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Abstract. This paper investigates the colocation pattern mining prob-
lem for big spatial event data. Colocation patterns refer to subsets of spa-
tial features whose instances are frequently located together. The prob-
lem is important in many applications such as analyzing relationships
of crimes or disease with various environmental factors, but is computa-
tionally challenging due to a large number of instances, the potentially
exponential number of candidate patterns, and high computational cost
in generating pattern instances. Existing colocation mining algorithms
(e.g., Apriori algorithm, multi-resolution filter, partial join and joinless
approaches) are mostly sequential, and thus can be insufficient for big
spatial event data. Recently, parallel colocation mining algorithms have
been developed based on the Map-reduce framework. However, these
algorithms need a large number of nodes to scale up, which is economi-
cally expensive, and their reducer nodes have a bottleneck of aggregating
all instances of the same colocation patterns. Another work proposes a
parallel colocation mining algorithm on GPU based on the iCPI tree
and the joinless approach, but assumes that the number of neighbors
for each instance is within a small constant, and thus may be inefficient
when instances are dense and unevenly distributed. To address these lim-
itations, we propose a grid-based GPU colocation mining algorithm that
includes a novel cell aggregate based upper bound filter, and two refine-
ment algorithms. We prove the correctness and completeness of proposed
GPU algorithms. Preliminary results on both real world data and syn-
thetic data show that proposed GPU algorithms are promising with over
30 times speedup on up to millions of instances.

1 Introduction

Given a set of spatial features and their instances, co-location mining aims to find
subsets of features whose instances are frequently located together. Examples of
colocation patterns include symbiotic relationships between species such as Nile
Crocodiles and Egyptian Plover, as well as environmental factors and disease
events (e.g., air pollution and lung cancer).

Societal applications: Colocation mining is important in many applications
that aim to find associations between different spatial events or factors.
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For example, in public safety, law enforcement agencies are interested in finding
relationships between different crime event types and potential crime genera-
tors. In ecology, scientists analyze common spatial footprints of various species
to capture their interactions and spatial distributions. In public health, identify-
ing relationships between human disease and potential environmental causes is
an important problem. In climate science, colocation patterns help reveal rela-
tionships between the occurrence of different climate extreme events. In location
based service, colocation patterns help identify travelers that share the same
favourite locations to promote effective tour recommendation.

Challenges: Mining colocation patterns from big spatial event data poses several
computational challenges. First, in order to evaluate if a candidate colocation
pattern is prevalent, we need to generate its instances. This is computationally
expensive due to checking spatial neighborhood relationships between different
instances, particularly when the number of instances is large and instances are
clumpy (e.g., many instances are within the same spatial neighborhoods). Sec-
ond, the number of candidate colocation patterns are exponential to the number
of spatial features. Evaluating a large number of candidate patterns can be com-
putationally prohibitive. Finally, the distribution of event instances in the space
may be uneven, making it hard to design parallel data structure and algorithms.

Related work: Colocation pattern mining has been studied extensively in the
literature, including early work on spatial association rule mining [1,2] and colo-
cation patterns based on event-centric model [3]. Various algorithms have been
proposed to efficiently identify colocation patterns, including Apriori generator
and multi-resolution upper bound filter [3], partial join [4] and joinless app-
roach [5], iCPI tree based colocation mining algorithms [6]. There are also works
on identifying regional [7-9] or zonal [10] colocation patterns, and statistically
significant colocation patterns [11-13], top-K prevalent colocation patterns [14]
or prevalent patterns without thresholding [15]. Existing algorithms are mostly
sequential, and can be insufficient when the number of event instances is very
large (e.g., several millions). Recently, parallel colocation mining algorithms have
been proposed based on the Map-reduce framework [16] to handle a large data
volume. However, these algorithms need a large number of nodes to scale up,
which is economically expensive, and their reducer nodes have a bottleneck of
aggregating all instances of the same colocation patterns. Another work proposes
a GPU based parallel colocation mining algorithm [17] using iCPI tree [18-20]
and the joinless approach, but this method assumes that the number of neigh-
bors for each instance is within a small constant (e.g., 32), and thus can be
inefficient when instances are dense and unevenly distributed.

To address limitations of related work, we propose GPU colocation mining
algorithms based on a grid index, including a cell-aggregate-based upper bound
filter and two refinement algorithms. Proposed cell-aggregate-based filter is easier
to implement on GPU and is also insensitive to pattern clumpiness (the average
number of overlaying colocation instances for a given colocation instance) com-
pared with the existing multi-resolution filter. We use a GPU platform due to
its better energy efficiency and pricing compared to Map-reduce based clouds.



Grid-Based Colocation Mining Algorithms on GPU 265

Contributions: We make the following contributions in the paper: (1) We
designed and implemented parallel colocation mining algorithms on GPU,
including a novel cell-aggregate based upper bound filter that is easier to imple-
ment on GPU and also insensitive to pattern clumpiness (i.e., number of coloca-
tion instances within the same neighborhood), two parallel refinement algorithms
based on prefix-based HashJoin and grid search; (2) We provided theoretical
analysis of the correctness and completeness of proposed algorithms; (3) We
conducted extensive experimental evaluations on both real world and synthetic
data with various parameter settings. Preliminary results show that proposed
GPU algorithms are promising with over 30 times speedup on up to millions of
instances.

Scope and outline: We focus on spatial colocation patterns defined by the event-
centric models [3]. Other colocation definitions such as Voronoi diagram based
are beyond our scope. We also assume the underlying space is Euclidean space.
Also, in this paper, we are only concerned with the comparison of computational
performance of various colocation mining algorithms.

The outline of the paper is as follows. Section 2 reviews basic concepts and
the definition of the colocation mining problem. Section 3 introduces our pro-
posed GPU colocation pattern mining algorithms, and analyzes the theoretical
properties of algorithm correctness and completeness. Section 4 summarizes our
experimental evaluation of proposed algorithms on both synthetic datasets and a
real world dataset. Section 5 discusses memory bottleneck issues in our approach.
Section 6 concludes the paper with potential future research directions.

2 Problem Statement

2.1 Basic Concepts

This subsection reviews some basic concepts based on which the colocation min-
ing problem can be defined. More details on the concepts are in [3].

Spatial feature and instances: A spatial feature is a categorical attribute such as
a crime event type (e.g., assault, drunk driving). For each spatial feature, there
can be multiple feature instances at the same or different point locations (e.g.,
multiple instances of the same crime type “assault”). In the example of Fig. 1(a),
there are three spatial features (A, B and C). For spatial feature A, there are
three instances (Ay, As, and As). Two feature instances are spatial neighbors if
their spatial distance is smaller than a threshold. Two or more instances form a
clique if every pair of instances are spatial neighbors.

Spatial colocation pattern: If the set of instances in a clique are from different
feature types, then this set of instances is called a colocation (pattern) instance,
and the corresponding set of features is a colocation pattern. The cardinality or
size of a colocation pattern is the number of features involved. For example, in
Fig.1(a), (A1, Bi, C1) is an instance of colocation pattern (A4, B, C) with a
size or cardinality of 3. If we put all the instances of a colocation pattern as
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different rows of a table, the table is called an instance table. For example, in
Fig. 1(b), the instance table of colocation pattern (A4, B) has three row instances,
as shown in the third table of the bottom panel. A spatial colocation pattern is
prevalent (significant) if its feature instances are frequently located within the
same neighborhood cliques. In order to quantify the prevalence or frequency, an
interestingness measure called participation index has been proposed [3].

The participation ratio of a spatial feature within a candidate colocation
pattern is the ratio of the number of unique feature instances that participate
in colocation instances to the total number of feature instances. For example, in
Fig. 1, the participation ratio of B in candidate colocation pattern {4, B} is %
since only By and Bs participate into colocation instances ({41, B1}, {As, B2}).
The participation index (PI) of a candidate colocation pattern is the minimum
of participation ratios among all member features. For example, the participation
index of the candidate colocation pattern {A, B} in Fig. 1 is the minimum of %

2

and %, and is thus 5. We use “candidate colocation patterns” to refer to those

whose participation index values are undecided.

2.2 Problem Definition
We now introduce the formal definition of colocation mining problem [3].
Given:

e A set of spatial features and their instances

e Spatial neighborhood distance threshold

e Minimum threshold of participation index: 6

Find:

e All colocation patterns whose participation index are above or equal to 0
Objective:

e Minimize computational time cost

Constraint:

e Spatial neighborhood relationships are defined in Euclidean space

Figure 1 provides a problem example. The input data contains 12 instances of
3 spatial features A, B, and C. The neighborhood distance threshold is d. The
prevalence threshold is 0.6. The output prevalent colocation patterns include
{A, B} (participation index 0.67) and {B,C'} (participation index 0.67). Colo-
cation mining is similar to association rule mining in market basket analysis [21],
but is different in that there are no given “transactions” in continuous space.
Generation colocation instance tables (“transactions”) is the most computation-
ally intensive part.

3 Proposed Approach

This section introduces our proposed GPU colocation mining algorithm. We
start with the overview of algorithm structure, and then describe the main part
for parallel algorithms implemented in GPU. We prove the correctness and com-
pleteness of proposed algorithm.
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Fig.1. A problem example with inputs and outputs. (a) Input spatial features and
instances; (b) Candidate and prevalent colocation patterns, instance tables

3.1 Algorithm Overview

The overall structure of our algorithm is similar to the one proposed by Huang et
al. in 2004 [3]. The novelty of our algorithm is that we design a novel upper-bound
filter based on aggregated counts of feature instances in grid cells. Compared
with the existing multi-resolution filter [3], our upper bound filter is easier to
parallelize on GPU and does not rely on the assumption that colocation instances
are clumpy into a small number of cells.

The overall structure of our algorithm is shown in Algorithm 1. The algo-
rithm identifies all prevalent colocation patterns iteratively. Candidate coloca-
tion patterns and their instance tables of cardinality k& + 1 are generated, based
on prevalent patterns and their instance tables of cardinality k. Each candidate
pattern of cardinality k£ + 1 is then evaluated based on the participation index
computed from its instance table. For cardinality & = 1, prevalent colocation
patterns simply consist of the set of input features, and their instance tables are
the instance lists for each feature (step 1 in Algorithm 1). Step 2 generates can-
didate patterns Cjy1 of size k + 1 based on prevalent patterns Py using Apriori
property [21] (i.e., a candidate pattern of size k 4+ 1 cannot be prevalent and
thus needs not to be generated if any subset pattern of size k is not prevalent).
Step 4 builds a grid index on spatial point instances with the cell size equal to
the distance threshold. Step 5 counts the number of instances for each feature in
every cell. This will be used in our upper bound filter. Step 7 starts the iteration.
As long as the set of candidate patterns Cy1 is not empty, the algorithm eval-
uate each candidate pattern ¢ € Ciy1. When evaluate a candidate pattern, the
algorithm first computes an upper bound of its participation index in parallel
using GPU kernels based on the grid index (step 9-10). If the upper bound is
below the threshold, the candidate pattern is pruned out. Otherwise, the algo-
rithm runs into a refinement phase, generating the pattern instance table Ij;.c
and computing the participation index PI. We design two different parallel
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refinement algorithms to speed up instance table generation: one using the grid
to rule out unnecessary joins, the other using prefix-based hash joins (steps 13 to
16). After all prevalent patterns of cardinality k+ 1 are identified, the algorithm
go to the next iteration (steps 19-22). Figure 1(b) illustrates the execution trace
for k=1 and k = 2.

Algorithm 1. Parallel-Colocation-Miner
Input: A set of spatial features F'
Input: Instances of each spatial features I[F]
Input: Neighborhood distance threshold d
Input: Minimum prevalence threshold 6
Output: All prevalent colocation patterns P

1: Initialize P «— (0, k — 1, Cp «— F, P, «— F
2: Initialize Cxy1 < APRIORIGEN(Py, k + 1)
3: Initialize Pxy1 < 0
4: Initialize instance tables I, (k = 1) by feature instances
5: Overlay a regular grid with cell size d x d (total N cells)
6:
7
8

Compute CountMap[N X |F|] in one round instance scanning
while |Cr41]| > 0 do
for each c € Ci41 do

Initialize PCountMap[N X |c|] « 0
10: Upperbound =PARALLELCELLAGGREGATEFILTER(CountM ap,PCount Map,c)
11: if Upperbound > 6 then
12: BitMap < 0 //initialize bitmap for instances of each feature
13: if Hash Join Refinement then
14: (Ig+41.c, PT) < PARALLELHASHJOINREFINE(I, ¢)
15: else if Grid Search Refinement then
16: (Ig+41.c, PT) « PARALLELGRIDSEARCHREFINE (Ii, C'Instances, ¢, BitMap)
17: if PI > 60 then
18: Piy1=Pry1Uc

19: P« PU Py41 //add prevalent patterns to results

20: k<—k+1; Cy — Cry1; Px «— Pry1, Ix — I411 //prepare next iteration
21:  Ciy1 < APRIORIGEN(Py, k+ 1)

22: Puy 0

23: return P

3.2 Cell-Aggregate-Based Upper Bound Filter

The proposed cell aggregate based upper bound filter first overlays a regular
grid with its cell size equal to the distance threshold (shown in Fig.2), and then
computes an upper bound of participation index based on aggregated counts
of feature instances in cells. Proposed filter is different from the existing multi-
resolution filter [3] in that the computation of upper bound is not based on
generating coarse scale colocation instance tables. There are two main advan-
tages of cell aggregate based filter on GPU: first, it is easily parallelizable and
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can leverage the large number of GPU cores; second, its performance does not
rely on the assumption that pattern instances are clumpy into a small number
of cells, which is required by the existing multi-resolution filter.

To introduce proposed cell aggregate based filter, we define a key concept
of quadruplet. A quadruplet of a cell is a set of four cells, including the cell
itself as well as its neighbors on the right, bottom, and right bottom. For a cell
that is located on the right and bottom boundary of the grid, not all four cells
exist and its quadruplet is defined empty (these cells will still be covered by
other quadruplets). For example, in Fig. 2, the quadruplet of cell 0 includes cells
(0,1,4,5), while the quadruplet of cell 15 is an empty set.

Based on the concept of quadruplet, we can check all potential colocation
instances by examining all quadruplets. When examining a quadruplet, our fil-
ter computes the aggregated count of instances for every feature in the candidate
pattern. If the aggregated count for any feature is zero, then there cannot exist
colocation instances in the quadruplet. Otherwise, we pretend that all these fea-
ture instances participate into colocation pattern instances. This tends to over-
estimate the participating instances of a colocation pattern (an “upper bound”),
but avoids expensive spatial join operations.

Algorithm 2 shows details of proposed filter. The algorithms have
three main variables, including CountMap, PCountMap, and Quadruplet
Aggregate. CountMap records the true aggregated instance count for each fea-
ture in every cell. PCountMap records the instance count for each feature
in every cell that potentially participates in the candidate colocation pattern.
Quadruplet Aggregate is a local array for each cell to record the aggregated count
of instances within the quadruplet for each pattern feature. Specifically, steps 1
to 11 computes potential number of participating instances for each feature in
each cell in parallel. A kernel thread is allocated to each cell. For a specific cell
i, the kernel first gets the quadruplet (step 2). Step 3 initializes a local array
QuadrupletAggregate with zero values. Steps 4 to 8 compute the aggregated
count of instances for each pattern feature (QuadrupletAggregate[f]). If aggre-
gated count of any pattern feature is zero, then there cannot be any candidate
pattern instance in the quadruplet and thus the parallel kernel thread terminates
(step 8). Otherwise, all feature instances in the quadruplet can potentially partic-
ipate into colocation pattern instances. Steps 9 to 11 record the potential partici-
pating instances from each cell in the quadruplet. This is done by copying instance
counts from CountMap to PCountMap for the 4 cells in the quadruplet. It is
worth noting that duplicated-counting on the same cell is avoided since differ-
ent GPU kernel threads may over-write the count for a cell with the same value.
Finally, steps 12 to 14 compute the upper bound of participation index based on
counts of potential participating instances in PCountMap. We use built in GPU
library to compute the total counts of distinct participating instances in step 13.

Figure 2 provides an illustrative execution trace of Algorithm 2. Figure2(a)
shows the input spatial instances overlaid with a regular grid. The dis-
tance threshold is d. Assume that the candidate colocation pattern is (A, B).
Figure2(b) shows how the filter works. The CountMap array stores the
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Algorithm 2. ParallelCellAggregateFilter

Input: CountMap, feature instance count in cells

Input: PCountM ap, participating feature instance count in cells
Input: PR, participation ratio

Input: Candidate colocation pattern ¢

Output: Upper bound of participation index, upper Bound

1: for each cell i do in parallel
QuadrupletCells = GETQUADRUPLET(cell 4)
QuadrupletAggregate||c|]] — 0
for each feature f € c do
for each cell j € QuadrupletCells do
QuadrupletAggregate|f] — QuadrupletAggregate|[f] + CountMapl[j][f]
if QuadrupletAggregate[f] == 0 then
finish the parallel thread for cell ¢ //no pattern instance in the quadruplet

©

for each feature f € c do

10: for each cell j € QuadrupletCells do

11: PCountMap[j][f] < CountMaplj][f] //participating instance count
12: for each feature f € ¢ do

13:  PR|[f] = PARALLELSUM(CountMap[ ][f])/|11.f]

14: upper Bound = MIN(PR)

15: return upper Bound

number of instances for feature A and B in each cell. A GPU thread is assigned
to each cell to compute the counts of feature instances within its quadruplet. For
example, the leftmost GPU thread is assigned to cell 0. The aggregated instance
count for this quadruplet ((0,1,4,5)) is shown by the leftmost QuadrupletCount
array, with 2 instances for A and 1 instance for B. Since instances from both
features exist, the number potential participating instances in these four cells
(PCountMap) are copied from corresponding cell values in CountMap, as shown
by the fork branches close to the bottom. In contrast, the quadruplet of cell 1
((1,2,5,6)) does not contain instances of A, and thus cannot contain colocation
pattern instances.

Lemma 1. The participation index of a colocation pattern in the cell-aggregate-
based filter is an upper bound of the true participation index value.

Proof. The proof is based on the following fact. We create an upper bound
to the true number of neighboring points in neighboring cells (quadruplet) by
assuming that all pairs of points of neighboring cells are within the distance
threshold, which coincides with the cell size. Of course, some of them will not,
but it is impossible for points not within neighboring cells to be neighboring
with respect to the distance threshold. O

Theorem 1. The cell aggregate based upper bound filter is correct and complete.

Proof. The proof is based on Lemma 1. The algorithm is complete (it does not
mistakenly prune out any prevalent pattern) due to the upper bound property.
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Fig. 2. Grid-aggregate based Upper Bound Filter: (a) A regular grid (b) An execution
trace of upper bound filter

The algorithm is correct since it computes the exact participation index of a
candidate pattern if it passes the upper bound filter. a

3.3 Refinement Algorithms

The goal of the refinement phase is to generate the instance table of a candidate
colocation pattern, and to compute participation index. Generating colocation
instance tables is the main computational bottleneck, and thus is done in GPU.
As shown in Algorithm 1, we have two options for refinement algorithms, a
geometric approach based on grid search called ParallelGridSearchRefine and a
combinatorics approach based on prefix-based hash join called ParallelHashJoin-
Refine, similar to sequential algorithms discussed in Huang et al. [3]. We now
introduce the two algorithms below.

Geometric approach: The geometric approach generate an instance table of a size
k+ 1 pattern based on the instance table of a size k pattern. For example, when
generating the instance table of pattern (4, B,C), it starts from the instance
table of (A, B) and joins each row of the table with instances of the last feature
type C. In order to reduce redundant computation, we utilize the grid index
and only check the instances of the last feature type within neighboring cells.
Algorithm 3 provides details of the proposed grid-based refinement algorithm.
Step 2 is kernel assignment. Each kernel thread first finds out all neighboring
cells of the size k row instance rIns (step 3). Then, for each neighboring cell, the
kernel thread finds out every instance ins of the last feature type in the cell. It
joins ins with size k instance rIns to create a size k4 1 pattern instance rInsC
if they are spatial neighbors (steps 4 to 7). The new pattern instance rInsC is
inserted into the final instance table Ix;1.c, and a bitmap is updated to mark
the instances that participate into the colocation pattern (steps 8 to 10). Finally,
the participation ratio and participation index are computed (steps 11 to 13).
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Algorithm 3. ParallelGridSearchRefine
Input: I, instance table of patterns of size k
Input: CellInstances, feature instances for each cell
Input: BitMap, bitmap for participating instances from different features
Output: I;11.c, instance table of colocation ¢ (size k + 1) if prevalent
Output: PI, participation index of pattern c
1: //Ix.(c[1..k]) is instance table of sub-pattern of ¢ with first k features
2:

3: Initialize Ix41.c < 0

4: for each row instance rIns € I;.(c[1..k]) do in parallel

5:  get neighborhood cells of first feature instance in rIns

6: for each cell ¢ in neighborhood do

7 for each instance ins of feature type c[k + 1] in cell ¢ do
8 if ins is neighbor of all feature instances in rIns then

9: Create new row instance of ¢, rInsC =< rIns,ins >

10: Ini1.c = Iy1.cUrinsC //add new instance into ¢’s instance table
11: for each feature f € ¢ do

12: BitMap[f][rinsC[f]] = true

13: for each feature f € ¢ do

14:  PR[f] = PARALLELSUM(BitMap[ ][f])/|11.f]
15: PI = MIN(PR)

16: return Ijyi.c, PI

Figure 3 shows an example. The input data is the same as Fig.1. Assume
that the candidate pattern is (A, B, C). A kernel thread is assigned to each row
instance of table (A, B). Thread 1 is assigned to instance (Aj, By), and it scans
all neighboring cells of A; (cells 0,1,4,5). Based on the cell to instance index,
the kernel thread checks all instances of feature C' (C4, Cs, Cs3) in these cells, and
conducts a spatial join operation. The final output size k+ 1 instances from this
thread are (Ay, By,C4), (41, B1,Cs), and (A1, By, Cs).

One issue in GPU implementation is that we need to allocate memory for an
output instance table, and specify the specific memory location to which each
kernel thread writes its results. For example, in the output instance table of
pattern (A4, B,C) in Fig. 3, the first kernel thread generates 3 row instances, so
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Fig. 3. Illustrative execution trace for grid-based refinement
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the second kernel thread has to start with the 4th row when writing its instances.
It is hard to predetermine the total required memory and enforcing memory
coalesce when threads are writing results. Thus, we use a two-run strategy in
which in the first run we can calculate the exact size of output instance table
as well as slot counts of the number of row instances generated by each kernel
thread. In the second run, we allocate memory for output instance table, and
use the slot counts to guide which row a kernel thread needs to start from when
writing results. Similar to the grid-based refinement, we use two-run strategy to
allocate memory and enforce memory coalesce.

Algorithm 4. ParallelHashJoinRe fine

Input: I, instance table of patterns of size k
Input: BitMap, bitmap for instances of different features
Output: I1.c, instance table of colocation c if prevalent
Output: PI, participation index of pattern c

1: //I.cl and Ij.c2 instance tables of ¢l = ¢[1..k] and ¢2 = ¢[1..k — 1,k + 1]
2: for each row instance rinsl in Ix.cl do in parallel

3: for each row instance rIns2 in I;.c2 starting with rInsl[1] do

4: if rInsl and rIns2 forms an instance of ¢ then

5: Create new instance rInsC by merging rinsl and rIns2

6: Ikt1.c — Ikp1.cUrinsC

T for each feature f € ¢ do

8: BitMap[f].[rInsC[f]] = true

9: for each feature f € c do

10:  PR[f] = PARALLELSUM(BitMap[ ][f])/|11.f]
11: PI = MIN(PR)
12: return Iyy1.c, PI

Prefix-based hash Join based refinement: Another option is to generate size
k + 1 instance table by a combinatorics approach. For example, when gener-
ating instance table of pattern (A, B,C), we can join rows in instance tables
of (A, B) and (A, C). The join condition is that the first k instances from the
two tables should be the same, and the last instances from two tables should be
spatial neighbors. For example, when joining a row (A, B;) with another row
(A1, Ch), we check that the first instance is the same (A1), and the last instances
B; and C are spatial neighbors. So these two rows are joined to form a new
row instance (Ai, By, C1). In sequential implementations [3], the join process
can be done efficiently through sort-merge join. However, for GPU algorithm,
sort merge is difficult due to the order, dependency and multi-attribute keys.
We choose to use hash join instead. A prefix-based hash index is built on the
second table based on instances of the first spatial feature. Details are shown in
Algorithm 4. A kernel thread is allocated to each row in the first size k instance
table Ij.cl (step 2). The kernel thread then scans all rows in the second size
k instance table [.c2 that has the same first feature instance. For example, if
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the row in the first table is (A1, By), then the thread only scans rows starting
with A; in the instance table of (A, C). If the two rows satisfy the join condition
(sharing the same first k instances, and having last instances as neighbors), a
size k + 1 instance is created and inserted into output size k + 1 table (steps 5
to 8). Finally, the participation index is computed (steps 9 to 11). It is worth
noting that when generating instance tables of size k = 2 patterns, we use the
grid-based method since hash-index cannot be created in that case.

An illustrative execution trace is shown in Fig. 4. The raw input data is still
the same. Each kernel thread is allocated to a row in instance table (A, B). For
example, thread 1 works on pattern instance (Aj, By), and scans instance table
(A, C). Based on the hash index on A instances, the thread only needs to check
(41,C1), (A1,C3) and (Aq,Cs). It turns out that By is a neighbor for all Cy,
C5 and C5. So these instances are inserted to the final output instance table

(A,B,C).
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Fig. 4. Illustrative execution trace for hash-join-based refinement

4 Evaluation

The goals of our evaluation are to:

e Evaluate the speedup of GPU colocation algorithms against a CPU algorithm.
e Compare cell-aggregate-based filter with multi-resolution filter on GPU.

e Compare grid-based refinement with hash-join-based refinement on GPU.

e Test the sensitivity of GPU algorithms to different factors.

Experiment Setup: As shown in Fig.5, we implemented four GPU colocation
mining algorithms with two filter options (M for multi-resolution filter and C for
cell-aggregate based filter) and two refinement options (G for grid-based and H
for hash-join based). We also implemented a CPU colocation mining algorithms
by Huang et al. [3] (multi-resolution filter, grid-based instance table generation
for size k = 2, and sort-merge based instance table generation for size k > 2). We
only compared computational performance since all methods produce the same
patterns. For each experiment, we measured the time cost of one run for CPU
algorithm, and averaged time cost of 10 runs for GPU algorithms. Algorithms
were implemented in C++ and CUDA, and run on a Dell workstation with
Intel(R) Xeon(R) CPU E5-2687w v4 @ 3.00 GHz, 64 GB main memory, and a
Nvidia Quadro K6000 GPU with 2880 cores and 12 GB memory.
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Fig. 5. Experiment setup (a) Experiment design with different candidate approaches;
(b) An example of synthetic dataset generated with 2 maximal patterns (A, B, C') and
(D, E, F), each pattern with 2 instances with a clumpiness of 1, 2 noise instances N
and N2; (c) Another synthetic dataset similar to (b) but with a clumpiness of 2.

Dataset description: The real dataset contains 13 crime types and 165,000 crime
event instances from Seattle in 2012 [22]. The synthetic data is generated sim-
ilarly to [3]. Figure 5(b—c) provide illustrative examples. We first chose a study
area size of 10000 x 10000, a neighborhood distance threshold (also the size of a
grid cell) of 10, a maximal pattern cardinality of 5, and the number of maximal
colocation patterns as 2. The total number of features was 12 (5 x 2 plus 2 addi-
tional noise features). We then generated a number of instances for each maximal
colocation pattern. Their locations were randomly distributed to different cells
according to the clumpiness (i.e., the number of overlaying colocation instances
within the same neighborhood, higher clumpiness means larger instance tables).
In our experiments, we varied the number of instances and clumpiness to test
sensitivity.

Evaluation metric: We used the speedup of proposed GPU algorithms over the
CPU algorithm on computational time.

4.1 Results on Synthetic Data

Effect of the Number of Instances. We conducted this experiment with two
different parameter settings. For both settings, the minimum participation index
threshold was 0.5. In the first setting, we set the clumpiness to 1 (very low clumpi-
ness), and varied the number of feature instances as 250,000, 500,000, 1,000,000,
1,500,000 and 2,000,000. Results are summarized in Fig. 6(a). GPU algorithms in
the plot are based on grid-based filtering. We can see that the speedup of both
GPU algorithms increases with the number of feature instances. The grid-based
refinement gradually becomes superior over the hash join based refinement in
GPU algorithms as the number of instances increases. The reason can be that
the cell-instance index in grid-based refinement is done once and for all, while the
prefix-based hash index in hash-join based refinement needs to be created repeat-
edly for each new instance table. The comparison of two approaches with 250,000
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instances (the first two points in the curve) may be less conclusive since the run-
ning time for both approaches is too small (far below one second).

In the second setting, we set the clumpiness value as 20, and varied the
number of feature instances as 50,000, 100,000, 150,000, 200,000, and 250,000.
The number of feature instances were set smaller in this setting due to the
fact that given the same number of feature instances, a higher clumpiness value
results in far more colocation pattern instances (see Fig.5(b) versus (c)) but
we only have limited memory. The results are summarized in Fig. 6(b). We can
see that the grid based refinement is persistently better than hash-join based
refinement (around 30 versus 5). The reason is that when the clumpiness is high,
there are a large number of pattern instances being formed combinatorially.
Many of them share the same prefix (i.e., first feature instance). Thus, each
GPU kernel thread in prefix-based hash-join refinement was loaded with heavy
computation when doing the join operation, impacting the parallel performance.
In contrast, in the grid-based refinement, each GPU kernel thread only scans a
limited number of instances within neighboring cells.
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Fig. 6. Results on synthetic datasets: (a) effect of the number of instances with clumpi-
ness as 1 (b) effect of the number of instances with clumpiness as 20 (c) effect of
clumpiness with the number of instances as 250k
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Effect of Clumpiness. We set the number of instances to 250k, and the
prevalence threshold to 0.5. Grid-based filtering was used for GPU algorithms.
We varied the clumpiness value as 1, 5, 10, 15, and 20. Results in Fig. 6(c) confirm
with our analysis above that when clumpiness is higher, the performance of grid-
based refinement gets better while the performance of hash-join based refinement

gets worse.

Table 1. Comparison of filter and refinement on synthetic data (time in secs)
Clumpiness | Approaches Filter time | Refine time | Total time | Speedup
1 CPU Baseline 15.3 18.8 34.1 -

GPU-Filter:M, Refine:H | 0.8 1.1 1.9 17.9x
GPU-Filter:C, Refine:G | 0.2 0.7 0.9 37.9x
GPU-Filter:C, Refine:H | 0.2 1.0 1.2 28.4x
20 CPU Baseline 0.9 407.5 408.4 -
GPU-Filter:M, Refine:H | 0.1 97.3 97.4 4.2x
GPU-Filter:C, Refine:G | 0.1 13.8 13.9 29.4x
GPU-Filter:C, Refine:H | 0.1 96.9 97 4.2x

Comparison on Filter and Refinement. We also compared the compu-
tational time of filter and refinement phases of GPU algorithms in the above
experiments for the cases with the largest number of instances. Details are sum-
marized in Table 1. When clumpiness is 1, the grid-based filter is much faster
than the multi-resolution filter in GPU algorithms (0.2s versus 0.8s), making
the overall GPU speedup better (37.9 and 28.4 times versus 17.9 times). The
reason is that a low clumpiness significantly impacts the multi-resolution filter
(coarse scale instance tables cannot be much smaller than true instance tables),
while the grid-based filter was less sensitive to clumpiness (more robust) since the
time cost of grid-based filtering does not depend on instance distribution. When
clumpiness is 20, the refinement phase becomes the bottleneck. The grid-based
refinement has a significantly higher speedup than the hash-join refinement (29.4
times versus 4.2 times).

4.2 Results on Real World Dataset

Effect of Minimum Participation Index Threshold. We fixed the dis-
tance threshold as 10 meters and varied the prevalence thresholds from 0.3 to
0.9 (we did not chose thresholds lower than 0.3, because there would be too
many instance tables exceeding our memory capacity). The clumpiness of the
real dataset was high due to a large density of points. Results are summarized
in Fig.7. As we can see, as the prevalence threshold gets higher, the pruning
ratio (candidate patterns being pruned out) gets improved (Fig. 7(a)). The GPU
algorithm with grid based refinement is much better than the GPU algorithm
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Pruning Ratio v.s. Prevalent Threshold on Real Dataset Speedup v.s. Threshold on Real Dataset
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Fig. 7. Results on real world dataset: (a) pruning ratio versus prevalence thresholds
(b) speedup versus prevalence thresholds

with hash join based refinement. This is consistent with the results on synthetic
datasets when the clumpiness is high.

Comparison of Filter and Refinement. We also compared the detailed
computational time in the filter and refinement phases. The distance threshold
was 10 meters, and the prevalent threshold was 0.3. Results are summarized in
Table 2. Due to a high clumpiness, the refinement phase is the bottleneck, and
the grid-based refinement is better than the hash-join based refinement (63.2
times overall speedup versus 12.7 times overall speedup).

Table 2. Comparison of filter and refinement on real dataset (time in secs)

Approaches Filter time | Refine time | Total time | Speedup
CPU baseline 6.5 340.9 347.4 -
GPU-Filter:M, Refine:H | 0.2 26 26.8 13x
GPU-Filter:C, Refine:G | 0.5 5.0 5.5 63.2x
GPU-Filter:C, Refine:H | 0.5 26.9 27.4 12.7x

5 Discussion

Preliminary results show that GPU algorithms are promising for the colocation
mining problem. One limitation of the proposed GPU algorithm is memory bot-
tleneck. Our algorithm generates instance tables of candidate colocation patterns
in GPU. When spatial points are dense and the number of points is large (e.g.,
millions), such instance tables can reach gigabytes in size. In our implementation,
we generate one instance table each time in GPU global memory, and transfer
the results to the host in pinned memory. Results showed that the time cost of
memory copy was significantly lower (due to pinned memory) than the time cost
of GPU computation. In case that the GPU global memory is insufficient for a
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very large instance table, we can slice it into smaller pieces, compute one piece
each time, and transfer results to the host memory. We need to store all relevant
instance tables of cardinality k in host memory when computing instance tables
of cardinality k + 1. Thus, the host memory size can also be a bottleneck. This
may be less a concern in future when the main memory price gets lower.

6 Conclusion and Future Work

This paper investigates GPU colocation mining algorithms. We propose a novel
cell-aggregate-based upper bound filter, which is easier to implement on GPU
and less sensitive to data clumpiness compared with the existing multi-resolution
filter. We also design two GPU refinement algorithms, based on grid-based search
and prefix based hash-join. We provide theoretical analysis on the correctness
and completeness of proposed algorithms. Preliminary results on both real world
data and synthetic data on various parameter settings show that proposed GPU
algorithms are promising.

In future work, we will explore further refinements on GPU implementation to
achieve higher speedup, e.g., avoid redundant distance computation in instance
table generation. We will also explore other computational pruning methods.

Acknowledgement. We would like to thank Dr. Simin You for helpful comments and
suggestions.
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