈ΔB1 ∪ ΔB2 ∪ ΔB3∪, ...,∪ΔBk〉
〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉 ≤ 〈Bj〉 · α · k

〈Bj〉 · (1 + α)
=

kα

1 + α
(3)

〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉
〈A1 ∪ A2 ∪ A3∪, ...,∪Ak〉 ≥ 1

1 + kα
1+α

≥ 1 + α

1 + k · α
(4)

Since the approximate algorithm makes combination of the representative
points, the output result of the approximate algorithm must be larger than (or
at least equal to) 〈B1 ∪ B2 ∪ B3∪, ...,∪Bk〉. Through the derivation above, we
can conclude that the accuracy of the approximate algorithm is at least 1+α

1+k·α .

5.4 Time Complexity of CkOLS-Approximate

We partition the time complexity into three parts. First, we calculate all inter-
section points and the time complexity is the same as we have discussed in
Sect. 4.3. We omit it here. Second, we analyze the time complexity of the clus-
tering algorithm. We use heap sort to sort the intersection points IP , which
requires O(|IP | log |IP |) time. Then we build a kd-tree of IP , which requires
O(|IP | log |IP |) time. Let m be the maximum size of influence sets of intersection
points in IP , n be the maximum size of candidate represented points of the repre-
sentative points. Assuming that there are t clusters after partition of the intersec-
tion points, it would take O(t(log |P |+m)) time to get the candidate represented
points. For the convenience of discrepancy computation, we sort the influence set
of each point in IP , which requires O(|IP | ·m log m) time. The time complexity
of discrepancy computation in one cluster is O(m ·n). Totally, the time complex-
ity of clustering algorithm is O(|IP | (m log m + log |IP |) + t(log |IP | + m · n)).
Third, in the worst case, we have to check

(
k

0.1·|IP |
)

combinations to get the
approximate optimal result, which is far fewer than the precise algorithm. The
worst query time complexity is O(k2 · m · (

k
0.1·|IP |

)
).

The total time complexity of the approximate algorithm is the sum of the
above three parts.

6 Performance Study

We have conducted extensive experiments to evaluate the proposed algorithms
using both synthetic and real datasets. The algorithms are implemented in C++.
All experiments are carried out on a Linux Machine with an Intel(R) Core i5-4590
3.30 GHz CPU and 8.00 GB memory. The synthetic datasets follow Gaussian
and Uniform distribution, and the data volume ranges from 1 K to 100 K. The
customer dataset and service dataset follow the same distribution. As for real

352 F. Chen et al.

datasets, we use LB and CA, which contain 2D points representing geometric
locations in Long Beach Country and California respectively1. To keep consis-
tency, we partition the real datasets into two parts to ensure that the customer
points and service sites share the same distribution. Considering that the num-
ber of service sites is usually much fewer than that of customer points, we set
the cardinality of P to be half of the cardinality of O for all datasets.

Section 6.1 tests effect of clustering parameter α. Section 6.2 compares the
running time and accuracy of the proposed algorithms. Section 6.3 tests the algo-
rithms’ scalability. Section 6.4 compares the effectiveness of our CkOLS query
with Top-k MaxBRNN query.

6.1 Effect of Clustering Parameter

The clustering algorithm outputs the representative points of the intersection
points. Instead of making combination of the total intersection points, we only
use the representative points to get the optimal combination. As a result, the
ratio of the number of representative points to the number of entire intersection
points is essential for the efficiency of the approximate algorithm. For simplicity,
we call the ratio clustering efficiency. A small clustering efficiency means a small
number of representative points.

Table 3. Effect of α

α clustering efficiency Accuracy Running time

0.05 0.22 0.98 3s

0.1 0.22 0.95 2.9s

0.2 0.1 0.9 1.2s

0.3 0.04 0.83 0.8s

0.4 0.02 0.8 0.6s

The experiments are conducted on synthetic datasets with 1 K to 100 K cus-
tomer points, and we get the average clustering efficiency when α varies from
0.05 to 0.4. As we can see from Table 3, the clustering efficiency decreases with
the increase of α. Besides impacting the clustering efficiency, α also decides the
effectiveness of the approximate algorithm. As shown in Table 3, the larger α is,
the worse approximate result we would get with shorter running time. For the
balance of effectiveness and clustering efficiency, we conduct experiments with
α = 0.2 in the following experiments.

6.2 Comparison of Algorithms

The results are given in Figs. 4 and 5 over datasets with different cardinality
and distribution. We compare the running time of the precise algorithm with
1 http://www.rtreeportal.org/spatial.html.

http://www.rtreeportal.org/spatial.html

Collective-k Optimal Location Selection 353

Fig. 4. Running time of proposed algorithms

approximate algorithm with k = 10 and α = 0.2, and set the weight of all
customer points to 1. We only consider the running time without the time of
calculating the intersection points of NLCs.

From Fig. 4 we can see, as the cardinality of customer points increases, the
query time of CkOLS-Approximate is at least one order of magnitude faster than
CkOLS-Enumerate. The efficiency of CkOLS-Enumerate is unstable on different
datasets, and the query time of dataset with larger cardinality is possibly less
than the same dataset with smaller cardinality. For example, in the experiments
on CA dataset, the query time of CkOLS-Enumerate over 40 K customer points is
less than that over 20 K customer points. The reason behind is that the efficiency
of enumeration algorithm is decided by how fast the optimal combination is found
during the enumeration of combination. For the convenience of comparison, we
set k to 5 in the experiments of CA dataset for the reason that it takes too long for
the enumeration algorithm to get the optimal result with k = 10. Figure 5 shows
the accuracy of CkOLS-Approximate algorithm. For the synthetic datasets, the

Fig. 5. Accuracy of CkOLS-Approximate algorithm

354 F. Chen et al.

accuracies of different datasets are almost 1. While for the real datasets, the
average accuracy is about 0.9 to 0.95.

6.3 Scalability

Figure 6 shows the scalability of proposed algorithms. We set α = 0.2 and k = 10
as their default values. We vary the number of customer points from 100 K to
500 K, and use Uniform dataset here, other distribution can get similar results.
From Fig. 6(a), we can see that, as the increase of the number of customer
points, the running time of approximate algorithm keeps almost stable, while
the precise algorithm degrades a lot, especially when the dataset is 500 K, the
precise algorithm is very slow. As shown in Fig. 6(b), compare to the accuracy
result on small scale datasets, the accuracy of approximate algorithm decreases,
however, the worst case is still beyond 0.8.

Fig. 6. Scalability of proposed algorithms

6.4 Comparison to Top-k MaxBRNN

We know that the Top-k MaxBRNN query can also return a group of k regions
to attract large number of customers. And it can be regarded as an approximate
method. We compare the proposed algorithm CkOLS-Approximate with Top-k
MaxBRNN query to find out which can collectively attract the maximum number
of customers by proximity. Figure 7 shows that, CkOLS query can always get
the larger number of attracted customer points. And it is almost three times the
number of Top-k MaxBRNN query when using Gaussian data set with |O| =
100 K. From Fig. 7(c), we can see that the result on real data set is similar to
the synthetic data set. We also compare the running time of the two methods.
As shown in Fig. 8, the two methods almost have the same running time no
matter on which data distribution. However, as we have discussed, the Top-k
MaxBRNN query has much worse accuracy.

Collective-k Optimal Location Selection 355

Fig. 7. Comparison to Top-k MaxBRNN query (accuracy)

Fig. 8. Comparison to Top-k MaxBRNN query (running time)

7 Conclusion

We studied the CkOLS problem and proposed a precise and an approximate
algorithm to solve the problem. The precise algorithm uses a brute-force search
with a pruning strategy. The approximate algorithm adopts a clustering-based
approach, which restricts the combinational search space within representative
regions of clusters, and has a bounded approximation ratio. Experiment results
show that the approximate algorithm is effective and efficient. Its output is very
close to that of the precise algorithm, with an approximation ratio of up to 0.99
on all the datasets. The algorithm is also efficient. It outperforms the precise
algorithm by up to three orders of magnitudes in terms of the running time.

For future work, we are interested in adapting the proposed algorithms to
solve collective-k location selection problems with other optimization goals such
as min-dist [7–9].

Acknowledgements. This work was partly supported by The University of Mel-
bourne Early Career Researcher Grant (project number 603049), National Science
and Technology Supporting plan (2015BAH45F00), the public key plan of Zhejiang
Province (2014C23005), the cultural relic protection science and technology project of
Zhejiang Province.

356 F. Chen et al.

References

1. Arya, S., Mount, D.-M., Netanyahu, N.-S., Silverman, R., Wu, A.-Y.: An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. JACM
45(6), 891–923 (1998)

2. Cabello, S., Dı́az-Báñez, J.M., Langerman, S., Seara, C., Ventura, I.: Reverse facil-
ity location problems. In: CCCG, pp. 1–17 (2005)

3. Cabello, S., Dı́az-Báñez, J.M., Langerman, S., Seara, C., Ventura, I.: Facility loca-
tion problems in the plane based on reverse nearest neighbor queries. Eur. J. Oper.
Res. 202(1), 99–106 (2010)

4. Chen, Z., Liu, Y., Wong, C., Xiong, J., Mai, G., Long, C.: Efficient algorithms for
optimal location queries in road networks. In: SIGMOD, pp. 123–134 (2014)

5. Liu, Y.-B., Wong, R.-C., Wang, K., Li, Z.-J., Chen, C.: A new approach for maxi-
mizing bichromatic reverse nearest neighbor search. In: KAIS, pp. 23–58 (2013)

6. Lin, H., Chen, F., Gao, Y., Lu, D.: Finding optimal region for bichromatic reverse
nearest neighbor in two- and three-dimensional spaces. Geoinformatica 20(3), 351–
384 (2016)

7. Qi, J., Zhang, R., Wang, Y., Xue, Y., Yu, G., Kulik, L.: The min-dist location
selection and facility replacement queries. WWWJ 17(6), 1261–1293 (2014)

8. Qi, J., Zhang, R., Kulik, L., Lin, D., Xue, Y.: The Min-dist Location Selection
Query. In: ICDE, pp. 366–377 (2012)

9. Qi, J., Zhang, R., Xue, Y., Wen, Z.: A branch and bound method for min-dist
location selection queries. In: ADC, pp. 51–60 (2012)

10. Sakai, K., Sun, M.-T., Ku, W.-S., Lai, T.H., Vasilakos, A.V.: A framework for the
optimal-coverage deployment patterns of wireless sensors. IEEE Sens. J. 15(12),
7273–7283 (2015)

11. Sun, Y., Huang, J., Chen, Y., Du, X., Zhang, R.: Top-k most incremental location
selection with capacity constraint. In: WAIM, pp. 165–171 (2012)

12. Sun, Y., Qi, J., Zhang, R., Chen, Y., Du, X.: MapReduce based location selection
algorithm for utility maximization with capacity constraints. Computing 97(4),
403–423 (2015)

13. Wong, R.-C., Tamer Özsu, M., Fu, A.-W., Yu, P.-S., Liu, L., Liu, Y.: Maximizing
bichromatic reverse nearest neighbor for LP-norm in two- and three-dimensional
space. In: VLDB, pp. 893–919 (2011)

14. Wong, R.-C., Özsu, M.T., Yu, P.-S., Fu, A.-W., Liu, L.: Efficient method for max-
imizing bichromatic reverse nearest neighbor. In: VLDB, pp. 1126–1137 (2009)

15. Zhou, Z., Wu, W., Li, X., Lee, M.-L.: Wynne Hsu: MaxFirst for MaxBRkNN. In:
ICDE, pp. 828–839 (2011)

	Collective-k Optimal Location Selection
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Statement
	3.1 Problem Statement
	3.2 Region-to-Point Transformation
	3.3 NP-hardness of CkOLS

	4 Precise Algorithm
	4.1 Enumeration Algorithm
	4.2 Pruning Strategy
	4.3 Time Complexity of CkOLS-Enumerate

	5 Approximate Algorithm
	5.1 Clustering Algorithm
	5.2 Getting Candidate Represented Points
	5.3 Accuracy of CkOLS-Approximate
	5.4 Time Complexity of CkOLS-Approximate

	6 Performance Study
	6.1 Effect of Clustering Parameter
	6.2 Comparison of Algorithms
	6.3 Scalability
	6.4 Comparison to Top-k MaxBRNN

	7 Conclusion
	References

